linux/drivers/spi/spi-pl022.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
   4 *
   5 * Copyright (C) 2008-2012 ST-Ericsson AB
   6 * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
   7 *
   8 * Author: Linus Walleij <linus.walleij@stericsson.com>
   9 *
  10 * Initial version inspired by:
  11 *      linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
  12 * Initial adoption to PL022 by:
  13 *      Sachin Verma <sachin.verma@st.com>
  14 */
  15
  16#include <linux/init.h>
  17#include <linux/module.h>
  18#include <linux/device.h>
  19#include <linux/ioport.h>
  20#include <linux/errno.h>
  21#include <linux/interrupt.h>
  22#include <linux/spi/spi.h>
  23#include <linux/delay.h>
  24#include <linux/clk.h>
  25#include <linux/err.h>
  26#include <linux/amba/bus.h>
  27#include <linux/amba/pl022.h>
  28#include <linux/io.h>
  29#include <linux/slab.h>
  30#include <linux/dmaengine.h>
  31#include <linux/dma-mapping.h>
  32#include <linux/scatterlist.h>
  33#include <linux/pm_runtime.h>
  34#include <linux/gpio.h>
  35#include <linux/of_gpio.h>
  36#include <linux/pinctrl/consumer.h>
  37
  38/*
  39 * This macro is used to define some register default values.
  40 * reg is masked with mask, the OR:ed with an (again masked)
  41 * val shifted sb steps to the left.
  42 */
  43#define SSP_WRITE_BITS(reg, val, mask, sb) \
  44 ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
  45
  46/*
  47 * This macro is also used to define some default values.
  48 * It will just shift val by sb steps to the left and mask
  49 * the result with mask.
  50 */
  51#define GEN_MASK_BITS(val, mask, sb) \
  52 (((val)<<(sb)) & (mask))
  53
  54#define DRIVE_TX                0
  55#define DO_NOT_DRIVE_TX         1
  56
  57#define DO_NOT_QUEUE_DMA        0
  58#define QUEUE_DMA               1
  59
  60#define RX_TRANSFER             1
  61#define TX_TRANSFER             2
  62
  63/*
  64 * Macros to access SSP Registers with their offsets
  65 */
  66#define SSP_CR0(r)      (r + 0x000)
  67#define SSP_CR1(r)      (r + 0x004)
  68#define SSP_DR(r)       (r + 0x008)
  69#define SSP_SR(r)       (r + 0x00C)
  70#define SSP_CPSR(r)     (r + 0x010)
  71#define SSP_IMSC(r)     (r + 0x014)
  72#define SSP_RIS(r)      (r + 0x018)
  73#define SSP_MIS(r)      (r + 0x01C)
  74#define SSP_ICR(r)      (r + 0x020)
  75#define SSP_DMACR(r)    (r + 0x024)
  76#define SSP_CSR(r)      (r + 0x030) /* vendor extension */
  77#define SSP_ITCR(r)     (r + 0x080)
  78#define SSP_ITIP(r)     (r + 0x084)
  79#define SSP_ITOP(r)     (r + 0x088)
  80#define SSP_TDR(r)      (r + 0x08C)
  81
  82#define SSP_PID0(r)     (r + 0xFE0)
  83#define SSP_PID1(r)     (r + 0xFE4)
  84#define SSP_PID2(r)     (r + 0xFE8)
  85#define SSP_PID3(r)     (r + 0xFEC)
  86
  87#define SSP_CID0(r)     (r + 0xFF0)
  88#define SSP_CID1(r)     (r + 0xFF4)
  89#define SSP_CID2(r)     (r + 0xFF8)
  90#define SSP_CID3(r)     (r + 0xFFC)
  91
  92/*
  93 * SSP Control Register 0  - SSP_CR0
  94 */
  95#define SSP_CR0_MASK_DSS        (0x0FUL << 0)
  96#define SSP_CR0_MASK_FRF        (0x3UL << 4)
  97#define SSP_CR0_MASK_SPO        (0x1UL << 6)
  98#define SSP_CR0_MASK_SPH        (0x1UL << 7)
  99#define SSP_CR0_MASK_SCR        (0xFFUL << 8)
 100
 101/*
 102 * The ST version of this block moves som bits
 103 * in SSP_CR0 and extends it to 32 bits
 104 */
 105#define SSP_CR0_MASK_DSS_ST     (0x1FUL << 0)
 106#define SSP_CR0_MASK_HALFDUP_ST (0x1UL << 5)
 107#define SSP_CR0_MASK_CSS_ST     (0x1FUL << 16)
 108#define SSP_CR0_MASK_FRF_ST     (0x3UL << 21)
 109
 110/*
 111 * SSP Control Register 0  - SSP_CR1
 112 */
 113#define SSP_CR1_MASK_LBM        (0x1UL << 0)
 114#define SSP_CR1_MASK_SSE        (0x1UL << 1)
 115#define SSP_CR1_MASK_MS         (0x1UL << 2)
 116#define SSP_CR1_MASK_SOD        (0x1UL << 3)
 117
 118/*
 119 * The ST version of this block adds some bits
 120 * in SSP_CR1
 121 */
 122#define SSP_CR1_MASK_RENDN_ST   (0x1UL << 4)
 123#define SSP_CR1_MASK_TENDN_ST   (0x1UL << 5)
 124#define SSP_CR1_MASK_MWAIT_ST   (0x1UL << 6)
 125#define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
 126#define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
 127/* This one is only in the PL023 variant */
 128#define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
 129
 130/*
 131 * SSP Status Register - SSP_SR
 132 */
 133#define SSP_SR_MASK_TFE         (0x1UL << 0) /* Transmit FIFO empty */
 134#define SSP_SR_MASK_TNF         (0x1UL << 1) /* Transmit FIFO not full */
 135#define SSP_SR_MASK_RNE         (0x1UL << 2) /* Receive FIFO not empty */
 136#define SSP_SR_MASK_RFF         (0x1UL << 3) /* Receive FIFO full */
 137#define SSP_SR_MASK_BSY         (0x1UL << 4) /* Busy Flag */
 138
 139/*
 140 * SSP Clock Prescale Register  - SSP_CPSR
 141 */
 142#define SSP_CPSR_MASK_CPSDVSR   (0xFFUL << 0)
 143
 144/*
 145 * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
 146 */
 147#define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
 148#define SSP_IMSC_MASK_RTIM  (0x1UL << 1) /* Receive timeout Interrupt mask */
 149#define SSP_IMSC_MASK_RXIM  (0x1UL << 2) /* Receive FIFO Interrupt mask */
 150#define SSP_IMSC_MASK_TXIM  (0x1UL << 3) /* Transmit FIFO Interrupt mask */
 151
 152/*
 153 * SSP Raw Interrupt Status Register - SSP_RIS
 154 */
 155/* Receive Overrun Raw Interrupt status */
 156#define SSP_RIS_MASK_RORRIS             (0x1UL << 0)
 157/* Receive Timeout Raw Interrupt status */
 158#define SSP_RIS_MASK_RTRIS              (0x1UL << 1)
 159/* Receive FIFO Raw Interrupt status */
 160#define SSP_RIS_MASK_RXRIS              (0x1UL << 2)
 161/* Transmit FIFO Raw Interrupt status */
 162#define SSP_RIS_MASK_TXRIS              (0x1UL << 3)
 163
 164/*
 165 * SSP Masked Interrupt Status Register - SSP_MIS
 166 */
 167/* Receive Overrun Masked Interrupt status */
 168#define SSP_MIS_MASK_RORMIS             (0x1UL << 0)
 169/* Receive Timeout Masked Interrupt status */
 170#define SSP_MIS_MASK_RTMIS              (0x1UL << 1)
 171/* Receive FIFO Masked Interrupt status */
 172#define SSP_MIS_MASK_RXMIS              (0x1UL << 2)
 173/* Transmit FIFO Masked Interrupt status */
 174#define SSP_MIS_MASK_TXMIS              (0x1UL << 3)
 175
 176/*
 177 * SSP Interrupt Clear Register - SSP_ICR
 178 */
 179/* Receive Overrun Raw Clear Interrupt bit */
 180#define SSP_ICR_MASK_RORIC              (0x1UL << 0)
 181/* Receive Timeout Clear Interrupt bit */
 182#define SSP_ICR_MASK_RTIC               (0x1UL << 1)
 183
 184/*
 185 * SSP DMA Control Register - SSP_DMACR
 186 */
 187/* Receive DMA Enable bit */
 188#define SSP_DMACR_MASK_RXDMAE           (0x1UL << 0)
 189/* Transmit DMA Enable bit */
 190#define SSP_DMACR_MASK_TXDMAE           (0x1UL << 1)
 191
 192/*
 193 * SSP Chip Select Control Register - SSP_CSR
 194 * (vendor extension)
 195 */
 196#define SSP_CSR_CSVALUE_MASK            (0x1FUL << 0)
 197
 198/*
 199 * SSP Integration Test control Register - SSP_ITCR
 200 */
 201#define SSP_ITCR_MASK_ITEN              (0x1UL << 0)
 202#define SSP_ITCR_MASK_TESTFIFO          (0x1UL << 1)
 203
 204/*
 205 * SSP Integration Test Input Register - SSP_ITIP
 206 */
 207#define ITIP_MASK_SSPRXD                 (0x1UL << 0)
 208#define ITIP_MASK_SSPFSSIN               (0x1UL << 1)
 209#define ITIP_MASK_SSPCLKIN               (0x1UL << 2)
 210#define ITIP_MASK_RXDMAC                 (0x1UL << 3)
 211#define ITIP_MASK_TXDMAC                 (0x1UL << 4)
 212#define ITIP_MASK_SSPTXDIN               (0x1UL << 5)
 213
 214/*
 215 * SSP Integration Test output Register - SSP_ITOP
 216 */
 217#define ITOP_MASK_SSPTXD                 (0x1UL << 0)
 218#define ITOP_MASK_SSPFSSOUT              (0x1UL << 1)
 219#define ITOP_MASK_SSPCLKOUT              (0x1UL << 2)
 220#define ITOP_MASK_SSPOEn                 (0x1UL << 3)
 221#define ITOP_MASK_SSPCTLOEn              (0x1UL << 4)
 222#define ITOP_MASK_RORINTR                (0x1UL << 5)
 223#define ITOP_MASK_RTINTR                 (0x1UL << 6)
 224#define ITOP_MASK_RXINTR                 (0x1UL << 7)
 225#define ITOP_MASK_TXINTR                 (0x1UL << 8)
 226#define ITOP_MASK_INTR                   (0x1UL << 9)
 227#define ITOP_MASK_RXDMABREQ              (0x1UL << 10)
 228#define ITOP_MASK_RXDMASREQ              (0x1UL << 11)
 229#define ITOP_MASK_TXDMABREQ              (0x1UL << 12)
 230#define ITOP_MASK_TXDMASREQ              (0x1UL << 13)
 231
 232/*
 233 * SSP Test Data Register - SSP_TDR
 234 */
 235#define TDR_MASK_TESTDATA               (0xFFFFFFFF)
 236
 237/*
 238 * Message State
 239 * we use the spi_message.state (void *) pointer to
 240 * hold a single state value, that's why all this
 241 * (void *) casting is done here.
 242 */
 243#define STATE_START                     ((void *) 0)
 244#define STATE_RUNNING                   ((void *) 1)
 245#define STATE_DONE                      ((void *) 2)
 246#define STATE_ERROR                     ((void *) -1)
 247#define STATE_TIMEOUT                   ((void *) -2)
 248
 249/*
 250 * SSP State - Whether Enabled or Disabled
 251 */
 252#define SSP_DISABLED                    (0)
 253#define SSP_ENABLED                     (1)
 254
 255/*
 256 * SSP DMA State - Whether DMA Enabled or Disabled
 257 */
 258#define SSP_DMA_DISABLED                (0)
 259#define SSP_DMA_ENABLED                 (1)
 260
 261/*
 262 * SSP Clock Defaults
 263 */
 264#define SSP_DEFAULT_CLKRATE 0x2
 265#define SSP_DEFAULT_PRESCALE 0x40
 266
 267/*
 268 * SSP Clock Parameter ranges
 269 */
 270#define CPSDVR_MIN 0x02
 271#define CPSDVR_MAX 0xFE
 272#define SCR_MIN 0x00
 273#define SCR_MAX 0xFF
 274
 275/*
 276 * SSP Interrupt related Macros
 277 */
 278#define DEFAULT_SSP_REG_IMSC  0x0UL
 279#define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
 280#define ENABLE_ALL_INTERRUPTS ( \
 281        SSP_IMSC_MASK_RORIM | \
 282        SSP_IMSC_MASK_RTIM | \
 283        SSP_IMSC_MASK_RXIM | \
 284        SSP_IMSC_MASK_TXIM \
 285)
 286
 287#define CLEAR_ALL_INTERRUPTS  0x3
 288
 289#define SPI_POLLING_TIMEOUT 1000
 290
 291/*
 292 * The type of reading going on on this chip
 293 */
 294enum ssp_reading {
 295        READING_NULL,
 296        READING_U8,
 297        READING_U16,
 298        READING_U32
 299};
 300
 301/**
 302 * The type of writing going on on this chip
 303 */
 304enum ssp_writing {
 305        WRITING_NULL,
 306        WRITING_U8,
 307        WRITING_U16,
 308        WRITING_U32
 309};
 310
 311/**
 312 * struct vendor_data - vendor-specific config parameters
 313 * for PL022 derivates
 314 * @fifodepth: depth of FIFOs (both)
 315 * @max_bpw: maximum number of bits per word
 316 * @unidir: supports unidirection transfers
 317 * @extended_cr: 32 bit wide control register 0 with extra
 318 * features and extra features in CR1 as found in the ST variants
 319 * @pl023: supports a subset of the ST extensions called "PL023"
 320 * @internal_cs_ctrl: supports chip select control register
 321 */
 322struct vendor_data {
 323        int fifodepth;
 324        int max_bpw;
 325        bool unidir;
 326        bool extended_cr;
 327        bool pl023;
 328        bool loopback;
 329        bool internal_cs_ctrl;
 330};
 331
 332/**
 333 * struct pl022 - This is the private SSP driver data structure
 334 * @adev: AMBA device model hookup
 335 * @vendor: vendor data for the IP block
 336 * @phybase: the physical memory where the SSP device resides
 337 * @virtbase: the virtual memory where the SSP is mapped
 338 * @clk: outgoing clock "SPICLK" for the SPI bus
 339 * @master: SPI framework hookup
 340 * @master_info: controller-specific data from machine setup
 341 * @pump_transfers: Tasklet used in Interrupt Transfer mode
 342 * @cur_msg: Pointer to current spi_message being processed
 343 * @cur_transfer: Pointer to current spi_transfer
 344 * @cur_chip: pointer to current clients chip(assigned from controller_state)
 345 * @next_msg_cs_active: the next message in the queue has been examined
 346 *  and it was found that it uses the same chip select as the previous
 347 *  message, so we left it active after the previous transfer, and it's
 348 *  active already.
 349 * @tx: current position in TX buffer to be read
 350 * @tx_end: end position in TX buffer to be read
 351 * @rx: current position in RX buffer to be written
 352 * @rx_end: end position in RX buffer to be written
 353 * @read: the type of read currently going on
 354 * @write: the type of write currently going on
 355 * @exp_fifo_level: expected FIFO level
 356 * @dma_rx_channel: optional channel for RX DMA
 357 * @dma_tx_channel: optional channel for TX DMA
 358 * @sgt_rx: scattertable for the RX transfer
 359 * @sgt_tx: scattertable for the TX transfer
 360 * @dummypage: a dummy page used for driving data on the bus with DMA
 361 * @cur_cs: current chip select (gpio)
 362 * @chipselects: list of chipselects (gpios)
 363 */
 364struct pl022 {
 365        struct amba_device              *adev;
 366        struct vendor_data              *vendor;
 367        resource_size_t                 phybase;
 368        void __iomem                    *virtbase;
 369        struct clk                      *clk;
 370        struct spi_master               *master;
 371        struct pl022_ssp_controller     *master_info;
 372        /* Message per-transfer pump */
 373        struct tasklet_struct           pump_transfers;
 374        struct spi_message              *cur_msg;
 375        struct spi_transfer             *cur_transfer;
 376        struct chip_data                *cur_chip;
 377        bool                            next_msg_cs_active;
 378        void                            *tx;
 379        void                            *tx_end;
 380        void                            *rx;
 381        void                            *rx_end;
 382        enum ssp_reading                read;
 383        enum ssp_writing                write;
 384        u32                             exp_fifo_level;
 385        enum ssp_rx_level_trig          rx_lev_trig;
 386        enum ssp_tx_level_trig          tx_lev_trig;
 387        /* DMA settings */
 388#ifdef CONFIG_DMA_ENGINE
 389        struct dma_chan                 *dma_rx_channel;
 390        struct dma_chan                 *dma_tx_channel;
 391        struct sg_table                 sgt_rx;
 392        struct sg_table                 sgt_tx;
 393        char                            *dummypage;
 394        bool                            dma_running;
 395#endif
 396        int cur_cs;
 397        int *chipselects;
 398};
 399
 400/**
 401 * struct chip_data - To maintain runtime state of SSP for each client chip
 402 * @cr0: Value of control register CR0 of SSP - on later ST variants this
 403 *       register is 32 bits wide rather than just 16
 404 * @cr1: Value of control register CR1 of SSP
 405 * @dmacr: Value of DMA control Register of SSP
 406 * @cpsr: Value of Clock prescale register
 407 * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
 408 * @enable_dma: Whether to enable DMA or not
 409 * @read: function ptr to be used to read when doing xfer for this chip
 410 * @write: function ptr to be used to write when doing xfer for this chip
 411 * @cs_control: chip select callback provided by chip
 412 * @xfer_type: polling/interrupt/DMA
 413 *
 414 * Runtime state of the SSP controller, maintained per chip,
 415 * This would be set according to the current message that would be served
 416 */
 417struct chip_data {
 418        u32 cr0;
 419        u16 cr1;
 420        u16 dmacr;
 421        u16 cpsr;
 422        u8 n_bytes;
 423        bool enable_dma;
 424        enum ssp_reading read;
 425        enum ssp_writing write;
 426        void (*cs_control) (u32 command);
 427        int xfer_type;
 428};
 429
 430/**
 431 * null_cs_control - Dummy chip select function
 432 * @command: select/delect the chip
 433 *
 434 * If no chip select function is provided by client this is used as dummy
 435 * chip select
 436 */
 437static void null_cs_control(u32 command)
 438{
 439        pr_debug("pl022: dummy chip select control, CS=0x%x\n", command);
 440}
 441
 442/**
 443 * internal_cs_control - Control chip select signals via SSP_CSR.
 444 * @pl022: SSP driver private data structure
 445 * @command: select/delect the chip
 446 *
 447 * Used on controller with internal chip select control via SSP_CSR register
 448 * (vendor extension). Each of the 5 LSB in the register controls one chip
 449 * select signal.
 450 */
 451static void internal_cs_control(struct pl022 *pl022, u32 command)
 452{
 453        u32 tmp;
 454
 455        tmp = readw(SSP_CSR(pl022->virtbase));
 456        if (command == SSP_CHIP_SELECT)
 457                tmp &= ~BIT(pl022->cur_cs);
 458        else
 459                tmp |= BIT(pl022->cur_cs);
 460        writew(tmp, SSP_CSR(pl022->virtbase));
 461}
 462
 463static void pl022_cs_control(struct pl022 *pl022, u32 command)
 464{
 465        if (pl022->vendor->internal_cs_ctrl)
 466                internal_cs_control(pl022, command);
 467        else if (gpio_is_valid(pl022->cur_cs))
 468                gpio_set_value(pl022->cur_cs, command);
 469        else
 470                pl022->cur_chip->cs_control(command);
 471}
 472
 473/**
 474 * giveback - current spi_message is over, schedule next message and call
 475 * callback of this message. Assumes that caller already
 476 * set message->status; dma and pio irqs are blocked
 477 * @pl022: SSP driver private data structure
 478 */
 479static void giveback(struct pl022 *pl022)
 480{
 481        struct spi_transfer *last_transfer;
 482        pl022->next_msg_cs_active = false;
 483
 484        last_transfer = list_last_entry(&pl022->cur_msg->transfers,
 485                                        struct spi_transfer, transfer_list);
 486
 487        /* Delay if requested before any change in chip select */
 488        /*
 489         * FIXME: This runs in interrupt context.
 490         * Is this really smart?
 491         */
 492        spi_transfer_delay_exec(last_transfer);
 493
 494        if (!last_transfer->cs_change) {
 495                struct spi_message *next_msg;
 496
 497                /*
 498                 * cs_change was not set. We can keep the chip select
 499                 * enabled if there is message in the queue and it is
 500                 * for the same spi device.
 501                 *
 502                 * We cannot postpone this until pump_messages, because
 503                 * after calling msg->complete (below) the driver that
 504                 * sent the current message could be unloaded, which
 505                 * could invalidate the cs_control() callback...
 506                 */
 507                /* get a pointer to the next message, if any */
 508                next_msg = spi_get_next_queued_message(pl022->master);
 509
 510                /*
 511                 * see if the next and current messages point
 512                 * to the same spi device.
 513                 */
 514                if (next_msg && next_msg->spi != pl022->cur_msg->spi)
 515                        next_msg = NULL;
 516                if (!next_msg || pl022->cur_msg->state == STATE_ERROR)
 517                        pl022_cs_control(pl022, SSP_CHIP_DESELECT);
 518                else
 519                        pl022->next_msg_cs_active = true;
 520
 521        }
 522
 523        pl022->cur_msg = NULL;
 524        pl022->cur_transfer = NULL;
 525        pl022->cur_chip = NULL;
 526
 527        /* disable the SPI/SSP operation */
 528        writew((readw(SSP_CR1(pl022->virtbase)) &
 529                (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
 530
 531        spi_finalize_current_message(pl022->master);
 532}
 533
 534/**
 535 * flush - flush the FIFO to reach a clean state
 536 * @pl022: SSP driver private data structure
 537 */
 538static int flush(struct pl022 *pl022)
 539{
 540        unsigned long limit = loops_per_jiffy << 1;
 541
 542        dev_dbg(&pl022->adev->dev, "flush\n");
 543        do {
 544                while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
 545                        readw(SSP_DR(pl022->virtbase));
 546        } while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--);
 547
 548        pl022->exp_fifo_level = 0;
 549
 550        return limit;
 551}
 552
 553/**
 554 * restore_state - Load configuration of current chip
 555 * @pl022: SSP driver private data structure
 556 */
 557static void restore_state(struct pl022 *pl022)
 558{
 559        struct chip_data *chip = pl022->cur_chip;
 560
 561        if (pl022->vendor->extended_cr)
 562                writel(chip->cr0, SSP_CR0(pl022->virtbase));
 563        else
 564                writew(chip->cr0, SSP_CR0(pl022->virtbase));
 565        writew(chip->cr1, SSP_CR1(pl022->virtbase));
 566        writew(chip->dmacr, SSP_DMACR(pl022->virtbase));
 567        writew(chip->cpsr, SSP_CPSR(pl022->virtbase));
 568        writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
 569        writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
 570}
 571
 572/*
 573 * Default SSP Register Values
 574 */
 575#define DEFAULT_SSP_REG_CR0 ( \
 576        GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0)    | \
 577        GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
 578        GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
 579        GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
 580        GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
 581)
 582
 583/* ST versions have slightly different bit layout */
 584#define DEFAULT_SSP_REG_CR0_ST ( \
 585        GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
 586        GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
 587        GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
 588        GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
 589        GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
 590        GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16)      | \
 591        GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
 592)
 593
 594/* The PL023 version is slightly different again */
 595#define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
 596        GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
 597        GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
 598        GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
 599        GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
 600)
 601
 602#define DEFAULT_SSP_REG_CR1 ( \
 603        GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
 604        GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
 605        GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
 606        GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
 607)
 608
 609/* ST versions extend this register to use all 16 bits */
 610#define DEFAULT_SSP_REG_CR1_ST ( \
 611        DEFAULT_SSP_REG_CR1 | \
 612        GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
 613        GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
 614        GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
 615        GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
 616        GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
 617)
 618
 619/*
 620 * The PL023 variant has further differences: no loopback mode, no microwire
 621 * support, and a new clock feedback delay setting.
 622 */
 623#define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
 624        GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
 625        GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
 626        GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
 627        GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
 628        GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
 629        GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
 630        GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
 631        GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
 632)
 633
 634#define DEFAULT_SSP_REG_CPSR ( \
 635        GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
 636)
 637
 638#define DEFAULT_SSP_REG_DMACR (\
 639        GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
 640        GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
 641)
 642
 643/**
 644 * load_ssp_default_config - Load default configuration for SSP
 645 * @pl022: SSP driver private data structure
 646 */
 647static void load_ssp_default_config(struct pl022 *pl022)
 648{
 649        if (pl022->vendor->pl023) {
 650                writel(DEFAULT_SSP_REG_CR0_ST_PL023, SSP_CR0(pl022->virtbase));
 651                writew(DEFAULT_SSP_REG_CR1_ST_PL023, SSP_CR1(pl022->virtbase));
 652        } else if (pl022->vendor->extended_cr) {
 653                writel(DEFAULT_SSP_REG_CR0_ST, SSP_CR0(pl022->virtbase));
 654                writew(DEFAULT_SSP_REG_CR1_ST, SSP_CR1(pl022->virtbase));
 655        } else {
 656                writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase));
 657                writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase));
 658        }
 659        writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase));
 660        writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase));
 661        writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
 662        writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
 663}
 664
 665/**
 666 * This will write to TX and read from RX according to the parameters
 667 * set in pl022.
 668 */
 669static void readwriter(struct pl022 *pl022)
 670{
 671
 672        /*
 673         * The FIFO depth is different between primecell variants.
 674         * I believe filling in too much in the FIFO might cause
 675         * errons in 8bit wide transfers on ARM variants (just 8 words
 676         * FIFO, means only 8x8 = 64 bits in FIFO) at least.
 677         *
 678         * To prevent this issue, the TX FIFO is only filled to the
 679         * unused RX FIFO fill length, regardless of what the TX
 680         * FIFO status flag indicates.
 681         */
 682        dev_dbg(&pl022->adev->dev,
 683                "%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
 684                __func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end);
 685
 686        /* Read as much as you can */
 687        while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
 688               && (pl022->rx < pl022->rx_end)) {
 689                switch (pl022->read) {
 690                case READING_NULL:
 691                        readw(SSP_DR(pl022->virtbase));
 692                        break;
 693                case READING_U8:
 694                        *(u8 *) (pl022->rx) =
 695                                readw(SSP_DR(pl022->virtbase)) & 0xFFU;
 696                        break;
 697                case READING_U16:
 698                        *(u16 *) (pl022->rx) =
 699                                (u16) readw(SSP_DR(pl022->virtbase));
 700                        break;
 701                case READING_U32:
 702                        *(u32 *) (pl022->rx) =
 703                                readl(SSP_DR(pl022->virtbase));
 704                        break;
 705                }
 706                pl022->rx += (pl022->cur_chip->n_bytes);
 707                pl022->exp_fifo_level--;
 708        }
 709        /*
 710         * Write as much as possible up to the RX FIFO size
 711         */
 712        while ((pl022->exp_fifo_level < pl022->vendor->fifodepth)
 713               && (pl022->tx < pl022->tx_end)) {
 714                switch (pl022->write) {
 715                case WRITING_NULL:
 716                        writew(0x0, SSP_DR(pl022->virtbase));
 717                        break;
 718                case WRITING_U8:
 719                        writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase));
 720                        break;
 721                case WRITING_U16:
 722                        writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase));
 723                        break;
 724                case WRITING_U32:
 725                        writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase));
 726                        break;
 727                }
 728                pl022->tx += (pl022->cur_chip->n_bytes);
 729                pl022->exp_fifo_level++;
 730                /*
 731                 * This inner reader takes care of things appearing in the RX
 732                 * FIFO as we're transmitting. This will happen a lot since the
 733                 * clock starts running when you put things into the TX FIFO,
 734                 * and then things are continuously clocked into the RX FIFO.
 735                 */
 736                while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
 737                       && (pl022->rx < pl022->rx_end)) {
 738                        switch (pl022->read) {
 739                        case READING_NULL:
 740                                readw(SSP_DR(pl022->virtbase));
 741                                break;
 742                        case READING_U8:
 743                                *(u8 *) (pl022->rx) =
 744                                        readw(SSP_DR(pl022->virtbase)) & 0xFFU;
 745                                break;
 746                        case READING_U16:
 747                                *(u16 *) (pl022->rx) =
 748                                        (u16) readw(SSP_DR(pl022->virtbase));
 749                                break;
 750                        case READING_U32:
 751                                *(u32 *) (pl022->rx) =
 752                                        readl(SSP_DR(pl022->virtbase));
 753                                break;
 754                        }
 755                        pl022->rx += (pl022->cur_chip->n_bytes);
 756                        pl022->exp_fifo_level--;
 757                }
 758        }
 759        /*
 760         * When we exit here the TX FIFO should be full and the RX FIFO
 761         * should be empty
 762         */
 763}
 764
 765/**
 766 * next_transfer - Move to the Next transfer in the current spi message
 767 * @pl022: SSP driver private data structure
 768 *
 769 * This function moves though the linked list of spi transfers in the
 770 * current spi message and returns with the state of current spi
 771 * message i.e whether its last transfer is done(STATE_DONE) or
 772 * Next transfer is ready(STATE_RUNNING)
 773 */
 774static void *next_transfer(struct pl022 *pl022)
 775{
 776        struct spi_message *msg = pl022->cur_msg;
 777        struct spi_transfer *trans = pl022->cur_transfer;
 778
 779        /* Move to next transfer */
 780        if (trans->transfer_list.next != &msg->transfers) {
 781                pl022->cur_transfer =
 782                    list_entry(trans->transfer_list.next,
 783                               struct spi_transfer, transfer_list);
 784                return STATE_RUNNING;
 785        }
 786        return STATE_DONE;
 787}
 788
 789/*
 790 * This DMA functionality is only compiled in if we have
 791 * access to the generic DMA devices/DMA engine.
 792 */
 793#ifdef CONFIG_DMA_ENGINE
 794static void unmap_free_dma_scatter(struct pl022 *pl022)
 795{
 796        /* Unmap and free the SG tables */
 797        dma_unmap_sg(pl022->dma_tx_channel->device->dev, pl022->sgt_tx.sgl,
 798                     pl022->sgt_tx.nents, DMA_TO_DEVICE);
 799        dma_unmap_sg(pl022->dma_rx_channel->device->dev, pl022->sgt_rx.sgl,
 800                     pl022->sgt_rx.nents, DMA_FROM_DEVICE);
 801        sg_free_table(&pl022->sgt_rx);
 802        sg_free_table(&pl022->sgt_tx);
 803}
 804
 805static void dma_callback(void *data)
 806{
 807        struct pl022 *pl022 = data;
 808        struct spi_message *msg = pl022->cur_msg;
 809
 810        BUG_ON(!pl022->sgt_rx.sgl);
 811
 812#ifdef VERBOSE_DEBUG
 813        /*
 814         * Optionally dump out buffers to inspect contents, this is
 815         * good if you want to convince yourself that the loopback
 816         * read/write contents are the same, when adopting to a new
 817         * DMA engine.
 818         */
 819        {
 820                struct scatterlist *sg;
 821                unsigned int i;
 822
 823                dma_sync_sg_for_cpu(&pl022->adev->dev,
 824                                    pl022->sgt_rx.sgl,
 825                                    pl022->sgt_rx.nents,
 826                                    DMA_FROM_DEVICE);
 827
 828                for_each_sg(pl022->sgt_rx.sgl, sg, pl022->sgt_rx.nents, i) {
 829                        dev_dbg(&pl022->adev->dev, "SPI RX SG ENTRY: %d", i);
 830                        print_hex_dump(KERN_ERR, "SPI RX: ",
 831                                       DUMP_PREFIX_OFFSET,
 832                                       16,
 833                                       1,
 834                                       sg_virt(sg),
 835                                       sg_dma_len(sg),
 836                                       1);
 837                }
 838                for_each_sg(pl022->sgt_tx.sgl, sg, pl022->sgt_tx.nents, i) {
 839                        dev_dbg(&pl022->adev->dev, "SPI TX SG ENTRY: %d", i);
 840                        print_hex_dump(KERN_ERR, "SPI TX: ",
 841                                       DUMP_PREFIX_OFFSET,
 842                                       16,
 843                                       1,
 844                                       sg_virt(sg),
 845                                       sg_dma_len(sg),
 846                                       1);
 847                }
 848        }
 849#endif
 850
 851        unmap_free_dma_scatter(pl022);
 852
 853        /* Update total bytes transferred */
 854        msg->actual_length += pl022->cur_transfer->len;
 855        /* Move to next transfer */
 856        msg->state = next_transfer(pl022);
 857        if (msg->state != STATE_DONE && pl022->cur_transfer->cs_change)
 858                pl022_cs_control(pl022, SSP_CHIP_DESELECT);
 859        tasklet_schedule(&pl022->pump_transfers);
 860}
 861
 862static void setup_dma_scatter(struct pl022 *pl022,
 863                              void *buffer,
 864                              unsigned int length,
 865                              struct sg_table *sgtab)
 866{
 867        struct scatterlist *sg;
 868        int bytesleft = length;
 869        void *bufp = buffer;
 870        int mapbytes;
 871        int i;
 872
 873        if (buffer) {
 874                for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
 875                        /*
 876                         * If there are less bytes left than what fits
 877                         * in the current page (plus page alignment offset)
 878                         * we just feed in this, else we stuff in as much
 879                         * as we can.
 880                         */
 881                        if (bytesleft < (PAGE_SIZE - offset_in_page(bufp)))
 882                                mapbytes = bytesleft;
 883                        else
 884                                mapbytes = PAGE_SIZE - offset_in_page(bufp);
 885                        sg_set_page(sg, virt_to_page(bufp),
 886                                    mapbytes, offset_in_page(bufp));
 887                        bufp += mapbytes;
 888                        bytesleft -= mapbytes;
 889                        dev_dbg(&pl022->adev->dev,
 890                                "set RX/TX target page @ %p, %d bytes, %d left\n",
 891                                bufp, mapbytes, bytesleft);
 892                }
 893        } else {
 894                /* Map the dummy buffer on every page */
 895                for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
 896                        if (bytesleft < PAGE_SIZE)
 897                                mapbytes = bytesleft;
 898                        else
 899                                mapbytes = PAGE_SIZE;
 900                        sg_set_page(sg, virt_to_page(pl022->dummypage),
 901                                    mapbytes, 0);
 902                        bytesleft -= mapbytes;
 903                        dev_dbg(&pl022->adev->dev,
 904                                "set RX/TX to dummy page %d bytes, %d left\n",
 905                                mapbytes, bytesleft);
 906
 907                }
 908        }
 909        BUG_ON(bytesleft);
 910}
 911
 912/**
 913 * configure_dma - configures the channels for the next transfer
 914 * @pl022: SSP driver's private data structure
 915 */
 916static int configure_dma(struct pl022 *pl022)
 917{
 918        struct dma_slave_config rx_conf = {
 919                .src_addr = SSP_DR(pl022->phybase),
 920                .direction = DMA_DEV_TO_MEM,
 921                .device_fc = false,
 922        };
 923        struct dma_slave_config tx_conf = {
 924                .dst_addr = SSP_DR(pl022->phybase),
 925                .direction = DMA_MEM_TO_DEV,
 926                .device_fc = false,
 927        };
 928        unsigned int pages;
 929        int ret;
 930        int rx_sglen, tx_sglen;
 931        struct dma_chan *rxchan = pl022->dma_rx_channel;
 932        struct dma_chan *txchan = pl022->dma_tx_channel;
 933        struct dma_async_tx_descriptor *rxdesc;
 934        struct dma_async_tx_descriptor *txdesc;
 935
 936        /* Check that the channels are available */
 937        if (!rxchan || !txchan)
 938                return -ENODEV;
 939
 940        /*
 941         * If supplied, the DMA burstsize should equal the FIFO trigger level.
 942         * Notice that the DMA engine uses one-to-one mapping. Since we can
 943         * not trigger on 2 elements this needs explicit mapping rather than
 944         * calculation.
 945         */
 946        switch (pl022->rx_lev_trig) {
 947        case SSP_RX_1_OR_MORE_ELEM:
 948                rx_conf.src_maxburst = 1;
 949                break;
 950        case SSP_RX_4_OR_MORE_ELEM:
 951                rx_conf.src_maxburst = 4;
 952                break;
 953        case SSP_RX_8_OR_MORE_ELEM:
 954                rx_conf.src_maxburst = 8;
 955                break;
 956        case SSP_RX_16_OR_MORE_ELEM:
 957                rx_conf.src_maxburst = 16;
 958                break;
 959        case SSP_RX_32_OR_MORE_ELEM:
 960                rx_conf.src_maxburst = 32;
 961                break;
 962        default:
 963                rx_conf.src_maxburst = pl022->vendor->fifodepth >> 1;
 964                break;
 965        }
 966
 967        switch (pl022->tx_lev_trig) {
 968        case SSP_TX_1_OR_MORE_EMPTY_LOC:
 969                tx_conf.dst_maxburst = 1;
 970                break;
 971        case SSP_TX_4_OR_MORE_EMPTY_LOC:
 972                tx_conf.dst_maxburst = 4;
 973                break;
 974        case SSP_TX_8_OR_MORE_EMPTY_LOC:
 975                tx_conf.dst_maxburst = 8;
 976                break;
 977        case SSP_TX_16_OR_MORE_EMPTY_LOC:
 978                tx_conf.dst_maxburst = 16;
 979                break;
 980        case SSP_TX_32_OR_MORE_EMPTY_LOC:
 981                tx_conf.dst_maxburst = 32;
 982                break;
 983        default:
 984                tx_conf.dst_maxburst = pl022->vendor->fifodepth >> 1;
 985                break;
 986        }
 987
 988        switch (pl022->read) {
 989        case READING_NULL:
 990                /* Use the same as for writing */
 991                rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
 992                break;
 993        case READING_U8:
 994                rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 995                break;
 996        case READING_U16:
 997                rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 998                break;
 999        case READING_U32:
1000                rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1001                break;
1002        }
1003
1004        switch (pl022->write) {
1005        case WRITING_NULL:
1006                /* Use the same as for reading */
1007                tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
1008                break;
1009        case WRITING_U8:
1010                tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1011                break;
1012        case WRITING_U16:
1013                tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
1014                break;
1015        case WRITING_U32:
1016                tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1017                break;
1018        }
1019
1020        /* SPI pecularity: we need to read and write the same width */
1021        if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1022                rx_conf.src_addr_width = tx_conf.dst_addr_width;
1023        if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1024                tx_conf.dst_addr_width = rx_conf.src_addr_width;
1025        BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width);
1026
1027        dmaengine_slave_config(rxchan, &rx_conf);
1028        dmaengine_slave_config(txchan, &tx_conf);
1029
1030        /* Create sglists for the transfers */
1031        pages = DIV_ROUND_UP(pl022->cur_transfer->len, PAGE_SIZE);
1032        dev_dbg(&pl022->adev->dev, "using %d pages for transfer\n", pages);
1033
1034        ret = sg_alloc_table(&pl022->sgt_rx, pages, GFP_ATOMIC);
1035        if (ret)
1036                goto err_alloc_rx_sg;
1037
1038        ret = sg_alloc_table(&pl022->sgt_tx, pages, GFP_ATOMIC);
1039        if (ret)
1040                goto err_alloc_tx_sg;
1041
1042        /* Fill in the scatterlists for the RX+TX buffers */
1043        setup_dma_scatter(pl022, pl022->rx,
1044                          pl022->cur_transfer->len, &pl022->sgt_rx);
1045        setup_dma_scatter(pl022, pl022->tx,
1046                          pl022->cur_transfer->len, &pl022->sgt_tx);
1047
1048        /* Map DMA buffers */
1049        rx_sglen = dma_map_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1050                           pl022->sgt_rx.nents, DMA_FROM_DEVICE);
1051        if (!rx_sglen)
1052                goto err_rx_sgmap;
1053
1054        tx_sglen = dma_map_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1055                           pl022->sgt_tx.nents, DMA_TO_DEVICE);
1056        if (!tx_sglen)
1057                goto err_tx_sgmap;
1058
1059        /* Send both scatterlists */
1060        rxdesc = dmaengine_prep_slave_sg(rxchan,
1061                                      pl022->sgt_rx.sgl,
1062                                      rx_sglen,
1063                                      DMA_DEV_TO_MEM,
1064                                      DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1065        if (!rxdesc)
1066                goto err_rxdesc;
1067
1068        txdesc = dmaengine_prep_slave_sg(txchan,
1069                                      pl022->sgt_tx.sgl,
1070                                      tx_sglen,
1071                                      DMA_MEM_TO_DEV,
1072                                      DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1073        if (!txdesc)
1074                goto err_txdesc;
1075
1076        /* Put the callback on the RX transfer only, that should finish last */
1077        rxdesc->callback = dma_callback;
1078        rxdesc->callback_param = pl022;
1079
1080        /* Submit and fire RX and TX with TX last so we're ready to read! */
1081        dmaengine_submit(rxdesc);
1082        dmaengine_submit(txdesc);
1083        dma_async_issue_pending(rxchan);
1084        dma_async_issue_pending(txchan);
1085        pl022->dma_running = true;
1086
1087        return 0;
1088
1089err_txdesc:
1090        dmaengine_terminate_all(txchan);
1091err_rxdesc:
1092        dmaengine_terminate_all(rxchan);
1093        dma_unmap_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1094                     pl022->sgt_tx.nents, DMA_TO_DEVICE);
1095err_tx_sgmap:
1096        dma_unmap_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1097                     pl022->sgt_rx.nents, DMA_FROM_DEVICE);
1098err_rx_sgmap:
1099        sg_free_table(&pl022->sgt_tx);
1100err_alloc_tx_sg:
1101        sg_free_table(&pl022->sgt_rx);
1102err_alloc_rx_sg:
1103        return -ENOMEM;
1104}
1105
1106static int pl022_dma_probe(struct pl022 *pl022)
1107{
1108        dma_cap_mask_t mask;
1109
1110        /* Try to acquire a generic DMA engine slave channel */
1111        dma_cap_zero(mask);
1112        dma_cap_set(DMA_SLAVE, mask);
1113        /*
1114         * We need both RX and TX channels to do DMA, else do none
1115         * of them.
1116         */
1117        pl022->dma_rx_channel = dma_request_channel(mask,
1118                                            pl022->master_info->dma_filter,
1119                                            pl022->master_info->dma_rx_param);
1120        if (!pl022->dma_rx_channel) {
1121                dev_dbg(&pl022->adev->dev, "no RX DMA channel!\n");
1122                goto err_no_rxchan;
1123        }
1124
1125        pl022->dma_tx_channel = dma_request_channel(mask,
1126                                            pl022->master_info->dma_filter,
1127                                            pl022->master_info->dma_tx_param);
1128        if (!pl022->dma_tx_channel) {
1129                dev_dbg(&pl022->adev->dev, "no TX DMA channel!\n");
1130                goto err_no_txchan;
1131        }
1132
1133        pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1134        if (!pl022->dummypage)
1135                goto err_no_dummypage;
1136
1137        dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n",
1138                 dma_chan_name(pl022->dma_rx_channel),
1139                 dma_chan_name(pl022->dma_tx_channel));
1140
1141        return 0;
1142
1143err_no_dummypage:
1144        dma_release_channel(pl022->dma_tx_channel);
1145err_no_txchan:
1146        dma_release_channel(pl022->dma_rx_channel);
1147        pl022->dma_rx_channel = NULL;
1148err_no_rxchan:
1149        dev_err(&pl022->adev->dev,
1150                        "Failed to work in dma mode, work without dma!\n");
1151        return -ENODEV;
1152}
1153
1154static int pl022_dma_autoprobe(struct pl022 *pl022)
1155{
1156        struct device *dev = &pl022->adev->dev;
1157        struct dma_chan *chan;
1158        int err;
1159
1160        /* automatically configure DMA channels from platform, normally using DT */
1161        chan = dma_request_chan(dev, "rx");
1162        if (IS_ERR(chan)) {
1163                err = PTR_ERR(chan);
1164                goto err_no_rxchan;
1165        }
1166
1167        pl022->dma_rx_channel = chan;
1168
1169        chan = dma_request_chan(dev, "tx");
1170        if (IS_ERR(chan)) {
1171                err = PTR_ERR(chan);
1172                goto err_no_txchan;
1173        }
1174
1175        pl022->dma_tx_channel = chan;
1176
1177        pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1178        if (!pl022->dummypage) {
1179                err = -ENOMEM;
1180                goto err_no_dummypage;
1181        }
1182
1183        return 0;
1184
1185err_no_dummypage:
1186        dma_release_channel(pl022->dma_tx_channel);
1187        pl022->dma_tx_channel = NULL;
1188err_no_txchan:
1189        dma_release_channel(pl022->dma_rx_channel);
1190        pl022->dma_rx_channel = NULL;
1191err_no_rxchan:
1192        return err;
1193}
1194                
1195static void terminate_dma(struct pl022 *pl022)
1196{
1197        struct dma_chan *rxchan = pl022->dma_rx_channel;
1198        struct dma_chan *txchan = pl022->dma_tx_channel;
1199
1200        dmaengine_terminate_all(rxchan);
1201        dmaengine_terminate_all(txchan);
1202        unmap_free_dma_scatter(pl022);
1203        pl022->dma_running = false;
1204}
1205
1206static void pl022_dma_remove(struct pl022 *pl022)
1207{
1208        if (pl022->dma_running)
1209                terminate_dma(pl022);
1210        if (pl022->dma_tx_channel)
1211                dma_release_channel(pl022->dma_tx_channel);
1212        if (pl022->dma_rx_channel)
1213                dma_release_channel(pl022->dma_rx_channel);
1214        kfree(pl022->dummypage);
1215}
1216
1217#else
1218static inline int configure_dma(struct pl022 *pl022)
1219{
1220        return -ENODEV;
1221}
1222
1223static inline int pl022_dma_autoprobe(struct pl022 *pl022)
1224{
1225        return 0;
1226}
1227
1228static inline int pl022_dma_probe(struct pl022 *pl022)
1229{
1230        return 0;
1231}
1232
1233static inline void pl022_dma_remove(struct pl022 *pl022)
1234{
1235}
1236#endif
1237
1238/**
1239 * pl022_interrupt_handler - Interrupt handler for SSP controller
1240 *
1241 * This function handles interrupts generated for an interrupt based transfer.
1242 * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
1243 * current message's state as STATE_ERROR and schedule the tasklet
1244 * pump_transfers which will do the postprocessing of the current message by
1245 * calling giveback(). Otherwise it reads data from RX FIFO till there is no
1246 * more data, and writes data in TX FIFO till it is not full. If we complete
1247 * the transfer we move to the next transfer and schedule the tasklet.
1248 */
1249static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id)
1250{
1251        struct pl022 *pl022 = dev_id;
1252        struct spi_message *msg = pl022->cur_msg;
1253        u16 irq_status = 0;
1254
1255        if (unlikely(!msg)) {
1256                dev_err(&pl022->adev->dev,
1257                        "bad message state in interrupt handler");
1258                /* Never fail */
1259                return IRQ_HANDLED;
1260        }
1261
1262        /* Read the Interrupt Status Register */
1263        irq_status = readw(SSP_MIS(pl022->virtbase));
1264
1265        if (unlikely(!irq_status))
1266                return IRQ_NONE;
1267
1268        /*
1269         * This handles the FIFO interrupts, the timeout
1270         * interrupts are flatly ignored, they cannot be
1271         * trusted.
1272         */
1273        if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) {
1274                /*
1275                 * Overrun interrupt - bail out since our Data has been
1276                 * corrupted
1277                 */
1278                dev_err(&pl022->adev->dev, "FIFO overrun\n");
1279                if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF)
1280                        dev_err(&pl022->adev->dev,
1281                                "RXFIFO is full\n");
1282
1283                /*
1284                 * Disable and clear interrupts, disable SSP,
1285                 * mark message with bad status so it can be
1286                 * retried.
1287                 */
1288                writew(DISABLE_ALL_INTERRUPTS,
1289                       SSP_IMSC(pl022->virtbase));
1290                writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1291                writew((readw(SSP_CR1(pl022->virtbase)) &
1292                        (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1293                msg->state = STATE_ERROR;
1294
1295                /* Schedule message queue handler */
1296                tasklet_schedule(&pl022->pump_transfers);
1297                return IRQ_HANDLED;
1298        }
1299
1300        readwriter(pl022);
1301
1302        if (pl022->tx == pl022->tx_end) {
1303                /* Disable Transmit interrupt, enable receive interrupt */
1304                writew((readw(SSP_IMSC(pl022->virtbase)) &
1305                       ~SSP_IMSC_MASK_TXIM) | SSP_IMSC_MASK_RXIM,
1306                       SSP_IMSC(pl022->virtbase));
1307        }
1308
1309        /*
1310         * Since all transactions must write as much as shall be read,
1311         * we can conclude the entire transaction once RX is complete.
1312         * At this point, all TX will always be finished.
1313         */
1314        if (pl022->rx >= pl022->rx_end) {
1315                writew(DISABLE_ALL_INTERRUPTS,
1316                       SSP_IMSC(pl022->virtbase));
1317                writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1318                if (unlikely(pl022->rx > pl022->rx_end)) {
1319                        dev_warn(&pl022->adev->dev, "read %u surplus "
1320                                 "bytes (did you request an odd "
1321                                 "number of bytes on a 16bit bus?)\n",
1322                                 (u32) (pl022->rx - pl022->rx_end));
1323                }
1324                /* Update total bytes transferred */
1325                msg->actual_length += pl022->cur_transfer->len;
1326                /* Move to next transfer */
1327                msg->state = next_transfer(pl022);
1328                if (msg->state != STATE_DONE && pl022->cur_transfer->cs_change)
1329                        pl022_cs_control(pl022, SSP_CHIP_DESELECT);
1330                tasklet_schedule(&pl022->pump_transfers);
1331                return IRQ_HANDLED;
1332        }
1333
1334        return IRQ_HANDLED;
1335}
1336
1337/**
1338 * This sets up the pointers to memory for the next message to
1339 * send out on the SPI bus.
1340 */
1341static int set_up_next_transfer(struct pl022 *pl022,
1342                                struct spi_transfer *transfer)
1343{
1344        int residue;
1345
1346        /* Sanity check the message for this bus width */
1347        residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes;
1348        if (unlikely(residue != 0)) {
1349                dev_err(&pl022->adev->dev,
1350                        "message of %u bytes to transmit but the current "
1351                        "chip bus has a data width of %u bytes!\n",
1352                        pl022->cur_transfer->len,
1353                        pl022->cur_chip->n_bytes);
1354                dev_err(&pl022->adev->dev, "skipping this message\n");
1355                return -EIO;
1356        }
1357        pl022->tx = (void *)transfer->tx_buf;
1358        pl022->tx_end = pl022->tx + pl022->cur_transfer->len;
1359        pl022->rx = (void *)transfer->rx_buf;
1360        pl022->rx_end = pl022->rx + pl022->cur_transfer->len;
1361        pl022->write =
1362            pl022->tx ? pl022->cur_chip->write : WRITING_NULL;
1363        pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL;
1364        return 0;
1365}
1366
1367/**
1368 * pump_transfers - Tasklet function which schedules next transfer
1369 * when running in interrupt or DMA transfer mode.
1370 * @data: SSP driver private data structure
1371 *
1372 */
1373static void pump_transfers(unsigned long data)
1374{
1375        struct pl022 *pl022 = (struct pl022 *) data;
1376        struct spi_message *message = NULL;
1377        struct spi_transfer *transfer = NULL;
1378        struct spi_transfer *previous = NULL;
1379
1380        /* Get current state information */
1381        message = pl022->cur_msg;
1382        transfer = pl022->cur_transfer;
1383
1384        /* Handle for abort */
1385        if (message->state == STATE_ERROR) {
1386                message->status = -EIO;
1387                giveback(pl022);
1388                return;
1389        }
1390
1391        /* Handle end of message */
1392        if (message->state == STATE_DONE) {
1393                message->status = 0;
1394                giveback(pl022);
1395                return;
1396        }
1397
1398        /* Delay if requested at end of transfer before CS change */
1399        if (message->state == STATE_RUNNING) {
1400                previous = list_entry(transfer->transfer_list.prev,
1401                                        struct spi_transfer,
1402                                        transfer_list);
1403                /*
1404                 * FIXME: This runs in interrupt context.
1405                 * Is this really smart?
1406                 */
1407                spi_transfer_delay_exec(previous);
1408
1409                /* Reselect chip select only if cs_change was requested */
1410                if (previous->cs_change)
1411                        pl022_cs_control(pl022, SSP_CHIP_SELECT);
1412        } else {
1413                /* STATE_START */
1414                message->state = STATE_RUNNING;
1415        }
1416
1417        if (set_up_next_transfer(pl022, transfer)) {
1418                message->state = STATE_ERROR;
1419                message->status = -EIO;
1420                giveback(pl022);
1421                return;
1422        }
1423        /* Flush the FIFOs and let's go! */
1424        flush(pl022);
1425
1426        if (pl022->cur_chip->enable_dma) {
1427                if (configure_dma(pl022)) {
1428                        dev_dbg(&pl022->adev->dev,
1429                                "configuration of DMA failed, fall back to interrupt mode\n");
1430                        goto err_config_dma;
1431                }
1432                return;
1433        }
1434
1435err_config_dma:
1436        /* enable all interrupts except RX */
1437        writew(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM, SSP_IMSC(pl022->virtbase));
1438}
1439
1440static void do_interrupt_dma_transfer(struct pl022 *pl022)
1441{
1442        /*
1443         * Default is to enable all interrupts except RX -
1444         * this will be enabled once TX is complete
1445         */
1446        u32 irqflags = (u32)(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM);
1447
1448        /* Enable target chip, if not already active */
1449        if (!pl022->next_msg_cs_active)
1450                pl022_cs_control(pl022, SSP_CHIP_SELECT);
1451
1452        if (set_up_next_transfer(pl022, pl022->cur_transfer)) {
1453                /* Error path */
1454                pl022->cur_msg->state = STATE_ERROR;
1455                pl022->cur_msg->status = -EIO;
1456                giveback(pl022);
1457                return;
1458        }
1459        /* If we're using DMA, set up DMA here */
1460        if (pl022->cur_chip->enable_dma) {
1461                /* Configure DMA transfer */
1462                if (configure_dma(pl022)) {
1463                        dev_dbg(&pl022->adev->dev,
1464                                "configuration of DMA failed, fall back to interrupt mode\n");
1465                        goto err_config_dma;
1466                }
1467                /* Disable interrupts in DMA mode, IRQ from DMA controller */
1468                irqflags = DISABLE_ALL_INTERRUPTS;
1469        }
1470err_config_dma:
1471        /* Enable SSP, turn on interrupts */
1472        writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1473               SSP_CR1(pl022->virtbase));
1474        writew(irqflags, SSP_IMSC(pl022->virtbase));
1475}
1476
1477static void print_current_status(struct pl022 *pl022)
1478{
1479        u32 read_cr0;
1480        u16 read_cr1, read_dmacr, read_sr;
1481
1482        if (pl022->vendor->extended_cr)
1483                read_cr0 = readl(SSP_CR0(pl022->virtbase));
1484        else
1485                read_cr0 = readw(SSP_CR0(pl022->virtbase));
1486        read_cr1 = readw(SSP_CR1(pl022->virtbase));
1487        read_dmacr = readw(SSP_DMACR(pl022->virtbase));
1488        read_sr = readw(SSP_SR(pl022->virtbase));
1489
1490        dev_warn(&pl022->adev->dev, "spi-pl022 CR0: %x\n", read_cr0);
1491        dev_warn(&pl022->adev->dev, "spi-pl022 CR1: %x\n", read_cr1);
1492        dev_warn(&pl022->adev->dev, "spi-pl022 DMACR: %x\n", read_dmacr);
1493        dev_warn(&pl022->adev->dev, "spi-pl022 SR: %x\n", read_sr);
1494        dev_warn(&pl022->adev->dev,
1495                        "spi-pl022 exp_fifo_level/fifodepth: %u/%d\n",
1496                        pl022->exp_fifo_level,
1497                        pl022->vendor->fifodepth);
1498
1499}
1500
1501static void do_polling_transfer(struct pl022 *pl022)
1502{
1503        struct spi_message *message = NULL;
1504        struct spi_transfer *transfer = NULL;
1505        struct spi_transfer *previous = NULL;
1506        unsigned long time, timeout;
1507
1508        message = pl022->cur_msg;
1509
1510        while (message->state != STATE_DONE) {
1511                /* Handle for abort */
1512                if (message->state == STATE_ERROR)
1513                        break;
1514                transfer = pl022->cur_transfer;
1515
1516                /* Delay if requested at end of transfer */
1517                if (message->state == STATE_RUNNING) {
1518                        previous =
1519                            list_entry(transfer->transfer_list.prev,
1520                                       struct spi_transfer, transfer_list);
1521                        spi_transfer_delay_exec(previous);
1522                        if (previous->cs_change)
1523                                pl022_cs_control(pl022, SSP_CHIP_SELECT);
1524                } else {
1525                        /* STATE_START */
1526                        message->state = STATE_RUNNING;
1527                        if (!pl022->next_msg_cs_active)
1528                                pl022_cs_control(pl022, SSP_CHIP_SELECT);
1529                }
1530
1531                /* Configuration Changing Per Transfer */
1532                if (set_up_next_transfer(pl022, transfer)) {
1533                        /* Error path */
1534                        message->state = STATE_ERROR;
1535                        break;
1536                }
1537                /* Flush FIFOs and enable SSP */
1538                flush(pl022);
1539                writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1540                       SSP_CR1(pl022->virtbase));
1541
1542                dev_dbg(&pl022->adev->dev, "polling transfer ongoing ...\n");
1543
1544                timeout = jiffies + msecs_to_jiffies(SPI_POLLING_TIMEOUT);
1545                while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end) {
1546                        time = jiffies;
1547                        readwriter(pl022);
1548                        if (time_after(time, timeout)) {
1549                                dev_warn(&pl022->adev->dev,
1550                                "%s: timeout!\n", __func__);
1551                                message->state = STATE_TIMEOUT;
1552                                print_current_status(pl022);
1553                                goto out;
1554                        }
1555                        cpu_relax();
1556                }
1557
1558                /* Update total byte transferred */
1559                message->actual_length += pl022->cur_transfer->len;
1560                /* Move to next transfer */
1561                message->state = next_transfer(pl022);
1562                if (message->state != STATE_DONE
1563                    && pl022->cur_transfer->cs_change)
1564                        pl022_cs_control(pl022, SSP_CHIP_DESELECT);
1565        }
1566out:
1567        /* Handle end of message */
1568        if (message->state == STATE_DONE)
1569                message->status = 0;
1570        else if (message->state == STATE_TIMEOUT)
1571                message->status = -EAGAIN;
1572        else
1573                message->status = -EIO;
1574
1575        giveback(pl022);
1576        return;
1577}
1578
1579static int pl022_transfer_one_message(struct spi_master *master,
1580                                      struct spi_message *msg)
1581{
1582        struct pl022 *pl022 = spi_master_get_devdata(master);
1583
1584        /* Initial message state */
1585        pl022->cur_msg = msg;
1586        msg->state = STATE_START;
1587
1588        pl022->cur_transfer = list_entry(msg->transfers.next,
1589                                         struct spi_transfer, transfer_list);
1590
1591        /* Setup the SPI using the per chip configuration */
1592        pl022->cur_chip = spi_get_ctldata(msg->spi);
1593        pl022->cur_cs = pl022->chipselects[msg->spi->chip_select];
1594
1595        restore_state(pl022);
1596        flush(pl022);
1597
1598        if (pl022->cur_chip->xfer_type == POLLING_TRANSFER)
1599                do_polling_transfer(pl022);
1600        else
1601                do_interrupt_dma_transfer(pl022);
1602
1603        return 0;
1604}
1605
1606static int pl022_unprepare_transfer_hardware(struct spi_master *master)
1607{
1608        struct pl022 *pl022 = spi_master_get_devdata(master);
1609
1610        /* nothing more to do - disable spi/ssp and power off */
1611        writew((readw(SSP_CR1(pl022->virtbase)) &
1612                (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1613
1614        return 0;
1615}
1616
1617static int verify_controller_parameters(struct pl022 *pl022,
1618                                struct pl022_config_chip const *chip_info)
1619{
1620        if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI)
1621            || (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) {
1622                dev_err(&pl022->adev->dev,
1623                        "interface is configured incorrectly\n");
1624                return -EINVAL;
1625        }
1626        if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) &&
1627            (!pl022->vendor->unidir)) {
1628                dev_err(&pl022->adev->dev,
1629                        "unidirectional mode not supported in this "
1630                        "hardware version\n");
1631                return -EINVAL;
1632        }
1633        if ((chip_info->hierarchy != SSP_MASTER)
1634            && (chip_info->hierarchy != SSP_SLAVE)) {
1635                dev_err(&pl022->adev->dev,
1636                        "hierarchy is configured incorrectly\n");
1637                return -EINVAL;
1638        }
1639        if ((chip_info->com_mode != INTERRUPT_TRANSFER)
1640            && (chip_info->com_mode != DMA_TRANSFER)
1641            && (chip_info->com_mode != POLLING_TRANSFER)) {
1642                dev_err(&pl022->adev->dev,
1643                        "Communication mode is configured incorrectly\n");
1644                return -EINVAL;
1645        }
1646        switch (chip_info->rx_lev_trig) {
1647        case SSP_RX_1_OR_MORE_ELEM:
1648        case SSP_RX_4_OR_MORE_ELEM:
1649        case SSP_RX_8_OR_MORE_ELEM:
1650                /* These are always OK, all variants can handle this */
1651                break;
1652        case SSP_RX_16_OR_MORE_ELEM:
1653                if (pl022->vendor->fifodepth < 16) {
1654                        dev_err(&pl022->adev->dev,
1655                        "RX FIFO Trigger Level is configured incorrectly\n");
1656                        return -EINVAL;
1657                }
1658                break;
1659        case SSP_RX_32_OR_MORE_ELEM:
1660                if (pl022->vendor->fifodepth < 32) {
1661                        dev_err(&pl022->adev->dev,
1662                        "RX FIFO Trigger Level is configured incorrectly\n");
1663                        return -EINVAL;
1664                }
1665                break;
1666        default:
1667                dev_err(&pl022->adev->dev,
1668                        "RX FIFO Trigger Level is configured incorrectly\n");
1669                return -EINVAL;
1670        }
1671        switch (chip_info->tx_lev_trig) {
1672        case SSP_TX_1_OR_MORE_EMPTY_LOC:
1673        case SSP_TX_4_OR_MORE_EMPTY_LOC:
1674        case SSP_TX_8_OR_MORE_EMPTY_LOC:
1675                /* These are always OK, all variants can handle this */
1676                break;
1677        case SSP_TX_16_OR_MORE_EMPTY_LOC:
1678                if (pl022->vendor->fifodepth < 16) {
1679                        dev_err(&pl022->adev->dev,
1680                        "TX FIFO Trigger Level is configured incorrectly\n");
1681                        return -EINVAL;
1682                }
1683                break;
1684        case SSP_TX_32_OR_MORE_EMPTY_LOC:
1685                if (pl022->vendor->fifodepth < 32) {
1686                        dev_err(&pl022->adev->dev,
1687                        "TX FIFO Trigger Level is configured incorrectly\n");
1688                        return -EINVAL;
1689                }
1690                break;
1691        default:
1692                dev_err(&pl022->adev->dev,
1693                        "TX FIFO Trigger Level is configured incorrectly\n");
1694                return -EINVAL;
1695        }
1696        if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) {
1697                if ((chip_info->ctrl_len < SSP_BITS_4)
1698                    || (chip_info->ctrl_len > SSP_BITS_32)) {
1699                        dev_err(&pl022->adev->dev,
1700                                "CTRL LEN is configured incorrectly\n");
1701                        return -EINVAL;
1702                }
1703                if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO)
1704                    && (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) {
1705                        dev_err(&pl022->adev->dev,
1706                                "Wait State is configured incorrectly\n");
1707                        return -EINVAL;
1708                }
1709                /* Half duplex is only available in the ST Micro version */
1710                if (pl022->vendor->extended_cr) {
1711                        if ((chip_info->duplex !=
1712                             SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1713                            && (chip_info->duplex !=
1714                                SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) {
1715                                dev_err(&pl022->adev->dev,
1716                                        "Microwire duplex mode is configured incorrectly\n");
1717                                return -EINVAL;
1718                        }
1719                } else {
1720                        if (chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1721                                dev_err(&pl022->adev->dev,
1722                                        "Microwire half duplex mode requested,"
1723                                        " but this is only available in the"
1724                                        " ST version of PL022\n");
1725                        return -EINVAL;
1726                }
1727        }
1728        return 0;
1729}
1730
1731static inline u32 spi_rate(u32 rate, u16 cpsdvsr, u16 scr)
1732{
1733        return rate / (cpsdvsr * (1 + scr));
1734}
1735
1736static int calculate_effective_freq(struct pl022 *pl022, int freq, struct
1737                                    ssp_clock_params * clk_freq)
1738{
1739        /* Lets calculate the frequency parameters */
1740        u16 cpsdvsr = CPSDVR_MIN, scr = SCR_MIN;
1741        u32 rate, max_tclk, min_tclk, best_freq = 0, best_cpsdvsr = 0,
1742                best_scr = 0, tmp, found = 0;
1743
1744        rate = clk_get_rate(pl022->clk);
1745        /* cpsdvscr = 2 & scr 0 */
1746        max_tclk = spi_rate(rate, CPSDVR_MIN, SCR_MIN);
1747        /* cpsdvsr = 254 & scr = 255 */
1748        min_tclk = spi_rate(rate, CPSDVR_MAX, SCR_MAX);
1749
1750        if (freq > max_tclk)
1751                dev_warn(&pl022->adev->dev,
1752                        "Max speed that can be programmed is %d Hz, you requested %d\n",
1753                        max_tclk, freq);
1754
1755        if (freq < min_tclk) {
1756                dev_err(&pl022->adev->dev,
1757                        "Requested frequency: %d Hz is less than minimum possible %d Hz\n",
1758                        freq, min_tclk);
1759                return -EINVAL;
1760        }
1761
1762        /*
1763         * best_freq will give closest possible available rate (<= requested
1764         * freq) for all values of scr & cpsdvsr.
1765         */
1766        while ((cpsdvsr <= CPSDVR_MAX) && !found) {
1767                while (scr <= SCR_MAX) {
1768                        tmp = spi_rate(rate, cpsdvsr, scr);
1769
1770                        if (tmp > freq) {
1771                                /* we need lower freq */
1772                                scr++;
1773                                continue;
1774                        }
1775
1776                        /*
1777                         * If found exact value, mark found and break.
1778                         * If found more closer value, update and break.
1779                         */
1780                        if (tmp > best_freq) {
1781                                best_freq = tmp;
1782                                best_cpsdvsr = cpsdvsr;
1783                                best_scr = scr;
1784
1785                                if (tmp == freq)
1786                                        found = 1;
1787                        }
1788                        /*
1789                         * increased scr will give lower rates, which are not
1790                         * required
1791                         */
1792                        break;
1793                }
1794                cpsdvsr += 2;
1795                scr = SCR_MIN;
1796        }
1797
1798        WARN(!best_freq, "pl022: Matching cpsdvsr and scr not found for %d Hz rate \n",
1799                        freq);
1800
1801        clk_freq->cpsdvsr = (u8) (best_cpsdvsr & 0xFF);
1802        clk_freq->scr = (u8) (best_scr & 0xFF);
1803        dev_dbg(&pl022->adev->dev,
1804                "SSP Target Frequency is: %u, Effective Frequency is %u\n",
1805                freq, best_freq);
1806        dev_dbg(&pl022->adev->dev, "SSP cpsdvsr = %d, scr = %d\n",
1807                clk_freq->cpsdvsr, clk_freq->scr);
1808
1809        return 0;
1810}
1811
1812/*
1813 * A piece of default chip info unless the platform
1814 * supplies it.
1815 */
1816static const struct pl022_config_chip pl022_default_chip_info = {
1817        .com_mode = POLLING_TRANSFER,
1818        .iface = SSP_INTERFACE_MOTOROLA_SPI,
1819        .hierarchy = SSP_SLAVE,
1820        .slave_tx_disable = DO_NOT_DRIVE_TX,
1821        .rx_lev_trig = SSP_RX_1_OR_MORE_ELEM,
1822        .tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC,
1823        .ctrl_len = SSP_BITS_8,
1824        .wait_state = SSP_MWIRE_WAIT_ZERO,
1825        .duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX,
1826        .cs_control = null_cs_control,
1827};
1828
1829/**
1830 * pl022_setup - setup function registered to SPI master framework
1831 * @spi: spi device which is requesting setup
1832 *
1833 * This function is registered to the SPI framework for this SPI master
1834 * controller. If it is the first time when setup is called by this device,
1835 * this function will initialize the runtime state for this chip and save
1836 * the same in the device structure. Else it will update the runtime info
1837 * with the updated chip info. Nothing is really being written to the
1838 * controller hardware here, that is not done until the actual transfer
1839 * commence.
1840 */
1841static int pl022_setup(struct spi_device *spi)
1842{
1843        struct pl022_config_chip const *chip_info;
1844        struct pl022_config_chip chip_info_dt;
1845        struct chip_data *chip;
1846        struct ssp_clock_params clk_freq = { .cpsdvsr = 0, .scr = 0};
1847        int status = 0;
1848        struct pl022 *pl022 = spi_master_get_devdata(spi->master);
1849        unsigned int bits = spi->bits_per_word;
1850        u32 tmp;
1851        struct device_node *np = spi->dev.of_node;
1852
1853        if (!spi->max_speed_hz)
1854                return -EINVAL;
1855
1856        /* Get controller_state if one is supplied */
1857        chip = spi_get_ctldata(spi);
1858
1859        if (chip == NULL) {
1860                chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1861                if (!chip)
1862                        return -ENOMEM;
1863                dev_dbg(&spi->dev,
1864                        "allocated memory for controller's runtime state\n");
1865        }
1866
1867        /* Get controller data if one is supplied */
1868        chip_info = spi->controller_data;
1869
1870        if (chip_info == NULL) {
1871                if (np) {
1872                        chip_info_dt = pl022_default_chip_info;
1873
1874                        chip_info_dt.hierarchy = SSP_MASTER;
1875                        of_property_read_u32(np, "pl022,interface",
1876                                &chip_info_dt.iface);
1877                        of_property_read_u32(np, "pl022,com-mode",
1878                                &chip_info_dt.com_mode);
1879                        of_property_read_u32(np, "pl022,rx-level-trig",
1880                                &chip_info_dt.rx_lev_trig);
1881                        of_property_read_u32(np, "pl022,tx-level-trig",
1882                                &chip_info_dt.tx_lev_trig);
1883                        of_property_read_u32(np, "pl022,ctrl-len",
1884                                &chip_info_dt.ctrl_len);
1885                        of_property_read_u32(np, "pl022,wait-state",
1886                                &chip_info_dt.wait_state);
1887                        of_property_read_u32(np, "pl022,duplex",
1888                                &chip_info_dt.duplex);
1889
1890                        chip_info = &chip_info_dt;
1891                } else {
1892                        chip_info = &pl022_default_chip_info;
1893                        /* spi_board_info.controller_data not is supplied */
1894                        dev_dbg(&spi->dev,
1895                                "using default controller_data settings\n");
1896                }
1897        } else
1898                dev_dbg(&spi->dev,
1899                        "using user supplied controller_data settings\n");
1900
1901        /*
1902         * We can override with custom divisors, else we use the board
1903         * frequency setting
1904         */
1905        if ((0 == chip_info->clk_freq.cpsdvsr)
1906            && (0 == chip_info->clk_freq.scr)) {
1907                status = calculate_effective_freq(pl022,
1908                                                  spi->max_speed_hz,
1909                                                  &clk_freq);
1910                if (status < 0)
1911                        goto err_config_params;
1912        } else {
1913                memcpy(&clk_freq, &chip_info->clk_freq, sizeof(clk_freq));
1914                if ((clk_freq.cpsdvsr % 2) != 0)
1915                        clk_freq.cpsdvsr =
1916                                clk_freq.cpsdvsr - 1;
1917        }
1918        if ((clk_freq.cpsdvsr < CPSDVR_MIN)
1919            || (clk_freq.cpsdvsr > CPSDVR_MAX)) {
1920                status = -EINVAL;
1921                dev_err(&spi->dev,
1922                        "cpsdvsr is configured incorrectly\n");
1923                goto err_config_params;
1924        }
1925
1926        status = verify_controller_parameters(pl022, chip_info);
1927        if (status) {
1928                dev_err(&spi->dev, "controller data is incorrect");
1929                goto err_config_params;
1930        }
1931
1932        pl022->rx_lev_trig = chip_info->rx_lev_trig;
1933        pl022->tx_lev_trig = chip_info->tx_lev_trig;
1934
1935        /* Now set controller state based on controller data */
1936        chip->xfer_type = chip_info->com_mode;
1937        if (!chip_info->cs_control) {
1938                chip->cs_control = null_cs_control;
1939                if (!gpio_is_valid(pl022->chipselects[spi->chip_select]))
1940                        dev_warn(&spi->dev,
1941                                 "invalid chip select\n");
1942        } else
1943                chip->cs_control = chip_info->cs_control;
1944
1945        /* Check bits per word with vendor specific range */
1946        if ((bits <= 3) || (bits > pl022->vendor->max_bpw)) {
1947                status = -ENOTSUPP;
1948                dev_err(&spi->dev, "illegal data size for this controller!\n");
1949                dev_err(&spi->dev, "This controller can only handle 4 <= n <= %d bit words\n",
1950                                pl022->vendor->max_bpw);
1951                goto err_config_params;
1952        } else if (bits <= 8) {
1953                dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n");
1954                chip->n_bytes = 1;
1955                chip->read = READING_U8;
1956                chip->write = WRITING_U8;
1957        } else if (bits <= 16) {
1958                dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n");
1959                chip->n_bytes = 2;
1960                chip->read = READING_U16;
1961                chip->write = WRITING_U16;
1962        } else {
1963                dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n");
1964                chip->n_bytes = 4;
1965                chip->read = READING_U32;
1966                chip->write = WRITING_U32;
1967        }
1968
1969        /* Now Initialize all register settings required for this chip */
1970        chip->cr0 = 0;
1971        chip->cr1 = 0;
1972        chip->dmacr = 0;
1973        chip->cpsr = 0;
1974        if ((chip_info->com_mode == DMA_TRANSFER)
1975            && ((pl022->master_info)->enable_dma)) {
1976                chip->enable_dma = true;
1977                dev_dbg(&spi->dev, "DMA mode set in controller state\n");
1978                SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1979                               SSP_DMACR_MASK_RXDMAE, 0);
1980                SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1981                               SSP_DMACR_MASK_TXDMAE, 1);
1982        } else {
1983                chip->enable_dma = false;
1984                dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n");
1985                SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1986                               SSP_DMACR_MASK_RXDMAE, 0);
1987                SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1988                               SSP_DMACR_MASK_TXDMAE, 1);
1989        }
1990
1991        chip->cpsr = clk_freq.cpsdvsr;
1992
1993        /* Special setup for the ST micro extended control registers */
1994        if (pl022->vendor->extended_cr) {
1995                u32 etx;
1996
1997                if (pl022->vendor->pl023) {
1998                        /* These bits are only in the PL023 */
1999                        SSP_WRITE_BITS(chip->cr1, chip_info->clkdelay,
2000                                       SSP_CR1_MASK_FBCLKDEL_ST, 13);
2001                } else {
2002                        /* These bits are in the PL022 but not PL023 */
2003                        SSP_WRITE_BITS(chip->cr0, chip_info->duplex,
2004                                       SSP_CR0_MASK_HALFDUP_ST, 5);
2005                        SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len,
2006                                       SSP_CR0_MASK_CSS_ST, 16);
2007                        SSP_WRITE_BITS(chip->cr0, chip_info->iface,
2008                                       SSP_CR0_MASK_FRF_ST, 21);
2009                        SSP_WRITE_BITS(chip->cr1, chip_info->wait_state,
2010                                       SSP_CR1_MASK_MWAIT_ST, 6);
2011                }
2012                SSP_WRITE_BITS(chip->cr0, bits - 1,
2013                               SSP_CR0_MASK_DSS_ST, 0);
2014
2015                if (spi->mode & SPI_LSB_FIRST) {
2016                        tmp = SSP_RX_LSB;
2017                        etx = SSP_TX_LSB;
2018                } else {
2019                        tmp = SSP_RX_MSB;
2020                        etx = SSP_TX_MSB;
2021                }
2022                SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_RENDN_ST, 4);
2023                SSP_WRITE_BITS(chip->cr1, etx, SSP_CR1_MASK_TENDN_ST, 5);
2024                SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig,
2025                               SSP_CR1_MASK_RXIFLSEL_ST, 7);
2026                SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig,
2027                               SSP_CR1_MASK_TXIFLSEL_ST, 10);
2028        } else {
2029                SSP_WRITE_BITS(chip->cr0, bits - 1,
2030                               SSP_CR0_MASK_DSS, 0);
2031                SSP_WRITE_BITS(chip->cr0, chip_info->iface,
2032                               SSP_CR0_MASK_FRF, 4);
2033        }
2034
2035        /* Stuff that is common for all versions */
2036        if (spi->mode & SPI_CPOL)
2037                tmp = SSP_CLK_POL_IDLE_HIGH;
2038        else
2039                tmp = SSP_CLK_POL_IDLE_LOW;
2040        SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPO, 6);
2041
2042        if (spi->mode & SPI_CPHA)
2043                tmp = SSP_CLK_SECOND_EDGE;
2044        else
2045                tmp = SSP_CLK_FIRST_EDGE;
2046        SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPH, 7);
2047
2048        SSP_WRITE_BITS(chip->cr0, clk_freq.scr, SSP_CR0_MASK_SCR, 8);
2049        /* Loopback is available on all versions except PL023 */
2050        if (pl022->vendor->loopback) {
2051                if (spi->mode & SPI_LOOP)
2052                        tmp = LOOPBACK_ENABLED;
2053                else
2054                        tmp = LOOPBACK_DISABLED;
2055                SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_LBM, 0);
2056        }
2057        SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1);
2058        SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2);
2059        SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD,
2060                3);
2061
2062        /* Save controller_state */
2063        spi_set_ctldata(spi, chip);
2064        return status;
2065 err_config_params:
2066        spi_set_ctldata(spi, NULL);
2067        kfree(chip);
2068        return status;
2069}
2070
2071/**
2072 * pl022_cleanup - cleanup function registered to SPI master framework
2073 * @spi: spi device which is requesting cleanup
2074 *
2075 * This function is registered to the SPI framework for this SPI master
2076 * controller. It will free the runtime state of chip.
2077 */
2078static void pl022_cleanup(struct spi_device *spi)
2079{
2080        struct chip_data *chip = spi_get_ctldata(spi);
2081
2082        spi_set_ctldata(spi, NULL);
2083        kfree(chip);
2084}
2085
2086static struct pl022_ssp_controller *
2087pl022_platform_data_dt_get(struct device *dev)
2088{
2089        struct device_node *np = dev->of_node;
2090        struct pl022_ssp_controller *pd;
2091        u32 tmp = 0;
2092
2093        if (!np) {
2094                dev_err(dev, "no dt node defined\n");
2095                return NULL;
2096        }
2097
2098        pd = devm_kzalloc(dev, sizeof(struct pl022_ssp_controller), GFP_KERNEL);
2099        if (!pd)
2100                return NULL;
2101
2102        pd->bus_id = -1;
2103        pd->enable_dma = 1;
2104        of_property_read_u32(np, "num-cs", &tmp);
2105        pd->num_chipselect = tmp;
2106        of_property_read_u32(np, "pl022,autosuspend-delay",
2107                             &pd->autosuspend_delay);
2108        pd->rt = of_property_read_bool(np, "pl022,rt");
2109
2110        return pd;
2111}
2112
2113static int pl022_probe(struct amba_device *adev, const struct amba_id *id)
2114{
2115        struct device *dev = &adev->dev;
2116        struct pl022_ssp_controller *platform_info =
2117                        dev_get_platdata(&adev->dev);
2118        struct spi_master *master;
2119        struct pl022 *pl022 = NULL;     /*Data for this driver */
2120        struct device_node *np = adev->dev.of_node;
2121        int status = 0, i, num_cs;
2122
2123        dev_info(&adev->dev,
2124                 "ARM PL022 driver, device ID: 0x%08x\n", adev->periphid);
2125        if (!platform_info && IS_ENABLED(CONFIG_OF))
2126                platform_info = pl022_platform_data_dt_get(dev);
2127
2128        if (!platform_info) {
2129                dev_err(dev, "probe: no platform data defined\n");
2130                return -ENODEV;
2131        }
2132
2133        if (platform_info->num_chipselect) {
2134                num_cs = platform_info->num_chipselect;
2135        } else {
2136                dev_err(dev, "probe: no chip select defined\n");
2137                return -ENODEV;
2138        }
2139
2140        /* Allocate master with space for data */
2141        master = spi_alloc_master(dev, sizeof(struct pl022));
2142        if (master == NULL) {
2143                dev_err(&adev->dev, "probe - cannot alloc SPI master\n");
2144                return -ENOMEM;
2145        }
2146
2147        pl022 = spi_master_get_devdata(master);
2148        pl022->master = master;
2149        pl022->master_info = platform_info;
2150        pl022->adev = adev;
2151        pl022->vendor = id->data;
2152        pl022->chipselects = devm_kcalloc(dev, num_cs, sizeof(int),
2153                                          GFP_KERNEL);
2154        if (!pl022->chipselects) {
2155                status = -ENOMEM;
2156                goto err_no_mem;
2157        }
2158
2159        /*
2160         * Bus Number Which has been Assigned to this SSP controller
2161         * on this board
2162         */
2163        master->bus_num = platform_info->bus_id;
2164        master->num_chipselect = num_cs;
2165        master->cleanup = pl022_cleanup;
2166        master->setup = pl022_setup;
2167        master->auto_runtime_pm = true;
2168        master->transfer_one_message = pl022_transfer_one_message;
2169        master->unprepare_transfer_hardware = pl022_unprepare_transfer_hardware;
2170        master->rt = platform_info->rt;
2171        master->dev.of_node = dev->of_node;
2172
2173        if (platform_info->num_chipselect && platform_info->chipselects) {
2174                for (i = 0; i < num_cs; i++)
2175                        pl022->chipselects[i] = platform_info->chipselects[i];
2176        } else if (pl022->vendor->internal_cs_ctrl) {
2177                for (i = 0; i < num_cs; i++)
2178                        pl022->chipselects[i] = i;
2179        } else if (IS_ENABLED(CONFIG_OF)) {
2180                for (i = 0; i < num_cs; i++) {
2181                        int cs_gpio = of_get_named_gpio(np, "cs-gpios", i);
2182
2183                        if (cs_gpio == -EPROBE_DEFER) {
2184                                status = -EPROBE_DEFER;
2185                                goto err_no_gpio;
2186                        }
2187
2188                        pl022->chipselects[i] = cs_gpio;
2189
2190                        if (gpio_is_valid(cs_gpio)) {
2191                                if (devm_gpio_request(dev, cs_gpio, "ssp-pl022"))
2192                                        dev_err(&adev->dev,
2193                                                "could not request %d gpio\n",
2194                                                cs_gpio);
2195                                else if (gpio_direction_output(cs_gpio, 1))
2196                                        dev_err(&adev->dev,
2197                                                "could not set gpio %d as output\n",
2198                                                cs_gpio);
2199                        }
2200                }
2201        }
2202
2203        /*
2204         * Supports mode 0-3, loopback, and active low CS. Transfers are
2205         * always MS bit first on the original pl022.
2206         */
2207        master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
2208        if (pl022->vendor->extended_cr)
2209                master->mode_bits |= SPI_LSB_FIRST;
2210
2211        dev_dbg(&adev->dev, "BUSNO: %d\n", master->bus_num);
2212
2213        status = amba_request_regions(adev, NULL);
2214        if (status)
2215                goto err_no_ioregion;
2216
2217        pl022->phybase = adev->res.start;
2218        pl022->virtbase = devm_ioremap(dev, adev->res.start,
2219                                       resource_size(&adev->res));
2220        if (pl022->virtbase == NULL) {
2221                status = -ENOMEM;
2222                goto err_no_ioremap;
2223        }
2224        dev_info(&adev->dev, "mapped registers from %pa to %p\n",
2225                &adev->res.start, pl022->virtbase);
2226
2227        pl022->clk = devm_clk_get(&adev->dev, NULL);
2228        if (IS_ERR(pl022->clk)) {
2229                status = PTR_ERR(pl022->clk);
2230                dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n");
2231                goto err_no_clk;
2232        }
2233
2234        status = clk_prepare_enable(pl022->clk);
2235        if (status) {
2236                dev_err(&adev->dev, "could not enable SSP/SPI bus clock\n");
2237                goto err_no_clk_en;
2238        }
2239
2240        /* Initialize transfer pump */
2241        tasklet_init(&pl022->pump_transfers, pump_transfers,
2242                     (unsigned long)pl022);
2243
2244        /* Disable SSP */
2245        writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)),
2246               SSP_CR1(pl022->virtbase));
2247        load_ssp_default_config(pl022);
2248
2249        status = devm_request_irq(dev, adev->irq[0], pl022_interrupt_handler,
2250                                  0, "pl022", pl022);
2251        if (status < 0) {
2252                dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status);
2253                goto err_no_irq;
2254        }
2255
2256        /* Get DMA channels, try autoconfiguration first */
2257        status = pl022_dma_autoprobe(pl022);
2258        if (status == -EPROBE_DEFER) {
2259                dev_dbg(dev, "deferring probe to get DMA channel\n");
2260                goto err_no_irq;
2261        }
2262
2263        /* If that failed, use channels from platform_info */
2264        if (status == 0)
2265                platform_info->enable_dma = 1;
2266        else if (platform_info->enable_dma) {
2267                status = pl022_dma_probe(pl022);
2268                if (status != 0)
2269                        platform_info->enable_dma = 0;
2270        }
2271
2272        /* Register with the SPI framework */
2273        amba_set_drvdata(adev, pl022);
2274        status = devm_spi_register_master(&adev->dev, master);
2275        if (status != 0) {
2276                dev_err(&adev->dev,
2277                        "probe - problem registering spi master\n");
2278                goto err_spi_register;
2279        }
2280        dev_dbg(dev, "probe succeeded\n");
2281
2282        /* let runtime pm put suspend */
2283        if (platform_info->autosuspend_delay > 0) {
2284                dev_info(&adev->dev,
2285                        "will use autosuspend for runtime pm, delay %dms\n",
2286                        platform_info->autosuspend_delay);
2287                pm_runtime_set_autosuspend_delay(dev,
2288                        platform_info->autosuspend_delay);
2289                pm_runtime_use_autosuspend(dev);
2290        }
2291        pm_runtime_put(dev);
2292
2293        return 0;
2294
2295 err_spi_register:
2296        if (platform_info->enable_dma)
2297                pl022_dma_remove(pl022);
2298 err_no_irq:
2299        clk_disable_unprepare(pl022->clk);
2300 err_no_clk_en:
2301 err_no_clk:
2302 err_no_ioremap:
2303        amba_release_regions(adev);
2304 err_no_ioregion:
2305 err_no_gpio:
2306 err_no_mem:
2307        spi_master_put(master);
2308        return status;
2309}
2310
2311static int
2312pl022_remove(struct amba_device *adev)
2313{
2314        struct pl022 *pl022 = amba_get_drvdata(adev);
2315
2316        if (!pl022)
2317                return 0;
2318
2319        /*
2320         * undo pm_runtime_put() in probe.  I assume that we're not
2321         * accessing the primecell here.
2322         */
2323        pm_runtime_get_noresume(&adev->dev);
2324
2325        load_ssp_default_config(pl022);
2326        if (pl022->master_info->enable_dma)
2327                pl022_dma_remove(pl022);
2328
2329        clk_disable_unprepare(pl022->clk);
2330        amba_release_regions(adev);
2331        tasklet_disable(&pl022->pump_transfers);
2332        return 0;
2333}
2334
2335#ifdef CONFIG_PM_SLEEP
2336static int pl022_suspend(struct device *dev)
2337{
2338        struct pl022 *pl022 = dev_get_drvdata(dev);
2339        int ret;
2340
2341        ret = spi_master_suspend(pl022->master);
2342        if (ret)
2343                return ret;
2344
2345        ret = pm_runtime_force_suspend(dev);
2346        if (ret) {
2347                spi_master_resume(pl022->master);
2348                return ret;
2349        }
2350
2351        pinctrl_pm_select_sleep_state(dev);
2352
2353        dev_dbg(dev, "suspended\n");
2354        return 0;
2355}
2356
2357static int pl022_resume(struct device *dev)
2358{
2359        struct pl022 *pl022 = dev_get_drvdata(dev);
2360        int ret;
2361
2362        ret = pm_runtime_force_resume(dev);
2363        if (ret)
2364                dev_err(dev, "problem resuming\n");
2365
2366        /* Start the queue running */
2367        ret = spi_master_resume(pl022->master);
2368        if (!ret)
2369                dev_dbg(dev, "resumed\n");
2370
2371        return ret;
2372}
2373#endif
2374
2375#ifdef CONFIG_PM
2376static int pl022_runtime_suspend(struct device *dev)
2377{
2378        struct pl022 *pl022 = dev_get_drvdata(dev);
2379
2380        clk_disable_unprepare(pl022->clk);
2381        pinctrl_pm_select_idle_state(dev);
2382
2383        return 0;
2384}
2385
2386static int pl022_runtime_resume(struct device *dev)
2387{
2388        struct pl022 *pl022 = dev_get_drvdata(dev);
2389
2390        pinctrl_pm_select_default_state(dev);
2391        clk_prepare_enable(pl022->clk);
2392
2393        return 0;
2394}
2395#endif
2396
2397static const struct dev_pm_ops pl022_dev_pm_ops = {
2398        SET_SYSTEM_SLEEP_PM_OPS(pl022_suspend, pl022_resume)
2399        SET_RUNTIME_PM_OPS(pl022_runtime_suspend, pl022_runtime_resume, NULL)
2400};
2401
2402static struct vendor_data vendor_arm = {
2403        .fifodepth = 8,
2404        .max_bpw = 16,
2405        .unidir = false,
2406        .extended_cr = false,
2407        .pl023 = false,
2408        .loopback = true,
2409        .internal_cs_ctrl = false,
2410};
2411
2412static struct vendor_data vendor_st = {
2413        .fifodepth = 32,
2414        .max_bpw = 32,
2415        .unidir = false,
2416        .extended_cr = true,
2417        .pl023 = false,
2418        .loopback = true,
2419        .internal_cs_ctrl = false,
2420};
2421
2422static struct vendor_data vendor_st_pl023 = {
2423        .fifodepth = 32,
2424        .max_bpw = 32,
2425        .unidir = false,
2426        .extended_cr = true,
2427        .pl023 = true,
2428        .loopback = false,
2429        .internal_cs_ctrl = false,
2430};
2431
2432static struct vendor_data vendor_lsi = {
2433        .fifodepth = 8,
2434        .max_bpw = 16,
2435        .unidir = false,
2436        .extended_cr = false,
2437        .pl023 = false,
2438        .loopback = true,
2439        .internal_cs_ctrl = true,
2440};
2441
2442static const struct amba_id pl022_ids[] = {
2443        {
2444                /*
2445                 * ARM PL022 variant, this has a 16bit wide
2446                 * and 8 locations deep TX/RX FIFO
2447                 */
2448                .id     = 0x00041022,
2449                .mask   = 0x000fffff,
2450                .data   = &vendor_arm,
2451        },
2452        {
2453                /*
2454                 * ST Micro derivative, this has 32bit wide
2455                 * and 32 locations deep TX/RX FIFO
2456                 */
2457                .id     = 0x01080022,
2458                .mask   = 0xffffffff,
2459                .data   = &vendor_st,
2460        },
2461        {
2462                /*
2463                 * ST-Ericsson derivative "PL023" (this is not
2464                 * an official ARM number), this is a PL022 SSP block
2465                 * stripped to SPI mode only, it has 32bit wide
2466                 * and 32 locations deep TX/RX FIFO but no extended
2467                 * CR0/CR1 register
2468                 */
2469                .id     = 0x00080023,
2470                .mask   = 0xffffffff,
2471                .data   = &vendor_st_pl023,
2472        },
2473        {
2474                /*
2475                 * PL022 variant that has a chip select control register whih
2476                 * allows control of 5 output signals nCS[0:4].
2477                 */
2478                .id     = 0x000b6022,
2479                .mask   = 0x000fffff,
2480                .data   = &vendor_lsi,
2481        },
2482        { 0, 0 },
2483};
2484
2485MODULE_DEVICE_TABLE(amba, pl022_ids);
2486
2487static struct amba_driver pl022_driver = {
2488        .drv = {
2489                .name   = "ssp-pl022",
2490                .pm     = &pl022_dev_pm_ops,
2491        },
2492        .id_table       = pl022_ids,
2493        .probe          = pl022_probe,
2494        .remove         = pl022_remove,
2495};
2496
2497static int __init pl022_init(void)
2498{
2499        return amba_driver_register(&pl022_driver);
2500}
2501subsys_initcall(pl022_init);
2502
2503static void __exit pl022_exit(void)
2504{
2505        amba_driver_unregister(&pl022_driver);
2506}
2507module_exit(pl022_exit);
2508
2509MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
2510MODULE_DESCRIPTION("PL022 SSP Controller Driver");
2511MODULE_LICENSE("GPL");
2512