linux/drivers/of/base.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Procedures for creating, accessing and interpreting the device tree.
   4 *
   5 * Paul Mackerras       August 1996.
   6 * Copyright (C) 1996-2005 Paul Mackerras.
   7 *
   8 *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
   9 *    {engebret|bergner}@us.ibm.com
  10 *
  11 *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
  12 *
  13 *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
  14 *  Grant Likely.
  15 */
  16
  17#define pr_fmt(fmt)     "OF: " fmt
  18
  19#include <linux/bitmap.h>
  20#include <linux/console.h>
  21#include <linux/ctype.h>
  22#include <linux/cpu.h>
  23#include <linux/module.h>
  24#include <linux/of.h>
  25#include <linux/of_device.h>
  26#include <linux/of_graph.h>
  27#include <linux/spinlock.h>
  28#include <linux/slab.h>
  29#include <linux/string.h>
  30#include <linux/proc_fs.h>
  31
  32#include "of_private.h"
  33
  34LIST_HEAD(aliases_lookup);
  35
  36struct device_node *of_root;
  37EXPORT_SYMBOL(of_root);
  38struct device_node *of_chosen;
  39struct device_node *of_aliases;
  40struct device_node *of_stdout;
  41static const char *of_stdout_options;
  42
  43struct kset *of_kset;
  44
  45/*
  46 * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
  47 * This mutex must be held whenever modifications are being made to the
  48 * device tree. The of_{attach,detach}_node() and
  49 * of_{add,remove,update}_property() helpers make sure this happens.
  50 */
  51DEFINE_MUTEX(of_mutex);
  52
  53/* use when traversing tree through the child, sibling,
  54 * or parent members of struct device_node.
  55 */
  56DEFINE_RAW_SPINLOCK(devtree_lock);
  57
  58bool of_node_name_eq(const struct device_node *np, const char *name)
  59{
  60        const char *node_name;
  61        size_t len;
  62
  63        if (!np)
  64                return false;
  65
  66        node_name = kbasename(np->full_name);
  67        len = strchrnul(node_name, '@') - node_name;
  68
  69        return (strlen(name) == len) && (strncmp(node_name, name, len) == 0);
  70}
  71EXPORT_SYMBOL(of_node_name_eq);
  72
  73bool of_node_name_prefix(const struct device_node *np, const char *prefix)
  74{
  75        if (!np)
  76                return false;
  77
  78        return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0;
  79}
  80EXPORT_SYMBOL(of_node_name_prefix);
  81
  82static bool __of_node_is_type(const struct device_node *np, const char *type)
  83{
  84        const char *match = __of_get_property(np, "device_type", NULL);
  85
  86        return np && match && type && !strcmp(match, type);
  87}
  88
  89int of_bus_n_addr_cells(struct device_node *np)
  90{
  91        u32 cells;
  92
  93        for (; np; np = np->parent)
  94                if (!of_property_read_u32(np, "#address-cells", &cells))
  95                        return cells;
  96
  97        /* No #address-cells property for the root node */
  98        return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
  99}
 100
 101int of_n_addr_cells(struct device_node *np)
 102{
 103        if (np->parent)
 104                np = np->parent;
 105
 106        return of_bus_n_addr_cells(np);
 107}
 108EXPORT_SYMBOL(of_n_addr_cells);
 109
 110int of_bus_n_size_cells(struct device_node *np)
 111{
 112        u32 cells;
 113
 114        for (; np; np = np->parent)
 115                if (!of_property_read_u32(np, "#size-cells", &cells))
 116                        return cells;
 117
 118        /* No #size-cells property for the root node */
 119        return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
 120}
 121
 122int of_n_size_cells(struct device_node *np)
 123{
 124        if (np->parent)
 125                np = np->parent;
 126
 127        return of_bus_n_size_cells(np);
 128}
 129EXPORT_SYMBOL(of_n_size_cells);
 130
 131#ifdef CONFIG_NUMA
 132int __weak of_node_to_nid(struct device_node *np)
 133{
 134        return NUMA_NO_NODE;
 135}
 136#endif
 137
 138/*
 139 * Assumptions behind phandle_cache implementation:
 140 *   - phandle property values are in a contiguous range of 1..n
 141 *
 142 * If the assumptions do not hold, then
 143 *   - the phandle lookup overhead reduction provided by the cache
 144 *     will likely be less
 145 */
 146
 147static struct device_node **phandle_cache;
 148static u32 phandle_cache_mask;
 149
 150/*
 151 * Caller must hold devtree_lock.
 152 */
 153static void __of_free_phandle_cache(void)
 154{
 155        u32 cache_entries = phandle_cache_mask + 1;
 156        u32 k;
 157
 158        if (!phandle_cache)
 159                return;
 160
 161        for (k = 0; k < cache_entries; k++)
 162                of_node_put(phandle_cache[k]);
 163
 164        kfree(phandle_cache);
 165        phandle_cache = NULL;
 166}
 167
 168int of_free_phandle_cache(void)
 169{
 170        unsigned long flags;
 171
 172        raw_spin_lock_irqsave(&devtree_lock, flags);
 173
 174        __of_free_phandle_cache();
 175
 176        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 177
 178        return 0;
 179}
 180#if !defined(CONFIG_MODULES)
 181late_initcall_sync(of_free_phandle_cache);
 182#endif
 183
 184/*
 185 * Caller must hold devtree_lock.
 186 */
 187void __of_free_phandle_cache_entry(phandle handle)
 188{
 189        phandle masked_handle;
 190        struct device_node *np;
 191
 192        if (!handle)
 193                return;
 194
 195        masked_handle = handle & phandle_cache_mask;
 196
 197        if (phandle_cache) {
 198                np = phandle_cache[masked_handle];
 199                if (np && handle == np->phandle) {
 200                        of_node_put(np);
 201                        phandle_cache[masked_handle] = NULL;
 202                }
 203        }
 204}
 205
 206void of_populate_phandle_cache(void)
 207{
 208        unsigned long flags;
 209        u32 cache_entries;
 210        struct device_node *np;
 211        u32 phandles = 0;
 212
 213        raw_spin_lock_irqsave(&devtree_lock, flags);
 214
 215        __of_free_phandle_cache();
 216
 217        for_each_of_allnodes(np)
 218                if (np->phandle && np->phandle != OF_PHANDLE_ILLEGAL)
 219                        phandles++;
 220
 221        if (!phandles)
 222                goto out;
 223
 224        cache_entries = roundup_pow_of_two(phandles);
 225        phandle_cache_mask = cache_entries - 1;
 226
 227        phandle_cache = kcalloc(cache_entries, sizeof(*phandle_cache),
 228                                GFP_ATOMIC);
 229        if (!phandle_cache)
 230                goto out;
 231
 232        for_each_of_allnodes(np)
 233                if (np->phandle && np->phandle != OF_PHANDLE_ILLEGAL) {
 234                        of_node_get(np);
 235                        phandle_cache[np->phandle & phandle_cache_mask] = np;
 236                }
 237
 238out:
 239        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 240}
 241
 242void __init of_core_init(void)
 243{
 244        struct device_node *np;
 245
 246        of_populate_phandle_cache();
 247
 248        /* Create the kset, and register existing nodes */
 249        mutex_lock(&of_mutex);
 250        of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
 251        if (!of_kset) {
 252                mutex_unlock(&of_mutex);
 253                pr_err("failed to register existing nodes\n");
 254                return;
 255        }
 256        for_each_of_allnodes(np)
 257                __of_attach_node_sysfs(np);
 258        mutex_unlock(&of_mutex);
 259
 260        /* Symlink in /proc as required by userspace ABI */
 261        if (of_root)
 262                proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
 263}
 264
 265static struct property *__of_find_property(const struct device_node *np,
 266                                           const char *name, int *lenp)
 267{
 268        struct property *pp;
 269
 270        if (!np)
 271                return NULL;
 272
 273        for (pp = np->properties; pp; pp = pp->next) {
 274                if (of_prop_cmp(pp->name, name) == 0) {
 275                        if (lenp)
 276                                *lenp = pp->length;
 277                        break;
 278                }
 279        }
 280
 281        return pp;
 282}
 283
 284struct property *of_find_property(const struct device_node *np,
 285                                  const char *name,
 286                                  int *lenp)
 287{
 288        struct property *pp;
 289        unsigned long flags;
 290
 291        raw_spin_lock_irqsave(&devtree_lock, flags);
 292        pp = __of_find_property(np, name, lenp);
 293        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 294
 295        return pp;
 296}
 297EXPORT_SYMBOL(of_find_property);
 298
 299struct device_node *__of_find_all_nodes(struct device_node *prev)
 300{
 301        struct device_node *np;
 302        if (!prev) {
 303                np = of_root;
 304        } else if (prev->child) {
 305                np = prev->child;
 306        } else {
 307                /* Walk back up looking for a sibling, or the end of the structure */
 308                np = prev;
 309                while (np->parent && !np->sibling)
 310                        np = np->parent;
 311                np = np->sibling; /* Might be null at the end of the tree */
 312        }
 313        return np;
 314}
 315
 316/**
 317 * of_find_all_nodes - Get next node in global list
 318 * @prev:       Previous node or NULL to start iteration
 319 *              of_node_put() will be called on it
 320 *
 321 * Returns a node pointer with refcount incremented, use
 322 * of_node_put() on it when done.
 323 */
 324struct device_node *of_find_all_nodes(struct device_node *prev)
 325{
 326        struct device_node *np;
 327        unsigned long flags;
 328
 329        raw_spin_lock_irqsave(&devtree_lock, flags);
 330        np = __of_find_all_nodes(prev);
 331        of_node_get(np);
 332        of_node_put(prev);
 333        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 334        return np;
 335}
 336EXPORT_SYMBOL(of_find_all_nodes);
 337
 338/*
 339 * Find a property with a given name for a given node
 340 * and return the value.
 341 */
 342const void *__of_get_property(const struct device_node *np,
 343                              const char *name, int *lenp)
 344{
 345        struct property *pp = __of_find_property(np, name, lenp);
 346
 347        return pp ? pp->value : NULL;
 348}
 349
 350/*
 351 * Find a property with a given name for a given node
 352 * and return the value.
 353 */
 354const void *of_get_property(const struct device_node *np, const char *name,
 355                            int *lenp)
 356{
 357        struct property *pp = of_find_property(np, name, lenp);
 358
 359        return pp ? pp->value : NULL;
 360}
 361EXPORT_SYMBOL(of_get_property);
 362
 363/*
 364 * arch_match_cpu_phys_id - Match the given logical CPU and physical id
 365 *
 366 * @cpu: logical cpu index of a core/thread
 367 * @phys_id: physical identifier of a core/thread
 368 *
 369 * CPU logical to physical index mapping is architecture specific.
 370 * However this __weak function provides a default match of physical
 371 * id to logical cpu index. phys_id provided here is usually values read
 372 * from the device tree which must match the hardware internal registers.
 373 *
 374 * Returns true if the physical identifier and the logical cpu index
 375 * correspond to the same core/thread, false otherwise.
 376 */
 377bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
 378{
 379        return (u32)phys_id == cpu;
 380}
 381
 382/**
 383 * Checks if the given "prop_name" property holds the physical id of the
 384 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
 385 * NULL, local thread number within the core is returned in it.
 386 */
 387static bool __of_find_n_match_cpu_property(struct device_node *cpun,
 388                        const char *prop_name, int cpu, unsigned int *thread)
 389{
 390        const __be32 *cell;
 391        int ac, prop_len, tid;
 392        u64 hwid;
 393
 394        ac = of_n_addr_cells(cpun);
 395        cell = of_get_property(cpun, prop_name, &prop_len);
 396        if (!cell && !ac && arch_match_cpu_phys_id(cpu, 0))
 397                return true;
 398        if (!cell || !ac)
 399                return false;
 400        prop_len /= sizeof(*cell) * ac;
 401        for (tid = 0; tid < prop_len; tid++) {
 402                hwid = of_read_number(cell, ac);
 403                if (arch_match_cpu_phys_id(cpu, hwid)) {
 404                        if (thread)
 405                                *thread = tid;
 406                        return true;
 407                }
 408                cell += ac;
 409        }
 410        return false;
 411}
 412
 413/*
 414 * arch_find_n_match_cpu_physical_id - See if the given device node is
 415 * for the cpu corresponding to logical cpu 'cpu'.  Return true if so,
 416 * else false.  If 'thread' is non-NULL, the local thread number within the
 417 * core is returned in it.
 418 */
 419bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
 420                                              int cpu, unsigned int *thread)
 421{
 422        /* Check for non-standard "ibm,ppc-interrupt-server#s" property
 423         * for thread ids on PowerPC. If it doesn't exist fallback to
 424         * standard "reg" property.
 425         */
 426        if (IS_ENABLED(CONFIG_PPC) &&
 427            __of_find_n_match_cpu_property(cpun,
 428                                           "ibm,ppc-interrupt-server#s",
 429                                           cpu, thread))
 430                return true;
 431
 432        return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread);
 433}
 434
 435/**
 436 * of_get_cpu_node - Get device node associated with the given logical CPU
 437 *
 438 * @cpu: CPU number(logical index) for which device node is required
 439 * @thread: if not NULL, local thread number within the physical core is
 440 *          returned
 441 *
 442 * The main purpose of this function is to retrieve the device node for the
 443 * given logical CPU index. It should be used to initialize the of_node in
 444 * cpu device. Once of_node in cpu device is populated, all the further
 445 * references can use that instead.
 446 *
 447 * CPU logical to physical index mapping is architecture specific and is built
 448 * before booting secondary cores. This function uses arch_match_cpu_phys_id
 449 * which can be overridden by architecture specific implementation.
 450 *
 451 * Returns a node pointer for the logical cpu with refcount incremented, use
 452 * of_node_put() on it when done. Returns NULL if not found.
 453 */
 454struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
 455{
 456        struct device_node *cpun;
 457
 458        for_each_of_cpu_node(cpun) {
 459                if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
 460                        return cpun;
 461        }
 462        return NULL;
 463}
 464EXPORT_SYMBOL(of_get_cpu_node);
 465
 466/**
 467 * of_cpu_node_to_id: Get the logical CPU number for a given device_node
 468 *
 469 * @cpu_node: Pointer to the device_node for CPU.
 470 *
 471 * Returns the logical CPU number of the given CPU device_node.
 472 * Returns -ENODEV if the CPU is not found.
 473 */
 474int of_cpu_node_to_id(struct device_node *cpu_node)
 475{
 476        int cpu;
 477        bool found = false;
 478        struct device_node *np;
 479
 480        for_each_possible_cpu(cpu) {
 481                np = of_cpu_device_node_get(cpu);
 482                found = (cpu_node == np);
 483                of_node_put(np);
 484                if (found)
 485                        return cpu;
 486        }
 487
 488        return -ENODEV;
 489}
 490EXPORT_SYMBOL(of_cpu_node_to_id);
 491
 492/**
 493 * __of_device_is_compatible() - Check if the node matches given constraints
 494 * @device: pointer to node
 495 * @compat: required compatible string, NULL or "" for any match
 496 * @type: required device_type value, NULL or "" for any match
 497 * @name: required node name, NULL or "" for any match
 498 *
 499 * Checks if the given @compat, @type and @name strings match the
 500 * properties of the given @device. A constraints can be skipped by
 501 * passing NULL or an empty string as the constraint.
 502 *
 503 * Returns 0 for no match, and a positive integer on match. The return
 504 * value is a relative score with larger values indicating better
 505 * matches. The score is weighted for the most specific compatible value
 506 * to get the highest score. Matching type is next, followed by matching
 507 * name. Practically speaking, this results in the following priority
 508 * order for matches:
 509 *
 510 * 1. specific compatible && type && name
 511 * 2. specific compatible && type
 512 * 3. specific compatible && name
 513 * 4. specific compatible
 514 * 5. general compatible && type && name
 515 * 6. general compatible && type
 516 * 7. general compatible && name
 517 * 8. general compatible
 518 * 9. type && name
 519 * 10. type
 520 * 11. name
 521 */
 522static int __of_device_is_compatible(const struct device_node *device,
 523                                     const char *compat, const char *type, const char *name)
 524{
 525        struct property *prop;
 526        const char *cp;
 527        int index = 0, score = 0;
 528
 529        /* Compatible match has highest priority */
 530        if (compat && compat[0]) {
 531                prop = __of_find_property(device, "compatible", NULL);
 532                for (cp = of_prop_next_string(prop, NULL); cp;
 533                     cp = of_prop_next_string(prop, cp), index++) {
 534                        if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
 535                                score = INT_MAX/2 - (index << 2);
 536                                break;
 537                        }
 538                }
 539                if (!score)
 540                        return 0;
 541        }
 542
 543        /* Matching type is better than matching name */
 544        if (type && type[0]) {
 545                if (!__of_node_is_type(device, type))
 546                        return 0;
 547                score += 2;
 548        }
 549
 550        /* Matching name is a bit better than not */
 551        if (name && name[0]) {
 552                if (!of_node_name_eq(device, name))
 553                        return 0;
 554                score++;
 555        }
 556
 557        return score;
 558}
 559
 560/** Checks if the given "compat" string matches one of the strings in
 561 * the device's "compatible" property
 562 */
 563int of_device_is_compatible(const struct device_node *device,
 564                const char *compat)
 565{
 566        unsigned long flags;
 567        int res;
 568
 569        raw_spin_lock_irqsave(&devtree_lock, flags);
 570        res = __of_device_is_compatible(device, compat, NULL, NULL);
 571        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 572        return res;
 573}
 574EXPORT_SYMBOL(of_device_is_compatible);
 575
 576/** Checks if the device is compatible with any of the entries in
 577 *  a NULL terminated array of strings. Returns the best match
 578 *  score or 0.
 579 */
 580int of_device_compatible_match(struct device_node *device,
 581                               const char *const *compat)
 582{
 583        unsigned int tmp, score = 0;
 584
 585        if (!compat)
 586                return 0;
 587
 588        while (*compat) {
 589                tmp = of_device_is_compatible(device, *compat);
 590                if (tmp > score)
 591                        score = tmp;
 592                compat++;
 593        }
 594
 595        return score;
 596}
 597
 598/**
 599 * of_machine_is_compatible - Test root of device tree for a given compatible value
 600 * @compat: compatible string to look for in root node's compatible property.
 601 *
 602 * Returns a positive integer if the root node has the given value in its
 603 * compatible property.
 604 */
 605int of_machine_is_compatible(const char *compat)
 606{
 607        struct device_node *root;
 608        int rc = 0;
 609
 610        root = of_find_node_by_path("/");
 611        if (root) {
 612                rc = of_device_is_compatible(root, compat);
 613                of_node_put(root);
 614        }
 615        return rc;
 616}
 617EXPORT_SYMBOL(of_machine_is_compatible);
 618
 619/**
 620 *  __of_device_is_available - check if a device is available for use
 621 *
 622 *  @device: Node to check for availability, with locks already held
 623 *
 624 *  Returns true if the status property is absent or set to "okay" or "ok",
 625 *  false otherwise
 626 */
 627static bool __of_device_is_available(const struct device_node *device)
 628{
 629        const char *status;
 630        int statlen;
 631
 632        if (!device)
 633                return false;
 634
 635        status = __of_get_property(device, "status", &statlen);
 636        if (status == NULL)
 637                return true;
 638
 639        if (statlen > 0) {
 640                if (!strcmp(status, "okay") || !strcmp(status, "ok"))
 641                        return true;
 642        }
 643
 644        return false;
 645}
 646
 647/**
 648 *  of_device_is_available - check if a device is available for use
 649 *
 650 *  @device: Node to check for availability
 651 *
 652 *  Returns true if the status property is absent or set to "okay" or "ok",
 653 *  false otherwise
 654 */
 655bool of_device_is_available(const struct device_node *device)
 656{
 657        unsigned long flags;
 658        bool res;
 659
 660        raw_spin_lock_irqsave(&devtree_lock, flags);
 661        res = __of_device_is_available(device);
 662        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 663        return res;
 664
 665}
 666EXPORT_SYMBOL(of_device_is_available);
 667
 668/**
 669 *  of_device_is_big_endian - check if a device has BE registers
 670 *
 671 *  @device: Node to check for endianness
 672 *
 673 *  Returns true if the device has a "big-endian" property, or if the kernel
 674 *  was compiled for BE *and* the device has a "native-endian" property.
 675 *  Returns false otherwise.
 676 *
 677 *  Callers would nominally use ioread32be/iowrite32be if
 678 *  of_device_is_big_endian() == true, or readl/writel otherwise.
 679 */
 680bool of_device_is_big_endian(const struct device_node *device)
 681{
 682        if (of_property_read_bool(device, "big-endian"))
 683                return true;
 684        if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
 685            of_property_read_bool(device, "native-endian"))
 686                return true;
 687        return false;
 688}
 689EXPORT_SYMBOL(of_device_is_big_endian);
 690
 691/**
 692 *      of_get_parent - Get a node's parent if any
 693 *      @node:  Node to get parent
 694 *
 695 *      Returns a node pointer with refcount incremented, use
 696 *      of_node_put() on it when done.
 697 */
 698struct device_node *of_get_parent(const struct device_node *node)
 699{
 700        struct device_node *np;
 701        unsigned long flags;
 702
 703        if (!node)
 704                return NULL;
 705
 706        raw_spin_lock_irqsave(&devtree_lock, flags);
 707        np = of_node_get(node->parent);
 708        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 709        return np;
 710}
 711EXPORT_SYMBOL(of_get_parent);
 712
 713/**
 714 *      of_get_next_parent - Iterate to a node's parent
 715 *      @node:  Node to get parent of
 716 *
 717 *      This is like of_get_parent() except that it drops the
 718 *      refcount on the passed node, making it suitable for iterating
 719 *      through a node's parents.
 720 *
 721 *      Returns a node pointer with refcount incremented, use
 722 *      of_node_put() on it when done.
 723 */
 724struct device_node *of_get_next_parent(struct device_node *node)
 725{
 726        struct device_node *parent;
 727        unsigned long flags;
 728
 729        if (!node)
 730                return NULL;
 731
 732        raw_spin_lock_irqsave(&devtree_lock, flags);
 733        parent = of_node_get(node->parent);
 734        of_node_put(node);
 735        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 736        return parent;
 737}
 738EXPORT_SYMBOL(of_get_next_parent);
 739
 740static struct device_node *__of_get_next_child(const struct device_node *node,
 741                                                struct device_node *prev)
 742{
 743        struct device_node *next;
 744
 745        if (!node)
 746                return NULL;
 747
 748        next = prev ? prev->sibling : node->child;
 749        for (; next; next = next->sibling)
 750                if (of_node_get(next))
 751                        break;
 752        of_node_put(prev);
 753        return next;
 754}
 755#define __for_each_child_of_node(parent, child) \
 756        for (child = __of_get_next_child(parent, NULL); child != NULL; \
 757             child = __of_get_next_child(parent, child))
 758
 759/**
 760 *      of_get_next_child - Iterate a node childs
 761 *      @node:  parent node
 762 *      @prev:  previous child of the parent node, or NULL to get first
 763 *
 764 *      Returns a node pointer with refcount incremented, use of_node_put() on
 765 *      it when done. Returns NULL when prev is the last child. Decrements the
 766 *      refcount of prev.
 767 */
 768struct device_node *of_get_next_child(const struct device_node *node,
 769        struct device_node *prev)
 770{
 771        struct device_node *next;
 772        unsigned long flags;
 773
 774        raw_spin_lock_irqsave(&devtree_lock, flags);
 775        next = __of_get_next_child(node, prev);
 776        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 777        return next;
 778}
 779EXPORT_SYMBOL(of_get_next_child);
 780
 781/**
 782 *      of_get_next_available_child - Find the next available child node
 783 *      @node:  parent node
 784 *      @prev:  previous child of the parent node, or NULL to get first
 785 *
 786 *      This function is like of_get_next_child(), except that it
 787 *      automatically skips any disabled nodes (i.e. status = "disabled").
 788 */
 789struct device_node *of_get_next_available_child(const struct device_node *node,
 790        struct device_node *prev)
 791{
 792        struct device_node *next;
 793        unsigned long flags;
 794
 795        if (!node)
 796                return NULL;
 797
 798        raw_spin_lock_irqsave(&devtree_lock, flags);
 799        next = prev ? prev->sibling : node->child;
 800        for (; next; next = next->sibling) {
 801                if (!__of_device_is_available(next))
 802                        continue;
 803                if (of_node_get(next))
 804                        break;
 805        }
 806        of_node_put(prev);
 807        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 808        return next;
 809}
 810EXPORT_SYMBOL(of_get_next_available_child);
 811
 812/**
 813 *      of_get_next_cpu_node - Iterate on cpu nodes
 814 *      @prev:  previous child of the /cpus node, or NULL to get first
 815 *
 816 *      Returns a cpu node pointer with refcount incremented, use of_node_put()
 817 *      on it when done. Returns NULL when prev is the last child. Decrements
 818 *      the refcount of prev.
 819 */
 820struct device_node *of_get_next_cpu_node(struct device_node *prev)
 821{
 822        struct device_node *next = NULL;
 823        unsigned long flags;
 824        struct device_node *node;
 825
 826        if (!prev)
 827                node = of_find_node_by_path("/cpus");
 828
 829        raw_spin_lock_irqsave(&devtree_lock, flags);
 830        if (prev)
 831                next = prev->sibling;
 832        else if (node) {
 833                next = node->child;
 834                of_node_put(node);
 835        }
 836        for (; next; next = next->sibling) {
 837                if (!(of_node_name_eq(next, "cpu") ||
 838                      __of_node_is_type(next, "cpu")))
 839                        continue;
 840                if (of_node_get(next))
 841                        break;
 842        }
 843        of_node_put(prev);
 844        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 845        return next;
 846}
 847EXPORT_SYMBOL(of_get_next_cpu_node);
 848
 849/**
 850 * of_get_compatible_child - Find compatible child node
 851 * @parent:     parent node
 852 * @compatible: compatible string
 853 *
 854 * Lookup child node whose compatible property contains the given compatible
 855 * string.
 856 *
 857 * Returns a node pointer with refcount incremented, use of_node_put() on it
 858 * when done; or NULL if not found.
 859 */
 860struct device_node *of_get_compatible_child(const struct device_node *parent,
 861                                const char *compatible)
 862{
 863        struct device_node *child;
 864
 865        for_each_child_of_node(parent, child) {
 866                if (of_device_is_compatible(child, compatible))
 867                        break;
 868        }
 869
 870        return child;
 871}
 872EXPORT_SYMBOL(of_get_compatible_child);
 873
 874/**
 875 *      of_get_child_by_name - Find the child node by name for a given parent
 876 *      @node:  parent node
 877 *      @name:  child name to look for.
 878 *
 879 *      This function looks for child node for given matching name
 880 *
 881 *      Returns a node pointer if found, with refcount incremented, use
 882 *      of_node_put() on it when done.
 883 *      Returns NULL if node is not found.
 884 */
 885struct device_node *of_get_child_by_name(const struct device_node *node,
 886                                const char *name)
 887{
 888        struct device_node *child;
 889
 890        for_each_child_of_node(node, child)
 891                if (of_node_name_eq(child, name))
 892                        break;
 893        return child;
 894}
 895EXPORT_SYMBOL(of_get_child_by_name);
 896
 897struct device_node *__of_find_node_by_path(struct device_node *parent,
 898                                                const char *path)
 899{
 900        struct device_node *child;
 901        int len;
 902
 903        len = strcspn(path, "/:");
 904        if (!len)
 905                return NULL;
 906
 907        __for_each_child_of_node(parent, child) {
 908                const char *name = kbasename(child->full_name);
 909                if (strncmp(path, name, len) == 0 && (strlen(name) == len))
 910                        return child;
 911        }
 912        return NULL;
 913}
 914
 915struct device_node *__of_find_node_by_full_path(struct device_node *node,
 916                                                const char *path)
 917{
 918        const char *separator = strchr(path, ':');
 919
 920        while (node && *path == '/') {
 921                struct device_node *tmp = node;
 922
 923                path++; /* Increment past '/' delimiter */
 924                node = __of_find_node_by_path(node, path);
 925                of_node_put(tmp);
 926                path = strchrnul(path, '/');
 927                if (separator && separator < path)
 928                        break;
 929        }
 930        return node;
 931}
 932
 933/**
 934 *      of_find_node_opts_by_path - Find a node matching a full OF path
 935 *      @path: Either the full path to match, or if the path does not
 936 *             start with '/', the name of a property of the /aliases
 937 *             node (an alias).  In the case of an alias, the node
 938 *             matching the alias' value will be returned.
 939 *      @opts: Address of a pointer into which to store the start of
 940 *             an options string appended to the end of the path with
 941 *             a ':' separator.
 942 *
 943 *      Valid paths:
 944 *              /foo/bar        Full path
 945 *              foo             Valid alias
 946 *              foo/bar         Valid alias + relative path
 947 *
 948 *      Returns a node pointer with refcount incremented, use
 949 *      of_node_put() on it when done.
 950 */
 951struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
 952{
 953        struct device_node *np = NULL;
 954        struct property *pp;
 955        unsigned long flags;
 956        const char *separator = strchr(path, ':');
 957
 958        if (opts)
 959                *opts = separator ? separator + 1 : NULL;
 960
 961        if (strcmp(path, "/") == 0)
 962                return of_node_get(of_root);
 963
 964        /* The path could begin with an alias */
 965        if (*path != '/') {
 966                int len;
 967                const char *p = separator;
 968
 969                if (!p)
 970                        p = strchrnul(path, '/');
 971                len = p - path;
 972
 973                /* of_aliases must not be NULL */
 974                if (!of_aliases)
 975                        return NULL;
 976
 977                for_each_property_of_node(of_aliases, pp) {
 978                        if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
 979                                np = of_find_node_by_path(pp->value);
 980                                break;
 981                        }
 982                }
 983                if (!np)
 984                        return NULL;
 985                path = p;
 986        }
 987
 988        /* Step down the tree matching path components */
 989        raw_spin_lock_irqsave(&devtree_lock, flags);
 990        if (!np)
 991                np = of_node_get(of_root);
 992        np = __of_find_node_by_full_path(np, path);
 993        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 994        return np;
 995}
 996EXPORT_SYMBOL(of_find_node_opts_by_path);
 997
 998/**
 999 *      of_find_node_by_name - Find a node by its "name" property
1000 *      @from:  The node to start searching from or NULL; the node
1001 *              you pass will not be searched, only the next one
1002 *              will. Typically, you pass what the previous call
1003 *              returned. of_node_put() will be called on @from.
1004 *      @name:  The name string to match against
1005 *
1006 *      Returns a node pointer with refcount incremented, use
1007 *      of_node_put() on it when done.
1008 */
1009struct device_node *of_find_node_by_name(struct device_node *from,
1010        const char *name)
1011{
1012        struct device_node *np;
1013        unsigned long flags;
1014
1015        raw_spin_lock_irqsave(&devtree_lock, flags);
1016        for_each_of_allnodes_from(from, np)
1017                if (of_node_name_eq(np, name) && of_node_get(np))
1018                        break;
1019        of_node_put(from);
1020        raw_spin_unlock_irqrestore(&devtree_lock, flags);
1021        return np;
1022}
1023EXPORT_SYMBOL(of_find_node_by_name);
1024
1025/**
1026 *      of_find_node_by_type - Find a node by its "device_type" property
1027 *      @from:  The node to start searching from, or NULL to start searching
1028 *              the entire device tree. The node you pass will not be
1029 *              searched, only the next one will; typically, you pass
1030 *              what the previous call returned. of_node_put() will be
1031 *              called on from for you.
1032 *      @type:  The type string to match against
1033 *
1034 *      Returns a node pointer with refcount incremented, use
1035 *      of_node_put() on it when done.
1036 */
1037struct device_node *of_find_node_by_type(struct device_node *from,
1038        const char *type)
1039{
1040        struct device_node *np;
1041        unsigned long flags;
1042
1043        raw_spin_lock_irqsave(&devtree_lock, flags);
1044        for_each_of_allnodes_from(from, np)
1045                if (__of_node_is_type(np, type) && of_node_get(np))
1046                        break;
1047        of_node_put(from);
1048        raw_spin_unlock_irqrestore(&devtree_lock, flags);
1049        return np;
1050}
1051EXPORT_SYMBOL(of_find_node_by_type);
1052
1053/**
1054 *      of_find_compatible_node - Find a node based on type and one of the
1055 *                                tokens in its "compatible" property
1056 *      @from:          The node to start searching from or NULL, the node
1057 *                      you pass will not be searched, only the next one
1058 *                      will; typically, you pass what the previous call
1059 *                      returned. of_node_put() will be called on it
1060 *      @type:          The type string to match "device_type" or NULL to ignore
1061 *      @compatible:    The string to match to one of the tokens in the device
1062 *                      "compatible" list.
1063 *
1064 *      Returns a node pointer with refcount incremented, use
1065 *      of_node_put() on it when done.
1066 */
1067struct device_node *of_find_compatible_node(struct device_node *from,
1068        const char *type, const char *compatible)
1069{
1070        struct device_node *np;
1071        unsigned long flags;
1072
1073        raw_spin_lock_irqsave(&devtree_lock, flags);
1074        for_each_of_allnodes_from(from, np)
1075                if (__of_device_is_compatible(np, compatible, type, NULL) &&
1076                    of_node_get(np))
1077                        break;
1078        of_node_put(from);
1079        raw_spin_unlock_irqrestore(&devtree_lock, flags);
1080        return np;
1081}
1082EXPORT_SYMBOL(of_find_compatible_node);
1083
1084/**
1085 *      of_find_node_with_property - Find a node which has a property with
1086 *                                   the given name.
1087 *      @from:          The node to start searching from or NULL, the node
1088 *                      you pass will not be searched, only the next one
1089 *                      will; typically, you pass what the previous call
1090 *                      returned. of_node_put() will be called on it
1091 *      @prop_name:     The name of the property to look for.
1092 *
1093 *      Returns a node pointer with refcount incremented, use
1094 *      of_node_put() on it when done.
1095 */
1096struct device_node *of_find_node_with_property(struct device_node *from,
1097        const char *prop_name)
1098{
1099        struct device_node *np;
1100        struct property *pp;
1101        unsigned long flags;
1102
1103        raw_spin_lock_irqsave(&devtree_lock, flags);
1104        for_each_of_allnodes_from(from, np) {
1105                for (pp = np->properties; pp; pp = pp->next) {
1106                        if (of_prop_cmp(pp->name, prop_name) == 0) {
1107                                of_node_get(np);
1108                                goto out;
1109                        }
1110                }
1111        }
1112out:
1113        of_node_put(from);
1114        raw_spin_unlock_irqrestore(&devtree_lock, flags);
1115        return np;
1116}
1117EXPORT_SYMBOL(of_find_node_with_property);
1118
1119static
1120const struct of_device_id *__of_match_node(const struct of_device_id *matches,
1121                                           const struct device_node *node)
1122{
1123        const struct of_device_id *best_match = NULL;
1124        int score, best_score = 0;
1125
1126        if (!matches)
1127                return NULL;
1128
1129        for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
1130                score = __of_device_is_compatible(node, matches->compatible,
1131                                                  matches->type, matches->name);
1132                if (score > best_score) {
1133                        best_match = matches;
1134                        best_score = score;
1135                }
1136        }
1137
1138        return best_match;
1139}
1140
1141/**
1142 * of_match_node - Tell if a device_node has a matching of_match structure
1143 *      @matches:       array of of device match structures to search in
1144 *      @node:          the of device structure to match against
1145 *
1146 *      Low level utility function used by device matching.
1147 */
1148const struct of_device_id *of_match_node(const struct of_device_id *matches,
1149                                         const struct device_node *node)
1150{
1151        const struct of_device_id *match;
1152        unsigned long flags;
1153
1154        raw_spin_lock_irqsave(&devtree_lock, flags);
1155        match = __of_match_node(matches, node);
1156        raw_spin_unlock_irqrestore(&devtree_lock, flags);
1157        return match;
1158}
1159EXPORT_SYMBOL(of_match_node);
1160
1161/**
1162 *      of_find_matching_node_and_match - Find a node based on an of_device_id
1163 *                                        match table.
1164 *      @from:          The node to start searching from or NULL, the node
1165 *                      you pass will not be searched, only the next one
1166 *                      will; typically, you pass what the previous call
1167 *                      returned. of_node_put() will be called on it
1168 *      @matches:       array of of device match structures to search in
1169 *      @match          Updated to point at the matches entry which matched
1170 *
1171 *      Returns a node pointer with refcount incremented, use
1172 *      of_node_put() on it when done.
1173 */
1174struct device_node *of_find_matching_node_and_match(struct device_node *from,
1175                                        const struct of_device_id *matches,
1176                                        const struct of_device_id **match)
1177{
1178        struct device_node *np;
1179        const struct of_device_id *m;
1180        unsigned long flags;
1181
1182        if (match)
1183                *match = NULL;
1184
1185        raw_spin_lock_irqsave(&devtree_lock, flags);
1186        for_each_of_allnodes_from(from, np) {
1187                m = __of_match_node(matches, np);
1188                if (m && of_node_get(np)) {
1189                        if (match)
1190                                *match = m;
1191                        break;
1192                }
1193        }
1194        of_node_put(from);
1195        raw_spin_unlock_irqrestore(&devtree_lock, flags);
1196        return np;
1197}
1198EXPORT_SYMBOL(of_find_matching_node_and_match);
1199
1200/**
1201 * of_modalias_node - Lookup appropriate modalias for a device node
1202 * @node:       pointer to a device tree node
1203 * @modalias:   Pointer to buffer that modalias value will be copied into
1204 * @len:        Length of modalias value
1205 *
1206 * Based on the value of the compatible property, this routine will attempt
1207 * to choose an appropriate modalias value for a particular device tree node.
1208 * It does this by stripping the manufacturer prefix (as delimited by a ',')
1209 * from the first entry in the compatible list property.
1210 *
1211 * This routine returns 0 on success, <0 on failure.
1212 */
1213int of_modalias_node(struct device_node *node, char *modalias, int len)
1214{
1215        const char *compatible, *p;
1216        int cplen;
1217
1218        compatible = of_get_property(node, "compatible", &cplen);
1219        if (!compatible || strlen(compatible) > cplen)
1220                return -ENODEV;
1221        p = strchr(compatible, ',');
1222        strlcpy(modalias, p ? p + 1 : compatible, len);
1223        return 0;
1224}
1225EXPORT_SYMBOL_GPL(of_modalias_node);
1226
1227/**
1228 * of_find_node_by_phandle - Find a node given a phandle
1229 * @handle:     phandle of the node to find
1230 *
1231 * Returns a node pointer with refcount incremented, use
1232 * of_node_put() on it when done.
1233 */
1234struct device_node *of_find_node_by_phandle(phandle handle)
1235{
1236        struct device_node *np = NULL;
1237        unsigned long flags;
1238        phandle masked_handle;
1239
1240        if (!handle)
1241                return NULL;
1242
1243        raw_spin_lock_irqsave(&devtree_lock, flags);
1244
1245        masked_handle = handle & phandle_cache_mask;
1246
1247        if (phandle_cache) {
1248                if (phandle_cache[masked_handle] &&
1249                    handle == phandle_cache[masked_handle]->phandle)
1250                        np = phandle_cache[masked_handle];
1251                if (np && of_node_check_flag(np, OF_DETACHED)) {
1252                        WARN_ON(1); /* did not uncache np on node removal */
1253                        of_node_put(np);
1254                        phandle_cache[masked_handle] = NULL;
1255                        np = NULL;
1256                }
1257        }
1258
1259        if (!np) {
1260                for_each_of_allnodes(np)
1261                        if (np->phandle == handle &&
1262                            !of_node_check_flag(np, OF_DETACHED)) {
1263                                if (phandle_cache) {
1264                                        /* will put when removed from cache */
1265                                        of_node_get(np);
1266                                        phandle_cache[masked_handle] = np;
1267                                }
1268                                break;
1269                        }
1270        }
1271
1272        of_node_get(np);
1273        raw_spin_unlock_irqrestore(&devtree_lock, flags);
1274        return np;
1275}
1276EXPORT_SYMBOL(of_find_node_by_phandle);
1277
1278void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1279{
1280        int i;
1281        printk("%s %pOF", msg, args->np);
1282        for (i = 0; i < args->args_count; i++) {
1283                const char delim = i ? ',' : ':';
1284
1285                pr_cont("%c%08x", delim, args->args[i]);
1286        }
1287        pr_cont("\n");
1288}
1289
1290int of_phandle_iterator_init(struct of_phandle_iterator *it,
1291                const struct device_node *np,
1292                const char *list_name,
1293                const char *cells_name,
1294                int cell_count)
1295{
1296        const __be32 *list;
1297        int size;
1298
1299        memset(it, 0, sizeof(*it));
1300
1301        /*
1302         * one of cell_count or cells_name must be provided to determine the
1303         * argument length.
1304         */
1305        if (cell_count < 0 && !cells_name)
1306                return -EINVAL;
1307
1308        list = of_get_property(np, list_name, &size);
1309        if (!list)
1310                return -ENOENT;
1311
1312        it->cells_name = cells_name;
1313        it->cell_count = cell_count;
1314        it->parent = np;
1315        it->list_end = list + size / sizeof(*list);
1316        it->phandle_end = list;
1317        it->cur = list;
1318
1319        return 0;
1320}
1321EXPORT_SYMBOL_GPL(of_phandle_iterator_init);
1322
1323int of_phandle_iterator_next(struct of_phandle_iterator *it)
1324{
1325        uint32_t count = 0;
1326
1327        if (it->node) {
1328                of_node_put(it->node);
1329                it->node = NULL;
1330        }
1331
1332        if (!it->cur || it->phandle_end >= it->list_end)
1333                return -ENOENT;
1334
1335        it->cur = it->phandle_end;
1336
1337        /* If phandle is 0, then it is an empty entry with no arguments. */
1338        it->phandle = be32_to_cpup(it->cur++);
1339
1340        if (it->phandle) {
1341
1342                /*
1343                 * Find the provider node and parse the #*-cells property to
1344                 * determine the argument length.
1345                 */
1346                it->node = of_find_node_by_phandle(it->phandle);
1347
1348                if (it->cells_name) {
1349                        if (!it->node) {
1350                                pr_err("%pOF: could not find phandle\n",
1351                                       it->parent);
1352                                goto err;
1353                        }
1354
1355                        if (of_property_read_u32(it->node, it->cells_name,
1356                                                 &count)) {
1357                                /*
1358                                 * If both cell_count and cells_name is given,
1359                                 * fall back to cell_count in absence
1360                                 * of the cells_name property
1361                                 */
1362                                if (it->cell_count >= 0) {
1363                                        count = it->cell_count;
1364                                } else {
1365                                        pr_err("%pOF: could not get %s for %pOF\n",
1366                                               it->parent,
1367                                               it->cells_name,
1368                                               it->node);
1369                                        goto err;
1370                                }
1371                        }
1372                } else {
1373                        count = it->cell_count;
1374                }
1375
1376                /*
1377                 * Make sure that the arguments actually fit in the remaining
1378                 * property data length
1379                 */
1380                if (it->cur + count > it->list_end) {
1381                        pr_err("%pOF: %s = %d found %d\n",
1382                               it->parent, it->cells_name,
1383                               count, it->cell_count);
1384                        goto err;
1385                }
1386        }
1387
1388        it->phandle_end = it->cur + count;
1389        it->cur_count = count;
1390
1391        return 0;
1392
1393err:
1394        if (it->node) {
1395                of_node_put(it->node);
1396                it->node = NULL;
1397        }
1398
1399        return -EINVAL;
1400}
1401EXPORT_SYMBOL_GPL(of_phandle_iterator_next);
1402
1403int of_phandle_iterator_args(struct of_phandle_iterator *it,
1404                             uint32_t *args,
1405                             int size)
1406{
1407        int i, count;
1408
1409        count = it->cur_count;
1410
1411        if (WARN_ON(size < count))
1412                count = size;
1413
1414        for (i = 0; i < count; i++)
1415                args[i] = be32_to_cpup(it->cur++);
1416
1417        return count;
1418}
1419
1420static int __of_parse_phandle_with_args(const struct device_node *np,
1421                                        const char *list_name,
1422                                        const char *cells_name,
1423                                        int cell_count, int index,
1424                                        struct of_phandle_args *out_args)
1425{
1426        struct of_phandle_iterator it;
1427        int rc, cur_index = 0;
1428
1429        /* Loop over the phandles until all the requested entry is found */
1430        of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1431                /*
1432                 * All of the error cases bail out of the loop, so at
1433                 * this point, the parsing is successful. If the requested
1434                 * index matches, then fill the out_args structure and return,
1435                 * or return -ENOENT for an empty entry.
1436                 */
1437                rc = -ENOENT;
1438                if (cur_index == index) {
1439                        if (!it.phandle)
1440                                goto err;
1441
1442                        if (out_args) {
1443                                int c;
1444
1445                                c = of_phandle_iterator_args(&it,
1446                                                             out_args->args,
1447                                                             MAX_PHANDLE_ARGS);
1448                                out_args->np = it.node;
1449                                out_args->args_count = c;
1450                        } else {
1451                                of_node_put(it.node);
1452                        }
1453
1454                        /* Found it! return success */
1455                        return 0;
1456                }
1457
1458                cur_index++;
1459        }
1460
1461        /*
1462         * Unlock node before returning result; will be one of:
1463         * -ENOENT : index is for empty phandle
1464         * -EINVAL : parsing error on data
1465         */
1466
1467 err:
1468        of_node_put(it.node);
1469        return rc;
1470}
1471
1472/**
1473 * of_parse_phandle - Resolve a phandle property to a device_node pointer
1474 * @np: Pointer to device node holding phandle property
1475 * @phandle_name: Name of property holding a phandle value
1476 * @index: For properties holding a table of phandles, this is the index into
1477 *         the table
1478 *
1479 * Returns the device_node pointer with refcount incremented.  Use
1480 * of_node_put() on it when done.
1481 */
1482struct device_node *of_parse_phandle(const struct device_node *np,
1483                                     const char *phandle_name, int index)
1484{
1485        struct of_phandle_args args;
1486
1487        if (index < 0)
1488                return NULL;
1489
1490        if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1491                                         index, &args))
1492                return NULL;
1493
1494        return args.np;
1495}
1496EXPORT_SYMBOL(of_parse_phandle);
1497
1498/**
1499 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1500 * @np:         pointer to a device tree node containing a list
1501 * @list_name:  property name that contains a list
1502 * @cells_name: property name that specifies phandles' arguments count
1503 * @index:      index of a phandle to parse out
1504 * @out_args:   optional pointer to output arguments structure (will be filled)
1505 *
1506 * This function is useful to parse lists of phandles and their arguments.
1507 * Returns 0 on success and fills out_args, on error returns appropriate
1508 * errno value.
1509 *
1510 * Caller is responsible to call of_node_put() on the returned out_args->np
1511 * pointer.
1512 *
1513 * Example:
1514 *
1515 * phandle1: node1 {
1516 *      #list-cells = <2>;
1517 * }
1518 *
1519 * phandle2: node2 {
1520 *      #list-cells = <1>;
1521 * }
1522 *
1523 * node3 {
1524 *      list = <&phandle1 1 2 &phandle2 3>;
1525 * }
1526 *
1527 * To get a device_node of the `node2' node you may call this:
1528 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1529 */
1530int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1531                                const char *cells_name, int index,
1532                                struct of_phandle_args *out_args)
1533{
1534        int cell_count = -1;
1535
1536        if (index < 0)
1537                return -EINVAL;
1538
1539        /* If cells_name is NULL we assume a cell count of 0 */
1540        if (!cells_name)
1541                cell_count = 0;
1542
1543        return __of_parse_phandle_with_args(np, list_name, cells_name,
1544                                            cell_count, index, out_args);
1545}
1546EXPORT_SYMBOL(of_parse_phandle_with_args);
1547
1548/**
1549 * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it
1550 * @np:         pointer to a device tree node containing a list
1551 * @list_name:  property name that contains a list
1552 * @stem_name:  stem of property names that specify phandles' arguments count
1553 * @index:      index of a phandle to parse out
1554 * @out_args:   optional pointer to output arguments structure (will be filled)
1555 *
1556 * This function is useful to parse lists of phandles and their arguments.
1557 * Returns 0 on success and fills out_args, on error returns appropriate errno
1558 * value. The difference between this function and of_parse_phandle_with_args()
1559 * is that this API remaps a phandle if the node the phandle points to has
1560 * a <@stem_name>-map property.
1561 *
1562 * Caller is responsible to call of_node_put() on the returned out_args->np
1563 * pointer.
1564 *
1565 * Example:
1566 *
1567 * phandle1: node1 {
1568 *      #list-cells = <2>;
1569 * }
1570 *
1571 * phandle2: node2 {
1572 *      #list-cells = <1>;
1573 * }
1574 *
1575 * phandle3: node3 {
1576 *      #list-cells = <1>;
1577 *      list-map = <0 &phandle2 3>,
1578 *                 <1 &phandle2 2>,
1579 *                 <2 &phandle1 5 1>;
1580 *      list-map-mask = <0x3>;
1581 * };
1582 *
1583 * node4 {
1584 *      list = <&phandle1 1 2 &phandle3 0>;
1585 * }
1586 *
1587 * To get a device_node of the `node2' node you may call this:
1588 * of_parse_phandle_with_args(node4, "list", "list", 1, &args);
1589 */
1590int of_parse_phandle_with_args_map(const struct device_node *np,
1591                                   const char *list_name,
1592                                   const char *stem_name,
1593                                   int index, struct of_phandle_args *out_args)
1594{
1595        char *cells_name, *map_name = NULL, *mask_name = NULL;
1596        char *pass_name = NULL;
1597        struct device_node *cur, *new = NULL;
1598        const __be32 *map, *mask, *pass;
1599        static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = ~0 };
1600        static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = 0 };
1601        __be32 initial_match_array[MAX_PHANDLE_ARGS];
1602        const __be32 *match_array = initial_match_array;
1603        int i, ret, map_len, match;
1604        u32 list_size, new_size;
1605
1606        if (index < 0)
1607                return -EINVAL;
1608
1609        cells_name = kasprintf(GFP_KERNEL, "#%s-cells", stem_name);
1610        if (!cells_name)
1611                return -ENOMEM;
1612
1613        ret = -ENOMEM;
1614        map_name = kasprintf(GFP_KERNEL, "%s-map", stem_name);
1615        if (!map_name)
1616                goto free;
1617
1618        mask_name = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name);
1619        if (!mask_name)
1620                goto free;
1621
1622        pass_name = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name);
1623        if (!pass_name)
1624                goto free;
1625
1626        ret = __of_parse_phandle_with_args(np, list_name, cells_name, -1, index,
1627                                           out_args);
1628        if (ret)
1629                goto free;
1630
1631        /* Get the #<list>-cells property */
1632        cur = out_args->np;
1633        ret = of_property_read_u32(cur, cells_name, &list_size);
1634        if (ret < 0)
1635                goto put;
1636
1637        /* Precalculate the match array - this simplifies match loop */
1638        for (i = 0; i < list_size; i++)
1639                initial_match_array[i] = cpu_to_be32(out_args->args[i]);
1640
1641        ret = -EINVAL;
1642        while (cur) {
1643                /* Get the <list>-map property */
1644                map = of_get_property(cur, map_name, &map_len);
1645                if (!map) {
1646                        ret = 0;
1647                        goto free;
1648                }
1649                map_len /= sizeof(u32);
1650
1651                /* Get the <list>-map-mask property (optional) */
1652                mask = of_get_property(cur, mask_name, NULL);
1653                if (!mask)
1654                        mask = dummy_mask;
1655                /* Iterate through <list>-map property */
1656                match = 0;
1657                while (map_len > (list_size + 1) && !match) {
1658                        /* Compare specifiers */
1659                        match = 1;
1660                        for (i = 0; i < list_size; i++, map_len--)
1661                                match &= !((match_array[i] ^ *map++) & mask[i]);
1662
1663                        of_node_put(new);
1664                        new = of_find_node_by_phandle(be32_to_cpup(map));
1665                        map++;
1666                        map_len--;
1667
1668                        /* Check if not found */
1669                        if (!new)
1670                                goto put;
1671
1672                        if (!of_device_is_available(new))
1673                                match = 0;
1674
1675                        ret = of_property_read_u32(new, cells_name, &new_size);
1676                        if (ret)
1677                                goto put;
1678
1679                        /* Check for malformed properties */
1680                        if (WARN_ON(new_size > MAX_PHANDLE_ARGS))
1681                                goto put;
1682                        if (map_len < new_size)
1683                                goto put;
1684
1685                        /* Move forward by new node's #<list>-cells amount */
1686                        map += new_size;
1687                        map_len -= new_size;
1688                }
1689                if (!match)
1690                        goto put;
1691
1692                /* Get the <list>-map-pass-thru property (optional) */
1693                pass = of_get_property(cur, pass_name, NULL);
1694                if (!pass)
1695                        pass = dummy_pass;
1696
1697                /*
1698                 * Successfully parsed a <list>-map translation; copy new
1699                 * specifier into the out_args structure, keeping the
1700                 * bits specified in <list>-map-pass-thru.
1701                 */
1702                match_array = map - new_size;
1703                for (i = 0; i < new_size; i++) {
1704                        __be32 val = *(map - new_size + i);
1705
1706                        if (i < list_size) {
1707                                val &= ~pass[i];
1708                                val |= cpu_to_be32(out_args->args[i]) & pass[i];
1709                        }
1710
1711                        out_args->args[i] = be32_to_cpu(val);
1712                }
1713                out_args->args_count = list_size = new_size;
1714                /* Iterate again with new provider */
1715                out_args->np = new;
1716                of_node_put(cur);
1717                cur = new;
1718        }
1719put:
1720        of_node_put(cur);
1721        of_node_put(new);
1722free:
1723        kfree(mask_name);
1724        kfree(map_name);
1725        kfree(cells_name);
1726        kfree(pass_name);
1727
1728        return ret;
1729}
1730EXPORT_SYMBOL(of_parse_phandle_with_args_map);
1731
1732/**
1733 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1734 * @np:         pointer to a device tree node containing a list
1735 * @list_name:  property name that contains a list
1736 * @cell_count: number of argument cells following the phandle
1737 * @index:      index of a phandle to parse out
1738 * @out_args:   optional pointer to output arguments structure (will be filled)
1739 *
1740 * This function is useful to parse lists of phandles and their arguments.
1741 * Returns 0 on success and fills out_args, on error returns appropriate
1742 * errno value.
1743 *
1744 * Caller is responsible to call of_node_put() on the returned out_args->np
1745 * pointer.
1746 *
1747 * Example:
1748 *
1749 * phandle1: node1 {
1750 * }
1751 *
1752 * phandle2: node2 {
1753 * }
1754 *
1755 * node3 {
1756 *      list = <&phandle1 0 2 &phandle2 2 3>;
1757 * }
1758 *
1759 * To get a device_node of the `node2' node you may call this:
1760 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1761 */
1762int of_parse_phandle_with_fixed_args(const struct device_node *np,
1763                                const char *list_name, int cell_count,
1764                                int index, struct of_phandle_args *out_args)
1765{
1766        if (index < 0)
1767                return -EINVAL;
1768        return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1769                                           index, out_args);
1770}
1771EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1772
1773/**
1774 * of_count_phandle_with_args() - Find the number of phandles references in a property
1775 * @np:         pointer to a device tree node containing a list
1776 * @list_name:  property name that contains a list
1777 * @cells_name: property name that specifies phandles' arguments count
1778 *
1779 * Returns the number of phandle + argument tuples within a property. It
1780 * is a typical pattern to encode a list of phandle and variable
1781 * arguments into a single property. The number of arguments is encoded
1782 * by a property in the phandle-target node. For example, a gpios
1783 * property would contain a list of GPIO specifies consisting of a
1784 * phandle and 1 or more arguments. The number of arguments are
1785 * determined by the #gpio-cells property in the node pointed to by the
1786 * phandle.
1787 */
1788int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1789                                const char *cells_name)
1790{
1791        struct of_phandle_iterator it;
1792        int rc, cur_index = 0;
1793
1794        /*
1795         * If cells_name is NULL we assume a cell count of 0. This makes
1796         * counting the phandles trivial as each 32bit word in the list is a
1797         * phandle and no arguments are to consider. So we don't iterate through
1798         * the list but just use the length to determine the phandle count.
1799         */
1800        if (!cells_name) {
1801                const __be32 *list;
1802                int size;
1803
1804                list = of_get_property(np, list_name, &size);
1805                if (!list)
1806                        return -ENOENT;
1807
1808                return size / sizeof(*list);
1809        }
1810
1811        rc = of_phandle_iterator_init(&it, np, list_name, cells_name, -1);
1812        if (rc)
1813                return rc;
1814
1815        while ((rc = of_phandle_iterator_next(&it)) == 0)
1816                cur_index += 1;
1817
1818        if (rc != -ENOENT)
1819                return rc;
1820
1821        return cur_index;
1822}
1823EXPORT_SYMBOL(of_count_phandle_with_args);
1824
1825/**
1826 * __of_add_property - Add a property to a node without lock operations
1827 */
1828int __of_add_property(struct device_node *np, struct property *prop)
1829{
1830        struct property **next;
1831
1832        prop->next = NULL;
1833        next = &np->properties;
1834        while (*next) {
1835                if (strcmp(prop->name, (*next)->name) == 0)
1836                        /* duplicate ! don't insert it */
1837                        return -EEXIST;
1838
1839                next = &(*next)->next;
1840        }
1841        *next = prop;
1842
1843        return 0;
1844}
1845
1846/**
1847 * of_add_property - Add a property to a node
1848 */
1849int of_add_property(struct device_node *np, struct property *prop)
1850{
1851        unsigned long flags;
1852        int rc;
1853
1854        mutex_lock(&of_mutex);
1855
1856        raw_spin_lock_irqsave(&devtree_lock, flags);
1857        rc = __of_add_property(np, prop);
1858        raw_spin_unlock_irqrestore(&devtree_lock, flags);
1859
1860        if (!rc)
1861                __of_add_property_sysfs(np, prop);
1862
1863        mutex_unlock(&of_mutex);
1864
1865        if (!rc)
1866                of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1867
1868        return rc;
1869}
1870
1871int __of_remove_property(struct device_node *np, struct property *prop)
1872{
1873        struct property **next;
1874
1875        for (next = &np->properties; *next; next = &(*next)->next) {
1876                if (*next == prop)
1877                        break;
1878        }
1879        if (*next == NULL)
1880                return -ENODEV;
1881
1882        /* found the node */
1883        *next = prop->next;
1884        prop->next = np->deadprops;
1885        np->deadprops = prop;
1886
1887        return 0;
1888}
1889
1890/**
1891 * of_remove_property - Remove a property from a node.
1892 *
1893 * Note that we don't actually remove it, since we have given out
1894 * who-knows-how-many pointers to the data using get-property.
1895 * Instead we just move the property to the "dead properties"
1896 * list, so it won't be found any more.
1897 */
1898int of_remove_property(struct device_node *np, struct property *prop)
1899{
1900        unsigned long flags;
1901        int rc;
1902
1903        if (!prop)
1904                return -ENODEV;
1905
1906        mutex_lock(&of_mutex);
1907
1908        raw_spin_lock_irqsave(&devtree_lock, flags);
1909        rc = __of_remove_property(np, prop);
1910        raw_spin_unlock_irqrestore(&devtree_lock, flags);
1911
1912        if (!rc)
1913                __of_remove_property_sysfs(np, prop);
1914
1915        mutex_unlock(&of_mutex);
1916
1917        if (!rc)
1918                of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1919
1920        return rc;
1921}
1922
1923int __of_update_property(struct device_node *np, struct property *newprop,
1924                struct property **oldpropp)
1925{
1926        struct property **next, *oldprop;
1927
1928        for (next = &np->properties; *next; next = &(*next)->next) {
1929                if (of_prop_cmp((*next)->name, newprop->name) == 0)
1930                        break;
1931        }
1932        *oldpropp = oldprop = *next;
1933
1934        if (oldprop) {
1935                /* replace the node */
1936                newprop->next = oldprop->next;
1937                *next = newprop;
1938                oldprop->next = np->deadprops;
1939                np->deadprops = oldprop;
1940        } else {
1941                /* new node */
1942                newprop->next = NULL;
1943                *next = newprop;
1944        }
1945
1946        return 0;
1947}
1948
1949/*
1950 * of_update_property - Update a property in a node, if the property does
1951 * not exist, add it.
1952 *
1953 * Note that we don't actually remove it, since we have given out
1954 * who-knows-how-many pointers to the data using get-property.
1955 * Instead we just move the property to the "dead properties" list,
1956 * and add the new property to the property list
1957 */
1958int of_update_property(struct device_node *np, struct property *newprop)
1959{
1960        struct property *oldprop;
1961        unsigned long flags;
1962        int rc;
1963
1964        if (!newprop->name)
1965                return -EINVAL;
1966
1967        mutex_lock(&of_mutex);
1968
1969        raw_spin_lock_irqsave(&devtree_lock, flags);
1970        rc = __of_update_property(np, newprop, &oldprop);
1971        raw_spin_unlock_irqrestore(&devtree_lock, flags);
1972
1973        if (!rc)
1974                __of_update_property_sysfs(np, newprop, oldprop);
1975
1976        mutex_unlock(&of_mutex);
1977
1978        if (!rc)
1979                of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1980
1981        return rc;
1982}
1983
1984static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1985                         int id, const char *stem, int stem_len)
1986{
1987        ap->np = np;
1988        ap->id = id;
1989        strncpy(ap->stem, stem, stem_len);
1990        ap->stem[stem_len] = 0;
1991        list_add_tail(&ap->link, &aliases_lookup);
1992        pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n",
1993                 ap->alias, ap->stem, ap->id, np);
1994}
1995
1996/**
1997 * of_alias_scan - Scan all properties of the 'aliases' node
1998 *
1999 * The function scans all the properties of the 'aliases' node and populates
2000 * the global lookup table with the properties.  It returns the
2001 * number of alias properties found, or an error code in case of failure.
2002 *
2003 * @dt_alloc:   An allocator that provides a virtual address to memory
2004 *              for storing the resulting tree
2005 */
2006void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
2007{
2008        struct property *pp;
2009
2010        of_aliases = of_find_node_by_path("/aliases");
2011        of_chosen = of_find_node_by_path("/chosen");
2012        if (of_chosen == NULL)
2013                of_chosen = of_find_node_by_path("/chosen@0");
2014
2015        if (of_chosen) {
2016                /* linux,stdout-path and /aliases/stdout are for legacy compatibility */
2017                const char *name = NULL;
2018
2019                if (of_property_read_string(of_chosen, "stdout-path", &name))
2020                        of_property_read_string(of_chosen, "linux,stdout-path",
2021                                                &name);
2022                if (IS_ENABLED(CONFIG_PPC) && !name)
2023                        of_property_read_string(of_aliases, "stdout", &name);
2024                if (name)
2025                        of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
2026        }
2027
2028        if (!of_aliases)
2029                return;
2030
2031        for_each_property_of_node(of_aliases, pp) {
2032                const char *start = pp->name;
2033                const char *end = start + strlen(start);
2034                struct device_node *np;
2035                struct alias_prop *ap;
2036                int id, len;
2037
2038                /* Skip those we do not want to proceed */
2039                if (!strcmp(pp->name, "name") ||
2040                    !strcmp(pp->name, "phandle") ||
2041                    !strcmp(pp->name, "linux,phandle"))
2042                        continue;
2043
2044                np = of_find_node_by_path(pp->value);
2045                if (!np)
2046                        continue;
2047
2048                /* walk the alias backwards to extract the id and work out
2049                 * the 'stem' string */
2050                while (isdigit(*(end-1)) && end > start)
2051                        end--;
2052                len = end - start;
2053
2054                if (kstrtoint(end, 10, &id) < 0)
2055                        continue;
2056
2057                /* Allocate an alias_prop with enough space for the stem */
2058                ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap));
2059                if (!ap)
2060                        continue;
2061                memset(ap, 0, sizeof(*ap) + len + 1);
2062                ap->alias = start;
2063                of_alias_add(ap, np, id, start, len);
2064        }
2065}
2066
2067/**
2068 * of_alias_get_id - Get alias id for the given device_node
2069 * @np:         Pointer to the given device_node
2070 * @stem:       Alias stem of the given device_node
2071 *
2072 * The function travels the lookup table to get the alias id for the given
2073 * device_node and alias stem.  It returns the alias id if found.
2074 */
2075int of_alias_get_id(struct device_node *np, const char *stem)
2076{
2077        struct alias_prop *app;
2078        int id = -ENODEV;
2079
2080        mutex_lock(&of_mutex);
2081        list_for_each_entry(app, &aliases_lookup, link) {
2082                if (strcmp(app->stem, stem) != 0)
2083                        continue;
2084
2085                if (np == app->np) {
2086                        id = app->id;
2087                        break;
2088                }
2089        }
2090        mutex_unlock(&of_mutex);
2091
2092        return id;
2093}
2094EXPORT_SYMBOL_GPL(of_alias_get_id);
2095
2096/**
2097 * of_alias_get_alias_list - Get alias list for the given device driver
2098 * @matches:    Array of OF device match structures to search in
2099 * @stem:       Alias stem of the given device_node
2100 * @bitmap:     Bitmap field pointer
2101 * @nbits:      Maximum number of alias IDs which can be recorded in bitmap
2102 *
2103 * The function travels the lookup table to record alias ids for the given
2104 * device match structures and alias stem.
2105 *
2106 * Return:      0 or -ENOSYS when !CONFIG_OF or
2107 *              -EOVERFLOW if alias ID is greater then allocated nbits
2108 */
2109int of_alias_get_alias_list(const struct of_device_id *matches,
2110                             const char *stem, unsigned long *bitmap,
2111                             unsigned int nbits)
2112{
2113        struct alias_prop *app;
2114        int ret = 0;
2115
2116        /* Zero bitmap field to make sure that all the time it is clean */
2117        bitmap_zero(bitmap, nbits);
2118
2119        mutex_lock(&of_mutex);
2120        pr_debug("%s: Looking for stem: %s\n", __func__, stem);
2121        list_for_each_entry(app, &aliases_lookup, link) {
2122                pr_debug("%s: stem: %s, id: %d\n",
2123                         __func__, app->stem, app->id);
2124
2125                if (strcmp(app->stem, stem) != 0) {
2126                        pr_debug("%s: stem comparison didn't pass %s\n",
2127                                 __func__, app->stem);
2128                        continue;
2129                }
2130
2131                if (of_match_node(matches, app->np)) {
2132                        pr_debug("%s: Allocated ID %d\n", __func__, app->id);
2133
2134                        if (app->id >= nbits) {
2135                                pr_warn("%s: ID %d >= than bitmap field %d\n",
2136                                        __func__, app->id, nbits);
2137                                ret = -EOVERFLOW;
2138                        } else {
2139                                set_bit(app->id, bitmap);
2140                        }
2141                }
2142        }
2143        mutex_unlock(&of_mutex);
2144
2145        return ret;
2146}
2147EXPORT_SYMBOL_GPL(of_alias_get_alias_list);
2148
2149/**
2150 * of_alias_get_highest_id - Get highest alias id for the given stem
2151 * @stem:       Alias stem to be examined
2152 *
2153 * The function travels the lookup table to get the highest alias id for the
2154 * given alias stem.  It returns the alias id if found.
2155 */
2156int of_alias_get_highest_id(const char *stem)
2157{
2158        struct alias_prop *app;
2159        int id = -ENODEV;
2160
2161        mutex_lock(&of_mutex);
2162        list_for_each_entry(app, &aliases_lookup, link) {
2163                if (strcmp(app->stem, stem) != 0)
2164                        continue;
2165
2166                if (app->id > id)
2167                        id = app->id;
2168        }
2169        mutex_unlock(&of_mutex);
2170
2171        return id;
2172}
2173EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
2174
2175/**
2176 * of_console_check() - Test and setup console for DT setup
2177 * @dn - Pointer to device node
2178 * @name - Name to use for preferred console without index. ex. "ttyS"
2179 * @index - Index to use for preferred console.
2180 *
2181 * Check if the given device node matches the stdout-path property in the
2182 * /chosen node. If it does then register it as the preferred console and return
2183 * TRUE. Otherwise return FALSE.
2184 */
2185bool of_console_check(struct device_node *dn, char *name, int index)
2186{
2187        if (!dn || dn != of_stdout || console_set_on_cmdline)
2188                return false;
2189
2190        /*
2191         * XXX: cast `options' to char pointer to suppress complication
2192         * warnings: printk, UART and console drivers expect char pointer.
2193         */
2194        return !add_preferred_console(name, index, (char *)of_stdout_options);
2195}
2196EXPORT_SYMBOL_GPL(of_console_check);
2197
2198/**
2199 *      of_find_next_cache_node - Find a node's subsidiary cache
2200 *      @np:    node of type "cpu" or "cache"
2201 *
2202 *      Returns a node pointer with refcount incremented, use
2203 *      of_node_put() on it when done.  Caller should hold a reference
2204 *      to np.
2205 */
2206struct device_node *of_find_next_cache_node(const struct device_node *np)
2207{
2208        struct device_node *child, *cache_node;
2209
2210        cache_node = of_parse_phandle(np, "l2-cache", 0);
2211        if (!cache_node)
2212                cache_node = of_parse_phandle(np, "next-level-cache", 0);
2213
2214        if (cache_node)
2215                return cache_node;
2216
2217        /* OF on pmac has nodes instead of properties named "l2-cache"
2218         * beneath CPU nodes.
2219         */
2220        if (IS_ENABLED(CONFIG_PPC_PMAC) && of_node_is_type(np, "cpu"))
2221                for_each_child_of_node(np, child)
2222                        if (of_node_is_type(child, "cache"))
2223                                return child;
2224
2225        return NULL;
2226}
2227
2228/**
2229 * of_find_last_cache_level - Find the level at which the last cache is
2230 *              present for the given logical cpu
2231 *
2232 * @cpu: cpu number(logical index) for which the last cache level is needed
2233 *
2234 * Returns the the level at which the last cache is present. It is exactly
2235 * same as  the total number of cache levels for the given logical cpu.
2236 */
2237int of_find_last_cache_level(unsigned int cpu)
2238{
2239        u32 cache_level = 0;
2240        struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu);
2241
2242        while (np) {
2243                prev = np;
2244                of_node_put(np);
2245                np = of_find_next_cache_node(np);
2246        }
2247
2248        of_property_read_u32(prev, "cache-level", &cache_level);
2249
2250        return cache_level;
2251}
2252
2253/**
2254 * of_map_rid - Translate a requester ID through a downstream mapping.
2255 * @np: root complex device node.
2256 * @rid: device requester ID to map.
2257 * @map_name: property name of the map to use.
2258 * @map_mask_name: optional property name of the mask to use.
2259 * @target: optional pointer to a target device node.
2260 * @id_out: optional pointer to receive the translated ID.
2261 *
2262 * Given a device requester ID, look up the appropriate implementation-defined
2263 * platform ID and/or the target device which receives transactions on that
2264 * ID, as per the "iommu-map" and "msi-map" bindings. Either of @target or
2265 * @id_out may be NULL if only the other is required. If @target points to
2266 * a non-NULL device node pointer, only entries targeting that node will be
2267 * matched; if it points to a NULL value, it will receive the device node of
2268 * the first matching target phandle, with a reference held.
2269 *
2270 * Return: 0 on success or a standard error code on failure.
2271 */
2272int of_map_rid(struct device_node *np, u32 rid,
2273               const char *map_name, const char *map_mask_name,
2274               struct device_node **target, u32 *id_out)
2275{
2276        u32 map_mask, masked_rid;
2277        int map_len;
2278        const __be32 *map = NULL;
2279
2280        if (!np || !map_name || (!target && !id_out))
2281                return -EINVAL;
2282
2283        map = of_get_property(np, map_name, &map_len);
2284        if (!map) {
2285                if (target)
2286                        return -ENODEV;
2287                /* Otherwise, no map implies no translation */
2288                *id_out = rid;
2289                return 0;
2290        }
2291
2292        if (!map_len || map_len % (4 * sizeof(*map))) {
2293                pr_err("%pOF: Error: Bad %s length: %d\n", np,
2294                        map_name, map_len);
2295                return -EINVAL;
2296        }
2297
2298        /* The default is to select all bits. */
2299        map_mask = 0xffffffff;
2300
2301        /*
2302         * Can be overridden by "{iommu,msi}-map-mask" property.
2303         * If of_property_read_u32() fails, the default is used.
2304         */
2305        if (map_mask_name)
2306                of_property_read_u32(np, map_mask_name, &map_mask);
2307
2308        masked_rid = map_mask & rid;
2309        for ( ; map_len > 0; map_len -= 4 * sizeof(*map), map += 4) {
2310                struct device_node *phandle_node;
2311                u32 rid_base = be32_to_cpup(map + 0);
2312                u32 phandle = be32_to_cpup(map + 1);
2313                u32 out_base = be32_to_cpup(map + 2);
2314                u32 rid_len = be32_to_cpup(map + 3);
2315
2316                if (rid_base & ~map_mask) {
2317                        pr_err("%pOF: Invalid %s translation - %s-mask (0x%x) ignores rid-base (0x%x)\n",
2318                                np, map_name, map_name,
2319                                map_mask, rid_base);
2320                        return -EFAULT;
2321                }
2322
2323                if (masked_rid < rid_base || masked_rid >= rid_base + rid_len)
2324                        continue;
2325
2326                phandle_node = of_find_node_by_phandle(phandle);
2327                if (!phandle_node)
2328                        return -ENODEV;
2329
2330                if (target) {
2331                        if (*target)
2332                                of_node_put(phandle_node);
2333                        else
2334                                *target = phandle_node;
2335
2336                        if (*target != phandle_node)
2337                                continue;
2338                }
2339
2340                if (id_out)
2341                        *id_out = masked_rid - rid_base + out_base;
2342
2343                pr_debug("%pOF: %s, using mask %08x, rid-base: %08x, out-base: %08x, length: %08x, rid: %08x -> %08x\n",
2344                        np, map_name, map_mask, rid_base, out_base,
2345                        rid_len, rid, masked_rid - rid_base + out_base);
2346                return 0;
2347        }
2348
2349        pr_info("%pOF: no %s translation for rid 0x%x on %pOF\n", np, map_name,
2350                rid, target && *target ? *target : NULL);
2351
2352        /* Bypasses translation */
2353        if (id_out)
2354                *id_out = rid;
2355        return 0;
2356}
2357EXPORT_SYMBOL_GPL(of_map_rid);
2358