linux/drivers/clk/clk-si5341.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Driver for Silicon Labs Si5341/Si5340 Clock generator
   4 * Copyright (C) 2019 Topic Embedded Products
   5 * Author: Mike Looijmans <mike.looijmans@topic.nl>
   6 */
   7
   8#include <linux/clk.h>
   9#include <linux/clk-provider.h>
  10#include <linux/delay.h>
  11#include <linux/gcd.h>
  12#include <linux/math64.h>
  13#include <linux/i2c.h>
  14#include <linux/module.h>
  15#include <linux/regmap.h>
  16#include <linux/slab.h>
  17#include <asm/unaligned.h>
  18
  19#define SI5341_MAX_NUM_OUTPUTS 10
  20#define SI5340_MAX_NUM_OUTPUTS 4
  21
  22#define SI5341_NUM_SYNTH 5
  23#define SI5340_NUM_SYNTH 4
  24
  25/* Range of the synthesizer fractional divider */
  26#define SI5341_SYNTH_N_MIN      10
  27#define SI5341_SYNTH_N_MAX      4095
  28
  29/* The chip can get its input clock from 3 input pins or an XTAL */
  30
  31/* There is one PLL running at 13500–14256 MHz */
  32#define SI5341_PLL_VCO_MIN 13500000000ull
  33#define SI5341_PLL_VCO_MAX 14256000000ull
  34
  35/* The 5 frequency synthesizers obtain their input from the PLL */
  36struct clk_si5341_synth {
  37        struct clk_hw hw;
  38        struct clk_si5341 *data;
  39        u8 index;
  40};
  41#define to_clk_si5341_synth(_hw) \
  42        container_of(_hw, struct clk_si5341_synth, hw)
  43
  44/* The output stages can be connected to any synth (full mux) */
  45struct clk_si5341_output {
  46        struct clk_hw hw;
  47        struct clk_si5341 *data;
  48        u8 index;
  49};
  50#define to_clk_si5341_output(_hw) \
  51        container_of(_hw, struct clk_si5341_output, hw)
  52
  53struct clk_si5341 {
  54        struct clk_hw hw;
  55        struct regmap *regmap;
  56        struct i2c_client *i2c_client;
  57        struct clk_si5341_synth synth[SI5341_NUM_SYNTH];
  58        struct clk_si5341_output clk[SI5341_MAX_NUM_OUTPUTS];
  59        struct clk *pxtal;
  60        const char *pxtal_name;
  61        const u16 *reg_output_offset;
  62        const u16 *reg_rdiv_offset;
  63        u64 freq_vco; /* 13500–14256 MHz */
  64        u8 num_outputs;
  65        u8 num_synth;
  66};
  67#define to_clk_si5341(_hw)      container_of(_hw, struct clk_si5341, hw)
  68
  69struct clk_si5341_output_config {
  70        u8 out_format_drv_bits;
  71        u8 out_cm_ampl_bits;
  72        bool synth_master;
  73        bool always_on;
  74};
  75
  76#define SI5341_PAGE             0x0001
  77#define SI5341_PN_BASE          0x0002
  78#define SI5341_DEVICE_REV       0x0005
  79#define SI5341_STATUS           0x000C
  80#define SI5341_SOFT_RST         0x001C
  81
  82/* Input dividers (48-bit) */
  83#define SI5341_IN_PDIV(x)       (0x0208 + ((x) * 10))
  84#define SI5341_IN_PSET(x)       (0x020E + ((x) * 10))
  85
  86/* PLL configuration */
  87#define SI5341_PLL_M_NUM        0x0235
  88#define SI5341_PLL_M_DEN        0x023B
  89
  90/* Output configuration */
  91#define SI5341_OUT_CONFIG(output)       \
  92                        ((output)->data->reg_output_offset[(output)->index])
  93#define SI5341_OUT_FORMAT(output)       (SI5341_OUT_CONFIG(output) + 1)
  94#define SI5341_OUT_CM(output)           (SI5341_OUT_CONFIG(output) + 2)
  95#define SI5341_OUT_MUX_SEL(output)      (SI5341_OUT_CONFIG(output) + 3)
  96#define SI5341_OUT_R_REG(output)        \
  97                        ((output)->data->reg_rdiv_offset[(output)->index])
  98
  99/* Synthesize N divider */
 100#define SI5341_SYNTH_N_NUM(x)   (0x0302 + ((x) * 11))
 101#define SI5341_SYNTH_N_DEN(x)   (0x0308 + ((x) * 11))
 102#define SI5341_SYNTH_N_UPD(x)   (0x030C + ((x) * 11))
 103
 104/* Synthesizer output enable, phase bypass, power mode */
 105#define SI5341_SYNTH_N_CLK_TO_OUTX_EN   0x0A03
 106#define SI5341_SYNTH_N_PIBYP            0x0A04
 107#define SI5341_SYNTH_N_PDNB             0x0A05
 108#define SI5341_SYNTH_N_CLK_DIS          0x0B4A
 109
 110#define SI5341_REGISTER_MAX     0xBFF
 111
 112/* SI5341_OUT_CONFIG bits */
 113#define SI5341_OUT_CFG_PDN              BIT(0)
 114#define SI5341_OUT_CFG_OE               BIT(1)
 115#define SI5341_OUT_CFG_RDIV_FORCE2      BIT(2)
 116
 117/* Static configuration (to be moved to firmware) */
 118struct si5341_reg_default {
 119        u16 address;
 120        u8 value;
 121};
 122
 123/* Output configuration registers 0..9 are not quite logically organized */
 124static const u16 si5341_reg_output_offset[] = {
 125        0x0108,
 126        0x010D,
 127        0x0112,
 128        0x0117,
 129        0x011C,
 130        0x0121,
 131        0x0126,
 132        0x012B,
 133        0x0130,
 134        0x013A,
 135};
 136
 137static const u16 si5340_reg_output_offset[] = {
 138        0x0112,
 139        0x0117,
 140        0x0126,
 141        0x012B,
 142};
 143
 144/* The location of the R divider registers */
 145static const u16 si5341_reg_rdiv_offset[] = {
 146        0x024A,
 147        0x024D,
 148        0x0250,
 149        0x0253,
 150        0x0256,
 151        0x0259,
 152        0x025C,
 153        0x025F,
 154        0x0262,
 155        0x0268,
 156};
 157static const u16 si5340_reg_rdiv_offset[] = {
 158        0x0250,
 159        0x0253,
 160        0x025C,
 161        0x025F,
 162};
 163
 164/*
 165 * Programming sequence from ClockBuilder, settings to initialize the system
 166 * using only the XTAL input, without pre-divider.
 167 * This also contains settings that aren't mentioned anywhere in the datasheet.
 168 * The "known" settings like synth and output configuration are done later.
 169 */
 170static const struct si5341_reg_default si5341_reg_defaults[] = {
 171        { 0x0017, 0x3A }, /* INT mask (disable interrupts) */
 172        { 0x0018, 0xFF }, /* INT mask */
 173        { 0x0021, 0x0F }, /* Select XTAL as input */
 174        { 0x0022, 0x00 }, /* Not in datasheet */
 175        { 0x002B, 0x02 }, /* SPI config */
 176        { 0x002C, 0x20 }, /* LOS enable for XTAL */
 177        { 0x002D, 0x00 }, /* LOS timing */
 178        { 0x002E, 0x00 },
 179        { 0x002F, 0x00 },
 180        { 0x0030, 0x00 },
 181        { 0x0031, 0x00 },
 182        { 0x0032, 0x00 },
 183        { 0x0033, 0x00 },
 184        { 0x0034, 0x00 },
 185        { 0x0035, 0x00 },
 186        { 0x0036, 0x00 },
 187        { 0x0037, 0x00 },
 188        { 0x0038, 0x00 }, /* LOS setting (thresholds) */
 189        { 0x0039, 0x00 },
 190        { 0x003A, 0x00 },
 191        { 0x003B, 0x00 },
 192        { 0x003C, 0x00 },
 193        { 0x003D, 0x00 }, /* LOS setting (thresholds) end */
 194        { 0x0041, 0x00 }, /* LOS0_DIV_SEL */
 195        { 0x0042, 0x00 }, /* LOS1_DIV_SEL */
 196        { 0x0043, 0x00 }, /* LOS2_DIV_SEL */
 197        { 0x0044, 0x00 }, /* LOS3_DIV_SEL */
 198        { 0x009E, 0x00 }, /* Not in datasheet */
 199        { 0x0102, 0x01 }, /* Enable outputs */
 200        { 0x013F, 0x00 }, /* Not in datasheet */
 201        { 0x0140, 0x00 }, /* Not in datasheet */
 202        { 0x0141, 0x40 }, /* OUT LOS */
 203        { 0x0202, 0x00 }, /* XAXB_FREQ_OFFSET (=0)*/
 204        { 0x0203, 0x00 },
 205        { 0x0204, 0x00 },
 206        { 0x0205, 0x00 },
 207        { 0x0206, 0x00 }, /* PXAXB (2^x) */
 208        { 0x0208, 0x00 }, /* Px divider setting (usually 0) */
 209        { 0x0209, 0x00 },
 210        { 0x020A, 0x00 },
 211        { 0x020B, 0x00 },
 212        { 0x020C, 0x00 },
 213        { 0x020D, 0x00 },
 214        { 0x020E, 0x00 },
 215        { 0x020F, 0x00 },
 216        { 0x0210, 0x00 },
 217        { 0x0211, 0x00 },
 218        { 0x0212, 0x00 },
 219        { 0x0213, 0x00 },
 220        { 0x0214, 0x00 },
 221        { 0x0215, 0x00 },
 222        { 0x0216, 0x00 },
 223        { 0x0217, 0x00 },
 224        { 0x0218, 0x00 },
 225        { 0x0219, 0x00 },
 226        { 0x021A, 0x00 },
 227        { 0x021B, 0x00 },
 228        { 0x021C, 0x00 },
 229        { 0x021D, 0x00 },
 230        { 0x021E, 0x00 },
 231        { 0x021F, 0x00 },
 232        { 0x0220, 0x00 },
 233        { 0x0221, 0x00 },
 234        { 0x0222, 0x00 },
 235        { 0x0223, 0x00 },
 236        { 0x0224, 0x00 },
 237        { 0x0225, 0x00 },
 238        { 0x0226, 0x00 },
 239        { 0x0227, 0x00 },
 240        { 0x0228, 0x00 },
 241        { 0x0229, 0x00 },
 242        { 0x022A, 0x00 },
 243        { 0x022B, 0x00 },
 244        { 0x022C, 0x00 },
 245        { 0x022D, 0x00 },
 246        { 0x022E, 0x00 },
 247        { 0x022F, 0x00 }, /* Px divider setting (usually 0) end */
 248        { 0x026B, 0x00 }, /* DESIGN_ID (ASCII string) */
 249        { 0x026C, 0x00 },
 250        { 0x026D, 0x00 },
 251        { 0x026E, 0x00 },
 252        { 0x026F, 0x00 },
 253        { 0x0270, 0x00 },
 254        { 0x0271, 0x00 },
 255        { 0x0272, 0x00 }, /* DESIGN_ID (ASCII string) end */
 256        { 0x0339, 0x1F }, /* N_FSTEP_MSK */
 257        { 0x033B, 0x00 }, /* Nx_FSTEPW (Frequency step) */
 258        { 0x033C, 0x00 },
 259        { 0x033D, 0x00 },
 260        { 0x033E, 0x00 },
 261        { 0x033F, 0x00 },
 262        { 0x0340, 0x00 },
 263        { 0x0341, 0x00 },
 264        { 0x0342, 0x00 },
 265        { 0x0343, 0x00 },
 266        { 0x0344, 0x00 },
 267        { 0x0345, 0x00 },
 268        { 0x0346, 0x00 },
 269        { 0x0347, 0x00 },
 270        { 0x0348, 0x00 },
 271        { 0x0349, 0x00 },
 272        { 0x034A, 0x00 },
 273        { 0x034B, 0x00 },
 274        { 0x034C, 0x00 },
 275        { 0x034D, 0x00 },
 276        { 0x034E, 0x00 },
 277        { 0x034F, 0x00 },
 278        { 0x0350, 0x00 },
 279        { 0x0351, 0x00 },
 280        { 0x0352, 0x00 },
 281        { 0x0353, 0x00 },
 282        { 0x0354, 0x00 },
 283        { 0x0355, 0x00 },
 284        { 0x0356, 0x00 },
 285        { 0x0357, 0x00 },
 286        { 0x0358, 0x00 }, /* Nx_FSTEPW (Frequency step) end */
 287        { 0x0359, 0x00 }, /* Nx_DELAY */
 288        { 0x035A, 0x00 },
 289        { 0x035B, 0x00 },
 290        { 0x035C, 0x00 },
 291        { 0x035D, 0x00 },
 292        { 0x035E, 0x00 },
 293        { 0x035F, 0x00 },
 294        { 0x0360, 0x00 },
 295        { 0x0361, 0x00 },
 296        { 0x0362, 0x00 }, /* Nx_DELAY end */
 297        { 0x0802, 0x00 }, /* Not in datasheet */
 298        { 0x0803, 0x00 }, /* Not in datasheet */
 299        { 0x0804, 0x00 }, /* Not in datasheet */
 300        { 0x090E, 0x02 }, /* XAXB_EXTCLK_EN=0 XAXB_PDNB=1 (use XTAL) */
 301        { 0x091C, 0x04 }, /* ZDM_EN=4 (Normal mode) */
 302        { 0x0943, 0x00 }, /* IO_VDD_SEL=0 (0=1v8, use 1=3v3) */
 303        { 0x0949, 0x00 }, /* IN_EN (disable input clocks) */
 304        { 0x094A, 0x00 }, /* INx_TO_PFD_EN (disabled) */
 305        { 0x0A02, 0x00 }, /* Not in datasheet */
 306        { 0x0B44, 0x0F }, /* PDIV_ENB (datasheet does not mention what it is) */
 307};
 308
 309/* Read and interpret a 44-bit followed by a 32-bit value in the regmap */
 310static int si5341_decode_44_32(struct regmap *regmap, unsigned int reg,
 311        u64 *val1, u32 *val2)
 312{
 313        int err;
 314        u8 r[10];
 315
 316        err = regmap_bulk_read(regmap, reg, r, 10);
 317        if (err < 0)
 318                return err;
 319
 320        *val1 = ((u64)((r[5] & 0x0f) << 8 | r[4]) << 32) |
 321                 (get_unaligned_le32(r));
 322        *val2 = get_unaligned_le32(&r[6]);
 323
 324        return 0;
 325}
 326
 327static int si5341_encode_44_32(struct regmap *regmap, unsigned int reg,
 328        u64 n_num, u32 n_den)
 329{
 330        u8 r[10];
 331
 332        /* Shift left as far as possible without overflowing */
 333        while (!(n_num & BIT_ULL(43)) && !(n_den & BIT(31))) {
 334                n_num <<= 1;
 335                n_den <<= 1;
 336        }
 337
 338        /* 44 bits (6 bytes) numerator */
 339        put_unaligned_le32(n_num, r);
 340        r[4] = (n_num >> 32) & 0xff;
 341        r[5] = (n_num >> 40) & 0x0f;
 342        /* 32 bits denominator */
 343        put_unaligned_le32(n_den, &r[6]);
 344
 345        /* Program the fraction */
 346        return regmap_bulk_write(regmap, reg, r, sizeof(r));
 347}
 348
 349/* VCO, we assume it runs at a constant frequency */
 350static unsigned long si5341_clk_recalc_rate(struct clk_hw *hw,
 351                unsigned long parent_rate)
 352{
 353        struct clk_si5341 *data = to_clk_si5341(hw);
 354        int err;
 355        u64 res;
 356        u64 m_num;
 357        u32 m_den;
 358        unsigned int shift;
 359
 360        /* Assume that PDIV is not being used, just read the PLL setting */
 361        err = si5341_decode_44_32(data->regmap, SI5341_PLL_M_NUM,
 362                                &m_num, &m_den);
 363        if (err < 0)
 364                return 0;
 365
 366        if (!m_num || !m_den)
 367                return 0;
 368
 369        /*
 370         * Though m_num is 64-bit, only the upper bits are actually used. While
 371         * calculating m_num and m_den, they are shifted as far as possible to
 372         * the left. To avoid 96-bit division here, we just shift them back so
 373         * we can do with just 64 bits.
 374         */
 375        shift = 0;
 376        res = m_num;
 377        while (res & 0xffff00000000ULL) {
 378                ++shift;
 379                res >>= 1;
 380        }
 381        res *= parent_rate;
 382        do_div(res, (m_den >> shift));
 383
 384        /* We cannot return the actual frequency in 32 bit, store it locally */
 385        data->freq_vco = res;
 386
 387        /* Report kHz since the value is out of range */
 388        do_div(res, 1000);
 389
 390        return (unsigned long)res;
 391}
 392
 393static const struct clk_ops si5341_clk_ops = {
 394        .recalc_rate = si5341_clk_recalc_rate,
 395};
 396
 397/* Synthesizers, there are 5 synthesizers that connect to any of the outputs */
 398
 399/* The synthesizer is on if all power and enable bits are set */
 400static int si5341_synth_clk_is_on(struct clk_hw *hw)
 401{
 402        struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
 403        int err;
 404        u32 val;
 405        u8 index = synth->index;
 406
 407        err = regmap_read(synth->data->regmap,
 408                        SI5341_SYNTH_N_CLK_TO_OUTX_EN, &val);
 409        if (err < 0)
 410                return 0;
 411
 412        if (!(val & BIT(index)))
 413                return 0;
 414
 415        err = regmap_read(synth->data->regmap, SI5341_SYNTH_N_PDNB, &val);
 416        if (err < 0)
 417                return 0;
 418
 419        if (!(val & BIT(index)))
 420                return 0;
 421
 422        /* This bit must be 0 for the synthesizer to receive clock input */
 423        err = regmap_read(synth->data->regmap, SI5341_SYNTH_N_CLK_DIS, &val);
 424        if (err < 0)
 425                return 0;
 426
 427        return !(val & BIT(index));
 428}
 429
 430static void si5341_synth_clk_unprepare(struct clk_hw *hw)
 431{
 432        struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
 433        u8 index = synth->index; /* In range 0..5 */
 434        u8 mask = BIT(index);
 435
 436        /* Disable output */
 437        regmap_update_bits(synth->data->regmap,
 438                SI5341_SYNTH_N_CLK_TO_OUTX_EN, mask, 0);
 439        /* Power down */
 440        regmap_update_bits(synth->data->regmap,
 441                SI5341_SYNTH_N_PDNB, mask, 0);
 442        /* Disable clock input to synth (set to 1 to disable) */
 443        regmap_update_bits(synth->data->regmap,
 444                SI5341_SYNTH_N_CLK_DIS, mask, mask);
 445}
 446
 447static int si5341_synth_clk_prepare(struct clk_hw *hw)
 448{
 449        struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
 450        int err;
 451        u8 index = synth->index;
 452        u8 mask = BIT(index);
 453
 454        /* Power up */
 455        err = regmap_update_bits(synth->data->regmap,
 456                SI5341_SYNTH_N_PDNB, mask, mask);
 457        if (err < 0)
 458                return err;
 459
 460        /* Enable clock input to synth (set bit to 0 to enable) */
 461        err = regmap_update_bits(synth->data->regmap,
 462                SI5341_SYNTH_N_CLK_DIS, mask, 0);
 463        if (err < 0)
 464                return err;
 465
 466        /* Enable output */
 467        return regmap_update_bits(synth->data->regmap,
 468                SI5341_SYNTH_N_CLK_TO_OUTX_EN, mask, mask);
 469}
 470
 471/* Synth clock frequency: Fvco * n_den / n_den, with Fvco in 13500-14256 MHz */
 472static unsigned long si5341_synth_clk_recalc_rate(struct clk_hw *hw,
 473                unsigned long parent_rate)
 474{
 475        struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
 476        u64 f;
 477        u64 n_num;
 478        u32 n_den;
 479        int err;
 480
 481        err = si5341_decode_44_32(synth->data->regmap,
 482                        SI5341_SYNTH_N_NUM(synth->index), &n_num, &n_den);
 483        if (err < 0)
 484                return err;
 485
 486        /*
 487         * n_num and n_den are shifted left as much as possible, so to prevent
 488         * overflow in 64-bit math, we shift n_den 4 bits to the right
 489         */
 490        f = synth->data->freq_vco;
 491        f *= n_den >> 4;
 492
 493        /* Now we need to to 64-bit division: f/n_num */
 494        /* And compensate for the 4 bits we dropped */
 495        f = div64_u64(f, (n_num >> 4));
 496
 497        return f;
 498}
 499
 500static long si5341_synth_clk_round_rate(struct clk_hw *hw, unsigned long rate,
 501                unsigned long *parent_rate)
 502{
 503        struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
 504        u64 f;
 505
 506        /* The synthesizer accuracy is such that anything in range will work */
 507        f = synth->data->freq_vco;
 508        do_div(f, SI5341_SYNTH_N_MAX);
 509        if (rate < f)
 510                return f;
 511
 512        f = synth->data->freq_vco;
 513        do_div(f, SI5341_SYNTH_N_MIN);
 514        if (rate > f)
 515                return f;
 516
 517        return rate;
 518}
 519
 520static int si5341_synth_program(struct clk_si5341_synth *synth,
 521        u64 n_num, u32 n_den, bool is_integer)
 522{
 523        int err;
 524        u8 index = synth->index;
 525
 526        err = si5341_encode_44_32(synth->data->regmap,
 527                        SI5341_SYNTH_N_NUM(index), n_num, n_den);
 528
 529        err = regmap_update_bits(synth->data->regmap,
 530                SI5341_SYNTH_N_PIBYP, BIT(index), is_integer ? BIT(index) : 0);
 531        if (err < 0)
 532                return err;
 533
 534        return regmap_write(synth->data->regmap,
 535                SI5341_SYNTH_N_UPD(index), 0x01);
 536}
 537
 538
 539static int si5341_synth_clk_set_rate(struct clk_hw *hw, unsigned long rate,
 540                unsigned long parent_rate)
 541{
 542        struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
 543        u64 n_num;
 544        u32 n_den;
 545        u32 r;
 546        u32 g;
 547        bool is_integer;
 548
 549        n_num = synth->data->freq_vco;
 550
 551        /* see if there's an integer solution */
 552        r = do_div(n_num, rate);
 553        is_integer = (r == 0);
 554        if (is_integer) {
 555                /* Integer divider equal to n_num */
 556                n_den = 1;
 557        } else {
 558                /* Calculate a fractional solution */
 559                g = gcd(r, rate);
 560                n_den = rate / g;
 561                n_num *= n_den;
 562                n_num += r / g;
 563        }
 564
 565        dev_dbg(&synth->data->i2c_client->dev,
 566                        "%s(%u): n=0x%llx d=0x%x %s\n", __func__,
 567                                synth->index, n_num, n_den,
 568                                is_integer ? "int" : "frac");
 569
 570        return si5341_synth_program(synth, n_num, n_den, is_integer);
 571}
 572
 573static const struct clk_ops si5341_synth_clk_ops = {
 574        .is_prepared = si5341_synth_clk_is_on,
 575        .prepare = si5341_synth_clk_prepare,
 576        .unprepare = si5341_synth_clk_unprepare,
 577        .recalc_rate = si5341_synth_clk_recalc_rate,
 578        .round_rate = si5341_synth_clk_round_rate,
 579        .set_rate = si5341_synth_clk_set_rate,
 580};
 581
 582static int si5341_output_clk_is_on(struct clk_hw *hw)
 583{
 584        struct clk_si5341_output *output = to_clk_si5341_output(hw);
 585        int err;
 586        u32 val;
 587
 588        err = regmap_read(output->data->regmap,
 589                        SI5341_OUT_CONFIG(output), &val);
 590        if (err < 0)
 591                return err;
 592
 593        /* Bit 0=PDN, 1=OE so only a value of 0x2 enables the output */
 594        return (val & 0x03) == SI5341_OUT_CFG_OE;
 595}
 596
 597/* Disables and then powers down the output */
 598static void si5341_output_clk_unprepare(struct clk_hw *hw)
 599{
 600        struct clk_si5341_output *output = to_clk_si5341_output(hw);
 601
 602        regmap_update_bits(output->data->regmap,
 603                        SI5341_OUT_CONFIG(output),
 604                        SI5341_OUT_CFG_OE, 0);
 605        regmap_update_bits(output->data->regmap,
 606                        SI5341_OUT_CONFIG(output),
 607                        SI5341_OUT_CFG_PDN, SI5341_OUT_CFG_PDN);
 608}
 609
 610/* Powers up and then enables the output */
 611static int si5341_output_clk_prepare(struct clk_hw *hw)
 612{
 613        struct clk_si5341_output *output = to_clk_si5341_output(hw);
 614        int err;
 615
 616        err = regmap_update_bits(output->data->regmap,
 617                        SI5341_OUT_CONFIG(output),
 618                        SI5341_OUT_CFG_PDN, 0);
 619        if (err < 0)
 620                return err;
 621
 622        return regmap_update_bits(output->data->regmap,
 623                        SI5341_OUT_CONFIG(output),
 624                        SI5341_OUT_CFG_OE, SI5341_OUT_CFG_OE);
 625}
 626
 627static unsigned long si5341_output_clk_recalc_rate(struct clk_hw *hw,
 628                unsigned long parent_rate)
 629{
 630        struct clk_si5341_output *output = to_clk_si5341_output(hw);
 631        int err;
 632        u32 val;
 633        u32 r_divider;
 634        u8 r[3];
 635
 636        err = regmap_bulk_read(output->data->regmap,
 637                        SI5341_OUT_R_REG(output), r, 3);
 638        if (err < 0)
 639                return err;
 640
 641        /* Calculate value as 24-bit integer*/
 642        r_divider = r[2] << 16 | r[1] << 8 | r[0];
 643
 644        /* If Rx_REG is zero, the divider is disabled, so return a "0" rate */
 645        if (!r_divider)
 646                return 0;
 647
 648        /* Divider is 2*(Rx_REG+1) */
 649        r_divider += 1;
 650        r_divider <<= 1;
 651
 652        err = regmap_read(output->data->regmap,
 653                        SI5341_OUT_CONFIG(output), &val);
 654        if (err < 0)
 655                return err;
 656
 657        if (val & SI5341_OUT_CFG_RDIV_FORCE2)
 658                r_divider = 2;
 659
 660        return parent_rate / r_divider;
 661}
 662
 663static long si5341_output_clk_round_rate(struct clk_hw *hw, unsigned long rate,
 664                unsigned long *parent_rate)
 665{
 666        unsigned long r;
 667
 668        r = *parent_rate >> 1;
 669
 670        /* If rate is an even divisor, no changes to parent required */
 671        if (r && !(r % rate))
 672                return (long)rate;
 673
 674        if (clk_hw_get_flags(hw) & CLK_SET_RATE_PARENT) {
 675                if (rate > 200000000) {
 676                        /* minimum r-divider is 2 */
 677                        r = 2;
 678                } else {
 679                        /* Take a parent frequency near 400 MHz */
 680                        r = (400000000u / rate) & ~1;
 681                }
 682                *parent_rate = r * rate;
 683        } else {
 684                /* We cannot change our parent's rate, report what we can do */
 685                r /= rate;
 686                rate = *parent_rate / (r << 1);
 687        }
 688
 689        return rate;
 690}
 691
 692static int si5341_output_clk_set_rate(struct clk_hw *hw, unsigned long rate,
 693                unsigned long parent_rate)
 694{
 695        struct clk_si5341_output *output = to_clk_si5341_output(hw);
 696        /* Frequency divider is (r_div + 1) * 2 */
 697        u32 r_div = (parent_rate / rate) >> 1;
 698        int err;
 699        u8 r[3];
 700
 701        if (r_div <= 1)
 702                r_div = 0;
 703        else if (r_div >= BIT(24))
 704                r_div = BIT(24) - 1;
 705        else
 706                --r_div;
 707
 708        /* For a value of "2", we set the "OUT0_RDIV_FORCE2" bit */
 709        err = regmap_update_bits(output->data->regmap,
 710                        SI5341_OUT_CONFIG(output),
 711                        SI5341_OUT_CFG_RDIV_FORCE2,
 712                        (r_div == 0) ? SI5341_OUT_CFG_RDIV_FORCE2 : 0);
 713        if (err < 0)
 714                return err;
 715
 716        /* Always write Rx_REG, because a zero value disables the divider */
 717        r[0] = r_div ? (r_div & 0xff) : 1;
 718        r[1] = (r_div >> 8) & 0xff;
 719        r[2] = (r_div >> 16) & 0xff;
 720        err = regmap_bulk_write(output->data->regmap,
 721                        SI5341_OUT_R_REG(output), r, 3);
 722
 723        return 0;
 724}
 725
 726static int si5341_output_reparent(struct clk_si5341_output *output, u8 index)
 727{
 728        return regmap_update_bits(output->data->regmap,
 729                SI5341_OUT_MUX_SEL(output), 0x07, index);
 730}
 731
 732static int si5341_output_set_parent(struct clk_hw *hw, u8 index)
 733{
 734        struct clk_si5341_output *output = to_clk_si5341_output(hw);
 735
 736        if (index >= output->data->num_synth)
 737                return -EINVAL;
 738
 739        return si5341_output_reparent(output, index);
 740}
 741
 742static u8 si5341_output_get_parent(struct clk_hw *hw)
 743{
 744        struct clk_si5341_output *output = to_clk_si5341_output(hw);
 745        int err;
 746        u32 val;
 747
 748        err = regmap_read(output->data->regmap,
 749                        SI5341_OUT_MUX_SEL(output), &val);
 750
 751        return val & 0x7;
 752}
 753
 754static const struct clk_ops si5341_output_clk_ops = {
 755        .is_prepared = si5341_output_clk_is_on,
 756        .prepare = si5341_output_clk_prepare,
 757        .unprepare = si5341_output_clk_unprepare,
 758        .recalc_rate = si5341_output_clk_recalc_rate,
 759        .round_rate = si5341_output_clk_round_rate,
 760        .set_rate = si5341_output_clk_set_rate,
 761        .set_parent = si5341_output_set_parent,
 762        .get_parent = si5341_output_get_parent,
 763};
 764
 765/*
 766 * The chip can be bought in a pre-programmed version, or one can program the
 767 * NVM in the chip to boot up in a preset mode. This routine tries to determine
 768 * if that's the case, or if we need to reset and program everything from
 769 * scratch. Returns negative error, or true/false.
 770 */
 771static int si5341_is_programmed_already(struct clk_si5341 *data)
 772{
 773        int err;
 774        u8 r[4];
 775
 776        /* Read the PLL divider value, it must have a non-zero value */
 777        err = regmap_bulk_read(data->regmap, SI5341_PLL_M_DEN,
 778                        r, ARRAY_SIZE(r));
 779        if (err < 0)
 780                return err;
 781
 782        return !!get_unaligned_le32(r);
 783}
 784
 785static struct clk_hw *
 786of_clk_si5341_get(struct of_phandle_args *clkspec, void *_data)
 787{
 788        struct clk_si5341 *data = _data;
 789        unsigned int idx = clkspec->args[1];
 790        unsigned int group = clkspec->args[0];
 791
 792        switch (group) {
 793        case 0:
 794                if (idx >= data->num_outputs) {
 795                        dev_err(&data->i2c_client->dev,
 796                                "invalid output index %u\n", idx);
 797                        return ERR_PTR(-EINVAL);
 798                }
 799                return &data->clk[idx].hw;
 800        case 1:
 801                if (idx >= data->num_synth) {
 802                        dev_err(&data->i2c_client->dev,
 803                                "invalid synthesizer index %u\n", idx);
 804                        return ERR_PTR(-EINVAL);
 805                }
 806                return &data->synth[idx].hw;
 807        case 2:
 808                if (idx > 0) {
 809                        dev_err(&data->i2c_client->dev,
 810                                "invalid PLL index %u\n", idx);
 811                        return ERR_PTR(-EINVAL);
 812                }
 813                return &data->hw;
 814        default:
 815                dev_err(&data->i2c_client->dev, "invalid group %u\n", group);
 816                return ERR_PTR(-EINVAL);
 817        }
 818}
 819
 820static int si5341_probe_chip_id(struct clk_si5341 *data)
 821{
 822        int err;
 823        u8 reg[4];
 824        u16 model;
 825
 826        err = regmap_bulk_read(data->regmap, SI5341_PN_BASE, reg,
 827                                ARRAY_SIZE(reg));
 828        if (err < 0) {
 829                dev_err(&data->i2c_client->dev, "Failed to read chip ID\n");
 830                return err;
 831        }
 832
 833        model = get_unaligned_le16(reg);
 834
 835        dev_info(&data->i2c_client->dev, "Chip: %x Grade: %u Rev: %u\n",
 836                 model, reg[2], reg[3]);
 837
 838        switch (model) {
 839        case 0x5340:
 840                data->num_outputs = SI5340_MAX_NUM_OUTPUTS;
 841                data->num_synth = SI5340_NUM_SYNTH;
 842                data->reg_output_offset = si5340_reg_output_offset;
 843                data->reg_rdiv_offset = si5340_reg_rdiv_offset;
 844                break;
 845        case 0x5341:
 846                data->num_outputs = SI5341_MAX_NUM_OUTPUTS;
 847                data->num_synth = SI5341_NUM_SYNTH;
 848                data->reg_output_offset = si5341_reg_output_offset;
 849                data->reg_rdiv_offset = si5341_reg_rdiv_offset;
 850                break;
 851        default:
 852                dev_err(&data->i2c_client->dev, "Model '%x' not supported\n",
 853                        model);
 854                return -EINVAL;
 855        }
 856
 857        return 0;
 858}
 859
 860/* Read active settings into the regmap cache for later reference */
 861static int si5341_read_settings(struct clk_si5341 *data)
 862{
 863        int err;
 864        u8 i;
 865        u8 r[10];
 866
 867        err = regmap_bulk_read(data->regmap, SI5341_PLL_M_NUM, r, 10);
 868        if (err < 0)
 869                return err;
 870
 871        err = regmap_bulk_read(data->regmap,
 872                                SI5341_SYNTH_N_CLK_TO_OUTX_EN, r, 3);
 873        if (err < 0)
 874                return err;
 875
 876        err = regmap_bulk_read(data->regmap,
 877                                SI5341_SYNTH_N_CLK_DIS, r, 1);
 878        if (err < 0)
 879                return err;
 880
 881        for (i = 0; i < data->num_synth; ++i) {
 882                err = regmap_bulk_read(data->regmap,
 883                                        SI5341_SYNTH_N_NUM(i), r, 10);
 884                if (err < 0)
 885                        return err;
 886        }
 887
 888        for (i = 0; i < data->num_outputs; ++i) {
 889                err = regmap_bulk_read(data->regmap,
 890                                        data->reg_output_offset[i], r, 4);
 891                if (err < 0)
 892                        return err;
 893
 894                err = regmap_bulk_read(data->regmap,
 895                                        data->reg_rdiv_offset[i], r, 3);
 896                if (err < 0)
 897                        return err;
 898        }
 899
 900        return 0;
 901}
 902
 903static int si5341_write_multiple(struct clk_si5341 *data,
 904        const struct si5341_reg_default *values, unsigned int num_values)
 905{
 906        unsigned int i;
 907        int res;
 908
 909        for (i = 0; i < num_values; ++i) {
 910                res = regmap_write(data->regmap,
 911                        values[i].address, values[i].value);
 912                if (res < 0) {
 913                        dev_err(&data->i2c_client->dev,
 914                                "Failed to write %#x:%#x\n",
 915                                values[i].address, values[i].value);
 916                        return res;
 917                }
 918        }
 919
 920        return 0;
 921}
 922
 923static const struct si5341_reg_default si5341_preamble[] = {
 924        { 0x0B25, 0x00 },
 925        { 0x0502, 0x01 },
 926        { 0x0505, 0x03 },
 927        { 0x0957, 0x1F },
 928        { 0x0B4E, 0x1A },
 929};
 930
 931static int si5341_send_preamble(struct clk_si5341 *data)
 932{
 933        int res;
 934        u32 revision;
 935
 936        /* For revision 2 and up, the values are slightly different */
 937        res = regmap_read(data->regmap, SI5341_DEVICE_REV, &revision);
 938        if (res < 0)
 939                return res;
 940
 941        /* Write "preamble" as specified by datasheet */
 942        res = regmap_write(data->regmap, 0xB24, revision < 2 ? 0xD8 : 0xC0);
 943        if (res < 0)
 944                return res;
 945        res = si5341_write_multiple(data,
 946                si5341_preamble, ARRAY_SIZE(si5341_preamble));
 947        if (res < 0)
 948                return res;
 949
 950        /* Datasheet specifies a 300ms wait after sending the preamble */
 951        msleep(300);
 952
 953        return 0;
 954}
 955
 956/* Perform a soft reset and write post-amble */
 957static int si5341_finalize_defaults(struct clk_si5341 *data)
 958{
 959        int res;
 960        u32 revision;
 961
 962        res = regmap_read(data->regmap, SI5341_DEVICE_REV, &revision);
 963        if (res < 0)
 964                return res;
 965
 966        dev_dbg(&data->i2c_client->dev, "%s rev=%u\n", __func__, revision);
 967
 968        res = regmap_write(data->regmap, SI5341_SOFT_RST, 0x01);
 969        if (res < 0)
 970                return res;
 971
 972        /* Datasheet does not explain these nameless registers */
 973        res = regmap_write(data->regmap, 0xB24, revision < 2 ? 0xDB : 0xC3);
 974        if (res < 0)
 975                return res;
 976        res = regmap_write(data->regmap, 0x0B25, 0x02);
 977        if (res < 0)
 978                return res;
 979
 980        return 0;
 981}
 982
 983
 984static const struct regmap_range si5341_regmap_volatile_range[] = {
 985        regmap_reg_range(0x000C, 0x0012), /* Status */
 986        regmap_reg_range(0x001C, 0x001E), /* reset, finc/fdec */
 987        regmap_reg_range(0x00E2, 0x00FE), /* NVM, interrupts, device ready */
 988        /* Update bits for synth config */
 989        regmap_reg_range(SI5341_SYNTH_N_UPD(0), SI5341_SYNTH_N_UPD(0)),
 990        regmap_reg_range(SI5341_SYNTH_N_UPD(1), SI5341_SYNTH_N_UPD(1)),
 991        regmap_reg_range(SI5341_SYNTH_N_UPD(2), SI5341_SYNTH_N_UPD(2)),
 992        regmap_reg_range(SI5341_SYNTH_N_UPD(3), SI5341_SYNTH_N_UPD(3)),
 993        regmap_reg_range(SI5341_SYNTH_N_UPD(4), SI5341_SYNTH_N_UPD(4)),
 994};
 995
 996static const struct regmap_access_table si5341_regmap_volatile = {
 997        .yes_ranges = si5341_regmap_volatile_range,
 998        .n_yes_ranges = ARRAY_SIZE(si5341_regmap_volatile_range),
 999};
1000
1001/* Pages 0, 1, 2, 3, 9, A, B are valid, so there are 12 pages */
1002static const struct regmap_range_cfg si5341_regmap_ranges[] = {
1003        {
1004                .range_min = 0,
1005                .range_max = SI5341_REGISTER_MAX,
1006                .selector_reg = SI5341_PAGE,
1007                .selector_mask = 0xff,
1008                .selector_shift = 0,
1009                .window_start = 0,
1010                .window_len = 256,
1011        },
1012};
1013
1014static const struct regmap_config si5341_regmap_config = {
1015        .reg_bits = 8,
1016        .val_bits = 8,
1017        .cache_type = REGCACHE_RBTREE,
1018        .ranges = si5341_regmap_ranges,
1019        .num_ranges = ARRAY_SIZE(si5341_regmap_ranges),
1020        .max_register = SI5341_REGISTER_MAX,
1021        .volatile_table = &si5341_regmap_volatile,
1022};
1023
1024static int si5341_dt_parse_dt(struct i2c_client *client,
1025        struct clk_si5341_output_config *config)
1026{
1027        struct device_node *child;
1028        struct device_node *np = client->dev.of_node;
1029        u32 num;
1030        u32 val;
1031
1032        memset(config, 0, sizeof(struct clk_si5341_output_config) *
1033                                SI5341_MAX_NUM_OUTPUTS);
1034
1035        for_each_child_of_node(np, child) {
1036                if (of_property_read_u32(child, "reg", &num)) {
1037                        dev_err(&client->dev, "missing reg property of %s\n",
1038                                child->name);
1039                        goto put_child;
1040                }
1041
1042                if (num >= SI5341_MAX_NUM_OUTPUTS) {
1043                        dev_err(&client->dev, "invalid clkout %d\n", num);
1044                        goto put_child;
1045                }
1046
1047                if (!of_property_read_u32(child, "silabs,format", &val)) {
1048                        /* Set cm and ampl conservatively to 3v3 settings */
1049                        switch (val) {
1050                        case 1: /* normal differential */
1051                                config[num].out_cm_ampl_bits = 0x33;
1052                                break;
1053                        case 2: /* low-power differential */
1054                                config[num].out_cm_ampl_bits = 0x13;
1055                                break;
1056                        case 4: /* LVCMOS */
1057                                config[num].out_cm_ampl_bits = 0x33;
1058                                /* Set SI recommended impedance for LVCMOS */
1059                                config[num].out_format_drv_bits |= 0xc0;
1060                                break;
1061                        default:
1062                                dev_err(&client->dev,
1063                                        "invalid silabs,format %u for %u\n",
1064                                        val, num);
1065                                goto put_child;
1066                        }
1067                        config[num].out_format_drv_bits &= ~0x07;
1068                        config[num].out_format_drv_bits |= val & 0x07;
1069                        /* Always enable the SYNC feature */
1070                        config[num].out_format_drv_bits |= 0x08;
1071                }
1072
1073                if (!of_property_read_u32(child, "silabs,common-mode", &val)) {
1074                        if (val > 0xf) {
1075                                dev_err(&client->dev,
1076                                        "invalid silabs,common-mode %u\n",
1077                                        val);
1078                                goto put_child;
1079                        }
1080                        config[num].out_cm_ampl_bits &= 0xf0;
1081                        config[num].out_cm_ampl_bits |= val & 0x0f;
1082                }
1083
1084                if (!of_property_read_u32(child, "silabs,amplitude", &val)) {
1085                        if (val > 0xf) {
1086                                dev_err(&client->dev,
1087                                        "invalid silabs,amplitude %u\n",
1088                                        val);
1089                                goto put_child;
1090                        }
1091                        config[num].out_cm_ampl_bits &= 0x0f;
1092                        config[num].out_cm_ampl_bits |= (val << 4) & 0xf0;
1093                }
1094
1095                if (of_property_read_bool(child, "silabs,disable-high"))
1096                        config[num].out_format_drv_bits |= 0x10;
1097
1098                config[num].synth_master =
1099                        of_property_read_bool(child, "silabs,synth-master");
1100
1101                config[num].always_on =
1102                        of_property_read_bool(child, "always-on");
1103        }
1104
1105        return 0;
1106
1107put_child:
1108        of_node_put(child);
1109        return -EINVAL;
1110}
1111
1112/*
1113 * If not pre-configured, calculate and set the PLL configuration manually.
1114 * For low-jitter performance, the PLL should be set such that the synthesizers
1115 * only need integer division.
1116 * Without any user guidance, we'll set the PLL to 14GHz, which still allows
1117 * the chip to generate any frequency on its outputs, but jitter performance
1118 * may be sub-optimal.
1119 */
1120static int si5341_initialize_pll(struct clk_si5341 *data)
1121{
1122        struct device_node *np = data->i2c_client->dev.of_node;
1123        u32 m_num = 0;
1124        u32 m_den = 0;
1125
1126        if (of_property_read_u32(np, "silabs,pll-m-num", &m_num)) {
1127                dev_err(&data->i2c_client->dev,
1128                        "PLL configuration requires silabs,pll-m-num\n");
1129        }
1130        if (of_property_read_u32(np, "silabs,pll-m-den", &m_den)) {
1131                dev_err(&data->i2c_client->dev,
1132                        "PLL configuration requires silabs,pll-m-den\n");
1133        }
1134
1135        if (!m_num || !m_den) {
1136                dev_err(&data->i2c_client->dev,
1137                        "PLL configuration invalid, assume 14GHz\n");
1138                m_den = clk_get_rate(data->pxtal) / 10;
1139                m_num = 1400000000;
1140        }
1141
1142        return si5341_encode_44_32(data->regmap,
1143                        SI5341_PLL_M_NUM, m_num, m_den);
1144}
1145
1146static int si5341_probe(struct i2c_client *client,
1147                const struct i2c_device_id *id)
1148{
1149        struct clk_si5341 *data;
1150        struct clk_init_data init;
1151        const char *root_clock_name;
1152        const char *synth_clock_names[SI5341_NUM_SYNTH];
1153        int err;
1154        unsigned int i;
1155        struct clk_si5341_output_config config[SI5341_MAX_NUM_OUTPUTS];
1156        bool initialization_required;
1157
1158        data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL);
1159        if (!data)
1160                return -ENOMEM;
1161
1162        data->i2c_client = client;
1163
1164        data->pxtal = devm_clk_get(&client->dev, "xtal");
1165        if (IS_ERR(data->pxtal)) {
1166                if (PTR_ERR(data->pxtal) == -EPROBE_DEFER)
1167                        return -EPROBE_DEFER;
1168
1169                dev_err(&client->dev, "Missing xtal clock input\n");
1170        }
1171
1172        err = si5341_dt_parse_dt(client, config);
1173        if (err)
1174                return err;
1175
1176        if (of_property_read_string(client->dev.of_node, "clock-output-names",
1177                        &init.name))
1178                init.name = client->dev.of_node->name;
1179        root_clock_name = init.name;
1180
1181        data->regmap = devm_regmap_init_i2c(client, &si5341_regmap_config);
1182        if (IS_ERR(data->regmap))
1183                return PTR_ERR(data->regmap);
1184
1185        i2c_set_clientdata(client, data);
1186
1187        err = si5341_probe_chip_id(data);
1188        if (err < 0)
1189                return err;
1190
1191        /* "Activate" the xtal (usually a fixed clock) */
1192        clk_prepare_enable(data->pxtal);
1193
1194        if (of_property_read_bool(client->dev.of_node, "silabs,reprogram")) {
1195                initialization_required = true;
1196        } else {
1197                err = si5341_is_programmed_already(data);
1198                if (err < 0)
1199                        return err;
1200
1201                initialization_required = !err;
1202        }
1203
1204        if (initialization_required) {
1205                /* Populate the regmap cache in preparation for "cache only" */
1206                err = si5341_read_settings(data);
1207                if (err < 0)
1208                        return err;
1209
1210                err = si5341_send_preamble(data);
1211                if (err < 0)
1212                        return err;
1213
1214                /*
1215                 * We intend to send all 'final' register values in a single
1216                 * transaction. So cache all register writes until we're done
1217                 * configuring.
1218                 */
1219                regcache_cache_only(data->regmap, true);
1220
1221                /* Write the configuration pairs from the firmware blob */
1222                err = si5341_write_multiple(data, si5341_reg_defaults,
1223                                        ARRAY_SIZE(si5341_reg_defaults));
1224                if (err < 0)
1225                        return err;
1226
1227                /* PLL configuration is required */
1228                err = si5341_initialize_pll(data);
1229                if (err < 0)
1230                        return err;
1231        }
1232
1233        /* Register the PLL */
1234        data->pxtal_name = __clk_get_name(data->pxtal);
1235        init.parent_names = &data->pxtal_name;
1236        init.num_parents = 1; /* For now, only XTAL input supported */
1237        init.ops = &si5341_clk_ops;
1238        init.flags = 0;
1239        data->hw.init = &init;
1240
1241        err = devm_clk_hw_register(&client->dev, &data->hw);
1242        if (err) {
1243                dev_err(&client->dev, "clock registration failed\n");
1244                return err;
1245        }
1246
1247        init.num_parents = 1;
1248        init.parent_names = &root_clock_name;
1249        init.ops = &si5341_synth_clk_ops;
1250        for (i = 0; i < data->num_synth; ++i) {
1251                synth_clock_names[i] = devm_kasprintf(&client->dev, GFP_KERNEL,
1252                                "%s.N%u", client->dev.of_node->name, i);
1253                init.name = synth_clock_names[i];
1254                data->synth[i].index = i;
1255                data->synth[i].data = data;
1256                data->synth[i].hw.init = &init;
1257                err = devm_clk_hw_register(&client->dev, &data->synth[i].hw);
1258                if (err) {
1259                        dev_err(&client->dev,
1260                                "synth N%u registration failed\n", i);
1261                }
1262        }
1263
1264        init.num_parents = data->num_synth;
1265        init.parent_names = synth_clock_names;
1266        init.ops = &si5341_output_clk_ops;
1267        for (i = 0; i < data->num_outputs; ++i) {
1268                init.name = kasprintf(GFP_KERNEL, "%s.%d",
1269                        client->dev.of_node->name, i);
1270                init.flags = config[i].synth_master ? CLK_SET_RATE_PARENT : 0;
1271                data->clk[i].index = i;
1272                data->clk[i].data = data;
1273                data->clk[i].hw.init = &init;
1274                if (config[i].out_format_drv_bits & 0x07) {
1275                        regmap_write(data->regmap,
1276                                SI5341_OUT_FORMAT(&data->clk[i]),
1277                                config[i].out_format_drv_bits);
1278                        regmap_write(data->regmap,
1279                                SI5341_OUT_CM(&data->clk[i]),
1280                                config[i].out_cm_ampl_bits);
1281                }
1282                err = devm_clk_hw_register(&client->dev, &data->clk[i].hw);
1283                kfree(init.name); /* clock framework made a copy of the name */
1284                if (err) {
1285                        dev_err(&client->dev,
1286                                "output %u registration failed\n", i);
1287                        return err;
1288                }
1289                if (config[i].always_on)
1290                        clk_prepare(data->clk[i].hw.clk);
1291        }
1292
1293        err = of_clk_add_hw_provider(client->dev.of_node, of_clk_si5341_get,
1294                        data);
1295        if (err) {
1296                dev_err(&client->dev, "unable to add clk provider\n");
1297                return err;
1298        }
1299
1300        if (initialization_required) {
1301                /* Synchronize */
1302                regcache_cache_only(data->regmap, false);
1303                err = regcache_sync(data->regmap);
1304                if (err < 0)
1305                        return err;
1306
1307                err = si5341_finalize_defaults(data);
1308                if (err < 0)
1309                        return err;
1310        }
1311
1312        /* Free the names, clk framework makes copies */
1313        for (i = 0; i < data->num_synth; ++i)
1314                 devm_kfree(&client->dev, (void *)synth_clock_names[i]);
1315
1316        return 0;
1317}
1318
1319static const struct i2c_device_id si5341_id[] = {
1320        { "si5340", 0 },
1321        { "si5341", 1 },
1322        { }
1323};
1324MODULE_DEVICE_TABLE(i2c, si5341_id);
1325
1326static const struct of_device_id clk_si5341_of_match[] = {
1327        { .compatible = "silabs,si5340" },
1328        { .compatible = "silabs,si5341" },
1329        { }
1330};
1331MODULE_DEVICE_TABLE(of, clk_si5341_of_match);
1332
1333static struct i2c_driver si5341_driver = {
1334        .driver = {
1335                .name = "si5341",
1336                .of_match_table = clk_si5341_of_match,
1337        },
1338        .probe          = si5341_probe,
1339        .id_table       = si5341_id,
1340};
1341module_i2c_driver(si5341_driver);
1342
1343MODULE_AUTHOR("Mike Looijmans <mike.looijmans@topic.nl>");
1344MODULE_DESCRIPTION("Si5341 driver");
1345MODULE_LICENSE("GPL");
1346