linux/drivers/i2c/busses/i2c-qup.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2009-2013, 2016-2018, The Linux Foundation. All rights reserved.
   4 * Copyright (c) 2014, Sony Mobile Communications AB.
   5 *
   6 */
   7
   8#include <linux/acpi.h>
   9#include <linux/atomic.h>
  10#include <linux/clk.h>
  11#include <linux/delay.h>
  12#include <linux/dmaengine.h>
  13#include <linux/dmapool.h>
  14#include <linux/dma-mapping.h>
  15#include <linux/err.h>
  16#include <linux/i2c.h>
  17#include <linux/interrupt.h>
  18#include <linux/io.h>
  19#include <linux/module.h>
  20#include <linux/of.h>
  21#include <linux/platform_device.h>
  22#include <linux/pm_runtime.h>
  23#include <linux/scatterlist.h>
  24
  25/* QUP Registers */
  26#define QUP_CONFIG              0x000
  27#define QUP_STATE               0x004
  28#define QUP_IO_MODE             0x008
  29#define QUP_SW_RESET            0x00c
  30#define QUP_OPERATIONAL         0x018
  31#define QUP_ERROR_FLAGS         0x01c
  32#define QUP_ERROR_FLAGS_EN      0x020
  33#define QUP_OPERATIONAL_MASK    0x028
  34#define QUP_HW_VERSION          0x030
  35#define QUP_MX_OUTPUT_CNT       0x100
  36#define QUP_OUT_FIFO_BASE       0x110
  37#define QUP_MX_WRITE_CNT        0x150
  38#define QUP_MX_INPUT_CNT        0x200
  39#define QUP_MX_READ_CNT         0x208
  40#define QUP_IN_FIFO_BASE        0x218
  41#define QUP_I2C_CLK_CTL         0x400
  42#define QUP_I2C_STATUS          0x404
  43#define QUP_I2C_MASTER_GEN      0x408
  44
  45/* QUP States and reset values */
  46#define QUP_RESET_STATE         0
  47#define QUP_RUN_STATE           1
  48#define QUP_PAUSE_STATE         3
  49#define QUP_STATE_MASK          3
  50
  51#define QUP_STATE_VALID         BIT(2)
  52#define QUP_I2C_MAST_GEN        BIT(4)
  53#define QUP_I2C_FLUSH           BIT(6)
  54
  55#define QUP_OPERATIONAL_RESET   0x000ff0
  56#define QUP_I2C_STATUS_RESET    0xfffffc
  57
  58/* QUP OPERATIONAL FLAGS */
  59#define QUP_I2C_NACK_FLAG       BIT(3)
  60#define QUP_OUT_NOT_EMPTY       BIT(4)
  61#define QUP_IN_NOT_EMPTY        BIT(5)
  62#define QUP_OUT_FULL            BIT(6)
  63#define QUP_OUT_SVC_FLAG        BIT(8)
  64#define QUP_IN_SVC_FLAG         BIT(9)
  65#define QUP_MX_OUTPUT_DONE      BIT(10)
  66#define QUP_MX_INPUT_DONE       BIT(11)
  67#define OUT_BLOCK_WRITE_REQ     BIT(12)
  68#define IN_BLOCK_READ_REQ       BIT(13)
  69
  70/* I2C mini core related values */
  71#define QUP_NO_INPUT            BIT(7)
  72#define QUP_CLOCK_AUTO_GATE     BIT(13)
  73#define I2C_MINI_CORE           (2 << 8)
  74#define I2C_N_VAL               15
  75#define I2C_N_VAL_V2            7
  76
  77/* Most significant word offset in FIFO port */
  78#define QUP_MSW_SHIFT           (I2C_N_VAL + 1)
  79
  80/* Packing/Unpacking words in FIFOs, and IO modes */
  81#define QUP_OUTPUT_BLK_MODE     (1 << 10)
  82#define QUP_OUTPUT_BAM_MODE     (3 << 10)
  83#define QUP_INPUT_BLK_MODE      (1 << 12)
  84#define QUP_INPUT_BAM_MODE      (3 << 12)
  85#define QUP_BAM_MODE            (QUP_OUTPUT_BAM_MODE | QUP_INPUT_BAM_MODE)
  86#define QUP_UNPACK_EN           BIT(14)
  87#define QUP_PACK_EN             BIT(15)
  88
  89#define QUP_REPACK_EN           (QUP_UNPACK_EN | QUP_PACK_EN)
  90#define QUP_V2_TAGS_EN          1
  91
  92#define QUP_OUTPUT_BLOCK_SIZE(x)(((x) >> 0) & 0x03)
  93#define QUP_OUTPUT_FIFO_SIZE(x) (((x) >> 2) & 0x07)
  94#define QUP_INPUT_BLOCK_SIZE(x) (((x) >> 5) & 0x03)
  95#define QUP_INPUT_FIFO_SIZE(x)  (((x) >> 7) & 0x07)
  96
  97/* QUP tags */
  98#define QUP_TAG_START           (1 << 8)
  99#define QUP_TAG_DATA            (2 << 8)
 100#define QUP_TAG_STOP            (3 << 8)
 101#define QUP_TAG_REC             (4 << 8)
 102#define QUP_BAM_INPUT_EOT               0x93
 103#define QUP_BAM_FLUSH_STOP              0x96
 104
 105/* QUP v2 tags */
 106#define QUP_TAG_V2_START               0x81
 107#define QUP_TAG_V2_DATAWR              0x82
 108#define QUP_TAG_V2_DATAWR_STOP         0x83
 109#define QUP_TAG_V2_DATARD              0x85
 110#define QUP_TAG_V2_DATARD_NACK         0x86
 111#define QUP_TAG_V2_DATARD_STOP         0x87
 112
 113/* Status, Error flags */
 114#define I2C_STATUS_WR_BUFFER_FULL       BIT(0)
 115#define I2C_STATUS_BUS_ACTIVE           BIT(8)
 116#define I2C_STATUS_ERROR_MASK           0x38000fc
 117#define QUP_STATUS_ERROR_FLAGS          0x7c
 118
 119#define QUP_READ_LIMIT                  256
 120#define SET_BIT                         0x1
 121#define RESET_BIT                       0x0
 122#define ONE_BYTE                        0x1
 123#define QUP_I2C_MX_CONFIG_DURING_RUN   BIT(31)
 124
 125/* Maximum transfer length for single DMA descriptor */
 126#define MX_TX_RX_LEN                    SZ_64K
 127#define MX_BLOCKS                       (MX_TX_RX_LEN / QUP_READ_LIMIT)
 128/* Maximum transfer length for all DMA descriptors */
 129#define MX_DMA_TX_RX_LEN                (2 * MX_TX_RX_LEN)
 130#define MX_DMA_BLOCKS                   (MX_DMA_TX_RX_LEN / QUP_READ_LIMIT)
 131
 132/*
 133 * Minimum transfer timeout for i2c transfers in seconds. It will be added on
 134 * the top of maximum transfer time calculated from i2c bus speed to compensate
 135 * the overheads.
 136 */
 137#define TOUT_MIN                        2
 138
 139/* I2C Frequency Modes */
 140#define I2C_STANDARD_FREQ               100000
 141#define I2C_FAST_MODE_FREQ              400000
 142#define I2C_FAST_MODE_PLUS_FREQ         1000000
 143
 144/* Default values. Use these if FW query fails */
 145#define DEFAULT_CLK_FREQ I2C_STANDARD_FREQ
 146#define DEFAULT_SRC_CLK 20000000
 147
 148/*
 149 * Max tags length (start, stop and maximum 2 bytes address) for each QUP
 150 * data transfer
 151 */
 152#define QUP_MAX_TAGS_LEN                4
 153/* Max data length for each DATARD tags */
 154#define RECV_MAX_DATA_LEN               254
 155/* TAG length for DATA READ in RX FIFO  */
 156#define READ_RX_TAGS_LEN                2
 157
 158static unsigned int scl_freq;
 159module_param_named(scl_freq, scl_freq, uint, 0444);
 160MODULE_PARM_DESC(scl_freq, "SCL frequency override");
 161
 162/*
 163 * count: no of blocks
 164 * pos: current block number
 165 * tx_tag_len: tx tag length for current block
 166 * rx_tag_len: rx tag length for current block
 167 * data_len: remaining data length for current message
 168 * cur_blk_len: data length for current block
 169 * total_tx_len: total tx length including tag bytes for current QUP transfer
 170 * total_rx_len: total rx length including tag bytes for current QUP transfer
 171 * tx_fifo_data_pos: current byte number in TX FIFO word
 172 * tx_fifo_free: number of free bytes in current QUP block write.
 173 * rx_fifo_data_pos: current byte number in RX FIFO word
 174 * fifo_available: number of available bytes in RX FIFO for current
 175 *                 QUP block read
 176 * tx_fifo_data: QUP TX FIFO write works on word basis (4 bytes). New byte write
 177 *               to TX FIFO will be appended in this data and will be written to
 178 *               TX FIFO when all the 4 bytes are available.
 179 * rx_fifo_data: QUP RX FIFO read works on word basis (4 bytes). This will
 180 *               contains the 4 bytes of RX data.
 181 * cur_data: pointer to tell cur data position for current message
 182 * cur_tx_tags: pointer to tell cur position in tags
 183 * tx_tags_sent: all tx tag bytes have been written in FIFO word
 184 * send_last_word: for tx FIFO, last word send is pending in current block
 185 * rx_bytes_read: if all the bytes have been read from rx FIFO.
 186 * rx_tags_fetched: all the rx tag bytes have been fetched from rx fifo word
 187 * is_tx_blk_mode: whether tx uses block or FIFO mode in case of non BAM xfer.
 188 * is_rx_blk_mode: whether rx uses block or FIFO mode in case of non BAM xfer.
 189 * tags: contains tx tag bytes for current QUP transfer
 190 */
 191struct qup_i2c_block {
 192        int             count;
 193        int             pos;
 194        int             tx_tag_len;
 195        int             rx_tag_len;
 196        int             data_len;
 197        int             cur_blk_len;
 198        int             total_tx_len;
 199        int             total_rx_len;
 200        int             tx_fifo_data_pos;
 201        int             tx_fifo_free;
 202        int             rx_fifo_data_pos;
 203        int             fifo_available;
 204        u32             tx_fifo_data;
 205        u32             rx_fifo_data;
 206        u8              *cur_data;
 207        u8              *cur_tx_tags;
 208        bool            tx_tags_sent;
 209        bool            send_last_word;
 210        bool            rx_tags_fetched;
 211        bool            rx_bytes_read;
 212        bool            is_tx_blk_mode;
 213        bool            is_rx_blk_mode;
 214        u8              tags[6];
 215};
 216
 217struct qup_i2c_tag {
 218        u8 *start;
 219        dma_addr_t addr;
 220};
 221
 222struct qup_i2c_bam {
 223        struct  qup_i2c_tag tag;
 224        struct  dma_chan *dma;
 225        struct  scatterlist *sg;
 226        unsigned int sg_cnt;
 227};
 228
 229struct qup_i2c_dev {
 230        struct device           *dev;
 231        void __iomem            *base;
 232        int                     irq;
 233        struct clk              *clk;
 234        struct clk              *pclk;
 235        struct i2c_adapter      adap;
 236
 237        int                     clk_ctl;
 238        int                     out_fifo_sz;
 239        int                     in_fifo_sz;
 240        int                     out_blk_sz;
 241        int                     in_blk_sz;
 242
 243        int                     blk_xfer_limit;
 244        unsigned long           one_byte_t;
 245        unsigned long           xfer_timeout;
 246        struct qup_i2c_block    blk;
 247
 248        struct i2c_msg          *msg;
 249        /* Current posion in user message buffer */
 250        int                     pos;
 251        /* I2C protocol errors */
 252        u32                     bus_err;
 253        /* QUP core errors */
 254        u32                     qup_err;
 255
 256        /* To check if this is the last msg */
 257        bool                    is_last;
 258        bool                    is_smbus_read;
 259
 260        /* To configure when bus is in run state */
 261        u32                     config_run;
 262
 263        /* dma parameters */
 264        bool                    is_dma;
 265        /* To check if the current transfer is using DMA */
 266        bool                    use_dma;
 267        unsigned int            max_xfer_sg_len;
 268        unsigned int            tag_buf_pos;
 269        /* The threshold length above which block mode will be used */
 270        unsigned int            blk_mode_threshold;
 271        struct                  dma_pool *dpool;
 272        struct                  qup_i2c_tag start_tag;
 273        struct                  qup_i2c_bam brx;
 274        struct                  qup_i2c_bam btx;
 275
 276        struct completion       xfer;
 277        /* function to write data in tx fifo */
 278        void (*write_tx_fifo)(struct qup_i2c_dev *qup);
 279        /* function to read data from rx fifo */
 280        void (*read_rx_fifo)(struct qup_i2c_dev *qup);
 281        /* function to write tags in tx fifo for i2c read transfer */
 282        void (*write_rx_tags)(struct qup_i2c_dev *qup);
 283};
 284
 285static irqreturn_t qup_i2c_interrupt(int irq, void *dev)
 286{
 287        struct qup_i2c_dev *qup = dev;
 288        struct qup_i2c_block *blk = &qup->blk;
 289        u32 bus_err;
 290        u32 qup_err;
 291        u32 opflags;
 292
 293        bus_err = readl(qup->base + QUP_I2C_STATUS);
 294        qup_err = readl(qup->base + QUP_ERROR_FLAGS);
 295        opflags = readl(qup->base + QUP_OPERATIONAL);
 296
 297        if (!qup->msg) {
 298                /* Clear Error interrupt */
 299                writel(QUP_RESET_STATE, qup->base + QUP_STATE);
 300                return IRQ_HANDLED;
 301        }
 302
 303        bus_err &= I2C_STATUS_ERROR_MASK;
 304        qup_err &= QUP_STATUS_ERROR_FLAGS;
 305
 306        /* Clear the error bits in QUP_ERROR_FLAGS */
 307        if (qup_err)
 308                writel(qup_err, qup->base + QUP_ERROR_FLAGS);
 309
 310        /* Clear the error bits in QUP_I2C_STATUS */
 311        if (bus_err)
 312                writel(bus_err, qup->base + QUP_I2C_STATUS);
 313
 314        /*
 315         * Check for BAM mode and returns if already error has come for current
 316         * transfer. In Error case, sometimes, QUP generates more than one
 317         * interrupt.
 318         */
 319        if (qup->use_dma && (qup->qup_err || qup->bus_err))
 320                return IRQ_HANDLED;
 321
 322        /* Reset the QUP State in case of error */
 323        if (qup_err || bus_err) {
 324                /*
 325                 * Don’t reset the QUP state in case of BAM mode. The BAM
 326                 * flush operation needs to be scheduled in transfer function
 327                 * which will clear the remaining schedule descriptors in BAM
 328                 * HW FIFO and generates the BAM interrupt.
 329                 */
 330                if (!qup->use_dma)
 331                        writel(QUP_RESET_STATE, qup->base + QUP_STATE);
 332                goto done;
 333        }
 334
 335        if (opflags & QUP_OUT_SVC_FLAG) {
 336                writel(QUP_OUT_SVC_FLAG, qup->base + QUP_OPERATIONAL);
 337
 338                if (opflags & OUT_BLOCK_WRITE_REQ) {
 339                        blk->tx_fifo_free += qup->out_blk_sz;
 340                        if (qup->msg->flags & I2C_M_RD)
 341                                qup->write_rx_tags(qup);
 342                        else
 343                                qup->write_tx_fifo(qup);
 344                }
 345        }
 346
 347        if (opflags & QUP_IN_SVC_FLAG) {
 348                writel(QUP_IN_SVC_FLAG, qup->base + QUP_OPERATIONAL);
 349
 350                if (!blk->is_rx_blk_mode) {
 351                        blk->fifo_available += qup->in_fifo_sz;
 352                        qup->read_rx_fifo(qup);
 353                } else if (opflags & IN_BLOCK_READ_REQ) {
 354                        blk->fifo_available += qup->in_blk_sz;
 355                        qup->read_rx_fifo(qup);
 356                }
 357        }
 358
 359        if (qup->msg->flags & I2C_M_RD) {
 360                if (!blk->rx_bytes_read)
 361                        return IRQ_HANDLED;
 362        } else {
 363                /*
 364                 * Ideally, QUP_MAX_OUTPUT_DONE_FLAG should be checked
 365                 * for FIFO mode also. But, QUP_MAX_OUTPUT_DONE_FLAG lags
 366                 * behind QUP_OUTPUT_SERVICE_FLAG sometimes. The only reason
 367                 * of interrupt for write message in FIFO mode is
 368                 * QUP_MAX_OUTPUT_DONE_FLAG condition.
 369                 */
 370                if (blk->is_tx_blk_mode && !(opflags & QUP_MX_OUTPUT_DONE))
 371                        return IRQ_HANDLED;
 372        }
 373
 374done:
 375        qup->qup_err = qup_err;
 376        qup->bus_err = bus_err;
 377        complete(&qup->xfer);
 378        return IRQ_HANDLED;
 379}
 380
 381static int qup_i2c_poll_state_mask(struct qup_i2c_dev *qup,
 382                                   u32 req_state, u32 req_mask)
 383{
 384        int retries = 1;
 385        u32 state;
 386
 387        /*
 388         * State transition takes 3 AHB clocks cycles + 3 I2C master clock
 389         * cycles. So retry once after a 1uS delay.
 390         */
 391        do {
 392                state = readl(qup->base + QUP_STATE);
 393
 394                if (state & QUP_STATE_VALID &&
 395                    (state & req_mask) == req_state)
 396                        return 0;
 397
 398                udelay(1);
 399        } while (retries--);
 400
 401        return -ETIMEDOUT;
 402}
 403
 404static int qup_i2c_poll_state(struct qup_i2c_dev *qup, u32 req_state)
 405{
 406        return qup_i2c_poll_state_mask(qup, req_state, QUP_STATE_MASK);
 407}
 408
 409static void qup_i2c_flush(struct qup_i2c_dev *qup)
 410{
 411        u32 val = readl(qup->base + QUP_STATE);
 412
 413        val |= QUP_I2C_FLUSH;
 414        writel(val, qup->base + QUP_STATE);
 415}
 416
 417static int qup_i2c_poll_state_valid(struct qup_i2c_dev *qup)
 418{
 419        return qup_i2c_poll_state_mask(qup, 0, 0);
 420}
 421
 422static int qup_i2c_poll_state_i2c_master(struct qup_i2c_dev *qup)
 423{
 424        return qup_i2c_poll_state_mask(qup, QUP_I2C_MAST_GEN, QUP_I2C_MAST_GEN);
 425}
 426
 427static int qup_i2c_change_state(struct qup_i2c_dev *qup, u32 state)
 428{
 429        if (qup_i2c_poll_state_valid(qup) != 0)
 430                return -EIO;
 431
 432        writel(state, qup->base + QUP_STATE);
 433
 434        if (qup_i2c_poll_state(qup, state) != 0)
 435                return -EIO;
 436        return 0;
 437}
 438
 439/* Check if I2C bus returns to IDLE state */
 440static int qup_i2c_bus_active(struct qup_i2c_dev *qup, int len)
 441{
 442        unsigned long timeout;
 443        u32 status;
 444        int ret = 0;
 445
 446        timeout = jiffies + len * 4;
 447        for (;;) {
 448                status = readl(qup->base + QUP_I2C_STATUS);
 449                if (!(status & I2C_STATUS_BUS_ACTIVE))
 450                        break;
 451
 452                if (time_after(jiffies, timeout))
 453                        ret = -ETIMEDOUT;
 454
 455                usleep_range(len, len * 2);
 456        }
 457
 458        return ret;
 459}
 460
 461static void qup_i2c_write_tx_fifo_v1(struct qup_i2c_dev *qup)
 462{
 463        struct qup_i2c_block *blk = &qup->blk;
 464        struct i2c_msg *msg = qup->msg;
 465        u32 addr = i2c_8bit_addr_from_msg(msg);
 466        u32 qup_tag;
 467        int idx;
 468        u32 val;
 469
 470        if (qup->pos == 0) {
 471                val = QUP_TAG_START | addr;
 472                idx = 1;
 473                blk->tx_fifo_free--;
 474        } else {
 475                val = 0;
 476                idx = 0;
 477        }
 478
 479        while (blk->tx_fifo_free && qup->pos < msg->len) {
 480                if (qup->pos == msg->len - 1)
 481                        qup_tag = QUP_TAG_STOP;
 482                else
 483                        qup_tag = QUP_TAG_DATA;
 484
 485                if (idx & 1)
 486                        val |= (qup_tag | msg->buf[qup->pos]) << QUP_MSW_SHIFT;
 487                else
 488                        val = qup_tag | msg->buf[qup->pos];
 489
 490                /* Write out the pair and the last odd value */
 491                if (idx & 1 || qup->pos == msg->len - 1)
 492                        writel(val, qup->base + QUP_OUT_FIFO_BASE);
 493
 494                qup->pos++;
 495                idx++;
 496                blk->tx_fifo_free--;
 497        }
 498}
 499
 500static void qup_i2c_set_blk_data(struct qup_i2c_dev *qup,
 501                                 struct i2c_msg *msg)
 502{
 503        qup->blk.pos = 0;
 504        qup->blk.data_len = msg->len;
 505        qup->blk.count = DIV_ROUND_UP(msg->len, qup->blk_xfer_limit);
 506}
 507
 508static int qup_i2c_get_data_len(struct qup_i2c_dev *qup)
 509{
 510        int data_len;
 511
 512        if (qup->blk.data_len > qup->blk_xfer_limit)
 513                data_len = qup->blk_xfer_limit;
 514        else
 515                data_len = qup->blk.data_len;
 516
 517        return data_len;
 518}
 519
 520static bool qup_i2c_check_msg_len(struct i2c_msg *msg)
 521{
 522        return ((msg->flags & I2C_M_RD) && (msg->flags & I2C_M_RECV_LEN));
 523}
 524
 525static int qup_i2c_set_tags_smb(u16 addr, u8 *tags, struct qup_i2c_dev *qup,
 526                        struct i2c_msg *msg)
 527{
 528        int len = 0;
 529
 530        if (qup->is_smbus_read) {
 531                tags[len++] = QUP_TAG_V2_DATARD_STOP;
 532                tags[len++] = qup_i2c_get_data_len(qup);
 533        } else {
 534                tags[len++] = QUP_TAG_V2_START;
 535                tags[len++] = addr & 0xff;
 536
 537                if (msg->flags & I2C_M_TEN)
 538                        tags[len++] = addr >> 8;
 539
 540                tags[len++] = QUP_TAG_V2_DATARD;
 541                /* Read 1 byte indicating the length of the SMBus message */
 542                tags[len++] = 1;
 543        }
 544        return len;
 545}
 546
 547static int qup_i2c_set_tags(u8 *tags, struct qup_i2c_dev *qup,
 548                            struct i2c_msg *msg)
 549{
 550        u16 addr = i2c_8bit_addr_from_msg(msg);
 551        int len = 0;
 552        int data_len;
 553
 554        int last = (qup->blk.pos == (qup->blk.count - 1)) && (qup->is_last);
 555
 556        /* Handle tags for SMBus block read */
 557        if (qup_i2c_check_msg_len(msg))
 558                return qup_i2c_set_tags_smb(addr, tags, qup, msg);
 559
 560        if (qup->blk.pos == 0) {
 561                tags[len++] = QUP_TAG_V2_START;
 562                tags[len++] = addr & 0xff;
 563
 564                if (msg->flags & I2C_M_TEN)
 565                        tags[len++] = addr >> 8;
 566        }
 567
 568        /* Send _STOP commands for the last block */
 569        if (last) {
 570                if (msg->flags & I2C_M_RD)
 571                        tags[len++] = QUP_TAG_V2_DATARD_STOP;
 572                else
 573                        tags[len++] = QUP_TAG_V2_DATAWR_STOP;
 574        } else {
 575                if (msg->flags & I2C_M_RD)
 576                        tags[len++] = qup->blk.pos == (qup->blk.count - 1) ?
 577                                      QUP_TAG_V2_DATARD_NACK :
 578                                      QUP_TAG_V2_DATARD;
 579                else
 580                        tags[len++] = QUP_TAG_V2_DATAWR;
 581        }
 582
 583        data_len = qup_i2c_get_data_len(qup);
 584
 585        /* 0 implies 256 bytes */
 586        if (data_len == QUP_READ_LIMIT)
 587                tags[len++] = 0;
 588        else
 589                tags[len++] = data_len;
 590
 591        return len;
 592}
 593
 594
 595static void qup_i2c_bam_cb(void *data)
 596{
 597        struct qup_i2c_dev *qup = data;
 598
 599        complete(&qup->xfer);
 600}
 601
 602static int qup_sg_set_buf(struct scatterlist *sg, void *buf,
 603                          unsigned int buflen, struct qup_i2c_dev *qup,
 604                          int dir)
 605{
 606        int ret;
 607
 608        sg_set_buf(sg, buf, buflen);
 609        ret = dma_map_sg(qup->dev, sg, 1, dir);
 610        if (!ret)
 611                return -EINVAL;
 612
 613        return 0;
 614}
 615
 616static void qup_i2c_rel_dma(struct qup_i2c_dev *qup)
 617{
 618        if (qup->btx.dma)
 619                dma_release_channel(qup->btx.dma);
 620        if (qup->brx.dma)
 621                dma_release_channel(qup->brx.dma);
 622        qup->btx.dma = NULL;
 623        qup->brx.dma = NULL;
 624}
 625
 626static int qup_i2c_req_dma(struct qup_i2c_dev *qup)
 627{
 628        int err;
 629
 630        if (!qup->btx.dma) {
 631                qup->btx.dma = dma_request_chan(qup->dev, "tx");
 632                if (IS_ERR(qup->btx.dma)) {
 633                        err = PTR_ERR(qup->btx.dma);
 634                        qup->btx.dma = NULL;
 635                        dev_err(qup->dev, "\n tx channel not available");
 636                        return err;
 637                }
 638        }
 639
 640        if (!qup->brx.dma) {
 641                qup->brx.dma = dma_request_chan(qup->dev, "rx");
 642                if (IS_ERR(qup->brx.dma)) {
 643                        dev_err(qup->dev, "\n rx channel not available");
 644                        err = PTR_ERR(qup->brx.dma);
 645                        qup->brx.dma = NULL;
 646                        qup_i2c_rel_dma(qup);
 647                        return err;
 648                }
 649        }
 650        return 0;
 651}
 652
 653static int qup_i2c_bam_make_desc(struct qup_i2c_dev *qup, struct i2c_msg *msg)
 654{
 655        int ret = 0, limit = QUP_READ_LIMIT;
 656        u32 len = 0, blocks, rem;
 657        u32 i = 0, tlen, tx_len = 0;
 658        u8 *tags;
 659
 660        qup->blk_xfer_limit = QUP_READ_LIMIT;
 661        qup_i2c_set_blk_data(qup, msg);
 662
 663        blocks = qup->blk.count;
 664        rem = msg->len - (blocks - 1) * limit;
 665
 666        if (msg->flags & I2C_M_RD) {
 667                while (qup->blk.pos < blocks) {
 668                        tlen = (i == (blocks - 1)) ? rem : limit;
 669                        tags = &qup->start_tag.start[qup->tag_buf_pos + len];
 670                        len += qup_i2c_set_tags(tags, qup, msg);
 671                        qup->blk.data_len -= tlen;
 672
 673                        /* scratch buf to read the start and len tags */
 674                        ret = qup_sg_set_buf(&qup->brx.sg[qup->brx.sg_cnt++],
 675                                             &qup->brx.tag.start[0],
 676                                             2, qup, DMA_FROM_DEVICE);
 677
 678                        if (ret)
 679                                return ret;
 680
 681                        ret = qup_sg_set_buf(&qup->brx.sg[qup->brx.sg_cnt++],
 682                                             &msg->buf[limit * i],
 683                                             tlen, qup,
 684                                             DMA_FROM_DEVICE);
 685                        if (ret)
 686                                return ret;
 687
 688                        i++;
 689                        qup->blk.pos = i;
 690                }
 691                ret = qup_sg_set_buf(&qup->btx.sg[qup->btx.sg_cnt++],
 692                                     &qup->start_tag.start[qup->tag_buf_pos],
 693                                     len, qup, DMA_TO_DEVICE);
 694                if (ret)
 695                        return ret;
 696
 697                qup->tag_buf_pos += len;
 698        } else {
 699                while (qup->blk.pos < blocks) {
 700                        tlen = (i == (blocks - 1)) ? rem : limit;
 701                        tags = &qup->start_tag.start[qup->tag_buf_pos + tx_len];
 702                        len = qup_i2c_set_tags(tags, qup, msg);
 703                        qup->blk.data_len -= tlen;
 704
 705                        ret = qup_sg_set_buf(&qup->btx.sg[qup->btx.sg_cnt++],
 706                                             tags, len,
 707                                             qup, DMA_TO_DEVICE);
 708                        if (ret)
 709                                return ret;
 710
 711                        tx_len += len;
 712                        ret = qup_sg_set_buf(&qup->btx.sg[qup->btx.sg_cnt++],
 713                                             &msg->buf[limit * i],
 714                                             tlen, qup, DMA_TO_DEVICE);
 715                        if (ret)
 716                                return ret;
 717                        i++;
 718                        qup->blk.pos = i;
 719                }
 720
 721                qup->tag_buf_pos += tx_len;
 722        }
 723
 724        return 0;
 725}
 726
 727static int qup_i2c_bam_schedule_desc(struct qup_i2c_dev *qup)
 728{
 729        struct dma_async_tx_descriptor *txd, *rxd = NULL;
 730        int ret = 0;
 731        dma_cookie_t cookie_rx, cookie_tx;
 732        u32 len = 0;
 733        u32 tx_cnt = qup->btx.sg_cnt, rx_cnt = qup->brx.sg_cnt;
 734
 735        /* schedule the EOT and FLUSH I2C tags */
 736        len = 1;
 737        if (rx_cnt) {
 738                qup->btx.tag.start[0] = QUP_BAM_INPUT_EOT;
 739                len++;
 740
 741                /* scratch buf to read the BAM EOT FLUSH tags */
 742                ret = qup_sg_set_buf(&qup->brx.sg[rx_cnt++],
 743                                     &qup->brx.tag.start[0],
 744                                     1, qup, DMA_FROM_DEVICE);
 745                if (ret)
 746                        return ret;
 747        }
 748
 749        qup->btx.tag.start[len - 1] = QUP_BAM_FLUSH_STOP;
 750        ret = qup_sg_set_buf(&qup->btx.sg[tx_cnt++], &qup->btx.tag.start[0],
 751                             len, qup, DMA_TO_DEVICE);
 752        if (ret)
 753                return ret;
 754
 755        txd = dmaengine_prep_slave_sg(qup->btx.dma, qup->btx.sg, tx_cnt,
 756                                      DMA_MEM_TO_DEV,
 757                                      DMA_PREP_INTERRUPT | DMA_PREP_FENCE);
 758        if (!txd) {
 759                dev_err(qup->dev, "failed to get tx desc\n");
 760                ret = -EINVAL;
 761                goto desc_err;
 762        }
 763
 764        if (!rx_cnt) {
 765                txd->callback = qup_i2c_bam_cb;
 766                txd->callback_param = qup;
 767        }
 768
 769        cookie_tx = dmaengine_submit(txd);
 770        if (dma_submit_error(cookie_tx)) {
 771                ret = -EINVAL;
 772                goto desc_err;
 773        }
 774
 775        dma_async_issue_pending(qup->btx.dma);
 776
 777        if (rx_cnt) {
 778                rxd = dmaengine_prep_slave_sg(qup->brx.dma, qup->brx.sg,
 779                                              rx_cnt, DMA_DEV_TO_MEM,
 780                                              DMA_PREP_INTERRUPT);
 781                if (!rxd) {
 782                        dev_err(qup->dev, "failed to get rx desc\n");
 783                        ret = -EINVAL;
 784
 785                        /* abort TX descriptors */
 786                        dmaengine_terminate_all(qup->btx.dma);
 787                        goto desc_err;
 788                }
 789
 790                rxd->callback = qup_i2c_bam_cb;
 791                rxd->callback_param = qup;
 792                cookie_rx = dmaengine_submit(rxd);
 793                if (dma_submit_error(cookie_rx)) {
 794                        ret = -EINVAL;
 795                        goto desc_err;
 796                }
 797
 798                dma_async_issue_pending(qup->brx.dma);
 799        }
 800
 801        if (!wait_for_completion_timeout(&qup->xfer, qup->xfer_timeout)) {
 802                dev_err(qup->dev, "normal trans timed out\n");
 803                ret = -ETIMEDOUT;
 804        }
 805
 806        if (ret || qup->bus_err || qup->qup_err) {
 807                reinit_completion(&qup->xfer);
 808
 809                if (qup_i2c_change_state(qup, QUP_RUN_STATE)) {
 810                        dev_err(qup->dev, "change to run state timed out");
 811                        goto desc_err;
 812                }
 813
 814                qup_i2c_flush(qup);
 815
 816                /* wait for remaining interrupts to occur */
 817                if (!wait_for_completion_timeout(&qup->xfer, HZ))
 818                        dev_err(qup->dev, "flush timed out\n");
 819
 820                ret =  (qup->bus_err & QUP_I2C_NACK_FLAG) ? -ENXIO : -EIO;
 821        }
 822
 823desc_err:
 824        dma_unmap_sg(qup->dev, qup->btx.sg, tx_cnt, DMA_TO_DEVICE);
 825
 826        if (rx_cnt)
 827                dma_unmap_sg(qup->dev, qup->brx.sg, rx_cnt,
 828                             DMA_FROM_DEVICE);
 829
 830        return ret;
 831}
 832
 833static void qup_i2c_bam_clear_tag_buffers(struct qup_i2c_dev *qup)
 834{
 835        qup->btx.sg_cnt = 0;
 836        qup->brx.sg_cnt = 0;
 837        qup->tag_buf_pos = 0;
 838}
 839
 840static int qup_i2c_bam_xfer(struct i2c_adapter *adap, struct i2c_msg *msg,
 841                            int num)
 842{
 843        struct qup_i2c_dev *qup = i2c_get_adapdata(adap);
 844        int ret = 0;
 845        int idx = 0;
 846
 847        enable_irq(qup->irq);
 848        ret = qup_i2c_req_dma(qup);
 849
 850        if (ret)
 851                goto out;
 852
 853        writel(0, qup->base + QUP_MX_INPUT_CNT);
 854        writel(0, qup->base + QUP_MX_OUTPUT_CNT);
 855
 856        /* set BAM mode */
 857        writel(QUP_REPACK_EN | QUP_BAM_MODE, qup->base + QUP_IO_MODE);
 858
 859        /* mask fifo irqs */
 860        writel((0x3 << 8), qup->base + QUP_OPERATIONAL_MASK);
 861
 862        /* set RUN STATE */
 863        ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
 864        if (ret)
 865                goto out;
 866
 867        writel(qup->clk_ctl, qup->base + QUP_I2C_CLK_CTL);
 868        qup_i2c_bam_clear_tag_buffers(qup);
 869
 870        for (idx = 0; idx < num; idx++) {
 871                qup->msg = msg + idx;
 872                qup->is_last = idx == (num - 1);
 873
 874                ret = qup_i2c_bam_make_desc(qup, qup->msg);
 875                if (ret)
 876                        break;
 877
 878                /*
 879                 * Make DMA descriptor and schedule the BAM transfer if its
 880                 * already crossed the maximum length. Since the memory for all
 881                 * tags buffers have been taken for 2 maximum possible
 882                 * transfers length so it will never cross the buffer actual
 883                 * length.
 884                 */
 885                if (qup->btx.sg_cnt > qup->max_xfer_sg_len ||
 886                    qup->brx.sg_cnt > qup->max_xfer_sg_len ||
 887                    qup->is_last) {
 888                        ret = qup_i2c_bam_schedule_desc(qup);
 889                        if (ret)
 890                                break;
 891
 892                        qup_i2c_bam_clear_tag_buffers(qup);
 893                }
 894        }
 895
 896out:
 897        disable_irq(qup->irq);
 898
 899        qup->msg = NULL;
 900        return ret;
 901}
 902
 903static int qup_i2c_wait_for_complete(struct qup_i2c_dev *qup,
 904                                     struct i2c_msg *msg)
 905{
 906        unsigned long left;
 907        int ret = 0;
 908
 909        left = wait_for_completion_timeout(&qup->xfer, qup->xfer_timeout);
 910        if (!left) {
 911                writel(1, qup->base + QUP_SW_RESET);
 912                ret = -ETIMEDOUT;
 913        }
 914
 915        if (qup->bus_err || qup->qup_err)
 916                ret =  (qup->bus_err & QUP_I2C_NACK_FLAG) ? -ENXIO : -EIO;
 917
 918        return ret;
 919}
 920
 921static void qup_i2c_read_rx_fifo_v1(struct qup_i2c_dev *qup)
 922{
 923        struct qup_i2c_block *blk = &qup->blk;
 924        struct i2c_msg *msg = qup->msg;
 925        u32 val = 0;
 926        int idx = 0;
 927
 928        while (blk->fifo_available && qup->pos < msg->len) {
 929                if ((idx & 1) == 0) {
 930                        /* Reading 2 words at time */
 931                        val = readl(qup->base + QUP_IN_FIFO_BASE);
 932                        msg->buf[qup->pos++] = val & 0xFF;
 933                } else {
 934                        msg->buf[qup->pos++] = val >> QUP_MSW_SHIFT;
 935                }
 936                idx++;
 937                blk->fifo_available--;
 938        }
 939
 940        if (qup->pos == msg->len)
 941                blk->rx_bytes_read = true;
 942}
 943
 944static void qup_i2c_write_rx_tags_v1(struct qup_i2c_dev *qup)
 945{
 946        struct i2c_msg *msg = qup->msg;
 947        u32 addr, len, val;
 948
 949        addr = i2c_8bit_addr_from_msg(msg);
 950
 951        /* 0 is used to specify a length 256 (QUP_READ_LIMIT) */
 952        len = (msg->len == QUP_READ_LIMIT) ? 0 : msg->len;
 953
 954        val = ((QUP_TAG_REC | len) << QUP_MSW_SHIFT) | QUP_TAG_START | addr;
 955        writel(val, qup->base + QUP_OUT_FIFO_BASE);
 956}
 957
 958static void qup_i2c_conf_v1(struct qup_i2c_dev *qup)
 959{
 960        struct qup_i2c_block *blk = &qup->blk;
 961        u32 qup_config = I2C_MINI_CORE | I2C_N_VAL;
 962        u32 io_mode = QUP_REPACK_EN;
 963
 964        blk->is_tx_blk_mode =
 965                blk->total_tx_len > qup->out_fifo_sz ? true : false;
 966        blk->is_rx_blk_mode =
 967                blk->total_rx_len > qup->in_fifo_sz ? true : false;
 968
 969        if (blk->is_tx_blk_mode) {
 970                io_mode |= QUP_OUTPUT_BLK_MODE;
 971                writel(0, qup->base + QUP_MX_WRITE_CNT);
 972                writel(blk->total_tx_len, qup->base + QUP_MX_OUTPUT_CNT);
 973        } else {
 974                writel(0, qup->base + QUP_MX_OUTPUT_CNT);
 975                writel(blk->total_tx_len, qup->base + QUP_MX_WRITE_CNT);
 976        }
 977
 978        if (blk->total_rx_len) {
 979                if (blk->is_rx_blk_mode) {
 980                        io_mode |= QUP_INPUT_BLK_MODE;
 981                        writel(0, qup->base + QUP_MX_READ_CNT);
 982                        writel(blk->total_rx_len, qup->base + QUP_MX_INPUT_CNT);
 983                } else {
 984                        writel(0, qup->base + QUP_MX_INPUT_CNT);
 985                        writel(blk->total_rx_len, qup->base + QUP_MX_READ_CNT);
 986                }
 987        } else {
 988                qup_config |= QUP_NO_INPUT;
 989        }
 990
 991        writel(qup_config, qup->base + QUP_CONFIG);
 992        writel(io_mode, qup->base + QUP_IO_MODE);
 993}
 994
 995static void qup_i2c_clear_blk_v1(struct qup_i2c_block *blk)
 996{
 997        blk->tx_fifo_free = 0;
 998        blk->fifo_available = 0;
 999        blk->rx_bytes_read = false;
1000}
1001
1002static int qup_i2c_conf_xfer_v1(struct qup_i2c_dev *qup, bool is_rx)
1003{
1004        struct qup_i2c_block *blk = &qup->blk;
1005        int ret;
1006
1007        qup_i2c_clear_blk_v1(blk);
1008        qup_i2c_conf_v1(qup);
1009        ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
1010        if (ret)
1011                return ret;
1012
1013        writel(qup->clk_ctl, qup->base + QUP_I2C_CLK_CTL);
1014
1015        ret = qup_i2c_change_state(qup, QUP_PAUSE_STATE);
1016        if (ret)
1017                return ret;
1018
1019        reinit_completion(&qup->xfer);
1020        enable_irq(qup->irq);
1021        if (!blk->is_tx_blk_mode) {
1022                blk->tx_fifo_free = qup->out_fifo_sz;
1023
1024                if (is_rx)
1025                        qup_i2c_write_rx_tags_v1(qup);
1026                else
1027                        qup_i2c_write_tx_fifo_v1(qup);
1028        }
1029
1030        ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
1031        if (ret)
1032                goto err;
1033
1034        ret = qup_i2c_wait_for_complete(qup, qup->msg);
1035        if (ret)
1036                goto err;
1037
1038        ret = qup_i2c_bus_active(qup, ONE_BYTE);
1039
1040err:
1041        disable_irq(qup->irq);
1042        return ret;
1043}
1044
1045static int qup_i2c_write_one(struct qup_i2c_dev *qup)
1046{
1047        struct i2c_msg *msg = qup->msg;
1048        struct qup_i2c_block *blk = &qup->blk;
1049
1050        qup->pos = 0;
1051        blk->total_tx_len = msg->len + 1;
1052        blk->total_rx_len = 0;
1053
1054        return qup_i2c_conf_xfer_v1(qup, false);
1055}
1056
1057static int qup_i2c_read_one(struct qup_i2c_dev *qup)
1058{
1059        struct qup_i2c_block *blk = &qup->blk;
1060
1061        qup->pos = 0;
1062        blk->total_tx_len = 2;
1063        blk->total_rx_len = qup->msg->len;
1064
1065        return qup_i2c_conf_xfer_v1(qup, true);
1066}
1067
1068static int qup_i2c_xfer(struct i2c_adapter *adap,
1069                        struct i2c_msg msgs[],
1070                        int num)
1071{
1072        struct qup_i2c_dev *qup = i2c_get_adapdata(adap);
1073        int ret, idx;
1074
1075        ret = pm_runtime_get_sync(qup->dev);
1076        if (ret < 0)
1077                goto out;
1078
1079        qup->bus_err = 0;
1080        qup->qup_err = 0;
1081
1082        writel(1, qup->base + QUP_SW_RESET);
1083        ret = qup_i2c_poll_state(qup, QUP_RESET_STATE);
1084        if (ret)
1085                goto out;
1086
1087        /* Configure QUP as I2C mini core */
1088        writel(I2C_MINI_CORE | I2C_N_VAL, qup->base + QUP_CONFIG);
1089
1090        for (idx = 0; idx < num; idx++) {
1091                if (qup_i2c_poll_state_i2c_master(qup)) {
1092                        ret = -EIO;
1093                        goto out;
1094                }
1095
1096                if (qup_i2c_check_msg_len(&msgs[idx])) {
1097                        ret = -EINVAL;
1098                        goto out;
1099                }
1100
1101                qup->msg = &msgs[idx];
1102                if (msgs[idx].flags & I2C_M_RD)
1103                        ret = qup_i2c_read_one(qup);
1104                else
1105                        ret = qup_i2c_write_one(qup);
1106
1107                if (ret)
1108                        break;
1109
1110                ret = qup_i2c_change_state(qup, QUP_RESET_STATE);
1111                if (ret)
1112                        break;
1113        }
1114
1115        if (ret == 0)
1116                ret = num;
1117out:
1118
1119        pm_runtime_mark_last_busy(qup->dev);
1120        pm_runtime_put_autosuspend(qup->dev);
1121
1122        return ret;
1123}
1124
1125/*
1126 * Configure registers related with reconfiguration during run and call it
1127 * before each i2c sub transfer.
1128 */
1129static void qup_i2c_conf_count_v2(struct qup_i2c_dev *qup)
1130{
1131        struct qup_i2c_block *blk = &qup->blk;
1132        u32 qup_config = I2C_MINI_CORE | I2C_N_VAL_V2;
1133
1134        if (blk->is_tx_blk_mode)
1135                writel(qup->config_run | blk->total_tx_len,
1136                       qup->base + QUP_MX_OUTPUT_CNT);
1137        else
1138                writel(qup->config_run | blk->total_tx_len,
1139                       qup->base + QUP_MX_WRITE_CNT);
1140
1141        if (blk->total_rx_len) {
1142                if (blk->is_rx_blk_mode)
1143                        writel(qup->config_run | blk->total_rx_len,
1144                               qup->base + QUP_MX_INPUT_CNT);
1145                else
1146                        writel(qup->config_run | blk->total_rx_len,
1147                               qup->base + QUP_MX_READ_CNT);
1148        } else {
1149                qup_config |= QUP_NO_INPUT;
1150        }
1151
1152        writel(qup_config, qup->base + QUP_CONFIG);
1153}
1154
1155/*
1156 * Configure registers related with transfer mode (FIFO/Block)
1157 * before starting of i2c transfer. It will be called only once in
1158 * QUP RESET state.
1159 */
1160static void qup_i2c_conf_mode_v2(struct qup_i2c_dev *qup)
1161{
1162        struct qup_i2c_block *blk = &qup->blk;
1163        u32 io_mode = QUP_REPACK_EN;
1164
1165        if (blk->is_tx_blk_mode) {
1166                io_mode |= QUP_OUTPUT_BLK_MODE;
1167                writel(0, qup->base + QUP_MX_WRITE_CNT);
1168        } else {
1169                writel(0, qup->base + QUP_MX_OUTPUT_CNT);
1170        }
1171
1172        if (blk->is_rx_blk_mode) {
1173                io_mode |= QUP_INPUT_BLK_MODE;
1174                writel(0, qup->base + QUP_MX_READ_CNT);
1175        } else {
1176                writel(0, qup->base + QUP_MX_INPUT_CNT);
1177        }
1178
1179        writel(io_mode, qup->base + QUP_IO_MODE);
1180}
1181
1182/* Clear required variables before starting of any QUP v2 sub transfer. */
1183static void qup_i2c_clear_blk_v2(struct qup_i2c_block *blk)
1184{
1185        blk->send_last_word = false;
1186        blk->tx_tags_sent = false;
1187        blk->tx_fifo_data = 0;
1188        blk->tx_fifo_data_pos = 0;
1189        blk->tx_fifo_free = 0;
1190
1191        blk->rx_tags_fetched = false;
1192        blk->rx_bytes_read = false;
1193        blk->rx_fifo_data = 0;
1194        blk->rx_fifo_data_pos = 0;
1195        blk->fifo_available = 0;
1196}
1197
1198/* Receive data from RX FIFO for read message in QUP v2 i2c transfer. */
1199static void qup_i2c_recv_data(struct qup_i2c_dev *qup)
1200{
1201        struct qup_i2c_block *blk = &qup->blk;
1202        int j;
1203
1204        for (j = blk->rx_fifo_data_pos;
1205             blk->cur_blk_len && blk->fifo_available;
1206             blk->cur_blk_len--, blk->fifo_available--) {
1207                if (j == 0)
1208                        blk->rx_fifo_data = readl(qup->base + QUP_IN_FIFO_BASE);
1209
1210                *(blk->cur_data++) = blk->rx_fifo_data;
1211                blk->rx_fifo_data >>= 8;
1212
1213                if (j == 3)
1214                        j = 0;
1215                else
1216                        j++;
1217        }
1218
1219        blk->rx_fifo_data_pos = j;
1220}
1221
1222/* Receive tags for read message in QUP v2 i2c transfer. */
1223static void qup_i2c_recv_tags(struct qup_i2c_dev *qup)
1224{
1225        struct qup_i2c_block *blk = &qup->blk;
1226
1227        blk->rx_fifo_data = readl(qup->base + QUP_IN_FIFO_BASE);
1228        blk->rx_fifo_data >>= blk->rx_tag_len  * 8;
1229        blk->rx_fifo_data_pos = blk->rx_tag_len;
1230        blk->fifo_available -= blk->rx_tag_len;
1231}
1232
1233/*
1234 * Read the data and tags from RX FIFO. Since in read case, the tags will be
1235 * preceded by received data bytes so
1236 * 1. Check if rx_tags_fetched is false i.e. the start of QUP block so receive
1237 *    all tag bytes and discard that.
1238 * 2. Read the data from RX FIFO. When all the data bytes have been read then
1239 *    set rx_bytes_read to true.
1240 */
1241static void qup_i2c_read_rx_fifo_v2(struct qup_i2c_dev *qup)
1242{
1243        struct qup_i2c_block *blk = &qup->blk;
1244
1245        if (!blk->rx_tags_fetched) {
1246                qup_i2c_recv_tags(qup);
1247                blk->rx_tags_fetched = true;
1248        }
1249
1250        qup_i2c_recv_data(qup);
1251        if (!blk->cur_blk_len)
1252                blk->rx_bytes_read = true;
1253}
1254
1255/*
1256 * Write bytes in TX FIFO for write message in QUP v2 i2c transfer. QUP TX FIFO
1257 * write works on word basis (4 bytes). Append new data byte write for TX FIFO
1258 * in tx_fifo_data and write to TX FIFO when all the 4 bytes are present.
1259 */
1260static void
1261qup_i2c_write_blk_data(struct qup_i2c_dev *qup, u8 **data, unsigned int *len)
1262{
1263        struct qup_i2c_block *blk = &qup->blk;
1264        unsigned int j;
1265
1266        for (j = blk->tx_fifo_data_pos; *len && blk->tx_fifo_free;
1267             (*len)--, blk->tx_fifo_free--) {
1268                blk->tx_fifo_data |= *(*data)++ << (j * 8);
1269                if (j == 3) {
1270                        writel(blk->tx_fifo_data,
1271                               qup->base + QUP_OUT_FIFO_BASE);
1272                        blk->tx_fifo_data = 0x0;
1273                        j = 0;
1274                } else {
1275                        j++;
1276                }
1277        }
1278
1279        blk->tx_fifo_data_pos = j;
1280}
1281
1282/* Transfer tags for read message in QUP v2 i2c transfer. */
1283static void qup_i2c_write_rx_tags_v2(struct qup_i2c_dev *qup)
1284{
1285        struct qup_i2c_block *blk = &qup->blk;
1286
1287        qup_i2c_write_blk_data(qup, &blk->cur_tx_tags, &blk->tx_tag_len);
1288        if (blk->tx_fifo_data_pos)
1289                writel(blk->tx_fifo_data, qup->base + QUP_OUT_FIFO_BASE);
1290}
1291
1292/*
1293 * Write the data and tags in TX FIFO. Since in write case, both tags and data
1294 * need to be written and QUP write tags can have maximum 256 data length, so
1295 *
1296 * 1. Check if tx_tags_sent is false i.e. the start of QUP block so write the
1297 *    tags to TX FIFO and set tx_tags_sent to true.
1298 * 2. Check if send_last_word is true. It will be set when last few data bytes
1299 *    (less than 4 bytes) are reamining to be written in FIFO because of no FIFO
1300 *    space. All this data bytes are available in tx_fifo_data so write this
1301 *    in FIFO.
1302 * 3. Write the data to TX FIFO and check for cur_blk_len. If it is non zero
1303 *    then more data is pending otherwise following 3 cases can be possible
1304 *    a. if tx_fifo_data_pos is zero i.e. all the data bytes in this block
1305 *       have been written in TX FIFO so nothing else is required.
1306 *    b. tx_fifo_free is non zero i.e tx FIFO is free so copy the remaining data
1307 *       from tx_fifo_data to tx FIFO. Since, qup_i2c_write_blk_data do write
1308 *       in 4 bytes and FIFO space is in multiple of 4 bytes so tx_fifo_free
1309 *       will be always greater than or equal to 4 bytes.
1310 *    c. tx_fifo_free is zero. In this case, last few bytes (less than 4
1311 *       bytes) are copied to tx_fifo_data but couldn't be sent because of
1312 *       FIFO full so make send_last_word true.
1313 */
1314static void qup_i2c_write_tx_fifo_v2(struct qup_i2c_dev *qup)
1315{
1316        struct qup_i2c_block *blk = &qup->blk;
1317
1318        if (!blk->tx_tags_sent) {
1319                qup_i2c_write_blk_data(qup, &blk->cur_tx_tags,
1320                                       &blk->tx_tag_len);
1321                blk->tx_tags_sent = true;
1322        }
1323
1324        if (blk->send_last_word)
1325                goto send_last_word;
1326
1327        qup_i2c_write_blk_data(qup, &blk->cur_data, &blk->cur_blk_len);
1328        if (!blk->cur_blk_len) {
1329                if (!blk->tx_fifo_data_pos)
1330                        return;
1331
1332                if (blk->tx_fifo_free)
1333                        goto send_last_word;
1334
1335                blk->send_last_word = true;
1336        }
1337
1338        return;
1339
1340send_last_word:
1341        writel(blk->tx_fifo_data, qup->base + QUP_OUT_FIFO_BASE);
1342}
1343
1344/*
1345 * Main transfer function which read or write i2c data.
1346 * The QUP v2 supports reconfiguration during run in which multiple i2c sub
1347 * transfers can be scheduled.
1348 */
1349static int
1350qup_i2c_conf_xfer_v2(struct qup_i2c_dev *qup, bool is_rx, bool is_first,
1351                     bool change_pause_state)
1352{
1353        struct qup_i2c_block *blk = &qup->blk;
1354        struct i2c_msg *msg = qup->msg;
1355        int ret;
1356
1357        /*
1358         * Check if its SMBus Block read for which the top level read will be
1359         * done into 2 QUP reads. One with message length 1 while other one is
1360         * with actual length.
1361         */
1362        if (qup_i2c_check_msg_len(msg)) {
1363                if (qup->is_smbus_read) {
1364                        /*
1365                         * If the message length is already read in
1366                         * the first byte of the buffer, account for
1367                         * that by setting the offset
1368                         */
1369                        blk->cur_data += 1;
1370                        is_first = false;
1371                } else {
1372                        change_pause_state = false;
1373                }
1374        }
1375
1376        qup->config_run = is_first ? 0 : QUP_I2C_MX_CONFIG_DURING_RUN;
1377
1378        qup_i2c_clear_blk_v2(blk);
1379        qup_i2c_conf_count_v2(qup);
1380
1381        /* If it is first sub transfer, then configure i2c bus clocks */
1382        if (is_first) {
1383                ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
1384                if (ret)
1385                        return ret;
1386
1387                writel(qup->clk_ctl, qup->base + QUP_I2C_CLK_CTL);
1388
1389                ret = qup_i2c_change_state(qup, QUP_PAUSE_STATE);
1390                if (ret)
1391                        return ret;
1392        }
1393
1394        reinit_completion(&qup->xfer);
1395        enable_irq(qup->irq);
1396        /*
1397         * In FIFO mode, tx FIFO can be written directly while in block mode the
1398         * it will be written after getting OUT_BLOCK_WRITE_REQ interrupt
1399         */
1400        if (!blk->is_tx_blk_mode) {
1401                blk->tx_fifo_free = qup->out_fifo_sz;
1402
1403                if (is_rx)
1404                        qup_i2c_write_rx_tags_v2(qup);
1405                else
1406                        qup_i2c_write_tx_fifo_v2(qup);
1407        }
1408
1409        ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
1410        if (ret)
1411                goto err;
1412
1413        ret = qup_i2c_wait_for_complete(qup, msg);
1414        if (ret)
1415                goto err;
1416
1417        /* Move to pause state for all the transfers, except last one */
1418        if (change_pause_state) {
1419                ret = qup_i2c_change_state(qup, QUP_PAUSE_STATE);
1420                if (ret)
1421                        goto err;
1422        }
1423
1424err:
1425        disable_irq(qup->irq);
1426        return ret;
1427}
1428
1429/*
1430 * Transfer one read/write message in i2c transfer. It splits the message into
1431 * multiple of blk_xfer_limit data length blocks and schedule each
1432 * QUP block individually.
1433 */
1434static int qup_i2c_xfer_v2_msg(struct qup_i2c_dev *qup, int msg_id, bool is_rx)
1435{
1436        int ret = 0;
1437        unsigned int data_len, i;
1438        struct i2c_msg *msg = qup->msg;
1439        struct qup_i2c_block *blk = &qup->blk;
1440        u8 *msg_buf = msg->buf;
1441
1442        qup->blk_xfer_limit = is_rx ? RECV_MAX_DATA_LEN : QUP_READ_LIMIT;
1443        qup_i2c_set_blk_data(qup, msg);
1444
1445        for (i = 0; i < blk->count; i++) {
1446                data_len =  qup_i2c_get_data_len(qup);
1447                blk->pos = i;
1448                blk->cur_tx_tags = blk->tags;
1449                blk->cur_blk_len = data_len;
1450                blk->tx_tag_len =
1451                        qup_i2c_set_tags(blk->cur_tx_tags, qup, qup->msg);
1452
1453                blk->cur_data = msg_buf;
1454
1455                if (is_rx) {
1456                        blk->total_tx_len = blk->tx_tag_len;
1457                        blk->rx_tag_len = 2;
1458                        blk->total_rx_len = blk->rx_tag_len + data_len;
1459                } else {
1460                        blk->total_tx_len = blk->tx_tag_len + data_len;
1461                        blk->total_rx_len = 0;
1462                }
1463
1464                ret = qup_i2c_conf_xfer_v2(qup, is_rx, !msg_id && !i,
1465                                           !qup->is_last || i < blk->count - 1);
1466                if (ret)
1467                        return ret;
1468
1469                /* Handle SMBus block read length */
1470                if (qup_i2c_check_msg_len(msg) && msg->len == 1 &&
1471                    !qup->is_smbus_read) {
1472                        if (msg->buf[0] > I2C_SMBUS_BLOCK_MAX)
1473                                return -EPROTO;
1474
1475                        msg->len = msg->buf[0];
1476                        qup->is_smbus_read = true;
1477                        ret = qup_i2c_xfer_v2_msg(qup, msg_id, true);
1478                        qup->is_smbus_read = false;
1479                        if (ret)
1480                                return ret;
1481
1482                        msg->len += 1;
1483                }
1484
1485                msg_buf += data_len;
1486                blk->data_len -= qup->blk_xfer_limit;
1487        }
1488
1489        return ret;
1490}
1491
1492/*
1493 * QUP v2 supports 3 modes
1494 * Programmed IO using FIFO mode : Less than FIFO size
1495 * Programmed IO using Block mode : Greater than FIFO size
1496 * DMA using BAM : Appropriate for any transaction size but the address should
1497 *                 be DMA applicable
1498 *
1499 * This function determines the mode which will be used for this transfer. An
1500 * i2c transfer contains multiple message. Following are the rules to determine
1501 * the mode used.
1502 * 1. Determine complete length, maximum tx and rx length for complete transfer.
1503 * 2. If complete transfer length is greater than fifo size then use the DMA
1504 *    mode.
1505 * 3. In FIFO or block mode, tx and rx can operate in different mode so check
1506 *    for maximum tx and rx length to determine mode.
1507 */
1508static int
1509qup_i2c_determine_mode_v2(struct qup_i2c_dev *qup,
1510                          struct i2c_msg msgs[], int num)
1511{
1512        int idx;
1513        bool no_dma = false;
1514        unsigned int max_tx_len = 0, max_rx_len = 0, total_len = 0;
1515
1516        /* All i2c_msgs should be transferred using either dma or cpu */
1517        for (idx = 0; idx < num; idx++) {
1518                if (msgs[idx].flags & I2C_M_RD)
1519                        max_rx_len = max_t(unsigned int, max_rx_len,
1520                                           msgs[idx].len);
1521                else
1522                        max_tx_len = max_t(unsigned int, max_tx_len,
1523                                           msgs[idx].len);
1524
1525                if (is_vmalloc_addr(msgs[idx].buf))
1526                        no_dma = true;
1527
1528                total_len += msgs[idx].len;
1529        }
1530
1531        if (!no_dma && qup->is_dma &&
1532            (total_len > qup->out_fifo_sz || total_len > qup->in_fifo_sz)) {
1533                qup->use_dma = true;
1534        } else {
1535                qup->blk.is_tx_blk_mode = max_tx_len > qup->out_fifo_sz -
1536                        QUP_MAX_TAGS_LEN ? true : false;
1537                qup->blk.is_rx_blk_mode = max_rx_len > qup->in_fifo_sz -
1538                        READ_RX_TAGS_LEN ? true : false;
1539        }
1540
1541        return 0;
1542}
1543
1544static int qup_i2c_xfer_v2(struct i2c_adapter *adap,
1545                           struct i2c_msg msgs[],
1546                           int num)
1547{
1548        struct qup_i2c_dev *qup = i2c_get_adapdata(adap);
1549        int ret, idx = 0;
1550
1551        qup->bus_err = 0;
1552        qup->qup_err = 0;
1553
1554        ret = pm_runtime_get_sync(qup->dev);
1555        if (ret < 0)
1556                goto out;
1557
1558        ret = qup_i2c_determine_mode_v2(qup, msgs, num);
1559        if (ret)
1560                goto out;
1561
1562        writel(1, qup->base + QUP_SW_RESET);
1563        ret = qup_i2c_poll_state(qup, QUP_RESET_STATE);
1564        if (ret)
1565                goto out;
1566
1567        /* Configure QUP as I2C mini core */
1568        writel(I2C_MINI_CORE | I2C_N_VAL_V2, qup->base + QUP_CONFIG);
1569        writel(QUP_V2_TAGS_EN, qup->base + QUP_I2C_MASTER_GEN);
1570
1571        if (qup_i2c_poll_state_i2c_master(qup)) {
1572                ret = -EIO;
1573                goto out;
1574        }
1575
1576        if (qup->use_dma) {
1577                reinit_completion(&qup->xfer);
1578                ret = qup_i2c_bam_xfer(adap, &msgs[0], num);
1579                qup->use_dma = false;
1580        } else {
1581                qup_i2c_conf_mode_v2(qup);
1582
1583                for (idx = 0; idx < num; idx++) {
1584                        qup->msg = &msgs[idx];
1585                        qup->is_last = idx == (num - 1);
1586
1587                        ret = qup_i2c_xfer_v2_msg(qup, idx,
1588                                        !!(msgs[idx].flags & I2C_M_RD));
1589                        if (ret)
1590                                break;
1591                }
1592                qup->msg = NULL;
1593        }
1594
1595        if (!ret)
1596                ret = qup_i2c_bus_active(qup, ONE_BYTE);
1597
1598        if (!ret)
1599                qup_i2c_change_state(qup, QUP_RESET_STATE);
1600
1601        if (ret == 0)
1602                ret = num;
1603out:
1604        pm_runtime_mark_last_busy(qup->dev);
1605        pm_runtime_put_autosuspend(qup->dev);
1606
1607        return ret;
1608}
1609
1610static u32 qup_i2c_func(struct i2c_adapter *adap)
1611{
1612        return I2C_FUNC_I2C | (I2C_FUNC_SMBUS_EMUL & ~I2C_FUNC_SMBUS_QUICK);
1613}
1614
1615static const struct i2c_algorithm qup_i2c_algo = {
1616        .master_xfer    = qup_i2c_xfer,
1617        .functionality  = qup_i2c_func,
1618};
1619
1620static const struct i2c_algorithm qup_i2c_algo_v2 = {
1621        .master_xfer    = qup_i2c_xfer_v2,
1622        .functionality  = qup_i2c_func,
1623};
1624
1625/*
1626 * The QUP block will issue a NACK and STOP on the bus when reaching
1627 * the end of the read, the length of the read is specified as one byte
1628 * which limits the possible read to 256 (QUP_READ_LIMIT) bytes.
1629 */
1630static const struct i2c_adapter_quirks qup_i2c_quirks = {
1631        .flags = I2C_AQ_NO_ZERO_LEN,
1632        .max_read_len = QUP_READ_LIMIT,
1633};
1634
1635static const struct i2c_adapter_quirks qup_i2c_quirks_v2 = {
1636        .flags = I2C_AQ_NO_ZERO_LEN,
1637};
1638
1639static void qup_i2c_enable_clocks(struct qup_i2c_dev *qup)
1640{
1641        clk_prepare_enable(qup->clk);
1642        clk_prepare_enable(qup->pclk);
1643}
1644
1645static void qup_i2c_disable_clocks(struct qup_i2c_dev *qup)
1646{
1647        u32 config;
1648
1649        qup_i2c_change_state(qup, QUP_RESET_STATE);
1650        clk_disable_unprepare(qup->clk);
1651        config = readl(qup->base + QUP_CONFIG);
1652        config |= QUP_CLOCK_AUTO_GATE;
1653        writel(config, qup->base + QUP_CONFIG);
1654        clk_disable_unprepare(qup->pclk);
1655}
1656
1657static const struct acpi_device_id qup_i2c_acpi_match[] = {
1658        { "QCOM8010"},
1659        { },
1660};
1661MODULE_DEVICE_TABLE(acpi, qup_i2c_acpi_match);
1662
1663static int qup_i2c_probe(struct platform_device *pdev)
1664{
1665        static const int blk_sizes[] = {4, 16, 32};
1666        struct qup_i2c_dev *qup;
1667        unsigned long one_bit_t;
1668        struct resource *res;
1669        u32 io_mode, hw_ver, size;
1670        int ret, fs_div, hs_div;
1671        u32 src_clk_freq = DEFAULT_SRC_CLK;
1672        u32 clk_freq = DEFAULT_CLK_FREQ;
1673        int blocks;
1674        bool is_qup_v1;
1675
1676        qup = devm_kzalloc(&pdev->dev, sizeof(*qup), GFP_KERNEL);
1677        if (!qup)
1678                return -ENOMEM;
1679
1680        qup->dev = &pdev->dev;
1681        init_completion(&qup->xfer);
1682        platform_set_drvdata(pdev, qup);
1683
1684        if (scl_freq) {
1685                dev_notice(qup->dev, "Using override frequency of %u\n", scl_freq);
1686                clk_freq = scl_freq;
1687        } else {
1688                ret = device_property_read_u32(qup->dev, "clock-frequency", &clk_freq);
1689                if (ret) {
1690                        dev_notice(qup->dev, "using default clock-frequency %d",
1691                                DEFAULT_CLK_FREQ);
1692                }
1693        }
1694
1695        if (of_device_is_compatible(pdev->dev.of_node, "qcom,i2c-qup-v1.1.1")) {
1696                qup->adap.algo = &qup_i2c_algo;
1697                qup->adap.quirks = &qup_i2c_quirks;
1698                is_qup_v1 = true;
1699        } else {
1700                qup->adap.algo = &qup_i2c_algo_v2;
1701                qup->adap.quirks = &qup_i2c_quirks_v2;
1702                is_qup_v1 = false;
1703                if (acpi_match_device(qup_i2c_acpi_match, qup->dev))
1704                        goto nodma;
1705                else
1706                        ret = qup_i2c_req_dma(qup);
1707
1708                if (ret == -EPROBE_DEFER)
1709                        goto fail_dma;
1710                else if (ret != 0)
1711                        goto nodma;
1712
1713                qup->max_xfer_sg_len = (MX_BLOCKS << 1);
1714                blocks = (MX_DMA_BLOCKS << 1) + 1;
1715                qup->btx.sg = devm_kcalloc(&pdev->dev,
1716                                           blocks, sizeof(*qup->btx.sg),
1717                                           GFP_KERNEL);
1718                if (!qup->btx.sg) {
1719                        ret = -ENOMEM;
1720                        goto fail_dma;
1721                }
1722                sg_init_table(qup->btx.sg, blocks);
1723
1724                qup->brx.sg = devm_kcalloc(&pdev->dev,
1725                                           blocks, sizeof(*qup->brx.sg),
1726                                           GFP_KERNEL);
1727                if (!qup->brx.sg) {
1728                        ret = -ENOMEM;
1729                        goto fail_dma;
1730                }
1731                sg_init_table(qup->brx.sg, blocks);
1732
1733                /* 2 tag bytes for each block + 5 for start, stop tags */
1734                size = blocks * 2 + 5;
1735
1736                qup->start_tag.start = devm_kzalloc(&pdev->dev,
1737                                                    size, GFP_KERNEL);
1738                if (!qup->start_tag.start) {
1739                        ret = -ENOMEM;
1740                        goto fail_dma;
1741                }
1742
1743                qup->brx.tag.start = devm_kzalloc(&pdev->dev, 2, GFP_KERNEL);
1744                if (!qup->brx.tag.start) {
1745                        ret = -ENOMEM;
1746                        goto fail_dma;
1747                }
1748
1749                qup->btx.tag.start = devm_kzalloc(&pdev->dev, 2, GFP_KERNEL);
1750                if (!qup->btx.tag.start) {
1751                        ret = -ENOMEM;
1752                        goto fail_dma;
1753                }
1754                qup->is_dma = true;
1755        }
1756
1757nodma:
1758        /* We support frequencies up to FAST Mode Plus (1MHz) */
1759        if (!clk_freq || clk_freq > I2C_FAST_MODE_PLUS_FREQ) {
1760                dev_err(qup->dev, "clock frequency not supported %d\n",
1761                        clk_freq);
1762                return -EINVAL;
1763        }
1764
1765        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1766        qup->base = devm_ioremap_resource(qup->dev, res);
1767        if (IS_ERR(qup->base))
1768                return PTR_ERR(qup->base);
1769
1770        qup->irq = platform_get_irq(pdev, 0);
1771        if (qup->irq < 0) {
1772                dev_err(qup->dev, "No IRQ defined\n");
1773                return qup->irq;
1774        }
1775
1776        if (has_acpi_companion(qup->dev)) {
1777                ret = device_property_read_u32(qup->dev,
1778                                "src-clock-hz", &src_clk_freq);
1779                if (ret) {
1780                        dev_notice(qup->dev, "using default src-clock-hz %d",
1781                                DEFAULT_SRC_CLK);
1782                }
1783                ACPI_COMPANION_SET(&qup->adap.dev, ACPI_COMPANION(qup->dev));
1784        } else {
1785                qup->clk = devm_clk_get(qup->dev, "core");
1786                if (IS_ERR(qup->clk)) {
1787                        dev_err(qup->dev, "Could not get core clock\n");
1788                        return PTR_ERR(qup->clk);
1789                }
1790
1791                qup->pclk = devm_clk_get(qup->dev, "iface");
1792                if (IS_ERR(qup->pclk)) {
1793                        dev_err(qup->dev, "Could not get iface clock\n");
1794                        return PTR_ERR(qup->pclk);
1795                }
1796                qup_i2c_enable_clocks(qup);
1797                src_clk_freq = clk_get_rate(qup->clk);
1798        }
1799
1800        /*
1801         * Bootloaders might leave a pending interrupt on certain QUP's,
1802         * so we reset the core before registering for interrupts.
1803         */
1804        writel(1, qup->base + QUP_SW_RESET);
1805        ret = qup_i2c_poll_state_valid(qup);
1806        if (ret)
1807                goto fail;
1808
1809        ret = devm_request_irq(qup->dev, qup->irq, qup_i2c_interrupt,
1810                               IRQF_TRIGGER_HIGH, "i2c_qup", qup);
1811        if (ret) {
1812                dev_err(qup->dev, "Request %d IRQ failed\n", qup->irq);
1813                goto fail;
1814        }
1815        disable_irq(qup->irq);
1816
1817        hw_ver = readl(qup->base + QUP_HW_VERSION);
1818        dev_dbg(qup->dev, "Revision %x\n", hw_ver);
1819
1820        io_mode = readl(qup->base + QUP_IO_MODE);
1821
1822        /*
1823         * The block/fifo size w.r.t. 'actual data' is 1/2 due to 'tag'
1824         * associated with each byte written/received
1825         */
1826        size = QUP_OUTPUT_BLOCK_SIZE(io_mode);
1827        if (size >= ARRAY_SIZE(blk_sizes)) {
1828                ret = -EIO;
1829                goto fail;
1830        }
1831        qup->out_blk_sz = blk_sizes[size];
1832
1833        size = QUP_INPUT_BLOCK_SIZE(io_mode);
1834        if (size >= ARRAY_SIZE(blk_sizes)) {
1835                ret = -EIO;
1836                goto fail;
1837        }
1838        qup->in_blk_sz = blk_sizes[size];
1839
1840        if (is_qup_v1) {
1841                /*
1842                 * in QUP v1, QUP_CONFIG uses N as 15 i.e 16 bits constitutes a
1843                 * single transfer but the block size is in bytes so divide the
1844                 * in_blk_sz and out_blk_sz by 2
1845                 */
1846                qup->in_blk_sz /= 2;
1847                qup->out_blk_sz /= 2;
1848                qup->write_tx_fifo = qup_i2c_write_tx_fifo_v1;
1849                qup->read_rx_fifo = qup_i2c_read_rx_fifo_v1;
1850                qup->write_rx_tags = qup_i2c_write_rx_tags_v1;
1851        } else {
1852                qup->write_tx_fifo = qup_i2c_write_tx_fifo_v2;
1853                qup->read_rx_fifo = qup_i2c_read_rx_fifo_v2;
1854                qup->write_rx_tags = qup_i2c_write_rx_tags_v2;
1855        }
1856
1857        size = QUP_OUTPUT_FIFO_SIZE(io_mode);
1858        qup->out_fifo_sz = qup->out_blk_sz * (2 << size);
1859
1860        size = QUP_INPUT_FIFO_SIZE(io_mode);
1861        qup->in_fifo_sz = qup->in_blk_sz * (2 << size);
1862
1863        hs_div = 3;
1864        if (clk_freq <= I2C_STANDARD_FREQ) {
1865                fs_div = ((src_clk_freq / clk_freq) / 2) - 3;
1866                qup->clk_ctl = (hs_div << 8) | (fs_div & 0xff);
1867        } else {
1868                /* 33%/66% duty cycle */
1869                fs_div = ((src_clk_freq / clk_freq) - 6) * 2 / 3;
1870                qup->clk_ctl = ((fs_div / 2) << 16) | (hs_div << 8) | (fs_div & 0xff);
1871        }
1872
1873        /*
1874         * Time it takes for a byte to be clocked out on the bus.
1875         * Each byte takes 9 clock cycles (8 bits + 1 ack).
1876         */
1877        one_bit_t = (USEC_PER_SEC / clk_freq) + 1;
1878        qup->one_byte_t = one_bit_t * 9;
1879        qup->xfer_timeout = TOUT_MIN * HZ +
1880                usecs_to_jiffies(MX_DMA_TX_RX_LEN * qup->one_byte_t);
1881
1882        dev_dbg(qup->dev, "IN:block:%d, fifo:%d, OUT:block:%d, fifo:%d\n",
1883                qup->in_blk_sz, qup->in_fifo_sz,
1884                qup->out_blk_sz, qup->out_fifo_sz);
1885
1886        i2c_set_adapdata(&qup->adap, qup);
1887        qup->adap.dev.parent = qup->dev;
1888        qup->adap.dev.of_node = pdev->dev.of_node;
1889        qup->is_last = true;
1890
1891        strlcpy(qup->adap.name, "QUP I2C adapter", sizeof(qup->adap.name));
1892
1893        pm_runtime_set_autosuspend_delay(qup->dev, MSEC_PER_SEC);
1894        pm_runtime_use_autosuspend(qup->dev);
1895        pm_runtime_set_active(qup->dev);
1896        pm_runtime_enable(qup->dev);
1897
1898        ret = i2c_add_adapter(&qup->adap);
1899        if (ret)
1900                goto fail_runtime;
1901
1902        return 0;
1903
1904fail_runtime:
1905        pm_runtime_disable(qup->dev);
1906        pm_runtime_set_suspended(qup->dev);
1907fail:
1908        qup_i2c_disable_clocks(qup);
1909fail_dma:
1910        if (qup->btx.dma)
1911                dma_release_channel(qup->btx.dma);
1912        if (qup->brx.dma)
1913                dma_release_channel(qup->brx.dma);
1914        return ret;
1915}
1916
1917static int qup_i2c_remove(struct platform_device *pdev)
1918{
1919        struct qup_i2c_dev *qup = platform_get_drvdata(pdev);
1920
1921        if (qup->is_dma) {
1922                dma_release_channel(qup->btx.dma);
1923                dma_release_channel(qup->brx.dma);
1924        }
1925
1926        disable_irq(qup->irq);
1927        qup_i2c_disable_clocks(qup);
1928        i2c_del_adapter(&qup->adap);
1929        pm_runtime_disable(qup->dev);
1930        pm_runtime_set_suspended(qup->dev);
1931        return 0;
1932}
1933
1934#ifdef CONFIG_PM
1935static int qup_i2c_pm_suspend_runtime(struct device *device)
1936{
1937        struct qup_i2c_dev *qup = dev_get_drvdata(device);
1938
1939        dev_dbg(device, "pm_runtime: suspending...\n");
1940        qup_i2c_disable_clocks(qup);
1941        return 0;
1942}
1943
1944static int qup_i2c_pm_resume_runtime(struct device *device)
1945{
1946        struct qup_i2c_dev *qup = dev_get_drvdata(device);
1947
1948        dev_dbg(device, "pm_runtime: resuming...\n");
1949        qup_i2c_enable_clocks(qup);
1950        return 0;
1951}
1952#endif
1953
1954#ifdef CONFIG_PM_SLEEP
1955static int qup_i2c_suspend(struct device *device)
1956{
1957        if (!pm_runtime_suspended(device))
1958                return qup_i2c_pm_suspend_runtime(device);
1959        return 0;
1960}
1961
1962static int qup_i2c_resume(struct device *device)
1963{
1964        qup_i2c_pm_resume_runtime(device);
1965        pm_runtime_mark_last_busy(device);
1966        pm_request_autosuspend(device);
1967        return 0;
1968}
1969#endif
1970
1971static const struct dev_pm_ops qup_i2c_qup_pm_ops = {
1972        SET_SYSTEM_SLEEP_PM_OPS(
1973                qup_i2c_suspend,
1974                qup_i2c_resume)
1975        SET_RUNTIME_PM_OPS(
1976                qup_i2c_pm_suspend_runtime,
1977                qup_i2c_pm_resume_runtime,
1978                NULL)
1979};
1980
1981static const struct of_device_id qup_i2c_dt_match[] = {
1982        { .compatible = "qcom,i2c-qup-v1.1.1" },
1983        { .compatible = "qcom,i2c-qup-v2.1.1" },
1984        { .compatible = "qcom,i2c-qup-v2.2.1" },
1985        {}
1986};
1987MODULE_DEVICE_TABLE(of, qup_i2c_dt_match);
1988
1989static struct platform_driver qup_i2c_driver = {
1990        .probe  = qup_i2c_probe,
1991        .remove = qup_i2c_remove,
1992        .driver = {
1993                .name = "i2c_qup",
1994                .pm = &qup_i2c_qup_pm_ops,
1995                .of_match_table = qup_i2c_dt_match,
1996                .acpi_match_table = ACPI_PTR(qup_i2c_acpi_match),
1997        },
1998};
1999
2000module_platform_driver(qup_i2c_driver);
2001
2002MODULE_LICENSE("GPL v2");
2003MODULE_ALIAS("platform:i2c_qup");
2004