linux/drivers/pci/pci.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * PCI Bus Services, see include/linux/pci.h for further explanation.
   4 *
   5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
   6 * David Mosberger-Tang
   7 *
   8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
   9 */
  10
  11#include <linux/acpi.h>
  12#include <linux/kernel.h>
  13#include <linux/delay.h>
  14#include <linux/dmi.h>
  15#include <linux/init.h>
  16#include <linux/msi.h>
  17#include <linux/of.h>
  18#include <linux/of_pci.h>
  19#include <linux/pci.h>
  20#include <linux/pm.h>
  21#include <linux/slab.h>
  22#include <linux/module.h>
  23#include <linux/spinlock.h>
  24#include <linux/string.h>
  25#include <linux/log2.h>
  26#include <linux/logic_pio.h>
  27#include <linux/pm_wakeup.h>
  28#include <linux/interrupt.h>
  29#include <linux/device.h>
  30#include <linux/pm_runtime.h>
  31#include <linux/pci_hotplug.h>
  32#include <linux/vmalloc.h>
  33#include <linux/pci-ats.h>
  34#include <asm/setup.h>
  35#include <asm/dma.h>
  36#include <linux/aer.h>
  37#include "pci.h"
  38
  39DEFINE_MUTEX(pci_slot_mutex);
  40
  41const char *pci_power_names[] = {
  42        "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
  43};
  44EXPORT_SYMBOL_GPL(pci_power_names);
  45
  46int isa_dma_bridge_buggy;
  47EXPORT_SYMBOL(isa_dma_bridge_buggy);
  48
  49int pci_pci_problems;
  50EXPORT_SYMBOL(pci_pci_problems);
  51
  52unsigned int pci_pm_d3_delay;
  53
  54static void pci_pme_list_scan(struct work_struct *work);
  55
  56static LIST_HEAD(pci_pme_list);
  57static DEFINE_MUTEX(pci_pme_list_mutex);
  58static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
  59
  60struct pci_pme_device {
  61        struct list_head list;
  62        struct pci_dev *dev;
  63};
  64
  65#define PME_TIMEOUT 1000 /* How long between PME checks */
  66
  67static void pci_dev_d3_sleep(struct pci_dev *dev)
  68{
  69        unsigned int delay = dev->d3_delay;
  70
  71        if (delay < pci_pm_d3_delay)
  72                delay = pci_pm_d3_delay;
  73
  74        if (delay)
  75                msleep(delay);
  76}
  77
  78#ifdef CONFIG_PCI_DOMAINS
  79int pci_domains_supported = 1;
  80#endif
  81
  82#define DEFAULT_CARDBUS_IO_SIZE         (256)
  83#define DEFAULT_CARDBUS_MEM_SIZE        (64*1024*1024)
  84/* pci=cbmemsize=nnM,cbiosize=nn can override this */
  85unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
  86unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
  87
  88#define DEFAULT_HOTPLUG_IO_SIZE         (256)
  89#define DEFAULT_HOTPLUG_MMIO_SIZE       (2*1024*1024)
  90#define DEFAULT_HOTPLUG_MMIO_PREF_SIZE  (2*1024*1024)
  91/* hpiosize=nn can override this */
  92unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
  93/*
  94 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
  95 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
  96 * pci=hpmemsize=nnM overrides both
  97 */
  98unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
  99unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
 100
 101#define DEFAULT_HOTPLUG_BUS_SIZE        1
 102unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
 103
 104enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
 105
 106/*
 107 * The default CLS is used if arch didn't set CLS explicitly and not
 108 * all pci devices agree on the same value.  Arch can override either
 109 * the dfl or actual value as it sees fit.  Don't forget this is
 110 * measured in 32-bit words, not bytes.
 111 */
 112u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
 113u8 pci_cache_line_size;
 114
 115/*
 116 * If we set up a device for bus mastering, we need to check the latency
 117 * timer as certain BIOSes forget to set it properly.
 118 */
 119unsigned int pcibios_max_latency = 255;
 120
 121/* If set, the PCIe ARI capability will not be used. */
 122static bool pcie_ari_disabled;
 123
 124/* If set, the PCIe ATS capability will not be used. */
 125static bool pcie_ats_disabled;
 126
 127/* If set, the PCI config space of each device is printed during boot. */
 128bool pci_early_dump;
 129
 130bool pci_ats_disabled(void)
 131{
 132        return pcie_ats_disabled;
 133}
 134
 135/* Disable bridge_d3 for all PCIe ports */
 136static bool pci_bridge_d3_disable;
 137/* Force bridge_d3 for all PCIe ports */
 138static bool pci_bridge_d3_force;
 139
 140static int __init pcie_port_pm_setup(char *str)
 141{
 142        if (!strcmp(str, "off"))
 143                pci_bridge_d3_disable = true;
 144        else if (!strcmp(str, "force"))
 145                pci_bridge_d3_force = true;
 146        return 1;
 147}
 148__setup("pcie_port_pm=", pcie_port_pm_setup);
 149
 150/* Time to wait after a reset for device to become responsive */
 151#define PCIE_RESET_READY_POLL_MS 60000
 152
 153/**
 154 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
 155 * @bus: pointer to PCI bus structure to search
 156 *
 157 * Given a PCI bus, returns the highest PCI bus number present in the set
 158 * including the given PCI bus and its list of child PCI buses.
 159 */
 160unsigned char pci_bus_max_busnr(struct pci_bus *bus)
 161{
 162        struct pci_bus *tmp;
 163        unsigned char max, n;
 164
 165        max = bus->busn_res.end;
 166        list_for_each_entry(tmp, &bus->children, node) {
 167                n = pci_bus_max_busnr(tmp);
 168                if (n > max)
 169                        max = n;
 170        }
 171        return max;
 172}
 173EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
 174
 175#ifdef CONFIG_HAS_IOMEM
 176void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
 177{
 178        struct resource *res = &pdev->resource[bar];
 179
 180        /*
 181         * Make sure the BAR is actually a memory resource, not an IO resource
 182         */
 183        if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
 184                pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
 185                return NULL;
 186        }
 187        return ioremap_nocache(res->start, resource_size(res));
 188}
 189EXPORT_SYMBOL_GPL(pci_ioremap_bar);
 190
 191void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
 192{
 193        /*
 194         * Make sure the BAR is actually a memory resource, not an IO resource
 195         */
 196        if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
 197                WARN_ON(1);
 198                return NULL;
 199        }
 200        return ioremap_wc(pci_resource_start(pdev, bar),
 201                          pci_resource_len(pdev, bar));
 202}
 203EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
 204#endif
 205
 206/**
 207 * pci_dev_str_match_path - test if a path string matches a device
 208 * @dev: the PCI device to test
 209 * @path: string to match the device against
 210 * @endptr: pointer to the string after the match
 211 *
 212 * Test if a string (typically from a kernel parameter) formatted as a
 213 * path of device/function addresses matches a PCI device. The string must
 214 * be of the form:
 215 *
 216 *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
 217 *
 218 * A path for a device can be obtained using 'lspci -t'.  Using a path
 219 * is more robust against bus renumbering than using only a single bus,
 220 * device and function address.
 221 *
 222 * Returns 1 if the string matches the device, 0 if it does not and
 223 * a negative error code if it fails to parse the string.
 224 */
 225static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
 226                                  const char **endptr)
 227{
 228        int ret;
 229        int seg, bus, slot, func;
 230        char *wpath, *p;
 231        char end;
 232
 233        *endptr = strchrnul(path, ';');
 234
 235        wpath = kmemdup_nul(path, *endptr - path, GFP_KERNEL);
 236        if (!wpath)
 237                return -ENOMEM;
 238
 239        while (1) {
 240                p = strrchr(wpath, '/');
 241                if (!p)
 242                        break;
 243                ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
 244                if (ret != 2) {
 245                        ret = -EINVAL;
 246                        goto free_and_exit;
 247                }
 248
 249                if (dev->devfn != PCI_DEVFN(slot, func)) {
 250                        ret = 0;
 251                        goto free_and_exit;
 252                }
 253
 254                /*
 255                 * Note: we don't need to get a reference to the upstream
 256                 * bridge because we hold a reference to the top level
 257                 * device which should hold a reference to the bridge,
 258                 * and so on.
 259                 */
 260                dev = pci_upstream_bridge(dev);
 261                if (!dev) {
 262                        ret = 0;
 263                        goto free_and_exit;
 264                }
 265
 266                *p = 0;
 267        }
 268
 269        ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
 270                     &func, &end);
 271        if (ret != 4) {
 272                seg = 0;
 273                ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
 274                if (ret != 3) {
 275                        ret = -EINVAL;
 276                        goto free_and_exit;
 277                }
 278        }
 279
 280        ret = (seg == pci_domain_nr(dev->bus) &&
 281               bus == dev->bus->number &&
 282               dev->devfn == PCI_DEVFN(slot, func));
 283
 284free_and_exit:
 285        kfree(wpath);
 286        return ret;
 287}
 288
 289/**
 290 * pci_dev_str_match - test if a string matches a device
 291 * @dev: the PCI device to test
 292 * @p: string to match the device against
 293 * @endptr: pointer to the string after the match
 294 *
 295 * Test if a string (typically from a kernel parameter) matches a specified
 296 * PCI device. The string may be of one of the following formats:
 297 *
 298 *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
 299 *   pci:<vendor>:<device>[:<subvendor>:<subdevice>]
 300 *
 301 * The first format specifies a PCI bus/device/function address which
 302 * may change if new hardware is inserted, if motherboard firmware changes,
 303 * or due to changes caused in kernel parameters. If the domain is
 304 * left unspecified, it is taken to be 0.  In order to be robust against
 305 * bus renumbering issues, a path of PCI device/function numbers may be used
 306 * to address the specific device.  The path for a device can be determined
 307 * through the use of 'lspci -t'.
 308 *
 309 * The second format matches devices using IDs in the configuration
 310 * space which may match multiple devices in the system. A value of 0
 311 * for any field will match all devices. (Note: this differs from
 312 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
 313 * legacy reasons and convenience so users don't have to specify
 314 * FFFFFFFFs on the command line.)
 315 *
 316 * Returns 1 if the string matches the device, 0 if it does not and
 317 * a negative error code if the string cannot be parsed.
 318 */
 319static int pci_dev_str_match(struct pci_dev *dev, const char *p,
 320                             const char **endptr)
 321{
 322        int ret;
 323        int count;
 324        unsigned short vendor, device, subsystem_vendor, subsystem_device;
 325
 326        if (strncmp(p, "pci:", 4) == 0) {
 327                /* PCI vendor/device (subvendor/subdevice) IDs are specified */
 328                p += 4;
 329                ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
 330                             &subsystem_vendor, &subsystem_device, &count);
 331                if (ret != 4) {
 332                        ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
 333                        if (ret != 2)
 334                                return -EINVAL;
 335
 336                        subsystem_vendor = 0;
 337                        subsystem_device = 0;
 338                }
 339
 340                p += count;
 341
 342                if ((!vendor || vendor == dev->vendor) &&
 343                    (!device || device == dev->device) &&
 344                    (!subsystem_vendor ||
 345                            subsystem_vendor == dev->subsystem_vendor) &&
 346                    (!subsystem_device ||
 347                            subsystem_device == dev->subsystem_device))
 348                        goto found;
 349        } else {
 350                /*
 351                 * PCI Bus, Device, Function IDs are specified
 352                 * (optionally, may include a path of devfns following it)
 353                 */
 354                ret = pci_dev_str_match_path(dev, p, &p);
 355                if (ret < 0)
 356                        return ret;
 357                else if (ret)
 358                        goto found;
 359        }
 360
 361        *endptr = p;
 362        return 0;
 363
 364found:
 365        *endptr = p;
 366        return 1;
 367}
 368
 369static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
 370                                   u8 pos, int cap, int *ttl)
 371{
 372        u8 id;
 373        u16 ent;
 374
 375        pci_bus_read_config_byte(bus, devfn, pos, &pos);
 376
 377        while ((*ttl)--) {
 378                if (pos < 0x40)
 379                        break;
 380                pos &= ~3;
 381                pci_bus_read_config_word(bus, devfn, pos, &ent);
 382
 383                id = ent & 0xff;
 384                if (id == 0xff)
 385                        break;
 386                if (id == cap)
 387                        return pos;
 388                pos = (ent >> 8);
 389        }
 390        return 0;
 391}
 392
 393static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
 394                               u8 pos, int cap)
 395{
 396        int ttl = PCI_FIND_CAP_TTL;
 397
 398        return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
 399}
 400
 401int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
 402{
 403        return __pci_find_next_cap(dev->bus, dev->devfn,
 404                                   pos + PCI_CAP_LIST_NEXT, cap);
 405}
 406EXPORT_SYMBOL_GPL(pci_find_next_capability);
 407
 408static int __pci_bus_find_cap_start(struct pci_bus *bus,
 409                                    unsigned int devfn, u8 hdr_type)
 410{
 411        u16 status;
 412
 413        pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
 414        if (!(status & PCI_STATUS_CAP_LIST))
 415                return 0;
 416
 417        switch (hdr_type) {
 418        case PCI_HEADER_TYPE_NORMAL:
 419        case PCI_HEADER_TYPE_BRIDGE:
 420                return PCI_CAPABILITY_LIST;
 421        case PCI_HEADER_TYPE_CARDBUS:
 422                return PCI_CB_CAPABILITY_LIST;
 423        }
 424
 425        return 0;
 426}
 427
 428/**
 429 * pci_find_capability - query for devices' capabilities
 430 * @dev: PCI device to query
 431 * @cap: capability code
 432 *
 433 * Tell if a device supports a given PCI capability.
 434 * Returns the address of the requested capability structure within the
 435 * device's PCI configuration space or 0 in case the device does not
 436 * support it.  Possible values for @cap include:
 437 *
 438 *  %PCI_CAP_ID_PM           Power Management
 439 *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
 440 *  %PCI_CAP_ID_VPD          Vital Product Data
 441 *  %PCI_CAP_ID_SLOTID       Slot Identification
 442 *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
 443 *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
 444 *  %PCI_CAP_ID_PCIX         PCI-X
 445 *  %PCI_CAP_ID_EXP          PCI Express
 446 */
 447int pci_find_capability(struct pci_dev *dev, int cap)
 448{
 449        int pos;
 450
 451        pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 452        if (pos)
 453                pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
 454
 455        return pos;
 456}
 457EXPORT_SYMBOL(pci_find_capability);
 458
 459/**
 460 * pci_bus_find_capability - query for devices' capabilities
 461 * @bus: the PCI bus to query
 462 * @devfn: PCI device to query
 463 * @cap: capability code
 464 *
 465 * Like pci_find_capability() but works for PCI devices that do not have a
 466 * pci_dev structure set up yet.
 467 *
 468 * Returns the address of the requested capability structure within the
 469 * device's PCI configuration space or 0 in case the device does not
 470 * support it.
 471 */
 472int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
 473{
 474        int pos;
 475        u8 hdr_type;
 476
 477        pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
 478
 479        pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
 480        if (pos)
 481                pos = __pci_find_next_cap(bus, devfn, pos, cap);
 482
 483        return pos;
 484}
 485EXPORT_SYMBOL(pci_bus_find_capability);
 486
 487/**
 488 * pci_find_next_ext_capability - Find an extended capability
 489 * @dev: PCI device to query
 490 * @start: address at which to start looking (0 to start at beginning of list)
 491 * @cap: capability code
 492 *
 493 * Returns the address of the next matching extended capability structure
 494 * within the device's PCI configuration space or 0 if the device does
 495 * not support it.  Some capabilities can occur several times, e.g., the
 496 * vendor-specific capability, and this provides a way to find them all.
 497 */
 498int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
 499{
 500        u32 header;
 501        int ttl;
 502        int pos = PCI_CFG_SPACE_SIZE;
 503
 504        /* minimum 8 bytes per capability */
 505        ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
 506
 507        if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
 508                return 0;
 509
 510        if (start)
 511                pos = start;
 512
 513        if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 514                return 0;
 515
 516        /*
 517         * If we have no capabilities, this is indicated by cap ID,
 518         * cap version and next pointer all being 0.
 519         */
 520        if (header == 0)
 521                return 0;
 522
 523        while (ttl-- > 0) {
 524                if (PCI_EXT_CAP_ID(header) == cap && pos != start)
 525                        return pos;
 526
 527                pos = PCI_EXT_CAP_NEXT(header);
 528                if (pos < PCI_CFG_SPACE_SIZE)
 529                        break;
 530
 531                if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 532                        break;
 533        }
 534
 535        return 0;
 536}
 537EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
 538
 539/**
 540 * pci_find_ext_capability - Find an extended capability
 541 * @dev: PCI device to query
 542 * @cap: capability code
 543 *
 544 * Returns the address of the requested extended capability structure
 545 * within the device's PCI configuration space or 0 if the device does
 546 * not support it.  Possible values for @cap include:
 547 *
 548 *  %PCI_EXT_CAP_ID_ERR         Advanced Error Reporting
 549 *  %PCI_EXT_CAP_ID_VC          Virtual Channel
 550 *  %PCI_EXT_CAP_ID_DSN         Device Serial Number
 551 *  %PCI_EXT_CAP_ID_PWR         Power Budgeting
 552 */
 553int pci_find_ext_capability(struct pci_dev *dev, int cap)
 554{
 555        return pci_find_next_ext_capability(dev, 0, cap);
 556}
 557EXPORT_SYMBOL_GPL(pci_find_ext_capability);
 558
 559static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
 560{
 561        int rc, ttl = PCI_FIND_CAP_TTL;
 562        u8 cap, mask;
 563
 564        if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
 565                mask = HT_3BIT_CAP_MASK;
 566        else
 567                mask = HT_5BIT_CAP_MASK;
 568
 569        pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
 570                                      PCI_CAP_ID_HT, &ttl);
 571        while (pos) {
 572                rc = pci_read_config_byte(dev, pos + 3, &cap);
 573                if (rc != PCIBIOS_SUCCESSFUL)
 574                        return 0;
 575
 576                if ((cap & mask) == ht_cap)
 577                        return pos;
 578
 579                pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
 580                                              pos + PCI_CAP_LIST_NEXT,
 581                                              PCI_CAP_ID_HT, &ttl);
 582        }
 583
 584        return 0;
 585}
 586/**
 587 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
 588 * @dev: PCI device to query
 589 * @pos: Position from which to continue searching
 590 * @ht_cap: Hypertransport capability code
 591 *
 592 * To be used in conjunction with pci_find_ht_capability() to search for
 593 * all capabilities matching @ht_cap. @pos should always be a value returned
 594 * from pci_find_ht_capability().
 595 *
 596 * NB. To be 100% safe against broken PCI devices, the caller should take
 597 * steps to avoid an infinite loop.
 598 */
 599int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
 600{
 601        return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
 602}
 603EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
 604
 605/**
 606 * pci_find_ht_capability - query a device's Hypertransport capabilities
 607 * @dev: PCI device to query
 608 * @ht_cap: Hypertransport capability code
 609 *
 610 * Tell if a device supports a given Hypertransport capability.
 611 * Returns an address within the device's PCI configuration space
 612 * or 0 in case the device does not support the request capability.
 613 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
 614 * which has a Hypertransport capability matching @ht_cap.
 615 */
 616int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
 617{
 618        int pos;
 619
 620        pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 621        if (pos)
 622                pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
 623
 624        return pos;
 625}
 626EXPORT_SYMBOL_GPL(pci_find_ht_capability);
 627
 628/**
 629 * pci_find_parent_resource - return resource region of parent bus of given
 630 *                            region
 631 * @dev: PCI device structure contains resources to be searched
 632 * @res: child resource record for which parent is sought
 633 *
 634 * For given resource region of given device, return the resource region of
 635 * parent bus the given region is contained in.
 636 */
 637struct resource *pci_find_parent_resource(const struct pci_dev *dev,
 638                                          struct resource *res)
 639{
 640        const struct pci_bus *bus = dev->bus;
 641        struct resource *r;
 642        int i;
 643
 644        pci_bus_for_each_resource(bus, r, i) {
 645                if (!r)
 646                        continue;
 647                if (resource_contains(r, res)) {
 648
 649                        /*
 650                         * If the window is prefetchable but the BAR is
 651                         * not, the allocator made a mistake.
 652                         */
 653                        if (r->flags & IORESOURCE_PREFETCH &&
 654                            !(res->flags & IORESOURCE_PREFETCH))
 655                                return NULL;
 656
 657                        /*
 658                         * If we're below a transparent bridge, there may
 659                         * be both a positively-decoded aperture and a
 660                         * subtractively-decoded region that contain the BAR.
 661                         * We want the positively-decoded one, so this depends
 662                         * on pci_bus_for_each_resource() giving us those
 663                         * first.
 664                         */
 665                        return r;
 666                }
 667        }
 668        return NULL;
 669}
 670EXPORT_SYMBOL(pci_find_parent_resource);
 671
 672/**
 673 * pci_find_resource - Return matching PCI device resource
 674 * @dev: PCI device to query
 675 * @res: Resource to look for
 676 *
 677 * Goes over standard PCI resources (BARs) and checks if the given resource
 678 * is partially or fully contained in any of them. In that case the
 679 * matching resource is returned, %NULL otherwise.
 680 */
 681struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
 682{
 683        int i;
 684
 685        for (i = 0; i < PCI_STD_NUM_BARS; i++) {
 686                struct resource *r = &dev->resource[i];
 687
 688                if (r->start && resource_contains(r, res))
 689                        return r;
 690        }
 691
 692        return NULL;
 693}
 694EXPORT_SYMBOL(pci_find_resource);
 695
 696/**
 697 * pci_find_pcie_root_port - return PCIe Root Port
 698 * @dev: PCI device to query
 699 *
 700 * Traverse up the parent chain and return the PCIe Root Port PCI Device
 701 * for a given PCI Device.
 702 */
 703struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev)
 704{
 705        struct pci_dev *bridge, *highest_pcie_bridge = dev;
 706
 707        bridge = pci_upstream_bridge(dev);
 708        while (bridge && pci_is_pcie(bridge)) {
 709                highest_pcie_bridge = bridge;
 710                bridge = pci_upstream_bridge(bridge);
 711        }
 712
 713        if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT)
 714                return NULL;
 715
 716        return highest_pcie_bridge;
 717}
 718EXPORT_SYMBOL(pci_find_pcie_root_port);
 719
 720/**
 721 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
 722 * @dev: the PCI device to operate on
 723 * @pos: config space offset of status word
 724 * @mask: mask of bit(s) to care about in status word
 725 *
 726 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
 727 */
 728int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
 729{
 730        int i;
 731
 732        /* Wait for Transaction Pending bit clean */
 733        for (i = 0; i < 4; i++) {
 734                u16 status;
 735                if (i)
 736                        msleep((1 << (i - 1)) * 100);
 737
 738                pci_read_config_word(dev, pos, &status);
 739                if (!(status & mask))
 740                        return 1;
 741        }
 742
 743        return 0;
 744}
 745
 746/**
 747 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
 748 * @dev: PCI device to have its BARs restored
 749 *
 750 * Restore the BAR values for a given device, so as to make it
 751 * accessible by its driver.
 752 */
 753static void pci_restore_bars(struct pci_dev *dev)
 754{
 755        int i;
 756
 757        for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
 758                pci_update_resource(dev, i);
 759}
 760
 761static const struct pci_platform_pm_ops *pci_platform_pm;
 762
 763int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
 764{
 765        if (!ops->is_manageable || !ops->set_state  || !ops->get_state ||
 766            !ops->choose_state  || !ops->set_wakeup || !ops->need_resume)
 767                return -EINVAL;
 768        pci_platform_pm = ops;
 769        return 0;
 770}
 771
 772static inline bool platform_pci_power_manageable(struct pci_dev *dev)
 773{
 774        return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
 775}
 776
 777static inline int platform_pci_set_power_state(struct pci_dev *dev,
 778                                               pci_power_t t)
 779{
 780        return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
 781}
 782
 783static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
 784{
 785        return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
 786}
 787
 788static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
 789{
 790        if (pci_platform_pm && pci_platform_pm->refresh_state)
 791                pci_platform_pm->refresh_state(dev);
 792}
 793
 794static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
 795{
 796        return pci_platform_pm ?
 797                        pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
 798}
 799
 800static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
 801{
 802        return pci_platform_pm ?
 803                        pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
 804}
 805
 806static inline bool platform_pci_need_resume(struct pci_dev *dev)
 807{
 808        return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
 809}
 810
 811static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
 812{
 813        return pci_platform_pm ? pci_platform_pm->bridge_d3(dev) : false;
 814}
 815
 816/**
 817 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
 818 *                           given PCI device
 819 * @dev: PCI device to handle.
 820 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
 821 *
 822 * RETURN VALUE:
 823 * -EINVAL if the requested state is invalid.
 824 * -EIO if device does not support PCI PM or its PM capabilities register has a
 825 * wrong version, or device doesn't support the requested state.
 826 * 0 if device already is in the requested state.
 827 * 0 if device's power state has been successfully changed.
 828 */
 829static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
 830{
 831        u16 pmcsr;
 832        bool need_restore = false;
 833
 834        /* Check if we're already there */
 835        if (dev->current_state == state)
 836                return 0;
 837
 838        if (!dev->pm_cap)
 839                return -EIO;
 840
 841        if (state < PCI_D0 || state > PCI_D3hot)
 842                return -EINVAL;
 843
 844        /*
 845         * Validate transition: We can enter D0 from any state, but if
 846         * we're already in a low-power state, we can only go deeper.  E.g.,
 847         * we can go from D1 to D3, but we can't go directly from D3 to D1;
 848         * we'd have to go from D3 to D0, then to D1.
 849         */
 850        if (state != PCI_D0 && dev->current_state <= PCI_D3cold
 851            && dev->current_state > state) {
 852                pci_err(dev, "invalid power transition (from %s to %s)\n",
 853                        pci_power_name(dev->current_state),
 854                        pci_power_name(state));
 855                return -EINVAL;
 856        }
 857
 858        /* Check if this device supports the desired state */
 859        if ((state == PCI_D1 && !dev->d1_support)
 860           || (state == PCI_D2 && !dev->d2_support))
 861                return -EIO;
 862
 863        pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
 864        if (pmcsr == (u16) ~0) {
 865                pci_err(dev, "can't change power state from %s to %s (config space inaccessible)\n",
 866                        pci_power_name(dev->current_state),
 867                        pci_power_name(state));
 868                return -EIO;
 869        }
 870
 871        /*
 872         * If we're (effectively) in D3, force entire word to 0.
 873         * This doesn't affect PME_Status, disables PME_En, and
 874         * sets PowerState to 0.
 875         */
 876        switch (dev->current_state) {
 877        case PCI_D0:
 878        case PCI_D1:
 879        case PCI_D2:
 880                pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
 881                pmcsr |= state;
 882                break;
 883        case PCI_D3hot:
 884        case PCI_D3cold:
 885        case PCI_UNKNOWN: /* Boot-up */
 886                if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
 887                 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
 888                        need_restore = true;
 889                /* Fall-through - force to D0 */
 890        default:
 891                pmcsr = 0;
 892                break;
 893        }
 894
 895        /* Enter specified state */
 896        pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
 897
 898        /*
 899         * Mandatory power management transition delays; see PCI PM 1.1
 900         * 5.6.1 table 18
 901         */
 902        if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
 903                pci_dev_d3_sleep(dev);
 904        else if (state == PCI_D2 || dev->current_state == PCI_D2)
 905                msleep(PCI_PM_D2_DELAY);
 906
 907        pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
 908        dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
 909        if (dev->current_state != state)
 910                pci_info_ratelimited(dev, "refused to change power state from %s to %s\n",
 911                         pci_power_name(dev->current_state),
 912                         pci_power_name(state));
 913
 914        /*
 915         * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
 916         * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
 917         * from D3hot to D0 _may_ perform an internal reset, thereby
 918         * going to "D0 Uninitialized" rather than "D0 Initialized".
 919         * For example, at least some versions of the 3c905B and the
 920         * 3c556B exhibit this behaviour.
 921         *
 922         * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
 923         * devices in a D3hot state at boot.  Consequently, we need to
 924         * restore at least the BARs so that the device will be
 925         * accessible to its driver.
 926         */
 927        if (need_restore)
 928                pci_restore_bars(dev);
 929
 930        if (dev->bus->self)
 931                pcie_aspm_pm_state_change(dev->bus->self);
 932
 933        return 0;
 934}
 935
 936/**
 937 * pci_update_current_state - Read power state of given device and cache it
 938 * @dev: PCI device to handle.
 939 * @state: State to cache in case the device doesn't have the PM capability
 940 *
 941 * The power state is read from the PMCSR register, which however is
 942 * inaccessible in D3cold.  The platform firmware is therefore queried first
 943 * to detect accessibility of the register.  In case the platform firmware
 944 * reports an incorrect state or the device isn't power manageable by the
 945 * platform at all, we try to detect D3cold by testing accessibility of the
 946 * vendor ID in config space.
 947 */
 948void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
 949{
 950        if (platform_pci_get_power_state(dev) == PCI_D3cold ||
 951            !pci_device_is_present(dev)) {
 952                dev->current_state = PCI_D3cold;
 953        } else if (dev->pm_cap) {
 954                u16 pmcsr;
 955
 956                pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
 957                dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
 958        } else {
 959                dev->current_state = state;
 960        }
 961}
 962
 963/**
 964 * pci_refresh_power_state - Refresh the given device's power state data
 965 * @dev: Target PCI device.
 966 *
 967 * Ask the platform to refresh the devices power state information and invoke
 968 * pci_update_current_state() to update its current PCI power state.
 969 */
 970void pci_refresh_power_state(struct pci_dev *dev)
 971{
 972        if (platform_pci_power_manageable(dev))
 973                platform_pci_refresh_power_state(dev);
 974
 975        pci_update_current_state(dev, dev->current_state);
 976}
 977
 978/**
 979 * pci_platform_power_transition - Use platform to change device power state
 980 * @dev: PCI device to handle.
 981 * @state: State to put the device into.
 982 */
 983int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
 984{
 985        int error;
 986
 987        if (platform_pci_power_manageable(dev)) {
 988                error = platform_pci_set_power_state(dev, state);
 989                if (!error)
 990                        pci_update_current_state(dev, state);
 991        } else
 992                error = -ENODEV;
 993
 994        if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
 995                dev->current_state = PCI_D0;
 996
 997        return error;
 998}
 999EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1000
1001/**
1002 * pci_wakeup - Wake up a PCI device
1003 * @pci_dev: Device to handle.
1004 * @ign: ignored parameter
1005 */
1006static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
1007{
1008        pci_wakeup_event(pci_dev);
1009        pm_request_resume(&pci_dev->dev);
1010        return 0;
1011}
1012
1013/**
1014 * pci_wakeup_bus - Walk given bus and wake up devices on it
1015 * @bus: Top bus of the subtree to walk.
1016 */
1017void pci_wakeup_bus(struct pci_bus *bus)
1018{
1019        if (bus)
1020                pci_walk_bus(bus, pci_wakeup, NULL);
1021}
1022
1023static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1024{
1025        int delay = 1;
1026        u32 id;
1027
1028        /*
1029         * After reset, the device should not silently discard config
1030         * requests, but it may still indicate that it needs more time by
1031         * responding to them with CRS completions.  The Root Port will
1032         * generally synthesize ~0 data to complete the read (except when
1033         * CRS SV is enabled and the read was for the Vendor ID; in that
1034         * case it synthesizes 0x0001 data).
1035         *
1036         * Wait for the device to return a non-CRS completion.  Read the
1037         * Command register instead of Vendor ID so we don't have to
1038         * contend with the CRS SV value.
1039         */
1040        pci_read_config_dword(dev, PCI_COMMAND, &id);
1041        while (id == ~0) {
1042                if (delay > timeout) {
1043                        pci_warn(dev, "not ready %dms after %s; giving up\n",
1044                                 delay - 1, reset_type);
1045                        return -ENOTTY;
1046                }
1047
1048                if (delay > 1000)
1049                        pci_info(dev, "not ready %dms after %s; waiting\n",
1050                                 delay - 1, reset_type);
1051
1052                msleep(delay);
1053                delay *= 2;
1054                pci_read_config_dword(dev, PCI_COMMAND, &id);
1055        }
1056
1057        if (delay > 1000)
1058                pci_info(dev, "ready %dms after %s\n", delay - 1,
1059                         reset_type);
1060
1061        return 0;
1062}
1063
1064/**
1065 * pci_power_up - Put the given device into D0
1066 * @dev: PCI device to power up
1067 */
1068int pci_power_up(struct pci_dev *dev)
1069{
1070        pci_platform_power_transition(dev, PCI_D0);
1071
1072        /*
1073         * Mandatory power management transition delays are handled in
1074         * pci_pm_resume_noirq() and pci_pm_runtime_resume() of the
1075         * corresponding bridge.
1076         */
1077        if (dev->runtime_d3cold) {
1078                /*
1079                 * When powering on a bridge from D3cold, the whole hierarchy
1080                 * may be powered on into D0uninitialized state, resume them to
1081                 * give them a chance to suspend again
1082                 */
1083                pci_wakeup_bus(dev->subordinate);
1084        }
1085
1086        return pci_raw_set_power_state(dev, PCI_D0);
1087}
1088
1089/**
1090 * __pci_dev_set_current_state - Set current state of a PCI device
1091 * @dev: Device to handle
1092 * @data: pointer to state to be set
1093 */
1094static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1095{
1096        pci_power_t state = *(pci_power_t *)data;
1097
1098        dev->current_state = state;
1099        return 0;
1100}
1101
1102/**
1103 * pci_bus_set_current_state - Walk given bus and set current state of devices
1104 * @bus: Top bus of the subtree to walk.
1105 * @state: state to be set
1106 */
1107void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1108{
1109        if (bus)
1110                pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1111}
1112
1113/**
1114 * pci_set_power_state - Set the power state of a PCI device
1115 * @dev: PCI device to handle.
1116 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1117 *
1118 * Transition a device to a new power state, using the platform firmware and/or
1119 * the device's PCI PM registers.
1120 *
1121 * RETURN VALUE:
1122 * -EINVAL if the requested state is invalid.
1123 * -EIO if device does not support PCI PM or its PM capabilities register has a
1124 * wrong version, or device doesn't support the requested state.
1125 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1126 * 0 if device already is in the requested state.
1127 * 0 if the transition is to D3 but D3 is not supported.
1128 * 0 if device's power state has been successfully changed.
1129 */
1130int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1131{
1132        int error;
1133
1134        /* Bound the state we're entering */
1135        if (state > PCI_D3cold)
1136                state = PCI_D3cold;
1137        else if (state < PCI_D0)
1138                state = PCI_D0;
1139        else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1140
1141                /*
1142                 * If the device or the parent bridge do not support PCI
1143                 * PM, ignore the request if we're doing anything other
1144                 * than putting it into D0 (which would only happen on
1145                 * boot).
1146                 */
1147                return 0;
1148
1149        /* Check if we're already there */
1150        if (dev->current_state == state)
1151                return 0;
1152
1153        if (state == PCI_D0)
1154                return pci_power_up(dev);
1155
1156        /*
1157         * This device is quirked not to be put into D3, so don't put it in
1158         * D3
1159         */
1160        if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1161                return 0;
1162
1163        /*
1164         * To put device in D3cold, we put device into D3hot in native
1165         * way, then put device into D3cold with platform ops
1166         */
1167        error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
1168                                        PCI_D3hot : state);
1169
1170        if (pci_platform_power_transition(dev, state))
1171                return error;
1172
1173        /* Powering off a bridge may power off the whole hierarchy */
1174        if (state == PCI_D3cold)
1175                pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1176
1177        return 0;
1178}
1179EXPORT_SYMBOL(pci_set_power_state);
1180
1181/**
1182 * pci_choose_state - Choose the power state of a PCI device
1183 * @dev: PCI device to be suspended
1184 * @state: target sleep state for the whole system. This is the value
1185 *         that is passed to suspend() function.
1186 *
1187 * Returns PCI power state suitable for given device and given system
1188 * message.
1189 */
1190pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
1191{
1192        pci_power_t ret;
1193
1194        if (!dev->pm_cap)
1195                return PCI_D0;
1196
1197        ret = platform_pci_choose_state(dev);
1198        if (ret != PCI_POWER_ERROR)
1199                return ret;
1200
1201        switch (state.event) {
1202        case PM_EVENT_ON:
1203                return PCI_D0;
1204        case PM_EVENT_FREEZE:
1205        case PM_EVENT_PRETHAW:
1206                /* REVISIT both freeze and pre-thaw "should" use D0 */
1207        case PM_EVENT_SUSPEND:
1208        case PM_EVENT_HIBERNATE:
1209                return PCI_D3hot;
1210        default:
1211                pci_info(dev, "unrecognized suspend event %d\n",
1212                         state.event);
1213                BUG();
1214        }
1215        return PCI_D0;
1216}
1217EXPORT_SYMBOL(pci_choose_state);
1218
1219#define PCI_EXP_SAVE_REGS       7
1220
1221static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1222                                                       u16 cap, bool extended)
1223{
1224        struct pci_cap_saved_state *tmp;
1225
1226        hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1227                if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1228                        return tmp;
1229        }
1230        return NULL;
1231}
1232
1233struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1234{
1235        return _pci_find_saved_cap(dev, cap, false);
1236}
1237
1238struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1239{
1240        return _pci_find_saved_cap(dev, cap, true);
1241}
1242
1243static int pci_save_pcie_state(struct pci_dev *dev)
1244{
1245        int i = 0;
1246        struct pci_cap_saved_state *save_state;
1247        u16 *cap;
1248
1249        if (!pci_is_pcie(dev))
1250                return 0;
1251
1252        save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1253        if (!save_state) {
1254                pci_err(dev, "buffer not found in %s\n", __func__);
1255                return -ENOMEM;
1256        }
1257
1258        cap = (u16 *)&save_state->cap.data[0];
1259        pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1260        pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1261        pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1262        pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1263        pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1264        pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1265        pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1266
1267        return 0;
1268}
1269
1270static void pci_restore_pcie_state(struct pci_dev *dev)
1271{
1272        int i = 0;
1273        struct pci_cap_saved_state *save_state;
1274        u16 *cap;
1275
1276        save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1277        if (!save_state)
1278                return;
1279
1280        cap = (u16 *)&save_state->cap.data[0];
1281        pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1282        pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1283        pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1284        pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1285        pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1286        pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1287        pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1288}
1289
1290static int pci_save_pcix_state(struct pci_dev *dev)
1291{
1292        int pos;
1293        struct pci_cap_saved_state *save_state;
1294
1295        pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1296        if (!pos)
1297                return 0;
1298
1299        save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1300        if (!save_state) {
1301                pci_err(dev, "buffer not found in %s\n", __func__);
1302                return -ENOMEM;
1303        }
1304
1305        pci_read_config_word(dev, pos + PCI_X_CMD,
1306                             (u16 *)save_state->cap.data);
1307
1308        return 0;
1309}
1310
1311static void pci_restore_pcix_state(struct pci_dev *dev)
1312{
1313        int i = 0, pos;
1314        struct pci_cap_saved_state *save_state;
1315        u16 *cap;
1316
1317        save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1318        pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1319        if (!save_state || !pos)
1320                return;
1321        cap = (u16 *)&save_state->cap.data[0];
1322
1323        pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1324}
1325
1326static void pci_save_ltr_state(struct pci_dev *dev)
1327{
1328        int ltr;
1329        struct pci_cap_saved_state *save_state;
1330        u16 *cap;
1331
1332        if (!pci_is_pcie(dev))
1333                return;
1334
1335        ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1336        if (!ltr)
1337                return;
1338
1339        save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1340        if (!save_state) {
1341                pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1342                return;
1343        }
1344
1345        cap = (u16 *)&save_state->cap.data[0];
1346        pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++);
1347        pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++);
1348}
1349
1350static void pci_restore_ltr_state(struct pci_dev *dev)
1351{
1352        struct pci_cap_saved_state *save_state;
1353        int ltr;
1354        u16 *cap;
1355
1356        save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1357        ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1358        if (!save_state || !ltr)
1359                return;
1360
1361        cap = (u16 *)&save_state->cap.data[0];
1362        pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++);
1363        pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++);
1364}
1365
1366/**
1367 * pci_save_state - save the PCI configuration space of a device before
1368 *                  suspending
1369 * @dev: PCI device that we're dealing with
1370 */
1371int pci_save_state(struct pci_dev *dev)
1372{
1373        int i;
1374        /* XXX: 100% dword access ok here? */
1375        for (i = 0; i < 16; i++)
1376                pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1377        dev->state_saved = true;
1378
1379        i = pci_save_pcie_state(dev);
1380        if (i != 0)
1381                return i;
1382
1383        i = pci_save_pcix_state(dev);
1384        if (i != 0)
1385                return i;
1386
1387        pci_save_ltr_state(dev);
1388        pci_save_dpc_state(dev);
1389        pci_save_aer_state(dev);
1390        return pci_save_vc_state(dev);
1391}
1392EXPORT_SYMBOL(pci_save_state);
1393
1394static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1395                                     u32 saved_val, int retry, bool force)
1396{
1397        u32 val;
1398
1399        pci_read_config_dword(pdev, offset, &val);
1400        if (!force && val == saved_val)
1401                return;
1402
1403        for (;;) {
1404                pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1405                        offset, val, saved_val);
1406                pci_write_config_dword(pdev, offset, saved_val);
1407                if (retry-- <= 0)
1408                        return;
1409
1410                pci_read_config_dword(pdev, offset, &val);
1411                if (val == saved_val)
1412                        return;
1413
1414                mdelay(1);
1415        }
1416}
1417
1418static void pci_restore_config_space_range(struct pci_dev *pdev,
1419                                           int start, int end, int retry,
1420                                           bool force)
1421{
1422        int index;
1423
1424        for (index = end; index >= start; index--)
1425                pci_restore_config_dword(pdev, 4 * index,
1426                                         pdev->saved_config_space[index],
1427                                         retry, force);
1428}
1429
1430static void pci_restore_config_space(struct pci_dev *pdev)
1431{
1432        if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1433                pci_restore_config_space_range(pdev, 10, 15, 0, false);
1434                /* Restore BARs before the command register. */
1435                pci_restore_config_space_range(pdev, 4, 9, 10, false);
1436                pci_restore_config_space_range(pdev, 0, 3, 0, false);
1437        } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1438                pci_restore_config_space_range(pdev, 12, 15, 0, false);
1439
1440                /*
1441                 * Force rewriting of prefetch registers to avoid S3 resume
1442                 * issues on Intel PCI bridges that occur when these
1443                 * registers are not explicitly written.
1444                 */
1445                pci_restore_config_space_range(pdev, 9, 11, 0, true);
1446                pci_restore_config_space_range(pdev, 0, 8, 0, false);
1447        } else {
1448                pci_restore_config_space_range(pdev, 0, 15, 0, false);
1449        }
1450}
1451
1452static void pci_restore_rebar_state(struct pci_dev *pdev)
1453{
1454        unsigned int pos, nbars, i;
1455        u32 ctrl;
1456
1457        pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1458        if (!pos)
1459                return;
1460
1461        pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1462        nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1463                    PCI_REBAR_CTRL_NBAR_SHIFT;
1464
1465        for (i = 0; i < nbars; i++, pos += 8) {
1466                struct resource *res;
1467                int bar_idx, size;
1468
1469                pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1470                bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1471                res = pdev->resource + bar_idx;
1472                size = ilog2(resource_size(res)) - 20;
1473                ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1474                ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1475                pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1476        }
1477}
1478
1479/**
1480 * pci_restore_state - Restore the saved state of a PCI device
1481 * @dev: PCI device that we're dealing with
1482 */
1483void pci_restore_state(struct pci_dev *dev)
1484{
1485        if (!dev->state_saved)
1486                return;
1487
1488        /*
1489         * Restore max latencies (in the LTR capability) before enabling
1490         * LTR itself (in the PCIe capability).
1491         */
1492        pci_restore_ltr_state(dev);
1493
1494        pci_restore_pcie_state(dev);
1495        pci_restore_pasid_state(dev);
1496        pci_restore_pri_state(dev);
1497        pci_restore_ats_state(dev);
1498        pci_restore_vc_state(dev);
1499        pci_restore_rebar_state(dev);
1500        pci_restore_dpc_state(dev);
1501
1502        pci_cleanup_aer_error_status_regs(dev);
1503        pci_restore_aer_state(dev);
1504
1505        pci_restore_config_space(dev);
1506
1507        pci_restore_pcix_state(dev);
1508        pci_restore_msi_state(dev);
1509
1510        /* Restore ACS and IOV configuration state */
1511        pci_enable_acs(dev);
1512        pci_restore_iov_state(dev);
1513
1514        dev->state_saved = false;
1515}
1516EXPORT_SYMBOL(pci_restore_state);
1517
1518struct pci_saved_state {
1519        u32 config_space[16];
1520        struct pci_cap_saved_data cap[0];
1521};
1522
1523/**
1524 * pci_store_saved_state - Allocate and return an opaque struct containing
1525 *                         the device saved state.
1526 * @dev: PCI device that we're dealing with
1527 *
1528 * Return NULL if no state or error.
1529 */
1530struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1531{
1532        struct pci_saved_state *state;
1533        struct pci_cap_saved_state *tmp;
1534        struct pci_cap_saved_data *cap;
1535        size_t size;
1536
1537        if (!dev->state_saved)
1538                return NULL;
1539
1540        size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1541
1542        hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1543                size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1544
1545        state = kzalloc(size, GFP_KERNEL);
1546        if (!state)
1547                return NULL;
1548
1549        memcpy(state->config_space, dev->saved_config_space,
1550               sizeof(state->config_space));
1551
1552        cap = state->cap;
1553        hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1554                size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1555                memcpy(cap, &tmp->cap, len);
1556                cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1557        }
1558        /* Empty cap_save terminates list */
1559
1560        return state;
1561}
1562EXPORT_SYMBOL_GPL(pci_store_saved_state);
1563
1564/**
1565 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1566 * @dev: PCI device that we're dealing with
1567 * @state: Saved state returned from pci_store_saved_state()
1568 */
1569int pci_load_saved_state(struct pci_dev *dev,
1570                         struct pci_saved_state *state)
1571{
1572        struct pci_cap_saved_data *cap;
1573
1574        dev->state_saved = false;
1575
1576        if (!state)
1577                return 0;
1578
1579        memcpy(dev->saved_config_space, state->config_space,
1580               sizeof(state->config_space));
1581
1582        cap = state->cap;
1583        while (cap->size) {
1584                struct pci_cap_saved_state *tmp;
1585
1586                tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1587                if (!tmp || tmp->cap.size != cap->size)
1588                        return -EINVAL;
1589
1590                memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1591                cap = (struct pci_cap_saved_data *)((u8 *)cap +
1592                       sizeof(struct pci_cap_saved_data) + cap->size);
1593        }
1594
1595        dev->state_saved = true;
1596        return 0;
1597}
1598EXPORT_SYMBOL_GPL(pci_load_saved_state);
1599
1600/**
1601 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1602 *                                 and free the memory allocated for it.
1603 * @dev: PCI device that we're dealing with
1604 * @state: Pointer to saved state returned from pci_store_saved_state()
1605 */
1606int pci_load_and_free_saved_state(struct pci_dev *dev,
1607                                  struct pci_saved_state **state)
1608{
1609        int ret = pci_load_saved_state(dev, *state);
1610        kfree(*state);
1611        *state = NULL;
1612        return ret;
1613}
1614EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1615
1616int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1617{
1618        return pci_enable_resources(dev, bars);
1619}
1620
1621static int do_pci_enable_device(struct pci_dev *dev, int bars)
1622{
1623        int err;
1624        struct pci_dev *bridge;
1625        u16 cmd;
1626        u8 pin;
1627
1628        err = pci_set_power_state(dev, PCI_D0);
1629        if (err < 0 && err != -EIO)
1630                return err;
1631
1632        bridge = pci_upstream_bridge(dev);
1633        if (bridge)
1634                pcie_aspm_powersave_config_link(bridge);
1635
1636        err = pcibios_enable_device(dev, bars);
1637        if (err < 0)
1638                return err;
1639        pci_fixup_device(pci_fixup_enable, dev);
1640
1641        if (dev->msi_enabled || dev->msix_enabled)
1642                return 0;
1643
1644        pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1645        if (pin) {
1646                pci_read_config_word(dev, PCI_COMMAND, &cmd);
1647                if (cmd & PCI_COMMAND_INTX_DISABLE)
1648                        pci_write_config_word(dev, PCI_COMMAND,
1649                                              cmd & ~PCI_COMMAND_INTX_DISABLE);
1650        }
1651
1652        return 0;
1653}
1654
1655/**
1656 * pci_reenable_device - Resume abandoned device
1657 * @dev: PCI device to be resumed
1658 *
1659 * NOTE: This function is a backend of pci_default_resume() and is not supposed
1660 * to be called by normal code, write proper resume handler and use it instead.
1661 */
1662int pci_reenable_device(struct pci_dev *dev)
1663{
1664        if (pci_is_enabled(dev))
1665                return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1666        return 0;
1667}
1668EXPORT_SYMBOL(pci_reenable_device);
1669
1670static void pci_enable_bridge(struct pci_dev *dev)
1671{
1672        struct pci_dev *bridge;
1673        int retval;
1674
1675        bridge = pci_upstream_bridge(dev);
1676        if (bridge)
1677                pci_enable_bridge(bridge);
1678
1679        if (pci_is_enabled(dev)) {
1680                if (!dev->is_busmaster)
1681                        pci_set_master(dev);
1682                return;
1683        }
1684
1685        retval = pci_enable_device(dev);
1686        if (retval)
1687                pci_err(dev, "Error enabling bridge (%d), continuing\n",
1688                        retval);
1689        pci_set_master(dev);
1690}
1691
1692static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1693{
1694        struct pci_dev *bridge;
1695        int err;
1696        int i, bars = 0;
1697
1698        /*
1699         * Power state could be unknown at this point, either due to a fresh
1700         * boot or a device removal call.  So get the current power state
1701         * so that things like MSI message writing will behave as expected
1702         * (e.g. if the device really is in D0 at enable time).
1703         */
1704        if (dev->pm_cap) {
1705                u16 pmcsr;
1706                pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1707                dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1708        }
1709
1710        if (atomic_inc_return(&dev->enable_cnt) > 1)
1711                return 0;               /* already enabled */
1712
1713        bridge = pci_upstream_bridge(dev);
1714        if (bridge)
1715                pci_enable_bridge(bridge);
1716
1717        /* only skip sriov related */
1718        for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1719                if (dev->resource[i].flags & flags)
1720                        bars |= (1 << i);
1721        for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1722                if (dev->resource[i].flags & flags)
1723                        bars |= (1 << i);
1724
1725        err = do_pci_enable_device(dev, bars);
1726        if (err < 0)
1727                atomic_dec(&dev->enable_cnt);
1728        return err;
1729}
1730
1731/**
1732 * pci_enable_device_io - Initialize a device for use with IO space
1733 * @dev: PCI device to be initialized
1734 *
1735 * Initialize device before it's used by a driver. Ask low-level code
1736 * to enable I/O resources. Wake up the device if it was suspended.
1737 * Beware, this function can fail.
1738 */
1739int pci_enable_device_io(struct pci_dev *dev)
1740{
1741        return pci_enable_device_flags(dev, IORESOURCE_IO);
1742}
1743EXPORT_SYMBOL(pci_enable_device_io);
1744
1745/**
1746 * pci_enable_device_mem - Initialize a device for use with Memory space
1747 * @dev: PCI device to be initialized
1748 *
1749 * Initialize device before it's used by a driver. Ask low-level code
1750 * to enable Memory resources. Wake up the device if it was suspended.
1751 * Beware, this function can fail.
1752 */
1753int pci_enable_device_mem(struct pci_dev *dev)
1754{
1755        return pci_enable_device_flags(dev, IORESOURCE_MEM);
1756}
1757EXPORT_SYMBOL(pci_enable_device_mem);
1758
1759/**
1760 * pci_enable_device - Initialize device before it's used by a driver.
1761 * @dev: PCI device to be initialized
1762 *
1763 * Initialize device before it's used by a driver. Ask low-level code
1764 * to enable I/O and memory. Wake up the device if it was suspended.
1765 * Beware, this function can fail.
1766 *
1767 * Note we don't actually enable the device many times if we call
1768 * this function repeatedly (we just increment the count).
1769 */
1770int pci_enable_device(struct pci_dev *dev)
1771{
1772        return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1773}
1774EXPORT_SYMBOL(pci_enable_device);
1775
1776/*
1777 * Managed PCI resources.  This manages device on/off, INTx/MSI/MSI-X
1778 * on/off and BAR regions.  pci_dev itself records MSI/MSI-X status, so
1779 * there's no need to track it separately.  pci_devres is initialized
1780 * when a device is enabled using managed PCI device enable interface.
1781 */
1782struct pci_devres {
1783        unsigned int enabled:1;
1784        unsigned int pinned:1;
1785        unsigned int orig_intx:1;
1786        unsigned int restore_intx:1;
1787        unsigned int mwi:1;
1788        u32 region_mask;
1789};
1790
1791static void pcim_release(struct device *gendev, void *res)
1792{
1793        struct pci_dev *dev = to_pci_dev(gendev);
1794        struct pci_devres *this = res;
1795        int i;
1796
1797        if (dev->msi_enabled)
1798                pci_disable_msi(dev);
1799        if (dev->msix_enabled)
1800                pci_disable_msix(dev);
1801
1802        for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1803                if (this->region_mask & (1 << i))
1804                        pci_release_region(dev, i);
1805
1806        if (this->mwi)
1807                pci_clear_mwi(dev);
1808
1809        if (this->restore_intx)
1810                pci_intx(dev, this->orig_intx);
1811
1812        if (this->enabled && !this->pinned)
1813                pci_disable_device(dev);
1814}
1815
1816static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1817{
1818        struct pci_devres *dr, *new_dr;
1819
1820        dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1821        if (dr)
1822                return dr;
1823
1824        new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1825        if (!new_dr)
1826                return NULL;
1827        return devres_get(&pdev->dev, new_dr, NULL, NULL);
1828}
1829
1830static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1831{
1832        if (pci_is_managed(pdev))
1833                return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1834        return NULL;
1835}
1836
1837/**
1838 * pcim_enable_device - Managed pci_enable_device()
1839 * @pdev: PCI device to be initialized
1840 *
1841 * Managed pci_enable_device().
1842 */
1843int pcim_enable_device(struct pci_dev *pdev)
1844{
1845        struct pci_devres *dr;
1846        int rc;
1847
1848        dr = get_pci_dr(pdev);
1849        if (unlikely(!dr))
1850                return -ENOMEM;
1851        if (dr->enabled)
1852                return 0;
1853
1854        rc = pci_enable_device(pdev);
1855        if (!rc) {
1856                pdev->is_managed = 1;
1857                dr->enabled = 1;
1858        }
1859        return rc;
1860}
1861EXPORT_SYMBOL(pcim_enable_device);
1862
1863/**
1864 * pcim_pin_device - Pin managed PCI device
1865 * @pdev: PCI device to pin
1866 *
1867 * Pin managed PCI device @pdev.  Pinned device won't be disabled on
1868 * driver detach.  @pdev must have been enabled with
1869 * pcim_enable_device().
1870 */
1871void pcim_pin_device(struct pci_dev *pdev)
1872{
1873        struct pci_devres *dr;
1874
1875        dr = find_pci_dr(pdev);
1876        WARN_ON(!dr || !dr->enabled);
1877        if (dr)
1878                dr->pinned = 1;
1879}
1880EXPORT_SYMBOL(pcim_pin_device);
1881
1882/*
1883 * pcibios_add_device - provide arch specific hooks when adding device dev
1884 * @dev: the PCI device being added
1885 *
1886 * Permits the platform to provide architecture specific functionality when
1887 * devices are added. This is the default implementation. Architecture
1888 * implementations can override this.
1889 */
1890int __weak pcibios_add_device(struct pci_dev *dev)
1891{
1892        return 0;
1893}
1894
1895/**
1896 * pcibios_release_device - provide arch specific hooks when releasing
1897 *                          device dev
1898 * @dev: the PCI device being released
1899 *
1900 * Permits the platform to provide architecture specific functionality when
1901 * devices are released. This is the default implementation. Architecture
1902 * implementations can override this.
1903 */
1904void __weak pcibios_release_device(struct pci_dev *dev) {}
1905
1906/**
1907 * pcibios_disable_device - disable arch specific PCI resources for device dev
1908 * @dev: the PCI device to disable
1909 *
1910 * Disables architecture specific PCI resources for the device. This
1911 * is the default implementation. Architecture implementations can
1912 * override this.
1913 */
1914void __weak pcibios_disable_device(struct pci_dev *dev) {}
1915
1916/**
1917 * pcibios_penalize_isa_irq - penalize an ISA IRQ
1918 * @irq: ISA IRQ to penalize
1919 * @active: IRQ active or not
1920 *
1921 * Permits the platform to provide architecture-specific functionality when
1922 * penalizing ISA IRQs. This is the default implementation. Architecture
1923 * implementations can override this.
1924 */
1925void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1926
1927static void do_pci_disable_device(struct pci_dev *dev)
1928{
1929        u16 pci_command;
1930
1931        pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1932        if (pci_command & PCI_COMMAND_MASTER) {
1933                pci_command &= ~PCI_COMMAND_MASTER;
1934                pci_write_config_word(dev, PCI_COMMAND, pci_command);
1935        }
1936
1937        pcibios_disable_device(dev);
1938}
1939
1940/**
1941 * pci_disable_enabled_device - Disable device without updating enable_cnt
1942 * @dev: PCI device to disable
1943 *
1944 * NOTE: This function is a backend of PCI power management routines and is
1945 * not supposed to be called drivers.
1946 */
1947void pci_disable_enabled_device(struct pci_dev *dev)
1948{
1949        if (pci_is_enabled(dev))
1950                do_pci_disable_device(dev);
1951}
1952
1953/**
1954 * pci_disable_device - Disable PCI device after use
1955 * @dev: PCI device to be disabled
1956 *
1957 * Signal to the system that the PCI device is not in use by the system
1958 * anymore.  This only involves disabling PCI bus-mastering, if active.
1959 *
1960 * Note we don't actually disable the device until all callers of
1961 * pci_enable_device() have called pci_disable_device().
1962 */
1963void pci_disable_device(struct pci_dev *dev)
1964{
1965        struct pci_devres *dr;
1966
1967        dr = find_pci_dr(dev);
1968        if (dr)
1969                dr->enabled = 0;
1970
1971        dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1972                      "disabling already-disabled device");
1973
1974        if (atomic_dec_return(&dev->enable_cnt) != 0)
1975                return;
1976
1977        do_pci_disable_device(dev);
1978
1979        dev->is_busmaster = 0;
1980}
1981EXPORT_SYMBOL(pci_disable_device);
1982
1983/**
1984 * pcibios_set_pcie_reset_state - set reset state for device dev
1985 * @dev: the PCIe device reset
1986 * @state: Reset state to enter into
1987 *
1988 * Set the PCIe reset state for the device. This is the default
1989 * implementation. Architecture implementations can override this.
1990 */
1991int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1992                                        enum pcie_reset_state state)
1993{
1994        return -EINVAL;
1995}
1996
1997/**
1998 * pci_set_pcie_reset_state - set reset state for device dev
1999 * @dev: the PCIe device reset
2000 * @state: Reset state to enter into
2001 *
2002 * Sets the PCI reset state for the device.
2003 */
2004int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2005{
2006        return pcibios_set_pcie_reset_state(dev, state);
2007}
2008EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2009
2010/**
2011 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2012 * @dev: PCIe root port or event collector.
2013 */
2014void pcie_clear_root_pme_status(struct pci_dev *dev)
2015{
2016        pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2017}
2018
2019/**
2020 * pci_check_pme_status - Check if given device has generated PME.
2021 * @dev: Device to check.
2022 *
2023 * Check the PME status of the device and if set, clear it and clear PME enable
2024 * (if set).  Return 'true' if PME status and PME enable were both set or
2025 * 'false' otherwise.
2026 */
2027bool pci_check_pme_status(struct pci_dev *dev)
2028{
2029        int pmcsr_pos;
2030        u16 pmcsr;
2031        bool ret = false;
2032
2033        if (!dev->pm_cap)
2034                return false;
2035
2036        pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2037        pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2038        if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2039                return false;
2040
2041        /* Clear PME status. */
2042        pmcsr |= PCI_PM_CTRL_PME_STATUS;
2043        if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2044                /* Disable PME to avoid interrupt flood. */
2045                pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2046                ret = true;
2047        }
2048
2049        pci_write_config_word(dev, pmcsr_pos, pmcsr);
2050
2051        return ret;
2052}
2053
2054/**
2055 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2056 * @dev: Device to handle.
2057 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2058 *
2059 * Check if @dev has generated PME and queue a resume request for it in that
2060 * case.
2061 */
2062static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2063{
2064        if (pme_poll_reset && dev->pme_poll)
2065                dev->pme_poll = false;
2066
2067        if (pci_check_pme_status(dev)) {
2068                pci_wakeup_event(dev);
2069                pm_request_resume(&dev->dev);
2070        }
2071        return 0;
2072}
2073
2074/**
2075 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2076 * @bus: Top bus of the subtree to walk.
2077 */
2078void pci_pme_wakeup_bus(struct pci_bus *bus)
2079{
2080        if (bus)
2081                pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2082}
2083
2084
2085/**
2086 * pci_pme_capable - check the capability of PCI device to generate PME#
2087 * @dev: PCI device to handle.
2088 * @state: PCI state from which device will issue PME#.
2089 */
2090bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2091{
2092        if (!dev->pm_cap)
2093                return false;
2094
2095        return !!(dev->pme_support & (1 << state));
2096}
2097EXPORT_SYMBOL(pci_pme_capable);
2098
2099static void pci_pme_list_scan(struct work_struct *work)
2100{
2101        struct pci_pme_device *pme_dev, *n;
2102
2103        mutex_lock(&pci_pme_list_mutex);
2104        list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2105                if (pme_dev->dev->pme_poll) {
2106                        struct pci_dev *bridge;
2107
2108                        bridge = pme_dev->dev->bus->self;
2109                        /*
2110                         * If bridge is in low power state, the
2111                         * configuration space of subordinate devices
2112                         * may be not accessible
2113                         */
2114                        if (bridge && bridge->current_state != PCI_D0)
2115                                continue;
2116                        /*
2117                         * If the device is in D3cold it should not be
2118                         * polled either.
2119                         */
2120                        if (pme_dev->dev->current_state == PCI_D3cold)
2121                                continue;
2122
2123                        pci_pme_wakeup(pme_dev->dev, NULL);
2124                } else {
2125                        list_del(&pme_dev->list);
2126                        kfree(pme_dev);
2127                }
2128        }
2129        if (!list_empty(&pci_pme_list))
2130                queue_delayed_work(system_freezable_wq, &pci_pme_work,
2131                                   msecs_to_jiffies(PME_TIMEOUT));
2132        mutex_unlock(&pci_pme_list_mutex);
2133}
2134
2135static void __pci_pme_active(struct pci_dev *dev, bool enable)
2136{
2137        u16 pmcsr;
2138
2139        if (!dev->pme_support)
2140                return;
2141
2142        pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2143        /* Clear PME_Status by writing 1 to it and enable PME# */
2144        pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2145        if (!enable)
2146                pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2147
2148        pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2149}
2150
2151/**
2152 * pci_pme_restore - Restore PME configuration after config space restore.
2153 * @dev: PCI device to update.
2154 */
2155void pci_pme_restore(struct pci_dev *dev)
2156{
2157        u16 pmcsr;
2158
2159        if (!dev->pme_support)
2160                return;
2161
2162        pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2163        if (dev->wakeup_prepared) {
2164                pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2165                pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2166        } else {
2167                pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2168                pmcsr |= PCI_PM_CTRL_PME_STATUS;
2169        }
2170        pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2171}
2172
2173/**
2174 * pci_pme_active - enable or disable PCI device's PME# function
2175 * @dev: PCI device to handle.
2176 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2177 *
2178 * The caller must verify that the device is capable of generating PME# before
2179 * calling this function with @enable equal to 'true'.
2180 */
2181void pci_pme_active(struct pci_dev *dev, bool enable)
2182{
2183        __pci_pme_active(dev, enable);
2184
2185        /*
2186         * PCI (as opposed to PCIe) PME requires that the device have
2187         * its PME# line hooked up correctly. Not all hardware vendors
2188         * do this, so the PME never gets delivered and the device
2189         * remains asleep. The easiest way around this is to
2190         * periodically walk the list of suspended devices and check
2191         * whether any have their PME flag set. The assumption is that
2192         * we'll wake up often enough anyway that this won't be a huge
2193         * hit, and the power savings from the devices will still be a
2194         * win.
2195         *
2196         * Although PCIe uses in-band PME message instead of PME# line
2197         * to report PME, PME does not work for some PCIe devices in
2198         * reality.  For example, there are devices that set their PME
2199         * status bits, but don't really bother to send a PME message;
2200         * there are PCI Express Root Ports that don't bother to
2201         * trigger interrupts when they receive PME messages from the
2202         * devices below.  So PME poll is used for PCIe devices too.
2203         */
2204
2205        if (dev->pme_poll) {
2206                struct pci_pme_device *pme_dev;
2207                if (enable) {
2208                        pme_dev = kmalloc(sizeof(struct pci_pme_device),
2209                                          GFP_KERNEL);
2210                        if (!pme_dev) {
2211                                pci_warn(dev, "can't enable PME#\n");
2212                                return;
2213                        }
2214                        pme_dev->dev = dev;
2215                        mutex_lock(&pci_pme_list_mutex);
2216                        list_add(&pme_dev->list, &pci_pme_list);
2217                        if (list_is_singular(&pci_pme_list))
2218                                queue_delayed_work(system_freezable_wq,
2219                                                   &pci_pme_work,
2220                                                   msecs_to_jiffies(PME_TIMEOUT));
2221                        mutex_unlock(&pci_pme_list_mutex);
2222                } else {
2223                        mutex_lock(&pci_pme_list_mutex);
2224                        list_for_each_entry(pme_dev, &pci_pme_list, list) {
2225                                if (pme_dev->dev == dev) {
2226                                        list_del(&pme_dev->list);
2227                                        kfree(pme_dev);
2228                                        break;
2229                                }
2230                        }
2231                        mutex_unlock(&pci_pme_list_mutex);
2232                }
2233        }
2234
2235        pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2236}
2237EXPORT_SYMBOL(pci_pme_active);
2238
2239/**
2240 * __pci_enable_wake - enable PCI device as wakeup event source
2241 * @dev: PCI device affected
2242 * @state: PCI state from which device will issue wakeup events
2243 * @enable: True to enable event generation; false to disable
2244 *
2245 * This enables the device as a wakeup event source, or disables it.
2246 * When such events involves platform-specific hooks, those hooks are
2247 * called automatically by this routine.
2248 *
2249 * Devices with legacy power management (no standard PCI PM capabilities)
2250 * always require such platform hooks.
2251 *
2252 * RETURN VALUE:
2253 * 0 is returned on success
2254 * -EINVAL is returned if device is not supposed to wake up the system
2255 * Error code depending on the platform is returned if both the platform and
2256 * the native mechanism fail to enable the generation of wake-up events
2257 */
2258static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2259{
2260        int ret = 0;
2261
2262        /*
2263         * Bridges that are not power-manageable directly only signal
2264         * wakeup on behalf of subordinate devices which is set up
2265         * elsewhere, so skip them. However, bridges that are
2266         * power-manageable may signal wakeup for themselves (for example,
2267         * on a hotplug event) and they need to be covered here.
2268         */
2269        if (!pci_power_manageable(dev))
2270                return 0;
2271
2272        /* Don't do the same thing twice in a row for one device. */
2273        if (!!enable == !!dev->wakeup_prepared)
2274                return 0;
2275
2276        /*
2277         * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2278         * Anderson we should be doing PME# wake enable followed by ACPI wake
2279         * enable.  To disable wake-up we call the platform first, for symmetry.
2280         */
2281
2282        if (enable) {
2283                int error;
2284
2285                if (pci_pme_capable(dev, state))
2286                        pci_pme_active(dev, true);
2287                else
2288                        ret = 1;
2289                error = platform_pci_set_wakeup(dev, true);
2290                if (ret)
2291                        ret = error;
2292                if (!ret)
2293                        dev->wakeup_prepared = true;
2294        } else {
2295                platform_pci_set_wakeup(dev, false);
2296                pci_pme_active(dev, false);
2297                dev->wakeup_prepared = false;
2298        }
2299
2300        return ret;
2301}
2302
2303/**
2304 * pci_enable_wake - change wakeup settings for a PCI device
2305 * @pci_dev: Target device
2306 * @state: PCI state from which device will issue wakeup events
2307 * @enable: Whether or not to enable event generation
2308 *
2309 * If @enable is set, check device_may_wakeup() for the device before calling
2310 * __pci_enable_wake() for it.
2311 */
2312int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2313{
2314        if (enable && !device_may_wakeup(&pci_dev->dev))
2315                return -EINVAL;
2316
2317        return __pci_enable_wake(pci_dev, state, enable);
2318}
2319EXPORT_SYMBOL(pci_enable_wake);
2320
2321/**
2322 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2323 * @dev: PCI device to prepare
2324 * @enable: True to enable wake-up event generation; false to disable
2325 *
2326 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2327 * and this function allows them to set that up cleanly - pci_enable_wake()
2328 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2329 * ordering constraints.
2330 *
2331 * This function only returns error code if the device is not allowed to wake
2332 * up the system from sleep or it is not capable of generating PME# from both
2333 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2334 */
2335int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2336{
2337        return pci_pme_capable(dev, PCI_D3cold) ?
2338                        pci_enable_wake(dev, PCI_D3cold, enable) :
2339                        pci_enable_wake(dev, PCI_D3hot, enable);
2340}
2341EXPORT_SYMBOL(pci_wake_from_d3);
2342
2343/**
2344 * pci_target_state - find an appropriate low power state for a given PCI dev
2345 * @dev: PCI device
2346 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2347 *
2348 * Use underlying platform code to find a supported low power state for @dev.
2349 * If the platform can't manage @dev, return the deepest state from which it
2350 * can generate wake events, based on any available PME info.
2351 */
2352static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2353{
2354        pci_power_t target_state = PCI_D3hot;
2355
2356        if (platform_pci_power_manageable(dev)) {
2357                /*
2358                 * Call the platform to find the target state for the device.
2359                 */
2360                pci_power_t state = platform_pci_choose_state(dev);
2361
2362                switch (state) {
2363                case PCI_POWER_ERROR:
2364                case PCI_UNKNOWN:
2365                        break;
2366                case PCI_D1:
2367                case PCI_D2:
2368                        if (pci_no_d1d2(dev))
2369                                break;
2370                        /* else, fall through */
2371                default:
2372                        target_state = state;
2373                }
2374
2375                return target_state;
2376        }
2377
2378        if (!dev->pm_cap)
2379                target_state = PCI_D0;
2380
2381        /*
2382         * If the device is in D3cold even though it's not power-manageable by
2383         * the platform, it may have been powered down by non-standard means.
2384         * Best to let it slumber.
2385         */
2386        if (dev->current_state == PCI_D3cold)
2387                target_state = PCI_D3cold;
2388
2389        if (wakeup) {
2390                /*
2391                 * Find the deepest state from which the device can generate
2392                 * PME#.
2393                 */
2394                if (dev->pme_support) {
2395                        while (target_state
2396                              && !(dev->pme_support & (1 << target_state)))
2397                                target_state--;
2398                }
2399        }
2400
2401        return target_state;
2402}
2403
2404/**
2405 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2406 *                        into a sleep state
2407 * @dev: Device to handle.
2408 *
2409 * Choose the power state appropriate for the device depending on whether
2410 * it can wake up the system and/or is power manageable by the platform
2411 * (PCI_D3hot is the default) and put the device into that state.
2412 */
2413int pci_prepare_to_sleep(struct pci_dev *dev)
2414{
2415        bool wakeup = device_may_wakeup(&dev->dev);
2416        pci_power_t target_state = pci_target_state(dev, wakeup);
2417        int error;
2418
2419        if (target_state == PCI_POWER_ERROR)
2420                return -EIO;
2421
2422        pci_enable_wake(dev, target_state, wakeup);
2423
2424        error = pci_set_power_state(dev, target_state);
2425
2426        if (error)
2427                pci_enable_wake(dev, target_state, false);
2428
2429        return error;
2430}
2431EXPORT_SYMBOL(pci_prepare_to_sleep);
2432
2433/**
2434 * pci_back_from_sleep - turn PCI device on during system-wide transition
2435 *                       into working state
2436 * @dev: Device to handle.
2437 *
2438 * Disable device's system wake-up capability and put it into D0.
2439 */
2440int pci_back_from_sleep(struct pci_dev *dev)
2441{
2442        pci_enable_wake(dev, PCI_D0, false);
2443        return pci_set_power_state(dev, PCI_D0);
2444}
2445EXPORT_SYMBOL(pci_back_from_sleep);
2446
2447/**
2448 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2449 * @dev: PCI device being suspended.
2450 *
2451 * Prepare @dev to generate wake-up events at run time and put it into a low
2452 * power state.
2453 */
2454int pci_finish_runtime_suspend(struct pci_dev *dev)
2455{
2456        pci_power_t target_state;
2457        int error;
2458
2459        target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2460        if (target_state == PCI_POWER_ERROR)
2461                return -EIO;
2462
2463        dev->runtime_d3cold = target_state == PCI_D3cold;
2464
2465        __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2466
2467        error = pci_set_power_state(dev, target_state);
2468
2469        if (error) {
2470                pci_enable_wake(dev, target_state, false);
2471                dev->runtime_d3cold = false;
2472        }
2473
2474        return error;
2475}
2476
2477/**
2478 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2479 * @dev: Device to check.
2480 *
2481 * Return true if the device itself is capable of generating wake-up events
2482 * (through the platform or using the native PCIe PME) or if the device supports
2483 * PME and one of its upstream bridges can generate wake-up events.
2484 */
2485bool pci_dev_run_wake(struct pci_dev *dev)
2486{
2487        struct pci_bus *bus = dev->bus;
2488
2489        if (!dev->pme_support)
2490                return false;
2491
2492        /* PME-capable in principle, but not from the target power state */
2493        if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2494                return false;
2495
2496        if (device_can_wakeup(&dev->dev))
2497                return true;
2498
2499        while (bus->parent) {
2500                struct pci_dev *bridge = bus->self;
2501
2502                if (device_can_wakeup(&bridge->dev))
2503                        return true;
2504
2505                bus = bus->parent;
2506        }
2507
2508        /* We have reached the root bus. */
2509        if (bus->bridge)
2510                return device_can_wakeup(bus->bridge);
2511
2512        return false;
2513}
2514EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2515
2516/**
2517 * pci_dev_need_resume - Check if it is necessary to resume the device.
2518 * @pci_dev: Device to check.
2519 *
2520 * Return 'true' if the device is not runtime-suspended or it has to be
2521 * reconfigured due to wakeup settings difference between system and runtime
2522 * suspend, or the current power state of it is not suitable for the upcoming
2523 * (system-wide) transition.
2524 */
2525bool pci_dev_need_resume(struct pci_dev *pci_dev)
2526{
2527        struct device *dev = &pci_dev->dev;
2528        pci_power_t target_state;
2529
2530        if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2531                return true;
2532
2533        target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2534
2535        /*
2536         * If the earlier platform check has not triggered, D3cold is just power
2537         * removal on top of D3hot, so no need to resume the device in that
2538         * case.
2539         */
2540        return target_state != pci_dev->current_state &&
2541                target_state != PCI_D3cold &&
2542                pci_dev->current_state != PCI_D3hot;
2543}
2544
2545/**
2546 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2547 * @pci_dev: Device to check.
2548 *
2549 * If the device is suspended and it is not configured for system wakeup,
2550 * disable PME for it to prevent it from waking up the system unnecessarily.
2551 *
2552 * Note that if the device's power state is D3cold and the platform check in
2553 * pci_dev_need_resume() has not triggered, the device's configuration need not
2554 * be changed.
2555 */
2556void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2557{
2558        struct device *dev = &pci_dev->dev;
2559
2560        spin_lock_irq(&dev->power.lock);
2561
2562        if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2563            pci_dev->current_state < PCI_D3cold)
2564                __pci_pme_active(pci_dev, false);
2565
2566        spin_unlock_irq(&dev->power.lock);
2567}
2568
2569/**
2570 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2571 * @pci_dev: Device to handle.
2572 *
2573 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2574 * it might have been disabled during the prepare phase of system suspend if
2575 * the device was not configured for system wakeup.
2576 */
2577void pci_dev_complete_resume(struct pci_dev *pci_dev)
2578{
2579        struct device *dev = &pci_dev->dev;
2580
2581        if (!pci_dev_run_wake(pci_dev))
2582                return;
2583
2584        spin_lock_irq(&dev->power.lock);
2585
2586        if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2587                __pci_pme_active(pci_dev, true);
2588
2589        spin_unlock_irq(&dev->power.lock);
2590}
2591
2592void pci_config_pm_runtime_get(struct pci_dev *pdev)
2593{
2594        struct device *dev = &pdev->dev;
2595        struct device *parent = dev->parent;
2596
2597        if (parent)
2598                pm_runtime_get_sync(parent);
2599        pm_runtime_get_noresume(dev);
2600        /*
2601         * pdev->current_state is set to PCI_D3cold during suspending,
2602         * so wait until suspending completes
2603         */
2604        pm_runtime_barrier(dev);
2605        /*
2606         * Only need to resume devices in D3cold, because config
2607         * registers are still accessible for devices suspended but
2608         * not in D3cold.
2609         */
2610        if (pdev->current_state == PCI_D3cold)
2611                pm_runtime_resume(dev);
2612}
2613
2614void pci_config_pm_runtime_put(struct pci_dev *pdev)
2615{
2616        struct device *dev = &pdev->dev;
2617        struct device *parent = dev->parent;
2618
2619        pm_runtime_put(dev);
2620        if (parent)
2621                pm_runtime_put_sync(parent);
2622}
2623
2624static const struct dmi_system_id bridge_d3_blacklist[] = {
2625#ifdef CONFIG_X86
2626        {
2627                /*
2628                 * Gigabyte X299 root port is not marked as hotplug capable
2629                 * which allows Linux to power manage it.  However, this
2630                 * confuses the BIOS SMI handler so don't power manage root
2631                 * ports on that system.
2632                 */
2633                .ident = "X299 DESIGNARE EX-CF",
2634                .matches = {
2635                        DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2636                        DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2637                },
2638        },
2639#endif
2640        { }
2641};
2642
2643/**
2644 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2645 * @bridge: Bridge to check
2646 *
2647 * This function checks if it is possible to move the bridge to D3.
2648 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2649 */
2650bool pci_bridge_d3_possible(struct pci_dev *bridge)
2651{
2652        if (!pci_is_pcie(bridge))
2653                return false;
2654
2655        switch (pci_pcie_type(bridge)) {
2656        case PCI_EXP_TYPE_ROOT_PORT:
2657        case PCI_EXP_TYPE_UPSTREAM:
2658        case PCI_EXP_TYPE_DOWNSTREAM:
2659                if (pci_bridge_d3_disable)
2660                        return false;
2661
2662                /*
2663                 * Hotplug ports handled by firmware in System Management Mode
2664                 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2665                 */
2666                if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2667                        return false;
2668
2669                if (pci_bridge_d3_force)
2670                        return true;
2671
2672                /* Even the oldest 2010 Thunderbolt controller supports D3. */
2673                if (bridge->is_thunderbolt)
2674                        return true;
2675
2676                /* Platform might know better if the bridge supports D3 */
2677                if (platform_pci_bridge_d3(bridge))
2678                        return true;
2679
2680                /*
2681                 * Hotplug ports handled natively by the OS were not validated
2682                 * by vendors for runtime D3 at least until 2018 because there
2683                 * was no OS support.
2684                 */
2685                if (bridge->is_hotplug_bridge)
2686                        return false;
2687
2688                if (dmi_check_system(bridge_d3_blacklist))
2689                        return false;
2690
2691                /*
2692                 * It should be safe to put PCIe ports from 2015 or newer
2693                 * to D3.
2694                 */
2695                if (dmi_get_bios_year() >= 2015)
2696                        return true;
2697                break;
2698        }
2699
2700        return false;
2701}
2702
2703static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2704{
2705        bool *d3cold_ok = data;
2706
2707        if (/* The device needs to be allowed to go D3cold ... */
2708            dev->no_d3cold || !dev->d3cold_allowed ||
2709
2710            /* ... and if it is wakeup capable to do so from D3cold. */
2711            (device_may_wakeup(&dev->dev) &&
2712             !pci_pme_capable(dev, PCI_D3cold)) ||
2713
2714            /* If it is a bridge it must be allowed to go to D3. */
2715            !pci_power_manageable(dev))
2716
2717                *d3cold_ok = false;
2718
2719        return !*d3cold_ok;
2720}
2721
2722/*
2723 * pci_bridge_d3_update - Update bridge D3 capabilities
2724 * @dev: PCI device which is changed
2725 *
2726 * Update upstream bridge PM capabilities accordingly depending on if the
2727 * device PM configuration was changed or the device is being removed.  The
2728 * change is also propagated upstream.
2729 */
2730void pci_bridge_d3_update(struct pci_dev *dev)
2731{
2732        bool remove = !device_is_registered(&dev->dev);
2733        struct pci_dev *bridge;
2734        bool d3cold_ok = true;
2735
2736        bridge = pci_upstream_bridge(dev);
2737        if (!bridge || !pci_bridge_d3_possible(bridge))
2738                return;
2739
2740        /*
2741         * If D3 is currently allowed for the bridge, removing one of its
2742         * children won't change that.
2743         */
2744        if (remove && bridge->bridge_d3)
2745                return;
2746
2747        /*
2748         * If D3 is currently allowed for the bridge and a child is added or
2749         * changed, disallowance of D3 can only be caused by that child, so
2750         * we only need to check that single device, not any of its siblings.
2751         *
2752         * If D3 is currently not allowed for the bridge, checking the device
2753         * first may allow us to skip checking its siblings.
2754         */
2755        if (!remove)
2756                pci_dev_check_d3cold(dev, &d3cold_ok);
2757
2758        /*
2759         * If D3 is currently not allowed for the bridge, this may be caused
2760         * either by the device being changed/removed or any of its siblings,
2761         * so we need to go through all children to find out if one of them
2762         * continues to block D3.
2763         */
2764        if (d3cold_ok && !bridge->bridge_d3)
2765                pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2766                             &d3cold_ok);
2767
2768        if (bridge->bridge_d3 != d3cold_ok) {
2769                bridge->bridge_d3 = d3cold_ok;
2770                /* Propagate change to upstream bridges */
2771                pci_bridge_d3_update(bridge);
2772        }
2773}
2774
2775/**
2776 * pci_d3cold_enable - Enable D3cold for device
2777 * @dev: PCI device to handle
2778 *
2779 * This function can be used in drivers to enable D3cold from the device
2780 * they handle.  It also updates upstream PCI bridge PM capabilities
2781 * accordingly.
2782 */
2783void pci_d3cold_enable(struct pci_dev *dev)
2784{
2785        if (dev->no_d3cold) {
2786                dev->no_d3cold = false;
2787                pci_bridge_d3_update(dev);
2788        }
2789}
2790EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2791
2792/**
2793 * pci_d3cold_disable - Disable D3cold for device
2794 * @dev: PCI device to handle
2795 *
2796 * This function can be used in drivers to disable D3cold from the device
2797 * they handle.  It also updates upstream PCI bridge PM capabilities
2798 * accordingly.
2799 */
2800void pci_d3cold_disable(struct pci_dev *dev)
2801{
2802        if (!dev->no_d3cold) {
2803                dev->no_d3cold = true;
2804                pci_bridge_d3_update(dev);
2805        }
2806}
2807EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2808
2809/**
2810 * pci_pm_init - Initialize PM functions of given PCI device
2811 * @dev: PCI device to handle.
2812 */
2813void pci_pm_init(struct pci_dev *dev)
2814{
2815        int pm;
2816        u16 status;
2817        u16 pmc;
2818
2819        pm_runtime_forbid(&dev->dev);
2820        pm_runtime_set_active(&dev->dev);
2821        pm_runtime_enable(&dev->dev);
2822        device_enable_async_suspend(&dev->dev);
2823        dev->wakeup_prepared = false;
2824
2825        dev->pm_cap = 0;
2826        dev->pme_support = 0;
2827
2828        /* find PCI PM capability in list */
2829        pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2830        if (!pm)
2831                return;
2832        /* Check device's ability to generate PME# */
2833        pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2834
2835        if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2836                pci_err(dev, "unsupported PM cap regs version (%u)\n",
2837                        pmc & PCI_PM_CAP_VER_MASK);
2838                return;
2839        }
2840
2841        dev->pm_cap = pm;
2842        dev->d3_delay = PCI_PM_D3_WAIT;
2843        dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2844        dev->bridge_d3 = pci_bridge_d3_possible(dev);
2845        dev->d3cold_allowed = true;
2846
2847        dev->d1_support = false;
2848        dev->d2_support = false;
2849        if (!pci_no_d1d2(dev)) {
2850                if (pmc & PCI_PM_CAP_D1)
2851                        dev->d1_support = true;
2852                if (pmc & PCI_PM_CAP_D2)
2853                        dev->d2_support = true;
2854
2855                if (dev->d1_support || dev->d2_support)
2856                        pci_info(dev, "supports%s%s\n",
2857                                   dev->d1_support ? " D1" : "",
2858                                   dev->d2_support ? " D2" : "");
2859        }
2860
2861        pmc &= PCI_PM_CAP_PME_MASK;
2862        if (pmc) {
2863                pci_info(dev, "PME# supported from%s%s%s%s%s\n",
2864                         (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2865                         (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2866                         (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2867                         (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2868                         (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2869                dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2870                dev->pme_poll = true;
2871                /*
2872                 * Make device's PM flags reflect the wake-up capability, but
2873                 * let the user space enable it to wake up the system as needed.
2874                 */
2875                device_set_wakeup_capable(&dev->dev, true);
2876                /* Disable the PME# generation functionality */
2877                pci_pme_active(dev, false);
2878        }
2879
2880        pci_read_config_word(dev, PCI_STATUS, &status);
2881        if (status & PCI_STATUS_IMM_READY)
2882                dev->imm_ready = 1;
2883}
2884
2885static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2886{
2887        unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
2888
2889        switch (prop) {
2890        case PCI_EA_P_MEM:
2891        case PCI_EA_P_VF_MEM:
2892                flags |= IORESOURCE_MEM;
2893                break;
2894        case PCI_EA_P_MEM_PREFETCH:
2895        case PCI_EA_P_VF_MEM_PREFETCH:
2896                flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2897                break;
2898        case PCI_EA_P_IO:
2899                flags |= IORESOURCE_IO;
2900                break;
2901        default:
2902                return 0;
2903        }
2904
2905        return flags;
2906}
2907
2908static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2909                                            u8 prop)
2910{
2911        if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2912                return &dev->resource[bei];
2913#ifdef CONFIG_PCI_IOV
2914        else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2915                 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2916                return &dev->resource[PCI_IOV_RESOURCES +
2917                                      bei - PCI_EA_BEI_VF_BAR0];
2918#endif
2919        else if (bei == PCI_EA_BEI_ROM)
2920                return &dev->resource[PCI_ROM_RESOURCE];
2921        else
2922                return NULL;
2923}
2924
2925/* Read an Enhanced Allocation (EA) entry */
2926static int pci_ea_read(struct pci_dev *dev, int offset)
2927{
2928        struct resource *res;
2929        int ent_size, ent_offset = offset;
2930        resource_size_t start, end;
2931        unsigned long flags;
2932        u32 dw0, bei, base, max_offset;
2933        u8 prop;
2934        bool support_64 = (sizeof(resource_size_t) >= 8);
2935
2936        pci_read_config_dword(dev, ent_offset, &dw0);
2937        ent_offset += 4;
2938
2939        /* Entry size field indicates DWORDs after 1st */
2940        ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
2941
2942        if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
2943                goto out;
2944
2945        bei = (dw0 & PCI_EA_BEI) >> 4;
2946        prop = (dw0 & PCI_EA_PP) >> 8;
2947
2948        /*
2949         * If the Property is in the reserved range, try the Secondary
2950         * Property instead.
2951         */
2952        if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
2953                prop = (dw0 & PCI_EA_SP) >> 16;
2954        if (prop > PCI_EA_P_BRIDGE_IO)
2955                goto out;
2956
2957        res = pci_ea_get_resource(dev, bei, prop);
2958        if (!res) {
2959                pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
2960                goto out;
2961        }
2962
2963        flags = pci_ea_flags(dev, prop);
2964        if (!flags) {
2965                pci_err(dev, "Unsupported EA properties: %#x\n", prop);
2966                goto out;
2967        }
2968
2969        /* Read Base */
2970        pci_read_config_dword(dev, ent_offset, &base);
2971        start = (base & PCI_EA_FIELD_MASK);
2972        ent_offset += 4;
2973
2974        /* Read MaxOffset */
2975        pci_read_config_dword(dev, ent_offset, &max_offset);
2976        ent_offset += 4;
2977
2978        /* Read Base MSBs (if 64-bit entry) */
2979        if (base & PCI_EA_IS_64) {
2980                u32 base_upper;
2981
2982                pci_read_config_dword(dev, ent_offset, &base_upper);
2983                ent_offset += 4;
2984
2985                flags |= IORESOURCE_MEM_64;
2986
2987                /* entry starts above 32-bit boundary, can't use */
2988                if (!support_64 && base_upper)
2989                        goto out;
2990
2991                if (support_64)
2992                        start |= ((u64)base_upper << 32);
2993        }
2994
2995        end = start + (max_offset | 0x03);
2996
2997        /* Read MaxOffset MSBs (if 64-bit entry) */
2998        if (max_offset & PCI_EA_IS_64) {
2999                u32 max_offset_upper;
3000
3001                pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3002                ent_offset += 4;
3003
3004                flags |= IORESOURCE_MEM_64;
3005
3006                /* entry too big, can't use */
3007                if (!support_64 && max_offset_upper)
3008                        goto out;
3009
3010                if (support_64)
3011                        end += ((u64)max_offset_upper << 32);
3012        }
3013
3014        if (end < start) {
3015                pci_err(dev, "EA Entry crosses address boundary\n");
3016                goto out;
3017        }
3018
3019        if (ent_size != ent_offset - offset) {
3020                pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3021                        ent_size, ent_offset - offset);
3022                goto out;
3023        }
3024
3025        res->name = pci_name(dev);
3026        res->start = start;
3027        res->end = end;
3028        res->flags = flags;
3029
3030        if (bei <= PCI_EA_BEI_BAR5)
3031                pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3032                           bei, res, prop);
3033        else if (bei == PCI_EA_BEI_ROM)
3034                pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3035                           res, prop);
3036        else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3037                pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3038                           bei - PCI_EA_BEI_VF_BAR0, res, prop);
3039        else
3040                pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3041                           bei, res, prop);
3042
3043out:
3044        return offset + ent_size;
3045}
3046
3047/* Enhanced Allocation Initialization */
3048void pci_ea_init(struct pci_dev *dev)
3049{
3050        int ea;
3051        u8 num_ent;
3052        int offset;
3053        int i;
3054
3055        /* find PCI EA capability in list */
3056        ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3057        if (!ea)
3058                return;
3059
3060        /* determine the number of entries */
3061        pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3062                                        &num_ent);
3063        num_ent &= PCI_EA_NUM_ENT_MASK;
3064
3065        offset = ea + PCI_EA_FIRST_ENT;
3066
3067        /* Skip DWORD 2 for type 1 functions */
3068        if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3069                offset += 4;
3070
3071        /* parse each EA entry */
3072        for (i = 0; i < num_ent; ++i)
3073                offset = pci_ea_read(dev, offset);
3074}
3075
3076static void pci_add_saved_cap(struct pci_dev *pci_dev,
3077        struct pci_cap_saved_state *new_cap)
3078{
3079        hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3080}
3081
3082/**
3083 * _pci_add_cap_save_buffer - allocate buffer for saving given
3084 *                            capability registers
3085 * @dev: the PCI device
3086 * @cap: the capability to allocate the buffer for
3087 * @extended: Standard or Extended capability ID
3088 * @size: requested size of the buffer
3089 */
3090static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3091                                    bool extended, unsigned int size)
3092{
3093        int pos;
3094        struct pci_cap_saved_state *save_state;
3095
3096        if (extended)
3097                pos = pci_find_ext_capability(dev, cap);
3098        else
3099                pos = pci_find_capability(dev, cap);
3100
3101        if (!pos)
3102                return 0;
3103
3104        save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3105        if (!save_state)
3106                return -ENOMEM;
3107
3108        save_state->cap.cap_nr = cap;
3109        save_state->cap.cap_extended = extended;
3110        save_state->cap.size = size;
3111        pci_add_saved_cap(dev, save_state);
3112
3113        return 0;
3114}
3115
3116int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3117{
3118        return _pci_add_cap_save_buffer(dev, cap, false, size);
3119}
3120
3121int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3122{
3123        return _pci_add_cap_save_buffer(dev, cap, true, size);
3124}
3125
3126/**
3127 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3128 * @dev: the PCI device
3129 */
3130void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3131{
3132        int error;
3133
3134        error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3135                                        PCI_EXP_SAVE_REGS * sizeof(u16));
3136        if (error)
3137                pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3138
3139        error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3140        if (error)
3141                pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3142
3143        error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3144                                            2 * sizeof(u16));
3145        if (error)
3146                pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3147
3148        pci_allocate_vc_save_buffers(dev);
3149}
3150
3151void pci_free_cap_save_buffers(struct pci_dev *dev)
3152{
3153        struct pci_cap_saved_state *tmp;
3154        struct hlist_node *n;
3155
3156        hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3157                kfree(tmp);
3158}
3159
3160/**
3161 * pci_configure_ari - enable or disable ARI forwarding
3162 * @dev: the PCI device
3163 *
3164 * If @dev and its upstream bridge both support ARI, enable ARI in the
3165 * bridge.  Otherwise, disable ARI in the bridge.
3166 */
3167void pci_configure_ari(struct pci_dev *dev)
3168{
3169        u32 cap;
3170        struct pci_dev *bridge;
3171
3172        if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3173                return;
3174
3175        bridge = dev->bus->self;
3176        if (!bridge)
3177                return;
3178
3179        pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3180        if (!(cap & PCI_EXP_DEVCAP2_ARI))
3181                return;
3182
3183        if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3184                pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3185                                         PCI_EXP_DEVCTL2_ARI);
3186                bridge->ari_enabled = 1;
3187        } else {
3188                pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3189                                           PCI_EXP_DEVCTL2_ARI);
3190                bridge->ari_enabled = 0;
3191        }
3192}
3193
3194static int pci_acs_enable;
3195
3196/**
3197 * pci_request_acs - ask for ACS to be enabled if supported
3198 */
3199void pci_request_acs(void)
3200{
3201        pci_acs_enable = 1;
3202}
3203
3204static const char *disable_acs_redir_param;
3205
3206/**
3207 * pci_disable_acs_redir - disable ACS redirect capabilities
3208 * @dev: the PCI device
3209 *
3210 * For only devices specified in the disable_acs_redir parameter.
3211 */
3212static void pci_disable_acs_redir(struct pci_dev *dev)
3213{
3214        int ret = 0;
3215        const char *p;
3216        int pos;
3217        u16 ctrl;
3218
3219        if (!disable_acs_redir_param)
3220                return;
3221
3222        p = disable_acs_redir_param;
3223        while (*p) {
3224                ret = pci_dev_str_match(dev, p, &p);
3225                if (ret < 0) {
3226                        pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
3227                                     disable_acs_redir_param);
3228
3229                        break;
3230                } else if (ret == 1) {
3231                        /* Found a match */
3232                        break;
3233                }
3234
3235                if (*p != ';' && *p != ',') {
3236                        /* End of param or invalid format */
3237                        break;
3238                }
3239                p++;
3240        }
3241
3242        if (ret != 1)
3243                return;
3244
3245        if (!pci_dev_specific_disable_acs_redir(dev))
3246                return;
3247
3248        pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3249        if (!pos) {
3250                pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
3251                return;
3252        }
3253
3254        pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
3255
3256        /* P2P Request & Completion Redirect */
3257        ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
3258
3259        pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
3260
3261        pci_info(dev, "disabled ACS redirect\n");
3262}
3263
3264/**
3265 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
3266 * @dev: the PCI device
3267 */
3268static void pci_std_enable_acs(struct pci_dev *dev)
3269{
3270        int pos;
3271        u16 cap;
3272        u16 ctrl;
3273
3274        pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3275        if (!pos)
3276                return;
3277
3278        pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
3279        pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
3280
3281        /* Source Validation */
3282        ctrl |= (cap & PCI_ACS_SV);
3283
3284        /* P2P Request Redirect */
3285        ctrl |= (cap & PCI_ACS_RR);
3286
3287        /* P2P Completion Redirect */
3288        ctrl |= (cap & PCI_ACS_CR);
3289
3290        /* Upstream Forwarding */
3291        ctrl |= (cap & PCI_ACS_UF);
3292
3293        pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
3294}
3295
3296/**
3297 * pci_enable_acs - enable ACS if hardware support it
3298 * @dev: the PCI device
3299 */
3300void pci_enable_acs(struct pci_dev *dev)
3301{
3302        if (!pci_acs_enable)
3303                goto disable_acs_redir;
3304
3305        if (!pci_dev_specific_enable_acs(dev))
3306                goto disable_acs_redir;
3307
3308        pci_std_enable_acs(dev);
3309
3310disable_acs_redir:
3311        /*
3312         * Note: pci_disable_acs_redir() must be called even if ACS was not
3313         * enabled by the kernel because it may have been enabled by
3314         * platform firmware.  So if we are told to disable it, we should
3315         * always disable it after setting the kernel's default
3316         * preferences.
3317         */
3318        pci_disable_acs_redir(dev);
3319}
3320
3321static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3322{
3323        int pos;
3324        u16 cap, ctrl;
3325
3326        pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
3327        if (!pos)
3328                return false;
3329
3330        /*
3331         * Except for egress control, capabilities are either required
3332         * or only required if controllable.  Features missing from the
3333         * capability field can therefore be assumed as hard-wired enabled.
3334         */
3335        pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3336        acs_flags &= (cap | PCI_ACS_EC);
3337
3338        pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3339        return (ctrl & acs_flags) == acs_flags;
3340}
3341
3342/**
3343 * pci_acs_enabled - test ACS against required flags for a given device
3344 * @pdev: device to test
3345 * @acs_flags: required PCI ACS flags
3346 *
3347 * Return true if the device supports the provided flags.  Automatically
3348 * filters out flags that are not implemented on multifunction devices.
3349 *
3350 * Note that this interface checks the effective ACS capabilities of the
3351 * device rather than the actual capabilities.  For instance, most single
3352 * function endpoints are not required to support ACS because they have no
3353 * opportunity for peer-to-peer access.  We therefore return 'true'
3354 * regardless of whether the device exposes an ACS capability.  This makes
3355 * it much easier for callers of this function to ignore the actual type
3356 * or topology of the device when testing ACS support.
3357 */
3358bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3359{
3360        int ret;
3361
3362        ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3363        if (ret >= 0)
3364                return ret > 0;
3365
3366        /*
3367         * Conventional PCI and PCI-X devices never support ACS, either
3368         * effectively or actually.  The shared bus topology implies that
3369         * any device on the bus can receive or snoop DMA.
3370         */
3371        if (!pci_is_pcie(pdev))
3372                return false;
3373
3374        switch (pci_pcie_type(pdev)) {
3375        /*
3376         * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3377         * but since their primary interface is PCI/X, we conservatively
3378         * handle them as we would a non-PCIe device.
3379         */
3380        case PCI_EXP_TYPE_PCIE_BRIDGE:
3381        /*
3382         * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
3383         * applicable... must never implement an ACS Extended Capability...".
3384         * This seems arbitrary, but we take a conservative interpretation
3385         * of this statement.
3386         */
3387        case PCI_EXP_TYPE_PCI_BRIDGE:
3388        case PCI_EXP_TYPE_RC_EC:
3389                return false;
3390        /*
3391         * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3392         * implement ACS in order to indicate their peer-to-peer capabilities,
3393         * regardless of whether they are single- or multi-function devices.
3394         */
3395        case PCI_EXP_TYPE_DOWNSTREAM:
3396        case PCI_EXP_TYPE_ROOT_PORT:
3397                return pci_acs_flags_enabled(pdev, acs_flags);
3398        /*
3399         * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3400         * implemented by the remaining PCIe types to indicate peer-to-peer
3401         * capabilities, but only when they are part of a multifunction
3402         * device.  The footnote for section 6.12 indicates the specific
3403         * PCIe types included here.
3404         */
3405        case PCI_EXP_TYPE_ENDPOINT:
3406        case PCI_EXP_TYPE_UPSTREAM:
3407        case PCI_EXP_TYPE_LEG_END:
3408        case PCI_EXP_TYPE_RC_END:
3409                if (!pdev->multifunction)
3410                        break;
3411
3412                return pci_acs_flags_enabled(pdev, acs_flags);
3413        }
3414
3415        /*
3416         * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3417         * to single function devices with the exception of downstream ports.
3418         */
3419        return true;
3420}
3421
3422/**
3423 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
3424 * @start: starting downstream device
3425 * @end: ending upstream device or NULL to search to the root bus
3426 * @acs_flags: required flags
3427 *
3428 * Walk up a device tree from start to end testing PCI ACS support.  If
3429 * any step along the way does not support the required flags, return false.
3430 */
3431bool pci_acs_path_enabled(struct pci_dev *start,
3432                          struct pci_dev *end, u16 acs_flags)
3433{
3434        struct pci_dev *pdev, *parent = start;
3435
3436        do {
3437                pdev = parent;
3438
3439                if (!pci_acs_enabled(pdev, acs_flags))
3440                        return false;
3441
3442                if (pci_is_root_bus(pdev->bus))
3443                        return (end == NULL);
3444
3445                parent = pdev->bus->self;
3446        } while (pdev != end);
3447
3448        return true;
3449}
3450
3451/**
3452 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3453 * @pdev: PCI device
3454 * @bar: BAR to find
3455 *
3456 * Helper to find the position of the ctrl register for a BAR.
3457 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3458 * Returns -ENOENT if no ctrl register for the BAR could be found.
3459 */
3460static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3461{
3462        unsigned int pos, nbars, i;
3463        u32 ctrl;
3464
3465        pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3466        if (!pos)
3467                return -ENOTSUPP;
3468
3469        pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3470        nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3471                    PCI_REBAR_CTRL_NBAR_SHIFT;
3472
3473        for (i = 0; i < nbars; i++, pos += 8) {
3474                int bar_idx;
3475
3476                pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3477                bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3478                if (bar_idx == bar)
3479                        return pos;
3480        }
3481
3482        return -ENOENT;
3483}
3484
3485/**
3486 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3487 * @pdev: PCI device
3488 * @bar: BAR to query
3489 *
3490 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3491 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3492 */
3493u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3494{
3495        int pos;
3496        u32 cap;
3497
3498        pos = pci_rebar_find_pos(pdev, bar);
3499        if (pos < 0)
3500                return 0;
3501
3502        pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3503        return (cap & PCI_REBAR_CAP_SIZES) >> 4;
3504}
3505
3506/**
3507 * pci_rebar_get_current_size - get the current size of a BAR
3508 * @pdev: PCI device
3509 * @bar: BAR to set size to
3510 *
3511 * Read the size of a BAR from the resizable BAR config.
3512 * Returns size if found or negative error code.
3513 */
3514int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3515{
3516        int pos;
3517        u32 ctrl;
3518
3519        pos = pci_rebar_find_pos(pdev, bar);
3520        if (pos < 0)
3521                return pos;
3522
3523        pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3524        return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3525}
3526
3527/**
3528 * pci_rebar_set_size - set a new size for a BAR
3529 * @pdev: PCI device
3530 * @bar: BAR to set size to
3531 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3532 *
3533 * Set the new size of a BAR as defined in the spec.
3534 * Returns zero if resizing was successful, error code otherwise.
3535 */
3536int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3537{
3538        int pos;
3539        u32 ctrl;
3540
3541        pos = pci_rebar_find_pos(pdev, bar);
3542        if (pos < 0)
3543                return pos;
3544
3545        pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3546        ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3547        ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3548        pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3549        return 0;
3550}
3551
3552/**
3553 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3554 * @dev: the PCI device
3555 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3556 *      PCI_EXP_DEVCAP2_ATOMIC_COMP32
3557 *      PCI_EXP_DEVCAP2_ATOMIC_COMP64
3558 *      PCI_EXP_DEVCAP2_ATOMIC_COMP128
3559 *
3560 * Return 0 if all upstream bridges support AtomicOp routing, egress
3561 * blocking is disabled on all upstream ports, and the root port supports
3562 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3563 * AtomicOp completion), or negative otherwise.
3564 */
3565int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3566{
3567        struct pci_bus *bus = dev->bus;
3568        struct pci_dev *bridge;
3569        u32 cap, ctl2;
3570
3571        if (!pci_is_pcie(dev))
3572                return -EINVAL;
3573
3574        /*
3575         * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3576         * AtomicOp requesters.  For now, we only support endpoints as
3577         * requesters and root ports as completers.  No endpoints as
3578         * completers, and no peer-to-peer.
3579         */
3580
3581        switch (pci_pcie_type(dev)) {
3582        case PCI_EXP_TYPE_ENDPOINT:
3583        case PCI_EXP_TYPE_LEG_END:
3584        case PCI_EXP_TYPE_RC_END:
3585                break;
3586        default:
3587                return -EINVAL;
3588        }
3589
3590        while (bus->parent) {
3591                bridge = bus->self;
3592
3593                pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3594
3595                switch (pci_pcie_type(bridge)) {
3596                /* Ensure switch ports support AtomicOp routing */
3597                case PCI_EXP_TYPE_UPSTREAM:
3598                case PCI_EXP_TYPE_DOWNSTREAM:
3599                        if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3600                                return -EINVAL;
3601                        break;
3602
3603                /* Ensure root port supports all the sizes we care about */
3604                case PCI_EXP_TYPE_ROOT_PORT:
3605                        if ((cap & cap_mask) != cap_mask)
3606                                return -EINVAL;
3607                        break;
3608                }
3609
3610                /* Ensure upstream ports don't block AtomicOps on egress */
3611                if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3612                        pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3613                                                   &ctl2);
3614                        if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3615                                return -EINVAL;
3616                }
3617
3618                bus = bus->parent;
3619        }
3620
3621        pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3622                                 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3623        return 0;
3624}
3625EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3626
3627/**
3628 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3629 * @dev: the PCI device
3630 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3631 *
3632 * Perform INTx swizzling for a device behind one level of bridge.  This is
3633 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3634 * behind bridges on add-in cards.  For devices with ARI enabled, the slot
3635 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3636 * the PCI Express Base Specification, Revision 2.1)
3637 */
3638u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3639{
3640        int slot;
3641
3642        if (pci_ari_enabled(dev->bus))
3643                slot = 0;
3644        else
3645                slot = PCI_SLOT(dev->devfn);
3646
3647        return (((pin - 1) + slot) % 4) + 1;
3648}
3649
3650int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3651{
3652        u8 pin;
3653
3654        pin = dev->pin;
3655        if (!pin)
3656                return -1;
3657
3658        while (!pci_is_root_bus(dev->bus)) {
3659                pin = pci_swizzle_interrupt_pin(dev, pin);
3660                dev = dev->bus->self;
3661        }
3662        *bridge = dev;
3663        return pin;
3664}
3665
3666/**
3667 * pci_common_swizzle - swizzle INTx all the way to root bridge
3668 * @dev: the PCI device
3669 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3670 *
3671 * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
3672 * bridges all the way up to a PCI root bus.
3673 */
3674u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3675{
3676        u8 pin = *pinp;
3677
3678        while (!pci_is_root_bus(dev->bus)) {
3679                pin = pci_swizzle_interrupt_pin(dev, pin);
3680                dev = dev->bus->self;
3681        }
3682        *pinp = pin;
3683        return PCI_SLOT(dev->devfn);
3684}
3685EXPORT_SYMBOL_GPL(pci_common_swizzle);
3686
3687/**
3688 * pci_release_region - Release a PCI bar
3689 * @pdev: PCI device whose resources were previously reserved by
3690 *        pci_request_region()
3691 * @bar: BAR to release
3692 *
3693 * Releases the PCI I/O and memory resources previously reserved by a
3694 * successful call to pci_request_region().  Call this function only
3695 * after all use of the PCI regions has ceased.
3696 */
3697void pci_release_region(struct pci_dev *pdev, int bar)
3698{
3699        struct pci_devres *dr;
3700
3701        if (pci_resource_len(pdev, bar) == 0)
3702                return;
3703        if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3704                release_region(pci_resource_start(pdev, bar),
3705                                pci_resource_len(pdev, bar));
3706        else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3707                release_mem_region(pci_resource_start(pdev, bar),
3708                                pci_resource_len(pdev, bar));
3709
3710        dr = find_pci_dr(pdev);
3711        if (dr)
3712                dr->region_mask &= ~(1 << bar);
3713}
3714EXPORT_SYMBOL(pci_release_region);
3715
3716/**
3717 * __pci_request_region - Reserved PCI I/O and memory resource
3718 * @pdev: PCI device whose resources are to be reserved
3719 * @bar: BAR to be reserved
3720 * @res_name: Name to be associated with resource.
3721 * @exclusive: whether the region access is exclusive or not
3722 *
3723 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3724 * being reserved by owner @res_name.  Do not access any
3725 * address inside the PCI regions unless this call returns
3726 * successfully.
3727 *
3728 * If @exclusive is set, then the region is marked so that userspace
3729 * is explicitly not allowed to map the resource via /dev/mem or
3730 * sysfs MMIO access.
3731 *
3732 * Returns 0 on success, or %EBUSY on error.  A warning
3733 * message is also printed on failure.
3734 */
3735static int __pci_request_region(struct pci_dev *pdev, int bar,
3736                                const char *res_name, int exclusive)
3737{
3738        struct pci_devres *dr;
3739
3740        if (pci_resource_len(pdev, bar) == 0)
3741                return 0;
3742
3743        if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3744                if (!request_region(pci_resource_start(pdev, bar),
3745                            pci_resource_len(pdev, bar), res_name))
3746                        goto err_out;
3747        } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3748                if (!__request_mem_region(pci_resource_start(pdev, bar),
3749                                        pci_resource_len(pdev, bar), res_name,
3750                                        exclusive))
3751                        goto err_out;
3752        }
3753
3754        dr = find_pci_dr(pdev);
3755        if (dr)
3756                dr->region_mask |= 1 << bar;
3757
3758        return 0;
3759
3760err_out:
3761        pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3762                 &pdev->resource[bar]);
3763        return -EBUSY;
3764}
3765
3766/**
3767 * pci_request_region - Reserve PCI I/O and memory resource
3768 * @pdev: PCI device whose resources are to be reserved
3769 * @bar: BAR to be reserved
3770 * @res_name: Name to be associated with resource
3771 *
3772 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3773 * being reserved by owner @res_name.  Do not access any
3774 * address inside the PCI regions unless this call returns
3775 * successfully.
3776 *
3777 * Returns 0 on success, or %EBUSY on error.  A warning
3778 * message is also printed on failure.
3779 */
3780int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3781{
3782        return __pci_request_region(pdev, bar, res_name, 0);
3783}
3784EXPORT_SYMBOL(pci_request_region);
3785
3786/**
3787 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3788 * @pdev: PCI device whose resources were previously reserved
3789 * @bars: Bitmask of BARs to be released
3790 *
3791 * Release selected PCI I/O and memory resources previously reserved.
3792 * Call this function only after all use of the PCI regions has ceased.
3793 */
3794void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3795{
3796        int i;
3797
3798        for (i = 0; i < PCI_STD_NUM_BARS; i++)
3799                if (bars & (1 << i))
3800                        pci_release_region(pdev, i);
3801}
3802EXPORT_SYMBOL(pci_release_selected_regions);
3803
3804static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3805                                          const char *res_name, int excl)
3806{
3807        int i;
3808
3809        for (i = 0; i < PCI_STD_NUM_BARS; i++)
3810                if (bars & (1 << i))
3811                        if (__pci_request_region(pdev, i, res_name, excl))
3812                                goto err_out;
3813        return 0;
3814
3815err_out:
3816        while (--i >= 0)
3817                if (bars & (1 << i))
3818                        pci_release_region(pdev, i);
3819
3820        return -EBUSY;
3821}
3822
3823
3824/**
3825 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3826 * @pdev: PCI device whose resources are to be reserved
3827 * @bars: Bitmask of BARs to be requested
3828 * @res_name: Name to be associated with resource
3829 */
3830int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3831                                 const char *res_name)
3832{
3833        return __pci_request_selected_regions(pdev, bars, res_name, 0);
3834}
3835EXPORT_SYMBOL(pci_request_selected_regions);
3836
3837int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3838                                           const char *res_name)
3839{
3840        return __pci_request_selected_regions(pdev, bars, res_name,
3841                        IORESOURCE_EXCLUSIVE);
3842}
3843EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3844
3845/**
3846 * pci_release_regions - Release reserved PCI I/O and memory resources
3847 * @pdev: PCI device whose resources were previously reserved by
3848 *        pci_request_regions()
3849 *
3850 * Releases all PCI I/O and memory resources previously reserved by a
3851 * successful call to pci_request_regions().  Call this function only
3852 * after all use of the PCI regions has ceased.
3853 */
3854
3855void pci_release_regions(struct pci_dev *pdev)
3856{
3857        pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
3858}
3859EXPORT_SYMBOL(pci_release_regions);
3860
3861/**
3862 * pci_request_regions - Reserve PCI I/O and memory resources
3863 * @pdev: PCI device whose resources are to be reserved
3864 * @res_name: Name to be associated with resource.
3865 *
3866 * Mark all PCI regions associated with PCI device @pdev as
3867 * being reserved by owner @res_name.  Do not access any
3868 * address inside the PCI regions unless this call returns
3869 * successfully.
3870 *
3871 * Returns 0 on success, or %EBUSY on error.  A warning
3872 * message is also printed on failure.
3873 */
3874int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3875{
3876        return pci_request_selected_regions(pdev,
3877                        ((1 << PCI_STD_NUM_BARS) - 1), res_name);
3878}
3879EXPORT_SYMBOL(pci_request_regions);
3880
3881/**
3882 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
3883 * @pdev: PCI device whose resources are to be reserved
3884 * @res_name: Name to be associated with resource.
3885 *
3886 * Mark all PCI regions associated with PCI device @pdev as being reserved
3887 * by owner @res_name.  Do not access any address inside the PCI regions
3888 * unless this call returns successfully.
3889 *
3890 * pci_request_regions_exclusive() will mark the region so that /dev/mem
3891 * and the sysfs MMIO access will not be allowed.
3892 *
3893 * Returns 0 on success, or %EBUSY on error.  A warning message is also
3894 * printed on failure.
3895 */
3896int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3897{
3898        return pci_request_selected_regions_exclusive(pdev,
3899                                ((1 << PCI_STD_NUM_BARS) - 1), res_name);
3900}
3901EXPORT_SYMBOL(pci_request_regions_exclusive);
3902
3903/*
3904 * Record the PCI IO range (expressed as CPU physical address + size).
3905 * Return a negative value if an error has occurred, zero otherwise
3906 */
3907int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
3908                        resource_size_t size)
3909{
3910        int ret = 0;
3911#ifdef PCI_IOBASE
3912        struct logic_pio_hwaddr *range;
3913
3914        if (!size || addr + size < addr)
3915                return -EINVAL;
3916
3917        range = kzalloc(sizeof(*range), GFP_ATOMIC);
3918        if (!range)
3919                return -ENOMEM;
3920
3921        range->fwnode = fwnode;
3922        range->size = size;
3923        range->hw_start = addr;
3924        range->flags = LOGIC_PIO_CPU_MMIO;
3925
3926        ret = logic_pio_register_range(range);
3927        if (ret)
3928                kfree(range);
3929#endif
3930
3931        return ret;
3932}
3933
3934phys_addr_t pci_pio_to_address(unsigned long pio)
3935{
3936        phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
3937
3938#ifdef PCI_IOBASE
3939        if (pio >= MMIO_UPPER_LIMIT)
3940                return address;
3941
3942        address = logic_pio_to_hwaddr(pio);
3943#endif
3944
3945        return address;
3946}
3947
3948unsigned long __weak pci_address_to_pio(phys_addr_t address)
3949{
3950#ifdef PCI_IOBASE
3951        return logic_pio_trans_cpuaddr(address);
3952#else
3953        if (address > IO_SPACE_LIMIT)
3954                return (unsigned long)-1;
3955
3956        return (unsigned long) address;
3957#endif
3958}
3959
3960/**
3961 * pci_remap_iospace - Remap the memory mapped I/O space
3962 * @res: Resource describing the I/O space
3963 * @phys_addr: physical address of range to be mapped
3964 *
3965 * Remap the memory mapped I/O space described by the @res and the CPU
3966 * physical address @phys_addr into virtual address space.  Only
3967 * architectures that have memory mapped IO functions defined (and the
3968 * PCI_IOBASE value defined) should call this function.
3969 */
3970int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
3971{
3972#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3973        unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3974
3975        if (!(res->flags & IORESOURCE_IO))
3976                return -EINVAL;
3977
3978        if (res->end > IO_SPACE_LIMIT)
3979                return -EINVAL;
3980
3981        return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
3982                                  pgprot_device(PAGE_KERNEL));
3983#else
3984        /*
3985         * This architecture does not have memory mapped I/O space,
3986         * so this function should never be called
3987         */
3988        WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3989        return -ENODEV;
3990#endif
3991}
3992EXPORT_SYMBOL(pci_remap_iospace);
3993
3994/**
3995 * pci_unmap_iospace - Unmap the memory mapped I/O space
3996 * @res: resource to be unmapped
3997 *
3998 * Unmap the CPU virtual address @res from virtual address space.  Only
3999 * architectures that have memory mapped IO functions defined (and the
4000 * PCI_IOBASE value defined) should call this function.
4001 */
4002void pci_unmap_iospace(struct resource *res)
4003{
4004#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4005        unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4006
4007        unmap_kernel_range(vaddr, resource_size(res));
4008#endif
4009}
4010EXPORT_SYMBOL(pci_unmap_iospace);
4011
4012static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4013{
4014        struct resource **res = ptr;
4015
4016        pci_unmap_iospace(*res);
4017}
4018
4019/**
4020 * devm_pci_remap_iospace - Managed pci_remap_iospace()
4021 * @dev: Generic device to remap IO address for
4022 * @res: Resource describing the I/O space
4023 * @phys_addr: physical address of range to be mapped
4024 *
4025 * Managed pci_remap_iospace().  Map is automatically unmapped on driver
4026 * detach.
4027 */
4028int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4029                           phys_addr_t phys_addr)
4030{
4031        const struct resource **ptr;
4032        int error;
4033
4034        ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4035        if (!ptr)
4036                return -ENOMEM;
4037
4038        error = pci_remap_iospace(res, phys_addr);
4039        if (error) {
4040                devres_free(ptr);
4041        } else  {
4042                *ptr = res;
4043                devres_add(dev, ptr);
4044        }
4045
4046        return error;
4047}
4048EXPORT_SYMBOL(devm_pci_remap_iospace);
4049
4050/**
4051 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4052 * @dev: Generic device to remap IO address for
4053 * @offset: Resource address to map
4054 * @size: Size of map
4055 *
4056 * Managed pci_remap_cfgspace().  Map is automatically unmapped on driver
4057 * detach.
4058 */
4059void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4060                                      resource_size_t offset,
4061                                      resource_size_t size)
4062{
4063        void __iomem **ptr, *addr;
4064
4065        ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4066        if (!ptr)
4067                return NULL;
4068
4069        addr = pci_remap_cfgspace(offset, size);
4070        if (addr) {
4071                *ptr = addr;
4072                devres_add(dev, ptr);
4073        } else
4074                devres_free(ptr);
4075
4076        return addr;
4077}
4078EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4079
4080/**
4081 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4082 * @dev: generic device to handle the resource for
4083 * @res: configuration space resource to be handled
4084 *
4085 * Checks that a resource is a valid memory region, requests the memory
4086 * region and ioremaps with pci_remap_cfgspace() API that ensures the
4087 * proper PCI configuration space memory attributes are guaranteed.
4088 *
4089 * All operations are managed and will be undone on driver detach.
4090 *
4091 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4092 * on failure. Usage example::
4093 *
4094 *      res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4095 *      base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4096 *      if (IS_ERR(base))
4097 *              return PTR_ERR(base);
4098 */
4099void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4100                                          struct resource *res)
4101{
4102        resource_size_t size;
4103        const char *name;
4104        void __iomem *dest_ptr;
4105
4106        BUG_ON(!dev);
4107
4108        if (!res || resource_type(res) != IORESOURCE_MEM) {
4109                dev_err(dev, "invalid resource\n");
4110                return IOMEM_ERR_PTR(-EINVAL);
4111        }
4112
4113        size = resource_size(res);
4114        name = res->name ?: dev_name(dev);
4115
4116        if (!devm_request_mem_region(dev, res->start, size, name)) {
4117                dev_err(dev, "can't request region for resource %pR\n", res);
4118                return IOMEM_ERR_PTR(-EBUSY);
4119        }
4120
4121        dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4122        if (!dest_ptr) {
4123                dev_err(dev, "ioremap failed for resource %pR\n", res);
4124                devm_release_mem_region(dev, res->start, size);
4125                dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4126        }
4127
4128        return dest_ptr;
4129}
4130EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4131
4132static void __pci_set_master(struct pci_dev *dev, bool enable)
4133{
4134        u16 old_cmd, cmd;
4135
4136        pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4137        if (enable)
4138                cmd = old_cmd | PCI_COMMAND_MASTER;
4139        else
4140                cmd = old_cmd & ~PCI_COMMAND_MASTER;
4141        if (cmd != old_cmd) {
4142                pci_dbg(dev, "%s bus mastering\n",
4143                        enable ? "enabling" : "disabling");
4144                pci_write_config_word(dev, PCI_COMMAND, cmd);
4145        }
4146        dev->is_busmaster = enable;
4147}
4148
4149/**
4150 * pcibios_setup - process "pci=" kernel boot arguments
4151 * @str: string used to pass in "pci=" kernel boot arguments
4152 *
4153 * Process kernel boot arguments.  This is the default implementation.
4154 * Architecture specific implementations can override this as necessary.
4155 */
4156char * __weak __init pcibios_setup(char *str)
4157{
4158        return str;
4159}
4160
4161/**
4162 * pcibios_set_master - enable PCI bus-mastering for device dev
4163 * @dev: the PCI device to enable
4164 *
4165 * Enables PCI bus-mastering for the device.  This is the default
4166 * implementation.  Architecture specific implementations can override
4167 * this if necessary.
4168 */
4169void __weak pcibios_set_master(struct pci_dev *dev)
4170{
4171        u8 lat;
4172
4173        /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4174        if (pci_is_pcie(dev))
4175                return;
4176
4177        pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4178        if (lat < 16)
4179                lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4180        else if (lat > pcibios_max_latency)
4181                lat = pcibios_max_latency;
4182        else
4183                return;
4184
4185        pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4186}
4187
4188/**
4189 * pci_set_master - enables bus-mastering for device dev
4190 * @dev: the PCI device to enable
4191 *
4192 * Enables bus-mastering on the device and calls pcibios_set_master()
4193 * to do the needed arch specific settings.
4194 */
4195void pci_set_master(struct pci_dev *dev)
4196{
4197        __pci_set_master(dev, true);
4198        pcibios_set_master(dev);
4199}
4200EXPORT_SYMBOL(pci_set_master);
4201
4202/**
4203 * pci_clear_master - disables bus-mastering for device dev
4204 * @dev: the PCI device to disable
4205 */
4206void pci_clear_master(struct pci_dev *dev)
4207{
4208        __pci_set_master(dev, false);
4209}
4210EXPORT_SYMBOL(pci_clear_master);
4211
4212/**
4213 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4214 * @dev: the PCI device for which MWI is to be enabled
4215 *
4216 * Helper function for pci_set_mwi.
4217 * Originally copied from drivers/net/acenic.c.
4218 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4219 *
4220 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4221 */
4222int pci_set_cacheline_size(struct pci_dev *dev)
4223{
4224        u8 cacheline_size;
4225
4226        if (!pci_cache_line_size)
4227                return -EINVAL;
4228
4229        /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4230           equal to or multiple of the right value. */
4231        pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4232        if (cacheline_size >= pci_cache_line_size &&
4233            (cacheline_size % pci_cache_line_size) == 0)
4234                return 0;
4235
4236        /* Write the correct value. */
4237        pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4238        /* Read it back. */
4239        pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4240        if (cacheline_size == pci_cache_line_size)
4241                return 0;
4242
4243        pci_info(dev, "cache line size of %d is not supported\n",
4244                   pci_cache_line_size << 2);
4245
4246        return -EINVAL;
4247}
4248EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4249
4250/**
4251 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4252 * @dev: the PCI device for which MWI is enabled
4253 *
4254 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4255 *
4256 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4257 */
4258int pci_set_mwi(struct pci_dev *dev)
4259{
4260#ifdef PCI_DISABLE_MWI
4261        return 0;
4262#else
4263        int rc;
4264        u16 cmd;
4265
4266        rc = pci_set_cacheline_size(dev);
4267        if (rc)
4268                return rc;
4269
4270        pci_read_config_word(dev, PCI_COMMAND, &cmd);
4271        if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4272                pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4273                cmd |= PCI_COMMAND_INVALIDATE;
4274                pci_write_config_word(dev, PCI_COMMAND, cmd);
4275        }
4276        return 0;
4277#endif
4278}
4279EXPORT_SYMBOL(pci_set_mwi);
4280
4281/**
4282 * pcim_set_mwi - a device-managed pci_set_mwi()
4283 * @dev: the PCI device for which MWI is enabled
4284 *
4285 * Managed pci_set_mwi().
4286 *
4287 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4288 */
4289int pcim_set_mwi(struct pci_dev *dev)
4290{
4291        struct pci_devres *dr;
4292
4293        dr = find_pci_dr(dev);
4294        if (!dr)
4295                return -ENOMEM;
4296
4297        dr->mwi = 1;
4298        return pci_set_mwi(dev);
4299}
4300EXPORT_SYMBOL(pcim_set_mwi);
4301
4302/**
4303 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4304 * @dev: the PCI device for which MWI is enabled
4305 *
4306 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4307 * Callers are not required to check the return value.
4308 *
4309 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4310 */
4311int pci_try_set_mwi(struct pci_dev *dev)
4312{
4313#ifdef PCI_DISABLE_MWI
4314        return 0;
4315#else
4316        return pci_set_mwi(dev);
4317#endif
4318}
4319EXPORT_SYMBOL(pci_try_set_mwi);
4320
4321/**
4322 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4323 * @dev: the PCI device to disable
4324 *
4325 * Disables PCI Memory-Write-Invalidate transaction on the device
4326 */
4327void pci_clear_mwi(struct pci_dev *dev)
4328{
4329#ifndef PCI_DISABLE_MWI
4330        u16 cmd;
4331
4332        pci_read_config_word(dev, PCI_COMMAND, &cmd);
4333        if (cmd & PCI_COMMAND_INVALIDATE) {
4334                cmd &= ~PCI_COMMAND_INVALIDATE;
4335                pci_write_config_word(dev, PCI_COMMAND, cmd);
4336        }
4337#endif
4338}
4339EXPORT_SYMBOL(pci_clear_mwi);
4340
4341/**
4342 * pci_intx - enables/disables PCI INTx for device dev
4343 * @pdev: the PCI device to operate on
4344 * @enable: boolean: whether to enable or disable PCI INTx
4345 *
4346 * Enables/disables PCI INTx for device @pdev
4347 */
4348void pci_intx(struct pci_dev *pdev, int enable)
4349{
4350        u16 pci_command, new;
4351
4352        pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4353
4354        if (enable)
4355                new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4356        else
4357                new = pci_command | PCI_COMMAND_INTX_DISABLE;
4358
4359        if (new != pci_command) {
4360                struct pci_devres *dr;
4361
4362                pci_write_config_word(pdev, PCI_COMMAND, new);
4363
4364                dr = find_pci_dr(pdev);
4365                if (dr && !dr->restore_intx) {
4366                        dr->restore_intx = 1;
4367                        dr->orig_intx = !enable;
4368                }
4369        }
4370}
4371EXPORT_SYMBOL_GPL(pci_intx);
4372
4373static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4374{
4375        struct pci_bus *bus = dev->bus;
4376        bool mask_updated = true;
4377        u32 cmd_status_dword;
4378        u16 origcmd, newcmd;
4379        unsigned long flags;
4380        bool irq_pending;
4381
4382        /*
4383         * We do a single dword read to retrieve both command and status.
4384         * Document assumptions that make this possible.
4385         */
4386        BUILD_BUG_ON(PCI_COMMAND % 4);
4387        BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4388
4389        raw_spin_lock_irqsave(&pci_lock, flags);
4390
4391        bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4392
4393        irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4394
4395        /*
4396         * Check interrupt status register to see whether our device
4397         * triggered the interrupt (when masking) or the next IRQ is
4398         * already pending (when unmasking).
4399         */
4400        if (mask != irq_pending) {
4401                mask_updated = false;
4402                goto done;
4403        }
4404
4405        origcmd = cmd_status_dword;
4406        newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4407        if (mask)
4408                newcmd |= PCI_COMMAND_INTX_DISABLE;
4409        if (newcmd != origcmd)
4410                bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4411
4412done:
4413        raw_spin_unlock_irqrestore(&pci_lock, flags);
4414
4415        return mask_updated;
4416}
4417
4418/**
4419 * pci_check_and_mask_intx - mask INTx on pending interrupt
4420 * @dev: the PCI device to operate on
4421 *
4422 * Check if the device dev has its INTx line asserted, mask it and return
4423 * true in that case. False is returned if no interrupt was pending.
4424 */
4425bool pci_check_and_mask_intx(struct pci_dev *dev)
4426{
4427        return pci_check_and_set_intx_mask(dev, true);
4428}
4429EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4430
4431/**
4432 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4433 * @dev: the PCI device to operate on
4434 *
4435 * Check if the device dev has its INTx line asserted, unmask it if not and
4436 * return true. False is returned and the mask remains active if there was
4437 * still an interrupt pending.
4438 */
4439bool pci_check_and_unmask_intx(struct pci_dev *dev)
4440{
4441        return pci_check_and_set_intx_mask(dev, false);
4442}
4443EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4444
4445/**
4446 * pci_wait_for_pending_transaction - wait for pending transaction
4447 * @dev: the PCI device to operate on
4448 *
4449 * Return 0 if transaction is pending 1 otherwise.
4450 */
4451int pci_wait_for_pending_transaction(struct pci_dev *dev)
4452{
4453        if (!pci_is_pcie(dev))
4454                return 1;
4455
4456        return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4457                                    PCI_EXP_DEVSTA_TRPND);
4458}
4459EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4460
4461/**
4462 * pcie_has_flr - check if a device supports function level resets
4463 * @dev: device to check
4464 *
4465 * Returns true if the device advertises support for PCIe function level
4466 * resets.
4467 */
4468bool pcie_has_flr(struct pci_dev *dev)
4469{
4470        u32 cap;
4471
4472        if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4473                return false;
4474
4475        pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
4476        return cap & PCI_EXP_DEVCAP_FLR;
4477}
4478EXPORT_SYMBOL_GPL(pcie_has_flr);
4479
4480/**
4481 * pcie_flr - initiate a PCIe function level reset
4482 * @dev: device to reset
4483 *
4484 * Initiate a function level reset on @dev.  The caller should ensure the
4485 * device supports FLR before calling this function, e.g. by using the
4486 * pcie_has_flr() helper.
4487 */
4488int pcie_flr(struct pci_dev *dev)
4489{
4490        if (!pci_wait_for_pending_transaction(dev))
4491                pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4492
4493        pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4494
4495        if (dev->imm_ready)
4496                return 0;
4497
4498        /*
4499         * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4500         * 100ms, but may silently discard requests while the FLR is in
4501         * progress.  Wait 100ms before trying to access the device.
4502         */
4503        msleep(100);
4504
4505        return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4506}
4507EXPORT_SYMBOL_GPL(pcie_flr);
4508
4509static int pci_af_flr(struct pci_dev *dev, int probe)
4510{
4511        int pos;
4512        u8 cap;
4513
4514        pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4515        if (!pos)
4516                return -ENOTTY;
4517
4518        if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4519                return -ENOTTY;
4520
4521        pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4522        if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4523                return -ENOTTY;
4524
4525        if (probe)
4526                return 0;
4527
4528        /*
4529         * Wait for Transaction Pending bit to clear.  A word-aligned test
4530         * is used, so we use the control offset rather than status and shift
4531         * the test bit to match.
4532         */
4533        if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4534                                 PCI_AF_STATUS_TP << 8))
4535                pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4536
4537        pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4538
4539        if (dev->imm_ready)
4540                return 0;
4541
4542        /*
4543         * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4544         * updated 27 July 2006; a device must complete an FLR within
4545         * 100ms, but may silently discard requests while the FLR is in
4546         * progress.  Wait 100ms before trying to access the device.
4547         */
4548        msleep(100);
4549
4550        return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4551}
4552
4553/**
4554 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4555 * @dev: Device to reset.
4556 * @probe: If set, only check if the device can be reset this way.
4557 *
4558 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4559 * unset, it will be reinitialized internally when going from PCI_D3hot to
4560 * PCI_D0.  If that's the case and the device is not in a low-power state
4561 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4562 *
4563 * NOTE: This causes the caller to sleep for twice the device power transition
4564 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4565 * by default (i.e. unless the @dev's d3_delay field has a different value).
4566 * Moreover, only devices in D0 can be reset by this function.
4567 */
4568static int pci_pm_reset(struct pci_dev *dev, int probe)
4569{
4570        u16 csr;
4571
4572        if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4573                return -ENOTTY;
4574
4575        pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4576        if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4577                return -ENOTTY;
4578
4579        if (probe)
4580                return 0;
4581
4582        if (dev->current_state != PCI_D0)
4583                return -EINVAL;
4584
4585        csr &= ~PCI_PM_CTRL_STATE_MASK;
4586        csr |= PCI_D3hot;
4587        pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4588        pci_dev_d3_sleep(dev);
4589
4590        csr &= ~PCI_PM_CTRL_STATE_MASK;
4591        csr |= PCI_D0;
4592        pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4593        pci_dev_d3_sleep(dev);
4594
4595        return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4596}
4597
4598/**
4599 * pcie_wait_for_link_delay - Wait until link is active or inactive
4600 * @pdev: Bridge device
4601 * @active: waiting for active or inactive?
4602 * @delay: Delay to wait after link has become active (in ms)
4603 *
4604 * Use this to wait till link becomes active or inactive.
4605 */
4606static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4607                                     int delay)
4608{
4609        int timeout = 1000;
4610        bool ret;
4611        u16 lnk_status;
4612
4613        /*
4614         * Some controllers might not implement link active reporting. In this
4615         * case, we wait for 1000 + 100 ms.
4616         */
4617        if (!pdev->link_active_reporting) {
4618                msleep(1100);
4619                return true;
4620        }
4621
4622        /*
4623         * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4624         * after which we should expect an link active if the reset was
4625         * successful. If so, software must wait a minimum 100ms before sending
4626         * configuration requests to devices downstream this port.
4627         *
4628         * If the link fails to activate, either the device was physically
4629         * removed or the link is permanently failed.
4630         */
4631        if (active)
4632                msleep(20);
4633        for (;;) {
4634                pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4635                ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4636                if (ret == active)
4637                        break;
4638                if (timeout <= 0)
4639                        break;
4640                msleep(10);
4641                timeout -= 10;
4642        }
4643        if (active && ret)
4644                msleep(delay);
4645        else if (ret != active)
4646                pci_info(pdev, "Data Link Layer Link Active not %s in 1000 msec\n",
4647                        active ? "set" : "cleared");
4648        return ret == active;
4649}
4650
4651/**
4652 * pcie_wait_for_link - Wait until link is active or inactive
4653 * @pdev: Bridge device
4654 * @active: waiting for active or inactive?
4655 *
4656 * Use this to wait till link becomes active or inactive.
4657 */
4658bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4659{
4660        return pcie_wait_for_link_delay(pdev, active, 100);
4661}
4662
4663/*
4664 * Find maximum D3cold delay required by all the devices on the bus.  The
4665 * spec says 100 ms, but firmware can lower it and we allow drivers to
4666 * increase it as well.
4667 *
4668 * Called with @pci_bus_sem locked for reading.
4669 */
4670static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4671{
4672        const struct pci_dev *pdev;
4673        int min_delay = 100;
4674        int max_delay = 0;
4675
4676        list_for_each_entry(pdev, &bus->devices, bus_list) {
4677                if (pdev->d3cold_delay < min_delay)
4678                        min_delay = pdev->d3cold_delay;
4679                if (pdev->d3cold_delay > max_delay)
4680                        max_delay = pdev->d3cold_delay;
4681        }
4682
4683        return max(min_delay, max_delay);
4684}
4685
4686/**
4687 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4688 * @dev: PCI bridge
4689 *
4690 * Handle necessary delays before access to the devices on the secondary
4691 * side of the bridge are permitted after D3cold to D0 transition.
4692 *
4693 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4694 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4695 * 4.3.2.
4696 */
4697void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev)
4698{
4699        struct pci_dev *child;
4700        int delay;
4701
4702        if (pci_dev_is_disconnected(dev))
4703                return;
4704
4705        if (!pci_is_bridge(dev) || !dev->bridge_d3)
4706                return;
4707
4708        down_read(&pci_bus_sem);
4709
4710        /*
4711         * We only deal with devices that are present currently on the bus.
4712         * For any hot-added devices the access delay is handled in pciehp
4713         * board_added(). In case of ACPI hotplug the firmware is expected
4714         * to configure the devices before OS is notified.
4715         */
4716        if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4717                up_read(&pci_bus_sem);
4718                return;
4719        }
4720
4721        /* Take d3cold_delay requirements into account */
4722        delay = pci_bus_max_d3cold_delay(dev->subordinate);
4723        if (!delay) {
4724                up_read(&pci_bus_sem);
4725                return;
4726        }
4727
4728        child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
4729                                 bus_list);
4730        up_read(&pci_bus_sem);
4731
4732        /*
4733         * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4734         * accessing the device after reset (that is 1000 ms + 100 ms). In
4735         * practice this should not be needed because we don't do power
4736         * management for them (see pci_bridge_d3_possible()).
4737         */
4738        if (!pci_is_pcie(dev)) {
4739                pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4740                msleep(1000 + delay);
4741                return;
4742        }
4743
4744        /*
4745         * For PCIe downstream and root ports that do not support speeds
4746         * greater than 5 GT/s need to wait minimum 100 ms. For higher
4747         * speeds (gen3) we need to wait first for the data link layer to
4748         * become active.
4749         *
4750         * However, 100 ms is the minimum and the PCIe spec says the
4751         * software must allow at least 1s before it can determine that the
4752         * device that did not respond is a broken device. There is
4753         * evidence that 100 ms is not always enough, for example certain
4754         * Titan Ridge xHCI controller does not always respond to
4755         * configuration requests if we only wait for 100 ms (see
4756         * https://bugzilla.kernel.org/show_bug.cgi?id=203885).
4757         *
4758         * Therefore we wait for 100 ms and check for the device presence.
4759         * If it is still not present give it an additional 100 ms.
4760         */
4761        if (!pcie_downstream_port(dev))
4762                return;
4763
4764        if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
4765                pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
4766                msleep(delay);
4767        } else {
4768                pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
4769                        delay);
4770                if (!pcie_wait_for_link_delay(dev, true, delay)) {
4771                        /* Did not train, no need to wait any further */
4772                        return;
4773                }
4774        }
4775
4776        if (!pci_device_is_present(child)) {
4777                pci_dbg(child, "waiting additional %d ms to become accessible\n", delay);
4778                msleep(delay);
4779        }
4780}
4781
4782void pci_reset_secondary_bus(struct pci_dev *dev)
4783{
4784        u16 ctrl;
4785
4786        pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4787        ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4788        pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4789
4790        /*
4791         * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
4792         * this to 2ms to ensure that we meet the minimum requirement.
4793         */
4794        msleep(2);
4795
4796        ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4797        pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4798
4799        /*
4800         * Trhfa for conventional PCI is 2^25 clock cycles.
4801         * Assuming a minimum 33MHz clock this results in a 1s
4802         * delay before we can consider subordinate devices to
4803         * be re-initialized.  PCIe has some ways to shorten this,
4804         * but we don't make use of them yet.
4805         */
4806        ssleep(1);
4807}
4808
4809void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4810{
4811        pci_reset_secondary_bus(dev);
4812}
4813
4814/**
4815 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4816 * @dev: Bridge device
4817 *
4818 * Use the bridge control register to assert reset on the secondary bus.
4819 * Devices on the secondary bus are left in power-on state.
4820 */
4821int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
4822{
4823        pcibios_reset_secondary_bus(dev);
4824
4825        return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
4826}
4827EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
4828
4829static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4830{
4831        struct pci_dev *pdev;
4832
4833        if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4834            !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4835                return -ENOTTY;
4836
4837        list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4838                if (pdev != dev)
4839                        return -ENOTTY;
4840
4841        if (probe)
4842                return 0;
4843
4844        return pci_bridge_secondary_bus_reset(dev->bus->self);
4845}
4846
4847static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
4848{
4849        int rc = -ENOTTY;
4850
4851        if (!hotplug || !try_module_get(hotplug->owner))
4852                return rc;
4853
4854        if (hotplug->ops->reset_slot)
4855                rc = hotplug->ops->reset_slot(hotplug, probe);
4856
4857        module_put(hotplug->owner);
4858
4859        return rc;
4860}
4861
4862static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
4863{
4864        struct pci_dev *pdev;
4865
4866        if (dev->subordinate || !dev->slot ||
4867            dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4868                return -ENOTTY;
4869
4870        list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4871                if (pdev != dev && pdev->slot == dev->slot)
4872                        return -ENOTTY;
4873
4874        return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4875}
4876
4877static void pci_dev_lock(struct pci_dev *dev)
4878{
4879        pci_cfg_access_lock(dev);
4880        /* block PM suspend, driver probe, etc. */
4881        device_lock(&dev->dev);
4882}
4883
4884/* Return 1 on successful lock, 0 on contention */
4885static int pci_dev_trylock(struct pci_dev *dev)
4886{
4887        if (pci_cfg_access_trylock(dev)) {
4888                if (device_trylock(&dev->dev))
4889                        return 1;
4890                pci_cfg_access_unlock(dev);
4891        }
4892
4893        return 0;
4894}
4895
4896static void pci_dev_unlock(struct pci_dev *dev)
4897{
4898        device_unlock(&dev->dev);
4899        pci_cfg_access_unlock(dev);
4900}
4901
4902static void pci_dev_save_and_disable(struct pci_dev *dev)
4903{
4904        const struct pci_error_handlers *err_handler =
4905                        dev->driver ? dev->driver->err_handler : NULL;
4906
4907        /*
4908         * dev->driver->err_handler->reset_prepare() is protected against
4909         * races with ->remove() by the device lock, which must be held by
4910         * the caller.
4911         */
4912        if (err_handler && err_handler->reset_prepare)
4913                err_handler->reset_prepare(dev);
4914
4915        /*
4916         * Wake-up device prior to save.  PM registers default to D0 after
4917         * reset and a simple register restore doesn't reliably return
4918         * to a non-D0 state anyway.
4919         */
4920        pci_set_power_state(dev, PCI_D0);
4921
4922        pci_save_state(dev);
4923        /*
4924         * Disable the device by clearing the Command register, except for
4925         * INTx-disable which is set.  This not only disables MMIO and I/O port
4926         * BARs, but also prevents the device from being Bus Master, preventing
4927         * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
4928         * compliant devices, INTx-disable prevents legacy interrupts.
4929         */
4930        pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4931}
4932
4933static void pci_dev_restore(struct pci_dev *dev)
4934{
4935        const struct pci_error_handlers *err_handler =
4936                        dev->driver ? dev->driver->err_handler : NULL;
4937
4938        pci_restore_state(dev);
4939
4940        /*
4941         * dev->driver->err_handler->reset_done() is protected against
4942         * races with ->remove() by the device lock, which must be held by
4943         * the caller.
4944         */
4945        if (err_handler && err_handler->reset_done)
4946                err_handler->reset_done(dev);
4947}
4948
4949/**
4950 * __pci_reset_function_locked - reset a PCI device function while holding
4951 * the @dev mutex lock.
4952 * @dev: PCI device to reset
4953 *
4954 * Some devices allow an individual function to be reset without affecting
4955 * other functions in the same device.  The PCI device must be responsive
4956 * to PCI config space in order to use this function.
4957 *
4958 * The device function is presumed to be unused and the caller is holding
4959 * the device mutex lock when this function is called.
4960 *
4961 * Resetting the device will make the contents of PCI configuration space
4962 * random, so any caller of this must be prepared to reinitialise the
4963 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4964 * etc.
4965 *
4966 * Returns 0 if the device function was successfully reset or negative if the
4967 * device doesn't support resetting a single function.
4968 */
4969int __pci_reset_function_locked(struct pci_dev *dev)
4970{
4971        int rc;
4972
4973        might_sleep();
4974
4975        /*
4976         * A reset method returns -ENOTTY if it doesn't support this device
4977         * and we should try the next method.
4978         *
4979         * If it returns 0 (success), we're finished.  If it returns any
4980         * other error, we're also finished: this indicates that further
4981         * reset mechanisms might be broken on the device.
4982         */
4983        rc = pci_dev_specific_reset(dev, 0);
4984        if (rc != -ENOTTY)
4985                return rc;
4986        if (pcie_has_flr(dev)) {
4987                rc = pcie_flr(dev);
4988                if (rc != -ENOTTY)
4989                        return rc;
4990        }
4991        rc = pci_af_flr(dev, 0);
4992        if (rc != -ENOTTY)
4993                return rc;
4994        rc = pci_pm_reset(dev, 0);
4995        if (rc != -ENOTTY)
4996                return rc;
4997        rc = pci_dev_reset_slot_function(dev, 0);
4998        if (rc != -ENOTTY)
4999                return rc;
5000        return pci_parent_bus_reset(dev, 0);
5001}
5002EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5003
5004/**
5005 * pci_probe_reset_function - check whether the device can be safely reset
5006 * @dev: PCI device to reset
5007 *
5008 * Some devices allow an individual function to be reset without affecting
5009 * other functions in the same device.  The PCI device must be responsive
5010 * to PCI config space in order to use this function.
5011 *
5012 * Returns 0 if the device function can be reset or negative if the
5013 * device doesn't support resetting a single function.
5014 */
5015int pci_probe_reset_function(struct pci_dev *dev)
5016{
5017        int rc;
5018
5019        might_sleep();
5020
5021        rc = pci_dev_specific_reset(dev, 1);
5022        if (rc != -ENOTTY)
5023                return rc;
5024        if (pcie_has_flr(dev))
5025                return 0;
5026        rc = pci_af_flr(dev, 1);
5027        if (rc != -ENOTTY)
5028                return rc;
5029        rc = pci_pm_reset(dev, 1);
5030        if (rc != -ENOTTY)
5031                return rc;
5032        rc = pci_dev_reset_slot_function(dev, 1);
5033        if (rc != -ENOTTY)
5034                return rc;
5035
5036        return pci_parent_bus_reset(dev, 1);
5037}
5038
5039/**
5040 * pci_reset_function - quiesce and reset a PCI device function
5041 * @dev: PCI device to reset
5042 *
5043 * Some devices allow an individual function to be reset without affecting
5044 * other functions in the same device.  The PCI device must be responsive
5045 * to PCI config space in order to use this function.
5046 *
5047 * This function does not just reset the PCI portion of a device, but
5048 * clears all the state associated with the device.  This function differs
5049 * from __pci_reset_function_locked() in that it saves and restores device state
5050 * over the reset and takes the PCI device lock.
5051 *
5052 * Returns 0 if the device function was successfully reset or negative if the
5053 * device doesn't support resetting a single function.
5054 */
5055int pci_reset_function(struct pci_dev *dev)
5056{
5057        int rc;
5058
5059        if (!dev->reset_fn)
5060                return -ENOTTY;
5061
5062        pci_dev_lock(dev);
5063        pci_dev_save_and_disable(dev);
5064
5065        rc = __pci_reset_function_locked(dev);
5066
5067        pci_dev_restore(dev);
5068        pci_dev_unlock(dev);
5069
5070        return rc;
5071}
5072EXPORT_SYMBOL_GPL(pci_reset_function);
5073
5074/**
5075 * pci_reset_function_locked - quiesce and reset a PCI device function
5076 * @dev: PCI device to reset
5077 *
5078 * Some devices allow an individual function to be reset without affecting
5079 * other functions in the same device.  The PCI device must be responsive
5080 * to PCI config space in order to use this function.
5081 *
5082 * This function does not just reset the PCI portion of a device, but
5083 * clears all the state associated with the device.  This function differs
5084 * from __pci_reset_function_locked() in that it saves and restores device state
5085 * over the reset.  It also differs from pci_reset_function() in that it
5086 * requires the PCI device lock to be held.
5087 *
5088 * Returns 0 if the device function was successfully reset or negative if the
5089 * device doesn't support resetting a single function.
5090 */
5091int pci_reset_function_locked(struct pci_dev *dev)
5092{
5093        int rc;
5094
5095        if (!dev->reset_fn)
5096                return -ENOTTY;
5097
5098        pci_dev_save_and_disable(dev);
5099
5100        rc = __pci_reset_function_locked(dev);
5101
5102        pci_dev_restore(dev);
5103
5104        return rc;
5105}
5106EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5107
5108/**
5109 * pci_try_reset_function - quiesce and reset a PCI device function
5110 * @dev: PCI device to reset
5111 *
5112 * Same as above, except return -EAGAIN if unable to lock device.
5113 */
5114int pci_try_reset_function(struct pci_dev *dev)
5115{
5116        int rc;
5117
5118        if (!dev->reset_fn)
5119                return -ENOTTY;
5120
5121        if (!pci_dev_trylock(dev))
5122                return -EAGAIN;
5123
5124        pci_dev_save_and_disable(dev);
5125        rc = __pci_reset_function_locked(dev);
5126        pci_dev_restore(dev);
5127        pci_dev_unlock(dev);
5128
5129        return rc;
5130}
5131EXPORT_SYMBOL_GPL(pci_try_reset_function);
5132
5133/* Do any devices on or below this bus prevent a bus reset? */
5134static bool pci_bus_resetable(struct pci_bus *bus)
5135{
5136        struct pci_dev *dev;
5137
5138
5139        if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5140                return false;
5141
5142        list_for_each_entry(dev, &bus->devices, bus_list) {
5143                if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5144                    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5145                        return false;
5146        }
5147
5148        return true;
5149}
5150
5151/* Lock devices from the top of the tree down */
5152static void pci_bus_lock(struct pci_bus *bus)
5153{
5154        struct pci_dev *dev;
5155
5156        list_for_each_entry(dev, &bus->devices, bus_list) {
5157                pci_dev_lock(dev);
5158                if (dev->subordinate)
5159                        pci_bus_lock(dev->subordinate);
5160        }
5161}
5162
5163/* Unlock devices from the bottom of the tree up */
5164static void pci_bus_unlock(struct pci_bus *bus)
5165{
5166        struct pci_dev *dev;
5167
5168        list_for_each_entry(dev, &bus->devices, bus_list) {
5169                if (dev->subordinate)
5170                        pci_bus_unlock(dev->subordinate);
5171                pci_dev_unlock(dev);
5172        }
5173}
5174
5175/* Return 1 on successful lock, 0 on contention */
5176static int pci_bus_trylock(struct pci_bus *bus)
5177{
5178        struct pci_dev *dev;
5179
5180        list_for_each_entry(dev, &bus->devices, bus_list) {
5181                if (!pci_dev_trylock(dev))
5182                        goto unlock;
5183                if (dev->subordinate) {
5184                        if (!pci_bus_trylock(dev->subordinate)) {
5185                                pci_dev_unlock(dev);
5186                                goto unlock;
5187                        }
5188                }
5189        }
5190        return 1;
5191
5192unlock:
5193        list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5194                if (dev->subordinate)
5195                        pci_bus_unlock(dev->subordinate);
5196                pci_dev_unlock(dev);
5197        }
5198        return 0;
5199}
5200
5201/* Do any devices on or below this slot prevent a bus reset? */
5202static bool pci_slot_resetable(struct pci_slot *slot)
5203{
5204        struct pci_dev *dev;
5205
5206        if (slot->bus->self &&
5207            (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5208                return false;
5209
5210        list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5211                if (!dev->slot || dev->slot != slot)
5212                        continue;
5213                if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5214                    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5215                        return false;
5216        }
5217
5218        return true;
5219}
5220
5221/* Lock devices from the top of the tree down */
5222static void pci_slot_lock(struct pci_slot *slot)
5223{
5224        struct pci_dev *dev;
5225
5226        list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5227                if (!dev->slot || dev->slot != slot)
5228                        continue;
5229                pci_dev_lock(dev);
5230                if (dev->subordinate)
5231                        pci_bus_lock(dev->subordinate);
5232        }
5233}
5234
5235/* Unlock devices from the bottom of the tree up */
5236static void pci_slot_unlock(struct pci_slot *slot)
5237{
5238        struct pci_dev *dev;
5239
5240        list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5241                if (!dev->slot || dev->slot != slot)
5242                        continue;
5243                if (dev->subordinate)
5244                        pci_bus_unlock(dev->subordinate);
5245                pci_dev_unlock(dev);
5246        }
5247}
5248
5249/* Return 1 on successful lock, 0 on contention */
5250static int pci_slot_trylock(struct pci_slot *slot)
5251{
5252        struct pci_dev *dev;
5253
5254        list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5255                if (!dev->slot || dev->slot != slot)
5256                        continue;
5257                if (!pci_dev_trylock(dev))
5258                        goto unlock;
5259                if (dev->subordinate) {
5260                        if (!pci_bus_trylock(dev->subordinate)) {
5261                                pci_dev_unlock(dev);
5262                                goto unlock;
5263                        }
5264                }
5265        }
5266        return 1;
5267
5268unlock:
5269        list_for_each_entry_continue_reverse(dev,
5270                                             &slot->bus->devices, bus_list) {
5271                if (!dev->slot || dev->slot != slot)
5272                        continue;
5273                if (dev->subordinate)
5274                        pci_bus_unlock(dev->subordinate);
5275                pci_dev_unlock(dev);
5276        }
5277        return 0;
5278}
5279
5280/*
5281 * Save and disable devices from the top of the tree down while holding
5282 * the @dev mutex lock for the entire tree.
5283 */
5284static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5285{
5286        struct pci_dev *dev;
5287
5288        list_for_each_entry(dev, &bus->devices, bus_list) {
5289                pci_dev_save_and_disable(dev);
5290                if (dev->subordinate)
5291                        pci_bus_save_and_disable_locked(dev->subordinate);
5292        }
5293}
5294
5295/*
5296 * Restore devices from top of the tree down while holding @dev mutex lock
5297 * for the entire tree.  Parent bridges need to be restored before we can
5298 * get to subordinate devices.
5299 */
5300static void pci_bus_restore_locked(struct pci_bus *bus)
5301{
5302        struct pci_dev *dev;
5303
5304        list_for_each_entry(dev, &bus->devices, bus_list) {
5305                pci_dev_restore(dev);
5306                if (dev->subordinate)
5307                        pci_bus_restore_locked(dev->subordinate);
5308        }
5309}
5310
5311/*
5312 * Save and disable devices from the top of the tree down while holding
5313 * the @dev mutex lock for the entire tree.
5314 */
5315static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5316{
5317        struct pci_dev *dev;
5318
5319        list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5320                if (!dev->slot || dev->slot != slot)
5321                        continue;
5322                pci_dev_save_and_disable(dev);
5323                if (dev->subordinate)
5324                        pci_bus_save_and_disable_locked(dev->subordinate);
5325        }
5326}
5327
5328/*
5329 * Restore devices from top of the tree down while holding @dev mutex lock
5330 * for the entire tree.  Parent bridges need to be restored before we can
5331 * get to subordinate devices.
5332 */
5333static void pci_slot_restore_locked(struct pci_slot *slot)
5334{
5335        struct pci_dev *dev;
5336
5337        list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5338                if (!dev->slot || dev->slot != slot)
5339                        continue;
5340                pci_dev_restore(dev);
5341                if (dev->subordinate)
5342                        pci_bus_restore_locked(dev->subordinate);
5343        }
5344}
5345
5346static int pci_slot_reset(struct pci_slot *slot, int probe)
5347{
5348        int rc;
5349
5350        if (!slot || !pci_slot_resetable(slot))
5351                return -ENOTTY;
5352
5353        if (!probe)
5354                pci_slot_lock(slot);
5355
5356        might_sleep();
5357
5358        rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5359
5360        if (!probe)
5361                pci_slot_unlock(slot);
5362
5363        return rc;
5364}
5365
5366/**
5367 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5368 * @slot: PCI slot to probe
5369 *
5370 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5371 */
5372int pci_probe_reset_slot(struct pci_slot *slot)
5373{
5374        return pci_slot_reset(slot, 1);
5375}
5376EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5377
5378/**
5379 * __pci_reset_slot - Try to reset a PCI slot
5380 * @slot: PCI slot to reset
5381 *
5382 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5383 * independent of other slots.  For instance, some slots may support slot power
5384 * control.  In the case of a 1:1 bus to slot architecture, this function may
5385 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5386 * Generally a slot reset should be attempted before a bus reset.  All of the
5387 * function of the slot and any subordinate buses behind the slot are reset
5388 * through this function.  PCI config space of all devices in the slot and
5389 * behind the slot is saved before and restored after reset.
5390 *
5391 * Same as above except return -EAGAIN if the slot cannot be locked
5392 */
5393static int __pci_reset_slot(struct pci_slot *slot)
5394{
5395        int rc;
5396
5397        rc = pci_slot_reset(slot, 1);
5398        if (rc)
5399                return rc;
5400
5401        if (pci_slot_trylock(slot)) {
5402                pci_slot_save_and_disable_locked(slot);
5403                might_sleep();
5404                rc = pci_reset_hotplug_slot(slot->hotplug, 0);
5405                pci_slot_restore_locked(slot);
5406                pci_slot_unlock(slot);
5407        } else
5408                rc = -EAGAIN;
5409
5410        return rc;
5411}
5412
5413static int pci_bus_reset(struct pci_bus *bus, int probe)
5414{
5415        int ret;
5416
5417        if (!bus->self || !pci_bus_resetable(bus))
5418                return -ENOTTY;
5419
5420        if (probe)
5421                return 0;
5422
5423        pci_bus_lock(bus);
5424
5425        might_sleep();
5426
5427        ret = pci_bridge_secondary_bus_reset(bus->self);
5428
5429        pci_bus_unlock(bus);
5430
5431        return ret;
5432}
5433
5434/**
5435 * pci_bus_error_reset - reset the bridge's subordinate bus
5436 * @bridge: The parent device that connects to the bus to reset
5437 *
5438 * This function will first try to reset the slots on this bus if the method is
5439 * available. If slot reset fails or is not available, this will fall back to a
5440 * secondary bus reset.
5441 */
5442int pci_bus_error_reset(struct pci_dev *bridge)
5443{
5444        struct pci_bus *bus = bridge->subordinate;
5445        struct pci_slot *slot;
5446
5447        if (!bus)
5448                return -ENOTTY;
5449
5450        mutex_lock(&pci_slot_mutex);
5451        if (list_empty(&bus->slots))
5452                goto bus_reset;
5453
5454        list_for_each_entry(slot, &bus->slots, list)
5455                if (pci_probe_reset_slot(slot))
5456                        goto bus_reset;
5457
5458        list_for_each_entry(slot, &bus->slots, list)
5459                if (pci_slot_reset(slot, 0))
5460                        goto bus_reset;
5461
5462        mutex_unlock(&pci_slot_mutex);
5463        return 0;
5464bus_reset:
5465        mutex_unlock(&pci_slot_mutex);
5466        return pci_bus_reset(bridge->subordinate, 0);
5467}
5468
5469/**
5470 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5471 * @bus: PCI bus to probe
5472 *
5473 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5474 */
5475int pci_probe_reset_bus(struct pci_bus *bus)
5476{
5477        return pci_bus_reset(bus, 1);
5478}
5479EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5480
5481/**
5482 * __pci_reset_bus - Try to reset a PCI bus
5483 * @bus: top level PCI bus to reset
5484 *
5485 * Same as above except return -EAGAIN if the bus cannot be locked
5486 */
5487static int __pci_reset_bus(struct pci_bus *bus)
5488{
5489        int rc;
5490
5491        rc = pci_bus_reset(bus, 1);
5492        if (rc)
5493                return rc;
5494
5495        if (pci_bus_trylock(bus)) {
5496                pci_bus_save_and_disable_locked(bus);
5497                might_sleep();
5498                rc = pci_bridge_secondary_bus_reset(bus->self);
5499                pci_bus_restore_locked(bus);
5500                pci_bus_unlock(bus);
5501        } else
5502                rc = -EAGAIN;
5503
5504        return rc;
5505}
5506
5507/**
5508 * pci_reset_bus - Try to reset a PCI bus
5509 * @pdev: top level PCI device to reset via slot/bus
5510 *
5511 * Same as above except return -EAGAIN if the bus cannot be locked
5512 */
5513int pci_reset_bus(struct pci_dev *pdev)
5514{
5515        return (!pci_probe_reset_slot(pdev->slot)) ?
5516            __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5517}
5518EXPORT_SYMBOL_GPL(pci_reset_bus);
5519
5520/**
5521 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5522 * @dev: PCI device to query
5523 *
5524 * Returns mmrbc: maximum designed memory read count in bytes or
5525 * appropriate error value.
5526 */
5527int pcix_get_max_mmrbc(struct pci_dev *dev)
5528{
5529        int cap;
5530        u32 stat;
5531
5532        cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5533        if (!cap)
5534                return -EINVAL;
5535
5536        if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5537                return -EINVAL;
5538
5539        return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5540}
5541EXPORT_SYMBOL(pcix_get_max_mmrbc);
5542
5543/**
5544 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5545 * @dev: PCI device to query
5546 *
5547 * Returns mmrbc: maximum memory read count in bytes or appropriate error
5548 * value.
5549 */
5550int pcix_get_mmrbc(struct pci_dev *dev)
5551{
5552        int cap;
5553        u16 cmd;
5554
5555        cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5556        if (!cap)
5557                return -EINVAL;
5558
5559        if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5560                return -EINVAL;
5561
5562        return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5563}
5564EXPORT_SYMBOL(pcix_get_mmrbc);
5565
5566/**
5567 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5568 * @dev: PCI device to query
5569 * @mmrbc: maximum memory read count in bytes
5570 *    valid values are 512, 1024, 2048, 4096
5571 *
5572 * If possible sets maximum memory read byte count, some bridges have errata
5573 * that prevent this.
5574 */
5575int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5576{
5577        int cap;
5578        u32 stat, v, o;
5579        u16 cmd;
5580
5581        if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5582                return -EINVAL;
5583
5584        v = ffs(mmrbc) - 10;
5585
5586        cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5587        if (!cap)
5588                return -EINVAL;
5589
5590        if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5591                return -EINVAL;
5592
5593        if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5594                return -E2BIG;
5595
5596        if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5597                return -EINVAL;
5598
5599        o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5600        if (o != v) {
5601                if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5602                        return -EIO;
5603
5604                cmd &= ~PCI_X_CMD_MAX_READ;
5605                cmd |= v << 2;
5606                if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5607                        return -EIO;
5608        }
5609        return 0;
5610}
5611EXPORT_SYMBOL(pcix_set_mmrbc);
5612
5613/**
5614 * pcie_get_readrq - get PCI Express read request size
5615 * @dev: PCI device to query
5616 *
5617 * Returns maximum memory read request in bytes or appropriate error value.
5618 */
5619int pcie_get_readrq(struct pci_dev *dev)
5620{
5621        u16 ctl;
5622
5623        pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5624
5625        return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5626}
5627EXPORT_SYMBOL(pcie_get_readrq);
5628
5629/**
5630 * pcie_set_readrq - set PCI Express maximum memory read request
5631 * @dev: PCI device to query
5632 * @rq: maximum memory read count in bytes
5633 *    valid values are 128, 256, 512, 1024, 2048, 4096
5634 *
5635 * If possible sets maximum memory read request in bytes
5636 */
5637int pcie_set_readrq(struct pci_dev *dev, int rq)
5638{
5639        u16 v;
5640
5641        if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5642                return -EINVAL;
5643
5644        /*
5645         * If using the "performance" PCIe config, we clamp the read rq
5646         * size to the max packet size to keep the host bridge from
5647         * generating requests larger than we can cope with.
5648         */
5649        if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5650                int mps = pcie_get_mps(dev);
5651
5652                if (mps < rq)
5653                        rq = mps;
5654        }
5655
5656        v = (ffs(rq) - 8) << 12;
5657
5658        return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5659                                                  PCI_EXP_DEVCTL_READRQ, v);
5660}
5661EXPORT_SYMBOL(pcie_set_readrq);
5662
5663/**
5664 * pcie_get_mps - get PCI Express maximum payload size
5665 * @dev: PCI device to query
5666 *
5667 * Returns maximum payload size in bytes
5668 */
5669int pcie_get_mps(struct pci_dev *dev)
5670{
5671        u16 ctl;
5672
5673        pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5674
5675        return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5676}
5677EXPORT_SYMBOL(pcie_get_mps);
5678
5679/**
5680 * pcie_set_mps - set PCI Express maximum payload size
5681 * @dev: PCI device to query
5682 * @mps: maximum payload size in bytes
5683 *    valid values are 128, 256, 512, 1024, 2048, 4096
5684 *
5685 * If possible sets maximum payload size
5686 */
5687int pcie_set_mps(struct pci_dev *dev, int mps)
5688{
5689        u16 v;
5690
5691        if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
5692                return -EINVAL;
5693
5694        v = ffs(mps) - 8;
5695        if (v > dev->pcie_mpss)
5696                return -EINVAL;
5697        v <<= 5;
5698
5699        return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5700                                                  PCI_EXP_DEVCTL_PAYLOAD, v);
5701}
5702EXPORT_SYMBOL(pcie_set_mps);
5703
5704/**
5705 * pcie_bandwidth_available - determine minimum link settings of a PCIe
5706 *                            device and its bandwidth limitation
5707 * @dev: PCI device to query
5708 * @limiting_dev: storage for device causing the bandwidth limitation
5709 * @speed: storage for speed of limiting device
5710 * @width: storage for width of limiting device
5711 *
5712 * Walk up the PCI device chain and find the point where the minimum
5713 * bandwidth is available.  Return the bandwidth available there and (if
5714 * limiting_dev, speed, and width pointers are supplied) information about
5715 * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
5716 * raw bandwidth.
5717 */
5718u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
5719                             enum pci_bus_speed *speed,
5720                             enum pcie_link_width *width)
5721{
5722        u16 lnksta;
5723        enum pci_bus_speed next_speed;
5724        enum pcie_link_width next_width;
5725        u32 bw, next_bw;
5726
5727        if (speed)
5728                *speed = PCI_SPEED_UNKNOWN;
5729        if (width)
5730                *width = PCIE_LNK_WIDTH_UNKNOWN;
5731
5732        bw = 0;
5733
5734        while (dev) {
5735                pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5736
5737                next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5738                next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5739                        PCI_EXP_LNKSTA_NLW_SHIFT;
5740
5741                next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
5742
5743                /* Check if current device limits the total bandwidth */
5744                if (!bw || next_bw <= bw) {
5745                        bw = next_bw;
5746
5747                        if (limiting_dev)
5748                                *limiting_dev = dev;
5749                        if (speed)
5750                                *speed = next_speed;
5751                        if (width)
5752                                *width = next_width;
5753                }
5754
5755                dev = pci_upstream_bridge(dev);
5756        }
5757
5758        return bw;
5759}
5760EXPORT_SYMBOL(pcie_bandwidth_available);
5761
5762/**
5763 * pcie_get_speed_cap - query for the PCI device's link speed capability
5764 * @dev: PCI device to query
5765 *
5766 * Query the PCI device speed capability.  Return the maximum link speed
5767 * supported by the device.
5768 */
5769enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
5770{
5771        u32 lnkcap2, lnkcap;
5772
5773        /*
5774         * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.  The
5775         * implementation note there recommends using the Supported Link
5776         * Speeds Vector in Link Capabilities 2 when supported.
5777         *
5778         * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
5779         * should use the Supported Link Speeds field in Link Capabilities,
5780         * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
5781         */
5782        pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
5783        if (lnkcap2) { /* PCIe r3.0-compliant */
5784                if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_32_0GB)
5785                        return PCIE_SPEED_32_0GT;
5786                else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_16_0GB)
5787                        return PCIE_SPEED_16_0GT;
5788                else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB)
5789                        return PCIE_SPEED_8_0GT;
5790                else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB)
5791                        return PCIE_SPEED_5_0GT;
5792                else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB)
5793                        return PCIE_SPEED_2_5GT;
5794                return PCI_SPEED_UNKNOWN;
5795        }
5796
5797        pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5798        if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
5799                return PCIE_SPEED_5_0GT;
5800        else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
5801                return PCIE_SPEED_2_5GT;
5802
5803        return PCI_SPEED_UNKNOWN;
5804}
5805EXPORT_SYMBOL(pcie_get_speed_cap);
5806
5807/**
5808 * pcie_get_width_cap - query for the PCI device's link width capability
5809 * @dev: PCI device to query
5810 *
5811 * Query the PCI device width capability.  Return the maximum link width
5812 * supported by the device.
5813 */
5814enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
5815{
5816        u32 lnkcap;
5817
5818        pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5819        if (lnkcap)
5820                return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
5821
5822        return PCIE_LNK_WIDTH_UNKNOWN;
5823}
5824EXPORT_SYMBOL(pcie_get_width_cap);
5825
5826/**
5827 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
5828 * @dev: PCI device
5829 * @speed: storage for link speed
5830 * @width: storage for link width
5831 *
5832 * Calculate a PCI device's link bandwidth by querying for its link speed
5833 * and width, multiplying them, and applying encoding overhead.  The result
5834 * is in Mb/s, i.e., megabits/second of raw bandwidth.
5835 */
5836u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
5837                           enum pcie_link_width *width)
5838{
5839        *speed = pcie_get_speed_cap(dev);
5840        *width = pcie_get_width_cap(dev);
5841
5842        if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
5843                return 0;
5844
5845        return *width * PCIE_SPEED2MBS_ENC(*speed);
5846}
5847
5848/**
5849 * __pcie_print_link_status - Report the PCI device's link speed and width
5850 * @dev: PCI device to query
5851 * @verbose: Print info even when enough bandwidth is available
5852 *
5853 * If the available bandwidth at the device is less than the device is
5854 * capable of, report the device's maximum possible bandwidth and the
5855 * upstream link that limits its performance.  If @verbose, always print
5856 * the available bandwidth, even if the device isn't constrained.
5857 */
5858void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
5859{
5860        enum pcie_link_width width, width_cap;
5861        enum pci_bus_speed speed, speed_cap;
5862        struct pci_dev *limiting_dev = NULL;
5863        u32 bw_avail, bw_cap;
5864
5865        bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
5866        bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
5867
5868        if (bw_avail >= bw_cap && verbose)
5869                pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
5870                         bw_cap / 1000, bw_cap % 1000,
5871                         PCIE_SPEED2STR(speed_cap), width_cap);
5872        else if (bw_avail < bw_cap)
5873                pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
5874                         bw_avail / 1000, bw_avail % 1000,
5875                         PCIE_SPEED2STR(speed), width,
5876                         limiting_dev ? pci_name(limiting_dev) : "<unknown>",
5877                         bw_cap / 1000, bw_cap % 1000,
5878                         PCIE_SPEED2STR(speed_cap), width_cap);
5879}
5880
5881/**
5882 * pcie_print_link_status - Report the PCI device's link speed and width
5883 * @dev: PCI device to query
5884 *
5885 * Report the available bandwidth at the device.
5886 */
5887void pcie_print_link_status(struct pci_dev *dev)
5888{
5889        __pcie_print_link_status(dev, true);
5890}
5891EXPORT_SYMBOL(pcie_print_link_status);
5892
5893/**
5894 * pci_select_bars - Make BAR mask from the type of resource
5895 * @dev: the PCI device for which BAR mask is made
5896 * @flags: resource type mask to be selected
5897 *
5898 * This helper routine makes bar mask from the type of resource.
5899 */
5900int pci_select_bars(struct pci_dev *dev, unsigned long flags)
5901{
5902        int i, bars = 0;
5903        for (i = 0; i < PCI_NUM_RESOURCES; i++)
5904                if (pci_resource_flags(dev, i) & flags)
5905                        bars |= (1 << i);
5906        return bars;
5907}
5908EXPORT_SYMBOL(pci_select_bars);
5909
5910/* Some architectures require additional programming to enable VGA */
5911static arch_set_vga_state_t arch_set_vga_state;
5912
5913void __init pci_register_set_vga_state(arch_set_vga_state_t func)
5914{
5915        arch_set_vga_state = func;      /* NULL disables */
5916}
5917
5918static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
5919                                  unsigned int command_bits, u32 flags)
5920{
5921        if (arch_set_vga_state)
5922                return arch_set_vga_state(dev, decode, command_bits,
5923                                                flags);
5924        return 0;
5925}
5926
5927/**
5928 * pci_set_vga_state - set VGA decode state on device and parents if requested
5929 * @dev: the PCI device
5930 * @decode: true = enable decoding, false = disable decoding
5931 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
5932 * @flags: traverse ancestors and change bridges
5933 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
5934 */
5935int pci_set_vga_state(struct pci_dev *dev, bool decode,
5936                      unsigned int command_bits, u32 flags)
5937{
5938        struct pci_bus *bus;
5939        struct pci_dev *bridge;
5940        u16 cmd;
5941        int rc;
5942
5943        WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
5944
5945        /* ARCH specific VGA enables */
5946        rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
5947        if (rc)
5948                return rc;
5949
5950        if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
5951                pci_read_config_word(dev, PCI_COMMAND, &cmd);
5952                if (decode == true)
5953                        cmd |= command_bits;
5954                else
5955                        cmd &= ~command_bits;
5956                pci_write_config_word(dev, PCI_COMMAND, cmd);
5957        }
5958
5959        if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
5960                return 0;
5961
5962        bus = dev->bus;
5963        while (bus) {
5964                bridge = bus->self;
5965                if (bridge) {
5966                        pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
5967                                             &cmd);
5968                        if (decode == true)
5969                                cmd |= PCI_BRIDGE_CTL_VGA;
5970                        else
5971                                cmd &= ~PCI_BRIDGE_CTL_VGA;
5972                        pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
5973                                              cmd);
5974                }
5975                bus = bus->parent;
5976        }
5977        return 0;
5978}
5979
5980#ifdef CONFIG_ACPI
5981bool pci_pr3_present(struct pci_dev *pdev)
5982{
5983        struct acpi_device *adev;
5984
5985        if (acpi_disabled)
5986                return false;
5987
5988        adev = ACPI_COMPANION(&pdev->dev);
5989        if (!adev)
5990                return false;
5991
5992        return adev->power.flags.power_resources &&
5993                acpi_has_method(adev->handle, "_PR3");
5994}
5995EXPORT_SYMBOL_GPL(pci_pr3_present);
5996#endif
5997
5998/**
5999 * pci_add_dma_alias - Add a DMA devfn alias for a device
6000 * @dev: the PCI device for which alias is added
6001 * @devfn: alias slot and function
6002 *
6003 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6004 * which is used to program permissible bus-devfn source addresses for DMA
6005 * requests in an IOMMU.  These aliases factor into IOMMU group creation
6006 * and are useful for devices generating DMA requests beyond or different
6007 * from their logical bus-devfn.  Examples include device quirks where the
6008 * device simply uses the wrong devfn, as well as non-transparent bridges
6009 * where the alias may be a proxy for devices in another domain.
6010 *
6011 * IOMMU group creation is performed during device discovery or addition,
6012 * prior to any potential DMA mapping and therefore prior to driver probing
6013 * (especially for userspace assigned devices where IOMMU group definition
6014 * cannot be left as a userspace activity).  DMA aliases should therefore
6015 * be configured via quirks, such as the PCI fixup header quirk.
6016 */
6017void pci_add_dma_alias(struct pci_dev *dev, u8 devfn)
6018{
6019        if (!dev->dma_alias_mask)
6020                dev->dma_alias_mask = bitmap_zalloc(U8_MAX, GFP_KERNEL);
6021        if (!dev->dma_alias_mask) {
6022                pci_warn(dev, "Unable to allocate DMA alias mask\n");
6023                return;
6024        }
6025
6026        set_bit(devfn, dev->dma_alias_mask);
6027        pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6028                 PCI_SLOT(devfn), PCI_FUNC(devfn));
6029}
6030
6031bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6032{
6033        return (dev1->dma_alias_mask &&
6034                test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6035               (dev2->dma_alias_mask &&
6036                test_bit(dev1->devfn, dev2->dma_alias_mask));
6037}
6038
6039bool pci_device_is_present(struct pci_dev *pdev)
6040{
6041        u32 v;
6042
6043        if (pci_dev_is_disconnected(pdev))
6044                return false;
6045        return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6046}
6047EXPORT_SYMBOL_GPL(pci_device_is_present);
6048
6049void pci_ignore_hotplug(struct pci_dev *dev)
6050{
6051        struct pci_dev *bridge = dev->bus->self;
6052
6053        dev->ignore_hotplug = 1;
6054        /* Propagate the "ignore hotplug" setting to the parent bridge. */
6055        if (bridge)
6056                bridge->ignore_hotplug = 1;
6057}
6058EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6059
6060resource_size_t __weak pcibios_default_alignment(void)
6061{
6062        return 0;
6063}
6064
6065/*
6066 * Arches that don't want to expose struct resource to userland as-is in
6067 * sysfs and /proc can implement their own pci_resource_to_user().
6068 */
6069void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6070                                 const struct resource *rsrc,
6071                                 resource_size_t *start, resource_size_t *end)
6072{
6073        *start = rsrc->start;
6074        *end = rsrc->end;
6075}
6076
6077static char *resource_alignment_param;
6078static DEFINE_SPINLOCK(resource_alignment_lock);
6079
6080/**
6081 * pci_specified_resource_alignment - get resource alignment specified by user.
6082 * @dev: the PCI device to get
6083 * @resize: whether or not to change resources' size when reassigning alignment
6084 *
6085 * RETURNS: Resource alignment if it is specified.
6086 *          Zero if it is not specified.
6087 */
6088static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6089                                                        bool *resize)
6090{
6091        int align_order, count;
6092        resource_size_t align = pcibios_default_alignment();
6093        const char *p;
6094        int ret;
6095
6096        spin_lock(&resource_alignment_lock);
6097        p = resource_alignment_param;
6098        if (!p || !*p)
6099                goto out;
6100        if (pci_has_flag(PCI_PROBE_ONLY)) {
6101                align = 0;
6102                pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6103                goto out;
6104        }
6105
6106        while (*p) {
6107                count = 0;
6108                if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6109                                                        p[count] == '@') {
6110                        p += count + 1;
6111                } else {
6112                        align_order = -1;
6113                }
6114
6115                ret = pci_dev_str_match(dev, p, &p);
6116                if (ret == 1) {
6117                        *resize = true;
6118                        if (align_order == -1)
6119                                align = PAGE_SIZE;
6120                        else
6121                                align = 1 << align_order;
6122                        break;
6123                } else if (ret < 0) {
6124                        pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6125                               p);
6126                        break;
6127                }
6128
6129                if (*p != ';' && *p != ',') {
6130                        /* End of param or invalid format */
6131                        break;
6132                }
6133                p++;
6134        }
6135out:
6136        spin_unlock(&resource_alignment_lock);
6137        return align;
6138}
6139
6140static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6141                                           resource_size_t align, bool resize)
6142{
6143        struct resource *r = &dev->resource[bar];
6144        resource_size_t size;
6145
6146        if (!(r->flags & IORESOURCE_MEM))
6147                return;
6148
6149        if (r->flags & IORESOURCE_PCI_FIXED) {
6150                pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6151                         bar, r, (unsigned long long)align);
6152                return;
6153        }
6154
6155        size = resource_size(r);
6156        if (size >= align)
6157                return;
6158
6159        /*
6160         * Increase the alignment of the resource.  There are two ways we
6161         * can do this:
6162         *
6163         * 1) Increase the size of the resource.  BARs are aligned on their
6164         *    size, so when we reallocate space for this resource, we'll
6165         *    allocate it with the larger alignment.  This also prevents
6166         *    assignment of any other BARs inside the alignment region, so
6167         *    if we're requesting page alignment, this means no other BARs
6168         *    will share the page.
6169         *
6170         *    The disadvantage is that this makes the resource larger than
6171         *    the hardware BAR, which may break drivers that compute things
6172         *    based on the resource size, e.g., to find registers at a
6173         *    fixed offset before the end of the BAR.
6174         *
6175         * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6176         *    set r->start to the desired alignment.  By itself this
6177         *    doesn't prevent other BARs being put inside the alignment
6178         *    region, but if we realign *every* resource of every device in
6179         *    the system, none of them will share an alignment region.
6180         *
6181         * When the user has requested alignment for only some devices via
6182         * the "pci=resource_alignment" argument, "resize" is true and we
6183         * use the first method.  Otherwise we assume we're aligning all
6184         * devices and we use the second.
6185         */
6186
6187        pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6188                 bar, r, (unsigned long long)align);
6189
6190        if (resize) {
6191                r->start = 0;
6192                r->end = align - 1;
6193        } else {
6194                r->flags &= ~IORESOURCE_SIZEALIGN;
6195                r->flags |= IORESOURCE_STARTALIGN;
6196                r->start = align;
6197                r->end = r->start + size - 1;
6198        }
6199        r->flags |= IORESOURCE_UNSET;
6200}
6201
6202/*
6203 * This function disables memory decoding and releases memory resources
6204 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6205 * It also rounds up size to specified alignment.
6206 * Later on, the kernel will assign page-aligned memory resource back
6207 * to the device.
6208 */
6209void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6210{
6211        int i;
6212        struct resource *r;
6213        resource_size_t align;
6214        u16 command;
6215        bool resize = false;
6216
6217        /*
6218         * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6219         * 3.4.1.11.  Their resources are allocated from the space
6220         * described by the VF BARx register in the PF's SR-IOV capability.
6221         * We can't influence their alignment here.
6222         */
6223        if (dev->is_virtfn)
6224                return;
6225
6226        /* check if specified PCI is target device to reassign */
6227        align = pci_specified_resource_alignment(dev, &resize);
6228        if (!align)
6229                return;
6230
6231        if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6232            (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6233                pci_warn(dev, "Can't reassign resources to host bridge\n");
6234                return;
6235        }
6236
6237        pci_read_config_word(dev, PCI_COMMAND, &command);
6238        command &= ~PCI_COMMAND_MEMORY;
6239        pci_write_config_word(dev, PCI_COMMAND, command);
6240
6241        for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6242                pci_request_resource_alignment(dev, i, align, resize);
6243
6244        /*
6245         * Need to disable bridge's resource window,
6246         * to enable the kernel to reassign new resource
6247         * window later on.
6248         */
6249        if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6250                for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6251                        r = &dev->resource[i];
6252                        if (!(r->flags & IORESOURCE_MEM))
6253                                continue;
6254                        r->flags |= IORESOURCE_UNSET;
6255                        r->end = resource_size(r) - 1;
6256                        r->start = 0;
6257                }
6258                pci_disable_bridge_window(dev);
6259        }
6260}
6261
6262static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
6263{
6264        size_t count = 0;
6265
6266        spin_lock(&resource_alignment_lock);
6267        if (resource_alignment_param)
6268                count = snprintf(buf, PAGE_SIZE, "%s", resource_alignment_param);
6269        spin_unlock(&resource_alignment_lock);
6270
6271        /*
6272         * When set by the command line, resource_alignment_param will not
6273         * have a trailing line feed, which is ugly. So conditionally add
6274         * it here.
6275         */
6276        if (count >= 2 && buf[count - 2] != '\n' && count < PAGE_SIZE - 1) {
6277                buf[count - 1] = '\n';
6278                buf[count++] = 0;
6279        }
6280
6281        return count;
6282}
6283
6284static ssize_t resource_alignment_store(struct bus_type *bus,
6285                                        const char *buf, size_t count)
6286{
6287        char *param = kstrndup(buf, count, GFP_KERNEL);
6288
6289        if (!param)
6290                return -ENOMEM;
6291
6292        spin_lock(&resource_alignment_lock);
6293        kfree(resource_alignment_param);
6294        resource_alignment_param = param;
6295        spin_unlock(&resource_alignment_lock);
6296        return count;
6297}
6298
6299static BUS_ATTR_RW(resource_alignment);
6300
6301static int __init pci_resource_alignment_sysfs_init(void)
6302{
6303        return bus_create_file(&pci_bus_type,
6304                                        &bus_attr_resource_alignment);
6305}
6306late_initcall(pci_resource_alignment_sysfs_init);
6307
6308static void pci_no_domains(void)
6309{
6310#ifdef CONFIG_PCI_DOMAINS
6311        pci_domains_supported = 0;
6312#endif
6313}
6314
6315#ifdef CONFIG_PCI_DOMAINS_GENERIC
6316static atomic_t __domain_nr = ATOMIC_INIT(-1);
6317
6318static int pci_get_new_domain_nr(void)
6319{
6320        return atomic_inc_return(&__domain_nr);
6321}
6322
6323static int of_pci_bus_find_domain_nr(struct device *parent)
6324{
6325        static int use_dt_domains = -1;
6326        int domain = -1;
6327
6328        if (parent)
6329                domain = of_get_pci_domain_nr(parent->of_node);
6330
6331        /*
6332         * Check DT domain and use_dt_domains values.
6333         *
6334         * If DT domain property is valid (domain >= 0) and
6335         * use_dt_domains != 0, the DT assignment is valid since this means
6336         * we have not previously allocated a domain number by using
6337         * pci_get_new_domain_nr(); we should also update use_dt_domains to
6338         * 1, to indicate that we have just assigned a domain number from
6339         * DT.
6340         *
6341         * If DT domain property value is not valid (ie domain < 0), and we
6342         * have not previously assigned a domain number from DT
6343         * (use_dt_domains != 1) we should assign a domain number by
6344         * using the:
6345         *
6346         * pci_get_new_domain_nr()
6347         *
6348         * API and update the use_dt_domains value to keep track of method we
6349         * are using to assign domain numbers (use_dt_domains = 0).
6350         *
6351         * All other combinations imply we have a platform that is trying
6352         * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
6353         * which is a recipe for domain mishandling and it is prevented by
6354         * invalidating the domain value (domain = -1) and printing a
6355         * corresponding error.
6356         */
6357        if (domain >= 0 && use_dt_domains) {
6358                use_dt_domains = 1;
6359        } else if (domain < 0 && use_dt_domains != 1) {
6360                use_dt_domains = 0;
6361                domain = pci_get_new_domain_nr();
6362        } else {
6363                if (parent)
6364                        pr_err("Node %pOF has ", parent->of_node);
6365                pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
6366                domain = -1;
6367        }
6368
6369        return domain;
6370}
6371
6372int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6373{
6374        return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6375                               acpi_pci_bus_find_domain_nr(bus);
6376}
6377#endif
6378
6379/**
6380 * pci_ext_cfg_avail - can we access extended PCI config space?
6381 *
6382 * Returns 1 if we can access PCI extended config space (offsets
6383 * greater than 0xff). This is the default implementation. Architecture
6384 * implementations can override this.
6385 */
6386int __weak pci_ext_cfg_avail(void)
6387{
6388        return 1;
6389}
6390
6391void __weak pci_fixup_cardbus(struct pci_bus *bus)
6392{
6393}
6394EXPORT_SYMBOL(pci_fixup_cardbus);
6395
6396static int __init pci_setup(char *str)
6397{
6398        while (str) {
6399                char *k = strchr(str, ',');
6400                if (k)
6401                        *k++ = 0;
6402                if (*str && (str = pcibios_setup(str)) && *str) {
6403                        if (!strcmp(str, "nomsi")) {
6404                                pci_no_msi();
6405                        } else if (!strncmp(str, "noats", 5)) {
6406                                pr_info("PCIe: ATS is disabled\n");
6407                                pcie_ats_disabled = true;
6408                        } else if (!strcmp(str, "noaer")) {
6409                                pci_no_aer();
6410                        } else if (!strcmp(str, "earlydump")) {
6411                                pci_early_dump = true;
6412                        } else if (!strncmp(str, "realloc=", 8)) {
6413                                pci_realloc_get_opt(str + 8);
6414                        } else if (!strncmp(str, "realloc", 7)) {
6415                                pci_realloc_get_opt("on");
6416                        } else if (!strcmp(str, "nodomains")) {
6417                                pci_no_domains();
6418                        } else if (!strncmp(str, "noari", 5)) {
6419                                pcie_ari_disabled = true;
6420                        } else if (!strncmp(str, "cbiosize=", 9)) {
6421                                pci_cardbus_io_size = memparse(str + 9, &str);
6422                        } else if (!strncmp(str, "cbmemsize=", 10)) {
6423                                pci_cardbus_mem_size = memparse(str + 10, &str);
6424                        } else if (!strncmp(str, "resource_alignment=", 19)) {
6425                                resource_alignment_param = str + 19;
6426                        } else if (!strncmp(str, "ecrc=", 5)) {
6427                                pcie_ecrc_get_policy(str + 5);
6428                        } else if (!strncmp(str, "hpiosize=", 9)) {
6429                                pci_hotplug_io_size = memparse(str + 9, &str);
6430                        } else if (!strncmp(str, "hpmmiosize=", 11)) {
6431                                pci_hotplug_mmio_size = memparse(str + 11, &str);
6432                        } else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6433                                pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6434                        } else if (!strncmp(str, "hpmemsize=", 10)) {
6435                                pci_hotplug_mmio_size = memparse(str + 10, &str);
6436                                pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6437                        } else if (!strncmp(str, "hpbussize=", 10)) {
6438                                pci_hotplug_bus_size =
6439                                        simple_strtoul(str + 10, &str, 0);
6440                                if (pci_hotplug_bus_size > 0xff)
6441                                        pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6442                        } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6443                                pcie_bus_config = PCIE_BUS_TUNE_OFF;
6444                        } else if (!strncmp(str, "pcie_bus_safe", 13)) {
6445                                pcie_bus_config = PCIE_BUS_SAFE;
6446                        } else if (!strncmp(str, "pcie_bus_perf", 13)) {
6447                                pcie_bus_config = PCIE_BUS_PERFORMANCE;
6448                        } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6449                                pcie_bus_config = PCIE_BUS_PEER2PEER;
6450                        } else if (!strncmp(str, "pcie_scan_all", 13)) {
6451                                pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6452                        } else if (!strncmp(str, "disable_acs_redir=", 18)) {
6453                                disable_acs_redir_param = str + 18;
6454                        } else {
6455                                pr_err("PCI: Unknown option `%s'\n", str);
6456                        }
6457                }
6458                str = k;
6459        }
6460        return 0;
6461}
6462early_param("pci", pci_setup);
6463
6464/*
6465 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6466 * in pci_setup(), above, to point to data in the __initdata section which
6467 * will be freed after the init sequence is complete. We can't allocate memory
6468 * in pci_setup() because some architectures do not have any memory allocation
6469 * service available during an early_param() call. So we allocate memory and
6470 * copy the variable here before the init section is freed.
6471 *
6472 */
6473static int __init pci_realloc_setup_params(void)
6474{
6475        resource_alignment_param = kstrdup(resource_alignment_param,
6476                                           GFP_KERNEL);
6477        disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6478
6479        return 0;
6480}
6481pure_initcall(pci_realloc_setup_params);
6482