linux/drivers/dma/mediatek/mtk-hsdma.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2// Copyright (c) 2017-2018 MediaTek Inc.
   3
   4/*
   5 * Driver for MediaTek High-Speed DMA Controller
   6 *
   7 * Author: Sean Wang <sean.wang@mediatek.com>
   8 *
   9 */
  10
  11#include <linux/bitops.h>
  12#include <linux/clk.h>
  13#include <linux/dmaengine.h>
  14#include <linux/dma-mapping.h>
  15#include <linux/err.h>
  16#include <linux/iopoll.h>
  17#include <linux/list.h>
  18#include <linux/module.h>
  19#include <linux/of.h>
  20#include <linux/of_device.h>
  21#include <linux/of_dma.h>
  22#include <linux/platform_device.h>
  23#include <linux/pm_runtime.h>
  24#include <linux/refcount.h>
  25#include <linux/slab.h>
  26
  27#include "../virt-dma.h"
  28
  29#define MTK_HSDMA_USEC_POLL             20
  30#define MTK_HSDMA_TIMEOUT_POLL          200000
  31#define MTK_HSDMA_DMA_BUSWIDTHS         BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)
  32
  33/* The default number of virtual channel */
  34#define MTK_HSDMA_NR_VCHANS             3
  35
  36/* Only one physical channel supported */
  37#define MTK_HSDMA_NR_MAX_PCHANS         1
  38
  39/* Macro for physical descriptor (PD) manipulation */
  40/* The number of PD which must be 2 of power */
  41#define MTK_DMA_SIZE                    64
  42#define MTK_HSDMA_NEXT_DESP_IDX(x, y)   (((x) + 1) & ((y) - 1))
  43#define MTK_HSDMA_LAST_DESP_IDX(x, y)   (((x) - 1) & ((y) - 1))
  44#define MTK_HSDMA_MAX_LEN               0x3f80
  45#define MTK_HSDMA_ALIGN_SIZE            4
  46#define MTK_HSDMA_PLEN_MASK             0x3fff
  47#define MTK_HSDMA_DESC_PLEN(x)          (((x) & MTK_HSDMA_PLEN_MASK) << 16)
  48#define MTK_HSDMA_DESC_PLEN_GET(x)      (((x) >> 16) & MTK_HSDMA_PLEN_MASK)
  49
  50/* Registers for underlying ring manipulation */
  51#define MTK_HSDMA_TX_BASE               0x0
  52#define MTK_HSDMA_TX_CNT                0x4
  53#define MTK_HSDMA_TX_CPU                0x8
  54#define MTK_HSDMA_TX_DMA                0xc
  55#define MTK_HSDMA_RX_BASE               0x100
  56#define MTK_HSDMA_RX_CNT                0x104
  57#define MTK_HSDMA_RX_CPU                0x108
  58#define MTK_HSDMA_RX_DMA                0x10c
  59
  60/* Registers for global setup */
  61#define MTK_HSDMA_GLO                   0x204
  62#define MTK_HSDMA_GLO_MULTI_DMA         BIT(10)
  63#define MTK_HSDMA_TX_WB_DDONE           BIT(6)
  64#define MTK_HSDMA_BURST_64BYTES         (0x2 << 4)
  65#define MTK_HSDMA_GLO_RX_BUSY           BIT(3)
  66#define MTK_HSDMA_GLO_RX_DMA            BIT(2)
  67#define MTK_HSDMA_GLO_TX_BUSY           BIT(1)
  68#define MTK_HSDMA_GLO_TX_DMA            BIT(0)
  69#define MTK_HSDMA_GLO_DMA               (MTK_HSDMA_GLO_TX_DMA | \
  70                                         MTK_HSDMA_GLO_RX_DMA)
  71#define MTK_HSDMA_GLO_BUSY              (MTK_HSDMA_GLO_RX_BUSY | \
  72                                         MTK_HSDMA_GLO_TX_BUSY)
  73#define MTK_HSDMA_GLO_DEFAULT           (MTK_HSDMA_GLO_TX_DMA | \
  74                                         MTK_HSDMA_GLO_RX_DMA | \
  75                                         MTK_HSDMA_TX_WB_DDONE | \
  76                                         MTK_HSDMA_BURST_64BYTES | \
  77                                         MTK_HSDMA_GLO_MULTI_DMA)
  78
  79/* Registers for reset */
  80#define MTK_HSDMA_RESET                 0x208
  81#define MTK_HSDMA_RST_TX                BIT(0)
  82#define MTK_HSDMA_RST_RX                BIT(16)
  83
  84/* Registers for interrupt control */
  85#define MTK_HSDMA_DLYINT                0x20c
  86#define MTK_HSDMA_RXDLY_INT_EN          BIT(15)
  87
  88/* Interrupt fires when the pending number's more than the specified */
  89#define MTK_HSDMA_RXMAX_PINT(x)         (((x) & 0x7f) << 8)
  90
  91/* Interrupt fires when the pending time's more than the specified in 20 us */
  92#define MTK_HSDMA_RXMAX_PTIME(x)        ((x) & 0x7f)
  93#define MTK_HSDMA_DLYINT_DEFAULT        (MTK_HSDMA_RXDLY_INT_EN | \
  94                                         MTK_HSDMA_RXMAX_PINT(20) | \
  95                                         MTK_HSDMA_RXMAX_PTIME(20))
  96#define MTK_HSDMA_INT_STATUS            0x220
  97#define MTK_HSDMA_INT_ENABLE            0x228
  98#define MTK_HSDMA_INT_RXDONE            BIT(16)
  99
 100enum mtk_hsdma_vdesc_flag {
 101        MTK_HSDMA_VDESC_FINISHED        = 0x01,
 102};
 103
 104#define IS_MTK_HSDMA_VDESC_FINISHED(x) ((x) == MTK_HSDMA_VDESC_FINISHED)
 105
 106/**
 107 * struct mtk_hsdma_pdesc - This is the struct holding info describing physical
 108 *                          descriptor (PD) and its placement must be kept at
 109 *                          4-bytes alignment in little endian order.
 110 * @desc[1-4]:              The control pad used to indicate hardware how to
 111 *                          deal with the descriptor such as source and
 112 *                          destination address and data length. The maximum
 113 *                          data length each pdesc can handle is 0x3f80 bytes
 114 */
 115struct mtk_hsdma_pdesc {
 116        __le32 desc1;
 117        __le32 desc2;
 118        __le32 desc3;
 119        __le32 desc4;
 120} __packed __aligned(4);
 121
 122/**
 123 * struct mtk_hsdma_vdesc - This is the struct holding info describing virtual
 124 *                          descriptor (VD)
 125 * @vd:                     An instance for struct virt_dma_desc
 126 * @len:                    The total data size device wants to move
 127 * @residue:                The remaining data size device will move
 128 * @dest:                   The destination address device wants to move to
 129 * @src:                    The source address device wants to move from
 130 */
 131struct mtk_hsdma_vdesc {
 132        struct virt_dma_desc vd;
 133        size_t len;
 134        size_t residue;
 135        dma_addr_t dest;
 136        dma_addr_t src;
 137};
 138
 139/**
 140 * struct mtk_hsdma_cb - This is the struct holding extra info required for RX
 141 *                       ring to know what relevant VD the the PD is being
 142 *                       mapped to.
 143 * @vd:                  Pointer to the relevant VD.
 144 * @flag:                Flag indicating what action should be taken when VD
 145 *                       is completed.
 146 */
 147struct mtk_hsdma_cb {
 148        struct virt_dma_desc *vd;
 149        enum mtk_hsdma_vdesc_flag flag;
 150};
 151
 152/**
 153 * struct mtk_hsdma_ring - This struct holds info describing underlying ring
 154 *                         space
 155 * @txd:                   The descriptor TX ring which describes DMA source
 156 *                         information
 157 * @rxd:                   The descriptor RX ring which describes DMA
 158 *                         destination information
 159 * @cb:                    The extra information pointed at by RX ring
 160 * @tphys:                 The physical addr of TX ring
 161 * @rphys:                 The physical addr of RX ring
 162 * @cur_tptr:              Pointer to the next free descriptor used by the host
 163 * @cur_rptr:              Pointer to the last done descriptor by the device
 164 */
 165struct mtk_hsdma_ring {
 166        struct mtk_hsdma_pdesc *txd;
 167        struct mtk_hsdma_pdesc *rxd;
 168        struct mtk_hsdma_cb *cb;
 169        dma_addr_t tphys;
 170        dma_addr_t rphys;
 171        u16 cur_tptr;
 172        u16 cur_rptr;
 173};
 174
 175/**
 176 * struct mtk_hsdma_pchan - This is the struct holding info describing physical
 177 *                         channel (PC)
 178 * @ring:                  An instance for the underlying ring
 179 * @sz_ring:               Total size allocated for the ring
 180 * @nr_free:               Total number of free rooms in the ring. It would
 181 *                         be accessed and updated frequently between IRQ
 182 *                         context and user context to reflect whether ring
 183 *                         can accept requests from VD.
 184 */
 185struct mtk_hsdma_pchan {
 186        struct mtk_hsdma_ring ring;
 187        size_t sz_ring;
 188        atomic_t nr_free;
 189};
 190
 191/**
 192 * struct mtk_hsdma_vchan - This is the struct holding info describing virtual
 193 *                         channel (VC)
 194 * @vc:                    An instance for struct virt_dma_chan
 195 * @issue_completion:      The wait for all issued descriptors completited
 196 * @issue_synchronize:     Bool indicating channel synchronization starts
 197 * @desc_hw_processing:    List those descriptors the hardware is processing,
 198 *                         which is protected by vc.lock
 199 */
 200struct mtk_hsdma_vchan {
 201        struct virt_dma_chan vc;
 202        struct completion issue_completion;
 203        bool issue_synchronize;
 204        struct list_head desc_hw_processing;
 205};
 206
 207/**
 208 * struct mtk_hsdma_soc - This is the struct holding differences among SoCs
 209 * @ddone:                Bit mask for DDONE
 210 * @ls0:                  Bit mask for LS0
 211 */
 212struct mtk_hsdma_soc {
 213        __le32 ddone;
 214        __le32 ls0;
 215};
 216
 217/**
 218 * struct mtk_hsdma_device - This is the struct holding info describing HSDMA
 219 *                           device
 220 * @ddev:                    An instance for struct dma_device
 221 * @base:                    The mapped register I/O base
 222 * @clk:                     The clock that device internal is using
 223 * @irq:                     The IRQ that device are using
 224 * @dma_requests:            The number of VCs the device supports to
 225 * @vc:                      The pointer to all available VCs
 226 * @pc:                      The pointer to the underlying PC
 227 * @pc_refcnt:               Track how many VCs are using the PC
 228 * @lock:                    Lock protect agaisting multiple VCs access PC
 229 * @soc:                     The pointer to area holding differences among
 230 *                           vaious platform
 231 */
 232struct mtk_hsdma_device {
 233        struct dma_device ddev;
 234        void __iomem *base;
 235        struct clk *clk;
 236        u32 irq;
 237
 238        u32 dma_requests;
 239        struct mtk_hsdma_vchan *vc;
 240        struct mtk_hsdma_pchan *pc;
 241        refcount_t pc_refcnt;
 242
 243        /* Lock used to protect against multiple VCs access PC */
 244        spinlock_t lock;
 245
 246        const struct mtk_hsdma_soc *soc;
 247};
 248
 249static struct mtk_hsdma_device *to_hsdma_dev(struct dma_chan *chan)
 250{
 251        return container_of(chan->device, struct mtk_hsdma_device, ddev);
 252}
 253
 254static inline struct mtk_hsdma_vchan *to_hsdma_vchan(struct dma_chan *chan)
 255{
 256        return container_of(chan, struct mtk_hsdma_vchan, vc.chan);
 257}
 258
 259static struct mtk_hsdma_vdesc *to_hsdma_vdesc(struct virt_dma_desc *vd)
 260{
 261        return container_of(vd, struct mtk_hsdma_vdesc, vd);
 262}
 263
 264static struct device *hsdma2dev(struct mtk_hsdma_device *hsdma)
 265{
 266        return hsdma->ddev.dev;
 267}
 268
 269static u32 mtk_dma_read(struct mtk_hsdma_device *hsdma, u32 reg)
 270{
 271        return readl(hsdma->base + reg);
 272}
 273
 274static void mtk_dma_write(struct mtk_hsdma_device *hsdma, u32 reg, u32 val)
 275{
 276        writel(val, hsdma->base + reg);
 277}
 278
 279static void mtk_dma_rmw(struct mtk_hsdma_device *hsdma, u32 reg,
 280                        u32 mask, u32 set)
 281{
 282        u32 val;
 283
 284        val = mtk_dma_read(hsdma, reg);
 285        val &= ~mask;
 286        val |= set;
 287        mtk_dma_write(hsdma, reg, val);
 288}
 289
 290static void mtk_dma_set(struct mtk_hsdma_device *hsdma, u32 reg, u32 val)
 291{
 292        mtk_dma_rmw(hsdma, reg, 0, val);
 293}
 294
 295static void mtk_dma_clr(struct mtk_hsdma_device *hsdma, u32 reg, u32 val)
 296{
 297        mtk_dma_rmw(hsdma, reg, val, 0);
 298}
 299
 300static void mtk_hsdma_vdesc_free(struct virt_dma_desc *vd)
 301{
 302        kfree(container_of(vd, struct mtk_hsdma_vdesc, vd));
 303}
 304
 305static int mtk_hsdma_busy_wait(struct mtk_hsdma_device *hsdma)
 306{
 307        u32 status = 0;
 308
 309        return readl_poll_timeout(hsdma->base + MTK_HSDMA_GLO, status,
 310                                  !(status & MTK_HSDMA_GLO_BUSY),
 311                                  MTK_HSDMA_USEC_POLL,
 312                                  MTK_HSDMA_TIMEOUT_POLL);
 313}
 314
 315static int mtk_hsdma_alloc_pchan(struct mtk_hsdma_device *hsdma,
 316                                 struct mtk_hsdma_pchan *pc)
 317{
 318        struct mtk_hsdma_ring *ring = &pc->ring;
 319        int err;
 320
 321        memset(pc, 0, sizeof(*pc));
 322
 323        /*
 324         * Allocate ring space where [0 ... MTK_DMA_SIZE - 1] is for TX ring
 325         * and [MTK_DMA_SIZE ... 2 * MTK_DMA_SIZE - 1] is for RX ring.
 326         */
 327        pc->sz_ring = 2 * MTK_DMA_SIZE * sizeof(*ring->txd);
 328        ring->txd = dma_alloc_coherent(hsdma2dev(hsdma), pc->sz_ring,
 329                                       &ring->tphys, GFP_NOWAIT);
 330        if (!ring->txd)
 331                return -ENOMEM;
 332
 333        ring->rxd = &ring->txd[MTK_DMA_SIZE];
 334        ring->rphys = ring->tphys + MTK_DMA_SIZE * sizeof(*ring->txd);
 335        ring->cur_tptr = 0;
 336        ring->cur_rptr = MTK_DMA_SIZE - 1;
 337
 338        ring->cb = kcalloc(MTK_DMA_SIZE, sizeof(*ring->cb), GFP_NOWAIT);
 339        if (!ring->cb) {
 340                err = -ENOMEM;
 341                goto err_free_dma;
 342        }
 343
 344        atomic_set(&pc->nr_free, MTK_DMA_SIZE - 1);
 345
 346        /* Disable HSDMA and wait for the completion */
 347        mtk_dma_clr(hsdma, MTK_HSDMA_GLO, MTK_HSDMA_GLO_DMA);
 348        err = mtk_hsdma_busy_wait(hsdma);
 349        if (err)
 350                goto err_free_cb;
 351
 352        /* Reset */
 353        mtk_dma_set(hsdma, MTK_HSDMA_RESET,
 354                    MTK_HSDMA_RST_TX | MTK_HSDMA_RST_RX);
 355        mtk_dma_clr(hsdma, MTK_HSDMA_RESET,
 356                    MTK_HSDMA_RST_TX | MTK_HSDMA_RST_RX);
 357
 358        /* Setup HSDMA initial pointer in the ring */
 359        mtk_dma_write(hsdma, MTK_HSDMA_TX_BASE, ring->tphys);
 360        mtk_dma_write(hsdma, MTK_HSDMA_TX_CNT, MTK_DMA_SIZE);
 361        mtk_dma_write(hsdma, MTK_HSDMA_TX_CPU, ring->cur_tptr);
 362        mtk_dma_write(hsdma, MTK_HSDMA_TX_DMA, 0);
 363        mtk_dma_write(hsdma, MTK_HSDMA_RX_BASE, ring->rphys);
 364        mtk_dma_write(hsdma, MTK_HSDMA_RX_CNT, MTK_DMA_SIZE);
 365        mtk_dma_write(hsdma, MTK_HSDMA_RX_CPU, ring->cur_rptr);
 366        mtk_dma_write(hsdma, MTK_HSDMA_RX_DMA, 0);
 367
 368        /* Enable HSDMA */
 369        mtk_dma_set(hsdma, MTK_HSDMA_GLO, MTK_HSDMA_GLO_DMA);
 370
 371        /* Setup delayed interrupt */
 372        mtk_dma_write(hsdma, MTK_HSDMA_DLYINT, MTK_HSDMA_DLYINT_DEFAULT);
 373
 374        /* Enable interrupt */
 375        mtk_dma_set(hsdma, MTK_HSDMA_INT_ENABLE, MTK_HSDMA_INT_RXDONE);
 376
 377        return 0;
 378
 379err_free_cb:
 380        kfree(ring->cb);
 381
 382err_free_dma:
 383        dma_free_coherent(hsdma2dev(hsdma),
 384                          pc->sz_ring, ring->txd, ring->tphys);
 385        return err;
 386}
 387
 388static void mtk_hsdma_free_pchan(struct mtk_hsdma_device *hsdma,
 389                                 struct mtk_hsdma_pchan *pc)
 390{
 391        struct mtk_hsdma_ring *ring = &pc->ring;
 392
 393        /* Disable HSDMA and then wait for the completion */
 394        mtk_dma_clr(hsdma, MTK_HSDMA_GLO, MTK_HSDMA_GLO_DMA);
 395        mtk_hsdma_busy_wait(hsdma);
 396
 397        /* Reset pointer in the ring */
 398        mtk_dma_clr(hsdma, MTK_HSDMA_INT_ENABLE, MTK_HSDMA_INT_RXDONE);
 399        mtk_dma_write(hsdma, MTK_HSDMA_TX_BASE, 0);
 400        mtk_dma_write(hsdma, MTK_HSDMA_TX_CNT, 0);
 401        mtk_dma_write(hsdma, MTK_HSDMA_TX_CPU, 0);
 402        mtk_dma_write(hsdma, MTK_HSDMA_RX_BASE, 0);
 403        mtk_dma_write(hsdma, MTK_HSDMA_RX_CNT, 0);
 404        mtk_dma_write(hsdma, MTK_HSDMA_RX_CPU, MTK_DMA_SIZE - 1);
 405
 406        kfree(ring->cb);
 407
 408        dma_free_coherent(hsdma2dev(hsdma),
 409                          pc->sz_ring, ring->txd, ring->tphys);
 410}
 411
 412static int mtk_hsdma_issue_pending_vdesc(struct mtk_hsdma_device *hsdma,
 413                                         struct mtk_hsdma_pchan *pc,
 414                                         struct mtk_hsdma_vdesc *hvd)
 415{
 416        struct mtk_hsdma_ring *ring = &pc->ring;
 417        struct mtk_hsdma_pdesc *txd, *rxd;
 418        u16 reserved, prev, tlen, num_sgs;
 419        unsigned long flags;
 420
 421        /* Protect against PC is accessed by multiple VCs simultaneously */
 422        spin_lock_irqsave(&hsdma->lock, flags);
 423
 424        /*
 425         * Reserve rooms, where pc->nr_free is used to track how many free
 426         * rooms in the ring being updated in user and IRQ context.
 427         */
 428        num_sgs = DIV_ROUND_UP(hvd->len, MTK_HSDMA_MAX_LEN);
 429        reserved = min_t(u16, num_sgs, atomic_read(&pc->nr_free));
 430
 431        if (!reserved) {
 432                spin_unlock_irqrestore(&hsdma->lock, flags);
 433                return -ENOSPC;
 434        }
 435
 436        atomic_sub(reserved, &pc->nr_free);
 437
 438        while (reserved--) {
 439                /* Limit size by PD capability for valid data moving */
 440                tlen = (hvd->len > MTK_HSDMA_MAX_LEN) ?
 441                       MTK_HSDMA_MAX_LEN : hvd->len;
 442
 443                /*
 444                 * Setup PDs using the remaining VD info mapped on those
 445                 * reserved rooms. And since RXD is shared memory between the
 446                 * host and the device allocated by dma_alloc_coherent call,
 447                 * the helper macro WRITE_ONCE can ensure the data written to
 448                 * RAM would really happens.
 449                 */
 450                txd = &ring->txd[ring->cur_tptr];
 451                WRITE_ONCE(txd->desc1, hvd->src);
 452                WRITE_ONCE(txd->desc2,
 453                           hsdma->soc->ls0 | MTK_HSDMA_DESC_PLEN(tlen));
 454
 455                rxd = &ring->rxd[ring->cur_tptr];
 456                WRITE_ONCE(rxd->desc1, hvd->dest);
 457                WRITE_ONCE(rxd->desc2, MTK_HSDMA_DESC_PLEN(tlen));
 458
 459                /* Associate VD, the PD belonged to */
 460                ring->cb[ring->cur_tptr].vd = &hvd->vd;
 461
 462                /* Move forward the pointer of TX ring */
 463                ring->cur_tptr = MTK_HSDMA_NEXT_DESP_IDX(ring->cur_tptr,
 464                                                         MTK_DMA_SIZE);
 465
 466                /* Update VD with remaining data */
 467                hvd->src  += tlen;
 468                hvd->dest += tlen;
 469                hvd->len  -= tlen;
 470        }
 471
 472        /*
 473         * Tagging flag for the last PD for VD will be responsible for
 474         * completing VD.
 475         */
 476        if (!hvd->len) {
 477                prev = MTK_HSDMA_LAST_DESP_IDX(ring->cur_tptr, MTK_DMA_SIZE);
 478                ring->cb[prev].flag = MTK_HSDMA_VDESC_FINISHED;
 479        }
 480
 481        /* Ensure all changes indeed done before we're going on */
 482        wmb();
 483
 484        /*
 485         * Updating into hardware the pointer of TX ring lets HSDMA to take
 486         * action for those pending PDs.
 487         */
 488        mtk_dma_write(hsdma, MTK_HSDMA_TX_CPU, ring->cur_tptr);
 489
 490        spin_unlock_irqrestore(&hsdma->lock, flags);
 491
 492        return 0;
 493}
 494
 495static void mtk_hsdma_issue_vchan_pending(struct mtk_hsdma_device *hsdma,
 496                                          struct mtk_hsdma_vchan *hvc)
 497{
 498        struct virt_dma_desc *vd, *vd2;
 499        int err;
 500
 501        lockdep_assert_held(&hvc->vc.lock);
 502
 503        list_for_each_entry_safe(vd, vd2, &hvc->vc.desc_issued, node) {
 504                struct mtk_hsdma_vdesc *hvd;
 505
 506                hvd = to_hsdma_vdesc(vd);
 507
 508                /* Map VD into PC and all VCs shares a single PC */
 509                err = mtk_hsdma_issue_pending_vdesc(hsdma, hsdma->pc, hvd);
 510
 511                /*
 512                 * Move VD from desc_issued to desc_hw_processing when entire
 513                 * VD is fit into available PDs. Otherwise, the uncompleted
 514                 * VDs would stay in list desc_issued and then restart the
 515                 * processing as soon as possible once underlying ring space
 516                 * got freed.
 517                 */
 518                if (err == -ENOSPC || hvd->len > 0)
 519                        break;
 520
 521                /*
 522                 * The extra list desc_hw_processing is used because
 523                 * hardware can't provide sufficient information allowing us
 524                 * to know what VDs are still working on the underlying ring.
 525                 * Through the additional list, it can help us to implement
 526                 * terminate_all, residue calculation and such thing needed
 527                 * to know detail descriptor status on the hardware.
 528                 */
 529                list_move_tail(&vd->node, &hvc->desc_hw_processing);
 530        }
 531}
 532
 533static void mtk_hsdma_free_rooms_in_ring(struct mtk_hsdma_device *hsdma)
 534{
 535        struct mtk_hsdma_vchan *hvc;
 536        struct mtk_hsdma_pdesc *rxd;
 537        struct mtk_hsdma_vdesc *hvd;
 538        struct mtk_hsdma_pchan *pc;
 539        struct mtk_hsdma_cb *cb;
 540        int i = MTK_DMA_SIZE;
 541        __le32 desc2;
 542        u32 status;
 543        u16 next;
 544
 545        /* Read IRQ status */
 546        status = mtk_dma_read(hsdma, MTK_HSDMA_INT_STATUS);
 547        if (unlikely(!(status & MTK_HSDMA_INT_RXDONE)))
 548                goto rx_done;
 549
 550        pc = hsdma->pc;
 551
 552        /*
 553         * Using a fail-safe loop with iterations of up to MTK_DMA_SIZE to
 554         * reclaim these finished descriptors: The most number of PDs the ISR
 555         * can handle at one time shouldn't be more than MTK_DMA_SIZE so we
 556         * take it as limited count instead of just using a dangerous infinite
 557         * poll.
 558         */
 559        while (i--) {
 560                next = MTK_HSDMA_NEXT_DESP_IDX(pc->ring.cur_rptr,
 561                                               MTK_DMA_SIZE);
 562                rxd = &pc->ring.rxd[next];
 563
 564                /*
 565                 * If MTK_HSDMA_DESC_DDONE is no specified, that means data
 566                 * moving for the PD is still under going.
 567                 */
 568                desc2 = READ_ONCE(rxd->desc2);
 569                if (!(desc2 & hsdma->soc->ddone))
 570                        break;
 571
 572                cb = &pc->ring.cb[next];
 573                if (unlikely(!cb->vd)) {
 574                        dev_err(hsdma2dev(hsdma), "cb->vd cannot be null\n");
 575                        break;
 576                }
 577
 578                /* Update residue of VD the associated PD belonged to */
 579                hvd = to_hsdma_vdesc(cb->vd);
 580                hvd->residue -= MTK_HSDMA_DESC_PLEN_GET(rxd->desc2);
 581
 582                /* Complete VD until the relevant last PD is finished */
 583                if (IS_MTK_HSDMA_VDESC_FINISHED(cb->flag)) {
 584                        hvc = to_hsdma_vchan(cb->vd->tx.chan);
 585
 586                        spin_lock(&hvc->vc.lock);
 587
 588                        /* Remove VD from list desc_hw_processing */
 589                        list_del(&cb->vd->node);
 590
 591                        /* Add VD into list desc_completed */
 592                        vchan_cookie_complete(cb->vd);
 593
 594                        if (hvc->issue_synchronize &&
 595                            list_empty(&hvc->desc_hw_processing)) {
 596                                complete(&hvc->issue_completion);
 597                                hvc->issue_synchronize = false;
 598                        }
 599                        spin_unlock(&hvc->vc.lock);
 600
 601                        cb->flag = 0;
 602                }
 603
 604                cb->vd = 0;
 605
 606                /*
 607                 * Recycle the RXD with the helper WRITE_ONCE that can ensure
 608                 * data written into RAM would really happens.
 609                 */
 610                WRITE_ONCE(rxd->desc1, 0);
 611                WRITE_ONCE(rxd->desc2, 0);
 612                pc->ring.cur_rptr = next;
 613
 614                /* Release rooms */
 615                atomic_inc(&pc->nr_free);
 616        }
 617
 618        /* Ensure all changes indeed done before we're going on */
 619        wmb();
 620
 621        /* Update CPU pointer for those completed PDs */
 622        mtk_dma_write(hsdma, MTK_HSDMA_RX_CPU, pc->ring.cur_rptr);
 623
 624        /*
 625         * Acking the pending IRQ allows hardware no longer to keep the used
 626         * IRQ line in certain trigger state when software has completed all
 627         * the finished physical descriptors.
 628         */
 629        if (atomic_read(&pc->nr_free) >= MTK_DMA_SIZE - 1)
 630                mtk_dma_write(hsdma, MTK_HSDMA_INT_STATUS, status);
 631
 632        /* ASAP handles pending VDs in all VCs after freeing some rooms */
 633        for (i = 0; i < hsdma->dma_requests; i++) {
 634                hvc = &hsdma->vc[i];
 635                spin_lock(&hvc->vc.lock);
 636                mtk_hsdma_issue_vchan_pending(hsdma, hvc);
 637                spin_unlock(&hvc->vc.lock);
 638        }
 639
 640rx_done:
 641        /* All completed PDs are cleaned up, so enable interrupt again */
 642        mtk_dma_set(hsdma, MTK_HSDMA_INT_ENABLE, MTK_HSDMA_INT_RXDONE);
 643}
 644
 645static irqreturn_t mtk_hsdma_irq(int irq, void *devid)
 646{
 647        struct mtk_hsdma_device *hsdma = devid;
 648
 649        /*
 650         * Disable interrupt until all completed PDs are cleaned up in
 651         * mtk_hsdma_free_rooms call.
 652         */
 653        mtk_dma_clr(hsdma, MTK_HSDMA_INT_ENABLE, MTK_HSDMA_INT_RXDONE);
 654
 655        mtk_hsdma_free_rooms_in_ring(hsdma);
 656
 657        return IRQ_HANDLED;
 658}
 659
 660static struct virt_dma_desc *mtk_hsdma_find_active_desc(struct dma_chan *c,
 661                                                        dma_cookie_t cookie)
 662{
 663        struct mtk_hsdma_vchan *hvc = to_hsdma_vchan(c);
 664        struct virt_dma_desc *vd;
 665
 666        list_for_each_entry(vd, &hvc->desc_hw_processing, node)
 667                if (vd->tx.cookie == cookie)
 668                        return vd;
 669
 670        list_for_each_entry(vd, &hvc->vc.desc_issued, node)
 671                if (vd->tx.cookie == cookie)
 672                        return vd;
 673
 674        return NULL;
 675}
 676
 677static enum dma_status mtk_hsdma_tx_status(struct dma_chan *c,
 678                                           dma_cookie_t cookie,
 679                                           struct dma_tx_state *txstate)
 680{
 681        struct mtk_hsdma_vchan *hvc = to_hsdma_vchan(c);
 682        struct mtk_hsdma_vdesc *hvd;
 683        struct virt_dma_desc *vd;
 684        enum dma_status ret;
 685        unsigned long flags;
 686        size_t bytes = 0;
 687
 688        ret = dma_cookie_status(c, cookie, txstate);
 689        if (ret == DMA_COMPLETE || !txstate)
 690                return ret;
 691
 692        spin_lock_irqsave(&hvc->vc.lock, flags);
 693        vd = mtk_hsdma_find_active_desc(c, cookie);
 694        spin_unlock_irqrestore(&hvc->vc.lock, flags);
 695
 696        if (vd) {
 697                hvd = to_hsdma_vdesc(vd);
 698                bytes = hvd->residue;
 699        }
 700
 701        dma_set_residue(txstate, bytes);
 702
 703        return ret;
 704}
 705
 706static void mtk_hsdma_issue_pending(struct dma_chan *c)
 707{
 708        struct mtk_hsdma_device *hsdma = to_hsdma_dev(c);
 709        struct mtk_hsdma_vchan *hvc = to_hsdma_vchan(c);
 710        unsigned long flags;
 711
 712        spin_lock_irqsave(&hvc->vc.lock, flags);
 713
 714        if (vchan_issue_pending(&hvc->vc))
 715                mtk_hsdma_issue_vchan_pending(hsdma, hvc);
 716
 717        spin_unlock_irqrestore(&hvc->vc.lock, flags);
 718}
 719
 720static struct dma_async_tx_descriptor *
 721mtk_hsdma_prep_dma_memcpy(struct dma_chan *c, dma_addr_t dest,
 722                          dma_addr_t src, size_t len, unsigned long flags)
 723{
 724        struct mtk_hsdma_vdesc *hvd;
 725
 726        hvd = kzalloc(sizeof(*hvd), GFP_NOWAIT);
 727        if (!hvd)
 728                return NULL;
 729
 730        hvd->len = len;
 731        hvd->residue = len;
 732        hvd->src = src;
 733        hvd->dest = dest;
 734
 735        return vchan_tx_prep(to_virt_chan(c), &hvd->vd, flags);
 736}
 737
 738static int mtk_hsdma_free_inactive_desc(struct dma_chan *c)
 739{
 740        struct virt_dma_chan *vc = to_virt_chan(c);
 741        unsigned long flags;
 742        LIST_HEAD(head);
 743
 744        spin_lock_irqsave(&vc->lock, flags);
 745        list_splice_tail_init(&vc->desc_allocated, &head);
 746        list_splice_tail_init(&vc->desc_submitted, &head);
 747        list_splice_tail_init(&vc->desc_issued, &head);
 748        spin_unlock_irqrestore(&vc->lock, flags);
 749
 750        /* At the point, we don't expect users put descriptor into VC again */
 751        vchan_dma_desc_free_list(vc, &head);
 752
 753        return 0;
 754}
 755
 756static void mtk_hsdma_free_active_desc(struct dma_chan *c)
 757{
 758        struct mtk_hsdma_vchan *hvc = to_hsdma_vchan(c);
 759        bool sync_needed = false;
 760
 761        /*
 762         * Once issue_synchronize is being set, which means once the hardware
 763         * consumes all descriptors for the channel in the ring, the
 764         * synchronization must be be notified immediately it is completed.
 765         */
 766        spin_lock(&hvc->vc.lock);
 767        if (!list_empty(&hvc->desc_hw_processing)) {
 768                hvc->issue_synchronize = true;
 769                sync_needed = true;
 770        }
 771        spin_unlock(&hvc->vc.lock);
 772
 773        if (sync_needed)
 774                wait_for_completion(&hvc->issue_completion);
 775        /*
 776         * At the point, we expect that all remaining descriptors in the ring
 777         * for the channel should be all processing done.
 778         */
 779        WARN_ONCE(!list_empty(&hvc->desc_hw_processing),
 780                  "Desc pending still in list desc_hw_processing\n");
 781
 782        /* Free all descriptors in list desc_completed */
 783        vchan_synchronize(&hvc->vc);
 784
 785        WARN_ONCE(!list_empty(&hvc->vc.desc_completed),
 786                  "Desc pending still in list desc_completed\n");
 787}
 788
 789static int mtk_hsdma_terminate_all(struct dma_chan *c)
 790{
 791        /*
 792         * Free pending descriptors not processed yet by hardware that have
 793         * previously been submitted to the channel.
 794         */
 795        mtk_hsdma_free_inactive_desc(c);
 796
 797        /*
 798         * However, the DMA engine doesn't provide any way to stop these
 799         * descriptors being processed currently by hardware. The only way is
 800         * to just waiting until these descriptors are all processed completely
 801         * through mtk_hsdma_free_active_desc call.
 802         */
 803        mtk_hsdma_free_active_desc(c);
 804
 805        return 0;
 806}
 807
 808static int mtk_hsdma_alloc_chan_resources(struct dma_chan *c)
 809{
 810        struct mtk_hsdma_device *hsdma = to_hsdma_dev(c);
 811        int err;
 812
 813        /*
 814         * Since HSDMA has only one PC, the resource for PC is being allocated
 815         * when the first VC is being created and the other VCs would run on
 816         * the same PC.
 817         */
 818        if (!refcount_read(&hsdma->pc_refcnt)) {
 819                err = mtk_hsdma_alloc_pchan(hsdma, hsdma->pc);
 820                if (err)
 821                        return err;
 822                /*
 823                 * refcount_inc would complain increment on 0; use-after-free.
 824                 * Thus, we need to explicitly set it as 1 initially.
 825                 */
 826                refcount_set(&hsdma->pc_refcnt, 1);
 827        } else {
 828                refcount_inc(&hsdma->pc_refcnt);
 829        }
 830
 831        return 0;
 832}
 833
 834static void mtk_hsdma_free_chan_resources(struct dma_chan *c)
 835{
 836        struct mtk_hsdma_device *hsdma = to_hsdma_dev(c);
 837
 838        /* Free all descriptors in all lists on the VC */
 839        mtk_hsdma_terminate_all(c);
 840
 841        /* The resource for PC is not freed until all the VCs are destroyed */
 842        if (!refcount_dec_and_test(&hsdma->pc_refcnt))
 843                return;
 844
 845        mtk_hsdma_free_pchan(hsdma, hsdma->pc);
 846}
 847
 848static int mtk_hsdma_hw_init(struct mtk_hsdma_device *hsdma)
 849{
 850        int err;
 851
 852        pm_runtime_enable(hsdma2dev(hsdma));
 853        pm_runtime_get_sync(hsdma2dev(hsdma));
 854
 855        err = clk_prepare_enable(hsdma->clk);
 856        if (err)
 857                return err;
 858
 859        mtk_dma_write(hsdma, MTK_HSDMA_INT_ENABLE, 0);
 860        mtk_dma_write(hsdma, MTK_HSDMA_GLO, MTK_HSDMA_GLO_DEFAULT);
 861
 862        return 0;
 863}
 864
 865static int mtk_hsdma_hw_deinit(struct mtk_hsdma_device *hsdma)
 866{
 867        mtk_dma_write(hsdma, MTK_HSDMA_GLO, 0);
 868
 869        clk_disable_unprepare(hsdma->clk);
 870
 871        pm_runtime_put_sync(hsdma2dev(hsdma));
 872        pm_runtime_disable(hsdma2dev(hsdma));
 873
 874        return 0;
 875}
 876
 877static const struct mtk_hsdma_soc mt7623_soc = {
 878        .ddone = BIT(31),
 879        .ls0 = BIT(30),
 880};
 881
 882static const struct mtk_hsdma_soc mt7622_soc = {
 883        .ddone = BIT(15),
 884        .ls0 = BIT(14),
 885};
 886
 887static const struct of_device_id mtk_hsdma_match[] = {
 888        { .compatible = "mediatek,mt7623-hsdma", .data = &mt7623_soc},
 889        { .compatible = "mediatek,mt7622-hsdma", .data = &mt7622_soc},
 890        { /* sentinel */ }
 891};
 892MODULE_DEVICE_TABLE(of, mtk_hsdma_match);
 893
 894static int mtk_hsdma_probe(struct platform_device *pdev)
 895{
 896        struct mtk_hsdma_device *hsdma;
 897        struct mtk_hsdma_vchan *vc;
 898        struct dma_device *dd;
 899        struct resource *res;
 900        int i, err;
 901
 902        hsdma = devm_kzalloc(&pdev->dev, sizeof(*hsdma), GFP_KERNEL);
 903        if (!hsdma)
 904                return -ENOMEM;
 905
 906        dd = &hsdma->ddev;
 907
 908        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 909        hsdma->base = devm_ioremap_resource(&pdev->dev, res);
 910        if (IS_ERR(hsdma->base))
 911                return PTR_ERR(hsdma->base);
 912
 913        hsdma->soc = of_device_get_match_data(&pdev->dev);
 914        if (!hsdma->soc) {
 915                dev_err(&pdev->dev, "No device match found\n");
 916                return -ENODEV;
 917        }
 918
 919        hsdma->clk = devm_clk_get(&pdev->dev, "hsdma");
 920        if (IS_ERR(hsdma->clk)) {
 921                dev_err(&pdev->dev, "No clock for %s\n",
 922                        dev_name(&pdev->dev));
 923                return PTR_ERR(hsdma->clk);
 924        }
 925
 926        res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
 927        if (!res) {
 928                dev_err(&pdev->dev, "No irq resource for %s\n",
 929                        dev_name(&pdev->dev));
 930                return -EINVAL;
 931        }
 932        hsdma->irq = res->start;
 933
 934        refcount_set(&hsdma->pc_refcnt, 0);
 935        spin_lock_init(&hsdma->lock);
 936
 937        dma_cap_set(DMA_MEMCPY, dd->cap_mask);
 938
 939        dd->copy_align = MTK_HSDMA_ALIGN_SIZE;
 940        dd->device_alloc_chan_resources = mtk_hsdma_alloc_chan_resources;
 941        dd->device_free_chan_resources = mtk_hsdma_free_chan_resources;
 942        dd->device_tx_status = mtk_hsdma_tx_status;
 943        dd->device_issue_pending = mtk_hsdma_issue_pending;
 944        dd->device_prep_dma_memcpy = mtk_hsdma_prep_dma_memcpy;
 945        dd->device_terminate_all = mtk_hsdma_terminate_all;
 946        dd->src_addr_widths = MTK_HSDMA_DMA_BUSWIDTHS;
 947        dd->dst_addr_widths = MTK_HSDMA_DMA_BUSWIDTHS;
 948        dd->directions = BIT(DMA_MEM_TO_MEM);
 949        dd->residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
 950        dd->dev = &pdev->dev;
 951        INIT_LIST_HEAD(&dd->channels);
 952
 953        hsdma->dma_requests = MTK_HSDMA_NR_VCHANS;
 954        if (pdev->dev.of_node && of_property_read_u32(pdev->dev.of_node,
 955                                                      "dma-requests",
 956                                                      &hsdma->dma_requests)) {
 957                dev_info(&pdev->dev,
 958                         "Using %u as missing dma-requests property\n",
 959                         MTK_HSDMA_NR_VCHANS);
 960        }
 961
 962        hsdma->pc = devm_kcalloc(&pdev->dev, MTK_HSDMA_NR_MAX_PCHANS,
 963                                 sizeof(*hsdma->pc), GFP_KERNEL);
 964        if (!hsdma->pc)
 965                return -ENOMEM;
 966
 967        hsdma->vc = devm_kcalloc(&pdev->dev, hsdma->dma_requests,
 968                                 sizeof(*hsdma->vc), GFP_KERNEL);
 969        if (!hsdma->vc)
 970                return -ENOMEM;
 971
 972        for (i = 0; i < hsdma->dma_requests; i++) {
 973                vc = &hsdma->vc[i];
 974                vc->vc.desc_free = mtk_hsdma_vdesc_free;
 975                vchan_init(&vc->vc, dd);
 976                init_completion(&vc->issue_completion);
 977                INIT_LIST_HEAD(&vc->desc_hw_processing);
 978        }
 979
 980        err = dma_async_device_register(dd);
 981        if (err)
 982                return err;
 983
 984        err = of_dma_controller_register(pdev->dev.of_node,
 985                                         of_dma_xlate_by_chan_id, hsdma);
 986        if (err) {
 987                dev_err(&pdev->dev,
 988                        "MediaTek HSDMA OF registration failed %d\n", err);
 989                goto err_unregister;
 990        }
 991
 992        mtk_hsdma_hw_init(hsdma);
 993
 994        err = devm_request_irq(&pdev->dev, hsdma->irq,
 995                               mtk_hsdma_irq, 0,
 996                               dev_name(&pdev->dev), hsdma);
 997        if (err) {
 998                dev_err(&pdev->dev,
 999                        "request_irq failed with err %d\n", err);
1000                goto err_free;
1001        }
1002
1003        platform_set_drvdata(pdev, hsdma);
1004
1005        dev_info(&pdev->dev, "MediaTek HSDMA driver registered\n");
1006
1007        return 0;
1008
1009err_free:
1010        of_dma_controller_free(pdev->dev.of_node);
1011err_unregister:
1012        dma_async_device_unregister(dd);
1013
1014        return err;
1015}
1016
1017static int mtk_hsdma_remove(struct platform_device *pdev)
1018{
1019        struct mtk_hsdma_device *hsdma = platform_get_drvdata(pdev);
1020        struct mtk_hsdma_vchan *vc;
1021        int i;
1022
1023        /* Kill VC task */
1024        for (i = 0; i < hsdma->dma_requests; i++) {
1025                vc = &hsdma->vc[i];
1026
1027                list_del(&vc->vc.chan.device_node);
1028                tasklet_kill(&vc->vc.task);
1029        }
1030
1031        /* Disable DMA interrupt */
1032        mtk_dma_write(hsdma, MTK_HSDMA_INT_ENABLE, 0);
1033
1034        /* Waits for any pending IRQ handlers to complete */
1035        synchronize_irq(hsdma->irq);
1036
1037        /* Disable hardware */
1038        mtk_hsdma_hw_deinit(hsdma);
1039
1040        dma_async_device_unregister(&hsdma->ddev);
1041        of_dma_controller_free(pdev->dev.of_node);
1042
1043        return 0;
1044}
1045
1046static struct platform_driver mtk_hsdma_driver = {
1047        .probe          = mtk_hsdma_probe,
1048        .remove         = mtk_hsdma_remove,
1049        .driver = {
1050                .name           = KBUILD_MODNAME,
1051                .of_match_table = mtk_hsdma_match,
1052        },
1053};
1054module_platform_driver(mtk_hsdma_driver);
1055
1056MODULE_DESCRIPTION("MediaTek High-Speed DMA Controller Driver");
1057MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>");
1058MODULE_LICENSE("GPL v2");
1059