linux/drivers/ata/libata-core.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  libata-core.c - helper library for ATA
   4 *
   5 *  Maintained by:  Tejun Heo <tj@kernel.org>
   6 *                  Please ALWAYS copy linux-ide@vger.kernel.org
   7 *                  on emails.
   8 *
   9 *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
  10 *  Copyright 2003-2004 Jeff Garzik
  11 *
  12 *  libata documentation is available via 'make {ps|pdf}docs',
  13 *  as Documentation/driver-api/libata.rst
  14 *
  15 *  Hardware documentation available from http://www.t13.org/ and
  16 *  http://www.sata-io.org/
  17 *
  18 *  Standards documents from:
  19 *      http://www.t13.org (ATA standards, PCI DMA IDE spec)
  20 *      http://www.t10.org (SCSI MMC - for ATAPI MMC)
  21 *      http://www.sata-io.org (SATA)
  22 *      http://www.compactflash.org (CF)
  23 *      http://www.qic.org (QIC157 - Tape and DSC)
  24 *      http://www.ce-ata.org (CE-ATA: not supported)
  25 */
  26
  27#include <linux/kernel.h>
  28#include <linux/module.h>
  29#include <linux/pci.h>
  30#include <linux/init.h>
  31#include <linux/list.h>
  32#include <linux/mm.h>
  33#include <linux/spinlock.h>
  34#include <linux/blkdev.h>
  35#include <linux/delay.h>
  36#include <linux/timer.h>
  37#include <linux/time.h>
  38#include <linux/interrupt.h>
  39#include <linux/completion.h>
  40#include <linux/suspend.h>
  41#include <linux/workqueue.h>
  42#include <linux/scatterlist.h>
  43#include <linux/io.h>
  44#include <linux/async.h>
  45#include <linux/log2.h>
  46#include <linux/slab.h>
  47#include <linux/glob.h>
  48#include <scsi/scsi.h>
  49#include <scsi/scsi_cmnd.h>
  50#include <scsi/scsi_host.h>
  51#include <linux/libata.h>
  52#include <asm/byteorder.h>
  53#include <asm/unaligned.h>
  54#include <linux/cdrom.h>
  55#include <linux/ratelimit.h>
  56#include <linux/leds.h>
  57#include <linux/pm_runtime.h>
  58#include <linux/platform_device.h>
  59
  60#define CREATE_TRACE_POINTS
  61#include <trace/events/libata.h>
  62
  63#include "libata.h"
  64#include "libata-transport.h"
  65
  66/* debounce timing parameters in msecs { interval, duration, timeout } */
  67const unsigned long sata_deb_timing_normal[]            = {   5,  100, 2000 };
  68const unsigned long sata_deb_timing_hotplug[]           = {  25,  500, 2000 };
  69const unsigned long sata_deb_timing_long[]              = { 100, 2000, 5000 };
  70
  71const struct ata_port_operations ata_base_port_ops = {
  72        .prereset               = ata_std_prereset,
  73        .postreset              = ata_std_postreset,
  74        .error_handler          = ata_std_error_handler,
  75        .sched_eh               = ata_std_sched_eh,
  76        .end_eh                 = ata_std_end_eh,
  77};
  78
  79const struct ata_port_operations sata_port_ops = {
  80        .inherits               = &ata_base_port_ops,
  81
  82        .qc_defer               = ata_std_qc_defer,
  83        .hardreset              = sata_std_hardreset,
  84};
  85
  86static unsigned int ata_dev_init_params(struct ata_device *dev,
  87                                        u16 heads, u16 sectors);
  88static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
  89static void ata_dev_xfermask(struct ata_device *dev);
  90static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
  91
  92atomic_t ata_print_id = ATOMIC_INIT(0);
  93
  94struct ata_force_param {
  95        const char      *name;
  96        unsigned int    cbl;
  97        int             spd_limit;
  98        unsigned long   xfer_mask;
  99        unsigned int    horkage_on;
 100        unsigned int    horkage_off;
 101        unsigned int    lflags;
 102};
 103
 104struct ata_force_ent {
 105        int                     port;
 106        int                     device;
 107        struct ata_force_param  param;
 108};
 109
 110static struct ata_force_ent *ata_force_tbl;
 111static int ata_force_tbl_size;
 112
 113static char ata_force_param_buf[PAGE_SIZE] __initdata;
 114/* param_buf is thrown away after initialization, disallow read */
 115module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
 116MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)");
 117
 118static int atapi_enabled = 1;
 119module_param(atapi_enabled, int, 0444);
 120MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
 121
 122static int atapi_dmadir = 0;
 123module_param(atapi_dmadir, int, 0444);
 124MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
 125
 126int atapi_passthru16 = 1;
 127module_param(atapi_passthru16, int, 0444);
 128MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
 129
 130int libata_fua = 0;
 131module_param_named(fua, libata_fua, int, 0444);
 132MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
 133
 134static int ata_ignore_hpa;
 135module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
 136MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
 137
 138static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
 139module_param_named(dma, libata_dma_mask, int, 0444);
 140MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
 141
 142static int ata_probe_timeout;
 143module_param(ata_probe_timeout, int, 0444);
 144MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
 145
 146int libata_noacpi = 0;
 147module_param_named(noacpi, libata_noacpi, int, 0444);
 148MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
 149
 150int libata_allow_tpm = 0;
 151module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
 152MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
 153
 154static int atapi_an;
 155module_param(atapi_an, int, 0444);
 156MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
 157
 158MODULE_AUTHOR("Jeff Garzik");
 159MODULE_DESCRIPTION("Library module for ATA devices");
 160MODULE_LICENSE("GPL");
 161MODULE_VERSION(DRV_VERSION);
 162
 163
 164static bool ata_sstatus_online(u32 sstatus)
 165{
 166        return (sstatus & 0xf) == 0x3;
 167}
 168
 169/**
 170 *      ata_link_next - link iteration helper
 171 *      @link: the previous link, NULL to start
 172 *      @ap: ATA port containing links to iterate
 173 *      @mode: iteration mode, one of ATA_LITER_*
 174 *
 175 *      LOCKING:
 176 *      Host lock or EH context.
 177 *
 178 *      RETURNS:
 179 *      Pointer to the next link.
 180 */
 181struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
 182                               enum ata_link_iter_mode mode)
 183{
 184        BUG_ON(mode != ATA_LITER_EDGE &&
 185               mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
 186
 187        /* NULL link indicates start of iteration */
 188        if (!link)
 189                switch (mode) {
 190                case ATA_LITER_EDGE:
 191                case ATA_LITER_PMP_FIRST:
 192                        if (sata_pmp_attached(ap))
 193                                return ap->pmp_link;
 194                        /* fall through */
 195                case ATA_LITER_HOST_FIRST:
 196                        return &ap->link;
 197                }
 198
 199        /* we just iterated over the host link, what's next? */
 200        if (link == &ap->link)
 201                switch (mode) {
 202                case ATA_LITER_HOST_FIRST:
 203                        if (sata_pmp_attached(ap))
 204                                return ap->pmp_link;
 205                        /* fall through */
 206                case ATA_LITER_PMP_FIRST:
 207                        if (unlikely(ap->slave_link))
 208                                return ap->slave_link;
 209                        /* fall through */
 210                case ATA_LITER_EDGE:
 211                        return NULL;
 212                }
 213
 214        /* slave_link excludes PMP */
 215        if (unlikely(link == ap->slave_link))
 216                return NULL;
 217
 218        /* we were over a PMP link */
 219        if (++link < ap->pmp_link + ap->nr_pmp_links)
 220                return link;
 221
 222        if (mode == ATA_LITER_PMP_FIRST)
 223                return &ap->link;
 224
 225        return NULL;
 226}
 227
 228/**
 229 *      ata_dev_next - device iteration helper
 230 *      @dev: the previous device, NULL to start
 231 *      @link: ATA link containing devices to iterate
 232 *      @mode: iteration mode, one of ATA_DITER_*
 233 *
 234 *      LOCKING:
 235 *      Host lock or EH context.
 236 *
 237 *      RETURNS:
 238 *      Pointer to the next device.
 239 */
 240struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
 241                                enum ata_dev_iter_mode mode)
 242{
 243        BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
 244               mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
 245
 246        /* NULL dev indicates start of iteration */
 247        if (!dev)
 248                switch (mode) {
 249                case ATA_DITER_ENABLED:
 250                case ATA_DITER_ALL:
 251                        dev = link->device;
 252                        goto check;
 253                case ATA_DITER_ENABLED_REVERSE:
 254                case ATA_DITER_ALL_REVERSE:
 255                        dev = link->device + ata_link_max_devices(link) - 1;
 256                        goto check;
 257                }
 258
 259 next:
 260        /* move to the next one */
 261        switch (mode) {
 262        case ATA_DITER_ENABLED:
 263        case ATA_DITER_ALL:
 264                if (++dev < link->device + ata_link_max_devices(link))
 265                        goto check;
 266                return NULL;
 267        case ATA_DITER_ENABLED_REVERSE:
 268        case ATA_DITER_ALL_REVERSE:
 269                if (--dev >= link->device)
 270                        goto check;
 271                return NULL;
 272        }
 273
 274 check:
 275        if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
 276            !ata_dev_enabled(dev))
 277                goto next;
 278        return dev;
 279}
 280
 281/**
 282 *      ata_dev_phys_link - find physical link for a device
 283 *      @dev: ATA device to look up physical link for
 284 *
 285 *      Look up physical link which @dev is attached to.  Note that
 286 *      this is different from @dev->link only when @dev is on slave
 287 *      link.  For all other cases, it's the same as @dev->link.
 288 *
 289 *      LOCKING:
 290 *      Don't care.
 291 *
 292 *      RETURNS:
 293 *      Pointer to the found physical link.
 294 */
 295struct ata_link *ata_dev_phys_link(struct ata_device *dev)
 296{
 297        struct ata_port *ap = dev->link->ap;
 298
 299        if (!ap->slave_link)
 300                return dev->link;
 301        if (!dev->devno)
 302                return &ap->link;
 303        return ap->slave_link;
 304}
 305
 306/**
 307 *      ata_force_cbl - force cable type according to libata.force
 308 *      @ap: ATA port of interest
 309 *
 310 *      Force cable type according to libata.force and whine about it.
 311 *      The last entry which has matching port number is used, so it
 312 *      can be specified as part of device force parameters.  For
 313 *      example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
 314 *      same effect.
 315 *
 316 *      LOCKING:
 317 *      EH context.
 318 */
 319void ata_force_cbl(struct ata_port *ap)
 320{
 321        int i;
 322
 323        for (i = ata_force_tbl_size - 1; i >= 0; i--) {
 324                const struct ata_force_ent *fe = &ata_force_tbl[i];
 325
 326                if (fe->port != -1 && fe->port != ap->print_id)
 327                        continue;
 328
 329                if (fe->param.cbl == ATA_CBL_NONE)
 330                        continue;
 331
 332                ap->cbl = fe->param.cbl;
 333                ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
 334                return;
 335        }
 336}
 337
 338/**
 339 *      ata_force_link_limits - force link limits according to libata.force
 340 *      @link: ATA link of interest
 341 *
 342 *      Force link flags and SATA spd limit according to libata.force
 343 *      and whine about it.  When only the port part is specified
 344 *      (e.g. 1:), the limit applies to all links connected to both
 345 *      the host link and all fan-out ports connected via PMP.  If the
 346 *      device part is specified as 0 (e.g. 1.00:), it specifies the
 347 *      first fan-out link not the host link.  Device number 15 always
 348 *      points to the host link whether PMP is attached or not.  If the
 349 *      controller has slave link, device number 16 points to it.
 350 *
 351 *      LOCKING:
 352 *      EH context.
 353 */
 354static void ata_force_link_limits(struct ata_link *link)
 355{
 356        bool did_spd = false;
 357        int linkno = link->pmp;
 358        int i;
 359
 360        if (ata_is_host_link(link))
 361                linkno += 15;
 362
 363        for (i = ata_force_tbl_size - 1; i >= 0; i--) {
 364                const struct ata_force_ent *fe = &ata_force_tbl[i];
 365
 366                if (fe->port != -1 && fe->port != link->ap->print_id)
 367                        continue;
 368
 369                if (fe->device != -1 && fe->device != linkno)
 370                        continue;
 371
 372                /* only honor the first spd limit */
 373                if (!did_spd && fe->param.spd_limit) {
 374                        link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
 375                        ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
 376                                        fe->param.name);
 377                        did_spd = true;
 378                }
 379
 380                /* let lflags stack */
 381                if (fe->param.lflags) {
 382                        link->flags |= fe->param.lflags;
 383                        ata_link_notice(link,
 384                                        "FORCE: link flag 0x%x forced -> 0x%x\n",
 385                                        fe->param.lflags, link->flags);
 386                }
 387        }
 388}
 389
 390/**
 391 *      ata_force_xfermask - force xfermask according to libata.force
 392 *      @dev: ATA device of interest
 393 *
 394 *      Force xfer_mask according to libata.force and whine about it.
 395 *      For consistency with link selection, device number 15 selects
 396 *      the first device connected to the host link.
 397 *
 398 *      LOCKING:
 399 *      EH context.
 400 */
 401static void ata_force_xfermask(struct ata_device *dev)
 402{
 403        int devno = dev->link->pmp + dev->devno;
 404        int alt_devno = devno;
 405        int i;
 406
 407        /* allow n.15/16 for devices attached to host port */
 408        if (ata_is_host_link(dev->link))
 409                alt_devno += 15;
 410
 411        for (i = ata_force_tbl_size - 1; i >= 0; i--) {
 412                const struct ata_force_ent *fe = &ata_force_tbl[i];
 413                unsigned long pio_mask, mwdma_mask, udma_mask;
 414
 415                if (fe->port != -1 && fe->port != dev->link->ap->print_id)
 416                        continue;
 417
 418                if (fe->device != -1 && fe->device != devno &&
 419                    fe->device != alt_devno)
 420                        continue;
 421
 422                if (!fe->param.xfer_mask)
 423                        continue;
 424
 425                ata_unpack_xfermask(fe->param.xfer_mask,
 426                                    &pio_mask, &mwdma_mask, &udma_mask);
 427                if (udma_mask)
 428                        dev->udma_mask = udma_mask;
 429                else if (mwdma_mask) {
 430                        dev->udma_mask = 0;
 431                        dev->mwdma_mask = mwdma_mask;
 432                } else {
 433                        dev->udma_mask = 0;
 434                        dev->mwdma_mask = 0;
 435                        dev->pio_mask = pio_mask;
 436                }
 437
 438                ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
 439                               fe->param.name);
 440                return;
 441        }
 442}
 443
 444/**
 445 *      ata_force_horkage - force horkage according to libata.force
 446 *      @dev: ATA device of interest
 447 *
 448 *      Force horkage according to libata.force and whine about it.
 449 *      For consistency with link selection, device number 15 selects
 450 *      the first device connected to the host link.
 451 *
 452 *      LOCKING:
 453 *      EH context.
 454 */
 455static void ata_force_horkage(struct ata_device *dev)
 456{
 457        int devno = dev->link->pmp + dev->devno;
 458        int alt_devno = devno;
 459        int i;
 460
 461        /* allow n.15/16 for devices attached to host port */
 462        if (ata_is_host_link(dev->link))
 463                alt_devno += 15;
 464
 465        for (i = 0; i < ata_force_tbl_size; i++) {
 466                const struct ata_force_ent *fe = &ata_force_tbl[i];
 467
 468                if (fe->port != -1 && fe->port != dev->link->ap->print_id)
 469                        continue;
 470
 471                if (fe->device != -1 && fe->device != devno &&
 472                    fe->device != alt_devno)
 473                        continue;
 474
 475                if (!(~dev->horkage & fe->param.horkage_on) &&
 476                    !(dev->horkage & fe->param.horkage_off))
 477                        continue;
 478
 479                dev->horkage |= fe->param.horkage_on;
 480                dev->horkage &= ~fe->param.horkage_off;
 481
 482                ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
 483                               fe->param.name);
 484        }
 485}
 486
 487/**
 488 *      atapi_cmd_type - Determine ATAPI command type from SCSI opcode
 489 *      @opcode: SCSI opcode
 490 *
 491 *      Determine ATAPI command type from @opcode.
 492 *
 493 *      LOCKING:
 494 *      None.
 495 *
 496 *      RETURNS:
 497 *      ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
 498 */
 499int atapi_cmd_type(u8 opcode)
 500{
 501        switch (opcode) {
 502        case GPCMD_READ_10:
 503        case GPCMD_READ_12:
 504                return ATAPI_READ;
 505
 506        case GPCMD_WRITE_10:
 507        case GPCMD_WRITE_12:
 508        case GPCMD_WRITE_AND_VERIFY_10:
 509                return ATAPI_WRITE;
 510
 511        case GPCMD_READ_CD:
 512        case GPCMD_READ_CD_MSF:
 513                return ATAPI_READ_CD;
 514
 515        case ATA_16:
 516        case ATA_12:
 517                if (atapi_passthru16)
 518                        return ATAPI_PASS_THRU;
 519                /* fall thru */
 520        default:
 521                return ATAPI_MISC;
 522        }
 523}
 524
 525/**
 526 *      ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
 527 *      @tf: Taskfile to convert
 528 *      @pmp: Port multiplier port
 529 *      @is_cmd: This FIS is for command
 530 *      @fis: Buffer into which data will output
 531 *
 532 *      Converts a standard ATA taskfile to a Serial ATA
 533 *      FIS structure (Register - Host to Device).
 534 *
 535 *      LOCKING:
 536 *      Inherited from caller.
 537 */
 538void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
 539{
 540        fis[0] = 0x27;                  /* Register - Host to Device FIS */
 541        fis[1] = pmp & 0xf;             /* Port multiplier number*/
 542        if (is_cmd)
 543                fis[1] |= (1 << 7);     /* bit 7 indicates Command FIS */
 544
 545        fis[2] = tf->command;
 546        fis[3] = tf->feature;
 547
 548        fis[4] = tf->lbal;
 549        fis[5] = tf->lbam;
 550        fis[6] = tf->lbah;
 551        fis[7] = tf->device;
 552
 553        fis[8] = tf->hob_lbal;
 554        fis[9] = tf->hob_lbam;
 555        fis[10] = tf->hob_lbah;
 556        fis[11] = tf->hob_feature;
 557
 558        fis[12] = tf->nsect;
 559        fis[13] = tf->hob_nsect;
 560        fis[14] = 0;
 561        fis[15] = tf->ctl;
 562
 563        fis[16] = tf->auxiliary & 0xff;
 564        fis[17] = (tf->auxiliary >> 8) & 0xff;
 565        fis[18] = (tf->auxiliary >> 16) & 0xff;
 566        fis[19] = (tf->auxiliary >> 24) & 0xff;
 567}
 568
 569/**
 570 *      ata_tf_from_fis - Convert SATA FIS to ATA taskfile
 571 *      @fis: Buffer from which data will be input
 572 *      @tf: Taskfile to output
 573 *
 574 *      Converts a serial ATA FIS structure to a standard ATA taskfile.
 575 *
 576 *      LOCKING:
 577 *      Inherited from caller.
 578 */
 579
 580void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
 581{
 582        tf->command     = fis[2];       /* status */
 583        tf->feature     = fis[3];       /* error */
 584
 585        tf->lbal        = fis[4];
 586        tf->lbam        = fis[5];
 587        tf->lbah        = fis[6];
 588        tf->device      = fis[7];
 589
 590        tf->hob_lbal    = fis[8];
 591        tf->hob_lbam    = fis[9];
 592        tf->hob_lbah    = fis[10];
 593
 594        tf->nsect       = fis[12];
 595        tf->hob_nsect   = fis[13];
 596}
 597
 598static const u8 ata_rw_cmds[] = {
 599        /* pio multi */
 600        ATA_CMD_READ_MULTI,
 601        ATA_CMD_WRITE_MULTI,
 602        ATA_CMD_READ_MULTI_EXT,
 603        ATA_CMD_WRITE_MULTI_EXT,
 604        0,
 605        0,
 606        0,
 607        ATA_CMD_WRITE_MULTI_FUA_EXT,
 608        /* pio */
 609        ATA_CMD_PIO_READ,
 610        ATA_CMD_PIO_WRITE,
 611        ATA_CMD_PIO_READ_EXT,
 612        ATA_CMD_PIO_WRITE_EXT,
 613        0,
 614        0,
 615        0,
 616        0,
 617        /* dma */
 618        ATA_CMD_READ,
 619        ATA_CMD_WRITE,
 620        ATA_CMD_READ_EXT,
 621        ATA_CMD_WRITE_EXT,
 622        0,
 623        0,
 624        0,
 625        ATA_CMD_WRITE_FUA_EXT
 626};
 627
 628/**
 629 *      ata_rwcmd_protocol - set taskfile r/w commands and protocol
 630 *      @tf: command to examine and configure
 631 *      @dev: device tf belongs to
 632 *
 633 *      Examine the device configuration and tf->flags to calculate
 634 *      the proper read/write commands and protocol to use.
 635 *
 636 *      LOCKING:
 637 *      caller.
 638 */
 639static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
 640{
 641        u8 cmd;
 642
 643        int index, fua, lba48, write;
 644
 645        fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
 646        lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
 647        write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
 648
 649        if (dev->flags & ATA_DFLAG_PIO) {
 650                tf->protocol = ATA_PROT_PIO;
 651                index = dev->multi_count ? 0 : 8;
 652        } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
 653                /* Unable to use DMA due to host limitation */
 654                tf->protocol = ATA_PROT_PIO;
 655                index = dev->multi_count ? 0 : 8;
 656        } else {
 657                tf->protocol = ATA_PROT_DMA;
 658                index = 16;
 659        }
 660
 661        cmd = ata_rw_cmds[index + fua + lba48 + write];
 662        if (cmd) {
 663                tf->command = cmd;
 664                return 0;
 665        }
 666        return -1;
 667}
 668
 669/**
 670 *      ata_tf_read_block - Read block address from ATA taskfile
 671 *      @tf: ATA taskfile of interest
 672 *      @dev: ATA device @tf belongs to
 673 *
 674 *      LOCKING:
 675 *      None.
 676 *
 677 *      Read block address from @tf.  This function can handle all
 678 *      three address formats - LBA, LBA48 and CHS.  tf->protocol and
 679 *      flags select the address format to use.
 680 *
 681 *      RETURNS:
 682 *      Block address read from @tf.
 683 */
 684u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
 685{
 686        u64 block = 0;
 687
 688        if (tf->flags & ATA_TFLAG_LBA) {
 689                if (tf->flags & ATA_TFLAG_LBA48) {
 690                        block |= (u64)tf->hob_lbah << 40;
 691                        block |= (u64)tf->hob_lbam << 32;
 692                        block |= (u64)tf->hob_lbal << 24;
 693                } else
 694                        block |= (tf->device & 0xf) << 24;
 695
 696                block |= tf->lbah << 16;
 697                block |= tf->lbam << 8;
 698                block |= tf->lbal;
 699        } else {
 700                u32 cyl, head, sect;
 701
 702                cyl = tf->lbam | (tf->lbah << 8);
 703                head = tf->device & 0xf;
 704                sect = tf->lbal;
 705
 706                if (!sect) {
 707                        ata_dev_warn(dev,
 708                                     "device reported invalid CHS sector 0\n");
 709                        return U64_MAX;
 710                }
 711
 712                block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
 713        }
 714
 715        return block;
 716}
 717
 718/**
 719 *      ata_build_rw_tf - Build ATA taskfile for given read/write request
 720 *      @tf: Target ATA taskfile
 721 *      @dev: ATA device @tf belongs to
 722 *      @block: Block address
 723 *      @n_block: Number of blocks
 724 *      @tf_flags: RW/FUA etc...
 725 *      @tag: tag
 726 *      @class: IO priority class
 727 *
 728 *      LOCKING:
 729 *      None.
 730 *
 731 *      Build ATA taskfile @tf for read/write request described by
 732 *      @block, @n_block, @tf_flags and @tag on @dev.
 733 *
 734 *      RETURNS:
 735 *
 736 *      0 on success, -ERANGE if the request is too large for @dev,
 737 *      -EINVAL if the request is invalid.
 738 */
 739int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
 740                    u64 block, u32 n_block, unsigned int tf_flags,
 741                    unsigned int tag, int class)
 742{
 743        tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
 744        tf->flags |= tf_flags;
 745
 746        if (ata_ncq_enabled(dev) && !ata_tag_internal(tag)) {
 747                /* yay, NCQ */
 748                if (!lba_48_ok(block, n_block))
 749                        return -ERANGE;
 750
 751                tf->protocol = ATA_PROT_NCQ;
 752                tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
 753
 754                if (tf->flags & ATA_TFLAG_WRITE)
 755                        tf->command = ATA_CMD_FPDMA_WRITE;
 756                else
 757                        tf->command = ATA_CMD_FPDMA_READ;
 758
 759                tf->nsect = tag << 3;
 760                tf->hob_feature = (n_block >> 8) & 0xff;
 761                tf->feature = n_block & 0xff;
 762
 763                tf->hob_lbah = (block >> 40) & 0xff;
 764                tf->hob_lbam = (block >> 32) & 0xff;
 765                tf->hob_lbal = (block >> 24) & 0xff;
 766                tf->lbah = (block >> 16) & 0xff;
 767                tf->lbam = (block >> 8) & 0xff;
 768                tf->lbal = block & 0xff;
 769
 770                tf->device = ATA_LBA;
 771                if (tf->flags & ATA_TFLAG_FUA)
 772                        tf->device |= 1 << 7;
 773
 774                if (dev->flags & ATA_DFLAG_NCQ_PRIO) {
 775                        if (class == IOPRIO_CLASS_RT)
 776                                tf->hob_nsect |= ATA_PRIO_HIGH <<
 777                                                 ATA_SHIFT_PRIO;
 778                }
 779        } else if (dev->flags & ATA_DFLAG_LBA) {
 780                tf->flags |= ATA_TFLAG_LBA;
 781
 782                if (lba_28_ok(block, n_block)) {
 783                        /* use LBA28 */
 784                        tf->device |= (block >> 24) & 0xf;
 785                } else if (lba_48_ok(block, n_block)) {
 786                        if (!(dev->flags & ATA_DFLAG_LBA48))
 787                                return -ERANGE;
 788
 789                        /* use LBA48 */
 790                        tf->flags |= ATA_TFLAG_LBA48;
 791
 792                        tf->hob_nsect = (n_block >> 8) & 0xff;
 793
 794                        tf->hob_lbah = (block >> 40) & 0xff;
 795                        tf->hob_lbam = (block >> 32) & 0xff;
 796                        tf->hob_lbal = (block >> 24) & 0xff;
 797                } else
 798                        /* request too large even for LBA48 */
 799                        return -ERANGE;
 800
 801                if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
 802                        return -EINVAL;
 803
 804                tf->nsect = n_block & 0xff;
 805
 806                tf->lbah = (block >> 16) & 0xff;
 807                tf->lbam = (block >> 8) & 0xff;
 808                tf->lbal = block & 0xff;
 809
 810                tf->device |= ATA_LBA;
 811        } else {
 812                /* CHS */
 813                u32 sect, head, cyl, track;
 814
 815                /* The request -may- be too large for CHS addressing. */
 816                if (!lba_28_ok(block, n_block))
 817                        return -ERANGE;
 818
 819                if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
 820                        return -EINVAL;
 821
 822                /* Convert LBA to CHS */
 823                track = (u32)block / dev->sectors;
 824                cyl   = track / dev->heads;
 825                head  = track % dev->heads;
 826                sect  = (u32)block % dev->sectors + 1;
 827
 828                DPRINTK("block %u track %u cyl %u head %u sect %u\n",
 829                        (u32)block, track, cyl, head, sect);
 830
 831                /* Check whether the converted CHS can fit.
 832                   Cylinder: 0-65535
 833                   Head: 0-15
 834                   Sector: 1-255*/
 835                if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
 836                        return -ERANGE;
 837
 838                tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
 839                tf->lbal = sect;
 840                tf->lbam = cyl;
 841                tf->lbah = cyl >> 8;
 842                tf->device |= head;
 843        }
 844
 845        return 0;
 846}
 847
 848/**
 849 *      ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
 850 *      @pio_mask: pio_mask
 851 *      @mwdma_mask: mwdma_mask
 852 *      @udma_mask: udma_mask
 853 *
 854 *      Pack @pio_mask, @mwdma_mask and @udma_mask into a single
 855 *      unsigned int xfer_mask.
 856 *
 857 *      LOCKING:
 858 *      None.
 859 *
 860 *      RETURNS:
 861 *      Packed xfer_mask.
 862 */
 863unsigned long ata_pack_xfermask(unsigned long pio_mask,
 864                                unsigned long mwdma_mask,
 865                                unsigned long udma_mask)
 866{
 867        return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
 868                ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
 869                ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
 870}
 871
 872/**
 873 *      ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
 874 *      @xfer_mask: xfer_mask to unpack
 875 *      @pio_mask: resulting pio_mask
 876 *      @mwdma_mask: resulting mwdma_mask
 877 *      @udma_mask: resulting udma_mask
 878 *
 879 *      Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
 880 *      Any NULL destination masks will be ignored.
 881 */
 882void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
 883                         unsigned long *mwdma_mask, unsigned long *udma_mask)
 884{
 885        if (pio_mask)
 886                *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
 887        if (mwdma_mask)
 888                *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
 889        if (udma_mask)
 890                *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
 891}
 892
 893static const struct ata_xfer_ent {
 894        int shift, bits;
 895        u8 base;
 896} ata_xfer_tbl[] = {
 897        { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
 898        { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
 899        { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
 900        { -1, },
 901};
 902
 903/**
 904 *      ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
 905 *      @xfer_mask: xfer_mask of interest
 906 *
 907 *      Return matching XFER_* value for @xfer_mask.  Only the highest
 908 *      bit of @xfer_mask is considered.
 909 *
 910 *      LOCKING:
 911 *      None.
 912 *
 913 *      RETURNS:
 914 *      Matching XFER_* value, 0xff if no match found.
 915 */
 916u8 ata_xfer_mask2mode(unsigned long xfer_mask)
 917{
 918        int highbit = fls(xfer_mask) - 1;
 919        const struct ata_xfer_ent *ent;
 920
 921        for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 922                if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
 923                        return ent->base + highbit - ent->shift;
 924        return 0xff;
 925}
 926
 927/**
 928 *      ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
 929 *      @xfer_mode: XFER_* of interest
 930 *
 931 *      Return matching xfer_mask for @xfer_mode.
 932 *
 933 *      LOCKING:
 934 *      None.
 935 *
 936 *      RETURNS:
 937 *      Matching xfer_mask, 0 if no match found.
 938 */
 939unsigned long ata_xfer_mode2mask(u8 xfer_mode)
 940{
 941        const struct ata_xfer_ent *ent;
 942
 943        for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 944                if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
 945                        return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
 946                                & ~((1 << ent->shift) - 1);
 947        return 0;
 948}
 949
 950/**
 951 *      ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
 952 *      @xfer_mode: XFER_* of interest
 953 *
 954 *      Return matching xfer_shift for @xfer_mode.
 955 *
 956 *      LOCKING:
 957 *      None.
 958 *
 959 *      RETURNS:
 960 *      Matching xfer_shift, -1 if no match found.
 961 */
 962int ata_xfer_mode2shift(unsigned long xfer_mode)
 963{
 964        const struct ata_xfer_ent *ent;
 965
 966        for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 967                if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
 968                        return ent->shift;
 969        return -1;
 970}
 971
 972/**
 973 *      ata_mode_string - convert xfer_mask to string
 974 *      @xfer_mask: mask of bits supported; only highest bit counts.
 975 *
 976 *      Determine string which represents the highest speed
 977 *      (highest bit in @modemask).
 978 *
 979 *      LOCKING:
 980 *      None.
 981 *
 982 *      RETURNS:
 983 *      Constant C string representing highest speed listed in
 984 *      @mode_mask, or the constant C string "<n/a>".
 985 */
 986const char *ata_mode_string(unsigned long xfer_mask)
 987{
 988        static const char * const xfer_mode_str[] = {
 989                "PIO0",
 990                "PIO1",
 991                "PIO2",
 992                "PIO3",
 993                "PIO4",
 994                "PIO5",
 995                "PIO6",
 996                "MWDMA0",
 997                "MWDMA1",
 998                "MWDMA2",
 999                "MWDMA3",
1000                "MWDMA4",
1001                "UDMA/16",
1002                "UDMA/25",
1003                "UDMA/33",
1004                "UDMA/44",
1005                "UDMA/66",
1006                "UDMA/100",
1007                "UDMA/133",
1008                "UDMA7",
1009        };
1010        int highbit;
1011
1012        highbit = fls(xfer_mask) - 1;
1013        if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1014                return xfer_mode_str[highbit];
1015        return "<n/a>";
1016}
1017
1018const char *sata_spd_string(unsigned int spd)
1019{
1020        static const char * const spd_str[] = {
1021                "1.5 Gbps",
1022                "3.0 Gbps",
1023                "6.0 Gbps",
1024        };
1025
1026        if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1027                return "<unknown>";
1028        return spd_str[spd - 1];
1029}
1030
1031/**
1032 *      ata_dev_classify - determine device type based on ATA-spec signature
1033 *      @tf: ATA taskfile register set for device to be identified
1034 *
1035 *      Determine from taskfile register contents whether a device is
1036 *      ATA or ATAPI, as per "Signature and persistence" section
1037 *      of ATA/PI spec (volume 1, sect 5.14).
1038 *
1039 *      LOCKING:
1040 *      None.
1041 *
1042 *      RETURNS:
1043 *      Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
1044 *      %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
1045 */
1046unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1047{
1048        /* Apple's open source Darwin code hints that some devices only
1049         * put a proper signature into the LBA mid/high registers,
1050         * So, we only check those.  It's sufficient for uniqueness.
1051         *
1052         * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1053         * signatures for ATA and ATAPI devices attached on SerialATA,
1054         * 0x3c/0xc3 and 0x69/0x96 respectively.  However, SerialATA
1055         * spec has never mentioned about using different signatures
1056         * for ATA/ATAPI devices.  Then, Serial ATA II: Port
1057         * Multiplier specification began to use 0x69/0x96 to identify
1058         * port multpliers and 0x3c/0xc3 to identify SEMB device.
1059         * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1060         * 0x69/0x96 shortly and described them as reserved for
1061         * SerialATA.
1062         *
1063         * We follow the current spec and consider that 0x69/0x96
1064         * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1065         * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1066         * SEMB signature.  This is worked around in
1067         * ata_dev_read_id().
1068         */
1069        if ((tf->lbam == 0) && (tf->lbah == 0)) {
1070                DPRINTK("found ATA device by sig\n");
1071                return ATA_DEV_ATA;
1072        }
1073
1074        if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1075                DPRINTK("found ATAPI device by sig\n");
1076                return ATA_DEV_ATAPI;
1077        }
1078
1079        if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1080                DPRINTK("found PMP device by sig\n");
1081                return ATA_DEV_PMP;
1082        }
1083
1084        if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1085                DPRINTK("found SEMB device by sig (could be ATA device)\n");
1086                return ATA_DEV_SEMB;
1087        }
1088
1089        if ((tf->lbam == 0xcd) && (tf->lbah == 0xab)) {
1090                DPRINTK("found ZAC device by sig\n");
1091                return ATA_DEV_ZAC;
1092        }
1093
1094        DPRINTK("unknown device\n");
1095        return ATA_DEV_UNKNOWN;
1096}
1097
1098/**
1099 *      ata_id_string - Convert IDENTIFY DEVICE page into string
1100 *      @id: IDENTIFY DEVICE results we will examine
1101 *      @s: string into which data is output
1102 *      @ofs: offset into identify device page
1103 *      @len: length of string to return. must be an even number.
1104 *
1105 *      The strings in the IDENTIFY DEVICE page are broken up into
1106 *      16-bit chunks.  Run through the string, and output each
1107 *      8-bit chunk linearly, regardless of platform.
1108 *
1109 *      LOCKING:
1110 *      caller.
1111 */
1112
1113void ata_id_string(const u16 *id, unsigned char *s,
1114                   unsigned int ofs, unsigned int len)
1115{
1116        unsigned int c;
1117
1118        BUG_ON(len & 1);
1119
1120        while (len > 0) {
1121                c = id[ofs] >> 8;
1122                *s = c;
1123                s++;
1124
1125                c = id[ofs] & 0xff;
1126                *s = c;
1127                s++;
1128
1129                ofs++;
1130                len -= 2;
1131        }
1132}
1133
1134/**
1135 *      ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1136 *      @id: IDENTIFY DEVICE results we will examine
1137 *      @s: string into which data is output
1138 *      @ofs: offset into identify device page
1139 *      @len: length of string to return. must be an odd number.
1140 *
1141 *      This function is identical to ata_id_string except that it
1142 *      trims trailing spaces and terminates the resulting string with
1143 *      null.  @len must be actual maximum length (even number) + 1.
1144 *
1145 *      LOCKING:
1146 *      caller.
1147 */
1148void ata_id_c_string(const u16 *id, unsigned char *s,
1149                     unsigned int ofs, unsigned int len)
1150{
1151        unsigned char *p;
1152
1153        ata_id_string(id, s, ofs, len - 1);
1154
1155        p = s + strnlen(s, len - 1);
1156        while (p > s && p[-1] == ' ')
1157                p--;
1158        *p = '\0';
1159}
1160
1161static u64 ata_id_n_sectors(const u16 *id)
1162{
1163        if (ata_id_has_lba(id)) {
1164                if (ata_id_has_lba48(id))
1165                        return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1166                else
1167                        return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1168        } else {
1169                if (ata_id_current_chs_valid(id))
1170                        return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1171                               id[ATA_ID_CUR_SECTORS];
1172                else
1173                        return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1174                               id[ATA_ID_SECTORS];
1175        }
1176}
1177
1178u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1179{
1180        u64 sectors = 0;
1181
1182        sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1183        sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1184        sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1185        sectors |= (tf->lbah & 0xff) << 16;
1186        sectors |= (tf->lbam & 0xff) << 8;
1187        sectors |= (tf->lbal & 0xff);
1188
1189        return sectors;
1190}
1191
1192u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1193{
1194        u64 sectors = 0;
1195
1196        sectors |= (tf->device & 0x0f) << 24;
1197        sectors |= (tf->lbah & 0xff) << 16;
1198        sectors |= (tf->lbam & 0xff) << 8;
1199        sectors |= (tf->lbal & 0xff);
1200
1201        return sectors;
1202}
1203
1204/**
1205 *      ata_read_native_max_address - Read native max address
1206 *      @dev: target device
1207 *      @max_sectors: out parameter for the result native max address
1208 *
1209 *      Perform an LBA48 or LBA28 native size query upon the device in
1210 *      question.
1211 *
1212 *      RETURNS:
1213 *      0 on success, -EACCES if command is aborted by the drive.
1214 *      -EIO on other errors.
1215 */
1216static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1217{
1218        unsigned int err_mask;
1219        struct ata_taskfile tf;
1220        int lba48 = ata_id_has_lba48(dev->id);
1221
1222        ata_tf_init(dev, &tf);
1223
1224        /* always clear all address registers */
1225        tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1226
1227        if (lba48) {
1228                tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1229                tf.flags |= ATA_TFLAG_LBA48;
1230        } else
1231                tf.command = ATA_CMD_READ_NATIVE_MAX;
1232
1233        tf.protocol = ATA_PROT_NODATA;
1234        tf.device |= ATA_LBA;
1235
1236        err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1237        if (err_mask) {
1238                ata_dev_warn(dev,
1239                             "failed to read native max address (err_mask=0x%x)\n",
1240                             err_mask);
1241                if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1242                        return -EACCES;
1243                return -EIO;
1244        }
1245
1246        if (lba48)
1247                *max_sectors = ata_tf_to_lba48(&tf) + 1;
1248        else
1249                *max_sectors = ata_tf_to_lba(&tf) + 1;
1250        if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1251                (*max_sectors)--;
1252        return 0;
1253}
1254
1255/**
1256 *      ata_set_max_sectors - Set max sectors
1257 *      @dev: target device
1258 *      @new_sectors: new max sectors value to set for the device
1259 *
1260 *      Set max sectors of @dev to @new_sectors.
1261 *
1262 *      RETURNS:
1263 *      0 on success, -EACCES if command is aborted or denied (due to
1264 *      previous non-volatile SET_MAX) by the drive.  -EIO on other
1265 *      errors.
1266 */
1267static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1268{
1269        unsigned int err_mask;
1270        struct ata_taskfile tf;
1271        int lba48 = ata_id_has_lba48(dev->id);
1272
1273        new_sectors--;
1274
1275        ata_tf_init(dev, &tf);
1276
1277        tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1278
1279        if (lba48) {
1280                tf.command = ATA_CMD_SET_MAX_EXT;
1281                tf.flags |= ATA_TFLAG_LBA48;
1282
1283                tf.hob_lbal = (new_sectors >> 24) & 0xff;
1284                tf.hob_lbam = (new_sectors >> 32) & 0xff;
1285                tf.hob_lbah = (new_sectors >> 40) & 0xff;
1286        } else {
1287                tf.command = ATA_CMD_SET_MAX;
1288
1289                tf.device |= (new_sectors >> 24) & 0xf;
1290        }
1291
1292        tf.protocol = ATA_PROT_NODATA;
1293        tf.device |= ATA_LBA;
1294
1295        tf.lbal = (new_sectors >> 0) & 0xff;
1296        tf.lbam = (new_sectors >> 8) & 0xff;
1297        tf.lbah = (new_sectors >> 16) & 0xff;
1298
1299        err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1300        if (err_mask) {
1301                ata_dev_warn(dev,
1302                             "failed to set max address (err_mask=0x%x)\n",
1303                             err_mask);
1304                if (err_mask == AC_ERR_DEV &&
1305                    (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1306                        return -EACCES;
1307                return -EIO;
1308        }
1309
1310        return 0;
1311}
1312
1313/**
1314 *      ata_hpa_resize          -       Resize a device with an HPA set
1315 *      @dev: Device to resize
1316 *
1317 *      Read the size of an LBA28 or LBA48 disk with HPA features and resize
1318 *      it if required to the full size of the media. The caller must check
1319 *      the drive has the HPA feature set enabled.
1320 *
1321 *      RETURNS:
1322 *      0 on success, -errno on failure.
1323 */
1324static int ata_hpa_resize(struct ata_device *dev)
1325{
1326        struct ata_eh_context *ehc = &dev->link->eh_context;
1327        int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1328        bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1329        u64 sectors = ata_id_n_sectors(dev->id);
1330        u64 native_sectors;
1331        int rc;
1332
1333        /* do we need to do it? */
1334        if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1335            !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1336            (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1337                return 0;
1338
1339        /* read native max address */
1340        rc = ata_read_native_max_address(dev, &native_sectors);
1341        if (rc) {
1342                /* If device aborted the command or HPA isn't going to
1343                 * be unlocked, skip HPA resizing.
1344                 */
1345                if (rc == -EACCES || !unlock_hpa) {
1346                        ata_dev_warn(dev,
1347                                     "HPA support seems broken, skipping HPA handling\n");
1348                        dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1349
1350                        /* we can continue if device aborted the command */
1351                        if (rc == -EACCES)
1352                                rc = 0;
1353                }
1354
1355                return rc;
1356        }
1357        dev->n_native_sectors = native_sectors;
1358
1359        /* nothing to do? */
1360        if (native_sectors <= sectors || !unlock_hpa) {
1361                if (!print_info || native_sectors == sectors)
1362                        return 0;
1363
1364                if (native_sectors > sectors)
1365                        ata_dev_info(dev,
1366                                "HPA detected: current %llu, native %llu\n",
1367                                (unsigned long long)sectors,
1368                                (unsigned long long)native_sectors);
1369                else if (native_sectors < sectors)
1370                        ata_dev_warn(dev,
1371                                "native sectors (%llu) is smaller than sectors (%llu)\n",
1372                                (unsigned long long)native_sectors,
1373                                (unsigned long long)sectors);
1374                return 0;
1375        }
1376
1377        /* let's unlock HPA */
1378        rc = ata_set_max_sectors(dev, native_sectors);
1379        if (rc == -EACCES) {
1380                /* if device aborted the command, skip HPA resizing */
1381                ata_dev_warn(dev,
1382                             "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1383                             (unsigned long long)sectors,
1384                             (unsigned long long)native_sectors);
1385                dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1386                return 0;
1387        } else if (rc)
1388                return rc;
1389
1390        /* re-read IDENTIFY data */
1391        rc = ata_dev_reread_id(dev, 0);
1392        if (rc) {
1393                ata_dev_err(dev,
1394                            "failed to re-read IDENTIFY data after HPA resizing\n");
1395                return rc;
1396        }
1397
1398        if (print_info) {
1399                u64 new_sectors = ata_id_n_sectors(dev->id);
1400                ata_dev_info(dev,
1401                        "HPA unlocked: %llu -> %llu, native %llu\n",
1402                        (unsigned long long)sectors,
1403                        (unsigned long long)new_sectors,
1404                        (unsigned long long)native_sectors);
1405        }
1406
1407        return 0;
1408}
1409
1410/**
1411 *      ata_dump_id - IDENTIFY DEVICE info debugging output
1412 *      @id: IDENTIFY DEVICE page to dump
1413 *
1414 *      Dump selected 16-bit words from the given IDENTIFY DEVICE
1415 *      page.
1416 *
1417 *      LOCKING:
1418 *      caller.
1419 */
1420
1421static inline void ata_dump_id(const u16 *id)
1422{
1423        DPRINTK("49==0x%04x  "
1424                "53==0x%04x  "
1425                "63==0x%04x  "
1426                "64==0x%04x  "
1427                "75==0x%04x  \n",
1428                id[49],
1429                id[53],
1430                id[63],
1431                id[64],
1432                id[75]);
1433        DPRINTK("80==0x%04x  "
1434                "81==0x%04x  "
1435                "82==0x%04x  "
1436                "83==0x%04x  "
1437                "84==0x%04x  \n",
1438                id[80],
1439                id[81],
1440                id[82],
1441                id[83],
1442                id[84]);
1443        DPRINTK("88==0x%04x  "
1444                "93==0x%04x\n",
1445                id[88],
1446                id[93]);
1447}
1448
1449/**
1450 *      ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1451 *      @id: IDENTIFY data to compute xfer mask from
1452 *
1453 *      Compute the xfermask for this device. This is not as trivial
1454 *      as it seems if we must consider early devices correctly.
1455 *
1456 *      FIXME: pre IDE drive timing (do we care ?).
1457 *
1458 *      LOCKING:
1459 *      None.
1460 *
1461 *      RETURNS:
1462 *      Computed xfermask
1463 */
1464unsigned long ata_id_xfermask(const u16 *id)
1465{
1466        unsigned long pio_mask, mwdma_mask, udma_mask;
1467
1468        /* Usual case. Word 53 indicates word 64 is valid */
1469        if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1470                pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1471                pio_mask <<= 3;
1472                pio_mask |= 0x7;
1473        } else {
1474                /* If word 64 isn't valid then Word 51 high byte holds
1475                 * the PIO timing number for the maximum. Turn it into
1476                 * a mask.
1477                 */
1478                u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1479                if (mode < 5)   /* Valid PIO range */
1480                        pio_mask = (2 << mode) - 1;
1481                else
1482                        pio_mask = 1;
1483
1484                /* But wait.. there's more. Design your standards by
1485                 * committee and you too can get a free iordy field to
1486                 * process. However its the speeds not the modes that
1487                 * are supported... Note drivers using the timing API
1488                 * will get this right anyway
1489                 */
1490        }
1491
1492        mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1493
1494        if (ata_id_is_cfa(id)) {
1495                /*
1496                 *      Process compact flash extended modes
1497                 */
1498                int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1499                int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1500
1501                if (pio)
1502                        pio_mask |= (1 << 5);
1503                if (pio > 1)
1504                        pio_mask |= (1 << 6);
1505                if (dma)
1506                        mwdma_mask |= (1 << 3);
1507                if (dma > 1)
1508                        mwdma_mask |= (1 << 4);
1509        }
1510
1511        udma_mask = 0;
1512        if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1513                udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1514
1515        return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1516}
1517
1518static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1519{
1520        struct completion *waiting = qc->private_data;
1521
1522        complete(waiting);
1523}
1524
1525/**
1526 *      ata_exec_internal_sg - execute libata internal command
1527 *      @dev: Device to which the command is sent
1528 *      @tf: Taskfile registers for the command and the result
1529 *      @cdb: CDB for packet command
1530 *      @dma_dir: Data transfer direction of the command
1531 *      @sgl: sg list for the data buffer of the command
1532 *      @n_elem: Number of sg entries
1533 *      @timeout: Timeout in msecs (0 for default)
1534 *
1535 *      Executes libata internal command with timeout.  @tf contains
1536 *      command on entry and result on return.  Timeout and error
1537 *      conditions are reported via return value.  No recovery action
1538 *      is taken after a command times out.  It's caller's duty to
1539 *      clean up after timeout.
1540 *
1541 *      LOCKING:
1542 *      None.  Should be called with kernel context, might sleep.
1543 *
1544 *      RETURNS:
1545 *      Zero on success, AC_ERR_* mask on failure
1546 */
1547unsigned ata_exec_internal_sg(struct ata_device *dev,
1548                              struct ata_taskfile *tf, const u8 *cdb,
1549                              int dma_dir, struct scatterlist *sgl,
1550                              unsigned int n_elem, unsigned long timeout)
1551{
1552        struct ata_link *link = dev->link;
1553        struct ata_port *ap = link->ap;
1554        u8 command = tf->command;
1555        int auto_timeout = 0;
1556        struct ata_queued_cmd *qc;
1557        unsigned int preempted_tag;
1558        u32 preempted_sactive;
1559        u64 preempted_qc_active;
1560        int preempted_nr_active_links;
1561        DECLARE_COMPLETION_ONSTACK(wait);
1562        unsigned long flags;
1563        unsigned int err_mask;
1564        int rc;
1565
1566        spin_lock_irqsave(ap->lock, flags);
1567
1568        /* no internal command while frozen */
1569        if (ap->pflags & ATA_PFLAG_FROZEN) {
1570                spin_unlock_irqrestore(ap->lock, flags);
1571                return AC_ERR_SYSTEM;
1572        }
1573
1574        /* initialize internal qc */
1575        qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL);
1576
1577        qc->tag = ATA_TAG_INTERNAL;
1578        qc->hw_tag = 0;
1579        qc->scsicmd = NULL;
1580        qc->ap = ap;
1581        qc->dev = dev;
1582        ata_qc_reinit(qc);
1583
1584        preempted_tag = link->active_tag;
1585        preempted_sactive = link->sactive;
1586        preempted_qc_active = ap->qc_active;
1587        preempted_nr_active_links = ap->nr_active_links;
1588        link->active_tag = ATA_TAG_POISON;
1589        link->sactive = 0;
1590        ap->qc_active = 0;
1591        ap->nr_active_links = 0;
1592
1593        /* prepare & issue qc */
1594        qc->tf = *tf;
1595        if (cdb)
1596                memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1597
1598        /* some SATA bridges need us to indicate data xfer direction */
1599        if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1600            dma_dir == DMA_FROM_DEVICE)
1601                qc->tf.feature |= ATAPI_DMADIR;
1602
1603        qc->flags |= ATA_QCFLAG_RESULT_TF;
1604        qc->dma_dir = dma_dir;
1605        if (dma_dir != DMA_NONE) {
1606                unsigned int i, buflen = 0;
1607                struct scatterlist *sg;
1608
1609                for_each_sg(sgl, sg, n_elem, i)
1610                        buflen += sg->length;
1611
1612                ata_sg_init(qc, sgl, n_elem);
1613                qc->nbytes = buflen;
1614        }
1615
1616        qc->private_data = &wait;
1617        qc->complete_fn = ata_qc_complete_internal;
1618
1619        ata_qc_issue(qc);
1620
1621        spin_unlock_irqrestore(ap->lock, flags);
1622
1623        if (!timeout) {
1624                if (ata_probe_timeout)
1625                        timeout = ata_probe_timeout * 1000;
1626                else {
1627                        timeout = ata_internal_cmd_timeout(dev, command);
1628                        auto_timeout = 1;
1629                }
1630        }
1631
1632        if (ap->ops->error_handler)
1633                ata_eh_release(ap);
1634
1635        rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1636
1637        if (ap->ops->error_handler)
1638                ata_eh_acquire(ap);
1639
1640        ata_sff_flush_pio_task(ap);
1641
1642        if (!rc) {
1643                spin_lock_irqsave(ap->lock, flags);
1644
1645                /* We're racing with irq here.  If we lose, the
1646                 * following test prevents us from completing the qc
1647                 * twice.  If we win, the port is frozen and will be
1648                 * cleaned up by ->post_internal_cmd().
1649                 */
1650                if (qc->flags & ATA_QCFLAG_ACTIVE) {
1651                        qc->err_mask |= AC_ERR_TIMEOUT;
1652
1653                        if (ap->ops->error_handler)
1654                                ata_port_freeze(ap);
1655                        else
1656                                ata_qc_complete(qc);
1657
1658                        if (ata_msg_warn(ap))
1659                                ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1660                                             command);
1661                }
1662
1663                spin_unlock_irqrestore(ap->lock, flags);
1664        }
1665
1666        /* do post_internal_cmd */
1667        if (ap->ops->post_internal_cmd)
1668                ap->ops->post_internal_cmd(qc);
1669
1670        /* perform minimal error analysis */
1671        if (qc->flags & ATA_QCFLAG_FAILED) {
1672                if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1673                        qc->err_mask |= AC_ERR_DEV;
1674
1675                if (!qc->err_mask)
1676                        qc->err_mask |= AC_ERR_OTHER;
1677
1678                if (qc->err_mask & ~AC_ERR_OTHER)
1679                        qc->err_mask &= ~AC_ERR_OTHER;
1680        } else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) {
1681                qc->result_tf.command |= ATA_SENSE;
1682        }
1683
1684        /* finish up */
1685        spin_lock_irqsave(ap->lock, flags);
1686
1687        *tf = qc->result_tf;
1688        err_mask = qc->err_mask;
1689
1690        ata_qc_free(qc);
1691        link->active_tag = preempted_tag;
1692        link->sactive = preempted_sactive;
1693        ap->qc_active = preempted_qc_active;
1694        ap->nr_active_links = preempted_nr_active_links;
1695
1696        spin_unlock_irqrestore(ap->lock, flags);
1697
1698        if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1699                ata_internal_cmd_timed_out(dev, command);
1700
1701        return err_mask;
1702}
1703
1704/**
1705 *      ata_exec_internal - execute libata internal command
1706 *      @dev: Device to which the command is sent
1707 *      @tf: Taskfile registers for the command and the result
1708 *      @cdb: CDB for packet command
1709 *      @dma_dir: Data transfer direction of the command
1710 *      @buf: Data buffer of the command
1711 *      @buflen: Length of data buffer
1712 *      @timeout: Timeout in msecs (0 for default)
1713 *
1714 *      Wrapper around ata_exec_internal_sg() which takes simple
1715 *      buffer instead of sg list.
1716 *
1717 *      LOCKING:
1718 *      None.  Should be called with kernel context, might sleep.
1719 *
1720 *      RETURNS:
1721 *      Zero on success, AC_ERR_* mask on failure
1722 */
1723unsigned ata_exec_internal(struct ata_device *dev,
1724                           struct ata_taskfile *tf, const u8 *cdb,
1725                           int dma_dir, void *buf, unsigned int buflen,
1726                           unsigned long timeout)
1727{
1728        struct scatterlist *psg = NULL, sg;
1729        unsigned int n_elem = 0;
1730
1731        if (dma_dir != DMA_NONE) {
1732                WARN_ON(!buf);
1733                sg_init_one(&sg, buf, buflen);
1734                psg = &sg;
1735                n_elem++;
1736        }
1737
1738        return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1739                                    timeout);
1740}
1741
1742/**
1743 *      ata_pio_need_iordy      -       check if iordy needed
1744 *      @adev: ATA device
1745 *
1746 *      Check if the current speed of the device requires IORDY. Used
1747 *      by various controllers for chip configuration.
1748 */
1749unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1750{
1751        /* Don't set IORDY if we're preparing for reset.  IORDY may
1752         * lead to controller lock up on certain controllers if the
1753         * port is not occupied.  See bko#11703 for details.
1754         */
1755        if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1756                return 0;
1757        /* Controller doesn't support IORDY.  Probably a pointless
1758         * check as the caller should know this.
1759         */
1760        if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1761                return 0;
1762        /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6.  */
1763        if (ata_id_is_cfa(adev->id)
1764            && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1765                return 0;
1766        /* PIO3 and higher it is mandatory */
1767        if (adev->pio_mode > XFER_PIO_2)
1768                return 1;
1769        /* We turn it on when possible */
1770        if (ata_id_has_iordy(adev->id))
1771                return 1;
1772        return 0;
1773}
1774
1775/**
1776 *      ata_pio_mask_no_iordy   -       Return the non IORDY mask
1777 *      @adev: ATA device
1778 *
1779 *      Compute the highest mode possible if we are not using iordy. Return
1780 *      -1 if no iordy mode is available.
1781 */
1782static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1783{
1784        /* If we have no drive specific rule, then PIO 2 is non IORDY */
1785        if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1786                u16 pio = adev->id[ATA_ID_EIDE_PIO];
1787                /* Is the speed faster than the drive allows non IORDY ? */
1788                if (pio) {
1789                        /* This is cycle times not frequency - watch the logic! */
1790                        if (pio > 240)  /* PIO2 is 240nS per cycle */
1791                                return 3 << ATA_SHIFT_PIO;
1792                        return 7 << ATA_SHIFT_PIO;
1793                }
1794        }
1795        return 3 << ATA_SHIFT_PIO;
1796}
1797
1798/**
1799 *      ata_do_dev_read_id              -       default ID read method
1800 *      @dev: device
1801 *      @tf: proposed taskfile
1802 *      @id: data buffer
1803 *
1804 *      Issue the identify taskfile and hand back the buffer containing
1805 *      identify data. For some RAID controllers and for pre ATA devices
1806 *      this function is wrapped or replaced by the driver
1807 */
1808unsigned int ata_do_dev_read_id(struct ata_device *dev,
1809                                        struct ata_taskfile *tf, u16 *id)
1810{
1811        return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1812                                     id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1813}
1814
1815/**
1816 *      ata_dev_read_id - Read ID data from the specified device
1817 *      @dev: target device
1818 *      @p_class: pointer to class of the target device (may be changed)
1819 *      @flags: ATA_READID_* flags
1820 *      @id: buffer to read IDENTIFY data into
1821 *
1822 *      Read ID data from the specified device.  ATA_CMD_ID_ATA is
1823 *      performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1824 *      devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
1825 *      for pre-ATA4 drives.
1826 *
1827 *      FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1828 *      now we abort if we hit that case.
1829 *
1830 *      LOCKING:
1831 *      Kernel thread context (may sleep)
1832 *
1833 *      RETURNS:
1834 *      0 on success, -errno otherwise.
1835 */
1836int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1837                    unsigned int flags, u16 *id)
1838{
1839        struct ata_port *ap = dev->link->ap;
1840        unsigned int class = *p_class;
1841        struct ata_taskfile tf;
1842        unsigned int err_mask = 0;
1843        const char *reason;
1844        bool is_semb = class == ATA_DEV_SEMB;
1845        int may_fallback = 1, tried_spinup = 0;
1846        int rc;
1847
1848        if (ata_msg_ctl(ap))
1849                ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1850
1851retry:
1852        ata_tf_init(dev, &tf);
1853
1854        switch (class) {
1855        case ATA_DEV_SEMB:
1856                class = ATA_DEV_ATA;    /* some hard drives report SEMB sig */
1857                /* fall through */
1858        case ATA_DEV_ATA:
1859        case ATA_DEV_ZAC:
1860                tf.command = ATA_CMD_ID_ATA;
1861                break;
1862        case ATA_DEV_ATAPI:
1863                tf.command = ATA_CMD_ID_ATAPI;
1864                break;
1865        default:
1866                rc = -ENODEV;
1867                reason = "unsupported class";
1868                goto err_out;
1869        }
1870
1871        tf.protocol = ATA_PROT_PIO;
1872
1873        /* Some devices choke if TF registers contain garbage.  Make
1874         * sure those are properly initialized.
1875         */
1876        tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1877
1878        /* Device presence detection is unreliable on some
1879         * controllers.  Always poll IDENTIFY if available.
1880         */
1881        tf.flags |= ATA_TFLAG_POLLING;
1882
1883        if (ap->ops->read_id)
1884                err_mask = ap->ops->read_id(dev, &tf, id);
1885        else
1886                err_mask = ata_do_dev_read_id(dev, &tf, id);
1887
1888        if (err_mask) {
1889                if (err_mask & AC_ERR_NODEV_HINT) {
1890                        ata_dev_dbg(dev, "NODEV after polling detection\n");
1891                        return -ENOENT;
1892                }
1893
1894                if (is_semb) {
1895                        ata_dev_info(dev,
1896                     "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1897                        /* SEMB is not supported yet */
1898                        *p_class = ATA_DEV_SEMB_UNSUP;
1899                        return 0;
1900                }
1901
1902                if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1903                        /* Device or controller might have reported
1904                         * the wrong device class.  Give a shot at the
1905                         * other IDENTIFY if the current one is
1906                         * aborted by the device.
1907                         */
1908                        if (may_fallback) {
1909                                may_fallback = 0;
1910
1911                                if (class == ATA_DEV_ATA)
1912                                        class = ATA_DEV_ATAPI;
1913                                else
1914                                        class = ATA_DEV_ATA;
1915                                goto retry;
1916                        }
1917
1918                        /* Control reaches here iff the device aborted
1919                         * both flavors of IDENTIFYs which happens
1920                         * sometimes with phantom devices.
1921                         */
1922                        ata_dev_dbg(dev,
1923                                    "both IDENTIFYs aborted, assuming NODEV\n");
1924                        return -ENOENT;
1925                }
1926
1927                rc = -EIO;
1928                reason = "I/O error";
1929                goto err_out;
1930        }
1931
1932        if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1933                ata_dev_dbg(dev, "dumping IDENTIFY data, "
1934                            "class=%d may_fallback=%d tried_spinup=%d\n",
1935                            class, may_fallback, tried_spinup);
1936                print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1937                               16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1938        }
1939
1940        /* Falling back doesn't make sense if ID data was read
1941         * successfully at least once.
1942         */
1943        may_fallback = 0;
1944
1945        swap_buf_le16(id, ATA_ID_WORDS);
1946
1947        /* sanity check */
1948        rc = -EINVAL;
1949        reason = "device reports invalid type";
1950
1951        if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1952                if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1953                        goto err_out;
1954                if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1955                                                        ata_id_is_ata(id)) {
1956                        ata_dev_dbg(dev,
1957                                "host indicates ignore ATA devices, ignored\n");
1958                        return -ENOENT;
1959                }
1960        } else {
1961                if (ata_id_is_ata(id))
1962                        goto err_out;
1963        }
1964
1965        if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1966                tried_spinup = 1;
1967                /*
1968                 * Drive powered-up in standby mode, and requires a specific
1969                 * SET_FEATURES spin-up subcommand before it will accept
1970                 * anything other than the original IDENTIFY command.
1971                 */
1972                err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1973                if (err_mask && id[2] != 0x738c) {
1974                        rc = -EIO;
1975                        reason = "SPINUP failed";
1976                        goto err_out;
1977                }
1978                /*
1979                 * If the drive initially returned incomplete IDENTIFY info,
1980                 * we now must reissue the IDENTIFY command.
1981                 */
1982                if (id[2] == 0x37c8)
1983                        goto retry;
1984        }
1985
1986        if ((flags & ATA_READID_POSTRESET) &&
1987            (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
1988                /*
1989                 * The exact sequence expected by certain pre-ATA4 drives is:
1990                 * SRST RESET
1991                 * IDENTIFY (optional in early ATA)
1992                 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
1993                 * anything else..
1994                 * Some drives were very specific about that exact sequence.
1995                 *
1996                 * Note that ATA4 says lba is mandatory so the second check
1997                 * should never trigger.
1998                 */
1999                if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2000                        err_mask = ata_dev_init_params(dev, id[3], id[6]);
2001                        if (err_mask) {
2002                                rc = -EIO;
2003                                reason = "INIT_DEV_PARAMS failed";
2004                                goto err_out;
2005                        }
2006
2007                        /* current CHS translation info (id[53-58]) might be
2008                         * changed. reread the identify device info.
2009                         */
2010                        flags &= ~ATA_READID_POSTRESET;
2011                        goto retry;
2012                }
2013        }
2014
2015        *p_class = class;
2016
2017        return 0;
2018
2019 err_out:
2020        if (ata_msg_warn(ap))
2021                ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2022                             reason, err_mask);
2023        return rc;
2024}
2025
2026/**
2027 *      ata_read_log_page - read a specific log page
2028 *      @dev: target device
2029 *      @log: log to read
2030 *      @page: page to read
2031 *      @buf: buffer to store read page
2032 *      @sectors: number of sectors to read
2033 *
2034 *      Read log page using READ_LOG_EXT command.
2035 *
2036 *      LOCKING:
2037 *      Kernel thread context (may sleep).
2038 *
2039 *      RETURNS:
2040 *      0 on success, AC_ERR_* mask otherwise.
2041 */
2042unsigned int ata_read_log_page(struct ata_device *dev, u8 log,
2043                               u8 page, void *buf, unsigned int sectors)
2044{
2045        unsigned long ap_flags = dev->link->ap->flags;
2046        struct ata_taskfile tf;
2047        unsigned int err_mask;
2048        bool dma = false;
2049
2050        DPRINTK("read log page - log 0x%x, page 0x%x\n", log, page);
2051
2052        /*
2053         * Return error without actually issuing the command on controllers
2054         * which e.g. lockup on a read log page.
2055         */
2056        if (ap_flags & ATA_FLAG_NO_LOG_PAGE)
2057                return AC_ERR_DEV;
2058
2059retry:
2060        ata_tf_init(dev, &tf);
2061        if (dev->dma_mode && ata_id_has_read_log_dma_ext(dev->id) &&
2062            !(dev->horkage & ATA_HORKAGE_NO_DMA_LOG)) {
2063                tf.command = ATA_CMD_READ_LOG_DMA_EXT;
2064                tf.protocol = ATA_PROT_DMA;
2065                dma = true;
2066        } else {
2067                tf.command = ATA_CMD_READ_LOG_EXT;
2068                tf.protocol = ATA_PROT_PIO;
2069                dma = false;
2070        }
2071        tf.lbal = log;
2072        tf.lbam = page;
2073        tf.nsect = sectors;
2074        tf.hob_nsect = sectors >> 8;
2075        tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE;
2076
2077        err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2078                                     buf, sectors * ATA_SECT_SIZE, 0);
2079
2080        if (err_mask && dma) {
2081                dev->horkage |= ATA_HORKAGE_NO_DMA_LOG;
2082                ata_dev_warn(dev, "READ LOG DMA EXT failed, trying PIO\n");
2083                goto retry;
2084        }
2085
2086        DPRINTK("EXIT, err_mask=%x\n", err_mask);
2087        return err_mask;
2088}
2089
2090static bool ata_log_supported(struct ata_device *dev, u8 log)
2091{
2092        struct ata_port *ap = dev->link->ap;
2093
2094        if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1))
2095                return false;
2096        return get_unaligned_le16(&ap->sector_buf[log * 2]) ? true : false;
2097}
2098
2099static bool ata_identify_page_supported(struct ata_device *dev, u8 page)
2100{
2101        struct ata_port *ap = dev->link->ap;
2102        unsigned int err, i;
2103
2104        if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) {
2105                ata_dev_warn(dev, "ATA Identify Device Log not supported\n");
2106                return false;
2107        }
2108
2109        /*
2110         * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is
2111         * supported.
2112         */
2113        err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, ap->sector_buf,
2114                                1);
2115        if (err) {
2116                ata_dev_info(dev,
2117                             "failed to get Device Identify Log Emask 0x%x\n",
2118                             err);
2119                return false;
2120        }
2121
2122        for (i = 0; i < ap->sector_buf[8]; i++) {
2123                if (ap->sector_buf[9 + i] == page)
2124                        return true;
2125        }
2126
2127        return false;
2128}
2129
2130static int ata_do_link_spd_horkage(struct ata_device *dev)
2131{
2132        struct ata_link *plink = ata_dev_phys_link(dev);
2133        u32 target, target_limit;
2134
2135        if (!sata_scr_valid(plink))
2136                return 0;
2137
2138        if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2139                target = 1;
2140        else
2141                return 0;
2142
2143        target_limit = (1 << target) - 1;
2144
2145        /* if already on stricter limit, no need to push further */
2146        if (plink->sata_spd_limit <= target_limit)
2147                return 0;
2148
2149        plink->sata_spd_limit = target_limit;
2150
2151        /* Request another EH round by returning -EAGAIN if link is
2152         * going faster than the target speed.  Forward progress is
2153         * guaranteed by setting sata_spd_limit to target_limit above.
2154         */
2155        if (plink->sata_spd > target) {
2156                ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2157                             sata_spd_string(target));
2158                return -EAGAIN;
2159        }
2160        return 0;
2161}
2162
2163static inline u8 ata_dev_knobble(struct ata_device *dev)
2164{
2165        struct ata_port *ap = dev->link->ap;
2166
2167        if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2168                return 0;
2169
2170        return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2171}
2172
2173static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2174{
2175        struct ata_port *ap = dev->link->ap;
2176        unsigned int err_mask;
2177
2178        if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) {
2179                ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n");
2180                return;
2181        }
2182        err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2183                                     0, ap->sector_buf, 1);
2184        if (err_mask) {
2185                ata_dev_dbg(dev,
2186                            "failed to get NCQ Send/Recv Log Emask 0x%x\n",
2187                            err_mask);
2188        } else {
2189                u8 *cmds = dev->ncq_send_recv_cmds;
2190
2191                dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2192                memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2193
2194                if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2195                        ata_dev_dbg(dev, "disabling queued TRIM support\n");
2196                        cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2197                                ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2198                }
2199        }
2200}
2201
2202static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2203{
2204        struct ata_port *ap = dev->link->ap;
2205        unsigned int err_mask;
2206
2207        if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) {
2208                ata_dev_warn(dev,
2209                             "NCQ Send/Recv Log not supported\n");
2210                return;
2211        }
2212        err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2213                                     0, ap->sector_buf, 1);
2214        if (err_mask) {
2215                ata_dev_dbg(dev,
2216                            "failed to get NCQ Non-Data Log Emask 0x%x\n",
2217                            err_mask);
2218        } else {
2219                u8 *cmds = dev->ncq_non_data_cmds;
2220
2221                memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE);
2222        }
2223}
2224
2225static void ata_dev_config_ncq_prio(struct ata_device *dev)
2226{
2227        struct ata_port *ap = dev->link->ap;
2228        unsigned int err_mask;
2229
2230        if (!(dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLE)) {
2231                dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2232                return;
2233        }
2234
2235        err_mask = ata_read_log_page(dev,
2236                                     ATA_LOG_IDENTIFY_DEVICE,
2237                                     ATA_LOG_SATA_SETTINGS,
2238                                     ap->sector_buf,
2239                                     1);
2240        if (err_mask) {
2241                ata_dev_dbg(dev,
2242                            "failed to get Identify Device data, Emask 0x%x\n",
2243                            err_mask);
2244                return;
2245        }
2246
2247        if (ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)) {
2248                dev->flags |= ATA_DFLAG_NCQ_PRIO;
2249        } else {
2250                dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2251                ata_dev_dbg(dev, "SATA page does not support priority\n");
2252        }
2253
2254}
2255
2256static int ata_dev_config_ncq(struct ata_device *dev,
2257                               char *desc, size_t desc_sz)
2258{
2259        struct ata_port *ap = dev->link->ap;
2260        int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2261        unsigned int err_mask;
2262        char *aa_desc = "";
2263
2264        if (!ata_id_has_ncq(dev->id)) {
2265                desc[0] = '\0';
2266                return 0;
2267        }
2268        if (dev->horkage & ATA_HORKAGE_NONCQ) {
2269                snprintf(desc, desc_sz, "NCQ (not used)");
2270                return 0;
2271        }
2272        if (ap->flags & ATA_FLAG_NCQ) {
2273                hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE);
2274                dev->flags |= ATA_DFLAG_NCQ;
2275        }
2276
2277        if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2278                (ap->flags & ATA_FLAG_FPDMA_AA) &&
2279                ata_id_has_fpdma_aa(dev->id)) {
2280                err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2281                        SATA_FPDMA_AA);
2282                if (err_mask) {
2283                        ata_dev_err(dev,
2284                                    "failed to enable AA (error_mask=0x%x)\n",
2285                                    err_mask);
2286                        if (err_mask != AC_ERR_DEV) {
2287                                dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2288                                return -EIO;
2289                        }
2290                } else
2291                        aa_desc = ", AA";
2292        }
2293
2294        if (hdepth >= ddepth)
2295                snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2296        else
2297                snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2298                        ddepth, aa_desc);
2299
2300        if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2301                if (ata_id_has_ncq_send_and_recv(dev->id))
2302                        ata_dev_config_ncq_send_recv(dev);
2303                if (ata_id_has_ncq_non_data(dev->id))
2304                        ata_dev_config_ncq_non_data(dev);
2305                if (ata_id_has_ncq_prio(dev->id))
2306                        ata_dev_config_ncq_prio(dev);
2307        }
2308
2309        return 0;
2310}
2311
2312static void ata_dev_config_sense_reporting(struct ata_device *dev)
2313{
2314        unsigned int err_mask;
2315
2316        if (!ata_id_has_sense_reporting(dev->id))
2317                return;
2318
2319        if (ata_id_sense_reporting_enabled(dev->id))
2320                return;
2321
2322        err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2323        if (err_mask) {
2324                ata_dev_dbg(dev,
2325                            "failed to enable Sense Data Reporting, Emask 0x%x\n",
2326                            err_mask);
2327        }
2328}
2329
2330static void ata_dev_config_zac(struct ata_device *dev)
2331{
2332        struct ata_port *ap = dev->link->ap;
2333        unsigned int err_mask;
2334        u8 *identify_buf = ap->sector_buf;
2335
2336        dev->zac_zones_optimal_open = U32_MAX;
2337        dev->zac_zones_optimal_nonseq = U32_MAX;
2338        dev->zac_zones_max_open = U32_MAX;
2339
2340        /*
2341         * Always set the 'ZAC' flag for Host-managed devices.
2342         */
2343        if (dev->class == ATA_DEV_ZAC)
2344                dev->flags |= ATA_DFLAG_ZAC;
2345        else if (ata_id_zoned_cap(dev->id) == 0x01)
2346                /*
2347                 * Check for host-aware devices.
2348                 */
2349                dev->flags |= ATA_DFLAG_ZAC;
2350
2351        if (!(dev->flags & ATA_DFLAG_ZAC))
2352                return;
2353
2354        if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) {
2355                ata_dev_warn(dev,
2356                             "ATA Zoned Information Log not supported\n");
2357                return;
2358        }
2359
2360        /*
2361         * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2362         */
2363        err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2364                                     ATA_LOG_ZONED_INFORMATION,
2365                                     identify_buf, 1);
2366        if (!err_mask) {
2367                u64 zoned_cap, opt_open, opt_nonseq, max_open;
2368
2369                zoned_cap = get_unaligned_le64(&identify_buf[8]);
2370                if ((zoned_cap >> 63))
2371                        dev->zac_zoned_cap = (zoned_cap & 1);
2372                opt_open = get_unaligned_le64(&identify_buf[24]);
2373                if ((opt_open >> 63))
2374                        dev->zac_zones_optimal_open = (u32)opt_open;
2375                opt_nonseq = get_unaligned_le64(&identify_buf[32]);
2376                if ((opt_nonseq >> 63))
2377                        dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2378                max_open = get_unaligned_le64(&identify_buf[40]);
2379                if ((max_open >> 63))
2380                        dev->zac_zones_max_open = (u32)max_open;
2381        }
2382}
2383
2384static void ata_dev_config_trusted(struct ata_device *dev)
2385{
2386        struct ata_port *ap = dev->link->ap;
2387        u64 trusted_cap;
2388        unsigned int err;
2389
2390        if (!ata_id_has_trusted(dev->id))
2391                return;
2392
2393        if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) {
2394                ata_dev_warn(dev,
2395                             "Security Log not supported\n");
2396                return;
2397        }
2398
2399        err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY,
2400                        ap->sector_buf, 1);
2401        if (err) {
2402                ata_dev_dbg(dev,
2403                            "failed to read Security Log, Emask 0x%x\n", err);
2404                return;
2405        }
2406
2407        trusted_cap = get_unaligned_le64(&ap->sector_buf[40]);
2408        if (!(trusted_cap & (1ULL << 63))) {
2409                ata_dev_dbg(dev,
2410                            "Trusted Computing capability qword not valid!\n");
2411                return;
2412        }
2413
2414        if (trusted_cap & (1 << 0))
2415                dev->flags |= ATA_DFLAG_TRUSTED;
2416}
2417
2418/**
2419 *      ata_dev_configure - Configure the specified ATA/ATAPI device
2420 *      @dev: Target device to configure
2421 *
2422 *      Configure @dev according to @dev->id.  Generic and low-level
2423 *      driver specific fixups are also applied.
2424 *
2425 *      LOCKING:
2426 *      Kernel thread context (may sleep)
2427 *
2428 *      RETURNS:
2429 *      0 on success, -errno otherwise
2430 */
2431int ata_dev_configure(struct ata_device *dev)
2432{
2433        struct ata_port *ap = dev->link->ap;
2434        struct ata_eh_context *ehc = &dev->link->eh_context;
2435        int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2436        const u16 *id = dev->id;
2437        unsigned long xfer_mask;
2438        unsigned int err_mask;
2439        char revbuf[7];         /* XYZ-99\0 */
2440        char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2441        char modelbuf[ATA_ID_PROD_LEN+1];
2442        int rc;
2443
2444        if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2445                ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2446                return 0;
2447        }
2448
2449        if (ata_msg_probe(ap))
2450                ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2451
2452        /* set horkage */
2453        dev->horkage |= ata_dev_blacklisted(dev);
2454        ata_force_horkage(dev);
2455
2456        if (dev->horkage & ATA_HORKAGE_DISABLE) {
2457                ata_dev_info(dev, "unsupported device, disabling\n");
2458                ata_dev_disable(dev);
2459                return 0;
2460        }
2461
2462        if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2463            dev->class == ATA_DEV_ATAPI) {
2464                ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2465                             atapi_enabled ? "not supported with this driver"
2466                             : "disabled");
2467                ata_dev_disable(dev);
2468                return 0;
2469        }
2470
2471        rc = ata_do_link_spd_horkage(dev);
2472        if (rc)
2473                return rc;
2474
2475        /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2476        if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2477            (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2478                dev->horkage |= ATA_HORKAGE_NOLPM;
2479
2480        if (ap->flags & ATA_FLAG_NO_LPM)
2481                dev->horkage |= ATA_HORKAGE_NOLPM;
2482
2483        if (dev->horkage & ATA_HORKAGE_NOLPM) {
2484                ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2485                dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2486        }
2487
2488        /* let ACPI work its magic */
2489        rc = ata_acpi_on_devcfg(dev);
2490        if (rc)
2491                return rc;
2492
2493        /* massage HPA, do it early as it might change IDENTIFY data */
2494        rc = ata_hpa_resize(dev);
2495        if (rc)
2496                return rc;
2497
2498        /* print device capabilities */
2499        if (ata_msg_probe(ap))
2500                ata_dev_dbg(dev,
2501                            "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2502                            "85:%04x 86:%04x 87:%04x 88:%04x\n",
2503                            __func__,
2504                            id[49], id[82], id[83], id[84],
2505                            id[85], id[86], id[87], id[88]);
2506
2507        /* initialize to-be-configured parameters */
2508        dev->flags &= ~ATA_DFLAG_CFG_MASK;
2509        dev->max_sectors = 0;
2510        dev->cdb_len = 0;
2511        dev->n_sectors = 0;
2512        dev->cylinders = 0;
2513        dev->heads = 0;
2514        dev->sectors = 0;
2515        dev->multi_count = 0;
2516
2517        /*
2518         * common ATA, ATAPI feature tests
2519         */
2520
2521        /* find max transfer mode; for printk only */
2522        xfer_mask = ata_id_xfermask(id);
2523
2524        if (ata_msg_probe(ap))
2525                ata_dump_id(id);
2526
2527        /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2528        ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2529                        sizeof(fwrevbuf));
2530
2531        ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2532                        sizeof(modelbuf));
2533
2534        /* ATA-specific feature tests */
2535        if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2536                if (ata_id_is_cfa(id)) {
2537                        /* CPRM may make this media unusable */
2538                        if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2539                                ata_dev_warn(dev,
2540        "supports DRM functions and may not be fully accessible\n");
2541                        snprintf(revbuf, 7, "CFA");
2542                } else {
2543                        snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2544                        /* Warn the user if the device has TPM extensions */
2545                        if (ata_id_has_tpm(id))
2546                                ata_dev_warn(dev,
2547        "supports DRM functions and may not be fully accessible\n");
2548                }
2549
2550                dev->n_sectors = ata_id_n_sectors(id);
2551
2552                /* get current R/W Multiple count setting */
2553                if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2554                        unsigned int max = dev->id[47] & 0xff;
2555                        unsigned int cnt = dev->id[59] & 0xff;
2556                        /* only recognize/allow powers of two here */
2557                        if (is_power_of_2(max) && is_power_of_2(cnt))
2558                                if (cnt <= max)
2559                                        dev->multi_count = cnt;
2560                }
2561
2562                if (ata_id_has_lba(id)) {
2563                        const char *lba_desc;
2564                        char ncq_desc[24];
2565
2566                        lba_desc = "LBA";
2567                        dev->flags |= ATA_DFLAG_LBA;
2568                        if (ata_id_has_lba48(id)) {
2569                                dev->flags |= ATA_DFLAG_LBA48;
2570                                lba_desc = "LBA48";
2571
2572                                if (dev->n_sectors >= (1UL << 28) &&
2573                                    ata_id_has_flush_ext(id))
2574                                        dev->flags |= ATA_DFLAG_FLUSH_EXT;
2575                        }
2576
2577                        /* config NCQ */
2578                        rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2579                        if (rc)
2580                                return rc;
2581
2582                        /* print device info to dmesg */
2583                        if (ata_msg_drv(ap) && print_info) {
2584                                ata_dev_info(dev, "%s: %s, %s, max %s\n",
2585                                             revbuf, modelbuf, fwrevbuf,
2586                                             ata_mode_string(xfer_mask));
2587                                ata_dev_info(dev,
2588                                             "%llu sectors, multi %u: %s %s\n",
2589                                        (unsigned long long)dev->n_sectors,
2590                                        dev->multi_count, lba_desc, ncq_desc);
2591                        }
2592                } else {
2593                        /* CHS */
2594
2595                        /* Default translation */
2596                        dev->cylinders  = id[1];
2597                        dev->heads      = id[3];
2598                        dev->sectors    = id[6];
2599
2600                        if (ata_id_current_chs_valid(id)) {
2601                                /* Current CHS translation is valid. */
2602                                dev->cylinders = id[54];
2603                                dev->heads     = id[55];
2604                                dev->sectors   = id[56];
2605                        }
2606
2607                        /* print device info to dmesg */
2608                        if (ata_msg_drv(ap) && print_info) {
2609                                ata_dev_info(dev, "%s: %s, %s, max %s\n",
2610                                             revbuf,    modelbuf, fwrevbuf,
2611                                             ata_mode_string(xfer_mask));
2612                                ata_dev_info(dev,
2613                                             "%llu sectors, multi %u, CHS %u/%u/%u\n",
2614                                             (unsigned long long)dev->n_sectors,
2615                                             dev->multi_count, dev->cylinders,
2616                                             dev->heads, dev->sectors);
2617                        }
2618                }
2619
2620                /* Check and mark DevSlp capability. Get DevSlp timing variables
2621                 * from SATA Settings page of Identify Device Data Log.
2622                 */
2623                if (ata_id_has_devslp(dev->id)) {
2624                        u8 *sata_setting = ap->sector_buf;
2625                        int i, j;
2626
2627                        dev->flags |= ATA_DFLAG_DEVSLP;
2628                        err_mask = ata_read_log_page(dev,
2629                                                     ATA_LOG_IDENTIFY_DEVICE,
2630                                                     ATA_LOG_SATA_SETTINGS,
2631                                                     sata_setting,
2632                                                     1);
2633                        if (err_mask)
2634                                ata_dev_dbg(dev,
2635                                            "failed to get Identify Device Data, Emask 0x%x\n",
2636                                            err_mask);
2637                        else
2638                                for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2639                                        j = ATA_LOG_DEVSLP_OFFSET + i;
2640                                        dev->devslp_timing[i] = sata_setting[j];
2641                                }
2642                }
2643                ata_dev_config_sense_reporting(dev);
2644                ata_dev_config_zac(dev);
2645                ata_dev_config_trusted(dev);
2646                dev->cdb_len = 32;
2647        }
2648
2649        /* ATAPI-specific feature tests */
2650        else if (dev->class == ATA_DEV_ATAPI) {
2651                const char *cdb_intr_string = "";
2652                const char *atapi_an_string = "";
2653                const char *dma_dir_string = "";
2654                u32 sntf;
2655
2656                rc = atapi_cdb_len(id);
2657                if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2658                        if (ata_msg_warn(ap))
2659                                ata_dev_warn(dev, "unsupported CDB len\n");
2660                        rc = -EINVAL;
2661                        goto err_out_nosup;
2662                }
2663                dev->cdb_len = (unsigned int) rc;
2664
2665                /* Enable ATAPI AN if both the host and device have
2666                 * the support.  If PMP is attached, SNTF is required
2667                 * to enable ATAPI AN to discern between PHY status
2668                 * changed notifications and ATAPI ANs.
2669                 */
2670                if (atapi_an &&
2671                    (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2672                    (!sata_pmp_attached(ap) ||
2673                     sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2674                        /* issue SET feature command to turn this on */
2675                        err_mask = ata_dev_set_feature(dev,
2676                                        SETFEATURES_SATA_ENABLE, SATA_AN);
2677                        if (err_mask)
2678                                ata_dev_err(dev,
2679                                            "failed to enable ATAPI AN (err_mask=0x%x)\n",
2680                                            err_mask);
2681                        else {
2682                                dev->flags |= ATA_DFLAG_AN;
2683                                atapi_an_string = ", ATAPI AN";
2684                        }
2685                }
2686
2687                if (ata_id_cdb_intr(dev->id)) {
2688                        dev->flags |= ATA_DFLAG_CDB_INTR;
2689                        cdb_intr_string = ", CDB intr";
2690                }
2691
2692                if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
2693                        dev->flags |= ATA_DFLAG_DMADIR;
2694                        dma_dir_string = ", DMADIR";
2695                }
2696
2697                if (ata_id_has_da(dev->id)) {
2698                        dev->flags |= ATA_DFLAG_DA;
2699                        zpodd_init(dev);
2700                }
2701
2702                /* print device info to dmesg */
2703                if (ata_msg_drv(ap) && print_info)
2704                        ata_dev_info(dev,
2705                                     "ATAPI: %s, %s, max %s%s%s%s\n",
2706                                     modelbuf, fwrevbuf,
2707                                     ata_mode_string(xfer_mask),
2708                                     cdb_intr_string, atapi_an_string,
2709                                     dma_dir_string);
2710        }
2711
2712        /* determine max_sectors */
2713        dev->max_sectors = ATA_MAX_SECTORS;
2714        if (dev->flags & ATA_DFLAG_LBA48)
2715                dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2716
2717        /* Limit PATA drive on SATA cable bridge transfers to udma5,
2718           200 sectors */
2719        if (ata_dev_knobble(dev)) {
2720                if (ata_msg_drv(ap) && print_info)
2721                        ata_dev_info(dev, "applying bridge limits\n");
2722                dev->udma_mask &= ATA_UDMA5;
2723                dev->max_sectors = ATA_MAX_SECTORS;
2724        }
2725
2726        if ((dev->class == ATA_DEV_ATAPI) &&
2727            (atapi_command_packet_set(id) == TYPE_TAPE)) {
2728                dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2729                dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2730        }
2731
2732        if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2733                dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2734                                         dev->max_sectors);
2735
2736        if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024)
2737                dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
2738                                         dev->max_sectors);
2739
2740        if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2741                dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2742
2743        if (ap->ops->dev_config)
2744                ap->ops->dev_config(dev);
2745
2746        if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2747                /* Let the user know. We don't want to disallow opens for
2748                   rescue purposes, or in case the vendor is just a blithering
2749                   idiot. Do this after the dev_config call as some controllers
2750                   with buggy firmware may want to avoid reporting false device
2751                   bugs */
2752
2753                if (print_info) {
2754                        ata_dev_warn(dev,
2755"Drive reports diagnostics failure. This may indicate a drive\n");
2756                        ata_dev_warn(dev,
2757"fault or invalid emulation. Contact drive vendor for information.\n");
2758                }
2759        }
2760
2761        if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2762                ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2763                ata_dev_warn(dev, "         contact the vendor or visit http://ata.wiki.kernel.org\n");
2764        }
2765
2766        return 0;
2767
2768err_out_nosup:
2769        if (ata_msg_probe(ap))
2770                ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2771        return rc;
2772}
2773
2774/**
2775 *      ata_cable_40wire        -       return 40 wire cable type
2776 *      @ap: port
2777 *
2778 *      Helper method for drivers which want to hardwire 40 wire cable
2779 *      detection.
2780 */
2781
2782int ata_cable_40wire(struct ata_port *ap)
2783{
2784        return ATA_CBL_PATA40;
2785}
2786
2787/**
2788 *      ata_cable_80wire        -       return 80 wire cable type
2789 *      @ap: port
2790 *
2791 *      Helper method for drivers which want to hardwire 80 wire cable
2792 *      detection.
2793 */
2794
2795int ata_cable_80wire(struct ata_port *ap)
2796{
2797        return ATA_CBL_PATA80;
2798}
2799
2800/**
2801 *      ata_cable_unknown       -       return unknown PATA cable.
2802 *      @ap: port
2803 *
2804 *      Helper method for drivers which have no PATA cable detection.
2805 */
2806
2807int ata_cable_unknown(struct ata_port *ap)
2808{
2809        return ATA_CBL_PATA_UNK;
2810}
2811
2812/**
2813 *      ata_cable_ignore        -       return ignored PATA cable.
2814 *      @ap: port
2815 *
2816 *      Helper method for drivers which don't use cable type to limit
2817 *      transfer mode.
2818 */
2819int ata_cable_ignore(struct ata_port *ap)
2820{
2821        return ATA_CBL_PATA_IGN;
2822}
2823
2824/**
2825 *      ata_cable_sata  -       return SATA cable type
2826 *      @ap: port
2827 *
2828 *      Helper method for drivers which have SATA cables
2829 */
2830
2831int ata_cable_sata(struct ata_port *ap)
2832{
2833        return ATA_CBL_SATA;
2834}
2835
2836/**
2837 *      ata_bus_probe - Reset and probe ATA bus
2838 *      @ap: Bus to probe
2839 *
2840 *      Master ATA bus probing function.  Initiates a hardware-dependent
2841 *      bus reset, then attempts to identify any devices found on
2842 *      the bus.
2843 *
2844 *      LOCKING:
2845 *      PCI/etc. bus probe sem.
2846 *
2847 *      RETURNS:
2848 *      Zero on success, negative errno otherwise.
2849 */
2850
2851int ata_bus_probe(struct ata_port *ap)
2852{
2853        unsigned int classes[ATA_MAX_DEVICES];
2854        int tries[ATA_MAX_DEVICES];
2855        int rc;
2856        struct ata_device *dev;
2857
2858        ata_for_each_dev(dev, &ap->link, ALL)
2859                tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2860
2861 retry:
2862        ata_for_each_dev(dev, &ap->link, ALL) {
2863                /* If we issue an SRST then an ATA drive (not ATAPI)
2864                 * may change configuration and be in PIO0 timing. If
2865                 * we do a hard reset (or are coming from power on)
2866                 * this is true for ATA or ATAPI. Until we've set a
2867                 * suitable controller mode we should not touch the
2868                 * bus as we may be talking too fast.
2869                 */
2870                dev->pio_mode = XFER_PIO_0;
2871                dev->dma_mode = 0xff;
2872
2873                /* If the controller has a pio mode setup function
2874                 * then use it to set the chipset to rights. Don't
2875                 * touch the DMA setup as that will be dealt with when
2876                 * configuring devices.
2877                 */
2878                if (ap->ops->set_piomode)
2879                        ap->ops->set_piomode(ap, dev);
2880        }
2881
2882        /* reset and determine device classes */
2883        ap->ops->phy_reset(ap);
2884
2885        ata_for_each_dev(dev, &ap->link, ALL) {
2886                if (dev->class != ATA_DEV_UNKNOWN)
2887                        classes[dev->devno] = dev->class;
2888                else
2889                        classes[dev->devno] = ATA_DEV_NONE;
2890
2891                dev->class = ATA_DEV_UNKNOWN;
2892        }
2893
2894        /* read IDENTIFY page and configure devices. We have to do the identify
2895           specific sequence bass-ackwards so that PDIAG- is released by
2896           the slave device */
2897
2898        ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2899                if (tries[dev->devno])
2900                        dev->class = classes[dev->devno];
2901
2902                if (!ata_dev_enabled(dev))
2903                        continue;
2904
2905                rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2906                                     dev->id);
2907                if (rc)
2908                        goto fail;
2909        }
2910
2911        /* Now ask for the cable type as PDIAG- should have been released */
2912        if (ap->ops->cable_detect)
2913                ap->cbl = ap->ops->cable_detect(ap);
2914
2915        /* We may have SATA bridge glue hiding here irrespective of
2916         * the reported cable types and sensed types.  When SATA
2917         * drives indicate we have a bridge, we don't know which end
2918         * of the link the bridge is which is a problem.
2919         */
2920        ata_for_each_dev(dev, &ap->link, ENABLED)
2921                if (ata_id_is_sata(dev->id))
2922                        ap->cbl = ATA_CBL_SATA;
2923
2924        /* After the identify sequence we can now set up the devices. We do
2925           this in the normal order so that the user doesn't get confused */
2926
2927        ata_for_each_dev(dev, &ap->link, ENABLED) {
2928                ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2929                rc = ata_dev_configure(dev);
2930                ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2931                if (rc)
2932                        goto fail;
2933        }
2934
2935        /* configure transfer mode */
2936        rc = ata_set_mode(&ap->link, &dev);
2937        if (rc)
2938                goto fail;
2939
2940        ata_for_each_dev(dev, &ap->link, ENABLED)
2941                return 0;
2942
2943        return -ENODEV;
2944
2945 fail:
2946        tries[dev->devno]--;
2947
2948        switch (rc) {
2949        case -EINVAL:
2950                /* eeek, something went very wrong, give up */
2951                tries[dev->devno] = 0;
2952                break;
2953
2954        case -ENODEV:
2955                /* give it just one more chance */
2956                tries[dev->devno] = min(tries[dev->devno], 1);
2957                /* fall through */
2958        case -EIO:
2959                if (tries[dev->devno] == 1) {
2960                        /* This is the last chance, better to slow
2961                         * down than lose it.
2962                         */
2963                        sata_down_spd_limit(&ap->link, 0);
2964                        ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2965                }
2966        }
2967
2968        if (!tries[dev->devno])
2969                ata_dev_disable(dev);
2970
2971        goto retry;
2972}
2973
2974/**
2975 *      sata_print_link_status - Print SATA link status
2976 *      @link: SATA link to printk link status about
2977 *
2978 *      This function prints link speed and status of a SATA link.
2979 *
2980 *      LOCKING:
2981 *      None.
2982 */
2983static void sata_print_link_status(struct ata_link *link)
2984{
2985        u32 sstatus, scontrol, tmp;
2986
2987        if (sata_scr_read(link, SCR_STATUS, &sstatus))
2988                return;
2989        sata_scr_read(link, SCR_CONTROL, &scontrol);
2990
2991        if (ata_phys_link_online(link)) {
2992                tmp = (sstatus >> 4) & 0xf;
2993                ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
2994                              sata_spd_string(tmp), sstatus, scontrol);
2995        } else {
2996                ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
2997                              sstatus, scontrol);
2998        }
2999}
3000
3001/**
3002 *      ata_dev_pair            -       return other device on cable
3003 *      @adev: device
3004 *
3005 *      Obtain the other device on the same cable, or if none is
3006 *      present NULL is returned
3007 */
3008
3009struct ata_device *ata_dev_pair(struct ata_device *adev)
3010{
3011        struct ata_link *link = adev->link;
3012        struct ata_device *pair = &link->device[1 - adev->devno];
3013        if (!ata_dev_enabled(pair))
3014                return NULL;
3015        return pair;
3016}
3017
3018/**
3019 *      sata_down_spd_limit - adjust SATA spd limit downward
3020 *      @link: Link to adjust SATA spd limit for
3021 *      @spd_limit: Additional limit
3022 *
3023 *      Adjust SATA spd limit of @link downward.  Note that this
3024 *      function only adjusts the limit.  The change must be applied
3025 *      using sata_set_spd().
3026 *
3027 *      If @spd_limit is non-zero, the speed is limited to equal to or
3028 *      lower than @spd_limit if such speed is supported.  If
3029 *      @spd_limit is slower than any supported speed, only the lowest
3030 *      supported speed is allowed.
3031 *
3032 *      LOCKING:
3033 *      Inherited from caller.
3034 *
3035 *      RETURNS:
3036 *      0 on success, negative errno on failure
3037 */
3038int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
3039{
3040        u32 sstatus, spd, mask;
3041        int rc, bit;
3042
3043        if (!sata_scr_valid(link))
3044                return -EOPNOTSUPP;
3045
3046        /* If SCR can be read, use it to determine the current SPD.
3047         * If not, use cached value in link->sata_spd.
3048         */
3049        rc = sata_scr_read(link, SCR_STATUS, &sstatus);
3050        if (rc == 0 && ata_sstatus_online(sstatus))
3051                spd = (sstatus >> 4) & 0xf;
3052        else
3053                spd = link->sata_spd;
3054
3055        mask = link->sata_spd_limit;
3056        if (mask <= 1)
3057                return -EINVAL;
3058
3059        /* unconditionally mask off the highest bit */
3060        bit = fls(mask) - 1;
3061        mask &= ~(1 << bit);
3062
3063        /*
3064         * Mask off all speeds higher than or equal to the current one.  At
3065         * this point, if current SPD is not available and we previously
3066         * recorded the link speed from SStatus, the driver has already
3067         * masked off the highest bit so mask should already be 1 or 0.
3068         * Otherwise, we should not force 1.5Gbps on a link where we have
3069         * not previously recorded speed from SStatus.  Just return in this
3070         * case.
3071         */
3072        if (spd > 1)
3073                mask &= (1 << (spd - 1)) - 1;
3074        else
3075                return -EINVAL;
3076
3077        /* were we already at the bottom? */
3078        if (!mask)
3079                return -EINVAL;
3080
3081        if (spd_limit) {
3082                if (mask & ((1 << spd_limit) - 1))
3083                        mask &= (1 << spd_limit) - 1;
3084                else {
3085                        bit = ffs(mask) - 1;
3086                        mask = 1 << bit;
3087                }
3088        }
3089
3090        link->sata_spd_limit = mask;
3091
3092        ata_link_warn(link, "limiting SATA link speed to %s\n",
3093                      sata_spd_string(fls(mask)));
3094
3095        return 0;
3096}
3097
3098static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
3099{
3100        struct ata_link *host_link = &link->ap->link;
3101        u32 limit, target, spd;
3102
3103        limit = link->sata_spd_limit;
3104
3105        /* Don't configure downstream link faster than upstream link.
3106         * It doesn't speed up anything and some PMPs choke on such
3107         * configuration.
3108         */
3109        if (!ata_is_host_link(link) && host_link->sata_spd)
3110                limit &= (1 << host_link->sata_spd) - 1;
3111
3112        if (limit == UINT_MAX)
3113                target = 0;
3114        else
3115                target = fls(limit);
3116
3117        spd = (*scontrol >> 4) & 0xf;
3118        *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
3119
3120        return spd != target;
3121}
3122
3123/**
3124 *      sata_set_spd_needed - is SATA spd configuration needed
3125 *      @link: Link in question
3126 *
3127 *      Test whether the spd limit in SControl matches
3128 *      @link->sata_spd_limit.  This function is used to determine
3129 *      whether hardreset is necessary to apply SATA spd
3130 *      configuration.
3131 *
3132 *      LOCKING:
3133 *      Inherited from caller.
3134 *
3135 *      RETURNS:
3136 *      1 if SATA spd configuration is needed, 0 otherwise.
3137 */
3138static int sata_set_spd_needed(struct ata_link *link)
3139{
3140        u32 scontrol;
3141
3142        if (sata_scr_read(link, SCR_CONTROL, &scontrol))
3143                return 1;
3144
3145        return __sata_set_spd_needed(link, &scontrol);
3146}
3147
3148/**
3149 *      sata_set_spd - set SATA spd according to spd limit
3150 *      @link: Link to set SATA spd for
3151 *
3152 *      Set SATA spd of @link according to sata_spd_limit.
3153 *
3154 *      LOCKING:
3155 *      Inherited from caller.
3156 *
3157 *      RETURNS:
3158 *      0 if spd doesn't need to be changed, 1 if spd has been
3159 *      changed.  Negative errno if SCR registers are inaccessible.
3160 */
3161int sata_set_spd(struct ata_link *link)
3162{
3163        u32 scontrol;
3164        int rc;
3165
3166        if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3167                return rc;
3168
3169        if (!__sata_set_spd_needed(link, &scontrol))
3170                return 0;
3171
3172        if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3173                return rc;
3174
3175        return 1;
3176}
3177
3178/*
3179 * This mode timing computation functionality is ported over from
3180 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
3181 */
3182/*
3183 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
3184 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
3185 * for UDMA6, which is currently supported only by Maxtor drives.
3186 *
3187 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
3188 */
3189
3190static const struct ata_timing ata_timing[] = {
3191/*      { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0,  960,   0 }, */
3192        { XFER_PIO_0,     70, 290, 240, 600, 165, 150, 0,  600,   0 },
3193        { XFER_PIO_1,     50, 290,  93, 383, 125, 100, 0,  383,   0 },
3194        { XFER_PIO_2,     30, 290,  40, 330, 100,  90, 0,  240,   0 },
3195        { XFER_PIO_3,     30,  80,  70, 180,  80,  70, 0,  180,   0 },
3196        { XFER_PIO_4,     25,  70,  25, 120,  70,  25, 0,  120,   0 },
3197        { XFER_PIO_5,     15,  65,  25, 100,  65,  25, 0,  100,   0 },
3198        { XFER_PIO_6,     10,  55,  20,  80,  55,  20, 0,   80,   0 },
3199
3200        { XFER_SW_DMA_0, 120,   0,   0,   0, 480, 480, 50, 960,   0 },
3201        { XFER_SW_DMA_1,  90,   0,   0,   0, 240, 240, 30, 480,   0 },
3202        { XFER_SW_DMA_2,  60,   0,   0,   0, 120, 120, 20, 240,   0 },
3203
3204        { XFER_MW_DMA_0,  60,   0,   0,   0, 215, 215, 20, 480,   0 },
3205        { XFER_MW_DMA_1,  45,   0,   0,   0,  80,  50, 5,  150,   0 },
3206        { XFER_MW_DMA_2,  25,   0,   0,   0,  70,  25, 5,  120,   0 },
3207        { XFER_MW_DMA_3,  25,   0,   0,   0,  65,  25, 5,  100,   0 },
3208        { XFER_MW_DMA_4,  25,   0,   0,   0,  55,  20, 5,   80,   0 },
3209
3210/*      { XFER_UDMA_SLOW,  0,   0,   0,   0,   0,   0, 0,    0, 150 }, */
3211        { XFER_UDMA_0,     0,   0,   0,   0,   0,   0, 0,    0, 120 },
3212        { XFER_UDMA_1,     0,   0,   0,   0,   0,   0, 0,    0,  80 },
3213        { XFER_UDMA_2,     0,   0,   0,   0,   0,   0, 0,    0,  60 },
3214        { XFER_UDMA_3,     0,   0,   0,   0,   0,   0, 0,    0,  45 },
3215        { XFER_UDMA_4,     0,   0,   0,   0,   0,   0, 0,    0,  30 },
3216        { XFER_UDMA_5,     0,   0,   0,   0,   0,   0, 0,    0,  20 },
3217        { XFER_UDMA_6,     0,   0,   0,   0,   0,   0, 0,    0,  15 },
3218
3219        { 0xFF }
3220};
3221
3222#define ENOUGH(v, unit)         (((v)-1)/(unit)+1)
3223#define EZ(v, unit)             ((v)?ENOUGH(((v) * 1000), unit):0)
3224
3225static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
3226{
3227        q->setup        = EZ(t->setup,       T);
3228        q->act8b        = EZ(t->act8b,       T);
3229        q->rec8b        = EZ(t->rec8b,       T);
3230        q->cyc8b        = EZ(t->cyc8b,       T);
3231        q->active       = EZ(t->active,      T);
3232        q->recover      = EZ(t->recover,     T);
3233        q->dmack_hold   = EZ(t->dmack_hold,  T);
3234        q->cycle        = EZ(t->cycle,       T);
3235        q->udma         = EZ(t->udma,       UT);
3236}
3237
3238void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
3239                      struct ata_timing *m, unsigned int what)
3240{
3241        if (what & ATA_TIMING_SETUP  ) m->setup   = max(a->setup,   b->setup);
3242        if (what & ATA_TIMING_ACT8B  ) m->act8b   = max(a->act8b,   b->act8b);
3243        if (what & ATA_TIMING_REC8B  ) m->rec8b   = max(a->rec8b,   b->rec8b);
3244        if (what & ATA_TIMING_CYC8B  ) m->cyc8b   = max(a->cyc8b,   b->cyc8b);
3245        if (what & ATA_TIMING_ACTIVE ) m->active  = max(a->active,  b->active);
3246        if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3247        if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
3248        if (what & ATA_TIMING_CYCLE  ) m->cycle   = max(a->cycle,   b->cycle);
3249        if (what & ATA_TIMING_UDMA   ) m->udma    = max(a->udma,    b->udma);
3250}
3251
3252const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
3253{
3254        const struct ata_timing *t = ata_timing;
3255
3256        while (xfer_mode > t->mode)
3257                t++;
3258
3259        if (xfer_mode == t->mode)
3260                return t;
3261
3262        WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n",
3263                        __func__, xfer_mode);
3264
3265        return NULL;
3266}
3267
3268int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3269                       struct ata_timing *t, int T, int UT)
3270{
3271        const u16 *id = adev->id;
3272        const struct ata_timing *s;
3273        struct ata_timing p;
3274
3275        /*
3276         * Find the mode.
3277         */
3278
3279        if (!(s = ata_timing_find_mode(speed)))
3280                return -EINVAL;
3281
3282        memcpy(t, s, sizeof(*s));
3283
3284        /*
3285         * If the drive is an EIDE drive, it can tell us it needs extended
3286         * PIO/MW_DMA cycle timing.
3287         */
3288
3289        if (id[ATA_ID_FIELD_VALID] & 2) {       /* EIDE drive */
3290                memset(&p, 0, sizeof(p));
3291
3292                if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
3293                        if (speed <= XFER_PIO_2)
3294                                p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
3295                        else if ((speed <= XFER_PIO_4) ||
3296                                 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
3297                                p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
3298                } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
3299                        p.cycle = id[ATA_ID_EIDE_DMA_MIN];
3300
3301                ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3302        }
3303
3304        /*
3305         * Convert the timing to bus clock counts.
3306         */
3307
3308        ata_timing_quantize(t, t, T, UT);
3309
3310        /*
3311         * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3312         * S.M.A.R.T * and some other commands. We have to ensure that the
3313         * DMA cycle timing is slower/equal than the fastest PIO timing.
3314         */
3315
3316        if (speed > XFER_PIO_6) {
3317                ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3318                ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3319        }
3320
3321        /*
3322         * Lengthen active & recovery time so that cycle time is correct.
3323         */
3324
3325        if (t->act8b + t->rec8b < t->cyc8b) {
3326                t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3327                t->rec8b = t->cyc8b - t->act8b;
3328        }
3329
3330        if (t->active + t->recover < t->cycle) {
3331                t->active += (t->cycle - (t->active + t->recover)) / 2;
3332                t->recover = t->cycle - t->active;
3333        }
3334
3335        /* In a few cases quantisation may produce enough errors to
3336           leave t->cycle too low for the sum of active and recovery
3337           if so we must correct this */
3338        if (t->active + t->recover > t->cycle)
3339                t->cycle = t->active + t->recover;
3340
3341        return 0;
3342}
3343
3344/**
3345 *      ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3346 *      @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3347 *      @cycle: cycle duration in ns
3348 *
3349 *      Return matching xfer mode for @cycle.  The returned mode is of
3350 *      the transfer type specified by @xfer_shift.  If @cycle is too
3351 *      slow for @xfer_shift, 0xff is returned.  If @cycle is faster
3352 *      than the fastest known mode, the fasted mode is returned.
3353 *
3354 *      LOCKING:
3355 *      None.
3356 *
3357 *      RETURNS:
3358 *      Matching xfer_mode, 0xff if no match found.
3359 */
3360u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3361{
3362        u8 base_mode = 0xff, last_mode = 0xff;
3363        const struct ata_xfer_ent *ent;
3364        const struct ata_timing *t;
3365
3366        for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3367                if (ent->shift == xfer_shift)
3368                        base_mode = ent->base;
3369
3370        for (t = ata_timing_find_mode(base_mode);
3371             t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3372                unsigned short this_cycle;
3373
3374                switch (xfer_shift) {
3375                case ATA_SHIFT_PIO:
3376                case ATA_SHIFT_MWDMA:
3377                        this_cycle = t->cycle;
3378                        break;
3379                case ATA_SHIFT_UDMA:
3380                        this_cycle = t->udma;
3381                        break;
3382                default:
3383                        return 0xff;
3384                }
3385
3386                if (cycle > this_cycle)
3387                        break;
3388
3389                last_mode = t->mode;
3390        }
3391
3392        return last_mode;
3393}
3394
3395/**
3396 *      ata_down_xfermask_limit - adjust dev xfer masks downward
3397 *      @dev: Device to adjust xfer masks
3398 *      @sel: ATA_DNXFER_* selector
3399 *
3400 *      Adjust xfer masks of @dev downward.  Note that this function
3401 *      does not apply the change.  Invoking ata_set_mode() afterwards
3402 *      will apply the limit.
3403 *
3404 *      LOCKING:
3405 *      Inherited from caller.
3406 *
3407 *      RETURNS:
3408 *      0 on success, negative errno on failure
3409 */
3410int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3411{
3412        char buf[32];
3413        unsigned long orig_mask, xfer_mask;
3414        unsigned long pio_mask, mwdma_mask, udma_mask;
3415        int quiet, highbit;
3416
3417        quiet = !!(sel & ATA_DNXFER_QUIET);
3418        sel &= ~ATA_DNXFER_QUIET;
3419
3420        xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3421                                                  dev->mwdma_mask,
3422                                                  dev->udma_mask);
3423        ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3424
3425        switch (sel) {
3426        case ATA_DNXFER_PIO:
3427                highbit = fls(pio_mask) - 1;
3428                pio_mask &= ~(1 << highbit);
3429                break;
3430
3431        case ATA_DNXFER_DMA:
3432                if (udma_mask) {
3433                        highbit = fls(udma_mask) - 1;
3434                        udma_mask &= ~(1 << highbit);
3435                        if (!udma_mask)
3436                                return -ENOENT;
3437                } else if (mwdma_mask) {
3438                        highbit = fls(mwdma_mask) - 1;
3439                        mwdma_mask &= ~(1 << highbit);
3440                        if (!mwdma_mask)
3441                                return -ENOENT;
3442                }
3443                break;
3444
3445        case ATA_DNXFER_40C:
3446                udma_mask &= ATA_UDMA_MASK_40C;
3447                break;
3448
3449        case ATA_DNXFER_FORCE_PIO0:
3450                pio_mask &= 1;
3451                /* fall through */
3452        case ATA_DNXFER_FORCE_PIO:
3453                mwdma_mask = 0;
3454                udma_mask = 0;
3455                break;
3456
3457        default:
3458                BUG();
3459        }
3460
3461        xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3462
3463        if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3464                return -ENOENT;
3465
3466        if (!quiet) {
3467                if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3468                        snprintf(buf, sizeof(buf), "%s:%s",
3469                                 ata_mode_string(xfer_mask),
3470                                 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3471                else
3472                        snprintf(buf, sizeof(buf), "%s",
3473                                 ata_mode_string(xfer_mask));
3474
3475                ata_dev_warn(dev, "limiting speed to %s\n", buf);
3476        }
3477
3478        ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3479                            &dev->udma_mask);
3480
3481        return 0;
3482}
3483
3484static int ata_dev_set_mode(struct ata_device *dev)
3485{
3486        struct ata_port *ap = dev->link->ap;
3487        struct ata_eh_context *ehc = &dev->link->eh_context;
3488        const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3489        const char *dev_err_whine = "";
3490        int ign_dev_err = 0;
3491        unsigned int err_mask = 0;
3492        int rc;
3493
3494        dev->flags &= ~ATA_DFLAG_PIO;
3495        if (dev->xfer_shift == ATA_SHIFT_PIO)
3496                dev->flags |= ATA_DFLAG_PIO;
3497
3498        if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3499                dev_err_whine = " (SET_XFERMODE skipped)";
3500        else {
3501                if (nosetxfer)
3502                        ata_dev_warn(dev,
3503                                     "NOSETXFER but PATA detected - can't "
3504                                     "skip SETXFER, might malfunction\n");
3505                err_mask = ata_dev_set_xfermode(dev);
3506        }
3507
3508        if (err_mask & ~AC_ERR_DEV)
3509                goto fail;
3510
3511        /* revalidate */
3512        ehc->i.flags |= ATA_EHI_POST_SETMODE;
3513        rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3514        ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3515        if (rc)
3516                return rc;
3517
3518        if (dev->xfer_shift == ATA_SHIFT_PIO) {
3519                /* Old CFA may refuse this command, which is just fine */
3520                if (ata_id_is_cfa(dev->id))
3521                        ign_dev_err = 1;
3522                /* Catch several broken garbage emulations plus some pre
3523                   ATA devices */
3524                if (ata_id_major_version(dev->id) == 0 &&
3525                                        dev->pio_mode <= XFER_PIO_2)
3526                        ign_dev_err = 1;
3527                /* Some very old devices and some bad newer ones fail
3528                   any kind of SET_XFERMODE request but support PIO0-2
3529                   timings and no IORDY */
3530                if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3531                        ign_dev_err = 1;
3532        }
3533        /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3534           Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3535        if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3536            dev->dma_mode == XFER_MW_DMA_0 &&
3537            (dev->id[63] >> 8) & 1)
3538                ign_dev_err = 1;
3539
3540        /* if the device is actually configured correctly, ignore dev err */
3541        if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3542                ign_dev_err = 1;
3543
3544        if (err_mask & AC_ERR_DEV) {
3545                if (!ign_dev_err)
3546                        goto fail;
3547                else
3548                        dev_err_whine = " (device error ignored)";
3549        }
3550
3551        DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3552                dev->xfer_shift, (int)dev->xfer_mode);
3553
3554        if (!(ehc->i.flags & ATA_EHI_QUIET) ||
3555            ehc->i.flags & ATA_EHI_DID_HARDRESET)
3556                ata_dev_info(dev, "configured for %s%s\n",
3557                             ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3558                             dev_err_whine);
3559
3560        return 0;
3561
3562 fail:
3563        ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3564        return -EIO;
3565}
3566
3567/**
3568 *      ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3569 *      @link: link on which timings will be programmed
3570 *      @r_failed_dev: out parameter for failed device
3571 *
3572 *      Standard implementation of the function used to tune and set
3573 *      ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
3574 *      ata_dev_set_mode() fails, pointer to the failing device is
3575 *      returned in @r_failed_dev.
3576 *
3577 *      LOCKING:
3578 *      PCI/etc. bus probe sem.
3579 *
3580 *      RETURNS:
3581 *      0 on success, negative errno otherwise
3582 */
3583
3584int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3585{
3586        struct ata_port *ap = link->ap;
3587        struct ata_device *dev;
3588        int rc = 0, used_dma = 0, found = 0;
3589
3590        /* step 1: calculate xfer_mask */
3591        ata_for_each_dev(dev, link, ENABLED) {
3592                unsigned long pio_mask, dma_mask;
3593                unsigned int mode_mask;
3594
3595                mode_mask = ATA_DMA_MASK_ATA;
3596                if (dev->class == ATA_DEV_ATAPI)
3597                        mode_mask = ATA_DMA_MASK_ATAPI;
3598                else if (ata_id_is_cfa(dev->id))
3599                        mode_mask = ATA_DMA_MASK_CFA;
3600
3601                ata_dev_xfermask(dev);
3602                ata_force_xfermask(dev);
3603
3604                pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3605
3606                if (libata_dma_mask & mode_mask)
3607                        dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3608                                                     dev->udma_mask);
3609                else
3610                        dma_mask = 0;
3611
3612                dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3613                dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3614
3615                found = 1;
3616                if (ata_dma_enabled(dev))
3617                        used_dma = 1;
3618        }
3619        if (!found)
3620                goto out;
3621
3622        /* step 2: always set host PIO timings */
3623        ata_for_each_dev(dev, link, ENABLED) {
3624                if (dev->pio_mode == 0xff) {
3625                        ata_dev_warn(dev, "no PIO support\n");
3626                        rc = -EINVAL;
3627                        goto out;
3628                }
3629
3630                dev->xfer_mode = dev->pio_mode;
3631                dev->xfer_shift = ATA_SHIFT_PIO;
3632                if (ap->ops->set_piomode)
3633                        ap->ops->set_piomode(ap, dev);
3634        }
3635
3636        /* step 3: set host DMA timings */
3637        ata_for_each_dev(dev, link, ENABLED) {
3638                if (!ata_dma_enabled(dev))
3639                        continue;
3640
3641                dev->xfer_mode = dev->dma_mode;
3642                dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3643                if (ap->ops->set_dmamode)
3644                        ap->ops->set_dmamode(ap, dev);
3645        }
3646
3647        /* step 4: update devices' xfer mode */
3648        ata_for_each_dev(dev, link, ENABLED) {
3649                rc = ata_dev_set_mode(dev);
3650                if (rc)
3651                        goto out;
3652        }
3653
3654        /* Record simplex status. If we selected DMA then the other
3655         * host channels are not permitted to do so.
3656         */
3657        if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3658                ap->host->simplex_claimed = ap;
3659
3660 out:
3661        if (rc)
3662                *r_failed_dev = dev;
3663        return rc;
3664}
3665
3666/**
3667 *      ata_wait_ready - wait for link to become ready
3668 *      @link: link to be waited on
3669 *      @deadline: deadline jiffies for the operation
3670 *      @check_ready: callback to check link readiness
3671 *
3672 *      Wait for @link to become ready.  @check_ready should return
3673 *      positive number if @link is ready, 0 if it isn't, -ENODEV if
3674 *      link doesn't seem to be occupied, other errno for other error
3675 *      conditions.
3676 *
3677 *      Transient -ENODEV conditions are allowed for
3678 *      ATA_TMOUT_FF_WAIT.
3679 *
3680 *      LOCKING:
3681 *      EH context.
3682 *
3683 *      RETURNS:
3684 *      0 if @link is ready before @deadline; otherwise, -errno.
3685 */
3686int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3687                   int (*check_ready)(struct ata_link *link))
3688{
3689        unsigned long start = jiffies;
3690        unsigned long nodev_deadline;
3691        int warned = 0;
3692
3693        /* choose which 0xff timeout to use, read comment in libata.h */
3694        if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3695                nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3696        else
3697                nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3698
3699        /* Slave readiness can't be tested separately from master.  On
3700         * M/S emulation configuration, this function should be called
3701         * only on the master and it will handle both master and slave.
3702         */
3703        WARN_ON(link == link->ap->slave_link);
3704
3705        if (time_after(nodev_deadline, deadline))
3706                nodev_deadline = deadline;
3707
3708        while (1) {
3709                unsigned long now = jiffies;
3710                int ready, tmp;
3711
3712                ready = tmp = check_ready(link);
3713                if (ready > 0)
3714                        return 0;
3715
3716                /*
3717                 * -ENODEV could be transient.  Ignore -ENODEV if link
3718                 * is online.  Also, some SATA devices take a long
3719                 * time to clear 0xff after reset.  Wait for
3720                 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3721                 * offline.
3722                 *
3723                 * Note that some PATA controllers (pata_ali) explode
3724                 * if status register is read more than once when
3725                 * there's no device attached.
3726                 */
3727                if (ready == -ENODEV) {
3728                        if (ata_link_online(link))
3729                                ready = 0;
3730                        else if ((link->ap->flags & ATA_FLAG_SATA) &&
3731                                 !ata_link_offline(link) &&
3732                                 time_before(now, nodev_deadline))
3733                                ready = 0;
3734                }
3735
3736                if (ready)
3737                        return ready;
3738                if (time_after(now, deadline))
3739                        return -EBUSY;
3740
3741                if (!warned && time_after(now, start + 5 * HZ) &&
3742                    (deadline - now > 3 * HZ)) {
3743                        ata_link_warn(link,
3744                                "link is slow to respond, please be patient "
3745                                "(ready=%d)\n", tmp);
3746                        warned = 1;
3747                }
3748
3749                ata_msleep(link->ap, 50);
3750        }
3751}
3752
3753/**
3754 *      ata_wait_after_reset - wait for link to become ready after reset
3755 *      @link: link to be waited on
3756 *      @deadline: deadline jiffies for the operation
3757 *      @check_ready: callback to check link readiness
3758 *
3759 *      Wait for @link to become ready after reset.
3760 *
3761 *      LOCKING:
3762 *      EH context.
3763 *
3764 *      RETURNS:
3765 *      0 if @link is ready before @deadline; otherwise, -errno.
3766 */
3767int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3768                                int (*check_ready)(struct ata_link *link))
3769{
3770        ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3771
3772        return ata_wait_ready(link, deadline, check_ready);
3773}
3774
3775/**
3776 *      sata_link_debounce - debounce SATA phy status
3777 *      @link: ATA link to debounce SATA phy status for
3778 *      @params: timing parameters { interval, duration, timeout } in msec
3779 *      @deadline: deadline jiffies for the operation
3780 *
3781 *      Make sure SStatus of @link reaches stable state, determined by
3782 *      holding the same value where DET is not 1 for @duration polled
3783 *      every @interval, before @timeout.  Timeout constraints the
3784 *      beginning of the stable state.  Because DET gets stuck at 1 on
3785 *      some controllers after hot unplugging, this functions waits
3786 *      until timeout then returns 0 if DET is stable at 1.
3787 *
3788 *      @timeout is further limited by @deadline.  The sooner of the
3789 *      two is used.
3790 *
3791 *      LOCKING:
3792 *      Kernel thread context (may sleep)
3793 *
3794 *      RETURNS:
3795 *      0 on success, -errno on failure.
3796 */
3797int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3798                       unsigned long deadline)
3799{
3800        unsigned long interval = params[0];
3801        unsigned long duration = params[1];
3802        unsigned long last_jiffies, t;
3803        u32 last, cur;
3804        int rc;
3805
3806        t = ata_deadline(jiffies, params[2]);
3807        if (time_before(t, deadline))
3808                deadline = t;
3809
3810        if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3811                return rc;
3812        cur &= 0xf;
3813
3814        last = cur;
3815        last_jiffies = jiffies;
3816
3817        while (1) {
3818                ata_msleep(link->ap, interval);
3819                if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3820                        return rc;
3821                cur &= 0xf;
3822
3823                /* DET stable? */
3824                if (cur == last) {
3825                        if (cur == 1 && time_before(jiffies, deadline))
3826                                continue;
3827                        if (time_after(jiffies,
3828                                       ata_deadline(last_jiffies, duration)))
3829                                return 0;
3830                        continue;
3831                }
3832
3833                /* unstable, start over */
3834                last = cur;
3835                last_jiffies = jiffies;
3836
3837                /* Check deadline.  If debouncing failed, return
3838                 * -EPIPE to tell upper layer to lower link speed.
3839                 */
3840                if (time_after(jiffies, deadline))
3841                        return -EPIPE;
3842        }
3843}
3844
3845/**
3846 *      sata_link_resume - resume SATA link
3847 *      @link: ATA link to resume SATA
3848 *      @params: timing parameters { interval, duration, timeout } in msec
3849 *      @deadline: deadline jiffies for the operation
3850 *
3851 *      Resume SATA phy @link and debounce it.
3852 *
3853 *      LOCKING:
3854 *      Kernel thread context (may sleep)
3855 *
3856 *      RETURNS:
3857 *      0 on success, -errno on failure.
3858 */
3859int sata_link_resume(struct ata_link *link, const unsigned long *params,
3860                     unsigned long deadline)
3861{
3862        int tries = ATA_LINK_RESUME_TRIES;
3863        u32 scontrol, serror;
3864        int rc;
3865
3866        if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3867                return rc;
3868
3869        /*
3870         * Writes to SControl sometimes get ignored under certain
3871         * controllers (ata_piix SIDPR).  Make sure DET actually is
3872         * cleared.
3873         */
3874        do {
3875                scontrol = (scontrol & 0x0f0) | 0x300;
3876                if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3877                        return rc;
3878                /*
3879                 * Some PHYs react badly if SStatus is pounded
3880                 * immediately after resuming.  Delay 200ms before
3881                 * debouncing.
3882                 */
3883                if (!(link->flags & ATA_LFLAG_NO_DB_DELAY))
3884                        ata_msleep(link->ap, 200);
3885
3886                /* is SControl restored correctly? */
3887                if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3888                        return rc;
3889        } while ((scontrol & 0xf0f) != 0x300 && --tries);
3890
3891        if ((scontrol & 0xf0f) != 0x300) {
3892                ata_link_warn(link, "failed to resume link (SControl %X)\n",
3893                             scontrol);
3894                return 0;
3895        }
3896
3897        if (tries < ATA_LINK_RESUME_TRIES)
3898                ata_link_warn(link, "link resume succeeded after %d retries\n",
3899                              ATA_LINK_RESUME_TRIES - tries);
3900
3901        if ((rc = sata_link_debounce(link, params, deadline)))
3902                return rc;
3903
3904        /* clear SError, some PHYs require this even for SRST to work */
3905        if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3906                rc = sata_scr_write(link, SCR_ERROR, serror);
3907
3908        return rc != -EINVAL ? rc : 0;
3909}
3910
3911/**
3912 *      sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3913 *      @link: ATA link to manipulate SControl for
3914 *      @policy: LPM policy to configure
3915 *      @spm_wakeup: initiate LPM transition to active state
3916 *
3917 *      Manipulate the IPM field of the SControl register of @link
3918 *      according to @policy.  If @policy is ATA_LPM_MAX_POWER and
3919 *      @spm_wakeup is %true, the SPM field is manipulated to wake up
3920 *      the link.  This function also clears PHYRDY_CHG before
3921 *      returning.
3922 *
3923 *      LOCKING:
3924 *      EH context.
3925 *
3926 *      RETURNS:
3927 *      0 on success, -errno otherwise.
3928 */
3929int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3930                      bool spm_wakeup)
3931{
3932        struct ata_eh_context *ehc = &link->eh_context;
3933        bool woken_up = false;
3934        u32 scontrol;
3935        int rc;
3936
3937        rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3938        if (rc)
3939                return rc;
3940
3941        switch (policy) {
3942        case ATA_LPM_MAX_POWER:
3943                /* disable all LPM transitions */
3944                scontrol |= (0x7 << 8);
3945                /* initiate transition to active state */
3946                if (spm_wakeup) {
3947                        scontrol |= (0x4 << 12);
3948                        woken_up = true;
3949                }
3950                break;
3951        case ATA_LPM_MED_POWER:
3952                /* allow LPM to PARTIAL */
3953                scontrol &= ~(0x1 << 8);
3954                scontrol |= (0x6 << 8);
3955                break;
3956        case ATA_LPM_MED_POWER_WITH_DIPM:
3957        case ATA_LPM_MIN_POWER_WITH_PARTIAL:
3958        case ATA_LPM_MIN_POWER:
3959                if (ata_link_nr_enabled(link) > 0)
3960                        /* no restrictions on LPM transitions */
3961                        scontrol &= ~(0x7 << 8);
3962                else {
3963                        /* empty port, power off */
3964                        scontrol &= ~0xf;
3965                        scontrol |= (0x1 << 2);
3966                }
3967                break;
3968        default:
3969                WARN_ON(1);
3970        }
3971
3972        rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3973        if (rc)
3974                return rc;
3975
3976        /* give the link time to transit out of LPM state */
3977        if (woken_up)
3978                msleep(10);
3979
3980        /* clear PHYRDY_CHG from SError */
3981        ehc->i.serror &= ~SERR_PHYRDY_CHG;
3982        return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
3983}
3984
3985/**
3986 *      ata_std_prereset - prepare for reset
3987 *      @link: ATA link to be reset
3988 *      @deadline: deadline jiffies for the operation
3989 *
3990 *      @link is about to be reset.  Initialize it.  Failure from
3991 *      prereset makes libata abort whole reset sequence and give up
3992 *      that port, so prereset should be best-effort.  It does its
3993 *      best to prepare for reset sequence but if things go wrong, it
3994 *      should just whine, not fail.
3995 *
3996 *      LOCKING:
3997 *      Kernel thread context (may sleep)
3998 *
3999 *      RETURNS:
4000 *      0 on success, -errno otherwise.
4001 */
4002int ata_std_prereset(struct ata_link *link, unsigned long deadline)
4003{
4004        struct ata_port *ap = link->ap;
4005        struct ata_eh_context *ehc = &link->eh_context;
4006        const unsigned long *timing = sata_ehc_deb_timing(ehc);
4007        int rc;
4008
4009        /* if we're about to do hardreset, nothing more to do */
4010        if (ehc->i.action & ATA_EH_HARDRESET)
4011                return 0;
4012
4013        /* if SATA, resume link */
4014        if (ap->flags & ATA_FLAG_SATA) {
4015                rc = sata_link_resume(link, timing, deadline);
4016                /* whine about phy resume failure but proceed */
4017                if (rc && rc != -EOPNOTSUPP)
4018                        ata_link_warn(link,
4019                                      "failed to resume link for reset (errno=%d)\n",
4020                                      rc);
4021        }
4022
4023        /* no point in trying softreset on offline link */
4024        if (ata_phys_link_offline(link))
4025                ehc->i.action &= ~ATA_EH_SOFTRESET;
4026
4027        return 0;
4028}
4029
4030/**
4031 *      sata_link_hardreset - reset link via SATA phy reset
4032 *      @link: link to reset
4033 *      @timing: timing parameters { interval, duration, timeout } in msec
4034 *      @deadline: deadline jiffies for the operation
4035 *      @online: optional out parameter indicating link onlineness
4036 *      @check_ready: optional callback to check link readiness
4037 *
4038 *      SATA phy-reset @link using DET bits of SControl register.
4039 *      After hardreset, link readiness is waited upon using
4040 *      ata_wait_ready() if @check_ready is specified.  LLDs are
4041 *      allowed to not specify @check_ready and wait itself after this
4042 *      function returns.  Device classification is LLD's
4043 *      responsibility.
4044 *
4045 *      *@online is set to one iff reset succeeded and @link is online
4046 *      after reset.
4047 *
4048 *      LOCKING:
4049 *      Kernel thread context (may sleep)
4050 *
4051 *      RETURNS:
4052 *      0 on success, -errno otherwise.
4053 */
4054int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
4055                        unsigned long deadline,
4056                        bool *online, int (*check_ready)(struct ata_link *))
4057{
4058        u32 scontrol;
4059        int rc;
4060
4061        DPRINTK("ENTER\n");
4062
4063        if (online)
4064                *online = false;
4065
4066        if (sata_set_spd_needed(link)) {
4067                /* SATA spec says nothing about how to reconfigure
4068                 * spd.  To be on the safe side, turn off phy during
4069                 * reconfiguration.  This works for at least ICH7 AHCI
4070                 * and Sil3124.
4071                 */
4072                if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
4073                        goto out;
4074
4075                scontrol = (scontrol & 0x0f0) | 0x304;
4076
4077                if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
4078                        goto out;
4079
4080                sata_set_spd(link);
4081        }
4082
4083        /* issue phy wake/reset */
4084        if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
4085                goto out;
4086
4087        scontrol = (scontrol & 0x0f0) | 0x301;
4088
4089        if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
4090                goto out;
4091
4092        /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
4093         * 10.4.2 says at least 1 ms.
4094         */
4095        ata_msleep(link->ap, 1);
4096
4097        /* bring link back */
4098        rc = sata_link_resume(link, timing, deadline);
4099        if (rc)
4100                goto out;
4101        /* if link is offline nothing more to do */
4102        if (ata_phys_link_offline(link))
4103                goto out;
4104
4105        /* Link is online.  From this point, -ENODEV too is an error. */
4106        if (online)
4107                *online = true;
4108
4109        if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
4110                /* If PMP is supported, we have to do follow-up SRST.
4111                 * Some PMPs don't send D2H Reg FIS after hardreset if
4112                 * the first port is empty.  Wait only for
4113                 * ATA_TMOUT_PMP_SRST_WAIT.
4114                 */
4115                if (check_ready) {
4116                        unsigned long pmp_deadline;
4117
4118                        pmp_deadline = ata_deadline(jiffies,
4119                                                    ATA_TMOUT_PMP_SRST_WAIT);
4120                        if (time_after(pmp_deadline, deadline))
4121                                pmp_deadline = deadline;
4122                        ata_wait_ready(link, pmp_deadline, check_ready);
4123                }
4124                rc = -EAGAIN;
4125                goto out;
4126        }
4127
4128        rc = 0;
4129        if (check_ready)
4130                rc = ata_wait_ready(link, deadline, check_ready);
4131 out:
4132        if (rc && rc != -EAGAIN) {
4133                /* online is set iff link is online && reset succeeded */
4134                if (online)
4135                        *online = false;
4136                ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
4137        }
4138        DPRINTK("EXIT, rc=%d\n", rc);
4139        return rc;
4140}
4141
4142/**
4143 *      sata_std_hardreset - COMRESET w/o waiting or classification
4144 *      @link: link to reset
4145 *      @class: resulting class of attached device
4146 *      @deadline: deadline jiffies for the operation
4147 *
4148 *      Standard SATA COMRESET w/o waiting or classification.
4149 *
4150 *      LOCKING:
4151 *      Kernel thread context (may sleep)
4152 *
4153 *      RETURNS:
4154 *      0 if link offline, -EAGAIN if link online, -errno on errors.
4155 */
4156int sata_std_hardreset(struct ata_link *link, unsigned int *class,
4157                       unsigned long deadline)
4158{
4159        const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
4160        bool online;
4161        int rc;
4162
4163        /* do hardreset */
4164        rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
4165        return online ? -EAGAIN : rc;
4166}
4167
4168/**
4169 *      ata_std_postreset - standard postreset callback
4170 *      @link: the target ata_link
4171 *      @classes: classes of attached devices
4172 *
4173 *      This function is invoked after a successful reset.  Note that
4174 *      the device might have been reset more than once using
4175 *      different reset methods before postreset is invoked.
4176 *
4177 *      LOCKING:
4178 *      Kernel thread context (may sleep)
4179 */
4180void ata_std_postreset(struct ata_link *link, unsigned int *classes)
4181{
4182        u32 serror;
4183
4184        DPRINTK("ENTER\n");
4185
4186        /* reset complete, clear SError */
4187        if (!sata_scr_read(link, SCR_ERROR, &serror))
4188                sata_scr_write(link, SCR_ERROR, serror);
4189
4190        /* print link status */
4191        sata_print_link_status(link);
4192
4193        DPRINTK("EXIT\n");
4194}
4195
4196/**
4197 *      ata_dev_same_device - Determine whether new ID matches configured device
4198 *      @dev: device to compare against
4199 *      @new_class: class of the new device
4200 *      @new_id: IDENTIFY page of the new device
4201 *
4202 *      Compare @new_class and @new_id against @dev and determine
4203 *      whether @dev is the device indicated by @new_class and
4204 *      @new_id.
4205 *
4206 *      LOCKING:
4207 *      None.
4208 *
4209 *      RETURNS:
4210 *      1 if @dev matches @new_class and @new_id, 0 otherwise.
4211 */
4212static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
4213                               const u16 *new_id)
4214{
4215        const u16 *old_id = dev->id;
4216        unsigned char model[2][ATA_ID_PROD_LEN + 1];
4217        unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
4218
4219        if (dev->class != new_class) {
4220                ata_dev_info(dev, "class mismatch %d != %d\n",
4221                             dev->class, new_class);
4222                return 0;
4223        }
4224
4225        ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
4226        ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
4227        ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
4228        ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
4229
4230        if (strcmp(model[0], model[1])) {
4231                ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
4232                             model[0], model[1]);
4233                return 0;
4234        }
4235
4236        if (strcmp(serial[0], serial[1])) {
4237                ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
4238                             serial[0], serial[1]);
4239                return 0;
4240        }
4241
4242        return 1;
4243}
4244
4245/**
4246 *      ata_dev_reread_id - Re-read IDENTIFY data
4247 *      @dev: target ATA device
4248 *      @readid_flags: read ID flags
4249 *
4250 *      Re-read IDENTIFY page and make sure @dev is still attached to
4251 *      the port.
4252 *
4253 *      LOCKING:
4254 *      Kernel thread context (may sleep)
4255 *
4256 *      RETURNS:
4257 *      0 on success, negative errno otherwise
4258 */
4259int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
4260{
4261        unsigned int class = dev->class;
4262        u16 *id = (void *)dev->link->ap->sector_buf;
4263        int rc;
4264
4265        /* read ID data */
4266        rc = ata_dev_read_id(dev, &class, readid_flags, id);
4267        if (rc)
4268                return rc;
4269
4270        /* is the device still there? */
4271        if (!ata_dev_same_device(dev, class, id))
4272                return -ENODEV;
4273
4274        memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
4275        return 0;
4276}
4277
4278/**
4279 *      ata_dev_revalidate - Revalidate ATA device
4280 *      @dev: device to revalidate
4281 *      @new_class: new class code
4282 *      @readid_flags: read ID flags
4283 *
4284 *      Re-read IDENTIFY page, make sure @dev is still attached to the
4285 *      port and reconfigure it according to the new IDENTIFY page.
4286 *
4287 *      LOCKING:
4288 *      Kernel thread context (may sleep)
4289 *
4290 *      RETURNS:
4291 *      0 on success, negative errno otherwise
4292 */
4293int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4294                       unsigned int readid_flags)
4295{
4296        u64 n_sectors = dev->n_sectors;
4297        u64 n_native_sectors = dev->n_native_sectors;
4298        int rc;
4299
4300        if (!ata_dev_enabled(dev))
4301                return -ENODEV;
4302
4303        /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4304        if (ata_class_enabled(new_class) &&
4305            new_class != ATA_DEV_ATA &&
4306            new_class != ATA_DEV_ATAPI &&
4307            new_class != ATA_DEV_ZAC &&
4308            new_class != ATA_DEV_SEMB) {
4309                ata_dev_info(dev, "class mismatch %u != %u\n",
4310                             dev->class, new_class);
4311                rc = -ENODEV;
4312                goto fail;
4313        }
4314
4315        /* re-read ID */
4316        rc = ata_dev_reread_id(dev, readid_flags);
4317        if (rc)
4318                goto fail;
4319
4320        /* configure device according to the new ID */
4321        rc = ata_dev_configure(dev);
4322        if (rc)
4323                goto fail;
4324
4325        /* verify n_sectors hasn't changed */
4326        if (dev->class != ATA_DEV_ATA || !n_sectors ||
4327            dev->n_sectors == n_sectors)
4328                return 0;
4329
4330        /* n_sectors has changed */
4331        ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
4332                     (unsigned long long)n_sectors,
4333                     (unsigned long long)dev->n_sectors);
4334
4335        /*
4336         * Something could have caused HPA to be unlocked
4337         * involuntarily.  If n_native_sectors hasn't changed and the
4338         * new size matches it, keep the device.
4339         */
4340        if (dev->n_native_sectors == n_native_sectors &&
4341            dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
4342                ata_dev_warn(dev,
4343                             "new n_sectors matches native, probably "
4344                             "late HPA unlock, n_sectors updated\n");
4345                /* use the larger n_sectors */
4346                return 0;
4347        }
4348
4349        /*
4350         * Some BIOSes boot w/o HPA but resume w/ HPA locked.  Try
4351         * unlocking HPA in those cases.
4352         *
4353         * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4354         */
4355        if (dev->n_native_sectors == n_native_sectors &&
4356            dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4357            !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4358                ata_dev_warn(dev,
4359                             "old n_sectors matches native, probably "
4360                             "late HPA lock, will try to unlock HPA\n");
4361                /* try unlocking HPA */
4362                dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4363                rc = -EIO;
4364        } else
4365                rc = -ENODEV;
4366
4367        /* restore original n_[native_]sectors and fail */
4368        dev->n_native_sectors = n_native_sectors;
4369        dev->n_sectors = n_sectors;
4370 fail:
4371        ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
4372        return rc;
4373}
4374
4375struct ata_blacklist_entry {
4376        const char *model_num;
4377        const char *model_rev;
4378        unsigned long horkage;
4379};
4380
4381static const struct ata_blacklist_entry ata_device_blacklist [] = {
4382        /* Devices with DMA related problems under Linux */
4383        { "WDC AC11000H",       NULL,           ATA_HORKAGE_NODMA },
4384        { "WDC AC22100H",       NULL,           ATA_HORKAGE_NODMA },
4385        { "WDC AC32500H",       NULL,           ATA_HORKAGE_NODMA },
4386        { "WDC AC33100H",       NULL,           ATA_HORKAGE_NODMA },
4387        { "WDC AC31600H",       NULL,           ATA_HORKAGE_NODMA },
4388        { "WDC AC32100H",       "24.09P07",     ATA_HORKAGE_NODMA },
4389        { "WDC AC23200L",       "21.10N21",     ATA_HORKAGE_NODMA },
4390        { "Compaq CRD-8241B",   NULL,           ATA_HORKAGE_NODMA },
4391        { "CRD-8400B",          NULL,           ATA_HORKAGE_NODMA },
4392        { "CRD-848[02]B",       NULL,           ATA_HORKAGE_NODMA },
4393        { "CRD-84",             NULL,           ATA_HORKAGE_NODMA },
4394        { "SanDisk SDP3B",      NULL,           ATA_HORKAGE_NODMA },
4395        { "SanDisk SDP3B-64",   NULL,           ATA_HORKAGE_NODMA },
4396        { "SANYO CD-ROM CRD",   NULL,           ATA_HORKAGE_NODMA },
4397        { "HITACHI CDR-8",      NULL,           ATA_HORKAGE_NODMA },
4398        { "HITACHI CDR-8[34]35",NULL,           ATA_HORKAGE_NODMA },
4399        { "Toshiba CD-ROM XM-6202B", NULL,      ATA_HORKAGE_NODMA },
4400        { "TOSHIBA CD-ROM XM-1702BC", NULL,     ATA_HORKAGE_NODMA },
4401        { "CD-532E-A",          NULL,           ATA_HORKAGE_NODMA },
4402        { "E-IDE CD-ROM CR-840",NULL,           ATA_HORKAGE_NODMA },
4403        { "CD-ROM Drive/F5A",   NULL,           ATA_HORKAGE_NODMA },
4404        { "WPI CDD-820",        NULL,           ATA_HORKAGE_NODMA },
4405        { "SAMSUNG CD-ROM SC-148C", NULL,       ATA_HORKAGE_NODMA },
4406        { "SAMSUNG CD-ROM SC",  NULL,           ATA_HORKAGE_NODMA },
4407        { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4408        { "_NEC DV5800A",       NULL,           ATA_HORKAGE_NODMA },
4409        { "SAMSUNG CD-ROM SN-124", "N001",      ATA_HORKAGE_NODMA },
4410        { "Seagate STT20000A", NULL,            ATA_HORKAGE_NODMA },
4411        { " 2GB ATA Flash Disk", "ADMA428M",    ATA_HORKAGE_NODMA },
4412        { "VRFDFC22048UCHC-TE*", NULL,          ATA_HORKAGE_NODMA },
4413        /* Odd clown on sil3726/4726 PMPs */
4414        { "Config  Disk",       NULL,           ATA_HORKAGE_DISABLE },
4415
4416        /* Weird ATAPI devices */
4417        { "TORiSAN DVD-ROM DRD-N216", NULL,     ATA_HORKAGE_MAX_SEC_128 },
4418        { "QUANTUM DAT    DAT72-000", NULL,     ATA_HORKAGE_ATAPI_MOD16_DMA },
4419        { "Slimtype DVD A  DS8A8SH", NULL,      ATA_HORKAGE_MAX_SEC_LBA48 },
4420        { "Slimtype DVD A  DS8A9SH", NULL,      ATA_HORKAGE_MAX_SEC_LBA48 },
4421
4422        /*
4423         * Causes silent data corruption with higher max sects.
4424         * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
4425         */
4426        { "ST380013AS",         "3.20",         ATA_HORKAGE_MAX_SEC_1024 },
4427
4428        /*
4429         * These devices time out with higher max sects.
4430         * https://bugzilla.kernel.org/show_bug.cgi?id=121671
4431         */
4432        { "LITEON CX1-JB*-HP",  NULL,           ATA_HORKAGE_MAX_SEC_1024 },
4433        { "LITEON EP1-*",       NULL,           ATA_HORKAGE_MAX_SEC_1024 },
4434
4435        /* Devices we expect to fail diagnostics */
4436
4437        /* Devices where NCQ should be avoided */
4438        /* NCQ is slow */
4439        { "WDC WD740ADFD-00",   NULL,           ATA_HORKAGE_NONCQ },
4440        { "WDC WD740ADFD-00NLR1", NULL,         ATA_HORKAGE_NONCQ, },
4441        /* http://thread.gmane.org/gmane.linux.ide/14907 */
4442        { "FUJITSU MHT2060BH",  NULL,           ATA_HORKAGE_NONCQ },
4443        /* NCQ is broken */
4444        { "Maxtor *",           "BANC*",        ATA_HORKAGE_NONCQ },
4445        { "Maxtor 7V300F0",     "VA111630",     ATA_HORKAGE_NONCQ },
4446        { "ST380817AS",         "3.42",         ATA_HORKAGE_NONCQ },
4447        { "ST3160023AS",        "3.42",         ATA_HORKAGE_NONCQ },
4448        { "OCZ CORE_SSD",       "02.10104",     ATA_HORKAGE_NONCQ },
4449
4450        /* Seagate NCQ + FLUSH CACHE firmware bug */
4451        { "ST31500341AS",       "SD1[5-9]",     ATA_HORKAGE_NONCQ |
4452                                                ATA_HORKAGE_FIRMWARE_WARN },
4453
4454        { "ST31000333AS",       "SD1[5-9]",     ATA_HORKAGE_NONCQ |
4455                                                ATA_HORKAGE_FIRMWARE_WARN },
4456
4457        { "ST3640[36]23AS",     "SD1[5-9]",     ATA_HORKAGE_NONCQ |
4458                                                ATA_HORKAGE_FIRMWARE_WARN },
4459
4460        { "ST3320[68]13AS",     "SD1[5-9]",     ATA_HORKAGE_NONCQ |
4461                                                ATA_HORKAGE_FIRMWARE_WARN },
4462
4463        /* drives which fail FPDMA_AA activation (some may freeze afterwards)
4464           the ST disks also have LPM issues */
4465        { "ST1000LM024 HN-M101MBB", NULL,       ATA_HORKAGE_BROKEN_FPDMA_AA |
4466                                                ATA_HORKAGE_NOLPM, },
4467        { "VB0250EAVER",        "HPG7",         ATA_HORKAGE_BROKEN_FPDMA_AA },
4468
4469        /* Blacklist entries taken from Silicon Image 3124/3132
4470           Windows driver .inf file - also several Linux problem reports */
4471        { "HTS541060G9SA00",    "MB3OC60D",     ATA_HORKAGE_NONCQ, },
4472        { "HTS541080G9SA00",    "MB4OC60D",     ATA_HORKAGE_NONCQ, },
4473        { "HTS541010G9SA00",    "MBZOC60D",     ATA_HORKAGE_NONCQ, },
4474
4475        /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4476        { "C300-CTFDDAC128MAG", "0001",         ATA_HORKAGE_NONCQ, },
4477
4478        /* Some Sandisk SSDs lock up hard with NCQ enabled.  Reported on
4479           SD7SN6S256G and SD8SN8U256G */
4480        { "SanDisk SD[78]SN*G", NULL,           ATA_HORKAGE_NONCQ, },
4481
4482        /* devices which puke on READ_NATIVE_MAX */
4483        { "HDS724040KLSA80",    "KFAOA20N",     ATA_HORKAGE_BROKEN_HPA, },
4484        { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4485        { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4486        { "MAXTOR 6L080L4",     "A93.0500",     ATA_HORKAGE_BROKEN_HPA },
4487
4488        /* this one allows HPA unlocking but fails IOs on the area */
4489        { "OCZ-VERTEX",             "1.30",     ATA_HORKAGE_BROKEN_HPA },
4490
4491        /* Devices which report 1 sector over size HPA */
4492        { "ST340823A",          NULL,           ATA_HORKAGE_HPA_SIZE, },
4493        { "ST320413A",          NULL,           ATA_HORKAGE_HPA_SIZE, },
4494        { "ST310211A",          NULL,           ATA_HORKAGE_HPA_SIZE, },
4495
4496        /* Devices which get the IVB wrong */
4497        { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4498        /* Maybe we should just blacklist TSSTcorp... */
4499        { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]",  ATA_HORKAGE_IVB, },
4500
4501        /* Devices that do not need bridging limits applied */
4502        { "MTRON MSP-SATA*",            NULL,   ATA_HORKAGE_BRIDGE_OK, },
4503        { "BUFFALO HD-QSU2/R5",         NULL,   ATA_HORKAGE_BRIDGE_OK, },
4504
4505        /* Devices which aren't very happy with higher link speeds */
4506        { "WD My Book",                 NULL,   ATA_HORKAGE_1_5_GBPS, },
4507        { "Seagate FreeAgent GoFlex",   NULL,   ATA_HORKAGE_1_5_GBPS, },
4508
4509        /*
4510         * Devices which choke on SETXFER.  Applies only if both the
4511         * device and controller are SATA.
4512         */
4513        { "PIONEER DVD-RW  DVRTD08",    NULL,   ATA_HORKAGE_NOSETXFER },
4514        { "PIONEER DVD-RW  DVRTD08A",   NULL,   ATA_HORKAGE_NOSETXFER },
4515        { "PIONEER DVD-RW  DVR-215",    NULL,   ATA_HORKAGE_NOSETXFER },
4516        { "PIONEER DVD-RW  DVR-212D",   NULL,   ATA_HORKAGE_NOSETXFER },
4517        { "PIONEER DVD-RW  DVR-216D",   NULL,   ATA_HORKAGE_NOSETXFER },
4518
4519        /* Crucial BX100 SSD 500GB has broken LPM support */
4520        { "CT500BX100SSD1",             NULL,   ATA_HORKAGE_NOLPM },
4521
4522        /* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */
4523        { "Crucial_CT512MX100*",        "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4524                                                ATA_HORKAGE_ZERO_AFTER_TRIM |
4525                                                ATA_HORKAGE_NOLPM, },
4526        /* 512GB MX100 with newer firmware has only LPM issues */
4527        { "Crucial_CT512MX100*",        NULL,   ATA_HORKAGE_ZERO_AFTER_TRIM |
4528                                                ATA_HORKAGE_NOLPM, },
4529
4530        /* 480GB+ M500 SSDs have both queued TRIM and LPM issues */
4531        { "Crucial_CT480M500*",         NULL,   ATA_HORKAGE_NO_NCQ_TRIM |
4532                                                ATA_HORKAGE_ZERO_AFTER_TRIM |
4533                                                ATA_HORKAGE_NOLPM, },
4534        { "Crucial_CT960M500*",         NULL,   ATA_HORKAGE_NO_NCQ_TRIM |
4535                                                ATA_HORKAGE_ZERO_AFTER_TRIM |
4536                                                ATA_HORKAGE_NOLPM, },
4537
4538        /* These specific Samsung models/firmware-revs do not handle LPM well */
4539        { "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_HORKAGE_NOLPM, },
4540        { "SAMSUNG SSD PM830 mSATA *",  "CXM13D1Q", ATA_HORKAGE_NOLPM, },
4541        { "SAMSUNG MZ7TD256HAFV-000L9", NULL,       ATA_HORKAGE_NOLPM, },
4542        { "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_HORKAGE_NOLPM, },
4543
4544        /* devices that don't properly handle queued TRIM commands */
4545        { "Micron_M500IT_*",            "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4546                                                ATA_HORKAGE_ZERO_AFTER_TRIM, },
4547        { "Micron_M500_*",              NULL,   ATA_HORKAGE_NO_NCQ_TRIM |
4548                                                ATA_HORKAGE_ZERO_AFTER_TRIM, },
4549        { "Crucial_CT*M500*",           NULL,   ATA_HORKAGE_NO_NCQ_TRIM |
4550                                                ATA_HORKAGE_ZERO_AFTER_TRIM, },
4551        { "Micron_M5[15]0_*",           "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4552                                                ATA_HORKAGE_ZERO_AFTER_TRIM, },
4553        { "Crucial_CT*M550*",           "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4554                                                ATA_HORKAGE_ZERO_AFTER_TRIM, },
4555        { "Crucial_CT*MX100*",          "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4556                                                ATA_HORKAGE_ZERO_AFTER_TRIM, },
4557        { "Samsung SSD 840*",           NULL,   ATA_HORKAGE_NO_NCQ_TRIM |
4558                                                ATA_HORKAGE_ZERO_AFTER_TRIM, },
4559        { "Samsung SSD 850*",           NULL,   ATA_HORKAGE_NO_NCQ_TRIM |
4560                                                ATA_HORKAGE_ZERO_AFTER_TRIM, },
4561        { "FCCT*M500*",                 NULL,   ATA_HORKAGE_NO_NCQ_TRIM |
4562                                                ATA_HORKAGE_ZERO_AFTER_TRIM, },
4563
4564        /* devices that don't properly handle TRIM commands */
4565        { "SuperSSpeed S238*",          NULL,   ATA_HORKAGE_NOTRIM, },
4566
4567        /*
4568         * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4569         * (Return Zero After Trim) flags in the ATA Command Set are
4570         * unreliable in the sense that they only define what happens if
4571         * the device successfully executed the DSM TRIM command. TRIM
4572         * is only advisory, however, and the device is free to silently
4573         * ignore all or parts of the request.
4574         *
4575         * Whitelist drives that are known to reliably return zeroes
4576         * after TRIM.
4577         */
4578
4579        /*
4580         * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4581         * that model before whitelisting all other intel SSDs.
4582         */
4583        { "INTEL*SSDSC2MH*",            NULL,   0, },
4584
4585        { "Micron*",                    NULL,   ATA_HORKAGE_ZERO_AFTER_TRIM, },
4586        { "Crucial*",                   NULL,   ATA_HORKAGE_ZERO_AFTER_TRIM, },
4587        { "INTEL*SSD*",                 NULL,   ATA_HORKAGE_ZERO_AFTER_TRIM, },
4588        { "SSD*INTEL*",                 NULL,   ATA_HORKAGE_ZERO_AFTER_TRIM, },
4589        { "Samsung*SSD*",               NULL,   ATA_HORKAGE_ZERO_AFTER_TRIM, },
4590        { "SAMSUNG*SSD*",               NULL,   ATA_HORKAGE_ZERO_AFTER_TRIM, },
4591        { "SAMSUNG*MZ7KM*",             NULL,   ATA_HORKAGE_ZERO_AFTER_TRIM, },
4592        { "ST[1248][0248]0[FH]*",       NULL,   ATA_HORKAGE_ZERO_AFTER_TRIM, },
4593
4594        /*
4595         * Some WD SATA-I drives spin up and down erratically when the link
4596         * is put into the slumber mode.  We don't have full list of the
4597         * affected devices.  Disable LPM if the device matches one of the
4598         * known prefixes and is SATA-1.  As a side effect LPM partial is
4599         * lost too.
4600         *
4601         * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4602         */
4603        { "WDC WD800JD-*",              NULL,   ATA_HORKAGE_WD_BROKEN_LPM },
4604        { "WDC WD1200JD-*",             NULL,   ATA_HORKAGE_WD_BROKEN_LPM },
4605        { "WDC WD1600JD-*",             NULL,   ATA_HORKAGE_WD_BROKEN_LPM },
4606        { "WDC WD2000JD-*",             NULL,   ATA_HORKAGE_WD_BROKEN_LPM },
4607        { "WDC WD2500JD-*",             NULL,   ATA_HORKAGE_WD_BROKEN_LPM },
4608        { "WDC WD3000JD-*",             NULL,   ATA_HORKAGE_WD_BROKEN_LPM },
4609        { "WDC WD3200JD-*",             NULL,   ATA_HORKAGE_WD_BROKEN_LPM },
4610
4611        /* End Marker */
4612        { }
4613};
4614
4615static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4616{
4617        unsigned char model_num[ATA_ID_PROD_LEN + 1];
4618        unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4619        const struct ata_blacklist_entry *ad = ata_device_blacklist;
4620
4621        ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4622        ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4623
4624        while (ad->model_num) {
4625                if (glob_match(ad->model_num, model_num)) {
4626                        if (ad->model_rev == NULL)
4627                                return ad->horkage;
4628                        if (glob_match(ad->model_rev, model_rev))
4629                                return ad->horkage;
4630                }
4631                ad++;
4632        }
4633        return 0;
4634}
4635
4636static int ata_dma_blacklisted(const struct ata_device *dev)
4637{
4638        /* We don't support polling DMA.
4639         * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4640         * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4641         */
4642        if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4643            (dev->flags & ATA_DFLAG_CDB_INTR))
4644                return 1;
4645        return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4646}
4647
4648/**
4649 *      ata_is_40wire           -       check drive side detection
4650 *      @dev: device
4651 *
4652 *      Perform drive side detection decoding, allowing for device vendors
4653 *      who can't follow the documentation.
4654 */
4655
4656static int ata_is_40wire(struct ata_device *dev)
4657{
4658        if (dev->horkage & ATA_HORKAGE_IVB)
4659                return ata_drive_40wire_relaxed(dev->id);
4660        return ata_drive_40wire(dev->id);
4661}
4662
4663/**
4664 *      cable_is_40wire         -       40/80/SATA decider
4665 *      @ap: port to consider
4666 *
4667 *      This function encapsulates the policy for speed management
4668 *      in one place. At the moment we don't cache the result but
4669 *      there is a good case for setting ap->cbl to the result when
4670 *      we are called with unknown cables (and figuring out if it
4671 *      impacts hotplug at all).
4672 *
4673 *      Return 1 if the cable appears to be 40 wire.
4674 */
4675
4676static int cable_is_40wire(struct ata_port *ap)
4677{
4678        struct ata_link *link;
4679        struct ata_device *dev;
4680
4681        /* If the controller thinks we are 40 wire, we are. */
4682        if (ap->cbl == ATA_CBL_PATA40)
4683                return 1;
4684
4685        /* If the controller thinks we are 80 wire, we are. */
4686        if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4687                return 0;
4688
4689        /* If the system is known to be 40 wire short cable (eg
4690         * laptop), then we allow 80 wire modes even if the drive
4691         * isn't sure.
4692         */
4693        if (ap->cbl == ATA_CBL_PATA40_SHORT)
4694                return 0;
4695
4696        /* If the controller doesn't know, we scan.
4697         *
4698         * Note: We look for all 40 wire detects at this point.  Any
4699         *       80 wire detect is taken to be 80 wire cable because
4700         * - in many setups only the one drive (slave if present) will
4701         *   give a valid detect
4702         * - if you have a non detect capable drive you don't want it
4703         *   to colour the choice
4704         */
4705        ata_for_each_link(link, ap, EDGE) {
4706                ata_for_each_dev(dev, link, ENABLED) {
4707                        if (!ata_is_40wire(dev))
4708                                return 0;
4709                }
4710        }
4711        return 1;
4712}
4713
4714/**
4715 *      ata_dev_xfermask - Compute supported xfermask of the given device
4716 *      @dev: Device to compute xfermask for
4717 *
4718 *      Compute supported xfermask of @dev and store it in
4719 *      dev->*_mask.  This function is responsible for applying all
4720 *      known limits including host controller limits, device
4721 *      blacklist, etc...
4722 *
4723 *      LOCKING:
4724 *      None.
4725 */
4726static void ata_dev_xfermask(struct ata_device *dev)
4727{
4728        struct ata_link *link = dev->link;
4729        struct ata_port *ap = link->ap;
4730        struct ata_host *host = ap->host;
4731        unsigned long xfer_mask;
4732
4733        /* controller modes available */
4734        xfer_mask = ata_pack_xfermask(ap->pio_mask,
4735                                      ap->mwdma_mask, ap->udma_mask);
4736
4737        /* drive modes available */
4738        xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4739                                       dev->mwdma_mask, dev->udma_mask);
4740        xfer_mask &= ata_id_xfermask(dev->id);
4741
4742        /*
4743         *      CFA Advanced TrueIDE timings are not allowed on a shared
4744         *      cable
4745         */
4746        if (ata_dev_pair(dev)) {
4747                /* No PIO5 or PIO6 */
4748                xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4749                /* No MWDMA3 or MWDMA 4 */
4750                xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4751        }
4752
4753        if (ata_dma_blacklisted(dev)) {
4754                xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4755                ata_dev_warn(dev,
4756                             "device is on DMA blacklist, disabling DMA\n");
4757        }
4758
4759        if ((host->flags & ATA_HOST_SIMPLEX) &&
4760            host->simplex_claimed && host->simplex_claimed != ap) {
4761                xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4762                ata_dev_warn(dev,
4763                             "simplex DMA is claimed by other device, disabling DMA\n");
4764        }
4765
4766        if (ap->flags & ATA_FLAG_NO_IORDY)
4767                xfer_mask &= ata_pio_mask_no_iordy(dev);
4768
4769        if (ap->ops->mode_filter)
4770                xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4771
4772        /* Apply cable rule here.  Don't apply it early because when
4773         * we handle hot plug the cable type can itself change.
4774         * Check this last so that we know if the transfer rate was
4775         * solely limited by the cable.
4776         * Unknown or 80 wire cables reported host side are checked
4777         * drive side as well. Cases where we know a 40wire cable
4778         * is used safely for 80 are not checked here.
4779         */
4780        if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4781                /* UDMA/44 or higher would be available */
4782                if (cable_is_40wire(ap)) {
4783                        ata_dev_warn(dev,
4784                                     "limited to UDMA/33 due to 40-wire cable\n");
4785                        xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4786                }
4787
4788        ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4789                            &dev->mwdma_mask, &dev->udma_mask);
4790}
4791
4792/**
4793 *      ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4794 *      @dev: Device to which command will be sent
4795 *
4796 *      Issue SET FEATURES - XFER MODE command to device @dev
4797 *      on port @ap.
4798 *
4799 *      LOCKING:
4800 *      PCI/etc. bus probe sem.
4801 *
4802 *      RETURNS:
4803 *      0 on success, AC_ERR_* mask otherwise.
4804 */
4805
4806static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4807{
4808        struct ata_taskfile tf;
4809        unsigned int err_mask;
4810
4811        /* set up set-features taskfile */
4812        DPRINTK("set features - xfer mode\n");
4813
4814        /* Some controllers and ATAPI devices show flaky interrupt
4815         * behavior after setting xfer mode.  Use polling instead.
4816         */
4817        ata_tf_init(dev, &tf);
4818        tf.command = ATA_CMD_SET_FEATURES;
4819        tf.feature = SETFEATURES_XFER;
4820        tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4821        tf.protocol = ATA_PROT_NODATA;
4822        /* If we are using IORDY we must send the mode setting command */
4823        if (ata_pio_need_iordy(dev))
4824                tf.nsect = dev->xfer_mode;
4825        /* If the device has IORDY and the controller does not - turn it off */
4826        else if (ata_id_has_iordy(dev->id))
4827                tf.nsect = 0x01;
4828        else /* In the ancient relic department - skip all of this */
4829                return 0;
4830
4831        /* On some disks, this command causes spin-up, so we need longer timeout */
4832        err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
4833
4834        DPRINTK("EXIT, err_mask=%x\n", err_mask);
4835        return err_mask;
4836}
4837
4838/**
4839 *      ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4840 *      @dev: Device to which command will be sent
4841 *      @enable: Whether to enable or disable the feature
4842 *      @feature: The sector count represents the feature to set
4843 *
4844 *      Issue SET FEATURES - SATA FEATURES command to device @dev
4845 *      on port @ap with sector count
4846 *
4847 *      LOCKING:
4848 *      PCI/etc. bus probe sem.
4849 *
4850 *      RETURNS:
4851 *      0 on success, AC_ERR_* mask otherwise.
4852 */
4853unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4854{
4855        struct ata_taskfile tf;
4856        unsigned int err_mask;
4857        unsigned long timeout = 0;
4858
4859        /* set up set-features taskfile */
4860        DPRINTK("set features - SATA features\n");
4861
4862        ata_tf_init(dev, &tf);
4863        tf.command = ATA_CMD_SET_FEATURES;
4864        tf.feature = enable;
4865        tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4866        tf.protocol = ATA_PROT_NODATA;
4867        tf.nsect = feature;
4868
4869        if (enable == SETFEATURES_SPINUP)
4870                timeout = ata_probe_timeout ?
4871                          ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT;
4872        err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout);
4873
4874        DPRINTK("EXIT, err_mask=%x\n", err_mask);
4875        return err_mask;
4876}
4877EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4878
4879/**
4880 *      ata_dev_init_params - Issue INIT DEV PARAMS command
4881 *      @dev: Device to which command will be sent
4882 *      @heads: Number of heads (taskfile parameter)
4883 *      @sectors: Number of sectors (taskfile parameter)
4884 *
4885 *      LOCKING:
4886 *      Kernel thread context (may sleep)
4887 *
4888 *      RETURNS:
4889 *      0 on success, AC_ERR_* mask otherwise.
4890 */
4891static unsigned int ata_dev_init_params(struct ata_device *dev,
4892                                        u16 heads, u16 sectors)
4893{
4894        struct ata_taskfile tf;
4895        unsigned int err_mask;
4896
4897        /* Number of sectors per track 1-255. Number of heads 1-16 */
4898        if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4899                return AC_ERR_INVALID;
4900
4901        /* set up init dev params taskfile */
4902        DPRINTK("init dev params \n");
4903
4904        ata_tf_init(dev, &tf);
4905        tf.command = ATA_CMD_INIT_DEV_PARAMS;
4906        tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4907        tf.protocol = ATA_PROT_NODATA;
4908        tf.nsect = sectors;
4909        tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4910
4911        err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4912        /* A clean abort indicates an original or just out of spec drive
4913           and we should continue as we issue the setup based on the
4914           drive reported working geometry */
4915        if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4916                err_mask = 0;
4917
4918        DPRINTK("EXIT, err_mask=%x\n", err_mask);
4919        return err_mask;
4920}
4921
4922/**
4923 *      atapi_check_dma - Check whether ATAPI DMA can be supported
4924 *      @qc: Metadata associated with taskfile to check
4925 *
4926 *      Allow low-level driver to filter ATA PACKET commands, returning
4927 *      a status indicating whether or not it is OK to use DMA for the
4928 *      supplied PACKET command.
4929 *
4930 *      LOCKING:
4931 *      spin_lock_irqsave(host lock)
4932 *
4933 *      RETURNS: 0 when ATAPI DMA can be used
4934 *               nonzero otherwise
4935 */
4936int atapi_check_dma(struct ata_queued_cmd *qc)
4937{
4938        struct ata_port *ap = qc->ap;
4939
4940        /* Don't allow DMA if it isn't multiple of 16 bytes.  Quite a
4941         * few ATAPI devices choke on such DMA requests.
4942         */
4943        if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4944            unlikely(qc->nbytes & 15))
4945                return 1;
4946
4947        if (ap->ops->check_atapi_dma)
4948                return ap->ops->check_atapi_dma(qc);
4949
4950        return 0;
4951}
4952
4953/**
4954 *      ata_std_qc_defer - Check whether a qc needs to be deferred
4955 *      @qc: ATA command in question
4956 *
4957 *      Non-NCQ commands cannot run with any other command, NCQ or
4958 *      not.  As upper layer only knows the queue depth, we are
4959 *      responsible for maintaining exclusion.  This function checks
4960 *      whether a new command @qc can be issued.
4961 *
4962 *      LOCKING:
4963 *      spin_lock_irqsave(host lock)
4964 *
4965 *      RETURNS:
4966 *      ATA_DEFER_* if deferring is needed, 0 otherwise.
4967 */
4968int ata_std_qc_defer(struct ata_queued_cmd *qc)
4969{
4970        struct ata_link *link = qc->dev->link;
4971
4972        if (ata_is_ncq(qc->tf.protocol)) {
4973                if (!ata_tag_valid(link->active_tag))
4974                        return 0;
4975        } else {
4976                if (!ata_tag_valid(link->active_tag) && !link->sactive)
4977                        return 0;
4978        }
4979
4980        return ATA_DEFER_LINK;
4981}
4982
4983enum ata_completion_errors ata_noop_qc_prep(struct ata_queued_cmd *qc)
4984{
4985        return AC_ERR_OK;
4986}
4987
4988/**
4989 *      ata_sg_init - Associate command with scatter-gather table.
4990 *      @qc: Command to be associated
4991 *      @sg: Scatter-gather table.
4992 *      @n_elem: Number of elements in s/g table.
4993 *
4994 *      Initialize the data-related elements of queued_cmd @qc
4995 *      to point to a scatter-gather table @sg, containing @n_elem
4996 *      elements.
4997 *
4998 *      LOCKING:
4999 *      spin_lock_irqsave(host lock)
5000 */
5001void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
5002                 unsigned int n_elem)
5003{
5004        qc->sg = sg;
5005        qc->n_elem = n_elem;
5006        qc->cursg = qc->sg;
5007}
5008
5009#ifdef CONFIG_HAS_DMA
5010
5011/**
5012 *      ata_sg_clean - Unmap DMA memory associated with command
5013 *      @qc: Command containing DMA memory to be released
5014 *
5015 *      Unmap all mapped DMA memory associated with this command.
5016 *
5017 *      LOCKING:
5018 *      spin_lock_irqsave(host lock)
5019 */
5020static void ata_sg_clean(struct ata_queued_cmd *qc)
5021{
5022        struct ata_port *ap = qc->ap;
5023        struct scatterlist *sg = qc->sg;
5024        int dir = qc->dma_dir;
5025
5026        WARN_ON_ONCE(sg == NULL);
5027
5028        VPRINTK("unmapping %u sg elements\n", qc->n_elem);
5029
5030        if (qc->n_elem)
5031                dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
5032
5033        qc->flags &= ~ATA_QCFLAG_DMAMAP;
5034        qc->sg = NULL;
5035}
5036
5037/**
5038 *      ata_sg_setup - DMA-map the scatter-gather table associated with a command.
5039 *      @qc: Command with scatter-gather table to be mapped.
5040 *
5041 *      DMA-map the scatter-gather table associated with queued_cmd @qc.
5042 *
5043 *      LOCKING:
5044 *      spin_lock_irqsave(host lock)
5045 *
5046 *      RETURNS:
5047 *      Zero on success, negative on error.
5048 *
5049 */
5050static int ata_sg_setup(struct ata_queued_cmd *qc)
5051{
5052        struct ata_port *ap = qc->ap;
5053        unsigned int n_elem;
5054
5055        VPRINTK("ENTER, ata%u\n", ap->print_id);
5056
5057        n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
5058        if (n_elem < 1)
5059                return -1;
5060
5061        VPRINTK("%d sg elements mapped\n", n_elem);
5062        qc->orig_n_elem = qc->n_elem;
5063        qc->n_elem = n_elem;
5064        qc->flags |= ATA_QCFLAG_DMAMAP;
5065
5066        return 0;
5067}
5068
5069#else /* !CONFIG_HAS_DMA */
5070
5071static inline void ata_sg_clean(struct ata_queued_cmd *qc) {}
5072static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; }
5073
5074#endif /* !CONFIG_HAS_DMA */
5075
5076/**
5077 *      swap_buf_le16 - swap halves of 16-bit words in place
5078 *      @buf:  Buffer to swap
5079 *      @buf_words:  Number of 16-bit words in buffer.
5080 *
5081 *      Swap halves of 16-bit words if needed to convert from
5082 *      little-endian byte order to native cpu byte order, or
5083 *      vice-versa.
5084 *
5085 *      LOCKING:
5086 *      Inherited from caller.
5087 */
5088void swap_buf_le16(u16 *buf, unsigned int buf_words)
5089{
5090#ifdef __BIG_ENDIAN
5091        unsigned int i;
5092
5093        for (i = 0; i < buf_words; i++)
5094                buf[i] = le16_to_cpu(buf[i]);
5095#endif /* __BIG_ENDIAN */
5096}
5097
5098/**
5099 *      ata_qc_new_init - Request an available ATA command, and initialize it
5100 *      @dev: Device from whom we request an available command structure
5101 *      @tag: tag
5102 *
5103 *      LOCKING:
5104 *      None.
5105 */
5106
5107struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag)
5108{
5109        struct ata_port *ap = dev->link->ap;
5110        struct ata_queued_cmd *qc;
5111
5112        /* no command while frozen */
5113        if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
5114                return NULL;
5115
5116        /* libsas case */
5117        if (ap->flags & ATA_FLAG_SAS_HOST) {
5118                tag = ata_sas_allocate_tag(ap);
5119                if (tag < 0)
5120                        return NULL;
5121        }
5122
5123        qc = __ata_qc_from_tag(ap, tag);
5124        qc->tag = qc->hw_tag = tag;
5125        qc->scsicmd = NULL;
5126        qc->ap = ap;
5127        qc->dev = dev;
5128
5129        ata_qc_reinit(qc);
5130
5131        return qc;
5132}
5133
5134/**
5135 *      ata_qc_free - free unused ata_queued_cmd
5136 *      @qc: Command to complete
5137 *
5138 *      Designed to free unused ata_queued_cmd object
5139 *      in case something prevents using it.
5140 *
5141 *      LOCKING:
5142 *      spin_lock_irqsave(host lock)
5143 */
5144void ata_qc_free(struct ata_queued_cmd *qc)
5145{
5146        struct ata_port *ap;
5147        unsigned int tag;
5148
5149        WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5150        ap = qc->ap;
5151
5152        qc->flags = 0;
5153        tag = qc->tag;
5154        if (ata_tag_valid(tag)) {
5155                qc->tag = ATA_TAG_POISON;
5156                if (ap->flags & ATA_FLAG_SAS_HOST)
5157                        ata_sas_free_tag(tag, ap);
5158        }
5159}
5160
5161void __ata_qc_complete(struct ata_queued_cmd *qc)
5162{
5163        struct ata_port *ap;
5164        struct ata_link *link;
5165
5166        WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5167        WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
5168        ap = qc->ap;
5169        link = qc->dev->link;
5170
5171        if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5172                ata_sg_clean(qc);
5173
5174        /* command should be marked inactive atomically with qc completion */
5175        if (ata_is_ncq(qc->tf.protocol)) {
5176                link->sactive &= ~(1 << qc->hw_tag);
5177                if (!link->sactive)
5178                        ap->nr_active_links--;
5179        } else {
5180                link->active_tag = ATA_TAG_POISON;
5181                ap->nr_active_links--;
5182        }
5183
5184        /* clear exclusive status */
5185        if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
5186                     ap->excl_link == link))
5187                ap->excl_link = NULL;
5188
5189        /* atapi: mark qc as inactive to prevent the interrupt handler
5190         * from completing the command twice later, before the error handler
5191         * is called. (when rc != 0 and atapi request sense is needed)
5192         */
5193        qc->flags &= ~ATA_QCFLAG_ACTIVE;
5194        ap->qc_active &= ~(1ULL << qc->tag);
5195
5196        /* call completion callback */
5197        qc->complete_fn(qc);
5198}
5199
5200static void fill_result_tf(struct ata_queued_cmd *qc)
5201{
5202        struct ata_port *ap = qc->ap;
5203
5204        qc->result_tf.flags = qc->tf.flags;
5205        ap->ops->qc_fill_rtf(qc);
5206}
5207
5208static void ata_verify_xfer(struct ata_queued_cmd *qc)
5209{
5210        struct ata_device *dev = qc->dev;
5211
5212        if (!ata_is_data(qc->tf.protocol))
5213                return;
5214
5215        if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
5216                return;
5217
5218        dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
5219}
5220
5221/**
5222 *      ata_qc_complete - Complete an active ATA command
5223 *      @qc: Command to complete
5224 *
5225 *      Indicate to the mid and upper layers that an ATA command has
5226 *      completed, with either an ok or not-ok status.
5227 *
5228 *      Refrain from calling this function multiple times when
5229 *      successfully completing multiple NCQ commands.
5230 *      ata_qc_complete_multiple() should be used instead, which will
5231 *      properly update IRQ expect state.
5232 *
5233 *      LOCKING:
5234 *      spin_lock_irqsave(host lock)
5235 */
5236void ata_qc_complete(struct ata_queued_cmd *qc)
5237{
5238        struct ata_port *ap = qc->ap;
5239
5240        /* Trigger the LED (if available) */
5241        ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE));
5242
5243        /* XXX: New EH and old EH use different mechanisms to
5244         * synchronize EH with regular execution path.
5245         *
5246         * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5247         * Normal execution path is responsible for not accessing a
5248         * failed qc.  libata core enforces the rule by returning NULL
5249         * from ata_qc_from_tag() for failed qcs.
5250         *
5251         * Old EH depends on ata_qc_complete() nullifying completion
5252         * requests if ATA_QCFLAG_EH_SCHEDULED is set.  Old EH does
5253         * not synchronize with interrupt handler.  Only PIO task is
5254         * taken care of.
5255         */
5256        if (ap->ops->error_handler) {
5257                struct ata_device *dev = qc->dev;
5258                struct ata_eh_info *ehi = &dev->link->eh_info;
5259
5260                if (unlikely(qc->err_mask))
5261                        qc->flags |= ATA_QCFLAG_FAILED;
5262
5263                /*
5264                 * Finish internal commands without any further processing
5265                 * and always with the result TF filled.
5266                 */
5267                if (unlikely(ata_tag_internal(qc->tag))) {
5268                        fill_result_tf(qc);
5269                        trace_ata_qc_complete_internal(qc);
5270                        __ata_qc_complete(qc);
5271                        return;
5272                }
5273
5274                /*
5275                 * Non-internal qc has failed.  Fill the result TF and
5276                 * summon EH.
5277                 */
5278                if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5279                        fill_result_tf(qc);
5280                        trace_ata_qc_complete_failed(qc);
5281                        ata_qc_schedule_eh(qc);
5282                        return;
5283                }
5284
5285                WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
5286
5287                /* read result TF if requested */
5288                if (qc->flags & ATA_QCFLAG_RESULT_TF)
5289                        fill_result_tf(qc);
5290
5291                trace_ata_qc_complete_done(qc);
5292                /* Some commands need post-processing after successful
5293                 * completion.
5294                 */
5295                switch (qc->tf.command) {
5296                case ATA_CMD_SET_FEATURES:
5297                        if (qc->tf.feature != SETFEATURES_WC_ON &&
5298                            qc->tf.feature != SETFEATURES_WC_OFF &&
5299                            qc->tf.feature != SETFEATURES_RA_ON &&
5300                            qc->tf.feature != SETFEATURES_RA_OFF)
5301                                break;
5302                        /* fall through */
5303                case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5304                case ATA_CMD_SET_MULTI: /* multi_count changed */
5305                        /* revalidate device */
5306                        ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5307                        ata_port_schedule_eh(ap);
5308                        break;
5309
5310                case ATA_CMD_SLEEP:
5311                        dev->flags |= ATA_DFLAG_SLEEPING;
5312                        break;
5313                }
5314
5315                if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
5316                        ata_verify_xfer(qc);
5317
5318                __ata_qc_complete(qc);
5319        } else {
5320                if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5321                        return;
5322
5323                /* read result TF if failed or requested */
5324                if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5325                        fill_result_tf(qc);
5326
5327                __ata_qc_complete(qc);
5328        }
5329}
5330
5331/**
5332 *      ata_qc_get_active - get bitmask of active qcs
5333 *      @ap: port in question
5334 *
5335 *      LOCKING:
5336 *      spin_lock_irqsave(host lock)
5337 *
5338 *      RETURNS:
5339 *      Bitmask of active qcs
5340 */
5341u64 ata_qc_get_active(struct ata_port *ap)
5342{
5343        u64 qc_active = ap->qc_active;
5344
5345        /* ATA_TAG_INTERNAL is sent to hw as tag 0 */
5346        if (qc_active & (1ULL << ATA_TAG_INTERNAL)) {
5347                qc_active |= (1 << 0);
5348                qc_active &= ~(1ULL << ATA_TAG_INTERNAL);
5349        }
5350
5351        return qc_active;
5352}
5353EXPORT_SYMBOL_GPL(ata_qc_get_active);
5354
5355/**
5356 *      ata_qc_complete_multiple - Complete multiple qcs successfully
5357 *      @ap: port in question
5358 *      @qc_active: new qc_active mask
5359 *
5360 *      Complete in-flight commands.  This functions is meant to be
5361 *      called from low-level driver's interrupt routine to complete
5362 *      requests normally.  ap->qc_active and @qc_active is compared
5363 *      and commands are completed accordingly.
5364 *
5365 *      Always use this function when completing multiple NCQ commands
5366 *      from IRQ handlers instead of calling ata_qc_complete()
5367 *      multiple times to keep IRQ expect status properly in sync.
5368 *
5369 *      LOCKING:
5370 *      spin_lock_irqsave(host lock)
5371 *
5372 *      RETURNS:
5373 *      Number of completed commands on success, -errno otherwise.
5374 */
5375int ata_qc_complete_multiple(struct ata_port *ap, u64 qc_active)
5376{
5377        u64 done_mask, ap_qc_active = ap->qc_active;
5378        int nr_done = 0;
5379
5380        /*
5381         * If the internal tag is set on ap->qc_active, then we care about
5382         * bit0 on the passed in qc_active mask. Move that bit up to match
5383         * the internal tag.
5384         */
5385        if (ap_qc_active & (1ULL << ATA_TAG_INTERNAL)) {
5386                qc_active |= (qc_active & 0x01) << ATA_TAG_INTERNAL;
5387                qc_active ^= qc_active & 0x01;
5388        }
5389
5390        done_mask = ap_qc_active ^ qc_active;
5391
5392        if (unlikely(done_mask & qc_active)) {
5393                ata_port_err(ap, "illegal qc_active transition (%08llx->%08llx)\n",
5394                             ap->qc_active, qc_active);
5395                return -EINVAL;
5396        }
5397
5398        while (done_mask) {
5399                struct ata_queued_cmd *qc;
5400                unsigned int tag = __ffs64(done_mask);
5401
5402                qc = ata_qc_from_tag(ap, tag);
5403                if (qc) {
5404                        ata_qc_complete(qc);
5405                        nr_done++;
5406                }
5407                done_mask &= ~(1ULL << tag);
5408        }
5409
5410        return nr_done;
5411}
5412
5413/**
5414 *      ata_qc_issue - issue taskfile to device
5415 *      @qc: command to issue to device
5416 *
5417 *      Prepare an ATA command to submission to device.
5418 *      This includes mapping the data into a DMA-able
5419 *      area, filling in the S/G table, and finally
5420 *      writing the taskfile to hardware, starting the command.
5421 *
5422 *      LOCKING:
5423 *      spin_lock_irqsave(host lock)
5424 */
5425void ata_qc_issue(struct ata_queued_cmd *qc)
5426{
5427        struct ata_port *ap = qc->ap;
5428        struct ata_link *link = qc->dev->link;
5429        u8 prot = qc->tf.protocol;
5430
5431        /* Make sure only one non-NCQ command is outstanding.  The
5432         * check is skipped for old EH because it reuses active qc to
5433         * request ATAPI sense.
5434         */
5435        WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5436
5437        if (ata_is_ncq(prot)) {
5438                WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag));
5439
5440                if (!link->sactive)
5441                        ap->nr_active_links++;
5442                link->sactive |= 1 << qc->hw_tag;
5443        } else {
5444                WARN_ON_ONCE(link->sactive);
5445
5446                ap->nr_active_links++;
5447                link->active_tag = qc->tag;
5448        }
5449
5450        qc->flags |= ATA_QCFLAG_ACTIVE;
5451        ap->qc_active |= 1ULL << qc->tag;
5452
5453        /*
5454         * We guarantee to LLDs that they will have at least one
5455         * non-zero sg if the command is a data command.
5456         */
5457        if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes))
5458                goto sys_err;
5459
5460        if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5461                                 (ap->flags & ATA_FLAG_PIO_DMA)))
5462                if (ata_sg_setup(qc))
5463                        goto sys_err;
5464
5465        /* if device is sleeping, schedule reset and abort the link */
5466        if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5467                link->eh_info.action |= ATA_EH_RESET;
5468                ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5469                ata_link_abort(link);
5470                return;
5471        }
5472
5473        qc->err_mask |= ap->ops->qc_prep(qc);
5474        if (unlikely(qc->err_mask))
5475                goto err;
5476        trace_ata_qc_issue(qc);
5477        qc->err_mask |= ap->ops->qc_issue(qc);
5478        if (unlikely(qc->err_mask))
5479                goto err;
5480        return;
5481
5482sys_err:
5483        qc->err_mask |= AC_ERR_SYSTEM;
5484err:
5485        ata_qc_complete(qc);
5486}
5487
5488/**
5489 *      sata_scr_valid - test whether SCRs are accessible
5490 *      @link: ATA link to test SCR accessibility for
5491 *
5492 *      Test whether SCRs are accessible for @link.
5493 *
5494 *      LOCKING:
5495 *      None.
5496 *
5497 *      RETURNS:
5498 *      1 if SCRs are accessible, 0 otherwise.
5499 */
5500int sata_scr_valid(struct ata_link *link)
5501{
5502        struct ata_port *ap = link->ap;
5503
5504        return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5505}
5506
5507/**
5508 *      sata_scr_read - read SCR register of the specified port
5509 *      @link: ATA link to read SCR for
5510 *      @reg: SCR to read
5511 *      @val: Place to store read value
5512 *
5513 *      Read SCR register @reg of @link into *@val.  This function is
5514 *      guaranteed to succeed if @link is ap->link, the cable type of
5515 *      the port is SATA and the port implements ->scr_read.
5516 *
5517 *      LOCKING:
5518 *      None if @link is ap->link.  Kernel thread context otherwise.
5519 *
5520 *      RETURNS:
5521 *      0 on success, negative errno on failure.
5522 */
5523int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5524{
5525        if (ata_is_host_link(link)) {
5526                if (sata_scr_valid(link))
5527                        return link->ap->ops->scr_read(link, reg, val);
5528                return -EOPNOTSUPP;
5529        }
5530
5531        return sata_pmp_scr_read(link, reg, val);
5532}
5533
5534/**
5535 *      sata_scr_write - write SCR register of the specified port
5536 *      @link: ATA link to write SCR for
5537 *      @reg: SCR to write
5538 *      @val: value to write
5539 *
5540 *      Write @val to SCR register @reg of @link.  This function is
5541 *      guaranteed to succeed if @link is ap->link, the cable type of
5542 *      the port is SATA and the port implements ->scr_read.
5543 *
5544 *      LOCKING:
5545 *      None if @link is ap->link.  Kernel thread context otherwise.
5546 *
5547 *      RETURNS:
5548 *      0 on success, negative errno on failure.
5549 */
5550int sata_scr_write(struct ata_link *link, int reg, u32 val)
5551{
5552        if (ata_is_host_link(link)) {
5553                if (sata_scr_valid(link))
5554                        return link->ap->ops->scr_write(link, reg, val);
5555                return -EOPNOTSUPP;
5556        }
5557
5558        return sata_pmp_scr_write(link, reg, val);
5559}
5560
5561/**
5562 *      sata_scr_write_flush - write SCR register of the specified port and flush
5563 *      @link: ATA link to write SCR for
5564 *      @reg: SCR to write
5565 *      @val: value to write
5566 *
5567 *      This function is identical to sata_scr_write() except that this
5568 *      function performs flush after writing to the register.
5569 *
5570 *      LOCKING:
5571 *      None if @link is ap->link.  Kernel thread context otherwise.
5572 *
5573 *      RETURNS:
5574 *      0 on success, negative errno on failure.
5575 */
5576int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5577{
5578        if (ata_is_host_link(link)) {
5579                int rc;
5580
5581                if (sata_scr_valid(link)) {
5582                        rc = link->ap->ops->scr_write(link, reg, val);
5583                        if (rc == 0)
5584                                rc = link->ap->ops->scr_read(link, reg, &val);
5585                        return rc;
5586                }
5587                return -EOPNOTSUPP;
5588        }
5589
5590        return sata_pmp_scr_write(link, reg, val);
5591}
5592
5593/**
5594 *      ata_phys_link_online - test whether the given link is online
5595 *      @link: ATA link to test
5596 *
5597 *      Test whether @link is online.  Note that this function returns
5598 *      0 if online status of @link cannot be obtained, so
5599 *      ata_link_online(link) != !ata_link_offline(link).
5600 *
5601 *      LOCKING:
5602 *      None.
5603 *
5604 *      RETURNS:
5605 *      True if the port online status is available and online.
5606 */
5607bool ata_phys_link_online(struct ata_link *link)
5608{
5609        u32 sstatus;
5610
5611        if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5612            ata_sstatus_online(sstatus))
5613                return true;
5614        return false;
5615}
5616
5617/**
5618 *      ata_phys_link_offline - test whether the given link is offline
5619 *      @link: ATA link to test
5620 *
5621 *      Test whether @link is offline.  Note that this function
5622 *      returns 0 if offline status of @link cannot be obtained, so
5623 *      ata_link_online(link) != !ata_link_offline(link).
5624 *
5625 *      LOCKING:
5626 *      None.
5627 *
5628 *      RETURNS:
5629 *      True if the port offline status is available and offline.
5630 */
5631bool ata_phys_link_offline(struct ata_link *link)
5632{
5633        u32 sstatus;
5634
5635        if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5636            !ata_sstatus_online(sstatus))
5637                return true;
5638        return false;
5639}
5640
5641/**
5642 *      ata_link_online - test whether the given link is online
5643 *      @link: ATA link to test
5644 *
5645 *      Test whether @link is online.  This is identical to
5646 *      ata_phys_link_online() when there's no slave link.  When
5647 *      there's a slave link, this function should only be called on
5648 *      the master link and will return true if any of M/S links is
5649 *      online.
5650 *
5651 *      LOCKING:
5652 *      None.
5653 *
5654 *      RETURNS:
5655 *      True if the port online status is available and online.
5656 */
5657bool ata_link_online(struct ata_link *link)
5658{
5659        struct ata_link *slave = link->ap->slave_link;
5660
5661        WARN_ON(link == slave); /* shouldn't be called on slave link */
5662
5663        return ata_phys_link_online(link) ||
5664                (slave && ata_phys_link_online(slave));
5665}
5666
5667/**
5668 *      ata_link_offline - test whether the given link is offline
5669 *      @link: ATA link to test
5670 *
5671 *      Test whether @link is offline.  This is identical to
5672 *      ata_phys_link_offline() when there's no slave link.  When
5673 *      there's a slave link, this function should only be called on
5674 *      the master link and will return true if both M/S links are
5675 *      offline.
5676 *
5677 *      LOCKING:
5678 *      None.
5679 *
5680 *      RETURNS:
5681 *      True if the port offline status is available and offline.
5682 */
5683bool ata_link_offline(struct ata_link *link)
5684{
5685        struct ata_link *slave = link->ap->slave_link;
5686
5687        WARN_ON(link == slave); /* shouldn't be called on slave link */
5688
5689        return ata_phys_link_offline(link) &&
5690                (!slave || ata_phys_link_offline(slave));
5691}
5692
5693#ifdef CONFIG_PM
5694static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5695                                unsigned int action, unsigned int ehi_flags,
5696                                bool async)
5697{
5698        struct ata_link *link;
5699        unsigned long flags;
5700
5701        /* Previous resume operation might still be in
5702         * progress.  Wait for PM_PENDING to clear.
5703         */
5704        if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5705                ata_port_wait_eh(ap);
5706                WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5707        }
5708
5709        /* request PM ops to EH */
5710        spin_lock_irqsave(ap->lock, flags);
5711
5712        ap->pm_mesg = mesg;
5713        ap->pflags |= ATA_PFLAG_PM_PENDING;
5714        ata_for_each_link(link, ap, HOST_FIRST) {
5715                link->eh_info.action |= action;
5716                link->eh_info.flags |= ehi_flags;
5717        }
5718
5719        ata_port_schedule_eh(ap);
5720
5721        spin_unlock_irqrestore(ap->lock, flags);
5722
5723        if (!async) {
5724                ata_port_wait_eh(ap);
5725                WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5726        }
5727}
5728
5729/*
5730 * On some hardware, device fails to respond after spun down for suspend.  As
5731 * the device won't be used before being resumed, we don't need to touch the
5732 * device.  Ask EH to skip the usual stuff and proceed directly to suspend.
5733 *
5734 * http://thread.gmane.org/gmane.linux.ide/46764
5735 */
5736static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
5737                                                 | ATA_EHI_NO_AUTOPSY
5738                                                 | ATA_EHI_NO_RECOVERY;
5739
5740static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
5741{
5742        ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
5743}
5744
5745static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
5746{
5747        ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
5748}
5749
5750static int ata_port_pm_suspend(struct device *dev)
5751{
5752        struct ata_port *ap = to_ata_port(dev);
5753
5754        if (pm_runtime_suspended(dev))
5755                return 0;
5756
5757        ata_port_suspend(ap, PMSG_SUSPEND);
5758        return 0;
5759}
5760
5761static int ata_port_pm_freeze(struct device *dev)
5762{
5763        struct ata_port *ap = to_ata_port(dev);
5764
5765        if (pm_runtime_suspended(dev))
5766                return 0;
5767
5768        ata_port_suspend(ap, PMSG_FREEZE);
5769        return 0;
5770}
5771
5772static int ata_port_pm_poweroff(struct device *dev)
5773{
5774        ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5775        return 0;
5776}
5777
5778static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5779                                                | ATA_EHI_QUIET;
5780
5781static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5782{
5783        ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5784}
5785
5786static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
5787{
5788        ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
5789}
5790
5791static int ata_port_pm_resume(struct device *dev)
5792{
5793        ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
5794        pm_runtime_disable(dev);
5795        pm_runtime_set_active(dev);
5796        pm_runtime_enable(dev);
5797        return 0;
5798}
5799
5800/*
5801 * For ODDs, the upper layer will poll for media change every few seconds,
5802 * which will make it enter and leave suspend state every few seconds. And
5803 * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5804 * is very little and the ODD may malfunction after constantly being reset.
5805 * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5806 * ODD is attached to the port.
5807 */
5808static int ata_port_runtime_idle(struct device *dev)
5809{
5810        struct ata_port *ap = to_ata_port(dev);
5811        struct ata_link *link;
5812        struct ata_device *adev;
5813
5814        ata_for_each_link(link, ap, HOST_FIRST) {
5815                ata_for_each_dev(adev, link, ENABLED)
5816                        if (adev->class == ATA_DEV_ATAPI &&
5817                            !zpodd_dev_enabled(adev))
5818                                return -EBUSY;
5819        }
5820
5821        return 0;
5822}
5823
5824static int ata_port_runtime_suspend(struct device *dev)
5825{
5826        ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5827        return 0;
5828}
5829
5830static int ata_port_runtime_resume(struct device *dev)
5831{
5832        ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5833        return 0;
5834}
5835
5836static const struct dev_pm_ops ata_port_pm_ops = {
5837        .suspend = ata_port_pm_suspend,
5838        .resume = ata_port_pm_resume,
5839        .freeze = ata_port_pm_freeze,
5840        .thaw = ata_port_pm_resume,
5841        .poweroff = ata_port_pm_poweroff,
5842        .restore = ata_port_pm_resume,
5843
5844        .runtime_suspend = ata_port_runtime_suspend,
5845        .runtime_resume = ata_port_runtime_resume,
5846        .runtime_idle = ata_port_runtime_idle,
5847};
5848
5849/* sas ports don't participate in pm runtime management of ata_ports,
5850 * and need to resume ata devices at the domain level, not the per-port
5851 * level. sas suspend/resume is async to allow parallel port recovery
5852 * since sas has multiple ata_port instances per Scsi_Host.
5853 */
5854void ata_sas_port_suspend(struct ata_port *ap)
5855{
5856        ata_port_suspend_async(ap, PMSG_SUSPEND);
5857}
5858EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5859
5860void ata_sas_port_resume(struct ata_port *ap)
5861{
5862        ata_port_resume_async(ap, PMSG_RESUME);
5863}
5864EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5865
5866/**
5867 *      ata_host_suspend - suspend host
5868 *      @host: host to suspend
5869 *      @mesg: PM message
5870 *
5871 *      Suspend @host.  Actual operation is performed by port suspend.
5872 */
5873int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5874{
5875        host->dev->power.power_state = mesg;
5876        return 0;
5877}
5878
5879/**
5880 *      ata_host_resume - resume host
5881 *      @host: host to resume
5882 *
5883 *      Resume @host.  Actual operation is performed by port resume.
5884 */
5885void ata_host_resume(struct ata_host *host)
5886{
5887        host->dev->power.power_state = PMSG_ON;
5888}
5889#endif
5890
5891const struct device_type ata_port_type = {
5892        .name = "ata_port",
5893#ifdef CONFIG_PM
5894        .pm = &ata_port_pm_ops,
5895#endif
5896};
5897
5898/**
5899 *      ata_dev_init - Initialize an ata_device structure
5900 *      @dev: Device structure to initialize
5901 *
5902 *      Initialize @dev in preparation for probing.
5903 *
5904 *      LOCKING:
5905 *      Inherited from caller.
5906 */
5907void ata_dev_init(struct ata_device *dev)
5908{
5909        struct ata_link *link = ata_dev_phys_link(dev);
5910        struct ata_port *ap = link->ap;
5911        unsigned long flags;
5912
5913        /* SATA spd limit is bound to the attached device, reset together */
5914        link->sata_spd_limit = link->hw_sata_spd_limit;
5915        link->sata_spd = 0;
5916
5917        /* High bits of dev->flags are used to record warm plug
5918         * requests which occur asynchronously.  Synchronize using
5919         * host lock.
5920         */
5921        spin_lock_irqsave(ap->lock, flags);
5922        dev->flags &= ~ATA_DFLAG_INIT_MASK;
5923        dev->horkage = 0;
5924        spin_unlock_irqrestore(ap->lock, flags);
5925
5926        memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5927               ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5928        dev->pio_mask = UINT_MAX;
5929        dev->mwdma_mask = UINT_MAX;
5930        dev->udma_mask = UINT_MAX;
5931}
5932
5933/**
5934 *      ata_link_init - Initialize an ata_link structure
5935 *      @ap: ATA port link is attached to
5936 *      @link: Link structure to initialize
5937 *      @pmp: Port multiplier port number
5938 *
5939 *      Initialize @link.
5940 *
5941 *      LOCKING:
5942 *      Kernel thread context (may sleep)
5943 */
5944void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5945{
5946        int i;
5947
5948        /* clear everything except for devices */
5949        memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5950               ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5951
5952        link->ap = ap;
5953        link->pmp = pmp;
5954        link->active_tag = ATA_TAG_POISON;
5955        link->hw_sata_spd_limit = UINT_MAX;
5956
5957        /* can't use iterator, ap isn't initialized yet */
5958        for (i = 0; i < ATA_MAX_DEVICES; i++) {
5959                struct ata_device *dev = &link->device[i];
5960
5961                dev->link = link;
5962                dev->devno = dev - link->device;
5963#ifdef CONFIG_ATA_ACPI
5964                dev->gtf_filter = ata_acpi_gtf_filter;
5965#endif
5966                ata_dev_init(dev);
5967        }
5968}
5969
5970/**
5971 *      sata_link_init_spd - Initialize link->sata_spd_limit
5972 *      @link: Link to configure sata_spd_limit for
5973 *
5974 *      Initialize @link->[hw_]sata_spd_limit to the currently
5975 *      configured value.
5976 *
5977 *      LOCKING:
5978 *      Kernel thread context (may sleep).
5979 *
5980 *      RETURNS:
5981 *      0 on success, -errno on failure.
5982 */
5983int sata_link_init_spd(struct ata_link *link)
5984{
5985        u8 spd;
5986        int rc;
5987
5988        rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5989        if (rc)
5990                return rc;
5991
5992        spd = (link->saved_scontrol >> 4) & 0xf;
5993        if (spd)
5994                link->hw_sata_spd_limit &= (1 << spd) - 1;
5995
5996        ata_force_link_limits(link);
5997
5998        link->sata_spd_limit = link->hw_sata_spd_limit;
5999
6000        return 0;
6001}
6002
6003/**
6004 *      ata_port_alloc - allocate and initialize basic ATA port resources
6005 *      @host: ATA host this allocated port belongs to
6006 *
6007 *      Allocate and initialize basic ATA port resources.
6008 *
6009 *      RETURNS:
6010 *      Allocate ATA port on success, NULL on failure.
6011 *
6012 *      LOCKING:
6013 *      Inherited from calling layer (may sleep).
6014 */
6015struct ata_port *ata_port_alloc(struct ata_host *host)
6016{
6017        struct ata_port *ap;
6018
6019        DPRINTK("ENTER\n");
6020
6021        ap = kzalloc(sizeof(*ap), GFP_KERNEL);
6022        if (!ap)
6023                return NULL;
6024
6025        ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
6026        ap->lock = &host->lock;
6027        ap->print_id = -1;
6028        ap->local_port_no = -1;
6029        ap->host = host;
6030        ap->dev = host->dev;
6031
6032#if defined(ATA_VERBOSE_DEBUG)
6033        /* turn on all debugging levels */
6034        ap->msg_enable = 0x00FF;
6035#elif defined(ATA_DEBUG)
6036        ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
6037#else
6038        ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
6039#endif
6040
6041        mutex_init(&ap->scsi_scan_mutex);
6042        INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6043        INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
6044        INIT_LIST_HEAD(&ap->eh_done_q);
6045        init_waitqueue_head(&ap->eh_wait_q);
6046        init_completion(&ap->park_req_pending);
6047        timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn,
6048                    TIMER_DEFERRABLE);
6049
6050        ap->cbl = ATA_CBL_NONE;
6051
6052        ata_link_init(ap, &ap->link, 0);
6053
6054#ifdef ATA_IRQ_TRAP
6055        ap->stats.unhandled_irq = 1;
6056        ap->stats.idle_irq = 1;
6057#endif
6058        ata_sff_port_init(ap);
6059
6060        return ap;
6061}
6062
6063static void ata_devres_release(struct device *gendev, void *res)
6064{
6065        struct ata_host *host = dev_get_drvdata(gendev);
6066        int i;
6067
6068        for (i = 0; i < host->n_ports; i++) {
6069                struct ata_port *ap = host->ports[i];
6070
6071                if (!ap)
6072                        continue;
6073
6074                if (ap->scsi_host)
6075                        scsi_host_put(ap->scsi_host);
6076
6077        }
6078
6079        dev_set_drvdata(gendev, NULL);
6080        ata_host_put(host);
6081}
6082
6083static void ata_host_release(struct kref *kref)
6084{
6085        struct ata_host *host = container_of(kref, struct ata_host, kref);
6086        int i;
6087
6088        for (i = 0; i < host->n_ports; i++) {
6089                struct ata_port *ap = host->ports[i];
6090
6091                kfree(ap->pmp_link);
6092                kfree(ap->slave_link);
6093                kfree(ap);
6094                host->ports[i] = NULL;
6095        }
6096        kfree(host);
6097}
6098
6099void ata_host_get(struct ata_host *host)
6100{
6101        kref_get(&host->kref);
6102}
6103
6104void ata_host_put(struct ata_host *host)
6105{
6106        kref_put(&host->kref, ata_host_release);
6107}
6108
6109/**
6110 *      ata_host_alloc - allocate and init basic ATA host resources
6111 *      @dev: generic device this host is associated with
6112 *      @max_ports: maximum number of ATA ports associated with this host
6113 *
6114 *      Allocate and initialize basic ATA host resources.  LLD calls
6115 *      this function to allocate a host, initializes it fully and
6116 *      attaches it using ata_host_register().
6117 *
6118 *      @max_ports ports are allocated and host->n_ports is
6119 *      initialized to @max_ports.  The caller is allowed to decrease
6120 *      host->n_ports before calling ata_host_register().  The unused
6121 *      ports will be automatically freed on registration.
6122 *
6123 *      RETURNS:
6124 *      Allocate ATA host on success, NULL on failure.
6125 *
6126 *      LOCKING:
6127 *      Inherited from calling layer (may sleep).
6128 */
6129struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6130{
6131        struct ata_host *host;
6132        size_t sz;
6133        int i;
6134        void *dr;
6135
6136        DPRINTK("ENTER\n");
6137
6138        /* alloc a container for our list of ATA ports (buses) */
6139        sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6140        host = kzalloc(sz, GFP_KERNEL);
6141        if (!host)
6142                return NULL;
6143
6144        if (!devres_open_group(dev, NULL, GFP_KERNEL))
6145                goto err_free;
6146
6147        dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL);
6148        if (!dr)
6149                goto err_out;
6150
6151        devres_add(dev, dr);
6152        dev_set_drvdata(dev, host);
6153
6154        spin_lock_init(&host->lock);
6155        mutex_init(&host->eh_mutex);
6156        host->dev = dev;
6157        host->n_ports = max_ports;
6158        kref_init(&host->kref);
6159
6160        /* allocate ports bound to this host */
6161        for (i = 0; i < max_ports; i++) {
6162                struct ata_port *ap;
6163
6164                ap = ata_port_alloc(host);
6165                if (!ap)
6166                        goto err_out;
6167
6168                ap->port_no = i;
6169                host->ports[i] = ap;
6170        }
6171
6172        devres_remove_group(dev, NULL);
6173        return host;
6174
6175 err_out:
6176        devres_release_group(dev, NULL);
6177 err_free:
6178        kfree(host);
6179        return NULL;
6180}
6181
6182/**
6183 *      ata_host_alloc_pinfo - alloc host and init with port_info array
6184 *      @dev: generic device this host is associated with
6185 *      @ppi: array of ATA port_info to initialize host with
6186 *      @n_ports: number of ATA ports attached to this host
6187 *
6188 *      Allocate ATA host and initialize with info from @ppi.  If NULL
6189 *      terminated, @ppi may contain fewer entries than @n_ports.  The
6190 *      last entry will be used for the remaining ports.
6191 *
6192 *      RETURNS:
6193 *      Allocate ATA host on success, NULL on failure.
6194 *
6195 *      LOCKING:
6196 *      Inherited from calling layer (may sleep).
6197 */
6198struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6199                                      const struct ata_port_info * const * ppi,
6200                                      int n_ports)
6201{
6202        const struct ata_port_info *pi;
6203        struct ata_host *host;
6204        int i, j;
6205
6206        host = ata_host_alloc(dev, n_ports);
6207        if (!host)
6208                return NULL;
6209
6210        for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6211                struct ata_port *ap = host->ports[i];
6212
6213                if (ppi[j])
6214                        pi = ppi[j++];
6215
6216                ap->pio_mask = pi->pio_mask;
6217                ap->mwdma_mask = pi->mwdma_mask;
6218                ap->udma_mask = pi->udma_mask;
6219                ap->flags |= pi->flags;
6220                ap->link.flags |= pi->link_flags;
6221                ap->ops = pi->port_ops;
6222
6223                if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6224                        host->ops = pi->port_ops;
6225        }
6226
6227        return host;
6228}
6229
6230/**
6231 *      ata_slave_link_init - initialize slave link
6232 *      @ap: port to initialize slave link for
6233 *
6234 *      Create and initialize slave link for @ap.  This enables slave
6235 *      link handling on the port.
6236 *
6237 *      In libata, a port contains links and a link contains devices.
6238 *      There is single host link but if a PMP is attached to it,
6239 *      there can be multiple fan-out links.  On SATA, there's usually
6240 *      a single device connected to a link but PATA and SATA
6241 *      controllers emulating TF based interface can have two - master
6242 *      and slave.
6243 *
6244 *      However, there are a few controllers which don't fit into this
6245 *      abstraction too well - SATA controllers which emulate TF
6246 *      interface with both master and slave devices but also have
6247 *      separate SCR register sets for each device.  These controllers
6248 *      need separate links for physical link handling
6249 *      (e.g. onlineness, link speed) but should be treated like a
6250 *      traditional M/S controller for everything else (e.g. command
6251 *      issue, softreset).
6252 *
6253 *      slave_link is libata's way of handling this class of
6254 *      controllers without impacting core layer too much.  For
6255 *      anything other than physical link handling, the default host
6256 *      link is used for both master and slave.  For physical link
6257 *      handling, separate @ap->slave_link is used.  All dirty details
6258 *      are implemented inside libata core layer.  From LLD's POV, the
6259 *      only difference is that prereset, hardreset and postreset are
6260 *      called once more for the slave link, so the reset sequence
6261 *      looks like the following.
6262 *
6263 *      prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
6264 *      softreset(M) -> postreset(M) -> postreset(S)
6265 *
6266 *      Note that softreset is called only for the master.  Softreset
6267 *      resets both M/S by definition, so SRST on master should handle
6268 *      both (the standard method will work just fine).
6269 *
6270 *      LOCKING:
6271 *      Should be called before host is registered.
6272 *
6273 *      RETURNS:
6274 *      0 on success, -errno on failure.
6275 */
6276int ata_slave_link_init(struct ata_port *ap)
6277{
6278        struct ata_link *link;
6279
6280        WARN_ON(ap->slave_link);
6281        WARN_ON(ap->flags & ATA_FLAG_PMP);
6282
6283        link = kzalloc(sizeof(*link), GFP_KERNEL);
6284        if (!link)
6285                return -ENOMEM;
6286
6287        ata_link_init(ap, link, 1);
6288        ap->slave_link = link;
6289        return 0;
6290}
6291
6292static void ata_host_stop(struct device *gendev, void *res)
6293{
6294        struct ata_host *host = dev_get_drvdata(gendev);
6295        int i;
6296
6297        WARN_ON(!(host->flags & ATA_HOST_STARTED));
6298
6299        for (i = 0; i < host->n_ports; i++) {
6300                struct ata_port *ap = host->ports[i];
6301
6302                if (ap->ops->port_stop)
6303                        ap->ops->port_stop(ap);
6304        }
6305
6306        if (host->ops->host_stop)
6307                host->ops->host_stop(host);
6308}
6309
6310/**
6311 *      ata_finalize_port_ops - finalize ata_port_operations
6312 *      @ops: ata_port_operations to finalize
6313 *
6314 *      An ata_port_operations can inherit from another ops and that
6315 *      ops can again inherit from another.  This can go on as many
6316 *      times as necessary as long as there is no loop in the
6317 *      inheritance chain.
6318 *
6319 *      Ops tables are finalized when the host is started.  NULL or
6320 *      unspecified entries are inherited from the closet ancestor
6321 *      which has the method and the entry is populated with it.
6322 *      After finalization, the ops table directly points to all the
6323 *      methods and ->inherits is no longer necessary and cleared.
6324 *
6325 *      Using ATA_OP_NULL, inheriting ops can force a method to NULL.
6326 *
6327 *      LOCKING:
6328 *      None.
6329 */
6330static void ata_finalize_port_ops(struct ata_port_operations *ops)
6331{
6332        static DEFINE_SPINLOCK(lock);
6333        const struct ata_port_operations *cur;
6334        void **begin = (void **)ops;
6335        void **end = (void **)&ops->inherits;
6336        void **pp;
6337
6338        if (!ops || !ops->inherits)
6339                return;
6340
6341        spin_lock(&lock);
6342
6343        for (cur = ops->inherits; cur; cur = cur->inherits) {
6344                void **inherit = (void **)cur;
6345
6346                for (pp = begin; pp < end; pp++, inherit++)
6347                        if (!*pp)
6348                                *pp = *inherit;
6349        }
6350
6351        for (pp = begin; pp < end; pp++)
6352                if (IS_ERR(*pp))
6353                        *pp = NULL;
6354
6355        ops->inherits = NULL;
6356
6357        spin_unlock(&lock);
6358}
6359
6360/**
6361 *      ata_host_start - start and freeze ports of an ATA host
6362 *      @host: ATA host to start ports for
6363 *
6364 *      Start and then freeze ports of @host.  Started status is
6365 *      recorded in host->flags, so this function can be called
6366 *      multiple times.  Ports are guaranteed to get started only
6367 *      once.  If host->ops isn't initialized yet, its set to the
6368 *      first non-dummy port ops.
6369 *
6370 *      LOCKING:
6371 *      Inherited from calling layer (may sleep).
6372 *
6373 *      RETURNS:
6374 *      0 if all ports are started successfully, -errno otherwise.
6375 */
6376int ata_host_start(struct ata_host *host)
6377{
6378        int have_stop = 0;
6379        void *start_dr = NULL;
6380        int i, rc;
6381
6382        if (host->flags & ATA_HOST_STARTED)
6383                return 0;
6384
6385        ata_finalize_port_ops(host->ops);
6386
6387        for (i = 0; i < host->n_ports; i++) {
6388                struct ata_port *ap = host->ports[i];
6389
6390                ata_finalize_port_ops(ap->ops);
6391
6392                if (!host->ops && !ata_port_is_dummy(ap))
6393                        host->ops = ap->ops;
6394
6395                if (ap->ops->port_stop)
6396                        have_stop = 1;
6397        }
6398
6399        if (host->ops->host_stop)
6400                have_stop = 1;
6401
6402        if (have_stop) {
6403                start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
6404                if (!start_dr)
6405                        return -ENOMEM;
6406        }
6407
6408        for (i = 0; i < host->n_ports; i++) {
6409                struct ata_port *ap = host->ports[i];
6410
6411                if (ap->ops->port_start) {
6412                        rc = ap->ops->port_start(ap);
6413                        if (rc) {
6414                                if (rc != -ENODEV)
6415                                        dev_err(host->dev,
6416                                                "failed to start port %d (errno=%d)\n",
6417                                                i, rc);
6418                                goto err_out;
6419                        }
6420                }
6421                ata_eh_freeze_port(ap);
6422        }
6423
6424        if (start_dr)
6425                devres_add(host->dev, start_dr);
6426        host->flags |= ATA_HOST_STARTED;
6427        return 0;
6428
6429 err_out:
6430        while (--i >= 0) {
6431                struct ata_port *ap = host->ports[i];
6432
6433                if (ap->ops->port_stop)
6434                        ap->ops->port_stop(ap);
6435        }
6436        devres_free(start_dr);
6437        return rc;
6438}
6439
6440/**
6441 *      ata_sas_host_init - Initialize a host struct for sas (ipr, libsas)
6442 *      @host:  host to initialize
6443 *      @dev:   device host is attached to
6444 *      @ops:   port_ops
6445 *
6446 */
6447void ata_host_init(struct ata_host *host, struct device *dev,
6448                   struct ata_port_operations *ops)
6449{
6450        spin_lock_init(&host->lock);
6451        mutex_init(&host->eh_mutex);
6452        host->n_tags = ATA_MAX_QUEUE;
6453        host->dev = dev;
6454        host->ops = ops;
6455        kref_init(&host->kref);
6456}
6457
6458void __ata_port_probe(struct ata_port *ap)
6459{
6460        struct ata_eh_info *ehi = &ap->link.eh_info;
6461        unsigned long flags;
6462
6463        /* kick EH for boot probing */
6464        spin_lock_irqsave(ap->lock, flags);
6465
6466        ehi->probe_mask |= ATA_ALL_DEVICES;
6467        ehi->action |= ATA_EH_RESET;
6468        ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6469
6470        ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6471        ap->pflags |= ATA_PFLAG_LOADING;
6472        ata_port_schedule_eh(ap);
6473
6474        spin_unlock_irqrestore(ap->lock, flags);
6475}
6476
6477int ata_port_probe(struct ata_port *ap)
6478{
6479        int rc = 0;
6480
6481        if (ap->ops->error_handler) {
6482                __ata_port_probe(ap);
6483                ata_port_wait_eh(ap);
6484        } else {
6485                DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6486                rc = ata_bus_probe(ap);
6487                DPRINTK("ata%u: bus probe end\n", ap->print_id);
6488        }
6489        return rc;
6490}
6491
6492
6493static void async_port_probe(void *data, async_cookie_t cookie)
6494{
6495        struct ata_port *ap = data;
6496
6497        /*
6498         * If we're not allowed to scan this host in parallel,
6499         * we need to wait until all previous scans have completed
6500         * before going further.
6501         * Jeff Garzik says this is only within a controller, so we
6502         * don't need to wait for port 0, only for later ports.
6503         */
6504        if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
6505                async_synchronize_cookie(cookie);
6506
6507        (void)ata_port_probe(ap);
6508
6509        /* in order to keep device order, we need to synchronize at this point */
6510        async_synchronize_cookie(cookie);
6511
6512        ata_scsi_scan_host(ap, 1);
6513}
6514
6515/**
6516 *      ata_host_register - register initialized ATA host
6517 *      @host: ATA host to register
6518 *      @sht: template for SCSI host
6519 *
6520 *      Register initialized ATA host.  @host is allocated using
6521 *      ata_host_alloc() and fully initialized by LLD.  This function
6522 *      starts ports, registers @host with ATA and SCSI layers and
6523 *      probe registered devices.
6524 *
6525 *      LOCKING:
6526 *      Inherited from calling layer (may sleep).
6527 *
6528 *      RETURNS:
6529 *      0 on success, -errno otherwise.
6530 */
6531int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6532{
6533        int i, rc;
6534
6535        host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE);
6536
6537        /* host must have been started */
6538        if (!(host->flags & ATA_HOST_STARTED)) {
6539                dev_err(host->dev, "BUG: trying to register unstarted host\n");
6540                WARN_ON(1);
6541                return -EINVAL;
6542        }
6543
6544        /* Blow away unused ports.  This happens when LLD can't
6545         * determine the exact number of ports to allocate at
6546         * allocation time.
6547         */
6548        for (i = host->n_ports; host->ports[i]; i++)
6549                kfree(host->ports[i]);
6550
6551        /* give ports names and add SCSI hosts */
6552        for (i = 0; i < host->n_ports; i++) {
6553                host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
6554                host->ports[i]->local_port_no = i + 1;
6555        }
6556
6557        /* Create associated sysfs transport objects  */
6558        for (i = 0; i < host->n_ports; i++) {
6559                rc = ata_tport_add(host->dev,host->ports[i]);
6560                if (rc) {
6561                        goto err_tadd;
6562                }
6563        }
6564
6565        rc = ata_scsi_add_hosts(host, sht);
6566        if (rc)
6567                goto err_tadd;
6568
6569        /* set cable, sata_spd_limit and report */
6570        for (i = 0; i < host->n_ports; i++) {
6571                struct ata_port *ap = host->ports[i];
6572                unsigned long xfer_mask;
6573
6574                /* set SATA cable type if still unset */
6575                if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6576                        ap->cbl = ATA_CBL_SATA;
6577
6578                /* init sata_spd_limit to the current value */
6579                sata_link_init_spd(&ap->link);
6580                if (ap->slave_link)
6581                        sata_link_init_spd(ap->slave_link);
6582
6583                /* print per-port info to dmesg */
6584                xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6585                                              ap->udma_mask);
6586
6587                if (!ata_port_is_dummy(ap)) {
6588                        ata_port_info(ap, "%cATA max %s %s\n",
6589                                      (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6590                                      ata_mode_string(xfer_mask),
6591                                      ap->link.eh_info.desc);
6592                        ata_ehi_clear_desc(&ap->link.eh_info);
6593                } else
6594                        ata_port_info(ap, "DUMMY\n");
6595        }
6596
6597        /* perform each probe asynchronously */
6598        for (i = 0; i < host->n_ports; i++) {
6599                struct ata_port *ap = host->ports[i];
6600                async_schedule(async_port_probe, ap);
6601        }
6602
6603        return 0;
6604
6605 err_tadd:
6606        while (--i >= 0) {
6607                ata_tport_delete(host->ports[i]);
6608        }
6609        return rc;
6610
6611}
6612
6613/**
6614 *      ata_host_activate - start host, request IRQ and register it
6615 *      @host: target ATA host
6616 *      @irq: IRQ to request
6617 *      @irq_handler: irq_handler used when requesting IRQ
6618 *      @irq_flags: irq_flags used when requesting IRQ
6619 *      @sht: scsi_host_template to use when registering the host
6620 *
6621 *      After allocating an ATA host and initializing it, most libata
6622 *      LLDs perform three steps to activate the host - start host,
6623 *      request IRQ and register it.  This helper takes necessary
6624 *      arguments and performs the three steps in one go.
6625 *
6626 *      An invalid IRQ skips the IRQ registration and expects the host to
6627 *      have set polling mode on the port. In this case, @irq_handler
6628 *      should be NULL.
6629 *
6630 *      LOCKING:
6631 *      Inherited from calling layer (may sleep).
6632 *
6633 *      RETURNS:
6634 *      0 on success, -errno otherwise.
6635 */
6636int ata_host_activate(struct ata_host *host, int irq,
6637                      irq_handler_t irq_handler, unsigned long irq_flags,
6638                      struct scsi_host_template *sht)
6639{
6640        int i, rc;
6641        char *irq_desc;
6642
6643        rc = ata_host_start(host);
6644        if (rc)
6645                return rc;
6646
6647        /* Special case for polling mode */
6648        if (!irq) {
6649                WARN_ON(irq_handler);
6650                return ata_host_register(host, sht);
6651        }
6652
6653        irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
6654                                  dev_driver_string(host->dev),
6655                                  dev_name(host->dev));
6656        if (!irq_desc)
6657                return -ENOMEM;
6658
6659        rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6660                              irq_desc, host);
6661        if (rc)
6662                return rc;
6663
6664        for (i = 0; i < host->n_ports; i++)
6665                ata_port_desc(host->ports[i], "irq %d", irq);
6666
6667        rc = ata_host_register(host, sht);
6668        /* if failed, just free the IRQ and leave ports alone */
6669        if (rc)
6670                devm_free_irq(host->dev, irq, host);
6671
6672        return rc;
6673}
6674
6675/**
6676 *      ata_port_detach - Detach ATA port in preparation of device removal
6677 *      @ap: ATA port to be detached
6678 *
6679 *      Detach all ATA devices and the associated SCSI devices of @ap;
6680 *      then, remove the associated SCSI host.  @ap is guaranteed to
6681 *      be quiescent on return from this function.
6682 *
6683 *      LOCKING:
6684 *      Kernel thread context (may sleep).
6685 */
6686static void ata_port_detach(struct ata_port *ap)
6687{
6688        unsigned long flags;
6689        struct ata_link *link;
6690        struct ata_device *dev;
6691
6692        if (!ap->ops->error_handler)
6693                goto skip_eh;
6694
6695        /* tell EH we're leaving & flush EH */
6696        spin_lock_irqsave(ap->lock, flags);
6697        ap->pflags |= ATA_PFLAG_UNLOADING;
6698        ata_port_schedule_eh(ap);
6699        spin_unlock_irqrestore(ap->lock, flags);
6700
6701        /* wait till EH commits suicide */
6702        ata_port_wait_eh(ap);
6703
6704        /* it better be dead now */
6705        WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6706
6707        cancel_delayed_work_sync(&ap->hotplug_task);
6708
6709 skip_eh:
6710        /* clean up zpodd on port removal */
6711        ata_for_each_link(link, ap, HOST_FIRST) {
6712                ata_for_each_dev(dev, link, ALL) {
6713                        if (zpodd_dev_enabled(dev))
6714                                zpodd_exit(dev);
6715                }
6716        }
6717        if (ap->pmp_link) {
6718                int i;
6719                for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6720                        ata_tlink_delete(&ap->pmp_link[i]);
6721        }
6722        /* remove the associated SCSI host */
6723        scsi_remove_host(ap->scsi_host);
6724        ata_tport_delete(ap);
6725}
6726
6727/**
6728 *      ata_host_detach - Detach all ports of an ATA host
6729 *      @host: Host to detach
6730 *
6731 *      Detach all ports of @host.
6732 *
6733 *      LOCKING:
6734 *      Kernel thread context (may sleep).
6735 */
6736void ata_host_detach(struct ata_host *host)
6737{
6738        int i;
6739
6740        /* Ensure ata_port probe has completed */
6741        async_synchronize_full();
6742
6743        for (i = 0; i < host->n_ports; i++)
6744                ata_port_detach(host->ports[i]);
6745
6746        /* the host is dead now, dissociate ACPI */
6747        ata_acpi_dissociate(host);
6748}
6749
6750#ifdef CONFIG_PCI
6751
6752/**
6753 *      ata_pci_remove_one - PCI layer callback for device removal
6754 *      @pdev: PCI device that was removed
6755 *
6756 *      PCI layer indicates to libata via this hook that hot-unplug or
6757 *      module unload event has occurred.  Detach all ports.  Resource
6758 *      release is handled via devres.
6759 *
6760 *      LOCKING:
6761 *      Inherited from PCI layer (may sleep).
6762 */
6763void ata_pci_remove_one(struct pci_dev *pdev)
6764{
6765        struct ata_host *host = pci_get_drvdata(pdev);
6766
6767        ata_host_detach(host);
6768}
6769
6770/* move to PCI subsystem */
6771int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6772{
6773        unsigned long tmp = 0;
6774
6775        switch (bits->width) {
6776        case 1: {
6777                u8 tmp8 = 0;
6778                pci_read_config_byte(pdev, bits->reg, &tmp8);
6779                tmp = tmp8;
6780                break;
6781        }
6782        case 2: {
6783                u16 tmp16 = 0;
6784                pci_read_config_word(pdev, bits->reg, &tmp16);
6785                tmp = tmp16;
6786                break;
6787        }
6788        case 4: {
6789                u32 tmp32 = 0;
6790                pci_read_config_dword(pdev, bits->reg, &tmp32);
6791                tmp = tmp32;
6792                break;
6793        }
6794
6795        default:
6796                return -EINVAL;
6797        }
6798
6799        tmp &= bits->mask;
6800
6801        return (tmp == bits->val) ? 1 : 0;
6802}
6803
6804#ifdef CONFIG_PM
6805void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6806{
6807        pci_save_state(pdev);
6808        pci_disable_device(pdev);
6809
6810        if (mesg.event & PM_EVENT_SLEEP)
6811                pci_set_power_state(pdev, PCI_D3hot);
6812}
6813
6814int ata_pci_device_do_resume(struct pci_dev *pdev)
6815{
6816        int rc;
6817
6818        pci_set_power_state(pdev, PCI_D0);
6819        pci_restore_state(pdev);
6820
6821        rc = pcim_enable_device(pdev);
6822        if (rc) {
6823                dev_err(&pdev->dev,
6824                        "failed to enable device after resume (%d)\n", rc);
6825                return rc;
6826        }
6827
6828        pci_set_master(pdev);
6829        return 0;
6830}
6831
6832int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6833{
6834        struct ata_host *host = pci_get_drvdata(pdev);
6835        int rc = 0;
6836
6837        rc = ata_host_suspend(host, mesg);
6838        if (rc)
6839                return rc;
6840
6841        ata_pci_device_do_suspend(pdev, mesg);
6842
6843        return 0;
6844}
6845
6846int ata_pci_device_resume(struct pci_dev *pdev)
6847{
6848        struct ata_host *host = pci_get_drvdata(pdev);
6849        int rc;
6850
6851        rc = ata_pci_device_do_resume(pdev);
6852        if (rc == 0)
6853                ata_host_resume(host);
6854        return rc;
6855}
6856#endif /* CONFIG_PM */
6857
6858#endif /* CONFIG_PCI */
6859
6860/**
6861 *      ata_platform_remove_one - Platform layer callback for device removal
6862 *      @pdev: Platform device that was removed
6863 *
6864 *      Platform layer indicates to libata via this hook that hot-unplug or
6865 *      module unload event has occurred.  Detach all ports.  Resource
6866 *      release is handled via devres.
6867 *
6868 *      LOCKING:
6869 *      Inherited from platform layer (may sleep).
6870 */
6871int ata_platform_remove_one(struct platform_device *pdev)
6872{
6873        struct ata_host *host = platform_get_drvdata(pdev);
6874
6875        ata_host_detach(host);
6876
6877        return 0;
6878}
6879
6880static int __init ata_parse_force_one(char **cur,
6881                                      struct ata_force_ent *force_ent,
6882                                      const char **reason)
6883{
6884        static const struct ata_force_param force_tbl[] __initconst = {
6885                { "40c",        .cbl            = ATA_CBL_PATA40 },
6886                { "80c",        .cbl            = ATA_CBL_PATA80 },
6887                { "short40c",   .cbl            = ATA_CBL_PATA40_SHORT },
6888                { "unk",        .cbl            = ATA_CBL_PATA_UNK },
6889                { "ign",        .cbl            = ATA_CBL_PATA_IGN },
6890                { "sata",       .cbl            = ATA_CBL_SATA },
6891                { "1.5Gbps",    .spd_limit      = 1 },
6892                { "3.0Gbps",    .spd_limit      = 2 },
6893                { "noncq",      .horkage_on     = ATA_HORKAGE_NONCQ },
6894                { "ncq",        .horkage_off    = ATA_HORKAGE_NONCQ },
6895                { "noncqtrim",  .horkage_on     = ATA_HORKAGE_NO_NCQ_TRIM },
6896                { "ncqtrim",    .horkage_off    = ATA_HORKAGE_NO_NCQ_TRIM },
6897                { "dump_id",    .horkage_on     = ATA_HORKAGE_DUMP_ID },
6898                { "pio0",       .xfer_mask      = 1 << (ATA_SHIFT_PIO + 0) },
6899                { "pio1",       .xfer_mask      = 1 << (ATA_SHIFT_PIO + 1) },
6900                { "pio2",       .xfer_mask      = 1 << (ATA_SHIFT_PIO + 2) },
6901                { "pio3",       .xfer_mask      = 1 << (ATA_SHIFT_PIO + 3) },
6902                { "pio4",       .xfer_mask      = 1 << (ATA_SHIFT_PIO + 4) },
6903                { "pio5",       .xfer_mask      = 1 << (ATA_SHIFT_PIO + 5) },
6904                { "pio6",       .xfer_mask      = 1 << (ATA_SHIFT_PIO + 6) },
6905                { "mwdma0",     .xfer_mask      = 1 << (ATA_SHIFT_MWDMA + 0) },
6906                { "mwdma1",     .xfer_mask      = 1 << (ATA_SHIFT_MWDMA + 1) },
6907                { "mwdma2",     .xfer_mask      = 1 << (ATA_SHIFT_MWDMA + 2) },
6908                { "mwdma3",     .xfer_mask      = 1 << (ATA_SHIFT_MWDMA + 3) },
6909                { "mwdma4",     .xfer_mask      = 1 << (ATA_SHIFT_MWDMA + 4) },
6910                { "udma0",      .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 0) },
6911                { "udma16",     .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 0) },
6912                { "udma/16",    .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 0) },
6913                { "udma1",      .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 1) },
6914                { "udma25",     .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 1) },
6915                { "udma/25",    .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 1) },
6916                { "udma2",      .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 2) },
6917                { "udma33",     .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 2) },
6918                { "udma/33",    .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 2) },
6919                { "udma3",      .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 3) },
6920                { "udma44",     .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 3) },
6921                { "udma/44",    .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 3) },
6922                { "udma4",      .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 4) },
6923                { "udma66",     .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 4) },
6924                { "udma/66",    .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 4) },
6925                { "udma5",      .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 5) },
6926                { "udma100",    .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 5) },
6927                { "udma/100",   .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 5) },
6928                { "udma6",      .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 6) },
6929                { "udma133",    .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 6) },
6930                { "udma/133",   .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 6) },
6931                { "udma7",      .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 7) },
6932                { "nohrst",     .lflags         = ATA_LFLAG_NO_HRST },
6933                { "nosrst",     .lflags         = ATA_LFLAG_NO_SRST },
6934                { "norst",      .lflags         = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6935                { "rstonce",    .lflags         = ATA_LFLAG_RST_ONCE },
6936                { "atapi_dmadir", .horkage_on   = ATA_HORKAGE_ATAPI_DMADIR },
6937                { "disable",    .horkage_on     = ATA_HORKAGE_DISABLE },
6938        };
6939        char *start = *cur, *p = *cur;
6940        char *id, *val, *endp;
6941        const struct ata_force_param *match_fp = NULL;
6942        int nr_matches = 0, i;
6943
6944        /* find where this param ends and update *cur */
6945        while (*p != '\0' && *p != ',')
6946                p++;
6947
6948        if (*p == '\0')
6949                *cur = p;
6950        else
6951                *cur = p + 1;
6952
6953        *p = '\0';
6954
6955        /* parse */
6956        p = strchr(start, ':');
6957        if (!p) {
6958                val = strstrip(start);
6959                goto parse_val;
6960        }
6961        *p = '\0';
6962
6963        id = strstrip(start);
6964        val = strstrip(p + 1);
6965
6966        /* parse id */
6967        p = strchr(id, '.');
6968        if (p) {
6969                *p++ = '\0';
6970                force_ent->device = simple_strtoul(p, &endp, 10);
6971                if (p == endp || *endp != '\0') {
6972                        *reason = "invalid device";
6973                        return -EINVAL;
6974                }
6975        }
6976
6977        force_ent->port = simple_strtoul(id, &endp, 10);
6978        if (id == endp || *endp != '\0') {
6979                *reason = "invalid port/link";
6980                return -EINVAL;
6981        }
6982
6983 parse_val:
6984        /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6985        for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6986                const struct ata_force_param *fp = &force_tbl[i];
6987
6988                if (strncasecmp(val, fp->name, strlen(val)))
6989                        continue;
6990
6991                nr_matches++;
6992                match_fp = fp;
6993
6994                if (strcasecmp(val, fp->name) == 0) {
6995                        nr_matches = 1;
6996                        break;
6997                }
6998        }
6999
7000        if (!nr_matches) {
7001                *reason = "unknown value";
7002                return -EINVAL;
7003        }
7004        if (nr_matches > 1) {
7005                *reason = "ambiguous value";
7006                return -EINVAL;
7007        }
7008
7009        force_ent->param = *match_fp;
7010
7011        return 0;
7012}
7013
7014static void __init ata_parse_force_param(void)
7015{
7016        int idx = 0, size = 1;
7017        int last_port = -1, last_device = -1;
7018        char *p, *cur, *next;
7019
7020        /* calculate maximum number of params and allocate force_tbl */
7021        for (p = ata_force_param_buf; *p; p++)
7022                if (*p == ',')
7023                        size++;
7024
7025        ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL);
7026        if (!ata_force_tbl) {
7027                printk(KERN_WARNING "ata: failed to extend force table, "
7028                       "libata.force ignored\n");
7029                return;
7030        }
7031
7032        /* parse and populate the table */
7033        for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
7034                const char *reason = "";
7035                struct ata_force_ent te = { .port = -1, .device = -1 };
7036
7037                next = cur;
7038                if (ata_parse_force_one(&next, &te, &reason)) {
7039                        printk(KERN_WARNING "ata: failed to parse force "
7040                               "parameter \"%s\" (%s)\n",
7041                               cur, reason);
7042                        continue;
7043                }
7044
7045                if (te.port == -1) {
7046                        te.port = last_port;
7047                        te.device = last_device;
7048                }
7049
7050                ata_force_tbl[idx++] = te;
7051
7052                last_port = te.port;
7053                last_device = te.device;
7054        }
7055
7056        ata_force_tbl_size = idx;
7057}
7058
7059static int __init ata_init(void)
7060{
7061        int rc;
7062
7063        ata_parse_force_param();
7064
7065        rc = ata_sff_init();
7066        if (rc) {
7067                kfree(ata_force_tbl);
7068                return rc;
7069        }
7070
7071        libata_transport_init();
7072        ata_scsi_transport_template = ata_attach_transport();
7073        if (!ata_scsi_transport_template) {
7074                ata_sff_exit();
7075                rc = -ENOMEM;
7076                goto err_out;
7077        }
7078
7079        printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
7080        return 0;
7081
7082err_out:
7083        return rc;
7084}
7085
7086static void __exit ata_exit(void)
7087{
7088        ata_release_transport(ata_scsi_transport_template);
7089        libata_transport_exit();
7090        ata_sff_exit();
7091        kfree(ata_force_tbl);
7092}
7093
7094subsys_initcall(ata_init);
7095module_exit(ata_exit);
7096
7097static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
7098
7099int ata_ratelimit(void)
7100{
7101        return __ratelimit(&ratelimit);
7102}
7103
7104/**
7105 *      ata_msleep - ATA EH owner aware msleep
7106 *      @ap: ATA port to attribute the sleep to
7107 *      @msecs: duration to sleep in milliseconds
7108 *
7109 *      Sleeps @msecs.  If the current task is owner of @ap's EH, the
7110 *      ownership is released before going to sleep and reacquired
7111 *      after the sleep is complete.  IOW, other ports sharing the
7112 *      @ap->host will be allowed to own the EH while this task is
7113 *      sleeping.
7114 *
7115 *      LOCKING:
7116 *      Might sleep.
7117 */
7118void ata_msleep(struct ata_port *ap, unsigned int msecs)
7119{
7120        bool owns_eh = ap && ap->host->eh_owner == current;
7121
7122        if (owns_eh)
7123                ata_eh_release(ap);
7124
7125        if (msecs < 20) {
7126                unsigned long usecs = msecs * USEC_PER_MSEC;
7127                usleep_range(usecs, usecs + 50);
7128        } else {
7129                msleep(msecs);
7130        }
7131
7132        if (owns_eh)
7133                ata_eh_acquire(ap);
7134}
7135
7136/**
7137 *      ata_wait_register - wait until register value changes
7138 *      @ap: ATA port to wait register for, can be NULL
7139 *      @reg: IO-mapped register
7140 *      @mask: Mask to apply to read register value
7141 *      @val: Wait condition
7142 *      @interval: polling interval in milliseconds
7143 *      @timeout: timeout in milliseconds
7144 *
7145 *      Waiting for some bits of register to change is a common
7146 *      operation for ATA controllers.  This function reads 32bit LE
7147 *      IO-mapped register @reg and tests for the following condition.
7148 *
7149 *      (*@reg & mask) != val
7150 *
7151 *      If the condition is met, it returns; otherwise, the process is
7152 *      repeated after @interval_msec until timeout.
7153 *
7154 *      LOCKING:
7155 *      Kernel thread context (may sleep)
7156 *
7157 *      RETURNS:
7158 *      The final register value.
7159 */
7160u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
7161                      unsigned long interval, unsigned long timeout)
7162{
7163        unsigned long deadline;
7164        u32 tmp;
7165
7166        tmp = ioread32(reg);
7167
7168        /* Calculate timeout _after_ the first read to make sure
7169         * preceding writes reach the controller before starting to
7170         * eat away the timeout.
7171         */
7172        deadline = ata_deadline(jiffies, timeout);
7173
7174        while ((tmp & mask) == val && time_before(jiffies, deadline)) {
7175                ata_msleep(ap, interval);
7176                tmp = ioread32(reg);
7177        }
7178
7179        return tmp;
7180}
7181
7182/**
7183 *      sata_lpm_ignore_phy_events - test if PHY event should be ignored
7184 *      @link: Link receiving the event
7185 *
7186 *      Test whether the received PHY event has to be ignored or not.
7187 *
7188 *      LOCKING:
7189 *      None:
7190 *
7191 *      RETURNS:
7192 *      True if the event has to be ignored.
7193 */
7194bool sata_lpm_ignore_phy_events(struct ata_link *link)
7195{
7196        unsigned long lpm_timeout = link->last_lpm_change +
7197                                    msecs_to_jiffies(ATA_TMOUT_SPURIOUS_PHY);
7198
7199        /* if LPM is enabled, PHYRDY doesn't mean anything */
7200        if (link->lpm_policy > ATA_LPM_MAX_POWER)
7201                return true;
7202
7203        /* ignore the first PHY event after the LPM policy changed
7204         * as it is might be spurious
7205         */
7206        if ((link->flags & ATA_LFLAG_CHANGED) &&
7207            time_before(jiffies, lpm_timeout))
7208                return true;
7209
7210        return false;
7211}
7212EXPORT_SYMBOL_GPL(sata_lpm_ignore_phy_events);
7213
7214/*
7215 * Dummy port_ops
7216 */
7217static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
7218{
7219        return AC_ERR_SYSTEM;
7220}
7221
7222static void ata_dummy_error_handler(struct ata_port *ap)
7223{
7224        /* truly dummy */
7225}
7226
7227struct ata_port_operations ata_dummy_port_ops = {
7228        .qc_prep                = ata_noop_qc_prep,
7229        .qc_issue               = ata_dummy_qc_issue,
7230        .error_handler          = ata_dummy_error_handler,
7231        .sched_eh               = ata_std_sched_eh,
7232        .end_eh                 = ata_std_end_eh,
7233};
7234
7235const struct ata_port_info ata_dummy_port_info = {
7236        .port_ops               = &ata_dummy_port_ops,
7237};
7238
7239/*
7240 * Utility print functions
7241 */
7242void ata_port_printk(const struct ata_port *ap, const char *level,
7243                     const char *fmt, ...)
7244{
7245        struct va_format vaf;
7246        va_list args;
7247
7248        va_start(args, fmt);
7249
7250        vaf.fmt = fmt;
7251        vaf.va = &args;
7252
7253        printk("%sata%u: %pV", level, ap->print_id, &vaf);
7254
7255        va_end(args);
7256}
7257EXPORT_SYMBOL(ata_port_printk);
7258
7259void ata_link_printk(const struct ata_link *link, const char *level,
7260                     const char *fmt, ...)
7261{
7262        struct va_format vaf;
7263        va_list args;
7264
7265        va_start(args, fmt);
7266
7267        vaf.fmt = fmt;
7268        vaf.va = &args;
7269
7270        if (sata_pmp_attached(link->ap) || link->ap->slave_link)
7271                printk("%sata%u.%02u: %pV",
7272                       level, link->ap->print_id, link->pmp, &vaf);
7273        else
7274                printk("%sata%u: %pV",
7275                       level, link->ap->print_id, &vaf);
7276
7277        va_end(args);
7278}
7279EXPORT_SYMBOL(ata_link_printk);
7280
7281void ata_dev_printk(const struct ata_device *dev, const char *level,
7282                    const char *fmt, ...)
7283{
7284        struct va_format vaf;
7285        va_list args;
7286
7287        va_start(args, fmt);
7288
7289        vaf.fmt = fmt;
7290        vaf.va = &args;
7291
7292        printk("%sata%u.%02u: %pV",
7293               level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
7294               &vaf);
7295
7296        va_end(args);
7297}
7298EXPORT_SYMBOL(ata_dev_printk);
7299
7300void ata_print_version(const struct device *dev, const char *version)
7301{
7302        dev_printk(KERN_DEBUG, dev, "version %s\n", version);
7303}
7304EXPORT_SYMBOL(ata_print_version);
7305
7306/*
7307 * libata is essentially a library of internal helper functions for
7308 * low-level ATA host controller drivers.  As such, the API/ABI is
7309 * likely to change as new drivers are added and updated.
7310 * Do not depend on ABI/API stability.
7311 */
7312EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
7313EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
7314EXPORT_SYMBOL_GPL(sata_deb_timing_long);
7315EXPORT_SYMBOL_GPL(ata_base_port_ops);
7316EXPORT_SYMBOL_GPL(sata_port_ops);
7317EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
7318EXPORT_SYMBOL_GPL(ata_dummy_port_info);
7319EXPORT_SYMBOL_GPL(ata_link_next);
7320EXPORT_SYMBOL_GPL(ata_dev_next);
7321EXPORT_SYMBOL_GPL(ata_std_bios_param);
7322EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
7323EXPORT_SYMBOL_GPL(ata_host_init);
7324EXPORT_SYMBOL_GPL(ata_host_alloc);
7325EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
7326EXPORT_SYMBOL_GPL(ata_slave_link_init);
7327EXPORT_SYMBOL_GPL(ata_host_start);
7328EXPORT_SYMBOL_GPL(ata_host_register);
7329EXPORT_SYMBOL_GPL(ata_host_activate);
7330EXPORT_SYMBOL_GPL(ata_host_detach);
7331EXPORT_SYMBOL_GPL(ata_sg_init);
7332EXPORT_SYMBOL_GPL(ata_qc_complete);
7333EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
7334EXPORT_SYMBOL_GPL(atapi_cmd_type);
7335EXPORT_SYMBOL_GPL(ata_tf_to_fis);
7336EXPORT_SYMBOL_GPL(ata_tf_from_fis);
7337EXPORT_SYMBOL_GPL(ata_pack_xfermask);
7338EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
7339EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
7340EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
7341EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
7342EXPORT_SYMBOL_GPL(ata_mode_string);
7343EXPORT_SYMBOL_GPL(ata_id_xfermask);
7344EXPORT_SYMBOL_GPL(ata_do_set_mode);
7345EXPORT_SYMBOL_GPL(ata_std_qc_defer);
7346EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
7347EXPORT_SYMBOL_GPL(ata_dev_disable);
7348EXPORT_SYMBOL_GPL(sata_set_spd);
7349EXPORT_SYMBOL_GPL(ata_wait_after_reset);
7350EXPORT_SYMBOL_GPL(sata_link_debounce);
7351EXPORT_SYMBOL_GPL(sata_link_resume);
7352EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
7353EXPORT_SYMBOL_GPL(ata_std_prereset);
7354EXPORT_SYMBOL_GPL(sata_link_hardreset);
7355EXPORT_SYMBOL_GPL(sata_std_hardreset);
7356EXPORT_SYMBOL_GPL(ata_std_postreset);
7357EXPORT_SYMBOL_GPL(ata_dev_classify);
7358EXPORT_SYMBOL_GPL(ata_dev_pair);
7359EXPORT_SYMBOL_GPL(ata_ratelimit);
7360EXPORT_SYMBOL_GPL(ata_msleep);
7361EXPORT_SYMBOL_GPL(ata_wait_register);
7362EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
7363EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
7364EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
7365EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
7366EXPORT_SYMBOL_GPL(__ata_change_queue_depth);
7367EXPORT_SYMBOL_GPL(sata_scr_valid);
7368EXPORT_SYMBOL_GPL(sata_scr_read);
7369EXPORT_SYMBOL_GPL(sata_scr_write);
7370EXPORT_SYMBOL_GPL(sata_scr_write_flush);
7371EXPORT_SYMBOL_GPL(ata_link_online);
7372EXPORT_SYMBOL_GPL(ata_link_offline);
7373#ifdef CONFIG_PM
7374EXPORT_SYMBOL_GPL(ata_host_suspend);
7375EXPORT_SYMBOL_GPL(ata_host_resume);
7376#endif /* CONFIG_PM */
7377EXPORT_SYMBOL_GPL(ata_id_string);
7378EXPORT_SYMBOL_GPL(ata_id_c_string);
7379EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
7380EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7381
7382EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
7383EXPORT_SYMBOL_GPL(ata_timing_find_mode);
7384EXPORT_SYMBOL_GPL(ata_timing_compute);
7385EXPORT_SYMBOL_GPL(ata_timing_merge);
7386EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
7387
7388#ifdef CONFIG_PCI
7389EXPORT_SYMBOL_GPL(pci_test_config_bits);
7390EXPORT_SYMBOL_GPL(ata_pci_remove_one);
7391#ifdef CONFIG_PM
7392EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7393EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
7394EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7395EXPORT_SYMBOL_GPL(ata_pci_device_resume);
7396#endif /* CONFIG_PM */
7397#endif /* CONFIG_PCI */
7398
7399EXPORT_SYMBOL_GPL(ata_platform_remove_one);
7400
7401EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7402EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7403EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
7404EXPORT_SYMBOL_GPL(ata_port_desc);
7405#ifdef CONFIG_PCI
7406EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7407#endif /* CONFIG_PCI */
7408EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
7409EXPORT_SYMBOL_GPL(ata_link_abort);
7410EXPORT_SYMBOL_GPL(ata_port_abort);
7411EXPORT_SYMBOL_GPL(ata_port_freeze);
7412EXPORT_SYMBOL_GPL(sata_async_notification);
7413EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7414EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
7415EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7416EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
7417EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
7418EXPORT_SYMBOL_GPL(ata_do_eh);
7419EXPORT_SYMBOL_GPL(ata_std_error_handler);
7420
7421EXPORT_SYMBOL_GPL(ata_cable_40wire);
7422EXPORT_SYMBOL_GPL(ata_cable_80wire);
7423EXPORT_SYMBOL_GPL(ata_cable_unknown);
7424EXPORT_SYMBOL_GPL(ata_cable_ignore);
7425EXPORT_SYMBOL_GPL(ata_cable_sata);
7426EXPORT_SYMBOL_GPL(ata_host_get);
7427EXPORT_SYMBOL_GPL(ata_host_put);
7428