linux/drivers/pwm/core.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Generic pwmlib implementation
   4 *
   5 * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de>
   6 * Copyright (C) 2011-2012 Avionic Design GmbH
   7 */
   8
   9#include <linux/acpi.h>
  10#include <linux/module.h>
  11#include <linux/pwm.h>
  12#include <linux/radix-tree.h>
  13#include <linux/list.h>
  14#include <linux/mutex.h>
  15#include <linux/err.h>
  16#include <linux/slab.h>
  17#include <linux/device.h>
  18#include <linux/debugfs.h>
  19#include <linux/seq_file.h>
  20
  21#include <dt-bindings/pwm/pwm.h>
  22
  23#define MAX_PWMS 1024
  24
  25static DEFINE_MUTEX(pwm_lookup_lock);
  26static LIST_HEAD(pwm_lookup_list);
  27static DEFINE_MUTEX(pwm_lock);
  28static LIST_HEAD(pwm_chips);
  29static DECLARE_BITMAP(allocated_pwms, MAX_PWMS);
  30static RADIX_TREE(pwm_tree, GFP_KERNEL);
  31
  32static struct pwm_device *pwm_to_device(unsigned int pwm)
  33{
  34        return radix_tree_lookup(&pwm_tree, pwm);
  35}
  36
  37static int alloc_pwms(int pwm, unsigned int count)
  38{
  39        unsigned int from = 0;
  40        unsigned int start;
  41
  42        if (pwm >= MAX_PWMS)
  43                return -EINVAL;
  44
  45        if (pwm >= 0)
  46                from = pwm;
  47
  48        start = bitmap_find_next_zero_area(allocated_pwms, MAX_PWMS, from,
  49                                           count, 0);
  50
  51        if (pwm >= 0 && start != pwm)
  52                return -EEXIST;
  53
  54        if (start + count > MAX_PWMS)
  55                return -ENOSPC;
  56
  57        return start;
  58}
  59
  60static void free_pwms(struct pwm_chip *chip)
  61{
  62        unsigned int i;
  63
  64        for (i = 0; i < chip->npwm; i++) {
  65                struct pwm_device *pwm = &chip->pwms[i];
  66
  67                radix_tree_delete(&pwm_tree, pwm->pwm);
  68        }
  69
  70        bitmap_clear(allocated_pwms, chip->base, chip->npwm);
  71
  72        kfree(chip->pwms);
  73        chip->pwms = NULL;
  74}
  75
  76static struct pwm_chip *pwmchip_find_by_name(const char *name)
  77{
  78        struct pwm_chip *chip;
  79
  80        if (!name)
  81                return NULL;
  82
  83        mutex_lock(&pwm_lock);
  84
  85        list_for_each_entry(chip, &pwm_chips, list) {
  86                const char *chip_name = dev_name(chip->dev);
  87
  88                if (chip_name && strcmp(chip_name, name) == 0) {
  89                        mutex_unlock(&pwm_lock);
  90                        return chip;
  91                }
  92        }
  93
  94        mutex_unlock(&pwm_lock);
  95
  96        return NULL;
  97}
  98
  99static int pwm_device_request(struct pwm_device *pwm, const char *label)
 100{
 101        int err;
 102
 103        if (test_bit(PWMF_REQUESTED, &pwm->flags))
 104                return -EBUSY;
 105
 106        if (!try_module_get(pwm->chip->ops->owner))
 107                return -ENODEV;
 108
 109        if (pwm->chip->ops->request) {
 110                err = pwm->chip->ops->request(pwm->chip, pwm);
 111                if (err) {
 112                        module_put(pwm->chip->ops->owner);
 113                        return err;
 114                }
 115        }
 116
 117        set_bit(PWMF_REQUESTED, &pwm->flags);
 118        pwm->label = label;
 119
 120        return 0;
 121}
 122
 123struct pwm_device *
 124of_pwm_xlate_with_flags(struct pwm_chip *pc, const struct of_phandle_args *args)
 125{
 126        struct pwm_device *pwm;
 127
 128        /* check, whether the driver supports a third cell for flags */
 129        if (pc->of_pwm_n_cells < 3)
 130                return ERR_PTR(-EINVAL);
 131
 132        /* flags in the third cell are optional */
 133        if (args->args_count < 2)
 134                return ERR_PTR(-EINVAL);
 135
 136        if (args->args[0] >= pc->npwm)
 137                return ERR_PTR(-EINVAL);
 138
 139        pwm = pwm_request_from_chip(pc, args->args[0], NULL);
 140        if (IS_ERR(pwm))
 141                return pwm;
 142
 143        pwm->args.period = args->args[1];
 144        pwm->args.polarity = PWM_POLARITY_NORMAL;
 145
 146        if (args->args_count > 2 && args->args[2] & PWM_POLARITY_INVERTED)
 147                pwm->args.polarity = PWM_POLARITY_INVERSED;
 148
 149        return pwm;
 150}
 151EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags);
 152
 153static struct pwm_device *
 154of_pwm_simple_xlate(struct pwm_chip *pc, const struct of_phandle_args *args)
 155{
 156        struct pwm_device *pwm;
 157
 158        /* sanity check driver support */
 159        if (pc->of_pwm_n_cells < 2)
 160                return ERR_PTR(-EINVAL);
 161
 162        /* all cells are required */
 163        if (args->args_count != pc->of_pwm_n_cells)
 164                return ERR_PTR(-EINVAL);
 165
 166        if (args->args[0] >= pc->npwm)
 167                return ERR_PTR(-EINVAL);
 168
 169        pwm = pwm_request_from_chip(pc, args->args[0], NULL);
 170        if (IS_ERR(pwm))
 171                return pwm;
 172
 173        pwm->args.period = args->args[1];
 174
 175        return pwm;
 176}
 177
 178static void of_pwmchip_add(struct pwm_chip *chip)
 179{
 180        if (!chip->dev || !chip->dev->of_node)
 181                return;
 182
 183        if (!chip->of_xlate) {
 184                chip->of_xlate = of_pwm_simple_xlate;
 185                chip->of_pwm_n_cells = 2;
 186        }
 187
 188        of_node_get(chip->dev->of_node);
 189}
 190
 191static void of_pwmchip_remove(struct pwm_chip *chip)
 192{
 193        if (chip->dev)
 194                of_node_put(chip->dev->of_node);
 195}
 196
 197/**
 198 * pwm_set_chip_data() - set private chip data for a PWM
 199 * @pwm: PWM device
 200 * @data: pointer to chip-specific data
 201 *
 202 * Returns: 0 on success or a negative error code on failure.
 203 */
 204int pwm_set_chip_data(struct pwm_device *pwm, void *data)
 205{
 206        if (!pwm)
 207                return -EINVAL;
 208
 209        pwm->chip_data = data;
 210
 211        return 0;
 212}
 213EXPORT_SYMBOL_GPL(pwm_set_chip_data);
 214
 215/**
 216 * pwm_get_chip_data() - get private chip data for a PWM
 217 * @pwm: PWM device
 218 *
 219 * Returns: A pointer to the chip-private data for the PWM device.
 220 */
 221void *pwm_get_chip_data(struct pwm_device *pwm)
 222{
 223        return pwm ? pwm->chip_data : NULL;
 224}
 225EXPORT_SYMBOL_GPL(pwm_get_chip_data);
 226
 227static bool pwm_ops_check(const struct pwm_ops *ops)
 228{
 229        /* driver supports legacy, non-atomic operation */
 230        if (ops->config && ops->enable && ops->disable)
 231                return true;
 232
 233        /* driver supports atomic operation */
 234        if (ops->apply)
 235                return true;
 236
 237        return false;
 238}
 239
 240/**
 241 * pwmchip_add_with_polarity() - register a new PWM chip
 242 * @chip: the PWM chip to add
 243 * @polarity: initial polarity of PWM channels
 244 *
 245 * Register a new PWM chip. If chip->base < 0 then a dynamically assigned base
 246 * will be used. The initial polarity for all channels is specified by the
 247 * @polarity parameter.
 248 *
 249 * Returns: 0 on success or a negative error code on failure.
 250 */
 251int pwmchip_add_with_polarity(struct pwm_chip *chip,
 252                              enum pwm_polarity polarity)
 253{
 254        struct pwm_device *pwm;
 255        unsigned int i;
 256        int ret;
 257
 258        if (!chip || !chip->dev || !chip->ops || !chip->npwm)
 259                return -EINVAL;
 260
 261        if (!pwm_ops_check(chip->ops))
 262                return -EINVAL;
 263
 264        mutex_lock(&pwm_lock);
 265
 266        ret = alloc_pwms(chip->base, chip->npwm);
 267        if (ret < 0)
 268                goto out;
 269
 270        chip->pwms = kcalloc(chip->npwm, sizeof(*pwm), GFP_KERNEL);
 271        if (!chip->pwms) {
 272                ret = -ENOMEM;
 273                goto out;
 274        }
 275
 276        chip->base = ret;
 277
 278        for (i = 0; i < chip->npwm; i++) {
 279                pwm = &chip->pwms[i];
 280
 281                pwm->chip = chip;
 282                pwm->pwm = chip->base + i;
 283                pwm->hwpwm = i;
 284                pwm->state.polarity = polarity;
 285
 286                if (chip->ops->get_state)
 287                        chip->ops->get_state(chip, pwm, &pwm->state);
 288
 289                radix_tree_insert(&pwm_tree, pwm->pwm, pwm);
 290        }
 291
 292        bitmap_set(allocated_pwms, chip->base, chip->npwm);
 293
 294        INIT_LIST_HEAD(&chip->list);
 295        list_add(&chip->list, &pwm_chips);
 296
 297        ret = 0;
 298
 299        if (IS_ENABLED(CONFIG_OF))
 300                of_pwmchip_add(chip);
 301
 302out:
 303        mutex_unlock(&pwm_lock);
 304
 305        if (!ret)
 306                pwmchip_sysfs_export(chip);
 307
 308        return ret;
 309}
 310EXPORT_SYMBOL_GPL(pwmchip_add_with_polarity);
 311
 312/**
 313 * pwmchip_add() - register a new PWM chip
 314 * @chip: the PWM chip to add
 315 *
 316 * Register a new PWM chip. If chip->base < 0 then a dynamically assigned base
 317 * will be used. The initial polarity for all channels is normal.
 318 *
 319 * Returns: 0 on success or a negative error code on failure.
 320 */
 321int pwmchip_add(struct pwm_chip *chip)
 322{
 323        return pwmchip_add_with_polarity(chip, PWM_POLARITY_NORMAL);
 324}
 325EXPORT_SYMBOL_GPL(pwmchip_add);
 326
 327/**
 328 * pwmchip_remove() - remove a PWM chip
 329 * @chip: the PWM chip to remove
 330 *
 331 * Removes a PWM chip. This function may return busy if the PWM chip provides
 332 * a PWM device that is still requested.
 333 *
 334 * Returns: 0 on success or a negative error code on failure.
 335 */
 336int pwmchip_remove(struct pwm_chip *chip)
 337{
 338        unsigned int i;
 339        int ret = 0;
 340
 341        pwmchip_sysfs_unexport(chip);
 342
 343        mutex_lock(&pwm_lock);
 344
 345        for (i = 0; i < chip->npwm; i++) {
 346                struct pwm_device *pwm = &chip->pwms[i];
 347
 348                if (test_bit(PWMF_REQUESTED, &pwm->flags)) {
 349                        ret = -EBUSY;
 350                        goto out;
 351                }
 352        }
 353
 354        list_del_init(&chip->list);
 355
 356        if (IS_ENABLED(CONFIG_OF))
 357                of_pwmchip_remove(chip);
 358
 359        free_pwms(chip);
 360
 361out:
 362        mutex_unlock(&pwm_lock);
 363        return ret;
 364}
 365EXPORT_SYMBOL_GPL(pwmchip_remove);
 366
 367/**
 368 * pwm_request() - request a PWM device
 369 * @pwm: global PWM device index
 370 * @label: PWM device label
 371 *
 372 * This function is deprecated, use pwm_get() instead.
 373 *
 374 * Returns: A pointer to a PWM device or an ERR_PTR()-encoded error code on
 375 * failure.
 376 */
 377struct pwm_device *pwm_request(int pwm, const char *label)
 378{
 379        struct pwm_device *dev;
 380        int err;
 381
 382        if (pwm < 0 || pwm >= MAX_PWMS)
 383                return ERR_PTR(-EINVAL);
 384
 385        mutex_lock(&pwm_lock);
 386
 387        dev = pwm_to_device(pwm);
 388        if (!dev) {
 389                dev = ERR_PTR(-EPROBE_DEFER);
 390                goto out;
 391        }
 392
 393        err = pwm_device_request(dev, label);
 394        if (err < 0)
 395                dev = ERR_PTR(err);
 396
 397out:
 398        mutex_unlock(&pwm_lock);
 399
 400        return dev;
 401}
 402EXPORT_SYMBOL_GPL(pwm_request);
 403
 404/**
 405 * pwm_request_from_chip() - request a PWM device relative to a PWM chip
 406 * @chip: PWM chip
 407 * @index: per-chip index of the PWM to request
 408 * @label: a literal description string of this PWM
 409 *
 410 * Returns: A pointer to the PWM device at the given index of the given PWM
 411 * chip. A negative error code is returned if the index is not valid for the
 412 * specified PWM chip or if the PWM device cannot be requested.
 413 */
 414struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip,
 415                                         unsigned int index,
 416                                         const char *label)
 417{
 418        struct pwm_device *pwm;
 419        int err;
 420
 421        if (!chip || index >= chip->npwm)
 422                return ERR_PTR(-EINVAL);
 423
 424        mutex_lock(&pwm_lock);
 425        pwm = &chip->pwms[index];
 426
 427        err = pwm_device_request(pwm, label);
 428        if (err < 0)
 429                pwm = ERR_PTR(err);
 430
 431        mutex_unlock(&pwm_lock);
 432        return pwm;
 433}
 434EXPORT_SYMBOL_GPL(pwm_request_from_chip);
 435
 436/**
 437 * pwm_free() - free a PWM device
 438 * @pwm: PWM device
 439 *
 440 * This function is deprecated, use pwm_put() instead.
 441 */
 442void pwm_free(struct pwm_device *pwm)
 443{
 444        pwm_put(pwm);
 445}
 446EXPORT_SYMBOL_GPL(pwm_free);
 447
 448/**
 449 * pwm_apply_state() - atomically apply a new state to a PWM device
 450 * @pwm: PWM device
 451 * @state: new state to apply
 452 */
 453int pwm_apply_state(struct pwm_device *pwm, const struct pwm_state *state)
 454{
 455        struct pwm_chip *chip;
 456        int err;
 457
 458        if (!pwm || !state || !state->period ||
 459            state->duty_cycle > state->period)
 460                return -EINVAL;
 461
 462        chip = pwm->chip;
 463
 464        if (state->period == pwm->state.period &&
 465            state->duty_cycle == pwm->state.duty_cycle &&
 466            state->polarity == pwm->state.polarity &&
 467            state->enabled == pwm->state.enabled)
 468                return 0;
 469
 470        if (chip->ops->apply) {
 471                err = chip->ops->apply(chip, pwm, state);
 472                if (err)
 473                        return err;
 474
 475                pwm->state = *state;
 476        } else {
 477                /*
 478                 * FIXME: restore the initial state in case of error.
 479                 */
 480                if (state->polarity != pwm->state.polarity) {
 481                        if (!chip->ops->set_polarity)
 482                                return -ENOTSUPP;
 483
 484                        /*
 485                         * Changing the polarity of a running PWM is
 486                         * only allowed when the PWM driver implements
 487                         * ->apply().
 488                         */
 489                        if (pwm->state.enabled) {
 490                                chip->ops->disable(chip, pwm);
 491                                pwm->state.enabled = false;
 492                        }
 493
 494                        err = chip->ops->set_polarity(chip, pwm,
 495                                                      state->polarity);
 496                        if (err)
 497                                return err;
 498
 499                        pwm->state.polarity = state->polarity;
 500                }
 501
 502                if (state->period != pwm->state.period ||
 503                    state->duty_cycle != pwm->state.duty_cycle) {
 504                        err = chip->ops->config(pwm->chip, pwm,
 505                                                state->duty_cycle,
 506                                                state->period);
 507                        if (err)
 508                                return err;
 509
 510                        pwm->state.duty_cycle = state->duty_cycle;
 511                        pwm->state.period = state->period;
 512                }
 513
 514                if (state->enabled != pwm->state.enabled) {
 515                        if (state->enabled) {
 516                                err = chip->ops->enable(chip, pwm);
 517                                if (err)
 518                                        return err;
 519                        } else {
 520                                chip->ops->disable(chip, pwm);
 521                        }
 522
 523                        pwm->state.enabled = state->enabled;
 524                }
 525        }
 526
 527        return 0;
 528}
 529EXPORT_SYMBOL_GPL(pwm_apply_state);
 530
 531/**
 532 * pwm_capture() - capture and report a PWM signal
 533 * @pwm: PWM device
 534 * @result: structure to fill with capture result
 535 * @timeout: time to wait, in milliseconds, before giving up on capture
 536 *
 537 * Returns: 0 on success or a negative error code on failure.
 538 */
 539int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result,
 540                unsigned long timeout)
 541{
 542        int err;
 543
 544        if (!pwm || !pwm->chip->ops)
 545                return -EINVAL;
 546
 547        if (!pwm->chip->ops->capture)
 548                return -ENOSYS;
 549
 550        mutex_lock(&pwm_lock);
 551        err = pwm->chip->ops->capture(pwm->chip, pwm, result, timeout);
 552        mutex_unlock(&pwm_lock);
 553
 554        return err;
 555}
 556EXPORT_SYMBOL_GPL(pwm_capture);
 557
 558/**
 559 * pwm_adjust_config() - adjust the current PWM config to the PWM arguments
 560 * @pwm: PWM device
 561 *
 562 * This function will adjust the PWM config to the PWM arguments provided
 563 * by the DT or PWM lookup table. This is particularly useful to adapt
 564 * the bootloader config to the Linux one.
 565 */
 566int pwm_adjust_config(struct pwm_device *pwm)
 567{
 568        struct pwm_state state;
 569        struct pwm_args pargs;
 570
 571        pwm_get_args(pwm, &pargs);
 572        pwm_get_state(pwm, &state);
 573
 574        /*
 575         * If the current period is zero it means that either the PWM driver
 576         * does not support initial state retrieval or the PWM has not yet
 577         * been configured.
 578         *
 579         * In either case, we setup the new period and polarity, and assign a
 580         * duty cycle of 0.
 581         */
 582        if (!state.period) {
 583                state.duty_cycle = 0;
 584                state.period = pargs.period;
 585                state.polarity = pargs.polarity;
 586
 587                return pwm_apply_state(pwm, &state);
 588        }
 589
 590        /*
 591         * Adjust the PWM duty cycle/period based on the period value provided
 592         * in PWM args.
 593         */
 594        if (pargs.period != state.period) {
 595                u64 dutycycle = (u64)state.duty_cycle * pargs.period;
 596
 597                do_div(dutycycle, state.period);
 598                state.duty_cycle = dutycycle;
 599                state.period = pargs.period;
 600        }
 601
 602        /*
 603         * If the polarity changed, we should also change the duty cycle.
 604         */
 605        if (pargs.polarity != state.polarity) {
 606                state.polarity = pargs.polarity;
 607                state.duty_cycle = state.period - state.duty_cycle;
 608        }
 609
 610        return pwm_apply_state(pwm, &state);
 611}
 612EXPORT_SYMBOL_GPL(pwm_adjust_config);
 613
 614static struct pwm_chip *of_node_to_pwmchip(struct device_node *np)
 615{
 616        struct pwm_chip *chip;
 617
 618        mutex_lock(&pwm_lock);
 619
 620        list_for_each_entry(chip, &pwm_chips, list)
 621                if (chip->dev && chip->dev->of_node == np) {
 622                        mutex_unlock(&pwm_lock);
 623                        return chip;
 624                }
 625
 626        mutex_unlock(&pwm_lock);
 627
 628        return ERR_PTR(-EPROBE_DEFER);
 629}
 630
 631static struct device_link *pwm_device_link_add(struct device *dev,
 632                                               struct pwm_device *pwm)
 633{
 634        struct device_link *dl;
 635
 636        if (!dev) {
 637                /*
 638                 * No device for the PWM consumer has been provided. It may
 639                 * impact the PM sequence ordering: the PWM supplier may get
 640                 * suspended before the consumer.
 641                 */
 642                dev_warn(pwm->chip->dev,
 643                         "No consumer device specified to create a link to\n");
 644                return NULL;
 645        }
 646
 647        dl = device_link_add(dev, pwm->chip->dev, DL_FLAG_AUTOREMOVE_CONSUMER);
 648        if (!dl) {
 649                dev_err(dev, "failed to create device link to %s\n",
 650                        dev_name(pwm->chip->dev));
 651                return ERR_PTR(-EINVAL);
 652        }
 653
 654        return dl;
 655}
 656
 657/**
 658 * of_pwm_get() - request a PWM via the PWM framework
 659 * @dev: device for PWM consumer
 660 * @np: device node to get the PWM from
 661 * @con_id: consumer name
 662 *
 663 * Returns the PWM device parsed from the phandle and index specified in the
 664 * "pwms" property of a device tree node or a negative error-code on failure.
 665 * Values parsed from the device tree are stored in the returned PWM device
 666 * object.
 667 *
 668 * If con_id is NULL, the first PWM device listed in the "pwms" property will
 669 * be requested. Otherwise the "pwm-names" property is used to do a reverse
 670 * lookup of the PWM index. This also means that the "pwm-names" property
 671 * becomes mandatory for devices that look up the PWM device via the con_id
 672 * parameter.
 673 *
 674 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
 675 * error code on failure.
 676 */
 677struct pwm_device *of_pwm_get(struct device *dev, struct device_node *np,
 678                              const char *con_id)
 679{
 680        struct pwm_device *pwm = NULL;
 681        struct of_phandle_args args;
 682        struct device_link *dl;
 683        struct pwm_chip *pc;
 684        int index = 0;
 685        int err;
 686
 687        if (con_id) {
 688                index = of_property_match_string(np, "pwm-names", con_id);
 689                if (index < 0)
 690                        return ERR_PTR(index);
 691        }
 692
 693        err = of_parse_phandle_with_args(np, "pwms", "#pwm-cells", index,
 694                                         &args);
 695        if (err) {
 696                pr_err("%s(): can't parse \"pwms\" property\n", __func__);
 697                return ERR_PTR(err);
 698        }
 699
 700        pc = of_node_to_pwmchip(args.np);
 701        if (IS_ERR(pc)) {
 702                if (PTR_ERR(pc) != -EPROBE_DEFER)
 703                        pr_err("%s(): PWM chip not found\n", __func__);
 704
 705                pwm = ERR_CAST(pc);
 706                goto put;
 707        }
 708
 709        pwm = pc->of_xlate(pc, &args);
 710        if (IS_ERR(pwm))
 711                goto put;
 712
 713        dl = pwm_device_link_add(dev, pwm);
 714        if (IS_ERR(dl)) {
 715                /* of_xlate ended up calling pwm_request_from_chip() */
 716                pwm_free(pwm);
 717                pwm = ERR_CAST(dl);
 718                goto put;
 719        }
 720
 721        /*
 722         * If a consumer name was not given, try to look it up from the
 723         * "pwm-names" property if it exists. Otherwise use the name of
 724         * the user device node.
 725         */
 726        if (!con_id) {
 727                err = of_property_read_string_index(np, "pwm-names", index,
 728                                                    &con_id);
 729                if (err < 0)
 730                        con_id = np->name;
 731        }
 732
 733        pwm->label = con_id;
 734
 735put:
 736        of_node_put(args.np);
 737
 738        return pwm;
 739}
 740EXPORT_SYMBOL_GPL(of_pwm_get);
 741
 742#if IS_ENABLED(CONFIG_ACPI)
 743static struct pwm_chip *device_to_pwmchip(struct device *dev)
 744{
 745        struct pwm_chip *chip;
 746
 747        mutex_lock(&pwm_lock);
 748
 749        list_for_each_entry(chip, &pwm_chips, list) {
 750                struct acpi_device *adev = ACPI_COMPANION(chip->dev);
 751
 752                if ((chip->dev == dev) || (adev && &adev->dev == dev)) {
 753                        mutex_unlock(&pwm_lock);
 754                        return chip;
 755                }
 756        }
 757
 758        mutex_unlock(&pwm_lock);
 759
 760        return ERR_PTR(-EPROBE_DEFER);
 761}
 762#endif
 763
 764/**
 765 * acpi_pwm_get() - request a PWM via parsing "pwms" property in ACPI
 766 * @fwnode: firmware node to get the "pwm" property from
 767 *
 768 * Returns the PWM device parsed from the fwnode and index specified in the
 769 * "pwms" property or a negative error-code on failure.
 770 * Values parsed from the device tree are stored in the returned PWM device
 771 * object.
 772 *
 773 * This is analogous to of_pwm_get() except con_id is not yet supported.
 774 * ACPI entries must look like
 775 * Package () {"pwms", Package ()
 776 *     { <PWM device reference>, <PWM index>, <PWM period> [, <PWM flags>]}}
 777 *
 778 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
 779 * error code on failure.
 780 */
 781static struct pwm_device *acpi_pwm_get(struct fwnode_handle *fwnode)
 782{
 783        struct pwm_device *pwm = ERR_PTR(-ENODEV);
 784#if IS_ENABLED(CONFIG_ACPI)
 785        struct fwnode_reference_args args;
 786        struct acpi_device *acpi;
 787        struct pwm_chip *chip;
 788        int ret;
 789
 790        memset(&args, 0, sizeof(args));
 791
 792        ret = __acpi_node_get_property_reference(fwnode, "pwms", 0, 3, &args);
 793        if (ret < 0)
 794                return ERR_PTR(ret);
 795
 796        acpi = to_acpi_device_node(args.fwnode);
 797        if (!acpi)
 798                return ERR_PTR(-EINVAL);
 799
 800        if (args.nargs < 2)
 801                return ERR_PTR(-EPROTO);
 802
 803        chip = device_to_pwmchip(&acpi->dev);
 804        if (IS_ERR(chip))
 805                return ERR_CAST(chip);
 806
 807        pwm = pwm_request_from_chip(chip, args.args[0], NULL);
 808        if (IS_ERR(pwm))
 809                return pwm;
 810
 811        pwm->args.period = args.args[1];
 812        pwm->args.polarity = PWM_POLARITY_NORMAL;
 813
 814        if (args.nargs > 2 && args.args[2] & PWM_POLARITY_INVERTED)
 815                pwm->args.polarity = PWM_POLARITY_INVERSED;
 816#endif
 817
 818        return pwm;
 819}
 820
 821/**
 822 * pwm_add_table() - register PWM device consumers
 823 * @table: array of consumers to register
 824 * @num: number of consumers in table
 825 */
 826void pwm_add_table(struct pwm_lookup *table, size_t num)
 827{
 828        mutex_lock(&pwm_lookup_lock);
 829
 830        while (num--) {
 831                list_add_tail(&table->list, &pwm_lookup_list);
 832                table++;
 833        }
 834
 835        mutex_unlock(&pwm_lookup_lock);
 836}
 837
 838/**
 839 * pwm_remove_table() - unregister PWM device consumers
 840 * @table: array of consumers to unregister
 841 * @num: number of consumers in table
 842 */
 843void pwm_remove_table(struct pwm_lookup *table, size_t num)
 844{
 845        mutex_lock(&pwm_lookup_lock);
 846
 847        while (num--) {
 848                list_del(&table->list);
 849                table++;
 850        }
 851
 852        mutex_unlock(&pwm_lookup_lock);
 853}
 854
 855/**
 856 * pwm_get() - look up and request a PWM device
 857 * @dev: device for PWM consumer
 858 * @con_id: consumer name
 859 *
 860 * Lookup is first attempted using DT. If the device was not instantiated from
 861 * a device tree, a PWM chip and a relative index is looked up via a table
 862 * supplied by board setup code (see pwm_add_table()).
 863 *
 864 * Once a PWM chip has been found the specified PWM device will be requested
 865 * and is ready to be used.
 866 *
 867 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
 868 * error code on failure.
 869 */
 870struct pwm_device *pwm_get(struct device *dev, const char *con_id)
 871{
 872        const char *dev_id = dev ? dev_name(dev) : NULL;
 873        struct pwm_device *pwm;
 874        struct pwm_chip *chip;
 875        struct device_link *dl;
 876        unsigned int best = 0;
 877        struct pwm_lookup *p, *chosen = NULL;
 878        unsigned int match;
 879        int err;
 880
 881        /* look up via DT first */
 882        if (IS_ENABLED(CONFIG_OF) && dev && dev->of_node)
 883                return of_pwm_get(dev, dev->of_node, con_id);
 884
 885        /* then lookup via ACPI */
 886        if (dev && is_acpi_node(dev->fwnode)) {
 887                pwm = acpi_pwm_get(dev->fwnode);
 888                if (!IS_ERR(pwm) || PTR_ERR(pwm) != -ENOENT)
 889                        return pwm;
 890        }
 891
 892        /*
 893         * We look up the provider in the static table typically provided by
 894         * board setup code. We first try to lookup the consumer device by
 895         * name. If the consumer device was passed in as NULL or if no match
 896         * was found, we try to find the consumer by directly looking it up
 897         * by name.
 898         *
 899         * If a match is found, the provider PWM chip is looked up by name
 900         * and a PWM device is requested using the PWM device per-chip index.
 901         *
 902         * The lookup algorithm was shamelessly taken from the clock
 903         * framework:
 904         *
 905         * We do slightly fuzzy matching here:
 906         *  An entry with a NULL ID is assumed to be a wildcard.
 907         *  If an entry has a device ID, it must match
 908         *  If an entry has a connection ID, it must match
 909         * Then we take the most specific entry - with the following order
 910         * of precedence: dev+con > dev only > con only.
 911         */
 912        mutex_lock(&pwm_lookup_lock);
 913
 914        list_for_each_entry(p, &pwm_lookup_list, list) {
 915                match = 0;
 916
 917                if (p->dev_id) {
 918                        if (!dev_id || strcmp(p->dev_id, dev_id))
 919                                continue;
 920
 921                        match += 2;
 922                }
 923
 924                if (p->con_id) {
 925                        if (!con_id || strcmp(p->con_id, con_id))
 926                                continue;
 927
 928                        match += 1;
 929                }
 930
 931                if (match > best) {
 932                        chosen = p;
 933
 934                        if (match != 3)
 935                                best = match;
 936                        else
 937                                break;
 938                }
 939        }
 940
 941        mutex_unlock(&pwm_lookup_lock);
 942
 943        if (!chosen)
 944                return ERR_PTR(-ENODEV);
 945
 946        chip = pwmchip_find_by_name(chosen->provider);
 947
 948        /*
 949         * If the lookup entry specifies a module, load the module and retry
 950         * the PWM chip lookup. This can be used to work around driver load
 951         * ordering issues if driver's can't be made to properly support the
 952         * deferred probe mechanism.
 953         */
 954        if (!chip && chosen->module) {
 955                err = request_module(chosen->module);
 956                if (err == 0)
 957                        chip = pwmchip_find_by_name(chosen->provider);
 958        }
 959
 960        if (!chip)
 961                return ERR_PTR(-EPROBE_DEFER);
 962
 963        pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id);
 964        if (IS_ERR(pwm))
 965                return pwm;
 966
 967        dl = pwm_device_link_add(dev, pwm);
 968        if (IS_ERR(dl)) {
 969                pwm_free(pwm);
 970                return ERR_CAST(dl);
 971        }
 972
 973        pwm->args.period = chosen->period;
 974        pwm->args.polarity = chosen->polarity;
 975
 976        return pwm;
 977}
 978EXPORT_SYMBOL_GPL(pwm_get);
 979
 980/**
 981 * pwm_put() - release a PWM device
 982 * @pwm: PWM device
 983 */
 984void pwm_put(struct pwm_device *pwm)
 985{
 986        if (!pwm)
 987                return;
 988
 989        mutex_lock(&pwm_lock);
 990
 991        if (!test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
 992                pr_warn("PWM device already freed\n");
 993                goto out;
 994        }
 995
 996        if (pwm->chip->ops->free)
 997                pwm->chip->ops->free(pwm->chip, pwm);
 998
 999        pwm_set_chip_data(pwm, NULL);
1000        pwm->label = NULL;
1001
1002        module_put(pwm->chip->ops->owner);
1003out:
1004        mutex_unlock(&pwm_lock);
1005}
1006EXPORT_SYMBOL_GPL(pwm_put);
1007
1008static void devm_pwm_release(struct device *dev, void *res)
1009{
1010        pwm_put(*(struct pwm_device **)res);
1011}
1012
1013/**
1014 * devm_pwm_get() - resource managed pwm_get()
1015 * @dev: device for PWM consumer
1016 * @con_id: consumer name
1017 *
1018 * This function performs like pwm_get() but the acquired PWM device will
1019 * automatically be released on driver detach.
1020 *
1021 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1022 * error code on failure.
1023 */
1024struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id)
1025{
1026        struct pwm_device **ptr, *pwm;
1027
1028        ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL);
1029        if (!ptr)
1030                return ERR_PTR(-ENOMEM);
1031
1032        pwm = pwm_get(dev, con_id);
1033        if (!IS_ERR(pwm)) {
1034                *ptr = pwm;
1035                devres_add(dev, ptr);
1036        } else {
1037                devres_free(ptr);
1038        }
1039
1040        return pwm;
1041}
1042EXPORT_SYMBOL_GPL(devm_pwm_get);
1043
1044/**
1045 * devm_of_pwm_get() - resource managed of_pwm_get()
1046 * @dev: device for PWM consumer
1047 * @np: device node to get the PWM from
1048 * @con_id: consumer name
1049 *
1050 * This function performs like of_pwm_get() but the acquired PWM device will
1051 * automatically be released on driver detach.
1052 *
1053 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1054 * error code on failure.
1055 */
1056struct pwm_device *devm_of_pwm_get(struct device *dev, struct device_node *np,
1057                                   const char *con_id)
1058{
1059        struct pwm_device **ptr, *pwm;
1060
1061        ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL);
1062        if (!ptr)
1063                return ERR_PTR(-ENOMEM);
1064
1065        pwm = of_pwm_get(dev, np, con_id);
1066        if (!IS_ERR(pwm)) {
1067                *ptr = pwm;
1068                devres_add(dev, ptr);
1069        } else {
1070                devres_free(ptr);
1071        }
1072
1073        return pwm;
1074}
1075EXPORT_SYMBOL_GPL(devm_of_pwm_get);
1076
1077/**
1078 * devm_fwnode_pwm_get() - request a resource managed PWM from firmware node
1079 * @dev: device for PWM consumer
1080 * @fwnode: firmware node to get the PWM from
1081 * @con_id: consumer name
1082 *
1083 * Returns the PWM device parsed from the firmware node. See of_pwm_get() and
1084 * acpi_pwm_get() for a detailed description.
1085 *
1086 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1087 * error code on failure.
1088 */
1089struct pwm_device *devm_fwnode_pwm_get(struct device *dev,
1090                                       struct fwnode_handle *fwnode,
1091                                       const char *con_id)
1092{
1093        struct pwm_device **ptr, *pwm = ERR_PTR(-ENODEV);
1094
1095        ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL);
1096        if (!ptr)
1097                return ERR_PTR(-ENOMEM);
1098
1099        if (is_of_node(fwnode))
1100                pwm = of_pwm_get(dev, to_of_node(fwnode), con_id);
1101        else if (is_acpi_node(fwnode))
1102                pwm = acpi_pwm_get(fwnode);
1103
1104        if (!IS_ERR(pwm)) {
1105                *ptr = pwm;
1106                devres_add(dev, ptr);
1107        } else {
1108                devres_free(ptr);
1109        }
1110
1111        return pwm;
1112}
1113EXPORT_SYMBOL_GPL(devm_fwnode_pwm_get);
1114
1115static int devm_pwm_match(struct device *dev, void *res, void *data)
1116{
1117        struct pwm_device **p = res;
1118
1119        if (WARN_ON(!p || !*p))
1120                return 0;
1121
1122        return *p == data;
1123}
1124
1125/**
1126 * devm_pwm_put() - resource managed pwm_put()
1127 * @dev: device for PWM consumer
1128 * @pwm: PWM device
1129 *
1130 * Release a PWM previously allocated using devm_pwm_get(). Calling this
1131 * function is usually not needed because devm-allocated resources are
1132 * automatically released on driver detach.
1133 */
1134void devm_pwm_put(struct device *dev, struct pwm_device *pwm)
1135{
1136        WARN_ON(devres_release(dev, devm_pwm_release, devm_pwm_match, pwm));
1137}
1138EXPORT_SYMBOL_GPL(devm_pwm_put);
1139
1140#ifdef CONFIG_DEBUG_FS
1141static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s)
1142{
1143        unsigned int i;
1144
1145        for (i = 0; i < chip->npwm; i++) {
1146                struct pwm_device *pwm = &chip->pwms[i];
1147                struct pwm_state state;
1148
1149                pwm_get_state(pwm, &state);
1150
1151                seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label);
1152
1153                if (test_bit(PWMF_REQUESTED, &pwm->flags))
1154                        seq_puts(s, " requested");
1155
1156                if (state.enabled)
1157                        seq_puts(s, " enabled");
1158
1159                seq_printf(s, " period: %u ns", state.period);
1160                seq_printf(s, " duty: %u ns", state.duty_cycle);
1161                seq_printf(s, " polarity: %s",
1162                           state.polarity ? "inverse" : "normal");
1163
1164                seq_puts(s, "\n");
1165        }
1166}
1167
1168static void *pwm_seq_start(struct seq_file *s, loff_t *pos)
1169{
1170        mutex_lock(&pwm_lock);
1171        s->private = "";
1172
1173        return seq_list_start(&pwm_chips, *pos);
1174}
1175
1176static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos)
1177{
1178        s->private = "\n";
1179
1180        return seq_list_next(v, &pwm_chips, pos);
1181}
1182
1183static void pwm_seq_stop(struct seq_file *s, void *v)
1184{
1185        mutex_unlock(&pwm_lock);
1186}
1187
1188static int pwm_seq_show(struct seq_file *s, void *v)
1189{
1190        struct pwm_chip *chip = list_entry(v, struct pwm_chip, list);
1191
1192        seq_printf(s, "%s%s/%s, %d PWM device%s\n", (char *)s->private,
1193                   chip->dev->bus ? chip->dev->bus->name : "no-bus",
1194                   dev_name(chip->dev), chip->npwm,
1195                   (chip->npwm != 1) ? "s" : "");
1196
1197        pwm_dbg_show(chip, s);
1198
1199        return 0;
1200}
1201
1202static const struct seq_operations pwm_seq_ops = {
1203        .start = pwm_seq_start,
1204        .next = pwm_seq_next,
1205        .stop = pwm_seq_stop,
1206        .show = pwm_seq_show,
1207};
1208
1209static int pwm_seq_open(struct inode *inode, struct file *file)
1210{
1211        return seq_open(file, &pwm_seq_ops);
1212}
1213
1214static const struct file_operations pwm_debugfs_ops = {
1215        .owner = THIS_MODULE,
1216        .open = pwm_seq_open,
1217        .read = seq_read,
1218        .llseek = seq_lseek,
1219        .release = seq_release,
1220};
1221
1222static int __init pwm_debugfs_init(void)
1223{
1224        debugfs_create_file("pwm", S_IFREG | S_IRUGO, NULL, NULL,
1225                            &pwm_debugfs_ops);
1226
1227        return 0;
1228}
1229subsys_initcall(pwm_debugfs_init);
1230#endif /* CONFIG_DEBUG_FS */
1231