linux/drivers/gpu/drm/drm_vblank.c
<<
>>
Prefs
   1/*
   2 * drm_irq.c IRQ and vblank support
   3 *
   4 * \author Rickard E. (Rik) Faith <faith@valinux.com>
   5 * \author Gareth Hughes <gareth@valinux.com>
   6 *
   7 * Permission is hereby granted, free of charge, to any person obtaining a
   8 * copy of this software and associated documentation files (the "Software"),
   9 * to deal in the Software without restriction, including without limitation
  10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  11 * and/or sell copies of the Software, and to permit persons to whom the
  12 * Software is furnished to do so, subject to the following conditions:
  13 *
  14 * The above copyright notice and this permission notice (including the next
  15 * paragraph) shall be included in all copies or substantial portions of the
  16 * Software.
  17 *
  18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  21 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
  22 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  23 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  24 * OTHER DEALINGS IN THE SOFTWARE.
  25 */
  26
  27#include <linux/export.h>
  28#include <linux/moduleparam.h>
  29
  30#include <drm/drm_crtc.h>
  31#include <drm/drm_drv.h>
  32#include <drm/drm_framebuffer.h>
  33#include <drm/drm_print.h>
  34#include <drm/drm_vblank.h>
  35
  36#include "drm_internal.h"
  37#include "drm_trace.h"
  38
  39/**
  40 * DOC: vblank handling
  41 *
  42 * Vertical blanking plays a major role in graphics rendering. To achieve
  43 * tear-free display, users must synchronize page flips and/or rendering to
  44 * vertical blanking. The DRM API offers ioctls to perform page flips
  45 * synchronized to vertical blanking and wait for vertical blanking.
  46 *
  47 * The DRM core handles most of the vertical blanking management logic, which
  48 * involves filtering out spurious interrupts, keeping race-free blanking
  49 * counters, coping with counter wrap-around and resets and keeping use counts.
  50 * It relies on the driver to generate vertical blanking interrupts and
  51 * optionally provide a hardware vertical blanking counter.
  52 *
  53 * Drivers must initialize the vertical blanking handling core with a call to
  54 * drm_vblank_init(). Minimally, a driver needs to implement
  55 * &drm_crtc_funcs.enable_vblank and &drm_crtc_funcs.disable_vblank plus call
  56 * drm_crtc_handle_vblank() in its vblank interrupt handler for working vblank
  57 * support.
  58 *
  59 * Vertical blanking interrupts can be enabled by the DRM core or by drivers
  60 * themselves (for instance to handle page flipping operations).  The DRM core
  61 * maintains a vertical blanking use count to ensure that the interrupts are not
  62 * disabled while a user still needs them. To increment the use count, drivers
  63 * call drm_crtc_vblank_get() and release the vblank reference again with
  64 * drm_crtc_vblank_put(). In between these two calls vblank interrupts are
  65 * guaranteed to be enabled.
  66 *
  67 * On many hardware disabling the vblank interrupt cannot be done in a race-free
  68 * manner, see &drm_driver.vblank_disable_immediate and
  69 * &drm_driver.max_vblank_count. In that case the vblank core only disables the
  70 * vblanks after a timer has expired, which can be configured through the
  71 * ``vblankoffdelay`` module parameter.
  72 */
  73
  74/* Retry timestamp calculation up to 3 times to satisfy
  75 * drm_timestamp_precision before giving up.
  76 */
  77#define DRM_TIMESTAMP_MAXRETRIES 3
  78
  79/* Threshold in nanoseconds for detection of redundant
  80 * vblank irq in drm_handle_vblank(). 1 msec should be ok.
  81 */
  82#define DRM_REDUNDANT_VBLIRQ_THRESH_NS 1000000
  83
  84static bool
  85drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe,
  86                          ktime_t *tvblank, bool in_vblank_irq);
  87
  88static unsigned int drm_timestamp_precision = 20;  /* Default to 20 usecs. */
  89
  90static int drm_vblank_offdelay = 5000;    /* Default to 5000 msecs. */
  91
  92module_param_named(vblankoffdelay, drm_vblank_offdelay, int, 0600);
  93module_param_named(timestamp_precision_usec, drm_timestamp_precision, int, 0600);
  94MODULE_PARM_DESC(vblankoffdelay, "Delay until vblank irq auto-disable [msecs] (0: never disable, <0: disable immediately)");
  95MODULE_PARM_DESC(timestamp_precision_usec, "Max. error on timestamps [usecs]");
  96
  97static void store_vblank(struct drm_device *dev, unsigned int pipe,
  98                         u32 vblank_count_inc,
  99                         ktime_t t_vblank, u32 last)
 100{
 101        struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
 102
 103        assert_spin_locked(&dev->vblank_time_lock);
 104
 105        vblank->last = last;
 106
 107        write_seqlock(&vblank->seqlock);
 108        vblank->time = t_vblank;
 109        atomic64_add(vblank_count_inc, &vblank->count);
 110        write_sequnlock(&vblank->seqlock);
 111}
 112
 113static u32 drm_max_vblank_count(struct drm_device *dev, unsigned int pipe)
 114{
 115        struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
 116
 117        return vblank->max_vblank_count ?: dev->max_vblank_count;
 118}
 119
 120/*
 121 * "No hw counter" fallback implementation of .get_vblank_counter() hook,
 122 * if there is no useable hardware frame counter available.
 123 */
 124static u32 drm_vblank_no_hw_counter(struct drm_device *dev, unsigned int pipe)
 125{
 126        WARN_ON_ONCE(drm_max_vblank_count(dev, pipe) != 0);
 127        return 0;
 128}
 129
 130static u32 __get_vblank_counter(struct drm_device *dev, unsigned int pipe)
 131{
 132        if (drm_core_check_feature(dev, DRIVER_MODESET)) {
 133                struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
 134
 135                if (WARN_ON(!crtc))
 136                        return 0;
 137
 138                if (crtc->funcs->get_vblank_counter)
 139                        return crtc->funcs->get_vblank_counter(crtc);
 140        }
 141
 142        if (dev->driver->get_vblank_counter)
 143                return dev->driver->get_vblank_counter(dev, pipe);
 144
 145        return drm_vblank_no_hw_counter(dev, pipe);
 146}
 147
 148/*
 149 * Reset the stored timestamp for the current vblank count to correspond
 150 * to the last vblank occurred.
 151 *
 152 * Only to be called from drm_crtc_vblank_on().
 153 *
 154 * Note: caller must hold &drm_device.vbl_lock since this reads & writes
 155 * device vblank fields.
 156 */
 157static void drm_reset_vblank_timestamp(struct drm_device *dev, unsigned int pipe)
 158{
 159        u32 cur_vblank;
 160        bool rc;
 161        ktime_t t_vblank;
 162        int count = DRM_TIMESTAMP_MAXRETRIES;
 163
 164        spin_lock(&dev->vblank_time_lock);
 165
 166        /*
 167         * sample the current counter to avoid random jumps
 168         * when drm_vblank_enable() applies the diff
 169         */
 170        do {
 171                cur_vblank = __get_vblank_counter(dev, pipe);
 172                rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false);
 173        } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
 174
 175        /*
 176         * Only reinitialize corresponding vblank timestamp if high-precision query
 177         * available and didn't fail. Otherwise reinitialize delayed at next vblank
 178         * interrupt and assign 0 for now, to mark the vblanktimestamp as invalid.
 179         */
 180        if (!rc)
 181                t_vblank = 0;
 182
 183        /*
 184         * +1 to make sure user will never see the same
 185         * vblank counter value before and after a modeset
 186         */
 187        store_vblank(dev, pipe, 1, t_vblank, cur_vblank);
 188
 189        spin_unlock(&dev->vblank_time_lock);
 190}
 191
 192/*
 193 * Call back into the driver to update the appropriate vblank counter
 194 * (specified by @pipe).  Deal with wraparound, if it occurred, and
 195 * update the last read value so we can deal with wraparound on the next
 196 * call if necessary.
 197 *
 198 * Only necessary when going from off->on, to account for frames we
 199 * didn't get an interrupt for.
 200 *
 201 * Note: caller must hold &drm_device.vbl_lock since this reads & writes
 202 * device vblank fields.
 203 */
 204static void drm_update_vblank_count(struct drm_device *dev, unsigned int pipe,
 205                                    bool in_vblank_irq)
 206{
 207        struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
 208        u32 cur_vblank, diff;
 209        bool rc;
 210        ktime_t t_vblank;
 211        int count = DRM_TIMESTAMP_MAXRETRIES;
 212        int framedur_ns = vblank->framedur_ns;
 213        u32 max_vblank_count = drm_max_vblank_count(dev, pipe);
 214
 215        /*
 216         * Interrupts were disabled prior to this call, so deal with counter
 217         * wrap if needed.
 218         * NOTE!  It's possible we lost a full dev->max_vblank_count + 1 events
 219         * here if the register is small or we had vblank interrupts off for
 220         * a long time.
 221         *
 222         * We repeat the hardware vblank counter & timestamp query until
 223         * we get consistent results. This to prevent races between gpu
 224         * updating its hardware counter while we are retrieving the
 225         * corresponding vblank timestamp.
 226         */
 227        do {
 228                cur_vblank = __get_vblank_counter(dev, pipe);
 229                rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, in_vblank_irq);
 230        } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
 231
 232        if (max_vblank_count) {
 233                /* trust the hw counter when it's around */
 234                diff = (cur_vblank - vblank->last) & max_vblank_count;
 235        } else if (rc && framedur_ns) {
 236                u64 diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time));
 237
 238                /*
 239                 * Figure out how many vblanks we've missed based
 240                 * on the difference in the timestamps and the
 241                 * frame/field duration.
 242                 */
 243
 244                DRM_DEBUG_VBL("crtc %u: Calculating number of vblanks."
 245                              " diff_ns = %lld, framedur_ns = %d)\n",
 246                              pipe, (long long) diff_ns, framedur_ns);
 247
 248                diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns);
 249
 250                if (diff == 0 && in_vblank_irq)
 251                        DRM_DEBUG_VBL("crtc %u: Redundant vblirq ignored\n",
 252                                      pipe);
 253        } else {
 254                /* some kind of default for drivers w/o accurate vbl timestamping */
 255                diff = in_vblank_irq ? 1 : 0;
 256        }
 257
 258        /*
 259         * Within a drm_vblank_pre_modeset - drm_vblank_post_modeset
 260         * interval? If so then vblank irqs keep running and it will likely
 261         * happen that the hardware vblank counter is not trustworthy as it
 262         * might reset at some point in that interval and vblank timestamps
 263         * are not trustworthy either in that interval. Iow. this can result
 264         * in a bogus diff >> 1 which must be avoided as it would cause
 265         * random large forward jumps of the software vblank counter.
 266         */
 267        if (diff > 1 && (vblank->inmodeset & 0x2)) {
 268                DRM_DEBUG_VBL("clamping vblank bump to 1 on crtc %u: diffr=%u"
 269                              " due to pre-modeset.\n", pipe, diff);
 270                diff = 1;
 271        }
 272
 273        DRM_DEBUG_VBL("updating vblank count on crtc %u:"
 274                      " current=%llu, diff=%u, hw=%u hw_last=%u\n",
 275                      pipe, atomic64_read(&vblank->count), diff,
 276                      cur_vblank, vblank->last);
 277
 278        if (diff == 0) {
 279                WARN_ON_ONCE(cur_vblank != vblank->last);
 280                return;
 281        }
 282
 283        /*
 284         * Only reinitialize corresponding vblank timestamp if high-precision query
 285         * available and didn't fail, or we were called from the vblank interrupt.
 286         * Otherwise reinitialize delayed at next vblank interrupt and assign 0
 287         * for now, to mark the vblanktimestamp as invalid.
 288         */
 289        if (!rc && !in_vblank_irq)
 290                t_vblank = 0;
 291
 292        store_vblank(dev, pipe, diff, t_vblank, cur_vblank);
 293}
 294
 295static u64 drm_vblank_count(struct drm_device *dev, unsigned int pipe)
 296{
 297        struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
 298        u64 count;
 299
 300        if (WARN_ON(pipe >= dev->num_crtcs))
 301                return 0;
 302
 303        count = atomic64_read(&vblank->count);
 304
 305        /*
 306         * This read barrier corresponds to the implicit write barrier of the
 307         * write seqlock in store_vblank(). Note that this is the only place
 308         * where we need an explicit barrier, since all other access goes
 309         * through drm_vblank_count_and_time(), which already has the required
 310         * read barrier curtesy of the read seqlock.
 311         */
 312        smp_rmb();
 313
 314        return count;
 315}
 316
 317/**
 318 * drm_crtc_accurate_vblank_count - retrieve the master vblank counter
 319 * @crtc: which counter to retrieve
 320 *
 321 * This function is similar to drm_crtc_vblank_count() but this function
 322 * interpolates to handle a race with vblank interrupts using the high precision
 323 * timestamping support.
 324 *
 325 * This is mostly useful for hardware that can obtain the scanout position, but
 326 * doesn't have a hardware frame counter.
 327 */
 328u64 drm_crtc_accurate_vblank_count(struct drm_crtc *crtc)
 329{
 330        struct drm_device *dev = crtc->dev;
 331        unsigned int pipe = drm_crtc_index(crtc);
 332        u64 vblank;
 333        unsigned long flags;
 334
 335        WARN_ONCE(drm_debug_enabled(DRM_UT_VBL) && !dev->driver->get_vblank_timestamp,
 336                  "This function requires support for accurate vblank timestamps.");
 337
 338        spin_lock_irqsave(&dev->vblank_time_lock, flags);
 339
 340        drm_update_vblank_count(dev, pipe, false);
 341        vblank = drm_vblank_count(dev, pipe);
 342
 343        spin_unlock_irqrestore(&dev->vblank_time_lock, flags);
 344
 345        return vblank;
 346}
 347EXPORT_SYMBOL(drm_crtc_accurate_vblank_count);
 348
 349static void __disable_vblank(struct drm_device *dev, unsigned int pipe)
 350{
 351        if (drm_core_check_feature(dev, DRIVER_MODESET)) {
 352                struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
 353
 354                if (WARN_ON(!crtc))
 355                        return;
 356
 357                if (crtc->funcs->disable_vblank) {
 358                        crtc->funcs->disable_vblank(crtc);
 359                        return;
 360                }
 361        }
 362
 363        dev->driver->disable_vblank(dev, pipe);
 364}
 365
 366/*
 367 * Disable vblank irq's on crtc, make sure that last vblank count
 368 * of hardware and corresponding consistent software vblank counter
 369 * are preserved, even if there are any spurious vblank irq's after
 370 * disable.
 371 */
 372void drm_vblank_disable_and_save(struct drm_device *dev, unsigned int pipe)
 373{
 374        struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
 375        unsigned long irqflags;
 376
 377        assert_spin_locked(&dev->vbl_lock);
 378
 379        /* Prevent vblank irq processing while disabling vblank irqs,
 380         * so no updates of timestamps or count can happen after we've
 381         * disabled. Needed to prevent races in case of delayed irq's.
 382         */
 383        spin_lock_irqsave(&dev->vblank_time_lock, irqflags);
 384
 385        /*
 386         * Update vblank count and disable vblank interrupts only if the
 387         * interrupts were enabled. This avoids calling the ->disable_vblank()
 388         * operation in atomic context with the hardware potentially runtime
 389         * suspended.
 390         */
 391        if (!vblank->enabled)
 392                goto out;
 393
 394        /*
 395         * Update the count and timestamp to maintain the
 396         * appearance that the counter has been ticking all along until
 397         * this time. This makes the count account for the entire time
 398         * between drm_crtc_vblank_on() and drm_crtc_vblank_off().
 399         */
 400        drm_update_vblank_count(dev, pipe, false);
 401        __disable_vblank(dev, pipe);
 402        vblank->enabled = false;
 403
 404out:
 405        spin_unlock_irqrestore(&dev->vblank_time_lock, irqflags);
 406}
 407
 408static void vblank_disable_fn(struct timer_list *t)
 409{
 410        struct drm_vblank_crtc *vblank = from_timer(vblank, t, disable_timer);
 411        struct drm_device *dev = vblank->dev;
 412        unsigned int pipe = vblank->pipe;
 413        unsigned long irqflags;
 414
 415        spin_lock_irqsave(&dev->vbl_lock, irqflags);
 416        if (atomic_read(&vblank->refcount) == 0 && vblank->enabled) {
 417                DRM_DEBUG("disabling vblank on crtc %u\n", pipe);
 418                drm_vblank_disable_and_save(dev, pipe);
 419        }
 420        spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
 421}
 422
 423void drm_vblank_cleanup(struct drm_device *dev)
 424{
 425        unsigned int pipe;
 426
 427        /* Bail if the driver didn't call drm_vblank_init() */
 428        if (dev->num_crtcs == 0)
 429                return;
 430
 431        for (pipe = 0; pipe < dev->num_crtcs; pipe++) {
 432                struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
 433
 434                WARN_ON(READ_ONCE(vblank->enabled) &&
 435                        drm_core_check_feature(dev, DRIVER_MODESET));
 436
 437                del_timer_sync(&vblank->disable_timer);
 438        }
 439
 440        kfree(dev->vblank);
 441
 442        dev->num_crtcs = 0;
 443}
 444
 445/**
 446 * drm_vblank_init - initialize vblank support
 447 * @dev: DRM device
 448 * @num_crtcs: number of CRTCs supported by @dev
 449 *
 450 * This function initializes vblank support for @num_crtcs display pipelines.
 451 * Cleanup is handled by the DRM core, or through calling drm_dev_fini() for
 452 * drivers with a &drm_driver.release callback.
 453 *
 454 * Returns:
 455 * Zero on success or a negative error code on failure.
 456 */
 457int drm_vblank_init(struct drm_device *dev, unsigned int num_crtcs)
 458{
 459        int ret = -ENOMEM;
 460        unsigned int i;
 461
 462        spin_lock_init(&dev->vbl_lock);
 463        spin_lock_init(&dev->vblank_time_lock);
 464
 465        dev->num_crtcs = num_crtcs;
 466
 467        dev->vblank = kcalloc(num_crtcs, sizeof(*dev->vblank), GFP_KERNEL);
 468        if (!dev->vblank)
 469                goto err;
 470
 471        for (i = 0; i < num_crtcs; i++) {
 472                struct drm_vblank_crtc *vblank = &dev->vblank[i];
 473
 474                vblank->dev = dev;
 475                vblank->pipe = i;
 476                init_waitqueue_head(&vblank->queue);
 477                timer_setup(&vblank->disable_timer, vblank_disable_fn, 0);
 478                seqlock_init(&vblank->seqlock);
 479        }
 480
 481        DRM_INFO("Supports vblank timestamp caching Rev 2 (21.10.2013).\n");
 482
 483        /* Driver specific high-precision vblank timestamping supported? */
 484        if (dev->driver->get_vblank_timestamp)
 485                DRM_INFO("Driver supports precise vblank timestamp query.\n");
 486        else
 487                DRM_INFO("No driver support for vblank timestamp query.\n");
 488
 489        /* Must have precise timestamping for reliable vblank instant disable */
 490        if (dev->vblank_disable_immediate && !dev->driver->get_vblank_timestamp) {
 491                dev->vblank_disable_immediate = false;
 492                DRM_INFO("Setting vblank_disable_immediate to false because "
 493                         "get_vblank_timestamp == NULL\n");
 494        }
 495
 496        return 0;
 497
 498err:
 499        dev->num_crtcs = 0;
 500        return ret;
 501}
 502EXPORT_SYMBOL(drm_vblank_init);
 503
 504/**
 505 * drm_crtc_vblank_waitqueue - get vblank waitqueue for the CRTC
 506 * @crtc: which CRTC's vblank waitqueue to retrieve
 507 *
 508 * This function returns a pointer to the vblank waitqueue for the CRTC.
 509 * Drivers can use this to implement vblank waits using wait_event() and related
 510 * functions.
 511 */
 512wait_queue_head_t *drm_crtc_vblank_waitqueue(struct drm_crtc *crtc)
 513{
 514        return &crtc->dev->vblank[drm_crtc_index(crtc)].queue;
 515}
 516EXPORT_SYMBOL(drm_crtc_vblank_waitqueue);
 517
 518
 519/**
 520 * drm_calc_timestamping_constants - calculate vblank timestamp constants
 521 * @crtc: drm_crtc whose timestamp constants should be updated.
 522 * @mode: display mode containing the scanout timings
 523 *
 524 * Calculate and store various constants which are later needed by vblank and
 525 * swap-completion timestamping, e.g, by
 526 * drm_calc_vbltimestamp_from_scanoutpos(). They are derived from CRTC's true
 527 * scanout timing, so they take things like panel scaling or other adjustments
 528 * into account.
 529 */
 530void drm_calc_timestamping_constants(struct drm_crtc *crtc,
 531                                     const struct drm_display_mode *mode)
 532{
 533        struct drm_device *dev = crtc->dev;
 534        unsigned int pipe = drm_crtc_index(crtc);
 535        struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
 536        int linedur_ns = 0, framedur_ns = 0;
 537        int dotclock = mode->crtc_clock;
 538
 539        if (!dev->num_crtcs)
 540                return;
 541
 542        if (WARN_ON(pipe >= dev->num_crtcs))
 543                return;
 544
 545        /* Valid dotclock? */
 546        if (dotclock > 0) {
 547                int frame_size = mode->crtc_htotal * mode->crtc_vtotal;
 548
 549                /*
 550                 * Convert scanline length in pixels and video
 551                 * dot clock to line duration and frame duration
 552                 * in nanoseconds:
 553                 */
 554                linedur_ns  = div_u64((u64) mode->crtc_htotal * 1000000, dotclock);
 555                framedur_ns = div_u64((u64) frame_size * 1000000, dotclock);
 556
 557                /*
 558                 * Fields of interlaced scanout modes are only half a frame duration.
 559                 */
 560                if (mode->flags & DRM_MODE_FLAG_INTERLACE)
 561                        framedur_ns /= 2;
 562        } else
 563                DRM_ERROR("crtc %u: Can't calculate constants, dotclock = 0!\n",
 564                          crtc->base.id);
 565
 566        vblank->linedur_ns  = linedur_ns;
 567        vblank->framedur_ns = framedur_ns;
 568        vblank->hwmode = *mode;
 569
 570        DRM_DEBUG("crtc %u: hwmode: htotal %d, vtotal %d, vdisplay %d\n",
 571                  crtc->base.id, mode->crtc_htotal,
 572                  mode->crtc_vtotal, mode->crtc_vdisplay);
 573        DRM_DEBUG("crtc %u: clock %d kHz framedur %d linedur %d\n",
 574                  crtc->base.id, dotclock, framedur_ns, linedur_ns);
 575}
 576EXPORT_SYMBOL(drm_calc_timestamping_constants);
 577
 578/**
 579 * drm_calc_vbltimestamp_from_scanoutpos - precise vblank timestamp helper
 580 * @dev: DRM device
 581 * @pipe: index of CRTC whose vblank timestamp to retrieve
 582 * @max_error: Desired maximum allowable error in timestamps (nanosecs)
 583 *             On return contains true maximum error of timestamp
 584 * @vblank_time: Pointer to time which should receive the timestamp
 585 * @in_vblank_irq:
 586 *     True when called from drm_crtc_handle_vblank().  Some drivers
 587 *     need to apply some workarounds for gpu-specific vblank irq quirks
 588 *     if flag is set.
 589 *
 590 * Implements calculation of exact vblank timestamps from given drm_display_mode
 591 * timings and current video scanout position of a CRTC. This can be directly
 592 * used as the &drm_driver.get_vblank_timestamp implementation of a kms driver
 593 * if &drm_driver.get_scanout_position is implemented.
 594 *
 595 * The current implementation only handles standard video modes. For double scan
 596 * and interlaced modes the driver is supposed to adjust the hardware mode
 597 * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to
 598 * match the scanout position reported.
 599 *
 600 * Note that atomic drivers must call drm_calc_timestamping_constants() before
 601 * enabling a CRTC. The atomic helpers already take care of that in
 602 * drm_atomic_helper_update_legacy_modeset_state().
 603 *
 604 * Returns:
 605 *
 606 * Returns true on success, and false on failure, i.e. when no accurate
 607 * timestamp could be acquired.
 608 */
 609bool drm_calc_vbltimestamp_from_scanoutpos(struct drm_device *dev,
 610                                           unsigned int pipe,
 611                                           int *max_error,
 612                                           ktime_t *vblank_time,
 613                                           bool in_vblank_irq)
 614{
 615        struct timespec64 ts_etime, ts_vblank_time;
 616        ktime_t stime, etime;
 617        bool vbl_status;
 618        struct drm_crtc *crtc;
 619        const struct drm_display_mode *mode;
 620        struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
 621        int vpos, hpos, i;
 622        int delta_ns, duration_ns;
 623
 624        if (!drm_core_check_feature(dev, DRIVER_MODESET))
 625                return false;
 626
 627        crtc = drm_crtc_from_index(dev, pipe);
 628
 629        if (pipe >= dev->num_crtcs || !crtc) {
 630                DRM_ERROR("Invalid crtc %u\n", pipe);
 631                return false;
 632        }
 633
 634        /* Scanout position query not supported? Should not happen. */
 635        if (!dev->driver->get_scanout_position) {
 636                DRM_ERROR("Called from driver w/o get_scanout_position()!?\n");
 637                return false;
 638        }
 639
 640        if (drm_drv_uses_atomic_modeset(dev))
 641                mode = &vblank->hwmode;
 642        else
 643                mode = &crtc->hwmode;
 644
 645        /* If mode timing undefined, just return as no-op:
 646         * Happens during initial modesetting of a crtc.
 647         */
 648        if (mode->crtc_clock == 0) {
 649                DRM_DEBUG("crtc %u: Noop due to uninitialized mode.\n", pipe);
 650                WARN_ON_ONCE(drm_drv_uses_atomic_modeset(dev));
 651
 652                return false;
 653        }
 654
 655        /* Get current scanout position with system timestamp.
 656         * Repeat query up to DRM_TIMESTAMP_MAXRETRIES times
 657         * if single query takes longer than max_error nanoseconds.
 658         *
 659         * This guarantees a tight bound on maximum error if
 660         * code gets preempted or delayed for some reason.
 661         */
 662        for (i = 0; i < DRM_TIMESTAMP_MAXRETRIES; i++) {
 663                /*
 664                 * Get vertical and horizontal scanout position vpos, hpos,
 665                 * and bounding timestamps stime, etime, pre/post query.
 666                 */
 667                vbl_status = dev->driver->get_scanout_position(dev, pipe,
 668                                                               in_vblank_irq,
 669                                                               &vpos, &hpos,
 670                                                               &stime, &etime,
 671                                                               mode);
 672
 673                /* Return as no-op if scanout query unsupported or failed. */
 674                if (!vbl_status) {
 675                        DRM_DEBUG("crtc %u : scanoutpos query failed.\n",
 676                                  pipe);
 677                        return false;
 678                }
 679
 680                /* Compute uncertainty in timestamp of scanout position query. */
 681                duration_ns = ktime_to_ns(etime) - ktime_to_ns(stime);
 682
 683                /* Accept result with <  max_error nsecs timing uncertainty. */
 684                if (duration_ns <= *max_error)
 685                        break;
 686        }
 687
 688        /* Noisy system timing? */
 689        if (i == DRM_TIMESTAMP_MAXRETRIES) {
 690                DRM_DEBUG("crtc %u: Noisy timestamp %d us > %d us [%d reps].\n",
 691                          pipe, duration_ns/1000, *max_error/1000, i);
 692        }
 693
 694        /* Return upper bound of timestamp precision error. */
 695        *max_error = duration_ns;
 696
 697        /* Convert scanout position into elapsed time at raw_time query
 698         * since start of scanout at first display scanline. delta_ns
 699         * can be negative if start of scanout hasn't happened yet.
 700         */
 701        delta_ns = div_s64(1000000LL * (vpos * mode->crtc_htotal + hpos),
 702                           mode->crtc_clock);
 703
 704        /* Subtract time delta from raw timestamp to get final
 705         * vblank_time timestamp for end of vblank.
 706         */
 707        *vblank_time = ktime_sub_ns(etime, delta_ns);
 708
 709        if (!drm_debug_enabled(DRM_UT_VBL))
 710                return true;
 711
 712        ts_etime = ktime_to_timespec64(etime);
 713        ts_vblank_time = ktime_to_timespec64(*vblank_time);
 714
 715        DRM_DEBUG_VBL("crtc %u : v p(%d,%d)@ %lld.%06ld -> %lld.%06ld [e %d us, %d rep]\n",
 716                      pipe, hpos, vpos,
 717                      (u64)ts_etime.tv_sec, ts_etime.tv_nsec / 1000,
 718                      (u64)ts_vblank_time.tv_sec, ts_vblank_time.tv_nsec / 1000,
 719                      duration_ns / 1000, i);
 720
 721        return true;
 722}
 723EXPORT_SYMBOL(drm_calc_vbltimestamp_from_scanoutpos);
 724
 725/**
 726 * drm_get_last_vbltimestamp - retrieve raw timestamp for the most recent
 727 *                             vblank interval
 728 * @dev: DRM device
 729 * @pipe: index of CRTC whose vblank timestamp to retrieve
 730 * @tvblank: Pointer to target time which should receive the timestamp
 731 * @in_vblank_irq:
 732 *     True when called from drm_crtc_handle_vblank().  Some drivers
 733 *     need to apply some workarounds for gpu-specific vblank irq quirks
 734 *     if flag is set.
 735 *
 736 * Fetches the system timestamp corresponding to the time of the most recent
 737 * vblank interval on specified CRTC. May call into kms-driver to
 738 * compute the timestamp with a high-precision GPU specific method.
 739 *
 740 * Returns zero if timestamp originates from uncorrected do_gettimeofday()
 741 * call, i.e., it isn't very precisely locked to the true vblank.
 742 *
 743 * Returns:
 744 * True if timestamp is considered to be very precise, false otherwise.
 745 */
 746static bool
 747drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe,
 748                          ktime_t *tvblank, bool in_vblank_irq)
 749{
 750        bool ret = false;
 751
 752        /* Define requested maximum error on timestamps (nanoseconds). */
 753        int max_error = (int) drm_timestamp_precision * 1000;
 754
 755        /* Query driver if possible and precision timestamping enabled. */
 756        if (dev->driver->get_vblank_timestamp && (max_error > 0))
 757                ret = dev->driver->get_vblank_timestamp(dev, pipe, &max_error,
 758                                                        tvblank, in_vblank_irq);
 759
 760        /* GPU high precision timestamp query unsupported or failed.
 761         * Return current monotonic/gettimeofday timestamp as best estimate.
 762         */
 763        if (!ret)
 764                *tvblank = ktime_get();
 765
 766        return ret;
 767}
 768
 769/**
 770 * drm_crtc_vblank_count - retrieve "cooked" vblank counter value
 771 * @crtc: which counter to retrieve
 772 *
 773 * Fetches the "cooked" vblank count value that represents the number of
 774 * vblank events since the system was booted, including lost events due to
 775 * modesetting activity. Note that this timer isn't correct against a racing
 776 * vblank interrupt (since it only reports the software vblank counter), see
 777 * drm_crtc_accurate_vblank_count() for such use-cases.
 778 *
 779 * Note that for a given vblank counter value drm_crtc_handle_vblank()
 780 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
 781 * provide a barrier: Any writes done before calling
 782 * drm_crtc_handle_vblank() will be visible to callers of the later
 783 * functions, iff the vblank count is the same or a later one.
 784 *
 785 * See also &drm_vblank_crtc.count.
 786 *
 787 * Returns:
 788 * The software vblank counter.
 789 */
 790u64 drm_crtc_vblank_count(struct drm_crtc *crtc)
 791{
 792        return drm_vblank_count(crtc->dev, drm_crtc_index(crtc));
 793}
 794EXPORT_SYMBOL(drm_crtc_vblank_count);
 795
 796/**
 797 * drm_vblank_count_and_time - retrieve "cooked" vblank counter value and the
 798 *     system timestamp corresponding to that vblank counter value.
 799 * @dev: DRM device
 800 * @pipe: index of CRTC whose counter to retrieve
 801 * @vblanktime: Pointer to ktime_t to receive the vblank timestamp.
 802 *
 803 * Fetches the "cooked" vblank count value that represents the number of
 804 * vblank events since the system was booted, including lost events due to
 805 * modesetting activity. Returns corresponding system timestamp of the time
 806 * of the vblank interval that corresponds to the current vblank counter value.
 807 *
 808 * This is the legacy version of drm_crtc_vblank_count_and_time().
 809 */
 810static u64 drm_vblank_count_and_time(struct drm_device *dev, unsigned int pipe,
 811                                     ktime_t *vblanktime)
 812{
 813        struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
 814        u64 vblank_count;
 815        unsigned int seq;
 816
 817        if (WARN_ON(pipe >= dev->num_crtcs)) {
 818                *vblanktime = 0;
 819                return 0;
 820        }
 821
 822        do {
 823                seq = read_seqbegin(&vblank->seqlock);
 824                vblank_count = atomic64_read(&vblank->count);
 825                *vblanktime = vblank->time;
 826        } while (read_seqretry(&vblank->seqlock, seq));
 827
 828        return vblank_count;
 829}
 830
 831/**
 832 * drm_crtc_vblank_count_and_time - retrieve "cooked" vblank counter value
 833 *     and the system timestamp corresponding to that vblank counter value
 834 * @crtc: which counter to retrieve
 835 * @vblanktime: Pointer to time to receive the vblank timestamp.
 836 *
 837 * Fetches the "cooked" vblank count value that represents the number of
 838 * vblank events since the system was booted, including lost events due to
 839 * modesetting activity. Returns corresponding system timestamp of the time
 840 * of the vblank interval that corresponds to the current vblank counter value.
 841 *
 842 * Note that for a given vblank counter value drm_crtc_handle_vblank()
 843 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
 844 * provide a barrier: Any writes done before calling
 845 * drm_crtc_handle_vblank() will be visible to callers of the later
 846 * functions, iff the vblank count is the same or a later one.
 847 *
 848 * See also &drm_vblank_crtc.count.
 849 */
 850u64 drm_crtc_vblank_count_and_time(struct drm_crtc *crtc,
 851                                   ktime_t *vblanktime)
 852{
 853        return drm_vblank_count_and_time(crtc->dev, drm_crtc_index(crtc),
 854                                         vblanktime);
 855}
 856EXPORT_SYMBOL(drm_crtc_vblank_count_and_time);
 857
 858static void send_vblank_event(struct drm_device *dev,
 859                struct drm_pending_vblank_event *e,
 860                u64 seq, ktime_t now)
 861{
 862        struct timespec64 tv;
 863
 864        switch (e->event.base.type) {
 865        case DRM_EVENT_VBLANK:
 866        case DRM_EVENT_FLIP_COMPLETE:
 867                tv = ktime_to_timespec64(now);
 868                e->event.vbl.sequence = seq;
 869                /*
 870                 * e->event is a user space structure, with hardcoded unsigned
 871                 * 32-bit seconds/microseconds. This is safe as we always use
 872                 * monotonic timestamps since linux-4.15
 873                 */
 874                e->event.vbl.tv_sec = tv.tv_sec;
 875                e->event.vbl.tv_usec = tv.tv_nsec / 1000;
 876                break;
 877        case DRM_EVENT_CRTC_SEQUENCE:
 878                if (seq)
 879                        e->event.seq.sequence = seq;
 880                e->event.seq.time_ns = ktime_to_ns(now);
 881                break;
 882        }
 883        trace_drm_vblank_event_delivered(e->base.file_priv, e->pipe, seq);
 884        drm_send_event_locked(dev, &e->base);
 885}
 886
 887/**
 888 * drm_crtc_arm_vblank_event - arm vblank event after pageflip
 889 * @crtc: the source CRTC of the vblank event
 890 * @e: the event to send
 891 *
 892 * A lot of drivers need to generate vblank events for the very next vblank
 893 * interrupt. For example when the page flip interrupt happens when the page
 894 * flip gets armed, but not when it actually executes within the next vblank
 895 * period. This helper function implements exactly the required vblank arming
 896 * behaviour.
 897 *
 898 * NOTE: Drivers using this to send out the &drm_crtc_state.event as part of an
 899 * atomic commit must ensure that the next vblank happens at exactly the same
 900 * time as the atomic commit is committed to the hardware. This function itself
 901 * does **not** protect against the next vblank interrupt racing with either this
 902 * function call or the atomic commit operation. A possible sequence could be:
 903 *
 904 * 1. Driver commits new hardware state into vblank-synchronized registers.
 905 * 2. A vblank happens, committing the hardware state. Also the corresponding
 906 *    vblank interrupt is fired off and fully processed by the interrupt
 907 *    handler.
 908 * 3. The atomic commit operation proceeds to call drm_crtc_arm_vblank_event().
 909 * 4. The event is only send out for the next vblank, which is wrong.
 910 *
 911 * An equivalent race can happen when the driver calls
 912 * drm_crtc_arm_vblank_event() before writing out the new hardware state.
 913 *
 914 * The only way to make this work safely is to prevent the vblank from firing
 915 * (and the hardware from committing anything else) until the entire atomic
 916 * commit sequence has run to completion. If the hardware does not have such a
 917 * feature (e.g. using a "go" bit), then it is unsafe to use this functions.
 918 * Instead drivers need to manually send out the event from their interrupt
 919 * handler by calling drm_crtc_send_vblank_event() and make sure that there's no
 920 * possible race with the hardware committing the atomic update.
 921 *
 922 * Caller must hold a vblank reference for the event @e acquired by a
 923 * drm_crtc_vblank_get(), which will be dropped when the next vblank arrives.
 924 */
 925void drm_crtc_arm_vblank_event(struct drm_crtc *crtc,
 926                               struct drm_pending_vblank_event *e)
 927{
 928        struct drm_device *dev = crtc->dev;
 929        unsigned int pipe = drm_crtc_index(crtc);
 930
 931        assert_spin_locked(&dev->event_lock);
 932
 933        e->pipe = pipe;
 934        e->sequence = drm_crtc_accurate_vblank_count(crtc) + 1;
 935        list_add_tail(&e->base.link, &dev->vblank_event_list);
 936}
 937EXPORT_SYMBOL(drm_crtc_arm_vblank_event);
 938
 939/**
 940 * drm_crtc_send_vblank_event - helper to send vblank event after pageflip
 941 * @crtc: the source CRTC of the vblank event
 942 * @e: the event to send
 943 *
 944 * Updates sequence # and timestamp on event for the most recently processed
 945 * vblank, and sends it to userspace.  Caller must hold event lock.
 946 *
 947 * See drm_crtc_arm_vblank_event() for a helper which can be used in certain
 948 * situation, especially to send out events for atomic commit operations.
 949 */
 950void drm_crtc_send_vblank_event(struct drm_crtc *crtc,
 951                                struct drm_pending_vblank_event *e)
 952{
 953        struct drm_device *dev = crtc->dev;
 954        u64 seq;
 955        unsigned int pipe = drm_crtc_index(crtc);
 956        ktime_t now;
 957
 958        if (dev->num_crtcs > 0) {
 959                seq = drm_vblank_count_and_time(dev, pipe, &now);
 960        } else {
 961                seq = 0;
 962
 963                now = ktime_get();
 964        }
 965        e->pipe = pipe;
 966        send_vblank_event(dev, e, seq, now);
 967}
 968EXPORT_SYMBOL(drm_crtc_send_vblank_event);
 969
 970static int __enable_vblank(struct drm_device *dev, unsigned int pipe)
 971{
 972        if (drm_core_check_feature(dev, DRIVER_MODESET)) {
 973                struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
 974
 975                if (WARN_ON(!crtc))
 976                        return 0;
 977
 978                if (crtc->funcs->enable_vblank)
 979                        return crtc->funcs->enable_vblank(crtc);
 980        }
 981
 982        return dev->driver->enable_vblank(dev, pipe);
 983}
 984
 985static int drm_vblank_enable(struct drm_device *dev, unsigned int pipe)
 986{
 987        struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
 988        int ret = 0;
 989
 990        assert_spin_locked(&dev->vbl_lock);
 991
 992        spin_lock(&dev->vblank_time_lock);
 993
 994        if (!vblank->enabled) {
 995                /*
 996                 * Enable vblank irqs under vblank_time_lock protection.
 997                 * All vblank count & timestamp updates are held off
 998                 * until we are done reinitializing master counter and
 999                 * timestamps. Filtercode in drm_handle_vblank() will
1000                 * prevent double-accounting of same vblank interval.
1001                 */
1002                ret = __enable_vblank(dev, pipe);
1003                DRM_DEBUG("enabling vblank on crtc %u, ret: %d\n", pipe, ret);
1004                if (ret) {
1005                        atomic_dec(&vblank->refcount);
1006                } else {
1007                        drm_update_vblank_count(dev, pipe, 0);
1008                        /* drm_update_vblank_count() includes a wmb so we just
1009                         * need to ensure that the compiler emits the write
1010                         * to mark the vblank as enabled after the call
1011                         * to drm_update_vblank_count().
1012                         */
1013                        WRITE_ONCE(vblank->enabled, true);
1014                }
1015        }
1016
1017        spin_unlock(&dev->vblank_time_lock);
1018
1019        return ret;
1020}
1021
1022static int drm_vblank_get(struct drm_device *dev, unsigned int pipe)
1023{
1024        struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1025        unsigned long irqflags;
1026        int ret = 0;
1027
1028        if (!dev->num_crtcs)
1029                return -EINVAL;
1030
1031        if (WARN_ON(pipe >= dev->num_crtcs))
1032                return -EINVAL;
1033
1034        spin_lock_irqsave(&dev->vbl_lock, irqflags);
1035        /* Going from 0->1 means we have to enable interrupts again */
1036        if (atomic_add_return(1, &vblank->refcount) == 1) {
1037                ret = drm_vblank_enable(dev, pipe);
1038        } else {
1039                if (!vblank->enabled) {
1040                        atomic_dec(&vblank->refcount);
1041                        ret = -EINVAL;
1042                }
1043        }
1044        spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
1045
1046        return ret;
1047}
1048
1049/**
1050 * drm_crtc_vblank_get - get a reference count on vblank events
1051 * @crtc: which CRTC to own
1052 *
1053 * Acquire a reference count on vblank events to avoid having them disabled
1054 * while in use.
1055 *
1056 * Returns:
1057 * Zero on success or a negative error code on failure.
1058 */
1059int drm_crtc_vblank_get(struct drm_crtc *crtc)
1060{
1061        return drm_vblank_get(crtc->dev, drm_crtc_index(crtc));
1062}
1063EXPORT_SYMBOL(drm_crtc_vblank_get);
1064
1065static void drm_vblank_put(struct drm_device *dev, unsigned int pipe)
1066{
1067        struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1068
1069        if (WARN_ON(pipe >= dev->num_crtcs))
1070                return;
1071
1072        if (WARN_ON(atomic_read(&vblank->refcount) == 0))
1073                return;
1074
1075        /* Last user schedules interrupt disable */
1076        if (atomic_dec_and_test(&vblank->refcount)) {
1077                if (drm_vblank_offdelay == 0)
1078                        return;
1079                else if (drm_vblank_offdelay < 0)
1080                        vblank_disable_fn(&vblank->disable_timer);
1081                else if (!dev->vblank_disable_immediate)
1082                        mod_timer(&vblank->disable_timer,
1083                                  jiffies + ((drm_vblank_offdelay * HZ)/1000));
1084        }
1085}
1086
1087/**
1088 * drm_crtc_vblank_put - give up ownership of vblank events
1089 * @crtc: which counter to give up
1090 *
1091 * Release ownership of a given vblank counter, turning off interrupts
1092 * if possible. Disable interrupts after drm_vblank_offdelay milliseconds.
1093 */
1094void drm_crtc_vblank_put(struct drm_crtc *crtc)
1095{
1096        drm_vblank_put(crtc->dev, drm_crtc_index(crtc));
1097}
1098EXPORT_SYMBOL(drm_crtc_vblank_put);
1099
1100/**
1101 * drm_wait_one_vblank - wait for one vblank
1102 * @dev: DRM device
1103 * @pipe: CRTC index
1104 *
1105 * This waits for one vblank to pass on @pipe, using the irq driver interfaces.
1106 * It is a failure to call this when the vblank irq for @pipe is disabled, e.g.
1107 * due to lack of driver support or because the crtc is off.
1108 *
1109 * This is the legacy version of drm_crtc_wait_one_vblank().
1110 */
1111void drm_wait_one_vblank(struct drm_device *dev, unsigned int pipe)
1112{
1113        struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1114        int ret;
1115        u64 last;
1116
1117        if (WARN_ON(pipe >= dev->num_crtcs))
1118                return;
1119
1120        ret = drm_vblank_get(dev, pipe);
1121        if (WARN(ret, "vblank not available on crtc %i, ret=%i\n", pipe, ret))
1122                return;
1123
1124        last = drm_vblank_count(dev, pipe);
1125
1126        ret = wait_event_timeout(vblank->queue,
1127                                 last != drm_vblank_count(dev, pipe),
1128                                 msecs_to_jiffies(100));
1129
1130        WARN(ret == 0, "vblank wait timed out on crtc %i\n", pipe);
1131
1132        drm_vblank_put(dev, pipe);
1133}
1134EXPORT_SYMBOL(drm_wait_one_vblank);
1135
1136/**
1137 * drm_crtc_wait_one_vblank - wait for one vblank
1138 * @crtc: DRM crtc
1139 *
1140 * This waits for one vblank to pass on @crtc, using the irq driver interfaces.
1141 * It is a failure to call this when the vblank irq for @crtc is disabled, e.g.
1142 * due to lack of driver support or because the crtc is off.
1143 */
1144void drm_crtc_wait_one_vblank(struct drm_crtc *crtc)
1145{
1146        drm_wait_one_vblank(crtc->dev, drm_crtc_index(crtc));
1147}
1148EXPORT_SYMBOL(drm_crtc_wait_one_vblank);
1149
1150/**
1151 * drm_crtc_vblank_off - disable vblank events on a CRTC
1152 * @crtc: CRTC in question
1153 *
1154 * Drivers can use this function to shut down the vblank interrupt handling when
1155 * disabling a crtc. This function ensures that the latest vblank frame count is
1156 * stored so that drm_vblank_on can restore it again.
1157 *
1158 * Drivers must use this function when the hardware vblank counter can get
1159 * reset, e.g. when suspending or disabling the @crtc in general.
1160 */
1161void drm_crtc_vblank_off(struct drm_crtc *crtc)
1162{
1163        struct drm_device *dev = crtc->dev;
1164        unsigned int pipe = drm_crtc_index(crtc);
1165        struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1166        struct drm_pending_vblank_event *e, *t;
1167
1168        ktime_t now;
1169        unsigned long irqflags;
1170        u64 seq;
1171
1172        if (WARN_ON(pipe >= dev->num_crtcs))
1173                return;
1174
1175        spin_lock_irqsave(&dev->event_lock, irqflags);
1176
1177        spin_lock(&dev->vbl_lock);
1178        DRM_DEBUG_VBL("crtc %d, vblank enabled %d, inmodeset %d\n",
1179                      pipe, vblank->enabled, vblank->inmodeset);
1180
1181        /* Avoid redundant vblank disables without previous
1182         * drm_crtc_vblank_on(). */
1183        if (drm_core_check_feature(dev, DRIVER_ATOMIC) || !vblank->inmodeset)
1184                drm_vblank_disable_and_save(dev, pipe);
1185
1186        wake_up(&vblank->queue);
1187
1188        /*
1189         * Prevent subsequent drm_vblank_get() from re-enabling
1190         * the vblank interrupt by bumping the refcount.
1191         */
1192        if (!vblank->inmodeset) {
1193                atomic_inc(&vblank->refcount);
1194                vblank->inmodeset = 1;
1195        }
1196        spin_unlock(&dev->vbl_lock);
1197
1198        /* Send any queued vblank events, lest the natives grow disquiet */
1199        seq = drm_vblank_count_and_time(dev, pipe, &now);
1200
1201        list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) {
1202                if (e->pipe != pipe)
1203                        continue;
1204                DRM_DEBUG("Sending premature vblank event on disable: "
1205                          "wanted %llu, current %llu\n",
1206                          e->sequence, seq);
1207                list_del(&e->base.link);
1208                drm_vblank_put(dev, pipe);
1209                send_vblank_event(dev, e, seq, now);
1210        }
1211        spin_unlock_irqrestore(&dev->event_lock, irqflags);
1212
1213        /* Will be reset by the modeset helpers when re-enabling the crtc by
1214         * calling drm_calc_timestamping_constants(). */
1215        vblank->hwmode.crtc_clock = 0;
1216}
1217EXPORT_SYMBOL(drm_crtc_vblank_off);
1218
1219/**
1220 * drm_crtc_vblank_reset - reset vblank state to off on a CRTC
1221 * @crtc: CRTC in question
1222 *
1223 * Drivers can use this function to reset the vblank state to off at load time.
1224 * Drivers should use this together with the drm_crtc_vblank_off() and
1225 * drm_crtc_vblank_on() functions. The difference compared to
1226 * drm_crtc_vblank_off() is that this function doesn't save the vblank counter
1227 * and hence doesn't need to call any driver hooks.
1228 *
1229 * This is useful for recovering driver state e.g. on driver load, or on resume.
1230 */
1231void drm_crtc_vblank_reset(struct drm_crtc *crtc)
1232{
1233        struct drm_device *dev = crtc->dev;
1234        unsigned long irqflags;
1235        unsigned int pipe = drm_crtc_index(crtc);
1236        struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1237
1238        spin_lock_irqsave(&dev->vbl_lock, irqflags);
1239        /*
1240         * Prevent subsequent drm_vblank_get() from enabling the vblank
1241         * interrupt by bumping the refcount.
1242         */
1243        if (!vblank->inmodeset) {
1244                atomic_inc(&vblank->refcount);
1245                vblank->inmodeset = 1;
1246        }
1247        spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
1248
1249        WARN_ON(!list_empty(&dev->vblank_event_list));
1250}
1251EXPORT_SYMBOL(drm_crtc_vblank_reset);
1252
1253/**
1254 * drm_crtc_set_max_vblank_count - configure the hw max vblank counter value
1255 * @crtc: CRTC in question
1256 * @max_vblank_count: max hardware vblank counter value
1257 *
1258 * Update the maximum hardware vblank counter value for @crtc
1259 * at runtime. Useful for hardware where the operation of the
1260 * hardware vblank counter depends on the currently active
1261 * display configuration.
1262 *
1263 * For example, if the hardware vblank counter does not work
1264 * when a specific connector is active the maximum can be set
1265 * to zero. And when that specific connector isn't active the
1266 * maximum can again be set to the appropriate non-zero value.
1267 *
1268 * If used, must be called before drm_vblank_on().
1269 */
1270void drm_crtc_set_max_vblank_count(struct drm_crtc *crtc,
1271                                   u32 max_vblank_count)
1272{
1273        struct drm_device *dev = crtc->dev;
1274        unsigned int pipe = drm_crtc_index(crtc);
1275        struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1276
1277        WARN_ON(dev->max_vblank_count);
1278        WARN_ON(!READ_ONCE(vblank->inmodeset));
1279
1280        vblank->max_vblank_count = max_vblank_count;
1281}
1282EXPORT_SYMBOL(drm_crtc_set_max_vblank_count);
1283
1284/**
1285 * drm_crtc_vblank_on - enable vblank events on a CRTC
1286 * @crtc: CRTC in question
1287 *
1288 * This functions restores the vblank interrupt state captured with
1289 * drm_crtc_vblank_off() again and is generally called when enabling @crtc. Note
1290 * that calls to drm_crtc_vblank_on() and drm_crtc_vblank_off() can be
1291 * unbalanced and so can also be unconditionally called in driver load code to
1292 * reflect the current hardware state of the crtc.
1293 */
1294void drm_crtc_vblank_on(struct drm_crtc *crtc)
1295{
1296        struct drm_device *dev = crtc->dev;
1297        unsigned int pipe = drm_crtc_index(crtc);
1298        struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1299        unsigned long irqflags;
1300
1301        if (WARN_ON(pipe >= dev->num_crtcs))
1302                return;
1303
1304        spin_lock_irqsave(&dev->vbl_lock, irqflags);
1305        DRM_DEBUG_VBL("crtc %d, vblank enabled %d, inmodeset %d\n",
1306                      pipe, vblank->enabled, vblank->inmodeset);
1307
1308        /* Drop our private "prevent drm_vblank_get" refcount */
1309        if (vblank->inmodeset) {
1310                atomic_dec(&vblank->refcount);
1311                vblank->inmodeset = 0;
1312        }
1313
1314        drm_reset_vblank_timestamp(dev, pipe);
1315
1316        /*
1317         * re-enable interrupts if there are users left, or the
1318         * user wishes vblank interrupts to be enabled all the time.
1319         */
1320        if (atomic_read(&vblank->refcount) != 0 || drm_vblank_offdelay == 0)
1321                WARN_ON(drm_vblank_enable(dev, pipe));
1322        spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
1323}
1324EXPORT_SYMBOL(drm_crtc_vblank_on);
1325
1326/**
1327 * drm_vblank_restore - estimate missed vblanks and update vblank count.
1328 * @dev: DRM device
1329 * @pipe: CRTC index
1330 *
1331 * Power manamement features can cause frame counter resets between vblank
1332 * disable and enable. Drivers can use this function in their
1333 * &drm_crtc_funcs.enable_vblank implementation to estimate missed vblanks since
1334 * the last &drm_crtc_funcs.disable_vblank using timestamps and update the
1335 * vblank counter.
1336 *
1337 * This function is the legacy version of drm_crtc_vblank_restore().
1338 */
1339void drm_vblank_restore(struct drm_device *dev, unsigned int pipe)
1340{
1341        ktime_t t_vblank;
1342        struct drm_vblank_crtc *vblank;
1343        int framedur_ns;
1344        u64 diff_ns;
1345        u32 cur_vblank, diff = 1;
1346        int count = DRM_TIMESTAMP_MAXRETRIES;
1347
1348        if (WARN_ON(pipe >= dev->num_crtcs))
1349                return;
1350
1351        assert_spin_locked(&dev->vbl_lock);
1352        assert_spin_locked(&dev->vblank_time_lock);
1353
1354        vblank = &dev->vblank[pipe];
1355        WARN_ONCE(drm_debug_enabled(DRM_UT_VBL) && !vblank->framedur_ns,
1356                  "Cannot compute missed vblanks without frame duration\n");
1357        framedur_ns = vblank->framedur_ns;
1358
1359        do {
1360                cur_vblank = __get_vblank_counter(dev, pipe);
1361                drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false);
1362        } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
1363
1364        diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time));
1365        if (framedur_ns)
1366                diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns);
1367
1368
1369        DRM_DEBUG_VBL("missed %d vblanks in %lld ns, frame duration=%d ns, hw_diff=%d\n",
1370                      diff, diff_ns, framedur_ns, cur_vblank - vblank->last);
1371        store_vblank(dev, pipe, diff, t_vblank, cur_vblank);
1372}
1373EXPORT_SYMBOL(drm_vblank_restore);
1374
1375/**
1376 * drm_crtc_vblank_restore - estimate missed vblanks and update vblank count.
1377 * @crtc: CRTC in question
1378 *
1379 * Power manamement features can cause frame counter resets between vblank
1380 * disable and enable. Drivers can use this function in their
1381 * &drm_crtc_funcs.enable_vblank implementation to estimate missed vblanks since
1382 * the last &drm_crtc_funcs.disable_vblank using timestamps and update the
1383 * vblank counter.
1384 */
1385void drm_crtc_vblank_restore(struct drm_crtc *crtc)
1386{
1387        drm_vblank_restore(crtc->dev, drm_crtc_index(crtc));
1388}
1389EXPORT_SYMBOL(drm_crtc_vblank_restore);
1390
1391static void drm_legacy_vblank_pre_modeset(struct drm_device *dev,
1392                                          unsigned int pipe)
1393{
1394        struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1395
1396        /* vblank is not initialized (IRQ not installed ?), or has been freed */
1397        if (!dev->num_crtcs)
1398                return;
1399
1400        if (WARN_ON(pipe >= dev->num_crtcs))
1401                return;
1402
1403        /*
1404         * To avoid all the problems that might happen if interrupts
1405         * were enabled/disabled around or between these calls, we just
1406         * have the kernel take a reference on the CRTC (just once though
1407         * to avoid corrupting the count if multiple, mismatch calls occur),
1408         * so that interrupts remain enabled in the interim.
1409         */
1410        if (!vblank->inmodeset) {
1411                vblank->inmodeset = 0x1;
1412                if (drm_vblank_get(dev, pipe) == 0)
1413                        vblank->inmodeset |= 0x2;
1414        }
1415}
1416
1417static void drm_legacy_vblank_post_modeset(struct drm_device *dev,
1418                                           unsigned int pipe)
1419{
1420        struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1421        unsigned long irqflags;
1422
1423        /* vblank is not initialized (IRQ not installed ?), or has been freed */
1424        if (!dev->num_crtcs)
1425                return;
1426
1427        if (WARN_ON(pipe >= dev->num_crtcs))
1428                return;
1429
1430        if (vblank->inmodeset) {
1431                spin_lock_irqsave(&dev->vbl_lock, irqflags);
1432                drm_reset_vblank_timestamp(dev, pipe);
1433                spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
1434
1435                if (vblank->inmodeset & 0x2)
1436                        drm_vblank_put(dev, pipe);
1437
1438                vblank->inmodeset = 0;
1439        }
1440}
1441
1442int drm_legacy_modeset_ctl_ioctl(struct drm_device *dev, void *data,
1443                                 struct drm_file *file_priv)
1444{
1445        struct drm_modeset_ctl *modeset = data;
1446        unsigned int pipe;
1447
1448        /* If drm_vblank_init() hasn't been called yet, just no-op */
1449        if (!dev->num_crtcs)
1450                return 0;
1451
1452        /* KMS drivers handle this internally */
1453        if (!drm_core_check_feature(dev, DRIVER_LEGACY))
1454                return 0;
1455
1456        pipe = modeset->crtc;
1457        if (pipe >= dev->num_crtcs)
1458                return -EINVAL;
1459
1460        switch (modeset->cmd) {
1461        case _DRM_PRE_MODESET:
1462                drm_legacy_vblank_pre_modeset(dev, pipe);
1463                break;
1464        case _DRM_POST_MODESET:
1465                drm_legacy_vblank_post_modeset(dev, pipe);
1466                break;
1467        default:
1468                return -EINVAL;
1469        }
1470
1471        return 0;
1472}
1473
1474static inline bool vblank_passed(u64 seq, u64 ref)
1475{
1476        return (seq - ref) <= (1 << 23);
1477}
1478
1479static int drm_queue_vblank_event(struct drm_device *dev, unsigned int pipe,
1480                                  u64 req_seq,
1481                                  union drm_wait_vblank *vblwait,
1482                                  struct drm_file *file_priv)
1483{
1484        struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1485        struct drm_pending_vblank_event *e;
1486        ktime_t now;
1487        unsigned long flags;
1488        u64 seq;
1489        int ret;
1490
1491        e = kzalloc(sizeof(*e), GFP_KERNEL);
1492        if (e == NULL) {
1493                ret = -ENOMEM;
1494                goto err_put;
1495        }
1496
1497        e->pipe = pipe;
1498        e->event.base.type = DRM_EVENT_VBLANK;
1499        e->event.base.length = sizeof(e->event.vbl);
1500        e->event.vbl.user_data = vblwait->request.signal;
1501        e->event.vbl.crtc_id = 0;
1502        if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1503                struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
1504                if (crtc)
1505                        e->event.vbl.crtc_id = crtc->base.id;
1506        }
1507
1508        spin_lock_irqsave(&dev->event_lock, flags);
1509
1510        /*
1511         * drm_crtc_vblank_off() might have been called after we called
1512         * drm_vblank_get(). drm_crtc_vblank_off() holds event_lock around the
1513         * vblank disable, so no need for further locking.  The reference from
1514         * drm_vblank_get() protects against vblank disable from another source.
1515         */
1516        if (!READ_ONCE(vblank->enabled)) {
1517                ret = -EINVAL;
1518                goto err_unlock;
1519        }
1520
1521        ret = drm_event_reserve_init_locked(dev, file_priv, &e->base,
1522                                            &e->event.base);
1523
1524        if (ret)
1525                goto err_unlock;
1526
1527        seq = drm_vblank_count_and_time(dev, pipe, &now);
1528
1529        DRM_DEBUG("event on vblank count %llu, current %llu, crtc %u\n",
1530                  req_seq, seq, pipe);
1531
1532        trace_drm_vblank_event_queued(file_priv, pipe, req_seq);
1533
1534        e->sequence = req_seq;
1535        if (vblank_passed(seq, req_seq)) {
1536                drm_vblank_put(dev, pipe);
1537                send_vblank_event(dev, e, seq, now);
1538                vblwait->reply.sequence = seq;
1539        } else {
1540                /* drm_handle_vblank_events will call drm_vblank_put */
1541                list_add_tail(&e->base.link, &dev->vblank_event_list);
1542                vblwait->reply.sequence = req_seq;
1543        }
1544
1545        spin_unlock_irqrestore(&dev->event_lock, flags);
1546
1547        return 0;
1548
1549err_unlock:
1550        spin_unlock_irqrestore(&dev->event_lock, flags);
1551        kfree(e);
1552err_put:
1553        drm_vblank_put(dev, pipe);
1554        return ret;
1555}
1556
1557static bool drm_wait_vblank_is_query(union drm_wait_vblank *vblwait)
1558{
1559        if (vblwait->request.sequence)
1560                return false;
1561
1562        return _DRM_VBLANK_RELATIVE ==
1563                (vblwait->request.type & (_DRM_VBLANK_TYPES_MASK |
1564                                          _DRM_VBLANK_EVENT |
1565                                          _DRM_VBLANK_NEXTONMISS));
1566}
1567
1568/*
1569 * Widen a 32-bit param to 64-bits.
1570 *
1571 * \param narrow 32-bit value (missing upper 32 bits)
1572 * \param near 64-bit value that should be 'close' to near
1573 *
1574 * This function returns a 64-bit value using the lower 32-bits from
1575 * 'narrow' and constructing the upper 32-bits so that the result is
1576 * as close as possible to 'near'.
1577 */
1578
1579static u64 widen_32_to_64(u32 narrow, u64 near)
1580{
1581        return near + (s32) (narrow - near);
1582}
1583
1584static void drm_wait_vblank_reply(struct drm_device *dev, unsigned int pipe,
1585                                  struct drm_wait_vblank_reply *reply)
1586{
1587        ktime_t now;
1588        struct timespec64 ts;
1589
1590        /*
1591         * drm_wait_vblank_reply is a UAPI structure that uses 'long'
1592         * to store the seconds. This is safe as we always use monotonic
1593         * timestamps since linux-4.15.
1594         */
1595        reply->sequence = drm_vblank_count_and_time(dev, pipe, &now);
1596        ts = ktime_to_timespec64(now);
1597        reply->tval_sec = (u32)ts.tv_sec;
1598        reply->tval_usec = ts.tv_nsec / 1000;
1599}
1600
1601int drm_wait_vblank_ioctl(struct drm_device *dev, void *data,
1602                          struct drm_file *file_priv)
1603{
1604        struct drm_crtc *crtc;
1605        struct drm_vblank_crtc *vblank;
1606        union drm_wait_vblank *vblwait = data;
1607        int ret;
1608        u64 req_seq, seq;
1609        unsigned int pipe_index;
1610        unsigned int flags, pipe, high_pipe;
1611
1612        if (!dev->irq_enabled)
1613                return -EOPNOTSUPP;
1614
1615        if (vblwait->request.type & _DRM_VBLANK_SIGNAL)
1616                return -EINVAL;
1617
1618        if (vblwait->request.type &
1619            ~(_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK |
1620              _DRM_VBLANK_HIGH_CRTC_MASK)) {
1621                DRM_DEBUG("Unsupported type value 0x%x, supported mask 0x%x\n",
1622                          vblwait->request.type,
1623                          (_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK |
1624                           _DRM_VBLANK_HIGH_CRTC_MASK));
1625                return -EINVAL;
1626        }
1627
1628        flags = vblwait->request.type & _DRM_VBLANK_FLAGS_MASK;
1629        high_pipe = (vblwait->request.type & _DRM_VBLANK_HIGH_CRTC_MASK);
1630        if (high_pipe)
1631                pipe_index = high_pipe >> _DRM_VBLANK_HIGH_CRTC_SHIFT;
1632        else
1633                pipe_index = flags & _DRM_VBLANK_SECONDARY ? 1 : 0;
1634
1635        /* Convert lease-relative crtc index into global crtc index */
1636        if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1637                pipe = 0;
1638                drm_for_each_crtc(crtc, dev) {
1639                        if (drm_lease_held(file_priv, crtc->base.id)) {
1640                                if (pipe_index == 0)
1641                                        break;
1642                                pipe_index--;
1643                        }
1644                        pipe++;
1645                }
1646        } else {
1647                pipe = pipe_index;
1648        }
1649
1650        if (pipe >= dev->num_crtcs)
1651                return -EINVAL;
1652
1653        vblank = &dev->vblank[pipe];
1654
1655        /* If the counter is currently enabled and accurate, short-circuit
1656         * queries to return the cached timestamp of the last vblank.
1657         */
1658        if (dev->vblank_disable_immediate &&
1659            drm_wait_vblank_is_query(vblwait) &&
1660            READ_ONCE(vblank->enabled)) {
1661                drm_wait_vblank_reply(dev, pipe, &vblwait->reply);
1662                return 0;
1663        }
1664
1665        ret = drm_vblank_get(dev, pipe);
1666        if (ret) {
1667                DRM_DEBUG("crtc %d failed to acquire vblank counter, %d\n", pipe, ret);
1668                return ret;
1669        }
1670        seq = drm_vblank_count(dev, pipe);
1671
1672        switch (vblwait->request.type & _DRM_VBLANK_TYPES_MASK) {
1673        case _DRM_VBLANK_RELATIVE:
1674                req_seq = seq + vblwait->request.sequence;
1675                vblwait->request.sequence = req_seq;
1676                vblwait->request.type &= ~_DRM_VBLANK_RELATIVE;
1677                break;
1678        case _DRM_VBLANK_ABSOLUTE:
1679                req_seq = widen_32_to_64(vblwait->request.sequence, seq);
1680                break;
1681        default:
1682                ret = -EINVAL;
1683                goto done;
1684        }
1685
1686        if ((flags & _DRM_VBLANK_NEXTONMISS) &&
1687            vblank_passed(seq, req_seq)) {
1688                req_seq = seq + 1;
1689                vblwait->request.type &= ~_DRM_VBLANK_NEXTONMISS;
1690                vblwait->request.sequence = req_seq;
1691        }
1692
1693        if (flags & _DRM_VBLANK_EVENT) {
1694                /* must hold on to the vblank ref until the event fires
1695                 * drm_vblank_put will be called asynchronously
1696                 */
1697                return drm_queue_vblank_event(dev, pipe, req_seq, vblwait, file_priv);
1698        }
1699
1700        if (req_seq != seq) {
1701                int wait;
1702
1703                DRM_DEBUG("waiting on vblank count %llu, crtc %u\n",
1704                          req_seq, pipe);
1705                wait = wait_event_interruptible_timeout(vblank->queue,
1706                        vblank_passed(drm_vblank_count(dev, pipe), req_seq) ||
1707                                      !READ_ONCE(vblank->enabled),
1708                        msecs_to_jiffies(3000));
1709
1710                switch (wait) {
1711                case 0:
1712                        /* timeout */
1713                        ret = -EBUSY;
1714                        break;
1715                case -ERESTARTSYS:
1716                        /* interrupted by signal */
1717                        ret = -EINTR;
1718                        break;
1719                default:
1720                        ret = 0;
1721                        break;
1722                }
1723        }
1724
1725        if (ret != -EINTR) {
1726                drm_wait_vblank_reply(dev, pipe, &vblwait->reply);
1727
1728                DRM_DEBUG("crtc %d returning %u to client\n",
1729                          pipe, vblwait->reply.sequence);
1730        } else {
1731                DRM_DEBUG("crtc %d vblank wait interrupted by signal\n", pipe);
1732        }
1733
1734done:
1735        drm_vblank_put(dev, pipe);
1736        return ret;
1737}
1738
1739static void drm_handle_vblank_events(struct drm_device *dev, unsigned int pipe)
1740{
1741        struct drm_pending_vblank_event *e, *t;
1742        ktime_t now;
1743        u64 seq;
1744
1745        assert_spin_locked(&dev->event_lock);
1746
1747        seq = drm_vblank_count_and_time(dev, pipe, &now);
1748
1749        list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) {
1750                if (e->pipe != pipe)
1751                        continue;
1752                if (!vblank_passed(seq, e->sequence))
1753                        continue;
1754
1755                DRM_DEBUG("vblank event on %llu, current %llu\n",
1756                          e->sequence, seq);
1757
1758                list_del(&e->base.link);
1759                drm_vblank_put(dev, pipe);
1760                send_vblank_event(dev, e, seq, now);
1761        }
1762
1763        trace_drm_vblank_event(pipe, seq, now,
1764                        dev->driver->get_vblank_timestamp != NULL);
1765}
1766
1767/**
1768 * drm_handle_vblank - handle a vblank event
1769 * @dev: DRM device
1770 * @pipe: index of CRTC where this event occurred
1771 *
1772 * Drivers should call this routine in their vblank interrupt handlers to
1773 * update the vblank counter and send any signals that may be pending.
1774 *
1775 * This is the legacy version of drm_crtc_handle_vblank().
1776 */
1777bool drm_handle_vblank(struct drm_device *dev, unsigned int pipe)
1778{
1779        struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1780        unsigned long irqflags;
1781        bool disable_irq;
1782
1783        if (WARN_ON_ONCE(!dev->num_crtcs))
1784                return false;
1785
1786        if (WARN_ON(pipe >= dev->num_crtcs))
1787                return false;
1788
1789        spin_lock_irqsave(&dev->event_lock, irqflags);
1790
1791        /* Need timestamp lock to prevent concurrent execution with
1792         * vblank enable/disable, as this would cause inconsistent
1793         * or corrupted timestamps and vblank counts.
1794         */
1795        spin_lock(&dev->vblank_time_lock);
1796
1797        /* Vblank irq handling disabled. Nothing to do. */
1798        if (!vblank->enabled) {
1799                spin_unlock(&dev->vblank_time_lock);
1800                spin_unlock_irqrestore(&dev->event_lock, irqflags);
1801                return false;
1802        }
1803
1804        drm_update_vblank_count(dev, pipe, true);
1805
1806        spin_unlock(&dev->vblank_time_lock);
1807
1808        wake_up(&vblank->queue);
1809
1810        /* With instant-off, we defer disabling the interrupt until after
1811         * we finish processing the following vblank after all events have
1812         * been signaled. The disable has to be last (after
1813         * drm_handle_vblank_events) so that the timestamp is always accurate.
1814         */
1815        disable_irq = (dev->vblank_disable_immediate &&
1816                       drm_vblank_offdelay > 0 &&
1817                       !atomic_read(&vblank->refcount));
1818
1819        drm_handle_vblank_events(dev, pipe);
1820
1821        spin_unlock_irqrestore(&dev->event_lock, irqflags);
1822
1823        if (disable_irq)
1824                vblank_disable_fn(&vblank->disable_timer);
1825
1826        return true;
1827}
1828EXPORT_SYMBOL(drm_handle_vblank);
1829
1830/**
1831 * drm_crtc_handle_vblank - handle a vblank event
1832 * @crtc: where this event occurred
1833 *
1834 * Drivers should call this routine in their vblank interrupt handlers to
1835 * update the vblank counter and send any signals that may be pending.
1836 *
1837 * This is the native KMS version of drm_handle_vblank().
1838 *
1839 * Note that for a given vblank counter value drm_crtc_handle_vblank()
1840 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
1841 * provide a barrier: Any writes done before calling
1842 * drm_crtc_handle_vblank() will be visible to callers of the later
1843 * functions, iff the vblank count is the same or a later one.
1844 *
1845 * See also &drm_vblank_crtc.count.
1846 *
1847 * Returns:
1848 * True if the event was successfully handled, false on failure.
1849 */
1850bool drm_crtc_handle_vblank(struct drm_crtc *crtc)
1851{
1852        return drm_handle_vblank(crtc->dev, drm_crtc_index(crtc));
1853}
1854EXPORT_SYMBOL(drm_crtc_handle_vblank);
1855
1856/*
1857 * Get crtc VBLANK count.
1858 *
1859 * \param dev DRM device
1860 * \param data user arguement, pointing to a drm_crtc_get_sequence structure.
1861 * \param file_priv drm file private for the user's open file descriptor
1862 */
1863
1864int drm_crtc_get_sequence_ioctl(struct drm_device *dev, void *data,
1865                                struct drm_file *file_priv)
1866{
1867        struct drm_crtc *crtc;
1868        struct drm_vblank_crtc *vblank;
1869        int pipe;
1870        struct drm_crtc_get_sequence *get_seq = data;
1871        ktime_t now;
1872        bool vblank_enabled;
1873        int ret;
1874
1875        if (!drm_core_check_feature(dev, DRIVER_MODESET))
1876                return -EOPNOTSUPP;
1877
1878        if (!dev->irq_enabled)
1879                return -EOPNOTSUPP;
1880
1881        crtc = drm_crtc_find(dev, file_priv, get_seq->crtc_id);
1882        if (!crtc)
1883                return -ENOENT;
1884
1885        pipe = drm_crtc_index(crtc);
1886
1887        vblank = &dev->vblank[pipe];
1888        vblank_enabled = dev->vblank_disable_immediate && READ_ONCE(vblank->enabled);
1889
1890        if (!vblank_enabled) {
1891                ret = drm_crtc_vblank_get(crtc);
1892                if (ret) {
1893                        DRM_DEBUG("crtc %d failed to acquire vblank counter, %d\n", pipe, ret);
1894                        return ret;
1895                }
1896        }
1897        drm_modeset_lock(&crtc->mutex, NULL);
1898        if (crtc->state)
1899                get_seq->active = crtc->state->enable;
1900        else
1901                get_seq->active = crtc->enabled;
1902        drm_modeset_unlock(&crtc->mutex);
1903        get_seq->sequence = drm_vblank_count_and_time(dev, pipe, &now);
1904        get_seq->sequence_ns = ktime_to_ns(now);
1905        if (!vblank_enabled)
1906                drm_crtc_vblank_put(crtc);
1907        return 0;
1908}
1909
1910/*
1911 * Queue a event for VBLANK sequence
1912 *
1913 * \param dev DRM device
1914 * \param data user arguement, pointing to a drm_crtc_queue_sequence structure.
1915 * \param file_priv drm file private for the user's open file descriptor
1916 */
1917
1918int drm_crtc_queue_sequence_ioctl(struct drm_device *dev, void *data,
1919                                  struct drm_file *file_priv)
1920{
1921        struct drm_crtc *crtc;
1922        struct drm_vblank_crtc *vblank;
1923        int pipe;
1924        struct drm_crtc_queue_sequence *queue_seq = data;
1925        ktime_t now;
1926        struct drm_pending_vblank_event *e;
1927        u32 flags;
1928        u64 seq;
1929        u64 req_seq;
1930        int ret;
1931        unsigned long spin_flags;
1932
1933        if (!drm_core_check_feature(dev, DRIVER_MODESET))
1934                return -EOPNOTSUPP;
1935
1936        if (!dev->irq_enabled)
1937                return -EOPNOTSUPP;
1938
1939        crtc = drm_crtc_find(dev, file_priv, queue_seq->crtc_id);
1940        if (!crtc)
1941                return -ENOENT;
1942
1943        flags = queue_seq->flags;
1944        /* Check valid flag bits */
1945        if (flags & ~(DRM_CRTC_SEQUENCE_RELATIVE|
1946                      DRM_CRTC_SEQUENCE_NEXT_ON_MISS))
1947                return -EINVAL;
1948
1949        pipe = drm_crtc_index(crtc);
1950
1951        vblank = &dev->vblank[pipe];
1952
1953        e = kzalloc(sizeof(*e), GFP_KERNEL);
1954        if (e == NULL)
1955                return -ENOMEM;
1956
1957        ret = drm_crtc_vblank_get(crtc);
1958        if (ret) {
1959                DRM_DEBUG("crtc %d failed to acquire vblank counter, %d\n", pipe, ret);
1960                goto err_free;
1961        }
1962
1963        seq = drm_vblank_count_and_time(dev, pipe, &now);
1964        req_seq = queue_seq->sequence;
1965
1966        if (flags & DRM_CRTC_SEQUENCE_RELATIVE)
1967                req_seq += seq;
1968
1969        if ((flags & DRM_CRTC_SEQUENCE_NEXT_ON_MISS) && vblank_passed(seq, req_seq))
1970                req_seq = seq + 1;
1971
1972        e->pipe = pipe;
1973        e->event.base.type = DRM_EVENT_CRTC_SEQUENCE;
1974        e->event.base.length = sizeof(e->event.seq);
1975        e->event.seq.user_data = queue_seq->user_data;
1976
1977        spin_lock_irqsave(&dev->event_lock, spin_flags);
1978
1979        /*
1980         * drm_crtc_vblank_off() might have been called after we called
1981         * drm_crtc_vblank_get(). drm_crtc_vblank_off() holds event_lock around the
1982         * vblank disable, so no need for further locking.  The reference from
1983         * drm_crtc_vblank_get() protects against vblank disable from another source.
1984         */
1985        if (!READ_ONCE(vblank->enabled)) {
1986                ret = -EINVAL;
1987                goto err_unlock;
1988        }
1989
1990        ret = drm_event_reserve_init_locked(dev, file_priv, &e->base,
1991                                            &e->event.base);
1992
1993        if (ret)
1994                goto err_unlock;
1995
1996        e->sequence = req_seq;
1997
1998        if (vblank_passed(seq, req_seq)) {
1999                drm_crtc_vblank_put(crtc);
2000                send_vblank_event(dev, e, seq, now);
2001                queue_seq->sequence = seq;
2002        } else {
2003                /* drm_handle_vblank_events will call drm_vblank_put */
2004                list_add_tail(&e->base.link, &dev->vblank_event_list);
2005                queue_seq->sequence = req_seq;
2006        }
2007
2008        spin_unlock_irqrestore(&dev->event_lock, spin_flags);
2009        return 0;
2010
2011err_unlock:
2012        spin_unlock_irqrestore(&dev->event_lock, spin_flags);
2013        drm_crtc_vblank_put(crtc);
2014err_free:
2015        kfree(e);
2016        return ret;
2017}
2018