linux/drivers/gpu/drm/i915/i915_request.c
<<
>>
Prefs
   1/*
   2 * Copyright © 2008-2015 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 */
  24
  25#include <linux/dma-fence-array.h>
  26#include <linux/irq_work.h>
  27#include <linux/prefetch.h>
  28#include <linux/sched.h>
  29#include <linux/sched/clock.h>
  30#include <linux/sched/signal.h>
  31
  32#include "gem/i915_gem_context.h"
  33#include "gt/intel_context.h"
  34#include "gt/intel_ring.h"
  35#include "gt/intel_rps.h"
  36
  37#include "i915_active.h"
  38#include "i915_drv.h"
  39#include "i915_globals.h"
  40#include "i915_trace.h"
  41#include "intel_pm.h"
  42
  43struct execute_cb {
  44        struct list_head link;
  45        struct irq_work work;
  46        struct i915_sw_fence *fence;
  47        void (*hook)(struct i915_request *rq, struct dma_fence *signal);
  48        struct i915_request *signal;
  49};
  50
  51static struct i915_global_request {
  52        struct i915_global base;
  53        struct kmem_cache *slab_requests;
  54        struct kmem_cache *slab_dependencies;
  55        struct kmem_cache *slab_execute_cbs;
  56} global;
  57
  58static const char *i915_fence_get_driver_name(struct dma_fence *fence)
  59{
  60        return "i915";
  61}
  62
  63static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
  64{
  65        /*
  66         * The timeline struct (as part of the ppgtt underneath a context)
  67         * may be freed when the request is no longer in use by the GPU.
  68         * We could extend the life of a context to beyond that of all
  69         * fences, possibly keeping the hw resource around indefinitely,
  70         * or we just give them a false name. Since
  71         * dma_fence_ops.get_timeline_name is a debug feature, the occasional
  72         * lie seems justifiable.
  73         */
  74        if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
  75                return "signaled";
  76
  77        return to_request(fence)->gem_context->name ?: "[i915]";
  78}
  79
  80static bool i915_fence_signaled(struct dma_fence *fence)
  81{
  82        return i915_request_completed(to_request(fence));
  83}
  84
  85static bool i915_fence_enable_signaling(struct dma_fence *fence)
  86{
  87        return i915_request_enable_breadcrumb(to_request(fence));
  88}
  89
  90static signed long i915_fence_wait(struct dma_fence *fence,
  91                                   bool interruptible,
  92                                   signed long timeout)
  93{
  94        return i915_request_wait(to_request(fence),
  95                                 interruptible | I915_WAIT_PRIORITY,
  96                                 timeout);
  97}
  98
  99static void i915_fence_release(struct dma_fence *fence)
 100{
 101        struct i915_request *rq = to_request(fence);
 102
 103        /*
 104         * The request is put onto a RCU freelist (i.e. the address
 105         * is immediately reused), mark the fences as being freed now.
 106         * Otherwise the debugobjects for the fences are only marked as
 107         * freed when the slab cache itself is freed, and so we would get
 108         * caught trying to reuse dead objects.
 109         */
 110        i915_sw_fence_fini(&rq->submit);
 111        i915_sw_fence_fini(&rq->semaphore);
 112
 113        kmem_cache_free(global.slab_requests, rq);
 114}
 115
 116const struct dma_fence_ops i915_fence_ops = {
 117        .get_driver_name = i915_fence_get_driver_name,
 118        .get_timeline_name = i915_fence_get_timeline_name,
 119        .enable_signaling = i915_fence_enable_signaling,
 120        .signaled = i915_fence_signaled,
 121        .wait = i915_fence_wait,
 122        .release = i915_fence_release,
 123};
 124
 125static void irq_execute_cb(struct irq_work *wrk)
 126{
 127        struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
 128
 129        i915_sw_fence_complete(cb->fence);
 130        kmem_cache_free(global.slab_execute_cbs, cb);
 131}
 132
 133static void irq_execute_cb_hook(struct irq_work *wrk)
 134{
 135        struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
 136
 137        cb->hook(container_of(cb->fence, struct i915_request, submit),
 138                 &cb->signal->fence);
 139        i915_request_put(cb->signal);
 140
 141        irq_execute_cb(wrk);
 142}
 143
 144static void __notify_execute_cb(struct i915_request *rq)
 145{
 146        struct execute_cb *cb;
 147
 148        lockdep_assert_held(&rq->lock);
 149
 150        if (list_empty(&rq->execute_cb))
 151                return;
 152
 153        list_for_each_entry(cb, &rq->execute_cb, link)
 154                irq_work_queue(&cb->work);
 155
 156        /*
 157         * XXX Rollback on __i915_request_unsubmit()
 158         *
 159         * In the future, perhaps when we have an active time-slicing scheduler,
 160         * it will be interesting to unsubmit parallel execution and remove
 161         * busywaits from the GPU until their master is restarted. This is
 162         * quite hairy, we have to carefully rollback the fence and do a
 163         * preempt-to-idle cycle on the target engine, all the while the
 164         * master execute_cb may refire.
 165         */
 166        INIT_LIST_HEAD(&rq->execute_cb);
 167}
 168
 169static inline void
 170remove_from_client(struct i915_request *request)
 171{
 172        struct drm_i915_file_private *file_priv;
 173
 174        if (!READ_ONCE(request->file_priv))
 175                return;
 176
 177        rcu_read_lock();
 178        file_priv = xchg(&request->file_priv, NULL);
 179        if (file_priv) {
 180                spin_lock(&file_priv->mm.lock);
 181                list_del(&request->client_link);
 182                spin_unlock(&file_priv->mm.lock);
 183        }
 184        rcu_read_unlock();
 185}
 186
 187static void free_capture_list(struct i915_request *request)
 188{
 189        struct i915_capture_list *capture;
 190
 191        capture = request->capture_list;
 192        while (capture) {
 193                struct i915_capture_list *next = capture->next;
 194
 195                kfree(capture);
 196                capture = next;
 197        }
 198}
 199
 200static void remove_from_engine(struct i915_request *rq)
 201{
 202        struct intel_engine_cs *engine, *locked;
 203
 204        /*
 205         * Virtual engines complicate acquiring the engine timeline lock,
 206         * as their rq->engine pointer is not stable until under that
 207         * engine lock. The simple ploy we use is to take the lock then
 208         * check that the rq still belongs to the newly locked engine.
 209         */
 210        locked = READ_ONCE(rq->engine);
 211        spin_lock_irq(&locked->active.lock);
 212        while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
 213                spin_unlock(&locked->active.lock);
 214                spin_lock(&engine->active.lock);
 215                locked = engine;
 216        }
 217        list_del(&rq->sched.link);
 218        spin_unlock_irq(&locked->active.lock);
 219}
 220
 221bool i915_request_retire(struct i915_request *rq)
 222{
 223        if (!i915_request_completed(rq))
 224                return false;
 225
 226        GEM_TRACE("%s fence %llx:%lld, current %d\n",
 227                  rq->engine->name,
 228                  rq->fence.context, rq->fence.seqno,
 229                  hwsp_seqno(rq));
 230
 231        GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
 232        trace_i915_request_retire(rq);
 233
 234        /*
 235         * We know the GPU must have read the request to have
 236         * sent us the seqno + interrupt, so use the position
 237         * of tail of the request to update the last known position
 238         * of the GPU head.
 239         *
 240         * Note this requires that we are always called in request
 241         * completion order.
 242         */
 243        GEM_BUG_ON(!list_is_first(&rq->link,
 244                                  &i915_request_timeline(rq)->requests));
 245        rq->ring->head = rq->postfix;
 246
 247        /*
 248         * We only loosely track inflight requests across preemption,
 249         * and so we may find ourselves attempting to retire a _completed_
 250         * request that we have removed from the HW and put back on a run
 251         * queue.
 252         */
 253        remove_from_engine(rq);
 254
 255        spin_lock_irq(&rq->lock);
 256        i915_request_mark_complete(rq);
 257        if (!i915_request_signaled(rq))
 258                dma_fence_signal_locked(&rq->fence);
 259        if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
 260                i915_request_cancel_breadcrumb(rq);
 261        if (i915_request_has_waitboost(rq)) {
 262                GEM_BUG_ON(!atomic_read(&rq->engine->gt->rps.num_waiters));
 263                atomic_dec(&rq->engine->gt->rps.num_waiters);
 264        }
 265        if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) {
 266                set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
 267                __notify_execute_cb(rq);
 268        }
 269        GEM_BUG_ON(!list_empty(&rq->execute_cb));
 270        spin_unlock_irq(&rq->lock);
 271
 272        remove_from_client(rq);
 273        list_del(&rq->link);
 274
 275        intel_context_exit(rq->hw_context);
 276        intel_context_unpin(rq->hw_context);
 277
 278        free_capture_list(rq);
 279        i915_sched_node_fini(&rq->sched);
 280        i915_request_put(rq);
 281
 282        return true;
 283}
 284
 285void i915_request_retire_upto(struct i915_request *rq)
 286{
 287        struct intel_timeline * const tl = i915_request_timeline(rq);
 288        struct i915_request *tmp;
 289
 290        GEM_TRACE("%s fence %llx:%lld, current %d\n",
 291                  rq->engine->name,
 292                  rq->fence.context, rq->fence.seqno,
 293                  hwsp_seqno(rq));
 294
 295        GEM_BUG_ON(!i915_request_completed(rq));
 296
 297        do {
 298                tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
 299        } while (i915_request_retire(tmp) && tmp != rq);
 300}
 301
 302static int
 303__await_execution(struct i915_request *rq,
 304                  struct i915_request *signal,
 305                  void (*hook)(struct i915_request *rq,
 306                               struct dma_fence *signal),
 307                  gfp_t gfp)
 308{
 309        struct execute_cb *cb;
 310
 311        if (i915_request_is_active(signal)) {
 312                if (hook)
 313                        hook(rq, &signal->fence);
 314                return 0;
 315        }
 316
 317        cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
 318        if (!cb)
 319                return -ENOMEM;
 320
 321        cb->fence = &rq->submit;
 322        i915_sw_fence_await(cb->fence);
 323        init_irq_work(&cb->work, irq_execute_cb);
 324
 325        if (hook) {
 326                cb->hook = hook;
 327                cb->signal = i915_request_get(signal);
 328                cb->work.func = irq_execute_cb_hook;
 329        }
 330
 331        spin_lock_irq(&signal->lock);
 332        if (i915_request_is_active(signal)) {
 333                if (hook) {
 334                        hook(rq, &signal->fence);
 335                        i915_request_put(signal);
 336                }
 337                i915_sw_fence_complete(cb->fence);
 338                kmem_cache_free(global.slab_execute_cbs, cb);
 339        } else {
 340                list_add_tail(&cb->link, &signal->execute_cb);
 341        }
 342        spin_unlock_irq(&signal->lock);
 343
 344        /* Copy across semaphore status as we need the same behaviour */
 345        rq->sched.flags |= signal->sched.flags;
 346        return 0;
 347}
 348
 349bool __i915_request_submit(struct i915_request *request)
 350{
 351        struct intel_engine_cs *engine = request->engine;
 352        bool result = false;
 353
 354        GEM_TRACE("%s fence %llx:%lld, current %d\n",
 355                  engine->name,
 356                  request->fence.context, request->fence.seqno,
 357                  hwsp_seqno(request));
 358
 359        GEM_BUG_ON(!irqs_disabled());
 360        lockdep_assert_held(&engine->active.lock);
 361
 362        /*
 363         * With the advent of preempt-to-busy, we frequently encounter
 364         * requests that we have unsubmitted from HW, but left running
 365         * until the next ack and so have completed in the meantime. On
 366         * resubmission of that completed request, we can skip
 367         * updating the payload, and execlists can even skip submitting
 368         * the request.
 369         *
 370         * We must remove the request from the caller's priority queue,
 371         * and the caller must only call us when the request is in their
 372         * priority queue, under the active.lock. This ensures that the
 373         * request has *not* yet been retired and we can safely move
 374         * the request into the engine->active.list where it will be
 375         * dropped upon retiring. (Otherwise if resubmit a *retired*
 376         * request, this would be a horrible use-after-free.)
 377         */
 378        if (i915_request_completed(request))
 379                goto xfer;
 380
 381        if (i915_gem_context_is_banned(request->gem_context))
 382                i915_request_skip(request, -EIO);
 383
 384        /*
 385         * Are we using semaphores when the gpu is already saturated?
 386         *
 387         * Using semaphores incurs a cost in having the GPU poll a
 388         * memory location, busywaiting for it to change. The continual
 389         * memory reads can have a noticeable impact on the rest of the
 390         * system with the extra bus traffic, stalling the cpu as it too
 391         * tries to access memory across the bus (perf stat -e bus-cycles).
 392         *
 393         * If we installed a semaphore on this request and we only submit
 394         * the request after the signaler completed, that indicates the
 395         * system is overloaded and using semaphores at this time only
 396         * increases the amount of work we are doing. If so, we disable
 397         * further use of semaphores until we are idle again, whence we
 398         * optimistically try again.
 399         */
 400        if (request->sched.semaphores &&
 401            i915_sw_fence_signaled(&request->semaphore))
 402                engine->saturated |= request->sched.semaphores;
 403
 404        engine->emit_fini_breadcrumb(request,
 405                                     request->ring->vaddr + request->postfix);
 406
 407        trace_i915_request_execute(request);
 408        engine->serial++;
 409        result = true;
 410
 411xfer:   /* We may be recursing from the signal callback of another i915 fence */
 412        spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
 413
 414        if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags))
 415                list_move_tail(&request->sched.link, &engine->active.requests);
 416
 417        if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags) &&
 418            !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &request->fence.flags) &&
 419            !i915_request_enable_breadcrumb(request))
 420                intel_engine_queue_breadcrumbs(engine);
 421
 422        __notify_execute_cb(request);
 423
 424        spin_unlock(&request->lock);
 425
 426        return result;
 427}
 428
 429void i915_request_submit(struct i915_request *request)
 430{
 431        struct intel_engine_cs *engine = request->engine;
 432        unsigned long flags;
 433
 434        /* Will be called from irq-context when using foreign fences. */
 435        spin_lock_irqsave(&engine->active.lock, flags);
 436
 437        __i915_request_submit(request);
 438
 439        spin_unlock_irqrestore(&engine->active.lock, flags);
 440}
 441
 442void __i915_request_unsubmit(struct i915_request *request)
 443{
 444        struct intel_engine_cs *engine = request->engine;
 445
 446        GEM_TRACE("%s fence %llx:%lld, current %d\n",
 447                  engine->name,
 448                  request->fence.context, request->fence.seqno,
 449                  hwsp_seqno(request));
 450
 451        GEM_BUG_ON(!irqs_disabled());
 452        lockdep_assert_held(&engine->active.lock);
 453
 454        /*
 455         * Only unwind in reverse order, required so that the per-context list
 456         * is kept in seqno/ring order.
 457         */
 458
 459        /* We may be recursing from the signal callback of another i915 fence */
 460        spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
 461
 462        if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
 463                i915_request_cancel_breadcrumb(request);
 464
 465        GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
 466        clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
 467
 468        spin_unlock(&request->lock);
 469
 470        /* We've already spun, don't charge on resubmitting. */
 471        if (request->sched.semaphores && i915_request_started(request)) {
 472                request->sched.attr.priority |= I915_PRIORITY_NOSEMAPHORE;
 473                request->sched.semaphores = 0;
 474        }
 475
 476        /*
 477         * We don't need to wake_up any waiters on request->execute, they
 478         * will get woken by any other event or us re-adding this request
 479         * to the engine timeline (__i915_request_submit()). The waiters
 480         * should be quite adapt at finding that the request now has a new
 481         * global_seqno to the one they went to sleep on.
 482         */
 483}
 484
 485void i915_request_unsubmit(struct i915_request *request)
 486{
 487        struct intel_engine_cs *engine = request->engine;
 488        unsigned long flags;
 489
 490        /* Will be called from irq-context when using foreign fences. */
 491        spin_lock_irqsave(&engine->active.lock, flags);
 492
 493        __i915_request_unsubmit(request);
 494
 495        spin_unlock_irqrestore(&engine->active.lock, flags);
 496}
 497
 498static int __i915_sw_fence_call
 499submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
 500{
 501        struct i915_request *request =
 502                container_of(fence, typeof(*request), submit);
 503
 504        switch (state) {
 505        case FENCE_COMPLETE:
 506                trace_i915_request_submit(request);
 507
 508                if (unlikely(fence->error))
 509                        i915_request_skip(request, fence->error);
 510
 511                /*
 512                 * We need to serialize use of the submit_request() callback
 513                 * with its hotplugging performed during an emergency
 514                 * i915_gem_set_wedged().  We use the RCU mechanism to mark the
 515                 * critical section in order to force i915_gem_set_wedged() to
 516                 * wait until the submit_request() is completed before
 517                 * proceeding.
 518                 */
 519                rcu_read_lock();
 520                request->engine->submit_request(request);
 521                rcu_read_unlock();
 522                break;
 523
 524        case FENCE_FREE:
 525                i915_request_put(request);
 526                break;
 527        }
 528
 529        return NOTIFY_DONE;
 530}
 531
 532static int __i915_sw_fence_call
 533semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
 534{
 535        struct i915_request *request =
 536                container_of(fence, typeof(*request), semaphore);
 537
 538        switch (state) {
 539        case FENCE_COMPLETE:
 540                i915_schedule_bump_priority(request, I915_PRIORITY_NOSEMAPHORE);
 541                break;
 542
 543        case FENCE_FREE:
 544                i915_request_put(request);
 545                break;
 546        }
 547
 548        return NOTIFY_DONE;
 549}
 550
 551static void retire_requests(struct intel_timeline *tl)
 552{
 553        struct i915_request *rq, *rn;
 554
 555        list_for_each_entry_safe(rq, rn, &tl->requests, link)
 556                if (!i915_request_retire(rq))
 557                        break;
 558}
 559
 560static noinline struct i915_request *
 561request_alloc_slow(struct intel_timeline *tl, gfp_t gfp)
 562{
 563        struct i915_request *rq;
 564
 565        if (list_empty(&tl->requests))
 566                goto out;
 567
 568        if (!gfpflags_allow_blocking(gfp))
 569                goto out;
 570
 571        /* Move our oldest request to the slab-cache (if not in use!) */
 572        rq = list_first_entry(&tl->requests, typeof(*rq), link);
 573        i915_request_retire(rq);
 574
 575        rq = kmem_cache_alloc(global.slab_requests,
 576                              gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
 577        if (rq)
 578                return rq;
 579
 580        /* Ratelimit ourselves to prevent oom from malicious clients */
 581        rq = list_last_entry(&tl->requests, typeof(*rq), link);
 582        cond_synchronize_rcu(rq->rcustate);
 583
 584        /* Retire our old requests in the hope that we free some */
 585        retire_requests(tl);
 586
 587out:
 588        return kmem_cache_alloc(global.slab_requests, gfp);
 589}
 590
 591struct i915_request *
 592__i915_request_create(struct intel_context *ce, gfp_t gfp)
 593{
 594        struct intel_timeline *tl = ce->timeline;
 595        struct i915_request *rq;
 596        u32 seqno;
 597        int ret;
 598
 599        might_sleep_if(gfpflags_allow_blocking(gfp));
 600
 601        /* Check that the caller provided an already pinned context */
 602        __intel_context_pin(ce);
 603
 604        /*
 605         * Beware: Dragons be flying overhead.
 606         *
 607         * We use RCU to look up requests in flight. The lookups may
 608         * race with the request being allocated from the slab freelist.
 609         * That is the request we are writing to here, may be in the process
 610         * of being read by __i915_active_request_get_rcu(). As such,
 611         * we have to be very careful when overwriting the contents. During
 612         * the RCU lookup, we change chase the request->engine pointer,
 613         * read the request->global_seqno and increment the reference count.
 614         *
 615         * The reference count is incremented atomically. If it is zero,
 616         * the lookup knows the request is unallocated and complete. Otherwise,
 617         * it is either still in use, or has been reallocated and reset
 618         * with dma_fence_init(). This increment is safe for release as we
 619         * check that the request we have a reference to and matches the active
 620         * request.
 621         *
 622         * Before we increment the refcount, we chase the request->engine
 623         * pointer. We must not call kmem_cache_zalloc() or else we set
 624         * that pointer to NULL and cause a crash during the lookup. If
 625         * we see the request is completed (based on the value of the
 626         * old engine and seqno), the lookup is complete and reports NULL.
 627         * If we decide the request is not completed (new engine or seqno),
 628         * then we grab a reference and double check that it is still the
 629         * active request - which it won't be and restart the lookup.
 630         *
 631         * Do not use kmem_cache_zalloc() here!
 632         */
 633        rq = kmem_cache_alloc(global.slab_requests,
 634                              gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
 635        if (unlikely(!rq)) {
 636                rq = request_alloc_slow(tl, gfp);
 637                if (!rq) {
 638                        ret = -ENOMEM;
 639                        goto err_unreserve;
 640                }
 641        }
 642
 643        ret = intel_timeline_get_seqno(tl, rq, &seqno);
 644        if (ret)
 645                goto err_free;
 646
 647        rq->i915 = ce->engine->i915;
 648        rq->hw_context = ce;
 649        rq->gem_context = ce->gem_context;
 650        rq->engine = ce->engine;
 651        rq->ring = ce->ring;
 652        rq->execution_mask = ce->engine->mask;
 653
 654        rcu_assign_pointer(rq->timeline, tl);
 655        rq->hwsp_seqno = tl->hwsp_seqno;
 656        rq->hwsp_cacheline = tl->hwsp_cacheline;
 657
 658        rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
 659
 660        spin_lock_init(&rq->lock);
 661        dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock,
 662                       tl->fence_context, seqno);
 663
 664        /* We bump the ref for the fence chain */
 665        i915_sw_fence_init(&i915_request_get(rq)->submit, submit_notify);
 666        i915_sw_fence_init(&i915_request_get(rq)->semaphore, semaphore_notify);
 667
 668        i915_sched_node_init(&rq->sched);
 669
 670        /* No zalloc, must clear what we need by hand */
 671        rq->file_priv = NULL;
 672        rq->batch = NULL;
 673        rq->capture_list = NULL;
 674        rq->flags = 0;
 675
 676        INIT_LIST_HEAD(&rq->execute_cb);
 677
 678        /*
 679         * Reserve space in the ring buffer for all the commands required to
 680         * eventually emit this request. This is to guarantee that the
 681         * i915_request_add() call can't fail. Note that the reserve may need
 682         * to be redone if the request is not actually submitted straight
 683         * away, e.g. because a GPU scheduler has deferred it.
 684         *
 685         * Note that due to how we add reserved_space to intel_ring_begin()
 686         * we need to double our request to ensure that if we need to wrap
 687         * around inside i915_request_add() there is sufficient space at
 688         * the beginning of the ring as well.
 689         */
 690        rq->reserved_space =
 691                2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
 692
 693        /*
 694         * Record the position of the start of the request so that
 695         * should we detect the updated seqno part-way through the
 696         * GPU processing the request, we never over-estimate the
 697         * position of the head.
 698         */
 699        rq->head = rq->ring->emit;
 700
 701        ret = rq->engine->request_alloc(rq);
 702        if (ret)
 703                goto err_unwind;
 704
 705        rq->infix = rq->ring->emit; /* end of header; start of user payload */
 706
 707        intel_context_mark_active(ce);
 708        return rq;
 709
 710err_unwind:
 711        ce->ring->emit = rq->head;
 712
 713        /* Make sure we didn't add ourselves to external state before freeing */
 714        GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
 715        GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
 716
 717err_free:
 718        kmem_cache_free(global.slab_requests, rq);
 719err_unreserve:
 720        intel_context_unpin(ce);
 721        return ERR_PTR(ret);
 722}
 723
 724struct i915_request *
 725i915_request_create(struct intel_context *ce)
 726{
 727        struct i915_request *rq;
 728        struct intel_timeline *tl;
 729
 730        tl = intel_context_timeline_lock(ce);
 731        if (IS_ERR(tl))
 732                return ERR_CAST(tl);
 733
 734        /* Move our oldest request to the slab-cache (if not in use!) */
 735        rq = list_first_entry(&tl->requests, typeof(*rq), link);
 736        if (!list_is_last(&rq->link, &tl->requests))
 737                i915_request_retire(rq);
 738
 739        intel_context_enter(ce);
 740        rq = __i915_request_create(ce, GFP_KERNEL);
 741        intel_context_exit(ce); /* active reference transferred to request */
 742        if (IS_ERR(rq))
 743                goto err_unlock;
 744
 745        /* Check that we do not interrupt ourselves with a new request */
 746        rq->cookie = lockdep_pin_lock(&tl->mutex);
 747
 748        return rq;
 749
 750err_unlock:
 751        intel_context_timeline_unlock(tl);
 752        return rq;
 753}
 754
 755static int
 756i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
 757{
 758        struct intel_timeline *tl;
 759        struct dma_fence *fence;
 760        int err;
 761
 762        GEM_BUG_ON(i915_request_timeline(rq) ==
 763                   rcu_access_pointer(signal->timeline));
 764
 765        rcu_read_lock();
 766        tl = rcu_dereference(signal->timeline);
 767        if (i915_request_started(signal) || !kref_get_unless_zero(&tl->kref))
 768                tl = NULL;
 769        rcu_read_unlock();
 770        if (!tl) /* already started or maybe even completed */
 771                return 0;
 772
 773        fence = ERR_PTR(-EBUSY);
 774        if (mutex_trylock(&tl->mutex)) {
 775                fence = NULL;
 776                if (!i915_request_started(signal) &&
 777                    !list_is_first(&signal->link, &tl->requests)) {
 778                        signal = list_prev_entry(signal, link);
 779                        fence = dma_fence_get(&signal->fence);
 780                }
 781                mutex_unlock(&tl->mutex);
 782        }
 783        intel_timeline_put(tl);
 784        if (IS_ERR_OR_NULL(fence))
 785                return PTR_ERR_OR_ZERO(fence);
 786
 787        err = 0;
 788        if (intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
 789                err = i915_sw_fence_await_dma_fence(&rq->submit,
 790                                                    fence, 0,
 791                                                    I915_FENCE_GFP);
 792        dma_fence_put(fence);
 793
 794        return err;
 795}
 796
 797static intel_engine_mask_t
 798already_busywaiting(struct i915_request *rq)
 799{
 800        /*
 801         * Polling a semaphore causes bus traffic, delaying other users of
 802         * both the GPU and CPU. We want to limit the impact on others,
 803         * while taking advantage of early submission to reduce GPU
 804         * latency. Therefore we restrict ourselves to not using more
 805         * than one semaphore from each source, and not using a semaphore
 806         * if we have detected the engine is saturated (i.e. would not be
 807         * submitted early and cause bus traffic reading an already passed
 808         * semaphore).
 809         *
 810         * See the are-we-too-late? check in __i915_request_submit().
 811         */
 812        return rq->sched.semaphores | rq->engine->saturated;
 813}
 814
 815static int
 816__emit_semaphore_wait(struct i915_request *to,
 817                      struct i915_request *from,
 818                      u32 seqno)
 819{
 820        const int has_token = INTEL_GEN(to->i915) >= 12;
 821        u32 hwsp_offset;
 822        int len, err;
 823        u32 *cs;
 824
 825        GEM_BUG_ON(INTEL_GEN(to->i915) < 8);
 826
 827        /* We need to pin the signaler's HWSP until we are finished reading. */
 828        err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
 829        if (err)
 830                return err;
 831
 832        len = 4;
 833        if (has_token)
 834                len += 2;
 835
 836        cs = intel_ring_begin(to, len);
 837        if (IS_ERR(cs))
 838                return PTR_ERR(cs);
 839
 840        /*
 841         * Using greater-than-or-equal here means we have to worry
 842         * about seqno wraparound. To side step that issue, we swap
 843         * the timeline HWSP upon wrapping, so that everyone listening
 844         * for the old (pre-wrap) values do not see the much smaller
 845         * (post-wrap) values than they were expecting (and so wait
 846         * forever).
 847         */
 848        *cs++ = (MI_SEMAPHORE_WAIT |
 849                 MI_SEMAPHORE_GLOBAL_GTT |
 850                 MI_SEMAPHORE_POLL |
 851                 MI_SEMAPHORE_SAD_GTE_SDD) +
 852                has_token;
 853        *cs++ = seqno;
 854        *cs++ = hwsp_offset;
 855        *cs++ = 0;
 856        if (has_token) {
 857                *cs++ = 0;
 858                *cs++ = MI_NOOP;
 859        }
 860
 861        intel_ring_advance(to, cs);
 862        return 0;
 863}
 864
 865static int
 866emit_semaphore_wait(struct i915_request *to,
 867                    struct i915_request *from,
 868                    gfp_t gfp)
 869{
 870        /* Just emit the first semaphore we see as request space is limited. */
 871        if (already_busywaiting(to) & from->engine->mask)
 872                goto await_fence;
 873
 874        if (i915_request_await_start(to, from) < 0)
 875                goto await_fence;
 876
 877        /* Only submit our spinner after the signaler is running! */
 878        if (__await_execution(to, from, NULL, gfp))
 879                goto await_fence;
 880
 881        if (__emit_semaphore_wait(to, from, from->fence.seqno))
 882                goto await_fence;
 883
 884        to->sched.semaphores |= from->engine->mask;
 885        to->sched.flags |= I915_SCHED_HAS_SEMAPHORE_CHAIN;
 886        return 0;
 887
 888await_fence:
 889        return i915_sw_fence_await_dma_fence(&to->submit,
 890                                             &from->fence, 0,
 891                                             I915_FENCE_GFP);
 892}
 893
 894static int
 895i915_request_await_request(struct i915_request *to, struct i915_request *from)
 896{
 897        int ret;
 898
 899        GEM_BUG_ON(to == from);
 900        GEM_BUG_ON(to->timeline == from->timeline);
 901
 902        if (i915_request_completed(from))
 903                return 0;
 904
 905        if (to->engine->schedule) {
 906                ret = i915_sched_node_add_dependency(&to->sched, &from->sched);
 907                if (ret < 0)
 908                        return ret;
 909        }
 910
 911        if (to->engine == from->engine) {
 912                ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
 913                                                       &from->submit,
 914                                                       I915_FENCE_GFP);
 915        } else if (intel_engine_has_semaphores(to->engine) &&
 916                   to->gem_context->sched.priority >= I915_PRIORITY_NORMAL) {
 917                ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
 918        } else {
 919                ret = i915_sw_fence_await_dma_fence(&to->submit,
 920                                                    &from->fence, 0,
 921                                                    I915_FENCE_GFP);
 922        }
 923        if (ret < 0)
 924                return ret;
 925
 926        if (to->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN) {
 927                ret = i915_sw_fence_await_dma_fence(&to->semaphore,
 928                                                    &from->fence, 0,
 929                                                    I915_FENCE_GFP);
 930                if (ret < 0)
 931                        return ret;
 932        }
 933
 934        return 0;
 935}
 936
 937int
 938i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
 939{
 940        struct dma_fence **child = &fence;
 941        unsigned int nchild = 1;
 942        int ret;
 943
 944        /*
 945         * Note that if the fence-array was created in signal-on-any mode,
 946         * we should *not* decompose it into its individual fences. However,
 947         * we don't currently store which mode the fence-array is operating
 948         * in. Fortunately, the only user of signal-on-any is private to
 949         * amdgpu and we should not see any incoming fence-array from
 950         * sync-file being in signal-on-any mode.
 951         */
 952        if (dma_fence_is_array(fence)) {
 953                struct dma_fence_array *array = to_dma_fence_array(fence);
 954
 955                child = array->fences;
 956                nchild = array->num_fences;
 957                GEM_BUG_ON(!nchild);
 958        }
 959
 960        do {
 961                fence = *child++;
 962                if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
 963                        continue;
 964
 965                /*
 966                 * Requests on the same timeline are explicitly ordered, along
 967                 * with their dependencies, by i915_request_add() which ensures
 968                 * that requests are submitted in-order through each ring.
 969                 */
 970                if (fence->context == rq->fence.context)
 971                        continue;
 972
 973                /* Squash repeated waits to the same timelines */
 974                if (fence->context &&
 975                    intel_timeline_sync_is_later(i915_request_timeline(rq),
 976                                                 fence))
 977                        continue;
 978
 979                if (dma_fence_is_i915(fence))
 980                        ret = i915_request_await_request(rq, to_request(fence));
 981                else
 982                        ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
 983                                                            fence->context ? I915_FENCE_TIMEOUT : 0,
 984                                                            I915_FENCE_GFP);
 985                if (ret < 0)
 986                        return ret;
 987
 988                /* Record the latest fence used against each timeline */
 989                if (fence->context)
 990                        intel_timeline_sync_set(i915_request_timeline(rq),
 991                                                fence);
 992        } while (--nchild);
 993
 994        return 0;
 995}
 996
 997static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
 998                                          struct dma_fence *fence)
 999{
1000        return __intel_timeline_sync_is_later(tl,
1001                                              fence->context,
1002                                              fence->seqno - 1);
1003}
1004
1005static int intel_timeline_sync_set_start(struct intel_timeline *tl,
1006                                         const struct dma_fence *fence)
1007{
1008        return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
1009}
1010
1011static int
1012__i915_request_await_execution(struct i915_request *to,
1013                               struct i915_request *from,
1014                               void (*hook)(struct i915_request *rq,
1015                                            struct dma_fence *signal))
1016{
1017        int err;
1018
1019        /* Submit both requests at the same time */
1020        err = __await_execution(to, from, hook, I915_FENCE_GFP);
1021        if (err)
1022                return err;
1023
1024        /* Squash repeated depenendices to the same timelines */
1025        if (intel_timeline_sync_has_start(i915_request_timeline(to),
1026                                          &from->fence))
1027                return 0;
1028
1029        /* Ensure both start together [after all semaphores in signal] */
1030        if (intel_engine_has_semaphores(to->engine))
1031                err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
1032        else
1033                err = i915_request_await_start(to, from);
1034        if (err < 0)
1035                return err;
1036
1037        /* Couple the dependency tree for PI on this exposed to->fence */
1038        if (to->engine->schedule) {
1039                err = i915_sched_node_add_dependency(&to->sched, &from->sched);
1040                if (err < 0)
1041                        return err;
1042        }
1043
1044        return intel_timeline_sync_set_start(i915_request_timeline(to),
1045                                             &from->fence);
1046}
1047
1048int
1049i915_request_await_execution(struct i915_request *rq,
1050                             struct dma_fence *fence,
1051                             void (*hook)(struct i915_request *rq,
1052                                          struct dma_fence *signal))
1053{
1054        struct dma_fence **child = &fence;
1055        unsigned int nchild = 1;
1056        int ret;
1057
1058        if (dma_fence_is_array(fence)) {
1059                struct dma_fence_array *array = to_dma_fence_array(fence);
1060
1061                /* XXX Error for signal-on-any fence arrays */
1062
1063                child = array->fences;
1064                nchild = array->num_fences;
1065                GEM_BUG_ON(!nchild);
1066        }
1067
1068        do {
1069                fence = *child++;
1070                if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1071                        continue;
1072
1073                /*
1074                 * We don't squash repeated fence dependencies here as we
1075                 * want to run our callback in all cases.
1076                 */
1077
1078                if (dma_fence_is_i915(fence))
1079                        ret = __i915_request_await_execution(rq,
1080                                                             to_request(fence),
1081                                                             hook);
1082                else
1083                        ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
1084                                                            I915_FENCE_TIMEOUT,
1085                                                            GFP_KERNEL);
1086                if (ret < 0)
1087                        return ret;
1088        } while (--nchild);
1089
1090        return 0;
1091}
1092
1093/**
1094 * i915_request_await_object - set this request to (async) wait upon a bo
1095 * @to: request we are wishing to use
1096 * @obj: object which may be in use on another ring.
1097 * @write: whether the wait is on behalf of a writer
1098 *
1099 * This code is meant to abstract object synchronization with the GPU.
1100 * Conceptually we serialise writes between engines inside the GPU.
1101 * We only allow one engine to write into a buffer at any time, but
1102 * multiple readers. To ensure each has a coherent view of memory, we must:
1103 *
1104 * - If there is an outstanding write request to the object, the new
1105 *   request must wait for it to complete (either CPU or in hw, requests
1106 *   on the same ring will be naturally ordered).
1107 *
1108 * - If we are a write request (pending_write_domain is set), the new
1109 *   request must wait for outstanding read requests to complete.
1110 *
1111 * Returns 0 if successful, else propagates up the lower layer error.
1112 */
1113int
1114i915_request_await_object(struct i915_request *to,
1115                          struct drm_i915_gem_object *obj,
1116                          bool write)
1117{
1118        struct dma_fence *excl;
1119        int ret = 0;
1120
1121        if (write) {
1122                struct dma_fence **shared;
1123                unsigned int count, i;
1124
1125                ret = dma_resv_get_fences_rcu(obj->base.resv,
1126                                                        &excl, &count, &shared);
1127                if (ret)
1128                        return ret;
1129
1130                for (i = 0; i < count; i++) {
1131                        ret = i915_request_await_dma_fence(to, shared[i]);
1132                        if (ret)
1133                                break;
1134
1135                        dma_fence_put(shared[i]);
1136                }
1137
1138                for (; i < count; i++)
1139                        dma_fence_put(shared[i]);
1140                kfree(shared);
1141        } else {
1142                excl = dma_resv_get_excl_rcu(obj->base.resv);
1143        }
1144
1145        if (excl) {
1146                if (ret == 0)
1147                        ret = i915_request_await_dma_fence(to, excl);
1148
1149                dma_fence_put(excl);
1150        }
1151
1152        return ret;
1153}
1154
1155void i915_request_skip(struct i915_request *rq, int error)
1156{
1157        void *vaddr = rq->ring->vaddr;
1158        u32 head;
1159
1160        GEM_BUG_ON(!IS_ERR_VALUE((long)error));
1161        dma_fence_set_error(&rq->fence, error);
1162
1163        if (rq->infix == rq->postfix)
1164                return;
1165
1166        /*
1167         * As this request likely depends on state from the lost
1168         * context, clear out all the user operations leaving the
1169         * breadcrumb at the end (so we get the fence notifications).
1170         */
1171        head = rq->infix;
1172        if (rq->postfix < head) {
1173                memset(vaddr + head, 0, rq->ring->size - head);
1174                head = 0;
1175        }
1176        memset(vaddr + head, 0, rq->postfix - head);
1177        rq->infix = rq->postfix;
1178}
1179
1180static struct i915_request *
1181__i915_request_add_to_timeline(struct i915_request *rq)
1182{
1183        struct intel_timeline *timeline = i915_request_timeline(rq);
1184        struct i915_request *prev;
1185
1186        /*
1187         * Dependency tracking and request ordering along the timeline
1188         * is special cased so that we can eliminate redundant ordering
1189         * operations while building the request (we know that the timeline
1190         * itself is ordered, and here we guarantee it).
1191         *
1192         * As we know we will need to emit tracking along the timeline,
1193         * we embed the hooks into our request struct -- at the cost of
1194         * having to have specialised no-allocation interfaces (which will
1195         * be beneficial elsewhere).
1196         *
1197         * A second benefit to open-coding i915_request_await_request is
1198         * that we can apply a slight variant of the rules specialised
1199         * for timelines that jump between engines (such as virtual engines).
1200         * If we consider the case of virtual engine, we must emit a dma-fence
1201         * to prevent scheduling of the second request until the first is
1202         * complete (to maximise our greedy late load balancing) and this
1203         * precludes optimising to use semaphores serialisation of a single
1204         * timeline across engines.
1205         */
1206        prev = to_request(__i915_active_fence_set(&timeline->last_request,
1207                                                  &rq->fence));
1208        if (prev && !i915_request_completed(prev)) {
1209                if (is_power_of_2(prev->engine->mask | rq->engine->mask))
1210                        i915_sw_fence_await_sw_fence(&rq->submit,
1211                                                     &prev->submit,
1212                                                     &rq->submitq);
1213                else
1214                        __i915_sw_fence_await_dma_fence(&rq->submit,
1215                                                        &prev->fence,
1216                                                        &rq->dmaq);
1217                if (rq->engine->schedule)
1218                        __i915_sched_node_add_dependency(&rq->sched,
1219                                                         &prev->sched,
1220                                                         &rq->dep,
1221                                                         0);
1222        }
1223
1224        list_add_tail(&rq->link, &timeline->requests);
1225
1226        /*
1227         * Make sure that no request gazumped us - if it was allocated after
1228         * our i915_request_alloc() and called __i915_request_add() before
1229         * us, the timeline will hold its seqno which is later than ours.
1230         */
1231        GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
1232
1233        return prev;
1234}
1235
1236/*
1237 * NB: This function is not allowed to fail. Doing so would mean the the
1238 * request is not being tracked for completion but the work itself is
1239 * going to happen on the hardware. This would be a Bad Thing(tm).
1240 */
1241struct i915_request *__i915_request_commit(struct i915_request *rq)
1242{
1243        struct intel_engine_cs *engine = rq->engine;
1244        struct intel_ring *ring = rq->ring;
1245        u32 *cs;
1246
1247        GEM_TRACE("%s fence %llx:%lld\n",
1248                  engine->name, rq->fence.context, rq->fence.seqno);
1249
1250        /*
1251         * To ensure that this call will not fail, space for its emissions
1252         * should already have been reserved in the ring buffer. Let the ring
1253         * know that it is time to use that space up.
1254         */
1255        GEM_BUG_ON(rq->reserved_space > ring->space);
1256        rq->reserved_space = 0;
1257        rq->emitted_jiffies = jiffies;
1258
1259        /*
1260         * Record the position of the start of the breadcrumb so that
1261         * should we detect the updated seqno part-way through the
1262         * GPU processing the request, we never over-estimate the
1263         * position of the ring's HEAD.
1264         */
1265        cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1266        GEM_BUG_ON(IS_ERR(cs));
1267        rq->postfix = intel_ring_offset(rq, cs);
1268
1269        return __i915_request_add_to_timeline(rq);
1270}
1271
1272void __i915_request_queue(struct i915_request *rq,
1273                          const struct i915_sched_attr *attr)
1274{
1275        /*
1276         * Let the backend know a new request has arrived that may need
1277         * to adjust the existing execution schedule due to a high priority
1278         * request - i.e. we may want to preempt the current request in order
1279         * to run a high priority dependency chain *before* we can execute this
1280         * request.
1281         *
1282         * This is called before the request is ready to run so that we can
1283         * decide whether to preempt the entire chain so that it is ready to
1284         * run at the earliest possible convenience.
1285         */
1286        i915_sw_fence_commit(&rq->semaphore);
1287        if (attr && rq->engine->schedule)
1288                rq->engine->schedule(rq, attr);
1289        i915_sw_fence_commit(&rq->submit);
1290}
1291
1292void i915_request_add(struct i915_request *rq)
1293{
1294        struct i915_sched_attr attr = rq->gem_context->sched;
1295        struct intel_timeline * const tl = i915_request_timeline(rq);
1296        struct i915_request *prev;
1297
1298        lockdep_assert_held(&tl->mutex);
1299        lockdep_unpin_lock(&tl->mutex, rq->cookie);
1300
1301        trace_i915_request_add(rq);
1302
1303        prev = __i915_request_commit(rq);
1304
1305        /*
1306         * Boost actual workloads past semaphores!
1307         *
1308         * With semaphores we spin on one engine waiting for another,
1309         * simply to reduce the latency of starting our work when
1310         * the signaler completes. However, if there is any other
1311         * work that we could be doing on this engine instead, that
1312         * is better utilisation and will reduce the overall duration
1313         * of the current work. To avoid PI boosting a semaphore
1314         * far in the distance past over useful work, we keep a history
1315         * of any semaphore use along our dependency chain.
1316         */
1317        if (!(rq->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN))
1318                attr.priority |= I915_PRIORITY_NOSEMAPHORE;
1319
1320        /*
1321         * Boost priorities to new clients (new request flows).
1322         *
1323         * Allow interactive/synchronous clients to jump ahead of
1324         * the bulk clients. (FQ_CODEL)
1325         */
1326        if (list_empty(&rq->sched.signalers_list))
1327                attr.priority |= I915_PRIORITY_WAIT;
1328
1329        local_bh_disable();
1330        __i915_request_queue(rq, &attr);
1331        local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
1332
1333        /*
1334         * In typical scenarios, we do not expect the previous request on
1335         * the timeline to be still tracked by timeline->last_request if it
1336         * has been completed. If the completed request is still here, that
1337         * implies that request retirement is a long way behind submission,
1338         * suggesting that we haven't been retiring frequently enough from
1339         * the combination of retire-before-alloc, waiters and the background
1340         * retirement worker. So if the last request on this timeline was
1341         * already completed, do a catch up pass, flushing the retirement queue
1342         * up to this client. Since we have now moved the heaviest operations
1343         * during retirement onto secondary workers, such as freeing objects
1344         * or contexts, retiring a bunch of requests is mostly list management
1345         * (and cache misses), and so we should not be overly penalizing this
1346         * client by performing excess work, though we may still performing
1347         * work on behalf of others -- but instead we should benefit from
1348         * improved resource management. (Well, that's the theory at least.)
1349         */
1350        if (prev &&
1351            i915_request_completed(prev) &&
1352            rcu_access_pointer(prev->timeline) == tl)
1353                i915_request_retire_upto(prev);
1354
1355        mutex_unlock(&tl->mutex);
1356}
1357
1358static unsigned long local_clock_us(unsigned int *cpu)
1359{
1360        unsigned long t;
1361
1362        /*
1363         * Cheaply and approximately convert from nanoseconds to microseconds.
1364         * The result and subsequent calculations are also defined in the same
1365         * approximate microseconds units. The principal source of timing
1366         * error here is from the simple truncation.
1367         *
1368         * Note that local_clock() is only defined wrt to the current CPU;
1369         * the comparisons are no longer valid if we switch CPUs. Instead of
1370         * blocking preemption for the entire busywait, we can detect the CPU
1371         * switch and use that as indicator of system load and a reason to
1372         * stop busywaiting, see busywait_stop().
1373         */
1374        *cpu = get_cpu();
1375        t = local_clock() >> 10;
1376        put_cpu();
1377
1378        return t;
1379}
1380
1381static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1382{
1383        unsigned int this_cpu;
1384
1385        if (time_after(local_clock_us(&this_cpu), timeout))
1386                return true;
1387
1388        return this_cpu != cpu;
1389}
1390
1391static bool __i915_spin_request(const struct i915_request * const rq,
1392                                int state, unsigned long timeout_us)
1393{
1394        unsigned int cpu;
1395
1396        /*
1397         * Only wait for the request if we know it is likely to complete.
1398         *
1399         * We don't track the timestamps around requests, nor the average
1400         * request length, so we do not have a good indicator that this
1401         * request will complete within the timeout. What we do know is the
1402         * order in which requests are executed by the context and so we can
1403         * tell if the request has been started. If the request is not even
1404         * running yet, it is a fair assumption that it will not complete
1405         * within our relatively short timeout.
1406         */
1407        if (!i915_request_is_running(rq))
1408                return false;
1409
1410        /*
1411         * When waiting for high frequency requests, e.g. during synchronous
1412         * rendering split between the CPU and GPU, the finite amount of time
1413         * required to set up the irq and wait upon it limits the response
1414         * rate. By busywaiting on the request completion for a short while we
1415         * can service the high frequency waits as quick as possible. However,
1416         * if it is a slow request, we want to sleep as quickly as possible.
1417         * The tradeoff between waiting and sleeping is roughly the time it
1418         * takes to sleep on a request, on the order of a microsecond.
1419         */
1420
1421        timeout_us += local_clock_us(&cpu);
1422        do {
1423                if (i915_request_completed(rq))
1424                        return true;
1425
1426                if (signal_pending_state(state, current))
1427                        break;
1428
1429                if (busywait_stop(timeout_us, cpu))
1430                        break;
1431
1432                cpu_relax();
1433        } while (!need_resched());
1434
1435        return false;
1436}
1437
1438struct request_wait {
1439        struct dma_fence_cb cb;
1440        struct task_struct *tsk;
1441};
1442
1443static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
1444{
1445        struct request_wait *wait = container_of(cb, typeof(*wait), cb);
1446
1447        wake_up_process(wait->tsk);
1448}
1449
1450/**
1451 * i915_request_wait - wait until execution of request has finished
1452 * @rq: the request to wait upon
1453 * @flags: how to wait
1454 * @timeout: how long to wait in jiffies
1455 *
1456 * i915_request_wait() waits for the request to be completed, for a
1457 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1458 * unbounded wait).
1459 *
1460 * Returns the remaining time (in jiffies) if the request completed, which may
1461 * be zero or -ETIME if the request is unfinished after the timeout expires.
1462 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1463 * pending before the request completes.
1464 */
1465long i915_request_wait(struct i915_request *rq,
1466                       unsigned int flags,
1467                       long timeout)
1468{
1469        const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1470                TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1471        struct request_wait wait;
1472
1473        might_sleep();
1474        GEM_BUG_ON(timeout < 0);
1475
1476        if (dma_fence_is_signaled(&rq->fence))
1477                return timeout;
1478
1479        if (!timeout)
1480                return -ETIME;
1481
1482        trace_i915_request_wait_begin(rq, flags);
1483
1484        /*
1485         * We must never wait on the GPU while holding a lock as we
1486         * may need to perform a GPU reset. So while we don't need to
1487         * serialise wait/reset with an explicit lock, we do want
1488         * lockdep to detect potential dependency cycles.
1489         */
1490        mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1491
1492        /*
1493         * Optimistic spin before touching IRQs.
1494         *
1495         * We may use a rather large value here to offset the penalty of
1496         * switching away from the active task. Frequently, the client will
1497         * wait upon an old swapbuffer to throttle itself to remain within a
1498         * frame of the gpu. If the client is running in lockstep with the gpu,
1499         * then it should not be waiting long at all, and a sleep now will incur
1500         * extra scheduler latency in producing the next frame. To try to
1501         * avoid adding the cost of enabling/disabling the interrupt to the
1502         * short wait, we first spin to see if the request would have completed
1503         * in the time taken to setup the interrupt.
1504         *
1505         * We need upto 5us to enable the irq, and upto 20us to hide the
1506         * scheduler latency of a context switch, ignoring the secondary
1507         * impacts from a context switch such as cache eviction.
1508         *
1509         * The scheme used for low-latency IO is called "hybrid interrupt
1510         * polling". The suggestion there is to sleep until just before you
1511         * expect to be woken by the device interrupt and then poll for its
1512         * completion. That requires having a good predictor for the request
1513         * duration, which we currently lack.
1514         */
1515        if (IS_ACTIVE(CONFIG_DRM_I915_SPIN_REQUEST) &&
1516            __i915_spin_request(rq, state, CONFIG_DRM_I915_SPIN_REQUEST)) {
1517                dma_fence_signal(&rq->fence);
1518                goto out;
1519        }
1520
1521        /*
1522         * This client is about to stall waiting for the GPU. In many cases
1523         * this is undesirable and limits the throughput of the system, as
1524         * many clients cannot continue processing user input/output whilst
1525         * blocked. RPS autotuning may take tens of milliseconds to respond
1526         * to the GPU load and thus incurs additional latency for the client.
1527         * We can circumvent that by promoting the GPU frequency to maximum
1528         * before we sleep. This makes the GPU throttle up much more quickly
1529         * (good for benchmarks and user experience, e.g. window animations),
1530         * but at a cost of spending more power processing the workload
1531         * (bad for battery).
1532         */
1533        if (flags & I915_WAIT_PRIORITY) {
1534                if (!i915_request_started(rq) && INTEL_GEN(rq->i915) >= 6)
1535                        intel_rps_boost(rq);
1536                i915_schedule_bump_priority(rq, I915_PRIORITY_WAIT);
1537        }
1538
1539        wait.tsk = current;
1540        if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
1541                goto out;
1542
1543        for (;;) {
1544                set_current_state(state);
1545
1546                if (i915_request_completed(rq)) {
1547                        dma_fence_signal(&rq->fence);
1548                        break;
1549                }
1550
1551                if (signal_pending_state(state, current)) {
1552                        timeout = -ERESTARTSYS;
1553                        break;
1554                }
1555
1556                if (!timeout) {
1557                        timeout = -ETIME;
1558                        break;
1559                }
1560
1561                intel_engine_flush_submission(rq->engine);
1562                timeout = io_schedule_timeout(timeout);
1563        }
1564        __set_current_state(TASK_RUNNING);
1565
1566        dma_fence_remove_callback(&rq->fence, &wait.cb);
1567
1568out:
1569        mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
1570        trace_i915_request_wait_end(rq);
1571        return timeout;
1572}
1573
1574#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1575#include "selftests/mock_request.c"
1576#include "selftests/i915_request.c"
1577#endif
1578
1579static void i915_global_request_shrink(void)
1580{
1581        kmem_cache_shrink(global.slab_dependencies);
1582        kmem_cache_shrink(global.slab_execute_cbs);
1583        kmem_cache_shrink(global.slab_requests);
1584}
1585
1586static void i915_global_request_exit(void)
1587{
1588        kmem_cache_destroy(global.slab_dependencies);
1589        kmem_cache_destroy(global.slab_execute_cbs);
1590        kmem_cache_destroy(global.slab_requests);
1591}
1592
1593static struct i915_global_request global = { {
1594        .shrink = i915_global_request_shrink,
1595        .exit = i915_global_request_exit,
1596} };
1597
1598int __init i915_global_request_init(void)
1599{
1600        global.slab_requests = KMEM_CACHE(i915_request,
1601                                          SLAB_HWCACHE_ALIGN |
1602                                          SLAB_RECLAIM_ACCOUNT |
1603                                          SLAB_TYPESAFE_BY_RCU);
1604        if (!global.slab_requests)
1605                return -ENOMEM;
1606
1607        global.slab_execute_cbs = KMEM_CACHE(execute_cb,
1608                                             SLAB_HWCACHE_ALIGN |
1609                                             SLAB_RECLAIM_ACCOUNT |
1610                                             SLAB_TYPESAFE_BY_RCU);
1611        if (!global.slab_execute_cbs)
1612                goto err_requests;
1613
1614        global.slab_dependencies = KMEM_CACHE(i915_dependency,
1615                                              SLAB_HWCACHE_ALIGN |
1616                                              SLAB_RECLAIM_ACCOUNT);
1617        if (!global.slab_dependencies)
1618                goto err_execute_cbs;
1619
1620        i915_global_register(&global.base);
1621        return 0;
1622
1623err_execute_cbs:
1624        kmem_cache_destroy(global.slab_execute_cbs);
1625err_requests:
1626        kmem_cache_destroy(global.slab_requests);
1627        return -ENOMEM;
1628}
1629