linux/drivers/gpu/drm/amd/amdkfd/kfd_events.c
<<
>>
Prefs
   1/*
   2 * Copyright 2014 Advanced Micro Devices, Inc.
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice shall be included in
  12 * all copies or substantial portions of the Software.
  13 *
  14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20 * OTHER DEALINGS IN THE SOFTWARE.
  21 */
  22
  23#include <linux/mm_types.h>
  24#include <linux/slab.h>
  25#include <linux/types.h>
  26#include <linux/sched/signal.h>
  27#include <linux/sched/mm.h>
  28#include <linux/uaccess.h>
  29#include <linux/mman.h>
  30#include <linux/memory.h>
  31#include "kfd_priv.h"
  32#include "kfd_events.h"
  33#include "kfd_iommu.h"
  34#include <linux/device.h>
  35
  36/*
  37 * Wrapper around wait_queue_entry_t
  38 */
  39struct kfd_event_waiter {
  40        wait_queue_entry_t wait;
  41        struct kfd_event *event; /* Event to wait for */
  42        bool activated;          /* Becomes true when event is signaled */
  43};
  44
  45/*
  46 * Each signal event needs a 64-bit signal slot where the signaler will write
  47 * a 1 before sending an interrupt. (This is needed because some interrupts
  48 * do not contain enough spare data bits to identify an event.)
  49 * We get whole pages and map them to the process VA.
  50 * Individual signal events use their event_id as slot index.
  51 */
  52struct kfd_signal_page {
  53        uint64_t *kernel_address;
  54        uint64_t __user *user_address;
  55        bool need_to_free_pages;
  56};
  57
  58
  59static uint64_t *page_slots(struct kfd_signal_page *page)
  60{
  61        return page->kernel_address;
  62}
  63
  64static struct kfd_signal_page *allocate_signal_page(struct kfd_process *p)
  65{
  66        void *backing_store;
  67        struct kfd_signal_page *page;
  68
  69        page = kzalloc(sizeof(*page), GFP_KERNEL);
  70        if (!page)
  71                return NULL;
  72
  73        backing_store = (void *) __get_free_pages(GFP_KERNEL,
  74                                        get_order(KFD_SIGNAL_EVENT_LIMIT * 8));
  75        if (!backing_store)
  76                goto fail_alloc_signal_store;
  77
  78        /* Initialize all events to unsignaled */
  79        memset(backing_store, (uint8_t) UNSIGNALED_EVENT_SLOT,
  80               KFD_SIGNAL_EVENT_LIMIT * 8);
  81
  82        page->kernel_address = backing_store;
  83        page->need_to_free_pages = true;
  84        pr_debug("Allocated new event signal page at %p, for process %p\n",
  85                        page, p);
  86
  87        return page;
  88
  89fail_alloc_signal_store:
  90        kfree(page);
  91        return NULL;
  92}
  93
  94static int allocate_event_notification_slot(struct kfd_process *p,
  95                                            struct kfd_event *ev)
  96{
  97        int id;
  98
  99        if (!p->signal_page) {
 100                p->signal_page = allocate_signal_page(p);
 101                if (!p->signal_page)
 102                        return -ENOMEM;
 103                /* Oldest user mode expects 256 event slots */
 104                p->signal_mapped_size = 256*8;
 105        }
 106
 107        /*
 108         * Compatibility with old user mode: Only use signal slots
 109         * user mode has mapped, may be less than
 110         * KFD_SIGNAL_EVENT_LIMIT. This also allows future increase
 111         * of the event limit without breaking user mode.
 112         */
 113        id = idr_alloc(&p->event_idr, ev, 0, p->signal_mapped_size / 8,
 114                       GFP_KERNEL);
 115        if (id < 0)
 116                return id;
 117
 118        ev->event_id = id;
 119        page_slots(p->signal_page)[id] = UNSIGNALED_EVENT_SLOT;
 120
 121        return 0;
 122}
 123
 124/*
 125 * Assumes that p->event_mutex is held and of course that p is not going
 126 * away (current or locked).
 127 */
 128static struct kfd_event *lookup_event_by_id(struct kfd_process *p, uint32_t id)
 129{
 130        return idr_find(&p->event_idr, id);
 131}
 132
 133/**
 134 * lookup_signaled_event_by_partial_id - Lookup signaled event from partial ID
 135 * @p:     Pointer to struct kfd_process
 136 * @id:    ID to look up
 137 * @bits:  Number of valid bits in @id
 138 *
 139 * Finds the first signaled event with a matching partial ID. If no
 140 * matching signaled event is found, returns NULL. In that case the
 141 * caller should assume that the partial ID is invalid and do an
 142 * exhaustive search of all siglaned events.
 143 *
 144 * If multiple events with the same partial ID signal at the same
 145 * time, they will be found one interrupt at a time, not necessarily
 146 * in the same order the interrupts occurred. As long as the number of
 147 * interrupts is correct, all signaled events will be seen by the
 148 * driver.
 149 */
 150static struct kfd_event *lookup_signaled_event_by_partial_id(
 151        struct kfd_process *p, uint32_t id, uint32_t bits)
 152{
 153        struct kfd_event *ev;
 154
 155        if (!p->signal_page || id >= KFD_SIGNAL_EVENT_LIMIT)
 156                return NULL;
 157
 158        /* Fast path for the common case that @id is not a partial ID
 159         * and we only need a single lookup.
 160         */
 161        if (bits > 31 || (1U << bits) >= KFD_SIGNAL_EVENT_LIMIT) {
 162                if (page_slots(p->signal_page)[id] == UNSIGNALED_EVENT_SLOT)
 163                        return NULL;
 164
 165                return idr_find(&p->event_idr, id);
 166        }
 167
 168        /* General case for partial IDs: Iterate over all matching IDs
 169         * and find the first one that has signaled.
 170         */
 171        for (ev = NULL; id < KFD_SIGNAL_EVENT_LIMIT && !ev; id += 1U << bits) {
 172                if (page_slots(p->signal_page)[id] == UNSIGNALED_EVENT_SLOT)
 173                        continue;
 174
 175                ev = idr_find(&p->event_idr, id);
 176        }
 177
 178        return ev;
 179}
 180
 181static int create_signal_event(struct file *devkfd,
 182                                struct kfd_process *p,
 183                                struct kfd_event *ev)
 184{
 185        int ret;
 186
 187        if (p->signal_mapped_size &&
 188            p->signal_event_count == p->signal_mapped_size / 8) {
 189                if (!p->signal_event_limit_reached) {
 190                        pr_warn("Signal event wasn't created because limit was reached\n");
 191                        p->signal_event_limit_reached = true;
 192                }
 193                return -ENOSPC;
 194        }
 195
 196        ret = allocate_event_notification_slot(p, ev);
 197        if (ret) {
 198                pr_warn("Signal event wasn't created because out of kernel memory\n");
 199                return ret;
 200        }
 201
 202        p->signal_event_count++;
 203
 204        ev->user_signal_address = &p->signal_page->user_address[ev->event_id];
 205        pr_debug("Signal event number %zu created with id %d, address %p\n",
 206                        p->signal_event_count, ev->event_id,
 207                        ev->user_signal_address);
 208
 209        return 0;
 210}
 211
 212static int create_other_event(struct kfd_process *p, struct kfd_event *ev)
 213{
 214        /* Cast KFD_LAST_NONSIGNAL_EVENT to uint32_t. This allows an
 215         * intentional integer overflow to -1 without a compiler
 216         * warning. idr_alloc treats a negative value as "maximum
 217         * signed integer".
 218         */
 219        int id = idr_alloc(&p->event_idr, ev, KFD_FIRST_NONSIGNAL_EVENT_ID,
 220                           (uint32_t)KFD_LAST_NONSIGNAL_EVENT_ID + 1,
 221                           GFP_KERNEL);
 222
 223        if (id < 0)
 224                return id;
 225        ev->event_id = id;
 226
 227        return 0;
 228}
 229
 230void kfd_event_init_process(struct kfd_process *p)
 231{
 232        mutex_init(&p->event_mutex);
 233        idr_init(&p->event_idr);
 234        p->signal_page = NULL;
 235        p->signal_event_count = 0;
 236}
 237
 238static void destroy_event(struct kfd_process *p, struct kfd_event *ev)
 239{
 240        struct kfd_event_waiter *waiter;
 241
 242        /* Wake up pending waiters. They will return failure */
 243        list_for_each_entry(waiter, &ev->wq.head, wait.entry)
 244                waiter->event = NULL;
 245        wake_up_all(&ev->wq);
 246
 247        if (ev->type == KFD_EVENT_TYPE_SIGNAL ||
 248            ev->type == KFD_EVENT_TYPE_DEBUG)
 249                p->signal_event_count--;
 250
 251        idr_remove(&p->event_idr, ev->event_id);
 252        kfree(ev);
 253}
 254
 255static void destroy_events(struct kfd_process *p)
 256{
 257        struct kfd_event *ev;
 258        uint32_t id;
 259
 260        idr_for_each_entry(&p->event_idr, ev, id)
 261                destroy_event(p, ev);
 262        idr_destroy(&p->event_idr);
 263}
 264
 265/*
 266 * We assume that the process is being destroyed and there is no need to
 267 * unmap the pages or keep bookkeeping data in order.
 268 */
 269static void shutdown_signal_page(struct kfd_process *p)
 270{
 271        struct kfd_signal_page *page = p->signal_page;
 272
 273        if (page) {
 274                if (page->need_to_free_pages)
 275                        free_pages((unsigned long)page->kernel_address,
 276                                   get_order(KFD_SIGNAL_EVENT_LIMIT * 8));
 277                kfree(page);
 278        }
 279}
 280
 281void kfd_event_free_process(struct kfd_process *p)
 282{
 283        destroy_events(p);
 284        shutdown_signal_page(p);
 285}
 286
 287static bool event_can_be_gpu_signaled(const struct kfd_event *ev)
 288{
 289        return ev->type == KFD_EVENT_TYPE_SIGNAL ||
 290                                        ev->type == KFD_EVENT_TYPE_DEBUG;
 291}
 292
 293static bool event_can_be_cpu_signaled(const struct kfd_event *ev)
 294{
 295        return ev->type == KFD_EVENT_TYPE_SIGNAL;
 296}
 297
 298int kfd_event_page_set(struct kfd_process *p, void *kernel_address,
 299                       uint64_t size)
 300{
 301        struct kfd_signal_page *page;
 302
 303        if (p->signal_page)
 304                return -EBUSY;
 305
 306        page = kzalloc(sizeof(*page), GFP_KERNEL);
 307        if (!page)
 308                return -ENOMEM;
 309
 310        /* Initialize all events to unsignaled */
 311        memset(kernel_address, (uint8_t) UNSIGNALED_EVENT_SLOT,
 312               KFD_SIGNAL_EVENT_LIMIT * 8);
 313
 314        page->kernel_address = kernel_address;
 315
 316        p->signal_page = page;
 317        p->signal_mapped_size = size;
 318
 319        return 0;
 320}
 321
 322int kfd_event_create(struct file *devkfd, struct kfd_process *p,
 323                     uint32_t event_type, bool auto_reset, uint32_t node_id,
 324                     uint32_t *event_id, uint32_t *event_trigger_data,
 325                     uint64_t *event_page_offset, uint32_t *event_slot_index)
 326{
 327        int ret = 0;
 328        struct kfd_event *ev = kzalloc(sizeof(*ev), GFP_KERNEL);
 329
 330        if (!ev)
 331                return -ENOMEM;
 332
 333        ev->type = event_type;
 334        ev->auto_reset = auto_reset;
 335        ev->signaled = false;
 336
 337        init_waitqueue_head(&ev->wq);
 338
 339        *event_page_offset = 0;
 340
 341        mutex_lock(&p->event_mutex);
 342
 343        switch (event_type) {
 344        case KFD_EVENT_TYPE_SIGNAL:
 345        case KFD_EVENT_TYPE_DEBUG:
 346                ret = create_signal_event(devkfd, p, ev);
 347                if (!ret) {
 348                        *event_page_offset = KFD_MMAP_TYPE_EVENTS;
 349                        *event_page_offset <<= PAGE_SHIFT;
 350                        *event_slot_index = ev->event_id;
 351                }
 352                break;
 353        default:
 354                ret = create_other_event(p, ev);
 355                break;
 356        }
 357
 358        if (!ret) {
 359                *event_id = ev->event_id;
 360                *event_trigger_data = ev->event_id;
 361        } else {
 362                kfree(ev);
 363        }
 364
 365        mutex_unlock(&p->event_mutex);
 366
 367        return ret;
 368}
 369
 370/* Assumes that p is current. */
 371int kfd_event_destroy(struct kfd_process *p, uint32_t event_id)
 372{
 373        struct kfd_event *ev;
 374        int ret = 0;
 375
 376        mutex_lock(&p->event_mutex);
 377
 378        ev = lookup_event_by_id(p, event_id);
 379
 380        if (ev)
 381                destroy_event(p, ev);
 382        else
 383                ret = -EINVAL;
 384
 385        mutex_unlock(&p->event_mutex);
 386        return ret;
 387}
 388
 389static void set_event(struct kfd_event *ev)
 390{
 391        struct kfd_event_waiter *waiter;
 392
 393        /* Auto reset if the list is non-empty and we're waking
 394         * someone. waitqueue_active is safe here because we're
 395         * protected by the p->event_mutex, which is also held when
 396         * updating the wait queues in kfd_wait_on_events.
 397         */
 398        ev->signaled = !ev->auto_reset || !waitqueue_active(&ev->wq);
 399
 400        list_for_each_entry(waiter, &ev->wq.head, wait.entry)
 401                waiter->activated = true;
 402
 403        wake_up_all(&ev->wq);
 404}
 405
 406/* Assumes that p is current. */
 407int kfd_set_event(struct kfd_process *p, uint32_t event_id)
 408{
 409        int ret = 0;
 410        struct kfd_event *ev;
 411
 412        mutex_lock(&p->event_mutex);
 413
 414        ev = lookup_event_by_id(p, event_id);
 415
 416        if (ev && event_can_be_cpu_signaled(ev))
 417                set_event(ev);
 418        else
 419                ret = -EINVAL;
 420
 421        mutex_unlock(&p->event_mutex);
 422        return ret;
 423}
 424
 425static void reset_event(struct kfd_event *ev)
 426{
 427        ev->signaled = false;
 428}
 429
 430/* Assumes that p is current. */
 431int kfd_reset_event(struct kfd_process *p, uint32_t event_id)
 432{
 433        int ret = 0;
 434        struct kfd_event *ev;
 435
 436        mutex_lock(&p->event_mutex);
 437
 438        ev = lookup_event_by_id(p, event_id);
 439
 440        if (ev && event_can_be_cpu_signaled(ev))
 441                reset_event(ev);
 442        else
 443                ret = -EINVAL;
 444
 445        mutex_unlock(&p->event_mutex);
 446        return ret;
 447
 448}
 449
 450static void acknowledge_signal(struct kfd_process *p, struct kfd_event *ev)
 451{
 452        page_slots(p->signal_page)[ev->event_id] = UNSIGNALED_EVENT_SLOT;
 453}
 454
 455static void set_event_from_interrupt(struct kfd_process *p,
 456                                        struct kfd_event *ev)
 457{
 458        if (ev && event_can_be_gpu_signaled(ev)) {
 459                acknowledge_signal(p, ev);
 460                set_event(ev);
 461        }
 462}
 463
 464void kfd_signal_event_interrupt(unsigned int pasid, uint32_t partial_id,
 465                                uint32_t valid_id_bits)
 466{
 467        struct kfd_event *ev = NULL;
 468
 469        /*
 470         * Because we are called from arbitrary context (workqueue) as opposed
 471         * to process context, kfd_process could attempt to exit while we are
 472         * running so the lookup function increments the process ref count.
 473         */
 474        struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
 475
 476        if (!p)
 477                return; /* Presumably process exited. */
 478
 479        mutex_lock(&p->event_mutex);
 480
 481        if (valid_id_bits)
 482                ev = lookup_signaled_event_by_partial_id(p, partial_id,
 483                                                         valid_id_bits);
 484        if (ev) {
 485                set_event_from_interrupt(p, ev);
 486        } else if (p->signal_page) {
 487                /*
 488                 * Partial ID lookup failed. Assume that the event ID
 489                 * in the interrupt payload was invalid and do an
 490                 * exhaustive search of signaled events.
 491                 */
 492                uint64_t *slots = page_slots(p->signal_page);
 493                uint32_t id;
 494
 495                if (valid_id_bits)
 496                        pr_debug_ratelimited("Partial ID invalid: %u (%u valid bits)\n",
 497                                             partial_id, valid_id_bits);
 498
 499                if (p->signal_event_count < KFD_SIGNAL_EVENT_LIMIT / 64) {
 500                        /* With relatively few events, it's faster to
 501                         * iterate over the event IDR
 502                         */
 503                        idr_for_each_entry(&p->event_idr, ev, id) {
 504                                if (id >= KFD_SIGNAL_EVENT_LIMIT)
 505                                        break;
 506
 507                                if (slots[id] != UNSIGNALED_EVENT_SLOT)
 508                                        set_event_from_interrupt(p, ev);
 509                        }
 510                } else {
 511                        /* With relatively many events, it's faster to
 512                         * iterate over the signal slots and lookup
 513                         * only signaled events from the IDR.
 514                         */
 515                        for (id = 0; id < KFD_SIGNAL_EVENT_LIMIT; id++)
 516                                if (slots[id] != UNSIGNALED_EVENT_SLOT) {
 517                                        ev = lookup_event_by_id(p, id);
 518                                        set_event_from_interrupt(p, ev);
 519                                }
 520                }
 521        }
 522
 523        mutex_unlock(&p->event_mutex);
 524        kfd_unref_process(p);
 525}
 526
 527static struct kfd_event_waiter *alloc_event_waiters(uint32_t num_events)
 528{
 529        struct kfd_event_waiter *event_waiters;
 530        uint32_t i;
 531
 532        event_waiters = kmalloc_array(num_events,
 533                                        sizeof(struct kfd_event_waiter),
 534                                        GFP_KERNEL);
 535
 536        for (i = 0; (event_waiters) && (i < num_events) ; i++) {
 537                init_wait(&event_waiters[i].wait);
 538                event_waiters[i].activated = false;
 539        }
 540
 541        return event_waiters;
 542}
 543
 544static int init_event_waiter_get_status(struct kfd_process *p,
 545                struct kfd_event_waiter *waiter,
 546                uint32_t event_id)
 547{
 548        struct kfd_event *ev = lookup_event_by_id(p, event_id);
 549
 550        if (!ev)
 551                return -EINVAL;
 552
 553        waiter->event = ev;
 554        waiter->activated = ev->signaled;
 555        ev->signaled = ev->signaled && !ev->auto_reset;
 556
 557        return 0;
 558}
 559
 560static void init_event_waiter_add_to_waitlist(struct kfd_event_waiter *waiter)
 561{
 562        struct kfd_event *ev = waiter->event;
 563
 564        /* Only add to the wait list if we actually need to
 565         * wait on this event.
 566         */
 567        if (!waiter->activated)
 568                add_wait_queue(&ev->wq, &waiter->wait);
 569}
 570
 571/* test_event_condition - Test condition of events being waited for
 572 * @all:           Return completion only if all events have signaled
 573 * @num_events:    Number of events to wait for
 574 * @event_waiters: Array of event waiters, one per event
 575 *
 576 * Returns KFD_IOC_WAIT_RESULT_COMPLETE if all (or one) event(s) have
 577 * signaled. Returns KFD_IOC_WAIT_RESULT_TIMEOUT if no (or not all)
 578 * events have signaled. Returns KFD_IOC_WAIT_RESULT_FAIL if any of
 579 * the events have been destroyed.
 580 */
 581static uint32_t test_event_condition(bool all, uint32_t num_events,
 582                                struct kfd_event_waiter *event_waiters)
 583{
 584        uint32_t i;
 585        uint32_t activated_count = 0;
 586
 587        for (i = 0; i < num_events; i++) {
 588                if (!event_waiters[i].event)
 589                        return KFD_IOC_WAIT_RESULT_FAIL;
 590
 591                if (event_waiters[i].activated) {
 592                        if (!all)
 593                                return KFD_IOC_WAIT_RESULT_COMPLETE;
 594
 595                        activated_count++;
 596                }
 597        }
 598
 599        return activated_count == num_events ?
 600                KFD_IOC_WAIT_RESULT_COMPLETE : KFD_IOC_WAIT_RESULT_TIMEOUT;
 601}
 602
 603/*
 604 * Copy event specific data, if defined.
 605 * Currently only memory exception events have additional data to copy to user
 606 */
 607static int copy_signaled_event_data(uint32_t num_events,
 608                struct kfd_event_waiter *event_waiters,
 609                struct kfd_event_data __user *data)
 610{
 611        struct kfd_hsa_memory_exception_data *src;
 612        struct kfd_hsa_memory_exception_data __user *dst;
 613        struct kfd_event_waiter *waiter;
 614        struct kfd_event *event;
 615        uint32_t i;
 616
 617        for (i = 0; i < num_events; i++) {
 618                waiter = &event_waiters[i];
 619                event = waiter->event;
 620                if (waiter->activated && event->type == KFD_EVENT_TYPE_MEMORY) {
 621                        dst = &data[i].memory_exception_data;
 622                        src = &event->memory_exception_data;
 623                        if (copy_to_user(dst, src,
 624                                sizeof(struct kfd_hsa_memory_exception_data)))
 625                                return -EFAULT;
 626                }
 627        }
 628
 629        return 0;
 630
 631}
 632
 633
 634
 635static long user_timeout_to_jiffies(uint32_t user_timeout_ms)
 636{
 637        if (user_timeout_ms == KFD_EVENT_TIMEOUT_IMMEDIATE)
 638                return 0;
 639
 640        if (user_timeout_ms == KFD_EVENT_TIMEOUT_INFINITE)
 641                return MAX_SCHEDULE_TIMEOUT;
 642
 643        /*
 644         * msecs_to_jiffies interprets all values above 2^31-1 as infinite,
 645         * but we consider them finite.
 646         * This hack is wrong, but nobody is likely to notice.
 647         */
 648        user_timeout_ms = min_t(uint32_t, user_timeout_ms, 0x7FFFFFFF);
 649
 650        return msecs_to_jiffies(user_timeout_ms) + 1;
 651}
 652
 653static void free_waiters(uint32_t num_events, struct kfd_event_waiter *waiters)
 654{
 655        uint32_t i;
 656
 657        for (i = 0; i < num_events; i++)
 658                if (waiters[i].event)
 659                        remove_wait_queue(&waiters[i].event->wq,
 660                                          &waiters[i].wait);
 661
 662        kfree(waiters);
 663}
 664
 665int kfd_wait_on_events(struct kfd_process *p,
 666                       uint32_t num_events, void __user *data,
 667                       bool all, uint32_t user_timeout_ms,
 668                       uint32_t *wait_result)
 669{
 670        struct kfd_event_data __user *events =
 671                        (struct kfd_event_data __user *) data;
 672        uint32_t i;
 673        int ret = 0;
 674
 675        struct kfd_event_waiter *event_waiters = NULL;
 676        long timeout = user_timeout_to_jiffies(user_timeout_ms);
 677
 678        event_waiters = alloc_event_waiters(num_events);
 679        if (!event_waiters) {
 680                ret = -ENOMEM;
 681                goto out;
 682        }
 683
 684        mutex_lock(&p->event_mutex);
 685
 686        for (i = 0; i < num_events; i++) {
 687                struct kfd_event_data event_data;
 688
 689                if (copy_from_user(&event_data, &events[i],
 690                                sizeof(struct kfd_event_data))) {
 691                        ret = -EFAULT;
 692                        goto out_unlock;
 693                }
 694
 695                ret = init_event_waiter_get_status(p, &event_waiters[i],
 696                                event_data.event_id);
 697                if (ret)
 698                        goto out_unlock;
 699        }
 700
 701        /* Check condition once. */
 702        *wait_result = test_event_condition(all, num_events, event_waiters);
 703        if (*wait_result == KFD_IOC_WAIT_RESULT_COMPLETE) {
 704                ret = copy_signaled_event_data(num_events,
 705                                               event_waiters, events);
 706                goto out_unlock;
 707        } else if (WARN_ON(*wait_result == KFD_IOC_WAIT_RESULT_FAIL)) {
 708                /* This should not happen. Events shouldn't be
 709                 * destroyed while we're holding the event_mutex
 710                 */
 711                goto out_unlock;
 712        }
 713
 714        /* Add to wait lists if we need to wait. */
 715        for (i = 0; i < num_events; i++)
 716                init_event_waiter_add_to_waitlist(&event_waiters[i]);
 717
 718        mutex_unlock(&p->event_mutex);
 719
 720        while (true) {
 721                if (fatal_signal_pending(current)) {
 722                        ret = -EINTR;
 723                        break;
 724                }
 725
 726                if (signal_pending(current)) {
 727                        /*
 728                         * This is wrong when a nonzero, non-infinite timeout
 729                         * is specified. We need to use
 730                         * ERESTARTSYS_RESTARTBLOCK, but struct restart_block
 731                         * contains a union with data for each user and it's
 732                         * in generic kernel code that I don't want to
 733                         * touch yet.
 734                         */
 735                        ret = -ERESTARTSYS;
 736                        break;
 737                }
 738
 739                /* Set task state to interruptible sleep before
 740                 * checking wake-up conditions. A concurrent wake-up
 741                 * will put the task back into runnable state. In that
 742                 * case schedule_timeout will not put the task to
 743                 * sleep and we'll get a chance to re-check the
 744                 * updated conditions almost immediately. Otherwise,
 745                 * this race condition would lead to a soft hang or a
 746                 * very long sleep.
 747                 */
 748                set_current_state(TASK_INTERRUPTIBLE);
 749
 750                *wait_result = test_event_condition(all, num_events,
 751                                                    event_waiters);
 752                if (*wait_result != KFD_IOC_WAIT_RESULT_TIMEOUT)
 753                        break;
 754
 755                if (timeout <= 0)
 756                        break;
 757
 758                timeout = schedule_timeout(timeout);
 759        }
 760        __set_current_state(TASK_RUNNING);
 761
 762        /* copy_signaled_event_data may sleep. So this has to happen
 763         * after the task state is set back to RUNNING.
 764         */
 765        if (!ret && *wait_result == KFD_IOC_WAIT_RESULT_COMPLETE)
 766                ret = copy_signaled_event_data(num_events,
 767                                               event_waiters, events);
 768
 769        mutex_lock(&p->event_mutex);
 770out_unlock:
 771        free_waiters(num_events, event_waiters);
 772        mutex_unlock(&p->event_mutex);
 773out:
 774        if (ret)
 775                *wait_result = KFD_IOC_WAIT_RESULT_FAIL;
 776        else if (*wait_result == KFD_IOC_WAIT_RESULT_FAIL)
 777                ret = -EIO;
 778
 779        return ret;
 780}
 781
 782int kfd_event_mmap(struct kfd_process *p, struct vm_area_struct *vma)
 783{
 784        unsigned long pfn;
 785        struct kfd_signal_page *page;
 786        int ret;
 787
 788        /* check required size doesn't exceed the allocated size */
 789        if (get_order(KFD_SIGNAL_EVENT_LIMIT * 8) <
 790                        get_order(vma->vm_end - vma->vm_start)) {
 791                pr_err("Event page mmap requested illegal size\n");
 792                return -EINVAL;
 793        }
 794
 795        page = p->signal_page;
 796        if (!page) {
 797                /* Probably KFD bug, but mmap is user-accessible. */
 798                pr_debug("Signal page could not be found\n");
 799                return -EINVAL;
 800        }
 801
 802        pfn = __pa(page->kernel_address);
 803        pfn >>= PAGE_SHIFT;
 804
 805        vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE
 806                       | VM_DONTDUMP | VM_PFNMAP;
 807
 808        pr_debug("Mapping signal page\n");
 809        pr_debug("     start user address  == 0x%08lx\n", vma->vm_start);
 810        pr_debug("     end user address    == 0x%08lx\n", vma->vm_end);
 811        pr_debug("     pfn                 == 0x%016lX\n", pfn);
 812        pr_debug("     vm_flags            == 0x%08lX\n", vma->vm_flags);
 813        pr_debug("     size                == 0x%08lX\n",
 814                        vma->vm_end - vma->vm_start);
 815
 816        page->user_address = (uint64_t __user *)vma->vm_start;
 817
 818        /* mapping the page to user process */
 819        ret = remap_pfn_range(vma, vma->vm_start, pfn,
 820                        vma->vm_end - vma->vm_start, vma->vm_page_prot);
 821        if (!ret)
 822                p->signal_mapped_size = vma->vm_end - vma->vm_start;
 823
 824        return ret;
 825}
 826
 827/*
 828 * Assumes that p->event_mutex is held and of course
 829 * that p is not going away (current or locked).
 830 */
 831static void lookup_events_by_type_and_signal(struct kfd_process *p,
 832                int type, void *event_data)
 833{
 834        struct kfd_hsa_memory_exception_data *ev_data;
 835        struct kfd_event *ev;
 836        uint32_t id;
 837        bool send_signal = true;
 838
 839        ev_data = (struct kfd_hsa_memory_exception_data *) event_data;
 840
 841        id = KFD_FIRST_NONSIGNAL_EVENT_ID;
 842        idr_for_each_entry_continue(&p->event_idr, ev, id)
 843                if (ev->type == type) {
 844                        send_signal = false;
 845                        dev_dbg(kfd_device,
 846                                        "Event found: id %X type %d",
 847                                        ev->event_id, ev->type);
 848                        set_event(ev);
 849                        if (ev->type == KFD_EVENT_TYPE_MEMORY && ev_data)
 850                                ev->memory_exception_data = *ev_data;
 851                }
 852
 853        if (type == KFD_EVENT_TYPE_MEMORY) {
 854                dev_warn(kfd_device,
 855                        "Sending SIGSEGV to process %d (pasid 0x%x)",
 856                                p->lead_thread->pid, p->pasid);
 857                send_sig(SIGSEGV, p->lead_thread, 0);
 858        }
 859
 860        /* Send SIGTERM no event of type "type" has been found*/
 861        if (send_signal) {
 862                if (send_sigterm) {
 863                        dev_warn(kfd_device,
 864                                "Sending SIGTERM to process %d (pasid 0x%x)",
 865                                        p->lead_thread->pid, p->pasid);
 866                        send_sig(SIGTERM, p->lead_thread, 0);
 867                } else {
 868                        dev_err(kfd_device,
 869                                "Process %d (pasid 0x%x) got unhandled exception",
 870                                p->lead_thread->pid, p->pasid);
 871                }
 872        }
 873}
 874
 875#ifdef KFD_SUPPORT_IOMMU_V2
 876void kfd_signal_iommu_event(struct kfd_dev *dev, unsigned int pasid,
 877                unsigned long address, bool is_write_requested,
 878                bool is_execute_requested)
 879{
 880        struct kfd_hsa_memory_exception_data memory_exception_data;
 881        struct vm_area_struct *vma;
 882
 883        /*
 884         * Because we are called from arbitrary context (workqueue) as opposed
 885         * to process context, kfd_process could attempt to exit while we are
 886         * running so the lookup function increments the process ref count.
 887         */
 888        struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
 889        struct mm_struct *mm;
 890
 891        if (!p)
 892                return; /* Presumably process exited. */
 893
 894        /* Take a safe reference to the mm_struct, which may otherwise
 895         * disappear even while the kfd_process is still referenced.
 896         */
 897        mm = get_task_mm(p->lead_thread);
 898        if (!mm) {
 899                kfd_unref_process(p);
 900                return; /* Process is exiting */
 901        }
 902
 903        memset(&memory_exception_data, 0, sizeof(memory_exception_data));
 904
 905        down_read(&mm->mmap_sem);
 906        vma = find_vma(mm, address);
 907
 908        memory_exception_data.gpu_id = dev->id;
 909        memory_exception_data.va = address;
 910        /* Set failure reason */
 911        memory_exception_data.failure.NotPresent = 1;
 912        memory_exception_data.failure.NoExecute = 0;
 913        memory_exception_data.failure.ReadOnly = 0;
 914        if (vma && address >= vma->vm_start) {
 915                memory_exception_data.failure.NotPresent = 0;
 916
 917                if (is_write_requested && !(vma->vm_flags & VM_WRITE))
 918                        memory_exception_data.failure.ReadOnly = 1;
 919                else
 920                        memory_exception_data.failure.ReadOnly = 0;
 921
 922                if (is_execute_requested && !(vma->vm_flags & VM_EXEC))
 923                        memory_exception_data.failure.NoExecute = 1;
 924                else
 925                        memory_exception_data.failure.NoExecute = 0;
 926        }
 927
 928        up_read(&mm->mmap_sem);
 929        mmput(mm);
 930
 931        pr_debug("notpresent %d, noexecute %d, readonly %d\n",
 932                        memory_exception_data.failure.NotPresent,
 933                        memory_exception_data.failure.NoExecute,
 934                        memory_exception_data.failure.ReadOnly);
 935
 936        /* Workaround on Raven to not kill the process when memory is freed
 937         * before IOMMU is able to finish processing all the excessive PPRs
 938         */
 939        if (dev->device_info->asic_family != CHIP_RAVEN &&
 940            dev->device_info->asic_family != CHIP_RENOIR) {
 941                mutex_lock(&p->event_mutex);
 942
 943                /* Lookup events by type and signal them */
 944                lookup_events_by_type_and_signal(p, KFD_EVENT_TYPE_MEMORY,
 945                                &memory_exception_data);
 946
 947                mutex_unlock(&p->event_mutex);
 948        }
 949
 950        kfd_unref_process(p);
 951}
 952#endif /* KFD_SUPPORT_IOMMU_V2 */
 953
 954void kfd_signal_hw_exception_event(unsigned int pasid)
 955{
 956        /*
 957         * Because we are called from arbitrary context (workqueue) as opposed
 958         * to process context, kfd_process could attempt to exit while we are
 959         * running so the lookup function increments the process ref count.
 960         */
 961        struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
 962
 963        if (!p)
 964                return; /* Presumably process exited. */
 965
 966        mutex_lock(&p->event_mutex);
 967
 968        /* Lookup events by type and signal them */
 969        lookup_events_by_type_and_signal(p, KFD_EVENT_TYPE_HW_EXCEPTION, NULL);
 970
 971        mutex_unlock(&p->event_mutex);
 972        kfd_unref_process(p);
 973}
 974
 975void kfd_signal_vm_fault_event(struct kfd_dev *dev, unsigned int pasid,
 976                                struct kfd_vm_fault_info *info)
 977{
 978        struct kfd_event *ev;
 979        uint32_t id;
 980        struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
 981        struct kfd_hsa_memory_exception_data memory_exception_data;
 982
 983        if (!p)
 984                return; /* Presumably process exited. */
 985        memset(&memory_exception_data, 0, sizeof(memory_exception_data));
 986        memory_exception_data.gpu_id = dev->id;
 987        memory_exception_data.failure.imprecise = true;
 988        /* Set failure reason */
 989        if (info) {
 990                memory_exception_data.va = (info->page_addr) << PAGE_SHIFT;
 991                memory_exception_data.failure.NotPresent =
 992                        info->prot_valid ? 1 : 0;
 993                memory_exception_data.failure.NoExecute =
 994                        info->prot_exec ? 1 : 0;
 995                memory_exception_data.failure.ReadOnly =
 996                        info->prot_write ? 1 : 0;
 997                memory_exception_data.failure.imprecise = 0;
 998        }
 999        mutex_lock(&p->event_mutex);
1000
1001        id = KFD_FIRST_NONSIGNAL_EVENT_ID;
1002        idr_for_each_entry_continue(&p->event_idr, ev, id)
1003                if (ev->type == KFD_EVENT_TYPE_MEMORY) {
1004                        ev->memory_exception_data = memory_exception_data;
1005                        set_event(ev);
1006                }
1007
1008        mutex_unlock(&p->event_mutex);
1009        kfd_unref_process(p);
1010}
1011
1012void kfd_signal_reset_event(struct kfd_dev *dev)
1013{
1014        struct kfd_hsa_hw_exception_data hw_exception_data;
1015        struct kfd_hsa_memory_exception_data memory_exception_data;
1016        struct kfd_process *p;
1017        struct kfd_event *ev;
1018        unsigned int temp;
1019        uint32_t id, idx;
1020        int reset_cause = atomic_read(&dev->sram_ecc_flag) ?
1021                        KFD_HW_EXCEPTION_ECC :
1022                        KFD_HW_EXCEPTION_GPU_HANG;
1023
1024        /* Whole gpu reset caused by GPU hang and memory is lost */
1025        memset(&hw_exception_data, 0, sizeof(hw_exception_data));
1026        hw_exception_data.gpu_id = dev->id;
1027        hw_exception_data.memory_lost = 1;
1028        hw_exception_data.reset_cause = reset_cause;
1029
1030        memset(&memory_exception_data, 0, sizeof(memory_exception_data));
1031        memory_exception_data.ErrorType = KFD_MEM_ERR_SRAM_ECC;
1032        memory_exception_data.gpu_id = dev->id;
1033        memory_exception_data.failure.imprecise = true;
1034
1035        idx = srcu_read_lock(&kfd_processes_srcu);
1036        hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1037                mutex_lock(&p->event_mutex);
1038                id = KFD_FIRST_NONSIGNAL_EVENT_ID;
1039                idr_for_each_entry_continue(&p->event_idr, ev, id) {
1040                        if (ev->type == KFD_EVENT_TYPE_HW_EXCEPTION) {
1041                                ev->hw_exception_data = hw_exception_data;
1042                                set_event(ev);
1043                        }
1044                        if (ev->type == KFD_EVENT_TYPE_MEMORY &&
1045                            reset_cause == KFD_HW_EXCEPTION_ECC) {
1046                                ev->memory_exception_data = memory_exception_data;
1047                                set_event(ev);
1048                        }
1049                }
1050                mutex_unlock(&p->event_mutex);
1051        }
1052        srcu_read_unlock(&kfd_processes_srcu, idx);
1053}
1054