linux/drivers/firmware/dmi_scan.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2#include <linux/types.h>
   3#include <linux/string.h>
   4#include <linux/init.h>
   5#include <linux/module.h>
   6#include <linux/ctype.h>
   7#include <linux/dmi.h>
   8#include <linux/efi.h>
   9#include <linux/memblock.h>
  10#include <linux/random.h>
  11#include <asm/dmi.h>
  12#include <asm/unaligned.h>
  13
  14struct kobject *dmi_kobj;
  15EXPORT_SYMBOL_GPL(dmi_kobj);
  16
  17/*
  18 * DMI stands for "Desktop Management Interface".  It is part
  19 * of and an antecedent to, SMBIOS, which stands for System
  20 * Management BIOS.  See further: http://www.dmtf.org/standards
  21 */
  22static const char dmi_empty_string[] = "";
  23
  24static u32 dmi_ver __initdata;
  25static u32 dmi_len;
  26static u16 dmi_num;
  27static u8 smbios_entry_point[32];
  28static int smbios_entry_point_size;
  29
  30/* DMI system identification string used during boot */
  31static char dmi_ids_string[128] __initdata;
  32
  33static struct dmi_memdev_info {
  34        const char *device;
  35        const char *bank;
  36        u64 size;               /* bytes */
  37        u16 handle;
  38        u8 type;                /* DDR2, DDR3, DDR4 etc */
  39} *dmi_memdev;
  40static int dmi_memdev_nr;
  41
  42static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s)
  43{
  44        const u8 *bp = ((u8 *) dm) + dm->length;
  45        const u8 *nsp;
  46
  47        if (s) {
  48                while (--s > 0 && *bp)
  49                        bp += strlen(bp) + 1;
  50
  51                /* Strings containing only spaces are considered empty */
  52                nsp = bp;
  53                while (*nsp == ' ')
  54                        nsp++;
  55                if (*nsp != '\0')
  56                        return bp;
  57        }
  58
  59        return dmi_empty_string;
  60}
  61
  62static const char * __init dmi_string(const struct dmi_header *dm, u8 s)
  63{
  64        const char *bp = dmi_string_nosave(dm, s);
  65        char *str;
  66        size_t len;
  67
  68        if (bp == dmi_empty_string)
  69                return dmi_empty_string;
  70
  71        len = strlen(bp) + 1;
  72        str = dmi_alloc(len);
  73        if (str != NULL)
  74                strcpy(str, bp);
  75
  76        return str;
  77}
  78
  79/*
  80 *      We have to be cautious here. We have seen BIOSes with DMI pointers
  81 *      pointing to completely the wrong place for example
  82 */
  83static void dmi_decode_table(u8 *buf,
  84                             void (*decode)(const struct dmi_header *, void *),
  85                             void *private_data)
  86{
  87        u8 *data = buf;
  88        int i = 0;
  89
  90        /*
  91         * Stop when we have seen all the items the table claimed to have
  92         * (SMBIOS < 3.0 only) OR we reach an end-of-table marker (SMBIOS
  93         * >= 3.0 only) OR we run off the end of the table (should never
  94         * happen but sometimes does on bogus implementations.)
  95         */
  96        while ((!dmi_num || i < dmi_num) &&
  97               (data - buf + sizeof(struct dmi_header)) <= dmi_len) {
  98                const struct dmi_header *dm = (const struct dmi_header *)data;
  99
 100                /*
 101                 *  We want to know the total length (formatted area and
 102                 *  strings) before decoding to make sure we won't run off the
 103                 *  table in dmi_decode or dmi_string
 104                 */
 105                data += dm->length;
 106                while ((data - buf < dmi_len - 1) && (data[0] || data[1]))
 107                        data++;
 108                if (data - buf < dmi_len - 1)
 109                        decode(dm, private_data);
 110
 111                data += 2;
 112                i++;
 113
 114                /*
 115                 * 7.45 End-of-Table (Type 127) [SMBIOS reference spec v3.0.0]
 116                 * For tables behind a 64-bit entry point, we have no item
 117                 * count and no exact table length, so stop on end-of-table
 118                 * marker. For tables behind a 32-bit entry point, we have
 119                 * seen OEM structures behind the end-of-table marker on
 120                 * some systems, so don't trust it.
 121                 */
 122                if (!dmi_num && dm->type == DMI_ENTRY_END_OF_TABLE)
 123                        break;
 124        }
 125
 126        /* Trim DMI table length if needed */
 127        if (dmi_len > data - buf)
 128                dmi_len = data - buf;
 129}
 130
 131static phys_addr_t dmi_base;
 132
 133static int __init dmi_walk_early(void (*decode)(const struct dmi_header *,
 134                void *))
 135{
 136        u8 *buf;
 137        u32 orig_dmi_len = dmi_len;
 138
 139        buf = dmi_early_remap(dmi_base, orig_dmi_len);
 140        if (buf == NULL)
 141                return -ENOMEM;
 142
 143        dmi_decode_table(buf, decode, NULL);
 144
 145        add_device_randomness(buf, dmi_len);
 146
 147        dmi_early_unmap(buf, orig_dmi_len);
 148        return 0;
 149}
 150
 151static int __init dmi_checksum(const u8 *buf, u8 len)
 152{
 153        u8 sum = 0;
 154        int a;
 155
 156        for (a = 0; a < len; a++)
 157                sum += buf[a];
 158
 159        return sum == 0;
 160}
 161
 162static const char *dmi_ident[DMI_STRING_MAX];
 163static LIST_HEAD(dmi_devices);
 164int dmi_available;
 165
 166/*
 167 *      Save a DMI string
 168 */
 169static void __init dmi_save_ident(const struct dmi_header *dm, int slot,
 170                int string)
 171{
 172        const char *d = (const char *) dm;
 173        const char *p;
 174
 175        if (dmi_ident[slot] || dm->length <= string)
 176                return;
 177
 178        p = dmi_string(dm, d[string]);
 179        if (p == NULL)
 180                return;
 181
 182        dmi_ident[slot] = p;
 183}
 184
 185static void __init dmi_save_uuid(const struct dmi_header *dm, int slot,
 186                int index)
 187{
 188        const u8 *d;
 189        char *s;
 190        int is_ff = 1, is_00 = 1, i;
 191
 192        if (dmi_ident[slot] || dm->length < index + 16)
 193                return;
 194
 195        d = (u8 *) dm + index;
 196        for (i = 0; i < 16 && (is_ff || is_00); i++) {
 197                if (d[i] != 0x00)
 198                        is_00 = 0;
 199                if (d[i] != 0xFF)
 200                        is_ff = 0;
 201        }
 202
 203        if (is_ff || is_00)
 204                return;
 205
 206        s = dmi_alloc(16*2+4+1);
 207        if (!s)
 208                return;
 209
 210        /*
 211         * As of version 2.6 of the SMBIOS specification, the first 3 fields of
 212         * the UUID are supposed to be little-endian encoded.  The specification
 213         * says that this is the defacto standard.
 214         */
 215        if (dmi_ver >= 0x020600)
 216                sprintf(s, "%pUl", d);
 217        else
 218                sprintf(s, "%pUb", d);
 219
 220        dmi_ident[slot] = s;
 221}
 222
 223static void __init dmi_save_type(const struct dmi_header *dm, int slot,
 224                int index)
 225{
 226        const u8 *d;
 227        char *s;
 228
 229        if (dmi_ident[slot] || dm->length <= index)
 230                return;
 231
 232        s = dmi_alloc(4);
 233        if (!s)
 234                return;
 235
 236        d = (u8 *) dm + index;
 237        sprintf(s, "%u", *d & 0x7F);
 238        dmi_ident[slot] = s;
 239}
 240
 241static void __init dmi_save_one_device(int type, const char *name)
 242{
 243        struct dmi_device *dev;
 244
 245        /* No duplicate device */
 246        if (dmi_find_device(type, name, NULL))
 247                return;
 248
 249        dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
 250        if (!dev)
 251                return;
 252
 253        dev->type = type;
 254        strcpy((char *)(dev + 1), name);
 255        dev->name = (char *)(dev + 1);
 256        dev->device_data = NULL;
 257        list_add(&dev->list, &dmi_devices);
 258}
 259
 260static void __init dmi_save_devices(const struct dmi_header *dm)
 261{
 262        int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
 263
 264        for (i = 0; i < count; i++) {
 265                const char *d = (char *)(dm + 1) + (i * 2);
 266
 267                /* Skip disabled device */
 268                if ((*d & 0x80) == 0)
 269                        continue;
 270
 271                dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1)));
 272        }
 273}
 274
 275static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm)
 276{
 277        int i, count;
 278        struct dmi_device *dev;
 279
 280        if (dm->length < 0x05)
 281                return;
 282
 283        count = *(u8 *)(dm + 1);
 284        for (i = 1; i <= count; i++) {
 285                const char *devname = dmi_string(dm, i);
 286
 287                if (devname == dmi_empty_string)
 288                        continue;
 289
 290                dev = dmi_alloc(sizeof(*dev));
 291                if (!dev)
 292                        break;
 293
 294                dev->type = DMI_DEV_TYPE_OEM_STRING;
 295                dev->name = devname;
 296                dev->device_data = NULL;
 297
 298                list_add(&dev->list, &dmi_devices);
 299        }
 300}
 301
 302static void __init dmi_save_ipmi_device(const struct dmi_header *dm)
 303{
 304        struct dmi_device *dev;
 305        void *data;
 306
 307        data = dmi_alloc(dm->length);
 308        if (data == NULL)
 309                return;
 310
 311        memcpy(data, dm, dm->length);
 312
 313        dev = dmi_alloc(sizeof(*dev));
 314        if (!dev)
 315                return;
 316
 317        dev->type = DMI_DEV_TYPE_IPMI;
 318        dev->name = "IPMI controller";
 319        dev->device_data = data;
 320
 321        list_add_tail(&dev->list, &dmi_devices);
 322}
 323
 324static void __init dmi_save_dev_pciaddr(int instance, int segment, int bus,
 325                                        int devfn, const char *name, int type)
 326{
 327        struct dmi_dev_onboard *dev;
 328
 329        /* Ignore invalid values */
 330        if (type == DMI_DEV_TYPE_DEV_SLOT &&
 331            segment == 0xFFFF && bus == 0xFF && devfn == 0xFF)
 332                return;
 333
 334        dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
 335        if (!dev)
 336                return;
 337
 338        dev->instance = instance;
 339        dev->segment = segment;
 340        dev->bus = bus;
 341        dev->devfn = devfn;
 342
 343        strcpy((char *)&dev[1], name);
 344        dev->dev.type = type;
 345        dev->dev.name = (char *)&dev[1];
 346        dev->dev.device_data = dev;
 347
 348        list_add(&dev->dev.list, &dmi_devices);
 349}
 350
 351static void __init dmi_save_extended_devices(const struct dmi_header *dm)
 352{
 353        const char *name;
 354        const u8 *d = (u8 *)dm;
 355
 356        if (dm->length < 0x0B)
 357                return;
 358
 359        /* Skip disabled device */
 360        if ((d[0x5] & 0x80) == 0)
 361                return;
 362
 363        name = dmi_string_nosave(dm, d[0x4]);
 364        dmi_save_dev_pciaddr(d[0x6], *(u16 *)(d + 0x7), d[0x9], d[0xA], name,
 365                             DMI_DEV_TYPE_DEV_ONBOARD);
 366        dmi_save_one_device(d[0x5] & 0x7f, name);
 367}
 368
 369static void __init dmi_save_system_slot(const struct dmi_header *dm)
 370{
 371        const u8 *d = (u8 *)dm;
 372
 373        /* Need SMBIOS 2.6+ structure */
 374        if (dm->length < 0x11)
 375                return;
 376        dmi_save_dev_pciaddr(*(u16 *)(d + 0x9), *(u16 *)(d + 0xD), d[0xF],
 377                             d[0x10], dmi_string_nosave(dm, d[0x4]),
 378                             DMI_DEV_TYPE_DEV_SLOT);
 379}
 380
 381static void __init count_mem_devices(const struct dmi_header *dm, void *v)
 382{
 383        if (dm->type != DMI_ENTRY_MEM_DEVICE)
 384                return;
 385        dmi_memdev_nr++;
 386}
 387
 388static void __init save_mem_devices(const struct dmi_header *dm, void *v)
 389{
 390        const char *d = (const char *)dm;
 391        static int nr;
 392        u64 bytes;
 393        u16 size;
 394
 395        if (dm->type != DMI_ENTRY_MEM_DEVICE || dm->length < 0x13)
 396                return;
 397        if (nr >= dmi_memdev_nr) {
 398                pr_warn(FW_BUG "Too many DIMM entries in SMBIOS table\n");
 399                return;
 400        }
 401        dmi_memdev[nr].handle = get_unaligned(&dm->handle);
 402        dmi_memdev[nr].device = dmi_string(dm, d[0x10]);
 403        dmi_memdev[nr].bank = dmi_string(dm, d[0x11]);
 404        dmi_memdev[nr].type = d[0x12];
 405
 406        size = get_unaligned((u16 *)&d[0xC]);
 407        if (size == 0)
 408                bytes = 0;
 409        else if (size == 0xffff)
 410                bytes = ~0ull;
 411        else if (size & 0x8000)
 412                bytes = (u64)(size & 0x7fff) << 10;
 413        else if (size != 0x7fff || dm->length < 0x20)
 414                bytes = (u64)size << 20;
 415        else
 416                bytes = (u64)get_unaligned((u32 *)&d[0x1C]) << 20;
 417
 418        dmi_memdev[nr].size = bytes;
 419        nr++;
 420}
 421
 422static void __init dmi_memdev_walk(void)
 423{
 424        if (dmi_walk_early(count_mem_devices) == 0 && dmi_memdev_nr) {
 425                dmi_memdev = dmi_alloc(sizeof(*dmi_memdev) * dmi_memdev_nr);
 426                if (dmi_memdev)
 427                        dmi_walk_early(save_mem_devices);
 428        }
 429}
 430
 431/*
 432 *      Process a DMI table entry. Right now all we care about are the BIOS
 433 *      and machine entries. For 2.5 we should pull the smbus controller info
 434 *      out of here.
 435 */
 436static void __init dmi_decode(const struct dmi_header *dm, void *dummy)
 437{
 438        switch (dm->type) {
 439        case 0:         /* BIOS Information */
 440                dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
 441                dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
 442                dmi_save_ident(dm, DMI_BIOS_DATE, 8);
 443                break;
 444        case 1:         /* System Information */
 445                dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
 446                dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
 447                dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
 448                dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
 449                dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
 450                dmi_save_ident(dm, DMI_PRODUCT_SKU, 25);
 451                dmi_save_ident(dm, DMI_PRODUCT_FAMILY, 26);
 452                break;
 453        case 2:         /* Base Board Information */
 454                dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
 455                dmi_save_ident(dm, DMI_BOARD_NAME, 5);
 456                dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
 457                dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
 458                dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
 459                break;
 460        case 3:         /* Chassis Information */
 461                dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
 462                dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
 463                dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
 464                dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
 465                dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
 466                break;
 467        case 9:         /* System Slots */
 468                dmi_save_system_slot(dm);
 469                break;
 470        case 10:        /* Onboard Devices Information */
 471                dmi_save_devices(dm);
 472                break;
 473        case 11:        /* OEM Strings */
 474                dmi_save_oem_strings_devices(dm);
 475                break;
 476        case 38:        /* IPMI Device Information */
 477                dmi_save_ipmi_device(dm);
 478                break;
 479        case 41:        /* Onboard Devices Extended Information */
 480                dmi_save_extended_devices(dm);
 481        }
 482}
 483
 484static int __init print_filtered(char *buf, size_t len, const char *info)
 485{
 486        int c = 0;
 487        const char *p;
 488
 489        if (!info)
 490                return c;
 491
 492        for (p = info; *p; p++)
 493                if (isprint(*p))
 494                        c += scnprintf(buf + c, len - c, "%c", *p);
 495                else
 496                        c += scnprintf(buf + c, len - c, "\\x%02x", *p & 0xff);
 497        return c;
 498}
 499
 500static void __init dmi_format_ids(char *buf, size_t len)
 501{
 502        int c = 0;
 503        const char *board;      /* Board Name is optional */
 504
 505        c += print_filtered(buf + c, len - c,
 506                            dmi_get_system_info(DMI_SYS_VENDOR));
 507        c += scnprintf(buf + c, len - c, " ");
 508        c += print_filtered(buf + c, len - c,
 509                            dmi_get_system_info(DMI_PRODUCT_NAME));
 510
 511        board = dmi_get_system_info(DMI_BOARD_NAME);
 512        if (board) {
 513                c += scnprintf(buf + c, len - c, "/");
 514                c += print_filtered(buf + c, len - c, board);
 515        }
 516        c += scnprintf(buf + c, len - c, ", BIOS ");
 517        c += print_filtered(buf + c, len - c,
 518                            dmi_get_system_info(DMI_BIOS_VERSION));
 519        c += scnprintf(buf + c, len - c, " ");
 520        c += print_filtered(buf + c, len - c,
 521                            dmi_get_system_info(DMI_BIOS_DATE));
 522}
 523
 524/*
 525 * Check for DMI/SMBIOS headers in the system firmware image.  Any
 526 * SMBIOS header must start 16 bytes before the DMI header, so take a
 527 * 32 byte buffer and check for DMI at offset 16 and SMBIOS at offset
 528 * 0.  If the DMI header is present, set dmi_ver accordingly (SMBIOS
 529 * takes precedence) and return 0.  Otherwise return 1.
 530 */
 531static int __init dmi_present(const u8 *buf)
 532{
 533        u32 smbios_ver;
 534
 535        if (memcmp(buf, "_SM_", 4) == 0 &&
 536            buf[5] < 32 && dmi_checksum(buf, buf[5])) {
 537                smbios_ver = get_unaligned_be16(buf + 6);
 538                smbios_entry_point_size = buf[5];
 539                memcpy(smbios_entry_point, buf, smbios_entry_point_size);
 540
 541                /* Some BIOS report weird SMBIOS version, fix that up */
 542                switch (smbios_ver) {
 543                case 0x021F:
 544                case 0x0221:
 545                        pr_debug("SMBIOS version fixup (2.%d->2.%d)\n",
 546                                 smbios_ver & 0xFF, 3);
 547                        smbios_ver = 0x0203;
 548                        break;
 549                case 0x0233:
 550                        pr_debug("SMBIOS version fixup (2.%d->2.%d)\n", 51, 6);
 551                        smbios_ver = 0x0206;
 552                        break;
 553                }
 554        } else {
 555                smbios_ver = 0;
 556        }
 557
 558        buf += 16;
 559
 560        if (memcmp(buf, "_DMI_", 5) == 0 && dmi_checksum(buf, 15)) {
 561                if (smbios_ver)
 562                        dmi_ver = smbios_ver;
 563                else
 564                        dmi_ver = (buf[14] & 0xF0) << 4 | (buf[14] & 0x0F);
 565                dmi_ver <<= 8;
 566                dmi_num = get_unaligned_le16(buf + 12);
 567                dmi_len = get_unaligned_le16(buf + 6);
 568                dmi_base = get_unaligned_le32(buf + 8);
 569
 570                if (dmi_walk_early(dmi_decode) == 0) {
 571                        if (smbios_ver) {
 572                                pr_info("SMBIOS %d.%d present.\n",
 573                                        dmi_ver >> 16, (dmi_ver >> 8) & 0xFF);
 574                        } else {
 575                                smbios_entry_point_size = 15;
 576                                memcpy(smbios_entry_point, buf,
 577                                       smbios_entry_point_size);
 578                                pr_info("Legacy DMI %d.%d present.\n",
 579                                        dmi_ver >> 16, (dmi_ver >> 8) & 0xFF);
 580                        }
 581                        dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
 582                        pr_info("DMI: %s\n", dmi_ids_string);
 583                        return 0;
 584                }
 585        }
 586
 587        return 1;
 588}
 589
 590/*
 591 * Check for the SMBIOS 3.0 64-bit entry point signature. Unlike the legacy
 592 * 32-bit entry point, there is no embedded DMI header (_DMI_) in here.
 593 */
 594static int __init dmi_smbios3_present(const u8 *buf)
 595{
 596        if (memcmp(buf, "_SM3_", 5) == 0 &&
 597            buf[6] < 32 && dmi_checksum(buf, buf[6])) {
 598                dmi_ver = get_unaligned_be32(buf + 6) & 0xFFFFFF;
 599                dmi_num = 0;                    /* No longer specified */
 600                dmi_len = get_unaligned_le32(buf + 12);
 601                dmi_base = get_unaligned_le64(buf + 16);
 602                smbios_entry_point_size = buf[6];
 603                memcpy(smbios_entry_point, buf, smbios_entry_point_size);
 604
 605                if (dmi_walk_early(dmi_decode) == 0) {
 606                        pr_info("SMBIOS %d.%d.%d present.\n",
 607                                dmi_ver >> 16, (dmi_ver >> 8) & 0xFF,
 608                                dmi_ver & 0xFF);
 609                        dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
 610                        pr_info("DMI: %s\n", dmi_ids_string);
 611                        return 0;
 612                }
 613        }
 614        return 1;
 615}
 616
 617static void __init dmi_scan_machine(void)
 618{
 619        char __iomem *p, *q;
 620        char buf[32];
 621
 622        if (efi_enabled(EFI_CONFIG_TABLES)) {
 623                /*
 624                 * According to the DMTF SMBIOS reference spec v3.0.0, it is
 625                 * allowed to define both the 64-bit entry point (smbios3) and
 626                 * the 32-bit entry point (smbios), in which case they should
 627                 * either both point to the same SMBIOS structure table, or the
 628                 * table pointed to by the 64-bit entry point should contain a
 629                 * superset of the table contents pointed to by the 32-bit entry
 630                 * point (section 5.2)
 631                 * This implies that the 64-bit entry point should have
 632                 * precedence if it is defined and supported by the OS. If we
 633                 * have the 64-bit entry point, but fail to decode it, fall
 634                 * back to the legacy one (if available)
 635                 */
 636                if (efi.smbios3 != EFI_INVALID_TABLE_ADDR) {
 637                        p = dmi_early_remap(efi.smbios3, 32);
 638                        if (p == NULL)
 639                                goto error;
 640                        memcpy_fromio(buf, p, 32);
 641                        dmi_early_unmap(p, 32);
 642
 643                        if (!dmi_smbios3_present(buf)) {
 644                                dmi_available = 1;
 645                                return;
 646                        }
 647                }
 648                if (efi.smbios == EFI_INVALID_TABLE_ADDR)
 649                        goto error;
 650
 651                /* This is called as a core_initcall() because it isn't
 652                 * needed during early boot.  This also means we can
 653                 * iounmap the space when we're done with it.
 654                 */
 655                p = dmi_early_remap(efi.smbios, 32);
 656                if (p == NULL)
 657                        goto error;
 658                memcpy_fromio(buf, p, 32);
 659                dmi_early_unmap(p, 32);
 660
 661                if (!dmi_present(buf)) {
 662                        dmi_available = 1;
 663                        return;
 664                }
 665        } else if (IS_ENABLED(CONFIG_DMI_SCAN_MACHINE_NON_EFI_FALLBACK)) {
 666                p = dmi_early_remap(0xF0000, 0x10000);
 667                if (p == NULL)
 668                        goto error;
 669
 670                /*
 671                 * Same logic as above, look for a 64-bit entry point
 672                 * first, and if not found, fall back to 32-bit entry point.
 673                 */
 674                memcpy_fromio(buf, p, 16);
 675                for (q = p + 16; q < p + 0x10000; q += 16) {
 676                        memcpy_fromio(buf + 16, q, 16);
 677                        if (!dmi_smbios3_present(buf)) {
 678                                dmi_available = 1;
 679                                dmi_early_unmap(p, 0x10000);
 680                                return;
 681                        }
 682                        memcpy(buf, buf + 16, 16);
 683                }
 684
 685                /*
 686                 * Iterate over all possible DMI header addresses q.
 687                 * Maintain the 32 bytes around q in buf.  On the
 688                 * first iteration, substitute zero for the
 689                 * out-of-range bytes so there is no chance of falsely
 690                 * detecting an SMBIOS header.
 691                 */
 692                memset(buf, 0, 16);
 693                for (q = p; q < p + 0x10000; q += 16) {
 694                        memcpy_fromio(buf + 16, q, 16);
 695                        if (!dmi_present(buf)) {
 696                                dmi_available = 1;
 697                                dmi_early_unmap(p, 0x10000);
 698                                return;
 699                        }
 700                        memcpy(buf, buf + 16, 16);
 701                }
 702                dmi_early_unmap(p, 0x10000);
 703        }
 704 error:
 705        pr_info("DMI not present or invalid.\n");
 706}
 707
 708static ssize_t raw_table_read(struct file *file, struct kobject *kobj,
 709                              struct bin_attribute *attr, char *buf,
 710                              loff_t pos, size_t count)
 711{
 712        memcpy(buf, attr->private + pos, count);
 713        return count;
 714}
 715
 716static BIN_ATTR(smbios_entry_point, S_IRUSR, raw_table_read, NULL, 0);
 717static BIN_ATTR(DMI, S_IRUSR, raw_table_read, NULL, 0);
 718
 719static int __init dmi_init(void)
 720{
 721        struct kobject *tables_kobj;
 722        u8 *dmi_table;
 723        int ret = -ENOMEM;
 724
 725        if (!dmi_available)
 726                return 0;
 727
 728        /*
 729         * Set up dmi directory at /sys/firmware/dmi. This entry should stay
 730         * even after farther error, as it can be used by other modules like
 731         * dmi-sysfs.
 732         */
 733        dmi_kobj = kobject_create_and_add("dmi", firmware_kobj);
 734        if (!dmi_kobj)
 735                goto err;
 736
 737        tables_kobj = kobject_create_and_add("tables", dmi_kobj);
 738        if (!tables_kobj)
 739                goto err;
 740
 741        dmi_table = dmi_remap(dmi_base, dmi_len);
 742        if (!dmi_table)
 743                goto err_tables;
 744
 745        bin_attr_smbios_entry_point.size = smbios_entry_point_size;
 746        bin_attr_smbios_entry_point.private = smbios_entry_point;
 747        ret = sysfs_create_bin_file(tables_kobj, &bin_attr_smbios_entry_point);
 748        if (ret)
 749                goto err_unmap;
 750
 751        bin_attr_DMI.size = dmi_len;
 752        bin_attr_DMI.private = dmi_table;
 753        ret = sysfs_create_bin_file(tables_kobj, &bin_attr_DMI);
 754        if (!ret)
 755                return 0;
 756
 757        sysfs_remove_bin_file(tables_kobj,
 758                              &bin_attr_smbios_entry_point);
 759 err_unmap:
 760        dmi_unmap(dmi_table);
 761 err_tables:
 762        kobject_del(tables_kobj);
 763        kobject_put(tables_kobj);
 764 err:
 765        pr_err("dmi: Firmware registration failed.\n");
 766
 767        return ret;
 768}
 769subsys_initcall(dmi_init);
 770
 771/**
 772 *      dmi_setup - scan and setup DMI system information
 773 *
 774 *      Scan the DMI system information. This setups DMI identifiers
 775 *      (dmi_system_id) for printing it out on task dumps and prepares
 776 *      DIMM entry information (dmi_memdev_info) from the SMBIOS table
 777 *      for using this when reporting memory errors.
 778 */
 779void __init dmi_setup(void)
 780{
 781        dmi_scan_machine();
 782        if (!dmi_available)
 783                return;
 784
 785        dmi_memdev_walk();
 786        dump_stack_set_arch_desc("%s", dmi_ids_string);
 787}
 788
 789/**
 790 *      dmi_matches - check if dmi_system_id structure matches system DMI data
 791 *      @dmi: pointer to the dmi_system_id structure to check
 792 */
 793static bool dmi_matches(const struct dmi_system_id *dmi)
 794{
 795        int i;
 796
 797        for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) {
 798                int s = dmi->matches[i].slot;
 799                if (s == DMI_NONE)
 800                        break;
 801                if (s == DMI_OEM_STRING) {
 802                        /* DMI_OEM_STRING must be exact match */
 803                        const struct dmi_device *valid;
 804
 805                        valid = dmi_find_device(DMI_DEV_TYPE_OEM_STRING,
 806                                                dmi->matches[i].substr, NULL);
 807                        if (valid)
 808                                continue;
 809                } else if (dmi_ident[s]) {
 810                        if (dmi->matches[i].exact_match) {
 811                                if (!strcmp(dmi_ident[s],
 812                                            dmi->matches[i].substr))
 813                                        continue;
 814                        } else {
 815                                if (strstr(dmi_ident[s],
 816                                           dmi->matches[i].substr))
 817                                        continue;
 818                        }
 819                }
 820
 821                /* No match */
 822                return false;
 823        }
 824        return true;
 825}
 826
 827/**
 828 *      dmi_is_end_of_table - check for end-of-table marker
 829 *      @dmi: pointer to the dmi_system_id structure to check
 830 */
 831static bool dmi_is_end_of_table(const struct dmi_system_id *dmi)
 832{
 833        return dmi->matches[0].slot == DMI_NONE;
 834}
 835
 836/**
 837 *      dmi_check_system - check system DMI data
 838 *      @list: array of dmi_system_id structures to match against
 839 *              All non-null elements of the list must match
 840 *              their slot's (field index's) data (i.e., each
 841 *              list string must be a substring of the specified
 842 *              DMI slot's string data) to be considered a
 843 *              successful match.
 844 *
 845 *      Walk the blacklist table running matching functions until someone
 846 *      returns non zero or we hit the end. Callback function is called for
 847 *      each successful match. Returns the number of matches.
 848 *
 849 *      dmi_setup must be called before this function is called.
 850 */
 851int dmi_check_system(const struct dmi_system_id *list)
 852{
 853        int count = 0;
 854        const struct dmi_system_id *d;
 855
 856        for (d = list; !dmi_is_end_of_table(d); d++)
 857                if (dmi_matches(d)) {
 858                        count++;
 859                        if (d->callback && d->callback(d))
 860                                break;
 861                }
 862
 863        return count;
 864}
 865EXPORT_SYMBOL(dmi_check_system);
 866
 867/**
 868 *      dmi_first_match - find dmi_system_id structure matching system DMI data
 869 *      @list: array of dmi_system_id structures to match against
 870 *              All non-null elements of the list must match
 871 *              their slot's (field index's) data (i.e., each
 872 *              list string must be a substring of the specified
 873 *              DMI slot's string data) to be considered a
 874 *              successful match.
 875 *
 876 *      Walk the blacklist table until the first match is found.  Return the
 877 *      pointer to the matching entry or NULL if there's no match.
 878 *
 879 *      dmi_setup must be called before this function is called.
 880 */
 881const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list)
 882{
 883        const struct dmi_system_id *d;
 884
 885        for (d = list; !dmi_is_end_of_table(d); d++)
 886                if (dmi_matches(d))
 887                        return d;
 888
 889        return NULL;
 890}
 891EXPORT_SYMBOL(dmi_first_match);
 892
 893/**
 894 *      dmi_get_system_info - return DMI data value
 895 *      @field: data index (see enum dmi_field)
 896 *
 897 *      Returns one DMI data value, can be used to perform
 898 *      complex DMI data checks.
 899 */
 900const char *dmi_get_system_info(int field)
 901{
 902        return dmi_ident[field];
 903}
 904EXPORT_SYMBOL(dmi_get_system_info);
 905
 906/**
 907 * dmi_name_in_serial - Check if string is in the DMI product serial information
 908 * @str: string to check for
 909 */
 910int dmi_name_in_serial(const char *str)
 911{
 912        int f = DMI_PRODUCT_SERIAL;
 913        if (dmi_ident[f] && strstr(dmi_ident[f], str))
 914                return 1;
 915        return 0;
 916}
 917
 918/**
 919 *      dmi_name_in_vendors - Check if string is in the DMI system or board vendor name
 920 *      @str: Case sensitive Name
 921 */
 922int dmi_name_in_vendors(const char *str)
 923{
 924        static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE };
 925        int i;
 926        for (i = 0; fields[i] != DMI_NONE; i++) {
 927                int f = fields[i];
 928                if (dmi_ident[f] && strstr(dmi_ident[f], str))
 929                        return 1;
 930        }
 931        return 0;
 932}
 933EXPORT_SYMBOL(dmi_name_in_vendors);
 934
 935/**
 936 *      dmi_find_device - find onboard device by type/name
 937 *      @type: device type or %DMI_DEV_TYPE_ANY to match all device types
 938 *      @name: device name string or %NULL to match all
 939 *      @from: previous device found in search, or %NULL for new search.
 940 *
 941 *      Iterates through the list of known onboard devices. If a device is
 942 *      found with a matching @type and @name, a pointer to its device
 943 *      structure is returned.  Otherwise, %NULL is returned.
 944 *      A new search is initiated by passing %NULL as the @from argument.
 945 *      If @from is not %NULL, searches continue from next device.
 946 */
 947const struct dmi_device *dmi_find_device(int type, const char *name,
 948                                    const struct dmi_device *from)
 949{
 950        const struct list_head *head = from ? &from->list : &dmi_devices;
 951        struct list_head *d;
 952
 953        for (d = head->next; d != &dmi_devices; d = d->next) {
 954                const struct dmi_device *dev =
 955                        list_entry(d, struct dmi_device, list);
 956
 957                if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
 958                    ((name == NULL) || (strcmp(dev->name, name) == 0)))
 959                        return dev;
 960        }
 961
 962        return NULL;
 963}
 964EXPORT_SYMBOL(dmi_find_device);
 965
 966/**
 967 *      dmi_get_date - parse a DMI date
 968 *      @field: data index (see enum dmi_field)
 969 *      @yearp: optional out parameter for the year
 970 *      @monthp: optional out parameter for the month
 971 *      @dayp: optional out parameter for the day
 972 *
 973 *      The date field is assumed to be in the form resembling
 974 *      [mm[/dd]]/yy[yy] and the result is stored in the out
 975 *      parameters any or all of which can be omitted.
 976 *
 977 *      If the field doesn't exist, all out parameters are set to zero
 978 *      and false is returned.  Otherwise, true is returned with any
 979 *      invalid part of date set to zero.
 980 *
 981 *      On return, year, month and day are guaranteed to be in the
 982 *      range of [0,9999], [0,12] and [0,31] respectively.
 983 */
 984bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp)
 985{
 986        int year = 0, month = 0, day = 0;
 987        bool exists;
 988        const char *s, *y;
 989        char *e;
 990
 991        s = dmi_get_system_info(field);
 992        exists = s;
 993        if (!exists)
 994                goto out;
 995
 996        /*
 997         * Determine year first.  We assume the date string resembles
 998         * mm/dd/yy[yy] but the original code extracted only the year
 999         * from the end.  Keep the behavior in the spirit of no
1000         * surprises.
1001         */
1002        y = strrchr(s, '/');
1003        if (!y)
1004                goto out;
1005
1006        y++;
1007        year = simple_strtoul(y, &e, 10);
1008        if (y != e && year < 100) {     /* 2-digit year */
1009                year += 1900;
1010                if (year < 1996)        /* no dates < spec 1.0 */
1011                        year += 100;
1012        }
1013        if (year > 9999)                /* year should fit in %04d */
1014                year = 0;
1015
1016        /* parse the mm and dd */
1017        month = simple_strtoul(s, &e, 10);
1018        if (s == e || *e != '/' || !month || month > 12) {
1019                month = 0;
1020                goto out;
1021        }
1022
1023        s = e + 1;
1024        day = simple_strtoul(s, &e, 10);
1025        if (s == y || s == e || *e != '/' || day > 31)
1026                day = 0;
1027out:
1028        if (yearp)
1029                *yearp = year;
1030        if (monthp)
1031                *monthp = month;
1032        if (dayp)
1033                *dayp = day;
1034        return exists;
1035}
1036EXPORT_SYMBOL(dmi_get_date);
1037
1038/**
1039 *      dmi_get_bios_year - get a year out of DMI_BIOS_DATE field
1040 *
1041 *      Returns year on success, -ENXIO if DMI is not selected,
1042 *      or a different negative error code if DMI field is not present
1043 *      or not parseable.
1044 */
1045int dmi_get_bios_year(void)
1046{
1047        bool exists;
1048        int year;
1049
1050        exists = dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL);
1051        if (!exists)
1052                return -ENODATA;
1053
1054        return year ? year : -ERANGE;
1055}
1056EXPORT_SYMBOL(dmi_get_bios_year);
1057
1058/**
1059 *      dmi_walk - Walk the DMI table and get called back for every record
1060 *      @decode: Callback function
1061 *      @private_data: Private data to be passed to the callback function
1062 *
1063 *      Returns 0 on success, -ENXIO if DMI is not selected or not present,
1064 *      or a different negative error code if DMI walking fails.
1065 */
1066int dmi_walk(void (*decode)(const struct dmi_header *, void *),
1067             void *private_data)
1068{
1069        u8 *buf;
1070
1071        if (!dmi_available)
1072                return -ENXIO;
1073
1074        buf = dmi_remap(dmi_base, dmi_len);
1075        if (buf == NULL)
1076                return -ENOMEM;
1077
1078        dmi_decode_table(buf, decode, private_data);
1079
1080        dmi_unmap(buf);
1081        return 0;
1082}
1083EXPORT_SYMBOL_GPL(dmi_walk);
1084
1085/**
1086 * dmi_match - compare a string to the dmi field (if exists)
1087 * @f: DMI field identifier
1088 * @str: string to compare the DMI field to
1089 *
1090 * Returns true if the requested field equals to the str (including NULL).
1091 */
1092bool dmi_match(enum dmi_field f, const char *str)
1093{
1094        const char *info = dmi_get_system_info(f);
1095
1096        if (info == NULL || str == NULL)
1097                return info == str;
1098
1099        return !strcmp(info, str);
1100}
1101EXPORT_SYMBOL_GPL(dmi_match);
1102
1103void dmi_memdev_name(u16 handle, const char **bank, const char **device)
1104{
1105        int n;
1106
1107        if (dmi_memdev == NULL)
1108                return;
1109
1110        for (n = 0; n < dmi_memdev_nr; n++) {
1111                if (handle == dmi_memdev[n].handle) {
1112                        *bank = dmi_memdev[n].bank;
1113                        *device = dmi_memdev[n].device;
1114                        break;
1115                }
1116        }
1117}
1118EXPORT_SYMBOL_GPL(dmi_memdev_name);
1119
1120u64 dmi_memdev_size(u16 handle)
1121{
1122        int n;
1123
1124        if (dmi_memdev) {
1125                for (n = 0; n < dmi_memdev_nr; n++) {
1126                        if (handle == dmi_memdev[n].handle)
1127                                return dmi_memdev[n].size;
1128                }
1129        }
1130        return ~0ull;
1131}
1132EXPORT_SYMBOL_GPL(dmi_memdev_size);
1133
1134/**
1135 * dmi_memdev_type - get the memory type
1136 * @handle: DMI structure handle
1137 *
1138 * Return the DMI memory type of the module in the slot associated with the
1139 * given DMI handle, or 0x0 if no such DMI handle exists.
1140 */
1141u8 dmi_memdev_type(u16 handle)
1142{
1143        int n;
1144
1145        if (dmi_memdev) {
1146                for (n = 0; n < dmi_memdev_nr; n++) {
1147                        if (handle == dmi_memdev[n].handle)
1148                                return dmi_memdev[n].type;
1149                }
1150        }
1151        return 0x0;     /* Not a valid value */
1152}
1153EXPORT_SYMBOL_GPL(dmi_memdev_type);
1154
1155/**
1156 *      dmi_memdev_handle - get the DMI handle of a memory slot
1157 *      @slot: slot number
1158 *
1159 *      Return the DMI handle associated with a given memory slot, or %0xFFFF
1160 *      if there is no such slot.
1161 */
1162u16 dmi_memdev_handle(int slot)
1163{
1164        if (dmi_memdev && slot >= 0 && slot < dmi_memdev_nr)
1165                return dmi_memdev[slot].handle;
1166
1167        return 0xffff;  /* Not a valid value */
1168}
1169EXPORT_SYMBOL_GPL(dmi_memdev_handle);
1170