linux/drivers/dma/dmaengine.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
   4 */
   5
   6/*
   7 * This code implements the DMA subsystem. It provides a HW-neutral interface
   8 * for other kernel code to use asynchronous memory copy capabilities,
   9 * if present, and allows different HW DMA drivers to register as providing
  10 * this capability.
  11 *
  12 * Due to the fact we are accelerating what is already a relatively fast
  13 * operation, the code goes to great lengths to avoid additional overhead,
  14 * such as locking.
  15 *
  16 * LOCKING:
  17 *
  18 * The subsystem keeps a global list of dma_device structs it is protected by a
  19 * mutex, dma_list_mutex.
  20 *
  21 * A subsystem can get access to a channel by calling dmaengine_get() followed
  22 * by dma_find_channel(), or if it has need for an exclusive channel it can call
  23 * dma_request_channel().  Once a channel is allocated a reference is taken
  24 * against its corresponding driver to disable removal.
  25 *
  26 * Each device has a channels list, which runs unlocked but is never modified
  27 * once the device is registered, it's just setup by the driver.
  28 *
  29 * See Documentation/driver-api/dmaengine for more details
  30 */
  31
  32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  33
  34#include <linux/platform_device.h>
  35#include <linux/dma-mapping.h>
  36#include <linux/init.h>
  37#include <linux/module.h>
  38#include <linux/mm.h>
  39#include <linux/device.h>
  40#include <linux/dmaengine.h>
  41#include <linux/hardirq.h>
  42#include <linux/spinlock.h>
  43#include <linux/percpu.h>
  44#include <linux/rcupdate.h>
  45#include <linux/mutex.h>
  46#include <linux/jiffies.h>
  47#include <linux/rculist.h>
  48#include <linux/idr.h>
  49#include <linux/slab.h>
  50#include <linux/acpi.h>
  51#include <linux/acpi_dma.h>
  52#include <linux/of_dma.h>
  53#include <linux/mempool.h>
  54#include <linux/numa.h>
  55
  56static DEFINE_MUTEX(dma_list_mutex);
  57static DEFINE_IDA(dma_ida);
  58static LIST_HEAD(dma_device_list);
  59static long dmaengine_ref_count;
  60
  61/* --- sysfs implementation --- */
  62
  63/**
  64 * dev_to_dma_chan - convert a device pointer to its sysfs container object
  65 * @dev - device node
  66 *
  67 * Must be called under dma_list_mutex
  68 */
  69static struct dma_chan *dev_to_dma_chan(struct device *dev)
  70{
  71        struct dma_chan_dev *chan_dev;
  72
  73        chan_dev = container_of(dev, typeof(*chan_dev), device);
  74        return chan_dev->chan;
  75}
  76
  77static ssize_t memcpy_count_show(struct device *dev,
  78                                 struct device_attribute *attr, char *buf)
  79{
  80        struct dma_chan *chan;
  81        unsigned long count = 0;
  82        int i;
  83        int err;
  84
  85        mutex_lock(&dma_list_mutex);
  86        chan = dev_to_dma_chan(dev);
  87        if (chan) {
  88                for_each_possible_cpu(i)
  89                        count += per_cpu_ptr(chan->local, i)->memcpy_count;
  90                err = sprintf(buf, "%lu\n", count);
  91        } else
  92                err = -ENODEV;
  93        mutex_unlock(&dma_list_mutex);
  94
  95        return err;
  96}
  97static DEVICE_ATTR_RO(memcpy_count);
  98
  99static ssize_t bytes_transferred_show(struct device *dev,
 100                                      struct device_attribute *attr, char *buf)
 101{
 102        struct dma_chan *chan;
 103        unsigned long count = 0;
 104        int i;
 105        int err;
 106
 107        mutex_lock(&dma_list_mutex);
 108        chan = dev_to_dma_chan(dev);
 109        if (chan) {
 110                for_each_possible_cpu(i)
 111                        count += per_cpu_ptr(chan->local, i)->bytes_transferred;
 112                err = sprintf(buf, "%lu\n", count);
 113        } else
 114                err = -ENODEV;
 115        mutex_unlock(&dma_list_mutex);
 116
 117        return err;
 118}
 119static DEVICE_ATTR_RO(bytes_transferred);
 120
 121static ssize_t in_use_show(struct device *dev, struct device_attribute *attr,
 122                           char *buf)
 123{
 124        struct dma_chan *chan;
 125        int err;
 126
 127        mutex_lock(&dma_list_mutex);
 128        chan = dev_to_dma_chan(dev);
 129        if (chan)
 130                err = sprintf(buf, "%d\n", chan->client_count);
 131        else
 132                err = -ENODEV;
 133        mutex_unlock(&dma_list_mutex);
 134
 135        return err;
 136}
 137static DEVICE_ATTR_RO(in_use);
 138
 139static struct attribute *dma_dev_attrs[] = {
 140        &dev_attr_memcpy_count.attr,
 141        &dev_attr_bytes_transferred.attr,
 142        &dev_attr_in_use.attr,
 143        NULL,
 144};
 145ATTRIBUTE_GROUPS(dma_dev);
 146
 147static void chan_dev_release(struct device *dev)
 148{
 149        struct dma_chan_dev *chan_dev;
 150
 151        chan_dev = container_of(dev, typeof(*chan_dev), device);
 152        if (atomic_dec_and_test(chan_dev->idr_ref)) {
 153                ida_free(&dma_ida, chan_dev->dev_id);
 154                kfree(chan_dev->idr_ref);
 155        }
 156        kfree(chan_dev);
 157}
 158
 159static struct class dma_devclass = {
 160        .name           = "dma",
 161        .dev_groups     = dma_dev_groups,
 162        .dev_release    = chan_dev_release,
 163};
 164
 165/* --- client and device registration --- */
 166
 167#define dma_device_satisfies_mask(device, mask) \
 168        __dma_device_satisfies_mask((device), &(mask))
 169static int
 170__dma_device_satisfies_mask(struct dma_device *device,
 171                            const dma_cap_mask_t *want)
 172{
 173        dma_cap_mask_t has;
 174
 175        bitmap_and(has.bits, want->bits, device->cap_mask.bits,
 176                DMA_TX_TYPE_END);
 177        return bitmap_equal(want->bits, has.bits, DMA_TX_TYPE_END);
 178}
 179
 180static struct module *dma_chan_to_owner(struct dma_chan *chan)
 181{
 182        return chan->device->dev->driver->owner;
 183}
 184
 185/**
 186 * balance_ref_count - catch up the channel reference count
 187 * @chan - channel to balance ->client_count versus dmaengine_ref_count
 188 *
 189 * balance_ref_count must be called under dma_list_mutex
 190 */
 191static void balance_ref_count(struct dma_chan *chan)
 192{
 193        struct module *owner = dma_chan_to_owner(chan);
 194
 195        while (chan->client_count < dmaengine_ref_count) {
 196                __module_get(owner);
 197                chan->client_count++;
 198        }
 199}
 200
 201/**
 202 * dma_chan_get - try to grab a dma channel's parent driver module
 203 * @chan - channel to grab
 204 *
 205 * Must be called under dma_list_mutex
 206 */
 207static int dma_chan_get(struct dma_chan *chan)
 208{
 209        struct module *owner = dma_chan_to_owner(chan);
 210        int ret;
 211
 212        /* The channel is already in use, update client count */
 213        if (chan->client_count) {
 214                __module_get(owner);
 215                goto out;
 216        }
 217
 218        if (!try_module_get(owner))
 219                return -ENODEV;
 220
 221        /* allocate upon first client reference */
 222        if (chan->device->device_alloc_chan_resources) {
 223                ret = chan->device->device_alloc_chan_resources(chan);
 224                if (ret < 0)
 225                        goto err_out;
 226        }
 227
 228        if (!dma_has_cap(DMA_PRIVATE, chan->device->cap_mask))
 229                balance_ref_count(chan);
 230
 231out:
 232        chan->client_count++;
 233        return 0;
 234
 235err_out:
 236        module_put(owner);
 237        return ret;
 238}
 239
 240/**
 241 * dma_chan_put - drop a reference to a dma channel's parent driver module
 242 * @chan - channel to release
 243 *
 244 * Must be called under dma_list_mutex
 245 */
 246static void dma_chan_put(struct dma_chan *chan)
 247{
 248        /* This channel is not in use, bail out */
 249        if (!chan->client_count)
 250                return;
 251
 252        chan->client_count--;
 253        module_put(dma_chan_to_owner(chan));
 254
 255        /* This channel is not in use anymore, free it */
 256        if (!chan->client_count && chan->device->device_free_chan_resources) {
 257                /* Make sure all operations have completed */
 258                dmaengine_synchronize(chan);
 259                chan->device->device_free_chan_resources(chan);
 260        }
 261
 262        /* If the channel is used via a DMA request router, free the mapping */
 263        if (chan->router && chan->router->route_free) {
 264                chan->router->route_free(chan->router->dev, chan->route_data);
 265                chan->router = NULL;
 266                chan->route_data = NULL;
 267        }
 268}
 269
 270enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
 271{
 272        enum dma_status status;
 273        unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
 274
 275        dma_async_issue_pending(chan);
 276        do {
 277                status = dma_async_is_tx_complete(chan, cookie, NULL, NULL);
 278                if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
 279                        dev_err(chan->device->dev, "%s: timeout!\n", __func__);
 280                        return DMA_ERROR;
 281                }
 282                if (status != DMA_IN_PROGRESS)
 283                        break;
 284                cpu_relax();
 285        } while (1);
 286
 287        return status;
 288}
 289EXPORT_SYMBOL(dma_sync_wait);
 290
 291/**
 292 * dma_cap_mask_all - enable iteration over all operation types
 293 */
 294static dma_cap_mask_t dma_cap_mask_all;
 295
 296/**
 297 * dma_chan_tbl_ent - tracks channel allocations per core/operation
 298 * @chan - associated channel for this entry
 299 */
 300struct dma_chan_tbl_ent {
 301        struct dma_chan *chan;
 302};
 303
 304/**
 305 * channel_table - percpu lookup table for memory-to-memory offload providers
 306 */
 307static struct dma_chan_tbl_ent __percpu *channel_table[DMA_TX_TYPE_END];
 308
 309static int __init dma_channel_table_init(void)
 310{
 311        enum dma_transaction_type cap;
 312        int err = 0;
 313
 314        bitmap_fill(dma_cap_mask_all.bits, DMA_TX_TYPE_END);
 315
 316        /* 'interrupt', 'private', and 'slave' are channel capabilities,
 317         * but are not associated with an operation so they do not need
 318         * an entry in the channel_table
 319         */
 320        clear_bit(DMA_INTERRUPT, dma_cap_mask_all.bits);
 321        clear_bit(DMA_PRIVATE, dma_cap_mask_all.bits);
 322        clear_bit(DMA_SLAVE, dma_cap_mask_all.bits);
 323
 324        for_each_dma_cap_mask(cap, dma_cap_mask_all) {
 325                channel_table[cap] = alloc_percpu(struct dma_chan_tbl_ent);
 326                if (!channel_table[cap]) {
 327                        err = -ENOMEM;
 328                        break;
 329                }
 330        }
 331
 332        if (err) {
 333                pr_err("initialization failure\n");
 334                for_each_dma_cap_mask(cap, dma_cap_mask_all)
 335                        free_percpu(channel_table[cap]);
 336        }
 337
 338        return err;
 339}
 340arch_initcall(dma_channel_table_init);
 341
 342/**
 343 * dma_find_channel - find a channel to carry out the operation
 344 * @tx_type: transaction type
 345 */
 346struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
 347{
 348        return this_cpu_read(channel_table[tx_type]->chan);
 349}
 350EXPORT_SYMBOL(dma_find_channel);
 351
 352/**
 353 * dma_issue_pending_all - flush all pending operations across all channels
 354 */
 355void dma_issue_pending_all(void)
 356{
 357        struct dma_device *device;
 358        struct dma_chan *chan;
 359
 360        rcu_read_lock();
 361        list_for_each_entry_rcu(device, &dma_device_list, global_node) {
 362                if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
 363                        continue;
 364                list_for_each_entry(chan, &device->channels, device_node)
 365                        if (chan->client_count)
 366                                device->device_issue_pending(chan);
 367        }
 368        rcu_read_unlock();
 369}
 370EXPORT_SYMBOL(dma_issue_pending_all);
 371
 372/**
 373 * dma_chan_is_local - returns true if the channel is in the same numa-node as the cpu
 374 */
 375static bool dma_chan_is_local(struct dma_chan *chan, int cpu)
 376{
 377        int node = dev_to_node(chan->device->dev);
 378        return node == NUMA_NO_NODE ||
 379                cpumask_test_cpu(cpu, cpumask_of_node(node));
 380}
 381
 382/**
 383 * min_chan - returns the channel with min count and in the same numa-node as the cpu
 384 * @cap: capability to match
 385 * @cpu: cpu index which the channel should be close to
 386 *
 387 * If some channels are close to the given cpu, the one with the lowest
 388 * reference count is returned. Otherwise, cpu is ignored and only the
 389 * reference count is taken into account.
 390 * Must be called under dma_list_mutex.
 391 */
 392static struct dma_chan *min_chan(enum dma_transaction_type cap, int cpu)
 393{
 394        struct dma_device *device;
 395        struct dma_chan *chan;
 396        struct dma_chan *min = NULL;
 397        struct dma_chan *localmin = NULL;
 398
 399        list_for_each_entry(device, &dma_device_list, global_node) {
 400                if (!dma_has_cap(cap, device->cap_mask) ||
 401                    dma_has_cap(DMA_PRIVATE, device->cap_mask))
 402                        continue;
 403                list_for_each_entry(chan, &device->channels, device_node) {
 404                        if (!chan->client_count)
 405                                continue;
 406                        if (!min || chan->table_count < min->table_count)
 407                                min = chan;
 408
 409                        if (dma_chan_is_local(chan, cpu))
 410                                if (!localmin ||
 411                                    chan->table_count < localmin->table_count)
 412                                        localmin = chan;
 413                }
 414        }
 415
 416        chan = localmin ? localmin : min;
 417
 418        if (chan)
 419                chan->table_count++;
 420
 421        return chan;
 422}
 423
 424/**
 425 * dma_channel_rebalance - redistribute the available channels
 426 *
 427 * Optimize for cpu isolation (each cpu gets a dedicated channel for an
 428 * operation type) in the SMP case,  and operation isolation (avoid
 429 * multi-tasking channels) in the non-SMP case.  Must be called under
 430 * dma_list_mutex.
 431 */
 432static void dma_channel_rebalance(void)
 433{
 434        struct dma_chan *chan;
 435        struct dma_device *device;
 436        int cpu;
 437        int cap;
 438
 439        /* undo the last distribution */
 440        for_each_dma_cap_mask(cap, dma_cap_mask_all)
 441                for_each_possible_cpu(cpu)
 442                        per_cpu_ptr(channel_table[cap], cpu)->chan = NULL;
 443
 444        list_for_each_entry(device, &dma_device_list, global_node) {
 445                if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
 446                        continue;
 447                list_for_each_entry(chan, &device->channels, device_node)
 448                        chan->table_count = 0;
 449        }
 450
 451        /* don't populate the channel_table if no clients are available */
 452        if (!dmaengine_ref_count)
 453                return;
 454
 455        /* redistribute available channels */
 456        for_each_dma_cap_mask(cap, dma_cap_mask_all)
 457                for_each_online_cpu(cpu) {
 458                        chan = min_chan(cap, cpu);
 459                        per_cpu_ptr(channel_table[cap], cpu)->chan = chan;
 460                }
 461}
 462
 463int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps)
 464{
 465        struct dma_device *device;
 466
 467        if (!chan || !caps)
 468                return -EINVAL;
 469
 470        device = chan->device;
 471
 472        /* check if the channel supports slave transactions */
 473        if (!(test_bit(DMA_SLAVE, device->cap_mask.bits) ||
 474              test_bit(DMA_CYCLIC, device->cap_mask.bits)))
 475                return -ENXIO;
 476
 477        /*
 478         * Check whether it reports it uses the generic slave
 479         * capabilities, if not, that means it doesn't support any
 480         * kind of slave capabilities reporting.
 481         */
 482        if (!device->directions)
 483                return -ENXIO;
 484
 485        caps->src_addr_widths = device->src_addr_widths;
 486        caps->dst_addr_widths = device->dst_addr_widths;
 487        caps->directions = device->directions;
 488        caps->max_burst = device->max_burst;
 489        caps->residue_granularity = device->residue_granularity;
 490        caps->descriptor_reuse = device->descriptor_reuse;
 491        caps->cmd_pause = !!device->device_pause;
 492        caps->cmd_resume = !!device->device_resume;
 493        caps->cmd_terminate = !!device->device_terminate_all;
 494
 495        return 0;
 496}
 497EXPORT_SYMBOL_GPL(dma_get_slave_caps);
 498
 499static struct dma_chan *private_candidate(const dma_cap_mask_t *mask,
 500                                          struct dma_device *dev,
 501                                          dma_filter_fn fn, void *fn_param)
 502{
 503        struct dma_chan *chan;
 504
 505        if (mask && !__dma_device_satisfies_mask(dev, mask)) {
 506                dev_dbg(dev->dev, "%s: wrong capabilities\n", __func__);
 507                return NULL;
 508        }
 509        /* devices with multiple channels need special handling as we need to
 510         * ensure that all channels are either private or public.
 511         */
 512        if (dev->chancnt > 1 && !dma_has_cap(DMA_PRIVATE, dev->cap_mask))
 513                list_for_each_entry(chan, &dev->channels, device_node) {
 514                        /* some channels are already publicly allocated */
 515                        if (chan->client_count)
 516                                return NULL;
 517                }
 518
 519        list_for_each_entry(chan, &dev->channels, device_node) {
 520                if (chan->client_count) {
 521                        dev_dbg(dev->dev, "%s: %s busy\n",
 522                                 __func__, dma_chan_name(chan));
 523                        continue;
 524                }
 525                if (fn && !fn(chan, fn_param)) {
 526                        dev_dbg(dev->dev, "%s: %s filter said false\n",
 527                                 __func__, dma_chan_name(chan));
 528                        continue;
 529                }
 530                return chan;
 531        }
 532
 533        return NULL;
 534}
 535
 536static struct dma_chan *find_candidate(struct dma_device *device,
 537                                       const dma_cap_mask_t *mask,
 538                                       dma_filter_fn fn, void *fn_param)
 539{
 540        struct dma_chan *chan = private_candidate(mask, device, fn, fn_param);
 541        int err;
 542
 543        if (chan) {
 544                /* Found a suitable channel, try to grab, prep, and return it.
 545                 * We first set DMA_PRIVATE to disable balance_ref_count as this
 546                 * channel will not be published in the general-purpose
 547                 * allocator
 548                 */
 549                dma_cap_set(DMA_PRIVATE, device->cap_mask);
 550                device->privatecnt++;
 551                err = dma_chan_get(chan);
 552
 553                if (err) {
 554                        if (err == -ENODEV) {
 555                                dev_dbg(device->dev, "%s: %s module removed\n",
 556                                        __func__, dma_chan_name(chan));
 557                                list_del_rcu(&device->global_node);
 558                        } else
 559                                dev_dbg(device->dev,
 560                                        "%s: failed to get %s: (%d)\n",
 561                                         __func__, dma_chan_name(chan), err);
 562
 563                        if (--device->privatecnt == 0)
 564                                dma_cap_clear(DMA_PRIVATE, device->cap_mask);
 565
 566                        chan = ERR_PTR(err);
 567                }
 568        }
 569
 570        return chan ? chan : ERR_PTR(-EPROBE_DEFER);
 571}
 572
 573/**
 574 * dma_get_slave_channel - try to get specific channel exclusively
 575 * @chan: target channel
 576 */
 577struct dma_chan *dma_get_slave_channel(struct dma_chan *chan)
 578{
 579        int err = -EBUSY;
 580
 581        /* lock against __dma_request_channel */
 582        mutex_lock(&dma_list_mutex);
 583
 584        if (chan->client_count == 0) {
 585                struct dma_device *device = chan->device;
 586
 587                dma_cap_set(DMA_PRIVATE, device->cap_mask);
 588                device->privatecnt++;
 589                err = dma_chan_get(chan);
 590                if (err) {
 591                        dev_dbg(chan->device->dev,
 592                                "%s: failed to get %s: (%d)\n",
 593                                __func__, dma_chan_name(chan), err);
 594                        chan = NULL;
 595                        if (--device->privatecnt == 0)
 596                                dma_cap_clear(DMA_PRIVATE, device->cap_mask);
 597                }
 598        } else
 599                chan = NULL;
 600
 601        mutex_unlock(&dma_list_mutex);
 602
 603
 604        return chan;
 605}
 606EXPORT_SYMBOL_GPL(dma_get_slave_channel);
 607
 608struct dma_chan *dma_get_any_slave_channel(struct dma_device *device)
 609{
 610        dma_cap_mask_t mask;
 611        struct dma_chan *chan;
 612
 613        dma_cap_zero(mask);
 614        dma_cap_set(DMA_SLAVE, mask);
 615
 616        /* lock against __dma_request_channel */
 617        mutex_lock(&dma_list_mutex);
 618
 619        chan = find_candidate(device, &mask, NULL, NULL);
 620
 621        mutex_unlock(&dma_list_mutex);
 622
 623        return IS_ERR(chan) ? NULL : chan;
 624}
 625EXPORT_SYMBOL_GPL(dma_get_any_slave_channel);
 626
 627/**
 628 * __dma_request_channel - try to allocate an exclusive channel
 629 * @mask: capabilities that the channel must satisfy
 630 * @fn: optional callback to disposition available channels
 631 * @fn_param: opaque parameter to pass to dma_filter_fn
 632 * @np: device node to look for DMA channels
 633 *
 634 * Returns pointer to appropriate DMA channel on success or NULL.
 635 */
 636struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
 637                                       dma_filter_fn fn, void *fn_param,
 638                                       struct device_node *np)
 639{
 640        struct dma_device *device, *_d;
 641        struct dma_chan *chan = NULL;
 642
 643        /* Find a channel */
 644        mutex_lock(&dma_list_mutex);
 645        list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
 646                /* Finds a DMA controller with matching device node */
 647                if (np && device->dev->of_node && np != device->dev->of_node)
 648                        continue;
 649
 650                chan = find_candidate(device, mask, fn, fn_param);
 651                if (!IS_ERR(chan))
 652                        break;
 653
 654                chan = NULL;
 655        }
 656        mutex_unlock(&dma_list_mutex);
 657
 658        pr_debug("%s: %s (%s)\n",
 659                 __func__,
 660                 chan ? "success" : "fail",
 661                 chan ? dma_chan_name(chan) : NULL);
 662
 663        return chan;
 664}
 665EXPORT_SYMBOL_GPL(__dma_request_channel);
 666
 667static const struct dma_slave_map *dma_filter_match(struct dma_device *device,
 668                                                    const char *name,
 669                                                    struct device *dev)
 670{
 671        int i;
 672
 673        if (!device->filter.mapcnt)
 674                return NULL;
 675
 676        for (i = 0; i < device->filter.mapcnt; i++) {
 677                const struct dma_slave_map *map = &device->filter.map[i];
 678
 679                if (!strcmp(map->devname, dev_name(dev)) &&
 680                    !strcmp(map->slave, name))
 681                        return map;
 682        }
 683
 684        return NULL;
 685}
 686
 687/**
 688 * dma_request_chan - try to allocate an exclusive slave channel
 689 * @dev:        pointer to client device structure
 690 * @name:       slave channel name
 691 *
 692 * Returns pointer to appropriate DMA channel on success or an error pointer.
 693 */
 694struct dma_chan *dma_request_chan(struct device *dev, const char *name)
 695{
 696        struct dma_device *d, *_d;
 697        struct dma_chan *chan = NULL;
 698
 699        /* If device-tree is present get slave info from here */
 700        if (dev->of_node)
 701                chan = of_dma_request_slave_channel(dev->of_node, name);
 702
 703        /* If device was enumerated by ACPI get slave info from here */
 704        if (has_acpi_companion(dev) && !chan)
 705                chan = acpi_dma_request_slave_chan_by_name(dev, name);
 706
 707        if (chan) {
 708                /* Valid channel found or requester needs to be deferred */
 709                if (!IS_ERR(chan) || PTR_ERR(chan) == -EPROBE_DEFER)
 710                        return chan;
 711        }
 712
 713        /* Try to find the channel via the DMA filter map(s) */
 714        mutex_lock(&dma_list_mutex);
 715        list_for_each_entry_safe(d, _d, &dma_device_list, global_node) {
 716                dma_cap_mask_t mask;
 717                const struct dma_slave_map *map = dma_filter_match(d, name, dev);
 718
 719                if (!map)
 720                        continue;
 721
 722                dma_cap_zero(mask);
 723                dma_cap_set(DMA_SLAVE, mask);
 724
 725                chan = find_candidate(d, &mask, d->filter.fn, map->param);
 726                if (!IS_ERR(chan))
 727                        break;
 728        }
 729        mutex_unlock(&dma_list_mutex);
 730
 731        return chan ? chan : ERR_PTR(-EPROBE_DEFER);
 732}
 733EXPORT_SYMBOL_GPL(dma_request_chan);
 734
 735/**
 736 * dma_request_slave_channel - try to allocate an exclusive slave channel
 737 * @dev:        pointer to client device structure
 738 * @name:       slave channel name
 739 *
 740 * Returns pointer to appropriate DMA channel on success or NULL.
 741 */
 742struct dma_chan *dma_request_slave_channel(struct device *dev,
 743                                           const char *name)
 744{
 745        struct dma_chan *ch = dma_request_chan(dev, name);
 746        if (IS_ERR(ch))
 747                return NULL;
 748
 749        return ch;
 750}
 751EXPORT_SYMBOL_GPL(dma_request_slave_channel);
 752
 753/**
 754 * dma_request_chan_by_mask - allocate a channel satisfying certain capabilities
 755 * @mask: capabilities that the channel must satisfy
 756 *
 757 * Returns pointer to appropriate DMA channel on success or an error pointer.
 758 */
 759struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask)
 760{
 761        struct dma_chan *chan;
 762
 763        if (!mask)
 764                return ERR_PTR(-ENODEV);
 765
 766        chan = __dma_request_channel(mask, NULL, NULL, NULL);
 767        if (!chan) {
 768                mutex_lock(&dma_list_mutex);
 769                if (list_empty(&dma_device_list))
 770                        chan = ERR_PTR(-EPROBE_DEFER);
 771                else
 772                        chan = ERR_PTR(-ENODEV);
 773                mutex_unlock(&dma_list_mutex);
 774        }
 775
 776        return chan;
 777}
 778EXPORT_SYMBOL_GPL(dma_request_chan_by_mask);
 779
 780void dma_release_channel(struct dma_chan *chan)
 781{
 782        mutex_lock(&dma_list_mutex);
 783        WARN_ONCE(chan->client_count != 1,
 784                  "chan reference count %d != 1\n", chan->client_count);
 785        dma_chan_put(chan);
 786        /* drop PRIVATE cap enabled by __dma_request_channel() */
 787        if (--chan->device->privatecnt == 0)
 788                dma_cap_clear(DMA_PRIVATE, chan->device->cap_mask);
 789        mutex_unlock(&dma_list_mutex);
 790}
 791EXPORT_SYMBOL_GPL(dma_release_channel);
 792
 793/**
 794 * dmaengine_get - register interest in dma_channels
 795 */
 796void dmaengine_get(void)
 797{
 798        struct dma_device *device, *_d;
 799        struct dma_chan *chan;
 800        int err;
 801
 802        mutex_lock(&dma_list_mutex);
 803        dmaengine_ref_count++;
 804
 805        /* try to grab channels */
 806        list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
 807                if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
 808                        continue;
 809                list_for_each_entry(chan, &device->channels, device_node) {
 810                        err = dma_chan_get(chan);
 811                        if (err == -ENODEV) {
 812                                /* module removed before we could use it */
 813                                list_del_rcu(&device->global_node);
 814                                break;
 815                        } else if (err)
 816                                dev_dbg(chan->device->dev,
 817                                        "%s: failed to get %s: (%d)\n",
 818                                        __func__, dma_chan_name(chan), err);
 819                }
 820        }
 821
 822        /* if this is the first reference and there were channels
 823         * waiting we need to rebalance to get those channels
 824         * incorporated into the channel table
 825         */
 826        if (dmaengine_ref_count == 1)
 827                dma_channel_rebalance();
 828        mutex_unlock(&dma_list_mutex);
 829}
 830EXPORT_SYMBOL(dmaengine_get);
 831
 832/**
 833 * dmaengine_put - let dma drivers be removed when ref_count == 0
 834 */
 835void dmaengine_put(void)
 836{
 837        struct dma_device *device;
 838        struct dma_chan *chan;
 839
 840        mutex_lock(&dma_list_mutex);
 841        dmaengine_ref_count--;
 842        BUG_ON(dmaengine_ref_count < 0);
 843        /* drop channel references */
 844        list_for_each_entry(device, &dma_device_list, global_node) {
 845                if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
 846                        continue;
 847                list_for_each_entry(chan, &device->channels, device_node)
 848                        dma_chan_put(chan);
 849        }
 850        mutex_unlock(&dma_list_mutex);
 851}
 852EXPORT_SYMBOL(dmaengine_put);
 853
 854static bool device_has_all_tx_types(struct dma_device *device)
 855{
 856        /* A device that satisfies this test has channels that will never cause
 857         * an async_tx channel switch event as all possible operation types can
 858         * be handled.
 859         */
 860        #ifdef CONFIG_ASYNC_TX_DMA
 861        if (!dma_has_cap(DMA_INTERRUPT, device->cap_mask))
 862                return false;
 863        #endif
 864
 865        #if IS_ENABLED(CONFIG_ASYNC_MEMCPY)
 866        if (!dma_has_cap(DMA_MEMCPY, device->cap_mask))
 867                return false;
 868        #endif
 869
 870        #if IS_ENABLED(CONFIG_ASYNC_XOR)
 871        if (!dma_has_cap(DMA_XOR, device->cap_mask))
 872                return false;
 873
 874        #ifndef CONFIG_ASYNC_TX_DISABLE_XOR_VAL_DMA
 875        if (!dma_has_cap(DMA_XOR_VAL, device->cap_mask))
 876                return false;
 877        #endif
 878        #endif
 879
 880        #if IS_ENABLED(CONFIG_ASYNC_PQ)
 881        if (!dma_has_cap(DMA_PQ, device->cap_mask))
 882                return false;
 883
 884        #ifndef CONFIG_ASYNC_TX_DISABLE_PQ_VAL_DMA
 885        if (!dma_has_cap(DMA_PQ_VAL, device->cap_mask))
 886                return false;
 887        #endif
 888        #endif
 889
 890        return true;
 891}
 892
 893static int get_dma_id(struct dma_device *device)
 894{
 895        int rc = ida_alloc(&dma_ida, GFP_KERNEL);
 896
 897        if (rc < 0)
 898                return rc;
 899        device->dev_id = rc;
 900        return 0;
 901}
 902
 903/**
 904 * dma_async_device_register - registers DMA devices found
 905 * @device: &dma_device
 906 */
 907int dma_async_device_register(struct dma_device *device)
 908{
 909        int chancnt = 0, rc;
 910        struct dma_chan* chan;
 911        atomic_t *idr_ref;
 912
 913        if (!device)
 914                return -ENODEV;
 915
 916        /* validate device routines */
 917        if (!device->dev) {
 918                pr_err("DMAdevice must have dev\n");
 919                return -EIO;
 920        }
 921
 922        if (dma_has_cap(DMA_MEMCPY, device->cap_mask) && !device->device_prep_dma_memcpy) {
 923                dev_err(device->dev,
 924                        "Device claims capability %s, but op is not defined\n",
 925                        "DMA_MEMCPY");
 926                return -EIO;
 927        }
 928
 929        if (dma_has_cap(DMA_XOR, device->cap_mask) && !device->device_prep_dma_xor) {
 930                dev_err(device->dev,
 931                        "Device claims capability %s, but op is not defined\n",
 932                        "DMA_XOR");
 933                return -EIO;
 934        }
 935
 936        if (dma_has_cap(DMA_XOR_VAL, device->cap_mask) && !device->device_prep_dma_xor_val) {
 937                dev_err(device->dev,
 938                        "Device claims capability %s, but op is not defined\n",
 939                        "DMA_XOR_VAL");
 940                return -EIO;
 941        }
 942
 943        if (dma_has_cap(DMA_PQ, device->cap_mask) && !device->device_prep_dma_pq) {
 944                dev_err(device->dev,
 945                        "Device claims capability %s, but op is not defined\n",
 946                        "DMA_PQ");
 947                return -EIO;
 948        }
 949
 950        if (dma_has_cap(DMA_PQ_VAL, device->cap_mask) && !device->device_prep_dma_pq_val) {
 951                dev_err(device->dev,
 952                        "Device claims capability %s, but op is not defined\n",
 953                        "DMA_PQ_VAL");
 954                return -EIO;
 955        }
 956
 957        if (dma_has_cap(DMA_MEMSET, device->cap_mask) && !device->device_prep_dma_memset) {
 958                dev_err(device->dev,
 959                        "Device claims capability %s, but op is not defined\n",
 960                        "DMA_MEMSET");
 961                return -EIO;
 962        }
 963
 964        if (dma_has_cap(DMA_INTERRUPT, device->cap_mask) && !device->device_prep_dma_interrupt) {
 965                dev_err(device->dev,
 966                        "Device claims capability %s, but op is not defined\n",
 967                        "DMA_INTERRUPT");
 968                return -EIO;
 969        }
 970
 971        if (dma_has_cap(DMA_CYCLIC, device->cap_mask) && !device->device_prep_dma_cyclic) {
 972                dev_err(device->dev,
 973                        "Device claims capability %s, but op is not defined\n",
 974                        "DMA_CYCLIC");
 975                return -EIO;
 976        }
 977
 978        if (dma_has_cap(DMA_INTERLEAVE, device->cap_mask) && !device->device_prep_interleaved_dma) {
 979                dev_err(device->dev,
 980                        "Device claims capability %s, but op is not defined\n",
 981                        "DMA_INTERLEAVE");
 982                return -EIO;
 983        }
 984
 985
 986        if (!device->device_tx_status) {
 987                dev_err(device->dev, "Device tx_status is not defined\n");
 988                return -EIO;
 989        }
 990
 991
 992        if (!device->device_issue_pending) {
 993                dev_err(device->dev, "Device issue_pending is not defined\n");
 994                return -EIO;
 995        }
 996
 997        /* note: this only matters in the
 998         * CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH=n case
 999         */
1000        if (device_has_all_tx_types(device))
1001                dma_cap_set(DMA_ASYNC_TX, device->cap_mask);
1002
1003        idr_ref = kmalloc(sizeof(*idr_ref), GFP_KERNEL);
1004        if (!idr_ref)
1005                return -ENOMEM;
1006        rc = get_dma_id(device);
1007        if (rc != 0) {
1008                kfree(idr_ref);
1009                return rc;
1010        }
1011
1012        atomic_set(idr_ref, 0);
1013
1014        /* represent channels in sysfs. Probably want devs too */
1015        list_for_each_entry(chan, &device->channels, device_node) {
1016                rc = -ENOMEM;
1017                chan->local = alloc_percpu(typeof(*chan->local));
1018                if (chan->local == NULL)
1019                        goto err_out;
1020                chan->dev = kzalloc(sizeof(*chan->dev), GFP_KERNEL);
1021                if (chan->dev == NULL) {
1022                        free_percpu(chan->local);
1023                        chan->local = NULL;
1024                        goto err_out;
1025                }
1026
1027                chan->chan_id = chancnt++;
1028                chan->dev->device.class = &dma_devclass;
1029                chan->dev->device.parent = device->dev;
1030                chan->dev->chan = chan;
1031                chan->dev->idr_ref = idr_ref;
1032                chan->dev->dev_id = device->dev_id;
1033                atomic_inc(idr_ref);
1034                dev_set_name(&chan->dev->device, "dma%dchan%d",
1035                             device->dev_id, chan->chan_id);
1036
1037                rc = device_register(&chan->dev->device);
1038                if (rc) {
1039                        free_percpu(chan->local);
1040                        chan->local = NULL;
1041                        kfree(chan->dev);
1042                        atomic_dec(idr_ref);
1043                        goto err_out;
1044                }
1045                chan->client_count = 0;
1046        }
1047
1048        if (!chancnt) {
1049                dev_err(device->dev, "%s: device has no channels!\n", __func__);
1050                rc = -ENODEV;
1051                goto err_out;
1052        }
1053
1054        device->chancnt = chancnt;
1055
1056        mutex_lock(&dma_list_mutex);
1057        /* take references on public channels */
1058        if (dmaengine_ref_count && !dma_has_cap(DMA_PRIVATE, device->cap_mask))
1059                list_for_each_entry(chan, &device->channels, device_node) {
1060                        /* if clients are already waiting for channels we need
1061                         * to take references on their behalf
1062                         */
1063                        if (dma_chan_get(chan) == -ENODEV) {
1064                                /* note we can only get here for the first
1065                                 * channel as the remaining channels are
1066                                 * guaranteed to get a reference
1067                                 */
1068                                rc = -ENODEV;
1069                                mutex_unlock(&dma_list_mutex);
1070                                goto err_out;
1071                        }
1072                }
1073        list_add_tail_rcu(&device->global_node, &dma_device_list);
1074        if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
1075                device->privatecnt++;   /* Always private */
1076        dma_channel_rebalance();
1077        mutex_unlock(&dma_list_mutex);
1078
1079        return 0;
1080
1081err_out:
1082        /* if we never registered a channel just release the idr */
1083        if (atomic_read(idr_ref) == 0) {
1084                ida_free(&dma_ida, device->dev_id);
1085                kfree(idr_ref);
1086                return rc;
1087        }
1088
1089        list_for_each_entry(chan, &device->channels, device_node) {
1090                if (chan->local == NULL)
1091                        continue;
1092                mutex_lock(&dma_list_mutex);
1093                chan->dev->chan = NULL;
1094                mutex_unlock(&dma_list_mutex);
1095                device_unregister(&chan->dev->device);
1096                free_percpu(chan->local);
1097        }
1098        return rc;
1099}
1100EXPORT_SYMBOL(dma_async_device_register);
1101
1102/**
1103 * dma_async_device_unregister - unregister a DMA device
1104 * @device: &dma_device
1105 *
1106 * This routine is called by dma driver exit routines, dmaengine holds module
1107 * references to prevent it being called while channels are in use.
1108 */
1109void dma_async_device_unregister(struct dma_device *device)
1110{
1111        struct dma_chan *chan;
1112
1113        mutex_lock(&dma_list_mutex);
1114        list_del_rcu(&device->global_node);
1115        dma_channel_rebalance();
1116        mutex_unlock(&dma_list_mutex);
1117
1118        list_for_each_entry(chan, &device->channels, device_node) {
1119                WARN_ONCE(chan->client_count,
1120                          "%s called while %d clients hold a reference\n",
1121                          __func__, chan->client_count);
1122                mutex_lock(&dma_list_mutex);
1123                chan->dev->chan = NULL;
1124                mutex_unlock(&dma_list_mutex);
1125                device_unregister(&chan->dev->device);
1126                free_percpu(chan->local);
1127        }
1128}
1129EXPORT_SYMBOL(dma_async_device_unregister);
1130
1131static void dmam_device_release(struct device *dev, void *res)
1132{
1133        struct dma_device *device;
1134
1135        device = *(struct dma_device **)res;
1136        dma_async_device_unregister(device);
1137}
1138
1139/**
1140 * dmaenginem_async_device_register - registers DMA devices found
1141 * @device: &dma_device
1142 *
1143 * The operation is managed and will be undone on driver detach.
1144 */
1145int dmaenginem_async_device_register(struct dma_device *device)
1146{
1147        void *p;
1148        int ret;
1149
1150        p = devres_alloc(dmam_device_release, sizeof(void *), GFP_KERNEL);
1151        if (!p)
1152                return -ENOMEM;
1153
1154        ret = dma_async_device_register(device);
1155        if (!ret) {
1156                *(struct dma_device **)p = device;
1157                devres_add(device->dev, p);
1158        } else {
1159                devres_free(p);
1160        }
1161
1162        return ret;
1163}
1164EXPORT_SYMBOL(dmaenginem_async_device_register);
1165
1166struct dmaengine_unmap_pool {
1167        struct kmem_cache *cache;
1168        const char *name;
1169        mempool_t *pool;
1170        size_t size;
1171};
1172
1173#define __UNMAP_POOL(x) { .size = x, .name = "dmaengine-unmap-" __stringify(x) }
1174static struct dmaengine_unmap_pool unmap_pool[] = {
1175        __UNMAP_POOL(2),
1176        #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
1177        __UNMAP_POOL(16),
1178        __UNMAP_POOL(128),
1179        __UNMAP_POOL(256),
1180        #endif
1181};
1182
1183static struct dmaengine_unmap_pool *__get_unmap_pool(int nr)
1184{
1185        int order = get_count_order(nr);
1186
1187        switch (order) {
1188        case 0 ... 1:
1189                return &unmap_pool[0];
1190#if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
1191        case 2 ... 4:
1192                return &unmap_pool[1];
1193        case 5 ... 7:
1194                return &unmap_pool[2];
1195        case 8:
1196                return &unmap_pool[3];
1197#endif
1198        default:
1199                BUG();
1200                return NULL;
1201        }
1202}
1203
1204static void dmaengine_unmap(struct kref *kref)
1205{
1206        struct dmaengine_unmap_data *unmap = container_of(kref, typeof(*unmap), kref);
1207        struct device *dev = unmap->dev;
1208        int cnt, i;
1209
1210        cnt = unmap->to_cnt;
1211        for (i = 0; i < cnt; i++)
1212                dma_unmap_page(dev, unmap->addr[i], unmap->len,
1213                               DMA_TO_DEVICE);
1214        cnt += unmap->from_cnt;
1215        for (; i < cnt; i++)
1216                dma_unmap_page(dev, unmap->addr[i], unmap->len,
1217                               DMA_FROM_DEVICE);
1218        cnt += unmap->bidi_cnt;
1219        for (; i < cnt; i++) {
1220                if (unmap->addr[i] == 0)
1221                        continue;
1222                dma_unmap_page(dev, unmap->addr[i], unmap->len,
1223                               DMA_BIDIRECTIONAL);
1224        }
1225        cnt = unmap->map_cnt;
1226        mempool_free(unmap, __get_unmap_pool(cnt)->pool);
1227}
1228
1229void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
1230{
1231        if (unmap)
1232                kref_put(&unmap->kref, dmaengine_unmap);
1233}
1234EXPORT_SYMBOL_GPL(dmaengine_unmap_put);
1235
1236static void dmaengine_destroy_unmap_pool(void)
1237{
1238        int i;
1239
1240        for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) {
1241                struct dmaengine_unmap_pool *p = &unmap_pool[i];
1242
1243                mempool_destroy(p->pool);
1244                p->pool = NULL;
1245                kmem_cache_destroy(p->cache);
1246                p->cache = NULL;
1247        }
1248}
1249
1250static int __init dmaengine_init_unmap_pool(void)
1251{
1252        int i;
1253
1254        for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) {
1255                struct dmaengine_unmap_pool *p = &unmap_pool[i];
1256                size_t size;
1257
1258                size = sizeof(struct dmaengine_unmap_data) +
1259                       sizeof(dma_addr_t) * p->size;
1260
1261                p->cache = kmem_cache_create(p->name, size, 0,
1262                                             SLAB_HWCACHE_ALIGN, NULL);
1263                if (!p->cache)
1264                        break;
1265                p->pool = mempool_create_slab_pool(1, p->cache);
1266                if (!p->pool)
1267                        break;
1268        }
1269
1270        if (i == ARRAY_SIZE(unmap_pool))
1271                return 0;
1272
1273        dmaengine_destroy_unmap_pool();
1274        return -ENOMEM;
1275}
1276
1277struct dmaengine_unmap_data *
1278dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
1279{
1280        struct dmaengine_unmap_data *unmap;
1281
1282        unmap = mempool_alloc(__get_unmap_pool(nr)->pool, flags);
1283        if (!unmap)
1284                return NULL;
1285
1286        memset(unmap, 0, sizeof(*unmap));
1287        kref_init(&unmap->kref);
1288        unmap->dev = dev;
1289        unmap->map_cnt = nr;
1290
1291        return unmap;
1292}
1293EXPORT_SYMBOL(dmaengine_get_unmap_data);
1294
1295void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
1296        struct dma_chan *chan)
1297{
1298        tx->chan = chan;
1299        #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
1300        spin_lock_init(&tx->lock);
1301        #endif
1302}
1303EXPORT_SYMBOL(dma_async_tx_descriptor_init);
1304
1305/* dma_wait_for_async_tx - spin wait for a transaction to complete
1306 * @tx: in-flight transaction to wait on
1307 */
1308enum dma_status
1309dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1310{
1311        unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
1312
1313        if (!tx)
1314                return DMA_COMPLETE;
1315
1316        while (tx->cookie == -EBUSY) {
1317                if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
1318                        dev_err(tx->chan->device->dev,
1319                                "%s timeout waiting for descriptor submission\n",
1320                                __func__);
1321                        return DMA_ERROR;
1322                }
1323                cpu_relax();
1324        }
1325        return dma_sync_wait(tx->chan, tx->cookie);
1326}
1327EXPORT_SYMBOL_GPL(dma_wait_for_async_tx);
1328
1329/* dma_run_dependencies - helper routine for dma drivers to process
1330 *      (start) dependent operations on their target channel
1331 * @tx: transaction with dependencies
1332 */
1333void dma_run_dependencies(struct dma_async_tx_descriptor *tx)
1334{
1335        struct dma_async_tx_descriptor *dep = txd_next(tx);
1336        struct dma_async_tx_descriptor *dep_next;
1337        struct dma_chan *chan;
1338
1339        if (!dep)
1340                return;
1341
1342        /* we'll submit tx->next now, so clear the link */
1343        txd_clear_next(tx);
1344        chan = dep->chan;
1345
1346        /* keep submitting up until a channel switch is detected
1347         * in that case we will be called again as a result of
1348         * processing the interrupt from async_tx_channel_switch
1349         */
1350        for (; dep; dep = dep_next) {
1351                txd_lock(dep);
1352                txd_clear_parent(dep);
1353                dep_next = txd_next(dep);
1354                if (dep_next && dep_next->chan == chan)
1355                        txd_clear_next(dep); /* ->next will be submitted */
1356                else
1357                        dep_next = NULL; /* submit current dep and terminate */
1358                txd_unlock(dep);
1359
1360                dep->tx_submit(dep);
1361        }
1362
1363        chan->device->device_issue_pending(chan);
1364}
1365EXPORT_SYMBOL_GPL(dma_run_dependencies);
1366
1367static int __init dma_bus_init(void)
1368{
1369        int err = dmaengine_init_unmap_pool();
1370
1371        if (err)
1372                return err;
1373        return class_register(&dma_devclass);
1374}
1375arch_initcall(dma_bus_init);
1376
1377
1378