linux/drivers/staging/most/usb/usb.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * usb.c - Hardware dependent module for USB
   4 *
   5 * Copyright (C) 2013-2015 Microchip Technology Germany II GmbH & Co. KG
   6 */
   7
   8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   9#include <linux/module.h>
  10#include <linux/fs.h>
  11#include <linux/usb.h>
  12#include <linux/slab.h>
  13#include <linux/init.h>
  14#include <linux/cdev.h>
  15#include <linux/device.h>
  16#include <linux/list.h>
  17#include <linux/completion.h>
  18#include <linux/mutex.h>
  19#include <linux/spinlock.h>
  20#include <linux/interrupt.h>
  21#include <linux/workqueue.h>
  22#include <linux/sysfs.h>
  23#include <linux/dma-mapping.h>
  24#include <linux/etherdevice.h>
  25#include <linux/uaccess.h>
  26#include "most/core.h"
  27
  28#define USB_MTU                 512
  29#define NO_ISOCHRONOUS_URB      0
  30#define AV_PACKETS_PER_XACT     2
  31#define BUF_CHAIN_SIZE          0xFFFF
  32#define MAX_NUM_ENDPOINTS       30
  33#define MAX_SUFFIX_LEN          10
  34#define MAX_STRING_LEN          80
  35#define MAX_BUF_SIZE            0xFFFF
  36
  37#define USB_VENDOR_ID_SMSC      0x0424  /* VID: SMSC */
  38#define USB_DEV_ID_BRDG         0xC001  /* PID: USB Bridge */
  39#define USB_DEV_ID_OS81118      0xCF18  /* PID: USB OS81118 */
  40#define USB_DEV_ID_OS81119      0xCF19  /* PID: USB OS81119 */
  41#define USB_DEV_ID_OS81210      0xCF30  /* PID: USB OS81210 */
  42/* DRCI Addresses */
  43#define DRCI_REG_NI_STATE       0x0100
  44#define DRCI_REG_PACKET_BW      0x0101
  45#define DRCI_REG_NODE_ADDR      0x0102
  46#define DRCI_REG_NODE_POS       0x0103
  47#define DRCI_REG_MEP_FILTER     0x0140
  48#define DRCI_REG_HASH_TBL0      0x0141
  49#define DRCI_REG_HASH_TBL1      0x0142
  50#define DRCI_REG_HASH_TBL2      0x0143
  51#define DRCI_REG_HASH_TBL3      0x0144
  52#define DRCI_REG_HW_ADDR_HI     0x0145
  53#define DRCI_REG_HW_ADDR_MI     0x0146
  54#define DRCI_REG_HW_ADDR_LO     0x0147
  55#define DRCI_REG_BASE           0x1100
  56#define DRCI_COMMAND            0x02
  57#define DRCI_READ_REQ           0xA0
  58#define DRCI_WRITE_REQ          0xA1
  59
  60/**
  61 * struct most_dci_obj - Direct Communication Interface
  62 * @kobj:position in sysfs
  63 * @usb_device: pointer to the usb device
  64 * @reg_addr: register address for arbitrary DCI access
  65 */
  66struct most_dci_obj {
  67        struct device dev;
  68        struct usb_device *usb_device;
  69        u16 reg_addr;
  70};
  71
  72#define to_dci_obj(p) container_of(p, struct most_dci_obj, dev)
  73
  74struct most_dev;
  75
  76struct clear_hold_work {
  77        struct work_struct ws;
  78        struct most_dev *mdev;
  79        unsigned int channel;
  80        int pipe;
  81};
  82
  83#define to_clear_hold_work(w) container_of(w, struct clear_hold_work, ws)
  84
  85/**
  86 * struct most_dev - holds all usb interface specific stuff
  87 * @usb_device: pointer to usb device
  88 * @iface: hardware interface
  89 * @cap: channel capabilities
  90 * @conf: channel configuration
  91 * @dci: direct communication interface of hardware
  92 * @ep_address: endpoint address table
  93 * @description: device description
  94 * @suffix: suffix for channel name
  95 * @channel_lock: synchronize channel access
  96 * @padding_active: indicates channel uses padding
  97 * @is_channel_healthy: health status table of each channel
  98 * @busy_urbs: list of anchored items
  99 * @io_mutex: synchronize I/O with disconnect
 100 * @link_stat_timer: timer for link status reports
 101 * @poll_work_obj: work for polling link status
 102 */
 103struct most_dev {
 104        struct usb_device *usb_device;
 105        struct most_interface iface;
 106        struct most_channel_capability *cap;
 107        struct most_channel_config *conf;
 108        struct most_dci_obj *dci;
 109        u8 *ep_address;
 110        char description[MAX_STRING_LEN];
 111        char suffix[MAX_NUM_ENDPOINTS][MAX_SUFFIX_LEN];
 112        spinlock_t channel_lock[MAX_NUM_ENDPOINTS]; /* sync channel access */
 113        bool padding_active[MAX_NUM_ENDPOINTS];
 114        bool is_channel_healthy[MAX_NUM_ENDPOINTS];
 115        struct clear_hold_work clear_work[MAX_NUM_ENDPOINTS];
 116        struct usb_anchor *busy_urbs;
 117        struct mutex io_mutex;
 118        struct timer_list link_stat_timer;
 119        struct work_struct poll_work_obj;
 120        void (*on_netinfo)(struct most_interface *most_iface,
 121                           unsigned char link_state, unsigned char *addrs);
 122};
 123
 124#define to_mdev(d) container_of(d, struct most_dev, iface)
 125#define to_mdev_from_work(w) container_of(w, struct most_dev, poll_work_obj)
 126
 127static void wq_clear_halt(struct work_struct *wq_obj);
 128static void wq_netinfo(struct work_struct *wq_obj);
 129
 130/**
 131 * drci_rd_reg - read a DCI register
 132 * @dev: usb device
 133 * @reg: register address
 134 * @buf: buffer to store data
 135 *
 136 * This is reads data from INIC's direct register communication interface
 137 */
 138static inline int drci_rd_reg(struct usb_device *dev, u16 reg, u16 *buf)
 139{
 140        int retval;
 141        __le16 *dma_buf = kzalloc(sizeof(*dma_buf), GFP_KERNEL);
 142        u8 req_type = USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE;
 143
 144        if (!dma_buf)
 145                return -ENOMEM;
 146
 147        retval = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
 148                                 DRCI_READ_REQ, req_type,
 149                                 0x0000,
 150                                 reg, dma_buf, sizeof(*dma_buf), 5 * HZ);
 151        *buf = le16_to_cpu(*dma_buf);
 152        kfree(dma_buf);
 153
 154        return retval;
 155}
 156
 157/**
 158 * drci_wr_reg - write a DCI register
 159 * @dev: usb device
 160 * @reg: register address
 161 * @data: data to write
 162 *
 163 * This is writes data to INIC's direct register communication interface
 164 */
 165static inline int drci_wr_reg(struct usb_device *dev, u16 reg, u16 data)
 166{
 167        return usb_control_msg(dev,
 168                               usb_sndctrlpipe(dev, 0),
 169                               DRCI_WRITE_REQ,
 170                               USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
 171                               data,
 172                               reg,
 173                               NULL,
 174                               0,
 175                               5 * HZ);
 176}
 177
 178static inline int start_sync_ep(struct usb_device *usb_dev, u16 ep)
 179{
 180        return drci_wr_reg(usb_dev, DRCI_REG_BASE + DRCI_COMMAND + ep * 16, 1);
 181}
 182
 183/**
 184 * get_stream_frame_size - calculate frame size of current configuration
 185 * @cfg: channel configuration
 186 */
 187static unsigned int get_stream_frame_size(struct most_channel_config *cfg)
 188{
 189        unsigned int frame_size = 0;
 190        unsigned int sub_size = cfg->subbuffer_size;
 191
 192        if (!sub_size) {
 193                pr_warn("Misconfig: Subbuffer size zero.\n");
 194                return frame_size;
 195        }
 196        switch (cfg->data_type) {
 197        case MOST_CH_ISOC:
 198                frame_size = AV_PACKETS_PER_XACT * sub_size;
 199                break;
 200        case MOST_CH_SYNC:
 201                if (cfg->packets_per_xact == 0) {
 202                        pr_warn("Misconfig: Packets per XACT zero\n");
 203                        frame_size = 0;
 204                } else if (cfg->packets_per_xact == 0xFF) {
 205                        frame_size = (USB_MTU / sub_size) * sub_size;
 206                } else {
 207                        frame_size = cfg->packets_per_xact * sub_size;
 208                }
 209                break;
 210        default:
 211                pr_warn("Query frame size of non-streaming channel\n");
 212                break;
 213        }
 214        return frame_size;
 215}
 216
 217/**
 218 * hdm_poison_channel - mark buffers of this channel as invalid
 219 * @iface: pointer to the interface
 220 * @channel: channel ID
 221 *
 222 * This unlinks all URBs submitted to the HCD,
 223 * calls the associated completion function of the core and removes
 224 * them from the list.
 225 *
 226 * Returns 0 on success or error code otherwise.
 227 */
 228static int hdm_poison_channel(struct most_interface *iface, int channel)
 229{
 230        struct most_dev *mdev = to_mdev(iface);
 231        unsigned long flags;
 232        spinlock_t *lock; /* temp. lock */
 233
 234        if (unlikely(!iface)) {
 235                dev_warn(&mdev->usb_device->dev, "Poison: Bad interface.\n");
 236                return -EIO;
 237        }
 238        if (unlikely(channel < 0 || channel >= iface->num_channels)) {
 239                dev_warn(&mdev->usb_device->dev, "Channel ID out of range.\n");
 240                return -ECHRNG;
 241        }
 242
 243        lock = mdev->channel_lock + channel;
 244        spin_lock_irqsave(lock, flags);
 245        mdev->is_channel_healthy[channel] = false;
 246        spin_unlock_irqrestore(lock, flags);
 247
 248        cancel_work_sync(&mdev->clear_work[channel].ws);
 249
 250        mutex_lock(&mdev->io_mutex);
 251        usb_kill_anchored_urbs(&mdev->busy_urbs[channel]);
 252        if (mdev->padding_active[channel])
 253                mdev->padding_active[channel] = false;
 254
 255        if (mdev->conf[channel].data_type == MOST_CH_ASYNC) {
 256                del_timer_sync(&mdev->link_stat_timer);
 257                cancel_work_sync(&mdev->poll_work_obj);
 258        }
 259        mutex_unlock(&mdev->io_mutex);
 260        return 0;
 261}
 262
 263/**
 264 * hdm_add_padding - add padding bytes
 265 * @mdev: most device
 266 * @channel: channel ID
 267 * @mbo: buffer object
 268 *
 269 * This inserts the INIC hardware specific padding bytes into a streaming
 270 * channel's buffer
 271 */
 272static int hdm_add_padding(struct most_dev *mdev, int channel, struct mbo *mbo)
 273{
 274        struct most_channel_config *conf = &mdev->conf[channel];
 275        unsigned int frame_size = get_stream_frame_size(conf);
 276        unsigned int j, num_frames;
 277
 278        if (!frame_size)
 279                return -EIO;
 280        num_frames = mbo->buffer_length / frame_size;
 281
 282        if (num_frames < 1) {
 283                dev_err(&mdev->usb_device->dev,
 284                        "Missed minimal transfer unit.\n");
 285                return -EIO;
 286        }
 287
 288        for (j = num_frames - 1; j > 0; j--)
 289                memmove(mbo->virt_address + j * USB_MTU,
 290                        mbo->virt_address + j * frame_size,
 291                        frame_size);
 292        mbo->buffer_length = num_frames * USB_MTU;
 293        return 0;
 294}
 295
 296/**
 297 * hdm_remove_padding - remove padding bytes
 298 * @mdev: most device
 299 * @channel: channel ID
 300 * @mbo: buffer object
 301 *
 302 * This takes the INIC hardware specific padding bytes off a streaming
 303 * channel's buffer.
 304 */
 305static int hdm_remove_padding(struct most_dev *mdev, int channel,
 306                              struct mbo *mbo)
 307{
 308        struct most_channel_config *const conf = &mdev->conf[channel];
 309        unsigned int frame_size = get_stream_frame_size(conf);
 310        unsigned int j, num_frames;
 311
 312        if (!frame_size)
 313                return -EIO;
 314        num_frames = mbo->processed_length / USB_MTU;
 315
 316        for (j = 1; j < num_frames; j++)
 317                memmove(mbo->virt_address + frame_size * j,
 318                        mbo->virt_address + USB_MTU * j,
 319                        frame_size);
 320
 321        mbo->processed_length = frame_size * num_frames;
 322        return 0;
 323}
 324
 325/**
 326 * hdm_write_completion - completion function for submitted Tx URBs
 327 * @urb: the URB that has been completed
 328 *
 329 * This checks the status of the completed URB. In case the URB has been
 330 * unlinked before, it is immediately freed. On any other error the MBO
 331 * transfer flag is set. On success it frees allocated resources and calls
 332 * the completion function.
 333 *
 334 * Context: interrupt!
 335 */
 336static void hdm_write_completion(struct urb *urb)
 337{
 338        struct mbo *mbo = urb->context;
 339        struct most_dev *mdev = to_mdev(mbo->ifp);
 340        unsigned int channel = mbo->hdm_channel_id;
 341        spinlock_t *lock = mdev->channel_lock + channel;
 342        unsigned long flags;
 343
 344        spin_lock_irqsave(lock, flags);
 345
 346        mbo->processed_length = 0;
 347        mbo->status = MBO_E_INVAL;
 348        if (likely(mdev->is_channel_healthy[channel])) {
 349                switch (urb->status) {
 350                case 0:
 351                case -ESHUTDOWN:
 352                        mbo->processed_length = urb->actual_length;
 353                        mbo->status = MBO_SUCCESS;
 354                        break;
 355                case -EPIPE:
 356                        dev_warn(&mdev->usb_device->dev,
 357                                 "Broken pipe on ep%02x\n",
 358                                 mdev->ep_address[channel]);
 359                        mdev->is_channel_healthy[channel] = false;
 360                        mdev->clear_work[channel].pipe = urb->pipe;
 361                        schedule_work(&mdev->clear_work[channel].ws);
 362                        break;
 363                case -ENODEV:
 364                case -EPROTO:
 365                        mbo->status = MBO_E_CLOSE;
 366                        break;
 367                }
 368        }
 369
 370        spin_unlock_irqrestore(lock, flags);
 371
 372        if (likely(mbo->complete))
 373                mbo->complete(mbo);
 374        usb_free_urb(urb);
 375}
 376
 377/**
 378 * hdm_read_completion - completion function for submitted Rx URBs
 379 * @urb: the URB that has been completed
 380 *
 381 * This checks the status of the completed URB. In case the URB has been
 382 * unlinked before it is immediately freed. On any other error the MBO transfer
 383 * flag is set. On success it frees allocated resources, removes
 384 * padding bytes -if necessary- and calls the completion function.
 385 *
 386 * Context: interrupt!
 387 *
 388 * **************************************************************************
 389 *                   Error codes returned by in urb->status
 390 *                   or in iso_frame_desc[n].status (for ISO)
 391 * *************************************************************************
 392 *
 393 * USB device drivers may only test urb status values in completion handlers.
 394 * This is because otherwise there would be a race between HCDs updating
 395 * these values on one CPU, and device drivers testing them on another CPU.
 396 *
 397 * A transfer's actual_length may be positive even when an error has been
 398 * reported.  That's because transfers often involve several packets, so that
 399 * one or more packets could finish before an error stops further endpoint I/O.
 400 *
 401 * For isochronous URBs, the urb status value is non-zero only if the URB is
 402 * unlinked, the device is removed, the host controller is disabled or the total
 403 * transferred length is less than the requested length and the URB_SHORT_NOT_OK
 404 * flag is set.  Completion handlers for isochronous URBs should only see
 405 * urb->status set to zero, -ENOENT, -ECONNRESET, -ESHUTDOWN, or -EREMOTEIO.
 406 * Individual frame descriptor status fields may report more status codes.
 407 *
 408 *
 409 * 0                    Transfer completed successfully
 410 *
 411 * -ENOENT              URB was synchronously unlinked by usb_unlink_urb
 412 *
 413 * -EINPROGRESS         URB still pending, no results yet
 414 *                      (That is, if drivers see this it's a bug.)
 415 *
 416 * -EPROTO (*, **)      a) bitstuff error
 417 *                      b) no response packet received within the
 418 *                         prescribed bus turn-around time
 419 *                      c) unknown USB error
 420 *
 421 * -EILSEQ (*, **)      a) CRC mismatch
 422 *                      b) no response packet received within the
 423 *                         prescribed bus turn-around time
 424 *                      c) unknown USB error
 425 *
 426 *                      Note that often the controller hardware does not
 427 *                      distinguish among cases a), b), and c), so a
 428 *                      driver cannot tell whether there was a protocol
 429 *                      error, a failure to respond (often caused by
 430 *                      device disconnect), or some other fault.
 431 *
 432 * -ETIME (**)          No response packet received within the prescribed
 433 *                      bus turn-around time.  This error may instead be
 434 *                      reported as -EPROTO or -EILSEQ.
 435 *
 436 * -ETIMEDOUT           Synchronous USB message functions use this code
 437 *                      to indicate timeout expired before the transfer
 438 *                      completed, and no other error was reported by HC.
 439 *
 440 * -EPIPE (**)          Endpoint stalled.  For non-control endpoints,
 441 *                      reset this status with usb_clear_halt().
 442 *
 443 * -ECOMM               During an IN transfer, the host controller
 444 *                      received data from an endpoint faster than it
 445 *                      could be written to system memory
 446 *
 447 * -ENOSR               During an OUT transfer, the host controller
 448 *                      could not retrieve data from system memory fast
 449 *                      enough to keep up with the USB data rate
 450 *
 451 * -EOVERFLOW (*)       The amount of data returned by the endpoint was
 452 *                      greater than either the max packet size of the
 453 *                      endpoint or the remaining buffer size.  "Babble".
 454 *
 455 * -EREMOTEIO           The data read from the endpoint did not fill the
 456 *                      specified buffer, and URB_SHORT_NOT_OK was set in
 457 *                      urb->transfer_flags.
 458 *
 459 * -ENODEV              Device was removed.  Often preceded by a burst of
 460 *                      other errors, since the hub driver doesn't detect
 461 *                      device removal events immediately.
 462 *
 463 * -EXDEV               ISO transfer only partially completed
 464 *                      (only set in iso_frame_desc[n].status, not urb->status)
 465 *
 466 * -EINVAL              ISO madness, if this happens: Log off and go home
 467 *
 468 * -ECONNRESET          URB was asynchronously unlinked by usb_unlink_urb
 469 *
 470 * -ESHUTDOWN           The device or host controller has been disabled due
 471 *                      to some problem that could not be worked around,
 472 *                      such as a physical disconnect.
 473 *
 474 *
 475 * (*) Error codes like -EPROTO, -EILSEQ and -EOVERFLOW normally indicate
 476 * hardware problems such as bad devices (including firmware) or cables.
 477 *
 478 * (**) This is also one of several codes that different kinds of host
 479 * controller use to indicate a transfer has failed because of device
 480 * disconnect.  In the interval before the hub driver starts disconnect
 481 * processing, devices may receive such fault reports for every request.
 482 *
 483 * See <https://www.kernel.org/doc/Documentation/driver-api/usb/error-codes.rst>
 484 */
 485static void hdm_read_completion(struct urb *urb)
 486{
 487        struct mbo *mbo = urb->context;
 488        struct most_dev *mdev = to_mdev(mbo->ifp);
 489        unsigned int channel = mbo->hdm_channel_id;
 490        struct device *dev = &mdev->usb_device->dev;
 491        spinlock_t *lock = mdev->channel_lock + channel;
 492        unsigned long flags;
 493
 494        spin_lock_irqsave(lock, flags);
 495
 496        mbo->processed_length = 0;
 497        mbo->status = MBO_E_INVAL;
 498        if (likely(mdev->is_channel_healthy[channel])) {
 499                switch (urb->status) {
 500                case 0:
 501                case -ESHUTDOWN:
 502                        mbo->processed_length = urb->actual_length;
 503                        mbo->status = MBO_SUCCESS;
 504                        if (mdev->padding_active[channel] &&
 505                            hdm_remove_padding(mdev, channel, mbo)) {
 506                                mbo->processed_length = 0;
 507                                mbo->status = MBO_E_INVAL;
 508                        }
 509                        break;
 510                case -EPIPE:
 511                        dev_warn(dev, "Broken pipe on ep%02x\n",
 512                                 mdev->ep_address[channel]);
 513                        mdev->is_channel_healthy[channel] = false;
 514                        mdev->clear_work[channel].pipe = urb->pipe;
 515                        schedule_work(&mdev->clear_work[channel].ws);
 516                        break;
 517                case -ENODEV:
 518                case -EPROTO:
 519                        mbo->status = MBO_E_CLOSE;
 520                        break;
 521                case -EOVERFLOW:
 522                        dev_warn(dev, "Babble on ep%02x\n",
 523                                 mdev->ep_address[channel]);
 524                        break;
 525                }
 526        }
 527
 528        spin_unlock_irqrestore(lock, flags);
 529
 530        if (likely(mbo->complete))
 531                mbo->complete(mbo);
 532        usb_free_urb(urb);
 533}
 534
 535/**
 536 * hdm_enqueue - receive a buffer to be used for data transfer
 537 * @iface: interface to enqueue to
 538 * @channel: ID of the channel
 539 * @mbo: pointer to the buffer object
 540 *
 541 * This allocates a new URB and fills it according to the channel
 542 * that is being used for transmission of data. Before the URB is
 543 * submitted it is stored in the private anchor list.
 544 *
 545 * Returns 0 on success. On any error the URB is freed and a error code
 546 * is returned.
 547 *
 548 * Context: Could in _some_ cases be interrupt!
 549 */
 550static int hdm_enqueue(struct most_interface *iface, int channel,
 551                       struct mbo *mbo)
 552{
 553        struct most_dev *mdev;
 554        struct most_channel_config *conf;
 555        int retval = 0;
 556        struct urb *urb;
 557        unsigned long length;
 558        void *virt_address;
 559
 560        if (unlikely(!iface || !mbo))
 561                return -EIO;
 562        if (unlikely(iface->num_channels <= channel || channel < 0))
 563                return -ECHRNG;
 564
 565        mdev = to_mdev(iface);
 566        conf = &mdev->conf[channel];
 567
 568        mutex_lock(&mdev->io_mutex);
 569        if (!mdev->usb_device) {
 570                retval = -ENODEV;
 571                goto unlock_io_mutex;
 572        }
 573
 574        urb = usb_alloc_urb(NO_ISOCHRONOUS_URB, GFP_ATOMIC);
 575        if (!urb) {
 576                retval = -ENOMEM;
 577                goto unlock_io_mutex;
 578        }
 579
 580        if ((conf->direction & MOST_CH_TX) && mdev->padding_active[channel] &&
 581            hdm_add_padding(mdev, channel, mbo)) {
 582                retval = -EIO;
 583                goto err_free_urb;
 584        }
 585
 586        urb->transfer_dma = mbo->bus_address;
 587        virt_address = mbo->virt_address;
 588        length = mbo->buffer_length;
 589
 590        if (conf->direction & MOST_CH_TX) {
 591                usb_fill_bulk_urb(urb, mdev->usb_device,
 592                                  usb_sndbulkpipe(mdev->usb_device,
 593                                                  mdev->ep_address[channel]),
 594                                  virt_address,
 595                                  length,
 596                                  hdm_write_completion,
 597                                  mbo);
 598                if (conf->data_type != MOST_CH_ISOC &&
 599                    conf->data_type != MOST_CH_SYNC)
 600                        urb->transfer_flags |= URB_ZERO_PACKET;
 601        } else {
 602                usb_fill_bulk_urb(urb, mdev->usb_device,
 603                                  usb_rcvbulkpipe(mdev->usb_device,
 604                                                  mdev->ep_address[channel]),
 605                                  virt_address,
 606                                  length + conf->extra_len,
 607                                  hdm_read_completion,
 608                                  mbo);
 609        }
 610        urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
 611
 612        usb_anchor_urb(urb, &mdev->busy_urbs[channel]);
 613
 614        retval = usb_submit_urb(urb, GFP_KERNEL);
 615        if (retval) {
 616                dev_err(&mdev->usb_device->dev,
 617                        "URB submit failed with error %d.\n", retval);
 618                goto err_unanchor_urb;
 619        }
 620        goto unlock_io_mutex;
 621
 622err_unanchor_urb:
 623        usb_unanchor_urb(urb);
 624err_free_urb:
 625        usb_free_urb(urb);
 626unlock_io_mutex:
 627        mutex_unlock(&mdev->io_mutex);
 628        return retval;
 629}
 630
 631static void *hdm_dma_alloc(struct mbo *mbo, u32 size)
 632{
 633        struct most_dev *mdev = to_mdev(mbo->ifp);
 634
 635        return usb_alloc_coherent(mdev->usb_device, size, GFP_KERNEL,
 636                                  &mbo->bus_address);
 637}
 638
 639static void hdm_dma_free(struct mbo *mbo, u32 size)
 640{
 641        struct most_dev *mdev = to_mdev(mbo->ifp);
 642
 643        usb_free_coherent(mdev->usb_device, size, mbo->virt_address,
 644                          mbo->bus_address);
 645}
 646
 647/**
 648 * hdm_configure_channel - receive channel configuration from core
 649 * @iface: interface
 650 * @channel: channel ID
 651 * @conf: structure that holds the configuration information
 652 *
 653 * The attached network interface controller (NIC) supports a padding mode
 654 * to avoid short packets on USB, hence increasing the performance due to a
 655 * lower interrupt load. This mode is default for synchronous data and can
 656 * be switched on for isochronous data. In case padding is active the
 657 * driver needs to know the frame size of the payload in order to calculate
 658 * the number of bytes it needs to pad when transmitting or to cut off when
 659 * receiving data.
 660 *
 661 */
 662static int hdm_configure_channel(struct most_interface *iface, int channel,
 663                                 struct most_channel_config *conf)
 664{
 665        unsigned int num_frames;
 666        unsigned int frame_size;
 667        struct most_dev *mdev = to_mdev(iface);
 668        struct device *dev = &mdev->usb_device->dev;
 669
 670        mdev->is_channel_healthy[channel] = true;
 671        mdev->clear_work[channel].channel = channel;
 672        mdev->clear_work[channel].mdev = mdev;
 673        INIT_WORK(&mdev->clear_work[channel].ws, wq_clear_halt);
 674
 675        if (unlikely(!iface || !conf)) {
 676                dev_err(dev, "Bad interface or config pointer.\n");
 677                return -EINVAL;
 678        }
 679        if (unlikely(channel < 0 || channel >= iface->num_channels)) {
 680                dev_err(dev, "Channel ID out of range.\n");
 681                return -EINVAL;
 682        }
 683        if (!conf->num_buffers || !conf->buffer_size) {
 684                dev_err(dev, "Misconfig: buffer size or #buffers zero.\n");
 685                return -EINVAL;
 686        }
 687
 688        if (conf->data_type != MOST_CH_SYNC &&
 689            !(conf->data_type == MOST_CH_ISOC &&
 690              conf->packets_per_xact != 0xFF)) {
 691                mdev->padding_active[channel] = false;
 692                /*
 693                 * Since the NIC's padding mode is not going to be
 694                 * used, we can skip the frame size calculations and
 695                 * move directly on to exit.
 696                 */
 697                goto exit;
 698        }
 699
 700        mdev->padding_active[channel] = true;
 701
 702        frame_size = get_stream_frame_size(conf);
 703        if (frame_size == 0 || frame_size > USB_MTU) {
 704                dev_warn(dev, "Misconfig: frame size wrong\n");
 705                return -EINVAL;
 706        }
 707
 708        num_frames = conf->buffer_size / frame_size;
 709
 710        if (conf->buffer_size % frame_size) {
 711                u16 old_size = conf->buffer_size;
 712
 713                conf->buffer_size = num_frames * frame_size;
 714                dev_warn(dev, "%s: fixed buffer size (%d -> %d)\n",
 715                         mdev->suffix[channel], old_size, conf->buffer_size);
 716        }
 717
 718        /* calculate extra length to comply w/ HW padding */
 719        conf->extra_len = num_frames * (USB_MTU - frame_size);
 720
 721exit:
 722        mdev->conf[channel] = *conf;
 723        if (conf->data_type == MOST_CH_ASYNC) {
 724                u16 ep = mdev->ep_address[channel];
 725
 726                if (start_sync_ep(mdev->usb_device, ep) < 0)
 727                        dev_warn(dev, "sync for ep%02x failed", ep);
 728        }
 729        return 0;
 730}
 731
 732/**
 733 * hdm_request_netinfo - request network information
 734 * @iface: pointer to interface
 735 * @channel: channel ID
 736 *
 737 * This is used as trigger to set up the link status timer that
 738 * polls for the NI state of the INIC every 2 seconds.
 739 *
 740 */
 741static void hdm_request_netinfo(struct most_interface *iface, int channel,
 742                                void (*on_netinfo)(struct most_interface *,
 743                                                   unsigned char,
 744                                                   unsigned char *))
 745{
 746        struct most_dev *mdev;
 747
 748        BUG_ON(!iface);
 749        mdev = to_mdev(iface);
 750        mdev->on_netinfo = on_netinfo;
 751        if (!on_netinfo)
 752                return;
 753
 754        mdev->link_stat_timer.expires = jiffies + HZ;
 755        mod_timer(&mdev->link_stat_timer, mdev->link_stat_timer.expires);
 756}
 757
 758/**
 759 * link_stat_timer_handler - schedule work obtaining mac address and link status
 760 * @data: pointer to USB device instance
 761 *
 762 * The handler runs in interrupt context. That's why we need to defer the
 763 * tasks to a work queue.
 764 */
 765static void link_stat_timer_handler(struct timer_list *t)
 766{
 767        struct most_dev *mdev = from_timer(mdev, t, link_stat_timer);
 768
 769        schedule_work(&mdev->poll_work_obj);
 770        mdev->link_stat_timer.expires = jiffies + (2 * HZ);
 771        add_timer(&mdev->link_stat_timer);
 772}
 773
 774/**
 775 * wq_netinfo - work queue function to deliver latest networking information
 776 * @wq_obj: object that holds data for our deferred work to do
 777 *
 778 * This retrieves the network interface status of the USB INIC
 779 */
 780static void wq_netinfo(struct work_struct *wq_obj)
 781{
 782        struct most_dev *mdev = to_mdev_from_work(wq_obj);
 783        struct usb_device *usb_device = mdev->usb_device;
 784        struct device *dev = &usb_device->dev;
 785        u16 hi, mi, lo, link;
 786        u8 hw_addr[6];
 787
 788        if (drci_rd_reg(usb_device, DRCI_REG_HW_ADDR_HI, &hi) < 0) {
 789                dev_err(dev, "Vendor request 'hw_addr_hi' failed\n");
 790                return;
 791        }
 792
 793        if (drci_rd_reg(usb_device, DRCI_REG_HW_ADDR_MI, &mi) < 0) {
 794                dev_err(dev, "Vendor request 'hw_addr_mid' failed\n");
 795                return;
 796        }
 797
 798        if (drci_rd_reg(usb_device, DRCI_REG_HW_ADDR_LO, &lo) < 0) {
 799                dev_err(dev, "Vendor request 'hw_addr_low' failed\n");
 800                return;
 801        }
 802
 803        if (drci_rd_reg(usb_device, DRCI_REG_NI_STATE, &link) < 0) {
 804                dev_err(dev, "Vendor request 'link status' failed\n");
 805                return;
 806        }
 807
 808        hw_addr[0] = hi >> 8;
 809        hw_addr[1] = hi;
 810        hw_addr[2] = mi >> 8;
 811        hw_addr[3] = mi;
 812        hw_addr[4] = lo >> 8;
 813        hw_addr[5] = lo;
 814
 815        if (mdev->on_netinfo)
 816                mdev->on_netinfo(&mdev->iface, link, hw_addr);
 817}
 818
 819/**
 820 * wq_clear_halt - work queue function
 821 * @wq_obj: work_struct object to execute
 822 *
 823 * This sends a clear_halt to the given USB pipe.
 824 */
 825static void wq_clear_halt(struct work_struct *wq_obj)
 826{
 827        struct clear_hold_work *clear_work = to_clear_hold_work(wq_obj);
 828        struct most_dev *mdev = clear_work->mdev;
 829        unsigned int channel = clear_work->channel;
 830        int pipe = clear_work->pipe;
 831
 832        mutex_lock(&mdev->io_mutex);
 833        most_stop_enqueue(&mdev->iface, channel);
 834        usb_kill_anchored_urbs(&mdev->busy_urbs[channel]);
 835        if (usb_clear_halt(mdev->usb_device, pipe))
 836                dev_warn(&mdev->usb_device->dev, "Failed to reset endpoint.\n");
 837
 838        /* If the functional Stall condition has been set on an
 839         * asynchronous rx channel, we need to clear the tx channel
 840         * too, since the hardware runs its clean-up sequence on both
 841         * channels, as they are physically one on the network.
 842         *
 843         * The USB interface that exposes the asynchronous channels
 844         * contains always two endpoints, and two only.
 845         */
 846        if (mdev->conf[channel].data_type == MOST_CH_ASYNC &&
 847            mdev->conf[channel].direction == MOST_CH_RX) {
 848                int peer = 1 - channel;
 849                int snd_pipe = usb_sndbulkpipe(mdev->usb_device,
 850                                               mdev->ep_address[peer]);
 851                usb_clear_halt(mdev->usb_device, snd_pipe);
 852        }
 853        mdev->is_channel_healthy[channel] = true;
 854        most_resume_enqueue(&mdev->iface, channel);
 855        mutex_unlock(&mdev->io_mutex);
 856}
 857
 858/**
 859 * hdm_usb_fops - file operation table for USB driver
 860 */
 861static const struct file_operations hdm_usb_fops = {
 862        .owner = THIS_MODULE,
 863};
 864
 865/**
 866 * usb_device_id - ID table for HCD device probing
 867 */
 868static const struct usb_device_id usbid[] = {
 869        { USB_DEVICE(USB_VENDOR_ID_SMSC, USB_DEV_ID_BRDG), },
 870        { USB_DEVICE(USB_VENDOR_ID_SMSC, USB_DEV_ID_OS81118), },
 871        { USB_DEVICE(USB_VENDOR_ID_SMSC, USB_DEV_ID_OS81119), },
 872        { USB_DEVICE(USB_VENDOR_ID_SMSC, USB_DEV_ID_OS81210), },
 873        { } /* Terminating entry */
 874};
 875
 876struct regs {
 877        const char *name;
 878        u16 reg;
 879};
 880
 881static const struct regs ro_regs[] = {
 882        { "ni_state", DRCI_REG_NI_STATE },
 883        { "packet_bandwidth", DRCI_REG_PACKET_BW },
 884        { "node_address", DRCI_REG_NODE_ADDR },
 885        { "node_position", DRCI_REG_NODE_POS },
 886};
 887
 888static const struct regs rw_regs[] = {
 889        { "mep_filter", DRCI_REG_MEP_FILTER },
 890        { "mep_hash0", DRCI_REG_HASH_TBL0 },
 891        { "mep_hash1", DRCI_REG_HASH_TBL1 },
 892        { "mep_hash2", DRCI_REG_HASH_TBL2 },
 893        { "mep_hash3", DRCI_REG_HASH_TBL3 },
 894        { "mep_eui48_hi", DRCI_REG_HW_ADDR_HI },
 895        { "mep_eui48_mi", DRCI_REG_HW_ADDR_MI },
 896        { "mep_eui48_lo", DRCI_REG_HW_ADDR_LO },
 897};
 898
 899static int get_stat_reg_addr(const struct regs *regs, int size,
 900                             const char *name, u16 *reg_addr)
 901{
 902        int i;
 903
 904        for (i = 0; i < size; i++) {
 905                if (!strcmp(name, regs[i].name)) {
 906                        *reg_addr = regs[i].reg;
 907                        return 0;
 908                }
 909        }
 910        return -EFAULT;
 911}
 912
 913#define get_static_reg_addr(regs, name, reg_addr) \
 914        get_stat_reg_addr(regs, ARRAY_SIZE(regs), name, reg_addr)
 915
 916static ssize_t value_show(struct device *dev, struct device_attribute *attr,
 917                          char *buf)
 918{
 919        const char *name = attr->attr.name;
 920        struct most_dci_obj *dci_obj = to_dci_obj(dev);
 921        u16 val;
 922        u16 reg_addr;
 923        int err;
 924
 925        if (!strcmp(name, "arb_address"))
 926                return snprintf(buf, PAGE_SIZE, "%04x\n", dci_obj->reg_addr);
 927
 928        if (!strcmp(name, "arb_value"))
 929                reg_addr = dci_obj->reg_addr;
 930        else if (get_static_reg_addr(ro_regs, name, &reg_addr) &&
 931                 get_static_reg_addr(rw_regs, name, &reg_addr))
 932                return -EFAULT;
 933
 934        err = drci_rd_reg(dci_obj->usb_device, reg_addr, &val);
 935        if (err < 0)
 936                return err;
 937
 938        return snprintf(buf, PAGE_SIZE, "%04x\n", val);
 939}
 940
 941static ssize_t value_store(struct device *dev, struct device_attribute *attr,
 942                           const char *buf, size_t count)
 943{
 944        u16 val;
 945        u16 reg_addr;
 946        const char *name = attr->attr.name;
 947        struct most_dci_obj *dci_obj = to_dci_obj(dev);
 948        struct usb_device *usb_dev = dci_obj->usb_device;
 949        int err = kstrtou16(buf, 16, &val);
 950
 951        if (err)
 952                return err;
 953
 954        if (!strcmp(name, "arb_address")) {
 955                dci_obj->reg_addr = val;
 956                return count;
 957        }
 958
 959        if (!strcmp(name, "arb_value"))
 960                err = drci_wr_reg(usb_dev, dci_obj->reg_addr, val);
 961        else if (!strcmp(name, "sync_ep"))
 962                err = start_sync_ep(usb_dev, val);
 963        else if (!get_static_reg_addr(rw_regs, name, &reg_addr))
 964                err = drci_wr_reg(usb_dev, reg_addr, val);
 965        else
 966                return -EFAULT;
 967
 968        if (err < 0)
 969                return err;
 970
 971        return count;
 972}
 973
 974static DEVICE_ATTR(ni_state, 0444, value_show, NULL);
 975static DEVICE_ATTR(packet_bandwidth, 0444, value_show, NULL);
 976static DEVICE_ATTR(node_address, 0444, value_show, NULL);
 977static DEVICE_ATTR(node_position, 0444, value_show, NULL);
 978static DEVICE_ATTR(sync_ep, 0200, NULL, value_store);
 979static DEVICE_ATTR(mep_filter, 0644, value_show, value_store);
 980static DEVICE_ATTR(mep_hash0, 0644, value_show, value_store);
 981static DEVICE_ATTR(mep_hash1, 0644, value_show, value_store);
 982static DEVICE_ATTR(mep_hash2, 0644, value_show, value_store);
 983static DEVICE_ATTR(mep_hash3, 0644, value_show, value_store);
 984static DEVICE_ATTR(mep_eui48_hi, 0644, value_show, value_store);
 985static DEVICE_ATTR(mep_eui48_mi, 0644, value_show, value_store);
 986static DEVICE_ATTR(mep_eui48_lo, 0644, value_show, value_store);
 987static DEVICE_ATTR(arb_address, 0644, value_show, value_store);
 988static DEVICE_ATTR(arb_value, 0644, value_show, value_store);
 989
 990static struct attribute *dci_attrs[] = {
 991        &dev_attr_ni_state.attr,
 992        &dev_attr_packet_bandwidth.attr,
 993        &dev_attr_node_address.attr,
 994        &dev_attr_node_position.attr,
 995        &dev_attr_sync_ep.attr,
 996        &dev_attr_mep_filter.attr,
 997        &dev_attr_mep_hash0.attr,
 998        &dev_attr_mep_hash1.attr,
 999        &dev_attr_mep_hash2.attr,
1000        &dev_attr_mep_hash3.attr,
1001        &dev_attr_mep_eui48_hi.attr,
1002        &dev_attr_mep_eui48_mi.attr,
1003        &dev_attr_mep_eui48_lo.attr,
1004        &dev_attr_arb_address.attr,
1005        &dev_attr_arb_value.attr,
1006        NULL,
1007};
1008
1009static struct attribute_group dci_attr_group = {
1010        .attrs = dci_attrs,
1011};
1012
1013static const struct attribute_group *dci_attr_groups[] = {
1014        &dci_attr_group,
1015        NULL,
1016};
1017
1018static void release_dci(struct device *dev)
1019{
1020        struct most_dci_obj *dci = to_dci_obj(dev);
1021
1022        kfree(dci);
1023}
1024
1025/**
1026 * hdm_probe - probe function of USB device driver
1027 * @interface: Interface of the attached USB device
1028 * @id: Pointer to the USB ID table.
1029 *
1030 * This allocates and initializes the device instance, adds the new
1031 * entry to the internal list, scans the USB descriptors and registers
1032 * the interface with the core.
1033 * Additionally, the DCI objects are created and the hardware is sync'd.
1034 *
1035 * Return 0 on success. In case of an error a negative number is returned.
1036 */
1037static int
1038hdm_probe(struct usb_interface *interface, const struct usb_device_id *id)
1039{
1040        struct usb_host_interface *usb_iface_desc = interface->cur_altsetting;
1041        struct usb_device *usb_dev = interface_to_usbdev(interface);
1042        struct device *dev = &usb_dev->dev;
1043        struct most_dev *mdev = kzalloc(sizeof(*mdev), GFP_KERNEL);
1044        unsigned int i;
1045        unsigned int num_endpoints;
1046        struct most_channel_capability *tmp_cap;
1047        struct usb_endpoint_descriptor *ep_desc;
1048        int ret = 0;
1049
1050        if (!mdev)
1051                goto err_out_of_memory;
1052
1053        usb_set_intfdata(interface, mdev);
1054        num_endpoints = usb_iface_desc->desc.bNumEndpoints;
1055        mutex_init(&mdev->io_mutex);
1056        INIT_WORK(&mdev->poll_work_obj, wq_netinfo);
1057        timer_setup(&mdev->link_stat_timer, link_stat_timer_handler, 0);
1058
1059        mdev->usb_device = usb_dev;
1060        mdev->link_stat_timer.expires = jiffies + (2 * HZ);
1061
1062        mdev->iface.mod = hdm_usb_fops.owner;
1063        mdev->iface.driver_dev = &interface->dev;
1064        mdev->iface.interface = ITYPE_USB;
1065        mdev->iface.configure = hdm_configure_channel;
1066        mdev->iface.request_netinfo = hdm_request_netinfo;
1067        mdev->iface.enqueue = hdm_enqueue;
1068        mdev->iface.poison_channel = hdm_poison_channel;
1069        mdev->iface.dma_alloc = hdm_dma_alloc;
1070        mdev->iface.dma_free = hdm_dma_free;
1071        mdev->iface.description = mdev->description;
1072        mdev->iface.num_channels = num_endpoints;
1073
1074        snprintf(mdev->description, sizeof(mdev->description),
1075                 "%d-%s:%d.%d",
1076                 usb_dev->bus->busnum,
1077                 usb_dev->devpath,
1078                 usb_dev->config->desc.bConfigurationValue,
1079                 usb_iface_desc->desc.bInterfaceNumber);
1080
1081        mdev->conf = kcalloc(num_endpoints, sizeof(*mdev->conf), GFP_KERNEL);
1082        if (!mdev->conf)
1083                goto err_free_mdev;
1084
1085        mdev->cap = kcalloc(num_endpoints, sizeof(*mdev->cap), GFP_KERNEL);
1086        if (!mdev->cap)
1087                goto err_free_conf;
1088
1089        mdev->iface.channel_vector = mdev->cap;
1090        mdev->ep_address =
1091                kcalloc(num_endpoints, sizeof(*mdev->ep_address), GFP_KERNEL);
1092        if (!mdev->ep_address)
1093                goto err_free_cap;
1094
1095        mdev->busy_urbs =
1096                kcalloc(num_endpoints, sizeof(*mdev->busy_urbs), GFP_KERNEL);
1097        if (!mdev->busy_urbs)
1098                goto err_free_ep_address;
1099
1100        tmp_cap = mdev->cap;
1101        for (i = 0; i < num_endpoints; i++) {
1102                ep_desc = &usb_iface_desc->endpoint[i].desc;
1103                mdev->ep_address[i] = ep_desc->bEndpointAddress;
1104                mdev->padding_active[i] = false;
1105                mdev->is_channel_healthy[i] = true;
1106
1107                snprintf(&mdev->suffix[i][0], MAX_SUFFIX_LEN, "ep%02x",
1108                         mdev->ep_address[i]);
1109
1110                tmp_cap->name_suffix = &mdev->suffix[i][0];
1111                tmp_cap->buffer_size_packet = MAX_BUF_SIZE;
1112                tmp_cap->buffer_size_streaming = MAX_BUF_SIZE;
1113                tmp_cap->num_buffers_packet = BUF_CHAIN_SIZE;
1114                tmp_cap->num_buffers_streaming = BUF_CHAIN_SIZE;
1115                tmp_cap->data_type = MOST_CH_CONTROL | MOST_CH_ASYNC |
1116                                     MOST_CH_ISOC | MOST_CH_SYNC;
1117                if (usb_endpoint_dir_in(ep_desc))
1118                        tmp_cap->direction = MOST_CH_RX;
1119                else
1120                        tmp_cap->direction = MOST_CH_TX;
1121                tmp_cap++;
1122                init_usb_anchor(&mdev->busy_urbs[i]);
1123                spin_lock_init(&mdev->channel_lock[i]);
1124        }
1125        dev_notice(dev, "claimed gadget: Vendor=%4.4x ProdID=%4.4x Bus=%02x Device=%02x\n",
1126                   le16_to_cpu(usb_dev->descriptor.idVendor),
1127                   le16_to_cpu(usb_dev->descriptor.idProduct),
1128                   usb_dev->bus->busnum,
1129                   usb_dev->devnum);
1130
1131        dev_notice(dev, "device path: /sys/bus/usb/devices/%d-%s:%d.%d\n",
1132                   usb_dev->bus->busnum,
1133                   usb_dev->devpath,
1134                   usb_dev->config->desc.bConfigurationValue,
1135                   usb_iface_desc->desc.bInterfaceNumber);
1136
1137        ret = most_register_interface(&mdev->iface);
1138        if (ret)
1139                goto err_free_busy_urbs;
1140
1141        mutex_lock(&mdev->io_mutex);
1142        if (le16_to_cpu(usb_dev->descriptor.idProduct) == USB_DEV_ID_OS81118 ||
1143            le16_to_cpu(usb_dev->descriptor.idProduct) == USB_DEV_ID_OS81119 ||
1144            le16_to_cpu(usb_dev->descriptor.idProduct) == USB_DEV_ID_OS81210) {
1145                mdev->dci = kzalloc(sizeof(*mdev->dci), GFP_KERNEL);
1146                if (!mdev->dci) {
1147                        mutex_unlock(&mdev->io_mutex);
1148                        most_deregister_interface(&mdev->iface);
1149                        ret = -ENOMEM;
1150                        goto err_free_busy_urbs;
1151                }
1152
1153                mdev->dci->dev.init_name = "dci";
1154                mdev->dci->dev.parent = &mdev->iface.dev;
1155                mdev->dci->dev.groups = dci_attr_groups;
1156                mdev->dci->dev.release = release_dci;
1157                if (device_register(&mdev->dci->dev)) {
1158                        mutex_unlock(&mdev->io_mutex);
1159                        most_deregister_interface(&mdev->iface);
1160                        ret = -ENOMEM;
1161                        goto err_free_dci;
1162                }
1163                mdev->dci->usb_device = mdev->usb_device;
1164        }
1165        mutex_unlock(&mdev->io_mutex);
1166        return 0;
1167err_free_dci:
1168        kfree(mdev->dci);
1169err_free_busy_urbs:
1170        kfree(mdev->busy_urbs);
1171err_free_ep_address:
1172        kfree(mdev->ep_address);
1173err_free_cap:
1174        kfree(mdev->cap);
1175err_free_conf:
1176        kfree(mdev->conf);
1177err_free_mdev:
1178        kfree(mdev);
1179err_out_of_memory:
1180        if (ret == 0 || ret == -ENOMEM) {
1181                ret = -ENOMEM;
1182                dev_err(dev, "out of memory\n");
1183        }
1184        return ret;
1185}
1186
1187/**
1188 * hdm_disconnect - disconnect function of USB device driver
1189 * @interface: Interface of the attached USB device
1190 *
1191 * This deregisters the interface with the core, removes the kernel timer
1192 * and frees resources.
1193 *
1194 * Context: hub kernel thread
1195 */
1196static void hdm_disconnect(struct usb_interface *interface)
1197{
1198        struct most_dev *mdev = usb_get_intfdata(interface);
1199
1200        mutex_lock(&mdev->io_mutex);
1201        usb_set_intfdata(interface, NULL);
1202        mdev->usb_device = NULL;
1203        mutex_unlock(&mdev->io_mutex);
1204
1205        del_timer_sync(&mdev->link_stat_timer);
1206        cancel_work_sync(&mdev->poll_work_obj);
1207
1208        device_unregister(&mdev->dci->dev);
1209        most_deregister_interface(&mdev->iface);
1210
1211        kfree(mdev->busy_urbs);
1212        kfree(mdev->cap);
1213        kfree(mdev->conf);
1214        kfree(mdev->ep_address);
1215        kfree(mdev);
1216}
1217
1218static struct usb_driver hdm_usb = {
1219        .name = "hdm_usb",
1220        .id_table = usbid,
1221        .probe = hdm_probe,
1222        .disconnect = hdm_disconnect,
1223};
1224
1225module_usb_driver(hdm_usb);
1226MODULE_LICENSE("GPL");
1227MODULE_AUTHOR("Christian Gromm <christian.gromm@microchip.com>");
1228MODULE_DESCRIPTION("HDM_4_USB");
1229