linux/drivers/thunderbolt/switch.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Thunderbolt driver - switch/port utility functions
   4 *
   5 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
   6 * Copyright (C) 2018, Intel Corporation
   7 */
   8
   9#include <linux/delay.h>
  10#include <linux/idr.h>
  11#include <linux/nvmem-provider.h>
  12#include <linux/pm_runtime.h>
  13#include <linux/sched/signal.h>
  14#include <linux/sizes.h>
  15#include <linux/slab.h>
  16#include <linux/vmalloc.h>
  17
  18#include "tb.h"
  19
  20/* Switch NVM support */
  21
  22#define NVM_DEVID               0x05
  23#define NVM_VERSION             0x08
  24#define NVM_CSS                 0x10
  25#define NVM_FLASH_SIZE          0x45
  26
  27#define NVM_MIN_SIZE            SZ_32K
  28#define NVM_MAX_SIZE            SZ_512K
  29
  30static DEFINE_IDA(nvm_ida);
  31
  32struct nvm_auth_status {
  33        struct list_head list;
  34        uuid_t uuid;
  35        u32 status;
  36};
  37
  38/*
  39 * Hold NVM authentication failure status per switch This information
  40 * needs to stay around even when the switch gets power cycled so we
  41 * keep it separately.
  42 */
  43static LIST_HEAD(nvm_auth_status_cache);
  44static DEFINE_MUTEX(nvm_auth_status_lock);
  45
  46static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw)
  47{
  48        struct nvm_auth_status *st;
  49
  50        list_for_each_entry(st, &nvm_auth_status_cache, list) {
  51                if (uuid_equal(&st->uuid, sw->uuid))
  52                        return st;
  53        }
  54
  55        return NULL;
  56}
  57
  58static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status)
  59{
  60        struct nvm_auth_status *st;
  61
  62        mutex_lock(&nvm_auth_status_lock);
  63        st = __nvm_get_auth_status(sw);
  64        mutex_unlock(&nvm_auth_status_lock);
  65
  66        *status = st ? st->status : 0;
  67}
  68
  69static void nvm_set_auth_status(const struct tb_switch *sw, u32 status)
  70{
  71        struct nvm_auth_status *st;
  72
  73        if (WARN_ON(!sw->uuid))
  74                return;
  75
  76        mutex_lock(&nvm_auth_status_lock);
  77        st = __nvm_get_auth_status(sw);
  78
  79        if (!st) {
  80                st = kzalloc(sizeof(*st), GFP_KERNEL);
  81                if (!st)
  82                        goto unlock;
  83
  84                memcpy(&st->uuid, sw->uuid, sizeof(st->uuid));
  85                INIT_LIST_HEAD(&st->list);
  86                list_add_tail(&st->list, &nvm_auth_status_cache);
  87        }
  88
  89        st->status = status;
  90unlock:
  91        mutex_unlock(&nvm_auth_status_lock);
  92}
  93
  94static void nvm_clear_auth_status(const struct tb_switch *sw)
  95{
  96        struct nvm_auth_status *st;
  97
  98        mutex_lock(&nvm_auth_status_lock);
  99        st = __nvm_get_auth_status(sw);
 100        if (st) {
 101                list_del(&st->list);
 102                kfree(st);
 103        }
 104        mutex_unlock(&nvm_auth_status_lock);
 105}
 106
 107static int nvm_validate_and_write(struct tb_switch *sw)
 108{
 109        unsigned int image_size, hdr_size;
 110        const u8 *buf = sw->nvm->buf;
 111        u16 ds_size;
 112        int ret;
 113
 114        if (!buf)
 115                return -EINVAL;
 116
 117        image_size = sw->nvm->buf_data_size;
 118        if (image_size < NVM_MIN_SIZE || image_size > NVM_MAX_SIZE)
 119                return -EINVAL;
 120
 121        /*
 122         * FARB pointer must point inside the image and must at least
 123         * contain parts of the digital section we will be reading here.
 124         */
 125        hdr_size = (*(u32 *)buf) & 0xffffff;
 126        if (hdr_size + NVM_DEVID + 2 >= image_size)
 127                return -EINVAL;
 128
 129        /* Digital section start should be aligned to 4k page */
 130        if (!IS_ALIGNED(hdr_size, SZ_4K))
 131                return -EINVAL;
 132
 133        /*
 134         * Read digital section size and check that it also fits inside
 135         * the image.
 136         */
 137        ds_size = *(u16 *)(buf + hdr_size);
 138        if (ds_size >= image_size)
 139                return -EINVAL;
 140
 141        if (!sw->safe_mode) {
 142                u16 device_id;
 143
 144                /*
 145                 * Make sure the device ID in the image matches the one
 146                 * we read from the switch config space.
 147                 */
 148                device_id = *(u16 *)(buf + hdr_size + NVM_DEVID);
 149                if (device_id != sw->config.device_id)
 150                        return -EINVAL;
 151
 152                if (sw->generation < 3) {
 153                        /* Write CSS headers first */
 154                        ret = dma_port_flash_write(sw->dma_port,
 155                                DMA_PORT_CSS_ADDRESS, buf + NVM_CSS,
 156                                DMA_PORT_CSS_MAX_SIZE);
 157                        if (ret)
 158                                return ret;
 159                }
 160
 161                /* Skip headers in the image */
 162                buf += hdr_size;
 163                image_size -= hdr_size;
 164        }
 165
 166        return dma_port_flash_write(sw->dma_port, 0, buf, image_size);
 167}
 168
 169static int nvm_authenticate_host(struct tb_switch *sw)
 170{
 171        int ret = 0;
 172
 173        /*
 174         * Root switch NVM upgrade requires that we disconnect the
 175         * existing paths first (in case it is not in safe mode
 176         * already).
 177         */
 178        if (!sw->safe_mode) {
 179                u32 status;
 180
 181                ret = tb_domain_disconnect_all_paths(sw->tb);
 182                if (ret)
 183                        return ret;
 184                /*
 185                 * The host controller goes away pretty soon after this if
 186                 * everything goes well so getting timeout is expected.
 187                 */
 188                ret = dma_port_flash_update_auth(sw->dma_port);
 189                if (!ret || ret == -ETIMEDOUT)
 190                        return 0;
 191
 192                /*
 193                 * Any error from update auth operation requires power
 194                 * cycling of the host router.
 195                 */
 196                tb_sw_warn(sw, "failed to authenticate NVM, power cycling\n");
 197                if (dma_port_flash_update_auth_status(sw->dma_port, &status) > 0)
 198                        nvm_set_auth_status(sw, status);
 199        }
 200
 201        /*
 202         * From safe mode we can get out by just power cycling the
 203         * switch.
 204         */
 205        dma_port_power_cycle(sw->dma_port);
 206        return ret;
 207}
 208
 209static int nvm_authenticate_device(struct tb_switch *sw)
 210{
 211        int ret, retries = 10;
 212
 213        ret = dma_port_flash_update_auth(sw->dma_port);
 214        switch (ret) {
 215        case 0:
 216        case -ETIMEDOUT:
 217        case -EACCES:
 218        case -EINVAL:
 219                /* Power cycle is required */
 220                break;
 221        default:
 222                return ret;
 223        }
 224
 225        /*
 226         * Poll here for the authentication status. It takes some time
 227         * for the device to respond (we get timeout for a while). Once
 228         * we get response the device needs to be power cycled in order
 229         * to the new NVM to be taken into use.
 230         */
 231        do {
 232                u32 status;
 233
 234                ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
 235                if (ret < 0 && ret != -ETIMEDOUT)
 236                        return ret;
 237                if (ret > 0) {
 238                        if (status) {
 239                                tb_sw_warn(sw, "failed to authenticate NVM\n");
 240                                nvm_set_auth_status(sw, status);
 241                        }
 242
 243                        tb_sw_info(sw, "power cycling the switch now\n");
 244                        dma_port_power_cycle(sw->dma_port);
 245                        return 0;
 246                }
 247
 248                msleep(500);
 249        } while (--retries);
 250
 251        return -ETIMEDOUT;
 252}
 253
 254static int tb_switch_nvm_read(void *priv, unsigned int offset, void *val,
 255                              size_t bytes)
 256{
 257        struct tb_switch *sw = priv;
 258        int ret;
 259
 260        pm_runtime_get_sync(&sw->dev);
 261
 262        if (!mutex_trylock(&sw->tb->lock)) {
 263                ret = restart_syscall();
 264                goto out;
 265        }
 266
 267        ret = dma_port_flash_read(sw->dma_port, offset, val, bytes);
 268        mutex_unlock(&sw->tb->lock);
 269
 270out:
 271        pm_runtime_mark_last_busy(&sw->dev);
 272        pm_runtime_put_autosuspend(&sw->dev);
 273
 274        return ret;
 275}
 276
 277static int tb_switch_nvm_write(void *priv, unsigned int offset, void *val,
 278                               size_t bytes)
 279{
 280        struct tb_switch *sw = priv;
 281        int ret = 0;
 282
 283        if (!mutex_trylock(&sw->tb->lock))
 284                return restart_syscall();
 285
 286        /*
 287         * Since writing the NVM image might require some special steps,
 288         * for example when CSS headers are written, we cache the image
 289         * locally here and handle the special cases when the user asks
 290         * us to authenticate the image.
 291         */
 292        if (!sw->nvm->buf) {
 293                sw->nvm->buf = vmalloc(NVM_MAX_SIZE);
 294                if (!sw->nvm->buf) {
 295                        ret = -ENOMEM;
 296                        goto unlock;
 297                }
 298        }
 299
 300        sw->nvm->buf_data_size = offset + bytes;
 301        memcpy(sw->nvm->buf + offset, val, bytes);
 302
 303unlock:
 304        mutex_unlock(&sw->tb->lock);
 305
 306        return ret;
 307}
 308
 309static struct nvmem_device *register_nvmem(struct tb_switch *sw, int id,
 310                                           size_t size, bool active)
 311{
 312        struct nvmem_config config;
 313
 314        memset(&config, 0, sizeof(config));
 315
 316        if (active) {
 317                config.name = "nvm_active";
 318                config.reg_read = tb_switch_nvm_read;
 319                config.read_only = true;
 320        } else {
 321                config.name = "nvm_non_active";
 322                config.reg_write = tb_switch_nvm_write;
 323                config.root_only = true;
 324        }
 325
 326        config.id = id;
 327        config.stride = 4;
 328        config.word_size = 4;
 329        config.size = size;
 330        config.dev = &sw->dev;
 331        config.owner = THIS_MODULE;
 332        config.priv = sw;
 333
 334        return nvmem_register(&config);
 335}
 336
 337static int tb_switch_nvm_add(struct tb_switch *sw)
 338{
 339        struct nvmem_device *nvm_dev;
 340        struct tb_switch_nvm *nvm;
 341        u32 val;
 342        int ret;
 343
 344        if (!sw->dma_port)
 345                return 0;
 346
 347        nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
 348        if (!nvm)
 349                return -ENOMEM;
 350
 351        nvm->id = ida_simple_get(&nvm_ida, 0, 0, GFP_KERNEL);
 352
 353        /*
 354         * If the switch is in safe-mode the only accessible portion of
 355         * the NVM is the non-active one where userspace is expected to
 356         * write new functional NVM.
 357         */
 358        if (!sw->safe_mode) {
 359                u32 nvm_size, hdr_size;
 360
 361                ret = dma_port_flash_read(sw->dma_port, NVM_FLASH_SIZE, &val,
 362                                          sizeof(val));
 363                if (ret)
 364                        goto err_ida;
 365
 366                hdr_size = sw->generation < 3 ? SZ_8K : SZ_16K;
 367                nvm_size = (SZ_1M << (val & 7)) / 8;
 368                nvm_size = (nvm_size - hdr_size) / 2;
 369
 370                ret = dma_port_flash_read(sw->dma_port, NVM_VERSION, &val,
 371                                          sizeof(val));
 372                if (ret)
 373                        goto err_ida;
 374
 375                nvm->major = val >> 16;
 376                nvm->minor = val >> 8;
 377
 378                nvm_dev = register_nvmem(sw, nvm->id, nvm_size, true);
 379                if (IS_ERR(nvm_dev)) {
 380                        ret = PTR_ERR(nvm_dev);
 381                        goto err_ida;
 382                }
 383                nvm->active = nvm_dev;
 384        }
 385
 386        if (!sw->no_nvm_upgrade) {
 387                nvm_dev = register_nvmem(sw, nvm->id, NVM_MAX_SIZE, false);
 388                if (IS_ERR(nvm_dev)) {
 389                        ret = PTR_ERR(nvm_dev);
 390                        goto err_nvm_active;
 391                }
 392                nvm->non_active = nvm_dev;
 393        }
 394
 395        sw->nvm = nvm;
 396        return 0;
 397
 398err_nvm_active:
 399        if (nvm->active)
 400                nvmem_unregister(nvm->active);
 401err_ida:
 402        ida_simple_remove(&nvm_ida, nvm->id);
 403        kfree(nvm);
 404
 405        return ret;
 406}
 407
 408static void tb_switch_nvm_remove(struct tb_switch *sw)
 409{
 410        struct tb_switch_nvm *nvm;
 411
 412        nvm = sw->nvm;
 413        sw->nvm = NULL;
 414
 415        if (!nvm)
 416                return;
 417
 418        /* Remove authentication status in case the switch is unplugged */
 419        if (!nvm->authenticating)
 420                nvm_clear_auth_status(sw);
 421
 422        if (nvm->non_active)
 423                nvmem_unregister(nvm->non_active);
 424        if (nvm->active)
 425                nvmem_unregister(nvm->active);
 426        ida_simple_remove(&nvm_ida, nvm->id);
 427        vfree(nvm->buf);
 428        kfree(nvm);
 429}
 430
 431/* port utility functions */
 432
 433static const char *tb_port_type(struct tb_regs_port_header *port)
 434{
 435        switch (port->type >> 16) {
 436        case 0:
 437                switch ((u8) port->type) {
 438                case 0:
 439                        return "Inactive";
 440                case 1:
 441                        return "Port";
 442                case 2:
 443                        return "NHI";
 444                default:
 445                        return "unknown";
 446                }
 447        case 0x2:
 448                return "Ethernet";
 449        case 0x8:
 450                return "SATA";
 451        case 0xe:
 452                return "DP/HDMI";
 453        case 0x10:
 454                return "PCIe";
 455        case 0x20:
 456                return "USB";
 457        default:
 458                return "unknown";
 459        }
 460}
 461
 462static void tb_dump_port(struct tb *tb, struct tb_regs_port_header *port)
 463{
 464        tb_dbg(tb,
 465               " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n",
 466               port->port_number, port->vendor_id, port->device_id,
 467               port->revision, port->thunderbolt_version, tb_port_type(port),
 468               port->type);
 469        tb_dbg(tb, "  Max hop id (in/out): %d/%d\n",
 470               port->max_in_hop_id, port->max_out_hop_id);
 471        tb_dbg(tb, "  Max counters: %d\n", port->max_counters);
 472        tb_dbg(tb, "  NFC Credits: %#x\n", port->nfc_credits);
 473}
 474
 475/**
 476 * tb_port_state() - get connectedness state of a port
 477 *
 478 * The port must have a TB_CAP_PHY (i.e. it should be a real port).
 479 *
 480 * Return: Returns an enum tb_port_state on success or an error code on failure.
 481 */
 482static int tb_port_state(struct tb_port *port)
 483{
 484        struct tb_cap_phy phy;
 485        int res;
 486        if (port->cap_phy == 0) {
 487                tb_port_WARN(port, "does not have a PHY\n");
 488                return -EINVAL;
 489        }
 490        res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2);
 491        if (res)
 492                return res;
 493        return phy.state;
 494}
 495
 496/**
 497 * tb_wait_for_port() - wait for a port to become ready
 498 *
 499 * Wait up to 1 second for a port to reach state TB_PORT_UP. If
 500 * wait_if_unplugged is set then we also wait if the port is in state
 501 * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after
 502 * switch resume). Otherwise we only wait if a device is registered but the link
 503 * has not yet been established.
 504 *
 505 * Return: Returns an error code on failure. Returns 0 if the port is not
 506 * connected or failed to reach state TB_PORT_UP within one second. Returns 1
 507 * if the port is connected and in state TB_PORT_UP.
 508 */
 509int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged)
 510{
 511        int retries = 10;
 512        int state;
 513        if (!port->cap_phy) {
 514                tb_port_WARN(port, "does not have PHY\n");
 515                return -EINVAL;
 516        }
 517        if (tb_is_upstream_port(port)) {
 518                tb_port_WARN(port, "is the upstream port\n");
 519                return -EINVAL;
 520        }
 521
 522        while (retries--) {
 523                state = tb_port_state(port);
 524                if (state < 0)
 525                        return state;
 526                if (state == TB_PORT_DISABLED) {
 527                        tb_port_dbg(port, "is disabled (state: 0)\n");
 528                        return 0;
 529                }
 530                if (state == TB_PORT_UNPLUGGED) {
 531                        if (wait_if_unplugged) {
 532                                /* used during resume */
 533                                tb_port_dbg(port,
 534                                            "is unplugged (state: 7), retrying...\n");
 535                                msleep(100);
 536                                continue;
 537                        }
 538                        tb_port_dbg(port, "is unplugged (state: 7)\n");
 539                        return 0;
 540                }
 541                if (state == TB_PORT_UP) {
 542                        tb_port_dbg(port, "is connected, link is up (state: 2)\n");
 543                        return 1;
 544                }
 545
 546                /*
 547                 * After plug-in the state is TB_PORT_CONNECTING. Give it some
 548                 * time.
 549                 */
 550                tb_port_dbg(port,
 551                            "is connected, link is not up (state: %d), retrying...\n",
 552                            state);
 553                msleep(100);
 554        }
 555        tb_port_warn(port,
 556                     "failed to reach state TB_PORT_UP. Ignoring port...\n");
 557        return 0;
 558}
 559
 560/**
 561 * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port
 562 *
 563 * Change the number of NFC credits allocated to @port by @credits. To remove
 564 * NFC credits pass a negative amount of credits.
 565 *
 566 * Return: Returns 0 on success or an error code on failure.
 567 */
 568int tb_port_add_nfc_credits(struct tb_port *port, int credits)
 569{
 570        u32 nfc_credits;
 571
 572        if (credits == 0 || port->sw->is_unplugged)
 573                return 0;
 574
 575        nfc_credits = port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK;
 576        nfc_credits += credits;
 577
 578        tb_port_dbg(port, "adding %d NFC credits to %lu", credits,
 579                    port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK);
 580
 581        port->config.nfc_credits &= ~ADP_CS_4_NFC_BUFFERS_MASK;
 582        port->config.nfc_credits |= nfc_credits;
 583
 584        return tb_port_write(port, &port->config.nfc_credits,
 585                             TB_CFG_PORT, ADP_CS_4, 1);
 586}
 587
 588/**
 589 * tb_port_set_initial_credits() - Set initial port link credits allocated
 590 * @port: Port to set the initial credits
 591 * @credits: Number of credits to to allocate
 592 *
 593 * Set initial credits value to be used for ingress shared buffering.
 594 */
 595int tb_port_set_initial_credits(struct tb_port *port, u32 credits)
 596{
 597        u32 data;
 598        int ret;
 599
 600        ret = tb_port_read(port, &data, TB_CFG_PORT, ADP_CS_5, 1);
 601        if (ret)
 602                return ret;
 603
 604        data &= ~ADP_CS_5_LCA_MASK;
 605        data |= (credits << ADP_CS_5_LCA_SHIFT) & ADP_CS_5_LCA_MASK;
 606
 607        return tb_port_write(port, &data, TB_CFG_PORT, ADP_CS_5, 1);
 608}
 609
 610/**
 611 * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER
 612 *
 613 * Return: Returns 0 on success or an error code on failure.
 614 */
 615int tb_port_clear_counter(struct tb_port *port, int counter)
 616{
 617        u32 zero[3] = { 0, 0, 0 };
 618        tb_port_dbg(port, "clearing counter %d\n", counter);
 619        return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3);
 620}
 621
 622/**
 623 * tb_init_port() - initialize a port
 624 *
 625 * This is a helper method for tb_switch_alloc. Does not check or initialize
 626 * any downstream switches.
 627 *
 628 * Return: Returns 0 on success or an error code on failure.
 629 */
 630static int tb_init_port(struct tb_port *port)
 631{
 632        int res;
 633        int cap;
 634
 635        res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8);
 636        if (res) {
 637                if (res == -ENODEV) {
 638                        tb_dbg(port->sw->tb, " Port %d: not implemented\n",
 639                               port->port);
 640                        return 0;
 641                }
 642                return res;
 643        }
 644
 645        /* Port 0 is the switch itself and has no PHY. */
 646        if (port->config.type == TB_TYPE_PORT && port->port != 0) {
 647                cap = tb_port_find_cap(port, TB_PORT_CAP_PHY);
 648
 649                if (cap > 0)
 650                        port->cap_phy = cap;
 651                else
 652                        tb_port_WARN(port, "non switch port without a PHY\n");
 653        } else if (port->port != 0) {
 654                cap = tb_port_find_cap(port, TB_PORT_CAP_ADAP);
 655                if (cap > 0)
 656                        port->cap_adap = cap;
 657        }
 658
 659        tb_dump_port(port->sw->tb, &port->config);
 660
 661        /* Control port does not need HopID allocation */
 662        if (port->port) {
 663                ida_init(&port->in_hopids);
 664                ida_init(&port->out_hopids);
 665        }
 666
 667        INIT_LIST_HEAD(&port->list);
 668        return 0;
 669
 670}
 671
 672static int tb_port_alloc_hopid(struct tb_port *port, bool in, int min_hopid,
 673                               int max_hopid)
 674{
 675        int port_max_hopid;
 676        struct ida *ida;
 677
 678        if (in) {
 679                port_max_hopid = port->config.max_in_hop_id;
 680                ida = &port->in_hopids;
 681        } else {
 682                port_max_hopid = port->config.max_out_hop_id;
 683                ida = &port->out_hopids;
 684        }
 685
 686        /* HopIDs 0-7 are reserved */
 687        if (min_hopid < TB_PATH_MIN_HOPID)
 688                min_hopid = TB_PATH_MIN_HOPID;
 689
 690        if (max_hopid < 0 || max_hopid > port_max_hopid)
 691                max_hopid = port_max_hopid;
 692
 693        return ida_simple_get(ida, min_hopid, max_hopid + 1, GFP_KERNEL);
 694}
 695
 696/**
 697 * tb_port_alloc_in_hopid() - Allocate input HopID from port
 698 * @port: Port to allocate HopID for
 699 * @min_hopid: Minimum acceptable input HopID
 700 * @max_hopid: Maximum acceptable input HopID
 701 *
 702 * Return: HopID between @min_hopid and @max_hopid or negative errno in
 703 * case of error.
 704 */
 705int tb_port_alloc_in_hopid(struct tb_port *port, int min_hopid, int max_hopid)
 706{
 707        return tb_port_alloc_hopid(port, true, min_hopid, max_hopid);
 708}
 709
 710/**
 711 * tb_port_alloc_out_hopid() - Allocate output HopID from port
 712 * @port: Port to allocate HopID for
 713 * @min_hopid: Minimum acceptable output HopID
 714 * @max_hopid: Maximum acceptable output HopID
 715 *
 716 * Return: HopID between @min_hopid and @max_hopid or negative errno in
 717 * case of error.
 718 */
 719int tb_port_alloc_out_hopid(struct tb_port *port, int min_hopid, int max_hopid)
 720{
 721        return tb_port_alloc_hopid(port, false, min_hopid, max_hopid);
 722}
 723
 724/**
 725 * tb_port_release_in_hopid() - Release allocated input HopID from port
 726 * @port: Port whose HopID to release
 727 * @hopid: HopID to release
 728 */
 729void tb_port_release_in_hopid(struct tb_port *port, int hopid)
 730{
 731        ida_simple_remove(&port->in_hopids, hopid);
 732}
 733
 734/**
 735 * tb_port_release_out_hopid() - Release allocated output HopID from port
 736 * @port: Port whose HopID to release
 737 * @hopid: HopID to release
 738 */
 739void tb_port_release_out_hopid(struct tb_port *port, int hopid)
 740{
 741        ida_simple_remove(&port->out_hopids, hopid);
 742}
 743
 744/**
 745 * tb_next_port_on_path() - Return next port for given port on a path
 746 * @start: Start port of the walk
 747 * @end: End port of the walk
 748 * @prev: Previous port (%NULL if this is the first)
 749 *
 750 * This function can be used to walk from one port to another if they
 751 * are connected through zero or more switches. If the @prev is dual
 752 * link port, the function follows that link and returns another end on
 753 * that same link.
 754 *
 755 * If the @end port has been reached, return %NULL.
 756 *
 757 * Domain tb->lock must be held when this function is called.
 758 */
 759struct tb_port *tb_next_port_on_path(struct tb_port *start, struct tb_port *end,
 760                                     struct tb_port *prev)
 761{
 762        struct tb_port *next;
 763
 764        if (!prev)
 765                return start;
 766
 767        if (prev->sw == end->sw) {
 768                if (prev == end)
 769                        return NULL;
 770                return end;
 771        }
 772
 773        if (start->sw->config.depth < end->sw->config.depth) {
 774                if (prev->remote &&
 775                    prev->remote->sw->config.depth > prev->sw->config.depth)
 776                        next = prev->remote;
 777                else
 778                        next = tb_port_at(tb_route(end->sw), prev->sw);
 779        } else {
 780                if (tb_is_upstream_port(prev)) {
 781                        next = prev->remote;
 782                } else {
 783                        next = tb_upstream_port(prev->sw);
 784                        /*
 785                         * Keep the same link if prev and next are both
 786                         * dual link ports.
 787                         */
 788                        if (next->dual_link_port &&
 789                            next->link_nr != prev->link_nr) {
 790                                next = next->dual_link_port;
 791                        }
 792                }
 793        }
 794
 795        return next;
 796}
 797
 798static int tb_port_get_link_speed(struct tb_port *port)
 799{
 800        u32 val, speed;
 801        int ret;
 802
 803        if (!port->cap_phy)
 804                return -EINVAL;
 805
 806        ret = tb_port_read(port, &val, TB_CFG_PORT,
 807                           port->cap_phy + LANE_ADP_CS_1, 1);
 808        if (ret)
 809                return ret;
 810
 811        speed = (val & LANE_ADP_CS_1_CURRENT_SPEED_MASK) >>
 812                LANE_ADP_CS_1_CURRENT_SPEED_SHIFT;
 813        return speed == LANE_ADP_CS_1_CURRENT_SPEED_GEN3 ? 20 : 10;
 814}
 815
 816static int tb_port_get_link_width(struct tb_port *port)
 817{
 818        u32 val;
 819        int ret;
 820
 821        if (!port->cap_phy)
 822                return -EINVAL;
 823
 824        ret = tb_port_read(port, &val, TB_CFG_PORT,
 825                           port->cap_phy + LANE_ADP_CS_1, 1);
 826        if (ret)
 827                return ret;
 828
 829        return (val & LANE_ADP_CS_1_CURRENT_WIDTH_MASK) >>
 830                LANE_ADP_CS_1_CURRENT_WIDTH_SHIFT;
 831}
 832
 833static bool tb_port_is_width_supported(struct tb_port *port, int width)
 834{
 835        u32 phy, widths;
 836        int ret;
 837
 838        if (!port->cap_phy)
 839                return false;
 840
 841        ret = tb_port_read(port, &phy, TB_CFG_PORT,
 842                           port->cap_phy + LANE_ADP_CS_0, 1);
 843        if (ret)
 844                return ret;
 845
 846        widths = (phy & LANE_ADP_CS_0_SUPPORTED_WIDTH_MASK) >>
 847                LANE_ADP_CS_0_SUPPORTED_WIDTH_SHIFT;
 848
 849        return !!(widths & width);
 850}
 851
 852static int tb_port_set_link_width(struct tb_port *port, unsigned int width)
 853{
 854        u32 val;
 855        int ret;
 856
 857        if (!port->cap_phy)
 858                return -EINVAL;
 859
 860        ret = tb_port_read(port, &val, TB_CFG_PORT,
 861                           port->cap_phy + LANE_ADP_CS_1, 1);
 862        if (ret)
 863                return ret;
 864
 865        val &= ~LANE_ADP_CS_1_TARGET_WIDTH_MASK;
 866        switch (width) {
 867        case 1:
 868                val |= LANE_ADP_CS_1_TARGET_WIDTH_SINGLE <<
 869                        LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
 870                break;
 871        case 2:
 872                val |= LANE_ADP_CS_1_TARGET_WIDTH_DUAL <<
 873                        LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
 874                break;
 875        default:
 876                return -EINVAL;
 877        }
 878
 879        val |= LANE_ADP_CS_1_LB;
 880
 881        return tb_port_write(port, &val, TB_CFG_PORT,
 882                             port->cap_phy + LANE_ADP_CS_1, 1);
 883}
 884
 885static int tb_port_lane_bonding_enable(struct tb_port *port)
 886{
 887        int ret;
 888
 889        /*
 890         * Enable lane bonding for both links if not already enabled by
 891         * for example the boot firmware.
 892         */
 893        ret = tb_port_get_link_width(port);
 894        if (ret == 1) {
 895                ret = tb_port_set_link_width(port, 2);
 896                if (ret)
 897                        return ret;
 898        }
 899
 900        ret = tb_port_get_link_width(port->dual_link_port);
 901        if (ret == 1) {
 902                ret = tb_port_set_link_width(port->dual_link_port, 2);
 903                if (ret) {
 904                        tb_port_set_link_width(port, 1);
 905                        return ret;
 906                }
 907        }
 908
 909        port->bonded = true;
 910        port->dual_link_port->bonded = true;
 911
 912        return 0;
 913}
 914
 915static void tb_port_lane_bonding_disable(struct tb_port *port)
 916{
 917        port->dual_link_port->bonded = false;
 918        port->bonded = false;
 919
 920        tb_port_set_link_width(port->dual_link_port, 1);
 921        tb_port_set_link_width(port, 1);
 922}
 923
 924/**
 925 * tb_port_is_enabled() - Is the adapter port enabled
 926 * @port: Port to check
 927 */
 928bool tb_port_is_enabled(struct tb_port *port)
 929{
 930        switch (port->config.type) {
 931        case TB_TYPE_PCIE_UP:
 932        case TB_TYPE_PCIE_DOWN:
 933                return tb_pci_port_is_enabled(port);
 934
 935        case TB_TYPE_DP_HDMI_IN:
 936        case TB_TYPE_DP_HDMI_OUT:
 937                return tb_dp_port_is_enabled(port);
 938
 939        default:
 940                return false;
 941        }
 942}
 943
 944/**
 945 * tb_pci_port_is_enabled() - Is the PCIe adapter port enabled
 946 * @port: PCIe port to check
 947 */
 948bool tb_pci_port_is_enabled(struct tb_port *port)
 949{
 950        u32 data;
 951
 952        if (tb_port_read(port, &data, TB_CFG_PORT,
 953                         port->cap_adap + ADP_PCIE_CS_0, 1))
 954                return false;
 955
 956        return !!(data & ADP_PCIE_CS_0_PE);
 957}
 958
 959/**
 960 * tb_pci_port_enable() - Enable PCIe adapter port
 961 * @port: PCIe port to enable
 962 * @enable: Enable/disable the PCIe adapter
 963 */
 964int tb_pci_port_enable(struct tb_port *port, bool enable)
 965{
 966        u32 word = enable ? ADP_PCIE_CS_0_PE : 0x0;
 967        if (!port->cap_adap)
 968                return -ENXIO;
 969        return tb_port_write(port, &word, TB_CFG_PORT,
 970                             port->cap_adap + ADP_PCIE_CS_0, 1);
 971}
 972
 973/**
 974 * tb_dp_port_hpd_is_active() - Is HPD already active
 975 * @port: DP out port to check
 976 *
 977 * Checks if the DP OUT adapter port has HDP bit already set.
 978 */
 979int tb_dp_port_hpd_is_active(struct tb_port *port)
 980{
 981        u32 data;
 982        int ret;
 983
 984        ret = tb_port_read(port, &data, TB_CFG_PORT,
 985                           port->cap_adap + ADP_DP_CS_2, 1);
 986        if (ret)
 987                return ret;
 988
 989        return !!(data & ADP_DP_CS_2_HDP);
 990}
 991
 992/**
 993 * tb_dp_port_hpd_clear() - Clear HPD from DP IN port
 994 * @port: Port to clear HPD
 995 *
 996 * If the DP IN port has HDP set, this function can be used to clear it.
 997 */
 998int tb_dp_port_hpd_clear(struct tb_port *port)
 999{
1000        u32 data;
1001        int ret;
1002
1003        ret = tb_port_read(port, &data, TB_CFG_PORT,
1004                           port->cap_adap + ADP_DP_CS_3, 1);
1005        if (ret)
1006                return ret;
1007
1008        data |= ADP_DP_CS_3_HDPC;
1009        return tb_port_write(port, &data, TB_CFG_PORT,
1010                             port->cap_adap + ADP_DP_CS_3, 1);
1011}
1012
1013/**
1014 * tb_dp_port_set_hops() - Set video/aux Hop IDs for DP port
1015 * @port: DP IN/OUT port to set hops
1016 * @video: Video Hop ID
1017 * @aux_tx: AUX TX Hop ID
1018 * @aux_rx: AUX RX Hop ID
1019 *
1020 * Programs specified Hop IDs for DP IN/OUT port.
1021 */
1022int tb_dp_port_set_hops(struct tb_port *port, unsigned int video,
1023                        unsigned int aux_tx, unsigned int aux_rx)
1024{
1025        u32 data[2];
1026        int ret;
1027
1028        ret = tb_port_read(port, data, TB_CFG_PORT,
1029                           port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1030        if (ret)
1031                return ret;
1032
1033        data[0] &= ~ADP_DP_CS_0_VIDEO_HOPID_MASK;
1034        data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1035        data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1036
1037        data[0] |= (video << ADP_DP_CS_0_VIDEO_HOPID_SHIFT) &
1038                ADP_DP_CS_0_VIDEO_HOPID_MASK;
1039        data[1] |= aux_tx & ADP_DP_CS_1_AUX_TX_HOPID_MASK;
1040        data[1] |= (aux_rx << ADP_DP_CS_1_AUX_RX_HOPID_SHIFT) &
1041                ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1042
1043        return tb_port_write(port, data, TB_CFG_PORT,
1044                             port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1045}
1046
1047/**
1048 * tb_dp_port_is_enabled() - Is DP adapter port enabled
1049 * @port: DP adapter port to check
1050 */
1051bool tb_dp_port_is_enabled(struct tb_port *port)
1052{
1053        u32 data[2];
1054
1055        if (tb_port_read(port, data, TB_CFG_PORT, port->cap_adap + ADP_DP_CS_0,
1056                         ARRAY_SIZE(data)))
1057                return false;
1058
1059        return !!(data[0] & (ADP_DP_CS_0_VE | ADP_DP_CS_0_AE));
1060}
1061
1062/**
1063 * tb_dp_port_enable() - Enables/disables DP paths of a port
1064 * @port: DP IN/OUT port
1065 * @enable: Enable/disable DP path
1066 *
1067 * Once Hop IDs are programmed DP paths can be enabled or disabled by
1068 * calling this function.
1069 */
1070int tb_dp_port_enable(struct tb_port *port, bool enable)
1071{
1072        u32 data[2];
1073        int ret;
1074
1075        ret = tb_port_read(port, data, TB_CFG_PORT,
1076                          port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1077        if (ret)
1078                return ret;
1079
1080        if (enable)
1081                data[0] |= ADP_DP_CS_0_VE | ADP_DP_CS_0_AE;
1082        else
1083                data[0] &= ~(ADP_DP_CS_0_VE | ADP_DP_CS_0_AE);
1084
1085        return tb_port_write(port, data, TB_CFG_PORT,
1086                             port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1087}
1088
1089/* switch utility functions */
1090
1091static void tb_dump_switch(struct tb *tb, struct tb_regs_switch_header *sw)
1092{
1093        tb_dbg(tb, " Switch: %x:%x (Revision: %d, TB Version: %d)\n",
1094               sw->vendor_id, sw->device_id, sw->revision,
1095               sw->thunderbolt_version);
1096        tb_dbg(tb, "  Max Port Number: %d\n", sw->max_port_number);
1097        tb_dbg(tb, "  Config:\n");
1098        tb_dbg(tb,
1099                "   Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n",
1100               sw->upstream_port_number, sw->depth,
1101               (((u64) sw->route_hi) << 32) | sw->route_lo,
1102               sw->enabled, sw->plug_events_delay);
1103        tb_dbg(tb, "   unknown1: %#x unknown4: %#x\n",
1104               sw->__unknown1, sw->__unknown4);
1105}
1106
1107/**
1108 * reset_switch() - reconfigure route, enable and send TB_CFG_PKG_RESET
1109 *
1110 * Return: Returns 0 on success or an error code on failure.
1111 */
1112int tb_switch_reset(struct tb *tb, u64 route)
1113{
1114        struct tb_cfg_result res;
1115        struct tb_regs_switch_header header = {
1116                header.route_hi = route >> 32,
1117                header.route_lo = route,
1118                header.enabled = true,
1119        };
1120        tb_dbg(tb, "resetting switch at %llx\n", route);
1121        res.err = tb_cfg_write(tb->ctl, ((u32 *) &header) + 2, route,
1122                        0, 2, 2, 2);
1123        if (res.err)
1124                return res.err;
1125        res = tb_cfg_reset(tb->ctl, route, TB_CFG_DEFAULT_TIMEOUT);
1126        if (res.err > 0)
1127                return -EIO;
1128        return res.err;
1129}
1130
1131/**
1132 * tb_plug_events_active() - enable/disable plug events on a switch
1133 *
1134 * Also configures a sane plug_events_delay of 255ms.
1135 *
1136 * Return: Returns 0 on success or an error code on failure.
1137 */
1138static int tb_plug_events_active(struct tb_switch *sw, bool active)
1139{
1140        u32 data;
1141        int res;
1142
1143        if (tb_switch_is_icm(sw))
1144                return 0;
1145
1146        sw->config.plug_events_delay = 0xff;
1147        res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1);
1148        if (res)
1149                return res;
1150
1151        res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1);
1152        if (res)
1153                return res;
1154
1155        if (active) {
1156                data = data & 0xFFFFFF83;
1157                switch (sw->config.device_id) {
1158                case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1159                case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1160                case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1161                        break;
1162                default:
1163                        data |= 4;
1164                }
1165        } else {
1166                data = data | 0x7c;
1167        }
1168        return tb_sw_write(sw, &data, TB_CFG_SWITCH,
1169                           sw->cap_plug_events + 1, 1);
1170}
1171
1172static ssize_t authorized_show(struct device *dev,
1173                               struct device_attribute *attr,
1174                               char *buf)
1175{
1176        struct tb_switch *sw = tb_to_switch(dev);
1177
1178        return sprintf(buf, "%u\n", sw->authorized);
1179}
1180
1181static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val)
1182{
1183        int ret = -EINVAL;
1184
1185        if (!mutex_trylock(&sw->tb->lock))
1186                return restart_syscall();
1187
1188        if (sw->authorized)
1189                goto unlock;
1190
1191        switch (val) {
1192        /* Approve switch */
1193        case 1:
1194                if (sw->key)
1195                        ret = tb_domain_approve_switch_key(sw->tb, sw);
1196                else
1197                        ret = tb_domain_approve_switch(sw->tb, sw);
1198                break;
1199
1200        /* Challenge switch */
1201        case 2:
1202                if (sw->key)
1203                        ret = tb_domain_challenge_switch_key(sw->tb, sw);
1204                break;
1205
1206        default:
1207                break;
1208        }
1209
1210        if (!ret) {
1211                sw->authorized = val;
1212                /* Notify status change to the userspace */
1213                kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
1214        }
1215
1216unlock:
1217        mutex_unlock(&sw->tb->lock);
1218        return ret;
1219}
1220
1221static ssize_t authorized_store(struct device *dev,
1222                                struct device_attribute *attr,
1223                                const char *buf, size_t count)
1224{
1225        struct tb_switch *sw = tb_to_switch(dev);
1226        unsigned int val;
1227        ssize_t ret;
1228
1229        ret = kstrtouint(buf, 0, &val);
1230        if (ret)
1231                return ret;
1232        if (val > 2)
1233                return -EINVAL;
1234
1235        pm_runtime_get_sync(&sw->dev);
1236        ret = tb_switch_set_authorized(sw, val);
1237        pm_runtime_mark_last_busy(&sw->dev);
1238        pm_runtime_put_autosuspend(&sw->dev);
1239
1240        return ret ? ret : count;
1241}
1242static DEVICE_ATTR_RW(authorized);
1243
1244static ssize_t boot_show(struct device *dev, struct device_attribute *attr,
1245                         char *buf)
1246{
1247        struct tb_switch *sw = tb_to_switch(dev);
1248
1249        return sprintf(buf, "%u\n", sw->boot);
1250}
1251static DEVICE_ATTR_RO(boot);
1252
1253static ssize_t device_show(struct device *dev, struct device_attribute *attr,
1254                           char *buf)
1255{
1256        struct tb_switch *sw = tb_to_switch(dev);
1257
1258        return sprintf(buf, "%#x\n", sw->device);
1259}
1260static DEVICE_ATTR_RO(device);
1261
1262static ssize_t
1263device_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1264{
1265        struct tb_switch *sw = tb_to_switch(dev);
1266
1267        return sprintf(buf, "%s\n", sw->device_name ? sw->device_name : "");
1268}
1269static DEVICE_ATTR_RO(device_name);
1270
1271static ssize_t
1272generation_show(struct device *dev, struct device_attribute *attr, char *buf)
1273{
1274        struct tb_switch *sw = tb_to_switch(dev);
1275
1276        return sprintf(buf, "%u\n", sw->generation);
1277}
1278static DEVICE_ATTR_RO(generation);
1279
1280static ssize_t key_show(struct device *dev, struct device_attribute *attr,
1281                        char *buf)
1282{
1283        struct tb_switch *sw = tb_to_switch(dev);
1284        ssize_t ret;
1285
1286        if (!mutex_trylock(&sw->tb->lock))
1287                return restart_syscall();
1288
1289        if (sw->key)
1290                ret = sprintf(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key);
1291        else
1292                ret = sprintf(buf, "\n");
1293
1294        mutex_unlock(&sw->tb->lock);
1295        return ret;
1296}
1297
1298static ssize_t key_store(struct device *dev, struct device_attribute *attr,
1299                         const char *buf, size_t count)
1300{
1301        struct tb_switch *sw = tb_to_switch(dev);
1302        u8 key[TB_SWITCH_KEY_SIZE];
1303        ssize_t ret = count;
1304        bool clear = false;
1305
1306        if (!strcmp(buf, "\n"))
1307                clear = true;
1308        else if (hex2bin(key, buf, sizeof(key)))
1309                return -EINVAL;
1310
1311        if (!mutex_trylock(&sw->tb->lock))
1312                return restart_syscall();
1313
1314        if (sw->authorized) {
1315                ret = -EBUSY;
1316        } else {
1317                kfree(sw->key);
1318                if (clear) {
1319                        sw->key = NULL;
1320                } else {
1321                        sw->key = kmemdup(key, sizeof(key), GFP_KERNEL);
1322                        if (!sw->key)
1323                                ret = -ENOMEM;
1324                }
1325        }
1326
1327        mutex_unlock(&sw->tb->lock);
1328        return ret;
1329}
1330static DEVICE_ATTR(key, 0600, key_show, key_store);
1331
1332static ssize_t speed_show(struct device *dev, struct device_attribute *attr,
1333                          char *buf)
1334{
1335        struct tb_switch *sw = tb_to_switch(dev);
1336
1337        return sprintf(buf, "%u.0 Gb/s\n", sw->link_speed);
1338}
1339
1340/*
1341 * Currently all lanes must run at the same speed but we expose here
1342 * both directions to allow possible asymmetric links in the future.
1343 */
1344static DEVICE_ATTR(rx_speed, 0444, speed_show, NULL);
1345static DEVICE_ATTR(tx_speed, 0444, speed_show, NULL);
1346
1347static ssize_t lanes_show(struct device *dev, struct device_attribute *attr,
1348                          char *buf)
1349{
1350        struct tb_switch *sw = tb_to_switch(dev);
1351
1352        return sprintf(buf, "%u\n", sw->link_width);
1353}
1354
1355/*
1356 * Currently link has same amount of lanes both directions (1 or 2) but
1357 * expose them separately to allow possible asymmetric links in the future.
1358 */
1359static DEVICE_ATTR(rx_lanes, 0444, lanes_show, NULL);
1360static DEVICE_ATTR(tx_lanes, 0444, lanes_show, NULL);
1361
1362static void nvm_authenticate_start(struct tb_switch *sw)
1363{
1364        struct pci_dev *root_port;
1365
1366        /*
1367         * During host router NVM upgrade we should not allow root port to
1368         * go into D3cold because some root ports cannot trigger PME
1369         * itself. To be on the safe side keep the root port in D0 during
1370         * the whole upgrade process.
1371         */
1372        root_port = pci_find_pcie_root_port(sw->tb->nhi->pdev);
1373        if (root_port)
1374                pm_runtime_get_noresume(&root_port->dev);
1375}
1376
1377static void nvm_authenticate_complete(struct tb_switch *sw)
1378{
1379        struct pci_dev *root_port;
1380
1381        root_port = pci_find_pcie_root_port(sw->tb->nhi->pdev);
1382        if (root_port)
1383                pm_runtime_put(&root_port->dev);
1384}
1385
1386static ssize_t nvm_authenticate_show(struct device *dev,
1387        struct device_attribute *attr, char *buf)
1388{
1389        struct tb_switch *sw = tb_to_switch(dev);
1390        u32 status;
1391
1392        nvm_get_auth_status(sw, &status);
1393        return sprintf(buf, "%#x\n", status);
1394}
1395
1396static ssize_t nvm_authenticate_store(struct device *dev,
1397        struct device_attribute *attr, const char *buf, size_t count)
1398{
1399        struct tb_switch *sw = tb_to_switch(dev);
1400        bool val;
1401        int ret;
1402
1403        pm_runtime_get_sync(&sw->dev);
1404
1405        if (!mutex_trylock(&sw->tb->lock)) {
1406                ret = restart_syscall();
1407                goto exit_rpm;
1408        }
1409
1410        /* If NVMem devices are not yet added */
1411        if (!sw->nvm) {
1412                ret = -EAGAIN;
1413                goto exit_unlock;
1414        }
1415
1416        ret = kstrtobool(buf, &val);
1417        if (ret)
1418                goto exit_unlock;
1419
1420        /* Always clear the authentication status */
1421        nvm_clear_auth_status(sw);
1422
1423        if (val) {
1424                if (!sw->nvm->buf) {
1425                        ret = -EINVAL;
1426                        goto exit_unlock;
1427                }
1428
1429                ret = nvm_validate_and_write(sw);
1430                if (ret)
1431                        goto exit_unlock;
1432
1433                sw->nvm->authenticating = true;
1434
1435                if (!tb_route(sw)) {
1436                        /*
1437                         * Keep root port from suspending as long as the
1438                         * NVM upgrade process is running.
1439                         */
1440                        nvm_authenticate_start(sw);
1441                        ret = nvm_authenticate_host(sw);
1442                } else {
1443                        ret = nvm_authenticate_device(sw);
1444                }
1445        }
1446
1447exit_unlock:
1448        mutex_unlock(&sw->tb->lock);
1449exit_rpm:
1450        pm_runtime_mark_last_busy(&sw->dev);
1451        pm_runtime_put_autosuspend(&sw->dev);
1452
1453        if (ret)
1454                return ret;
1455        return count;
1456}
1457static DEVICE_ATTR_RW(nvm_authenticate);
1458
1459static ssize_t nvm_version_show(struct device *dev,
1460                                struct device_attribute *attr, char *buf)
1461{
1462        struct tb_switch *sw = tb_to_switch(dev);
1463        int ret;
1464
1465        if (!mutex_trylock(&sw->tb->lock))
1466                return restart_syscall();
1467
1468        if (sw->safe_mode)
1469                ret = -ENODATA;
1470        else if (!sw->nvm)
1471                ret = -EAGAIN;
1472        else
1473                ret = sprintf(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor);
1474
1475        mutex_unlock(&sw->tb->lock);
1476
1477        return ret;
1478}
1479static DEVICE_ATTR_RO(nvm_version);
1480
1481static ssize_t vendor_show(struct device *dev, struct device_attribute *attr,
1482                           char *buf)
1483{
1484        struct tb_switch *sw = tb_to_switch(dev);
1485
1486        return sprintf(buf, "%#x\n", sw->vendor);
1487}
1488static DEVICE_ATTR_RO(vendor);
1489
1490static ssize_t
1491vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1492{
1493        struct tb_switch *sw = tb_to_switch(dev);
1494
1495        return sprintf(buf, "%s\n", sw->vendor_name ? sw->vendor_name : "");
1496}
1497static DEVICE_ATTR_RO(vendor_name);
1498
1499static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr,
1500                              char *buf)
1501{
1502        struct tb_switch *sw = tb_to_switch(dev);
1503
1504        return sprintf(buf, "%pUb\n", sw->uuid);
1505}
1506static DEVICE_ATTR_RO(unique_id);
1507
1508static struct attribute *switch_attrs[] = {
1509        &dev_attr_authorized.attr,
1510        &dev_attr_boot.attr,
1511        &dev_attr_device.attr,
1512        &dev_attr_device_name.attr,
1513        &dev_attr_generation.attr,
1514        &dev_attr_key.attr,
1515        &dev_attr_nvm_authenticate.attr,
1516        &dev_attr_nvm_version.attr,
1517        &dev_attr_rx_speed.attr,
1518        &dev_attr_rx_lanes.attr,
1519        &dev_attr_tx_speed.attr,
1520        &dev_attr_tx_lanes.attr,
1521        &dev_attr_vendor.attr,
1522        &dev_attr_vendor_name.attr,
1523        &dev_attr_unique_id.attr,
1524        NULL,
1525};
1526
1527static umode_t switch_attr_is_visible(struct kobject *kobj,
1528                                      struct attribute *attr, int n)
1529{
1530        struct device *dev = container_of(kobj, struct device, kobj);
1531        struct tb_switch *sw = tb_to_switch(dev);
1532
1533        if (attr == &dev_attr_device.attr) {
1534                if (!sw->device)
1535                        return 0;
1536        } else if (attr == &dev_attr_device_name.attr) {
1537                if (!sw->device_name)
1538                        return 0;
1539        } else if (attr == &dev_attr_vendor.attr)  {
1540                if (!sw->vendor)
1541                        return 0;
1542        } else if (attr == &dev_attr_vendor_name.attr)  {
1543                if (!sw->vendor_name)
1544                        return 0;
1545        } else if (attr == &dev_attr_key.attr) {
1546                if (tb_route(sw) &&
1547                    sw->tb->security_level == TB_SECURITY_SECURE &&
1548                    sw->security_level == TB_SECURITY_SECURE)
1549                        return attr->mode;
1550                return 0;
1551        } else if (attr == &dev_attr_rx_speed.attr ||
1552                   attr == &dev_attr_rx_lanes.attr ||
1553                   attr == &dev_attr_tx_speed.attr ||
1554                   attr == &dev_attr_tx_lanes.attr) {
1555                if (tb_route(sw))
1556                        return attr->mode;
1557                return 0;
1558        } else if (attr == &dev_attr_nvm_authenticate.attr) {
1559                if (sw->dma_port && !sw->no_nvm_upgrade)
1560                        return attr->mode;
1561                return 0;
1562        } else if (attr == &dev_attr_nvm_version.attr) {
1563                if (sw->dma_port)
1564                        return attr->mode;
1565                return 0;
1566        } else if (attr == &dev_attr_boot.attr) {
1567                if (tb_route(sw))
1568                        return attr->mode;
1569                return 0;
1570        }
1571
1572        return sw->safe_mode ? 0 : attr->mode;
1573}
1574
1575static struct attribute_group switch_group = {
1576        .is_visible = switch_attr_is_visible,
1577        .attrs = switch_attrs,
1578};
1579
1580static const struct attribute_group *switch_groups[] = {
1581        &switch_group,
1582        NULL,
1583};
1584
1585static void tb_switch_release(struct device *dev)
1586{
1587        struct tb_switch *sw = tb_to_switch(dev);
1588        struct tb_port *port;
1589
1590        dma_port_free(sw->dma_port);
1591
1592        tb_switch_for_each_port(sw, port) {
1593                if (!port->disabled) {
1594                        ida_destroy(&port->in_hopids);
1595                        ida_destroy(&port->out_hopids);
1596                }
1597        }
1598
1599        kfree(sw->uuid);
1600        kfree(sw->device_name);
1601        kfree(sw->vendor_name);
1602        kfree(sw->ports);
1603        kfree(sw->drom);
1604        kfree(sw->key);
1605        kfree(sw);
1606}
1607
1608/*
1609 * Currently only need to provide the callbacks. Everything else is handled
1610 * in the connection manager.
1611 */
1612static int __maybe_unused tb_switch_runtime_suspend(struct device *dev)
1613{
1614        struct tb_switch *sw = tb_to_switch(dev);
1615        const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
1616
1617        if (cm_ops->runtime_suspend_switch)
1618                return cm_ops->runtime_suspend_switch(sw);
1619
1620        return 0;
1621}
1622
1623static int __maybe_unused tb_switch_runtime_resume(struct device *dev)
1624{
1625        struct tb_switch *sw = tb_to_switch(dev);
1626        const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
1627
1628        if (cm_ops->runtime_resume_switch)
1629                return cm_ops->runtime_resume_switch(sw);
1630        return 0;
1631}
1632
1633static const struct dev_pm_ops tb_switch_pm_ops = {
1634        SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume,
1635                           NULL)
1636};
1637
1638struct device_type tb_switch_type = {
1639        .name = "thunderbolt_device",
1640        .release = tb_switch_release,
1641        .pm = &tb_switch_pm_ops,
1642};
1643
1644static int tb_switch_get_generation(struct tb_switch *sw)
1645{
1646        switch (sw->config.device_id) {
1647        case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1648        case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1649        case PCI_DEVICE_ID_INTEL_LIGHT_PEAK:
1650        case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C:
1651        case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
1652        case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1653        case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE:
1654        case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE:
1655                return 1;
1656
1657        case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE:
1658        case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE:
1659        case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE:
1660                return 2;
1661
1662        case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE:
1663        case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE:
1664        case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE:
1665        case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE:
1666        case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE:
1667        case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE:
1668        case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE:
1669        case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE:
1670        case PCI_DEVICE_ID_INTEL_ICL_NHI0:
1671        case PCI_DEVICE_ID_INTEL_ICL_NHI1:
1672                return 3;
1673
1674        default:
1675                /*
1676                 * For unknown switches assume generation to be 1 to be
1677                 * on the safe side.
1678                 */
1679                tb_sw_warn(sw, "unsupported switch device id %#x\n",
1680                           sw->config.device_id);
1681                return 1;
1682        }
1683}
1684
1685/**
1686 * tb_switch_alloc() - allocate a switch
1687 * @tb: Pointer to the owning domain
1688 * @parent: Parent device for this switch
1689 * @route: Route string for this switch
1690 *
1691 * Allocates and initializes a switch. Will not upload configuration to
1692 * the switch. For that you need to call tb_switch_configure()
1693 * separately. The returned switch should be released by calling
1694 * tb_switch_put().
1695 *
1696 * Return: Pointer to the allocated switch or ERR_PTR() in case of
1697 * failure.
1698 */
1699struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent,
1700                                  u64 route)
1701{
1702        struct tb_switch *sw;
1703        int upstream_port;
1704        int i, ret, depth;
1705
1706        /* Make sure we do not exceed maximum topology limit */
1707        depth = tb_route_length(route);
1708        if (depth > TB_SWITCH_MAX_DEPTH)
1709                return ERR_PTR(-EADDRNOTAVAIL);
1710
1711        upstream_port = tb_cfg_get_upstream_port(tb->ctl, route);
1712        if (upstream_port < 0)
1713                return ERR_PTR(upstream_port);
1714
1715        sw = kzalloc(sizeof(*sw), GFP_KERNEL);
1716        if (!sw)
1717                return ERR_PTR(-ENOMEM);
1718
1719        sw->tb = tb;
1720        ret = tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5);
1721        if (ret)
1722                goto err_free_sw_ports;
1723
1724        tb_dbg(tb, "current switch config:\n");
1725        tb_dump_switch(tb, &sw->config);
1726
1727        /* configure switch */
1728        sw->config.upstream_port_number = upstream_port;
1729        sw->config.depth = depth;
1730        sw->config.route_hi = upper_32_bits(route);
1731        sw->config.route_lo = lower_32_bits(route);
1732        sw->config.enabled = 0;
1733
1734        /* initialize ports */
1735        sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports),
1736                                GFP_KERNEL);
1737        if (!sw->ports) {
1738                ret = -ENOMEM;
1739                goto err_free_sw_ports;
1740        }
1741
1742        for (i = 0; i <= sw->config.max_port_number; i++) {
1743                /* minimum setup for tb_find_cap and tb_drom_read to work */
1744                sw->ports[i].sw = sw;
1745                sw->ports[i].port = i;
1746        }
1747
1748        sw->generation = tb_switch_get_generation(sw);
1749
1750        ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS);
1751        if (ret < 0) {
1752                tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n");
1753                goto err_free_sw_ports;
1754        }
1755        sw->cap_plug_events = ret;
1756
1757        ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER);
1758        if (ret > 0)
1759                sw->cap_lc = ret;
1760
1761        /* Root switch is always authorized */
1762        if (!route)
1763                sw->authorized = true;
1764
1765        device_initialize(&sw->dev);
1766        sw->dev.parent = parent;
1767        sw->dev.bus = &tb_bus_type;
1768        sw->dev.type = &tb_switch_type;
1769        sw->dev.groups = switch_groups;
1770        dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
1771
1772        return sw;
1773
1774err_free_sw_ports:
1775        kfree(sw->ports);
1776        kfree(sw);
1777
1778        return ERR_PTR(ret);
1779}
1780
1781/**
1782 * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode
1783 * @tb: Pointer to the owning domain
1784 * @parent: Parent device for this switch
1785 * @route: Route string for this switch
1786 *
1787 * This creates a switch in safe mode. This means the switch pretty much
1788 * lacks all capabilities except DMA configuration port before it is
1789 * flashed with a valid NVM firmware.
1790 *
1791 * The returned switch must be released by calling tb_switch_put().
1792 *
1793 * Return: Pointer to the allocated switch or ERR_PTR() in case of failure
1794 */
1795struct tb_switch *
1796tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route)
1797{
1798        struct tb_switch *sw;
1799
1800        sw = kzalloc(sizeof(*sw), GFP_KERNEL);
1801        if (!sw)
1802                return ERR_PTR(-ENOMEM);
1803
1804        sw->tb = tb;
1805        sw->config.depth = tb_route_length(route);
1806        sw->config.route_hi = upper_32_bits(route);
1807        sw->config.route_lo = lower_32_bits(route);
1808        sw->safe_mode = true;
1809
1810        device_initialize(&sw->dev);
1811        sw->dev.parent = parent;
1812        sw->dev.bus = &tb_bus_type;
1813        sw->dev.type = &tb_switch_type;
1814        sw->dev.groups = switch_groups;
1815        dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
1816
1817        return sw;
1818}
1819
1820/**
1821 * tb_switch_configure() - Uploads configuration to the switch
1822 * @sw: Switch to configure
1823 *
1824 * Call this function before the switch is added to the system. It will
1825 * upload configuration to the switch and makes it available for the
1826 * connection manager to use.
1827 *
1828 * Return: %0 in case of success and negative errno in case of failure
1829 */
1830int tb_switch_configure(struct tb_switch *sw)
1831{
1832        struct tb *tb = sw->tb;
1833        u64 route;
1834        int ret;
1835
1836        route = tb_route(sw);
1837        tb_dbg(tb, "initializing Switch at %#llx (depth: %d, up port: %d)\n",
1838               route, tb_route_length(route), sw->config.upstream_port_number);
1839
1840        if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL)
1841                tb_sw_warn(sw, "unknown switch vendor id %#x\n",
1842                           sw->config.vendor_id);
1843
1844        sw->config.enabled = 1;
1845
1846        /* upload configuration */
1847        ret = tb_sw_write(sw, 1 + (u32 *)&sw->config, TB_CFG_SWITCH, 1, 3);
1848        if (ret)
1849                return ret;
1850
1851        ret = tb_lc_configure_link(sw);
1852        if (ret)
1853                return ret;
1854
1855        return tb_plug_events_active(sw, true);
1856}
1857
1858static int tb_switch_set_uuid(struct tb_switch *sw)
1859{
1860        u32 uuid[4];
1861        int ret;
1862
1863        if (sw->uuid)
1864                return 0;
1865
1866        /*
1867         * The newer controllers include fused UUID as part of link
1868         * controller specific registers
1869         */
1870        ret = tb_lc_read_uuid(sw, uuid);
1871        if (ret) {
1872                /*
1873                 * ICM generates UUID based on UID and fills the upper
1874                 * two words with ones. This is not strictly following
1875                 * UUID format but we want to be compatible with it so
1876                 * we do the same here.
1877                 */
1878                uuid[0] = sw->uid & 0xffffffff;
1879                uuid[1] = (sw->uid >> 32) & 0xffffffff;
1880                uuid[2] = 0xffffffff;
1881                uuid[3] = 0xffffffff;
1882        }
1883
1884        sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL);
1885        if (!sw->uuid)
1886                return -ENOMEM;
1887        return 0;
1888}
1889
1890static int tb_switch_add_dma_port(struct tb_switch *sw)
1891{
1892        u32 status;
1893        int ret;
1894
1895        switch (sw->generation) {
1896        case 2:
1897                /* Only root switch can be upgraded */
1898                if (tb_route(sw))
1899                        return 0;
1900
1901                /* fallthrough */
1902        case 3:
1903                ret = tb_switch_set_uuid(sw);
1904                if (ret)
1905                        return ret;
1906                break;
1907
1908        default:
1909                /*
1910                 * DMA port is the only thing available when the switch
1911                 * is in safe mode.
1912                 */
1913                if (!sw->safe_mode)
1914                        return 0;
1915                break;
1916        }
1917
1918        /* Root switch DMA port requires running firmware */
1919        if (!tb_route(sw) && !tb_switch_is_icm(sw))
1920                return 0;
1921
1922        sw->dma_port = dma_port_alloc(sw);
1923        if (!sw->dma_port)
1924                return 0;
1925
1926        if (sw->no_nvm_upgrade)
1927                return 0;
1928
1929        /*
1930         * If there is status already set then authentication failed
1931         * when the dma_port_flash_update_auth() returned. Power cycling
1932         * is not needed (it was done already) so only thing we do here
1933         * is to unblock runtime PM of the root port.
1934         */
1935        nvm_get_auth_status(sw, &status);
1936        if (status) {
1937                if (!tb_route(sw))
1938                        nvm_authenticate_complete(sw);
1939                return 0;
1940        }
1941
1942        /*
1943         * Check status of the previous flash authentication. If there
1944         * is one we need to power cycle the switch in any case to make
1945         * it functional again.
1946         */
1947        ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
1948        if (ret <= 0)
1949                return ret;
1950
1951        /* Now we can allow root port to suspend again */
1952        if (!tb_route(sw))
1953                nvm_authenticate_complete(sw);
1954
1955        if (status) {
1956                tb_sw_info(sw, "switch flash authentication failed\n");
1957                nvm_set_auth_status(sw, status);
1958        }
1959
1960        tb_sw_info(sw, "power cycling the switch now\n");
1961        dma_port_power_cycle(sw->dma_port);
1962
1963        /*
1964         * We return error here which causes the switch adding failure.
1965         * It should appear back after power cycle is complete.
1966         */
1967        return -ESHUTDOWN;
1968}
1969
1970static void tb_switch_default_link_ports(struct tb_switch *sw)
1971{
1972        int i;
1973
1974        for (i = 1; i <= sw->config.max_port_number; i += 2) {
1975                struct tb_port *port = &sw->ports[i];
1976                struct tb_port *subordinate;
1977
1978                if (!tb_port_is_null(port))
1979                        continue;
1980
1981                /* Check for the subordinate port */
1982                if (i == sw->config.max_port_number ||
1983                    !tb_port_is_null(&sw->ports[i + 1]))
1984                        continue;
1985
1986                /* Link them if not already done so (by DROM) */
1987                subordinate = &sw->ports[i + 1];
1988                if (!port->dual_link_port && !subordinate->dual_link_port) {
1989                        port->link_nr = 0;
1990                        port->dual_link_port = subordinate;
1991                        subordinate->link_nr = 1;
1992                        subordinate->dual_link_port = port;
1993
1994                        tb_sw_dbg(sw, "linked ports %d <-> %d\n",
1995                                  port->port, subordinate->port);
1996                }
1997        }
1998}
1999
2000static bool tb_switch_lane_bonding_possible(struct tb_switch *sw)
2001{
2002        const struct tb_port *up = tb_upstream_port(sw);
2003
2004        if (!up->dual_link_port || !up->dual_link_port->remote)
2005                return false;
2006
2007        return tb_lc_lane_bonding_possible(sw);
2008}
2009
2010static int tb_switch_update_link_attributes(struct tb_switch *sw)
2011{
2012        struct tb_port *up;
2013        bool change = false;
2014        int ret;
2015
2016        if (!tb_route(sw) || tb_switch_is_icm(sw))
2017                return 0;
2018
2019        up = tb_upstream_port(sw);
2020
2021        ret = tb_port_get_link_speed(up);
2022        if (ret < 0)
2023                return ret;
2024        if (sw->link_speed != ret)
2025                change = true;
2026        sw->link_speed = ret;
2027
2028        ret = tb_port_get_link_width(up);
2029        if (ret < 0)
2030                return ret;
2031        if (sw->link_width != ret)
2032                change = true;
2033        sw->link_width = ret;
2034
2035        /* Notify userspace that there is possible link attribute change */
2036        if (device_is_registered(&sw->dev) && change)
2037                kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
2038
2039        return 0;
2040}
2041
2042/**
2043 * tb_switch_lane_bonding_enable() - Enable lane bonding
2044 * @sw: Switch to enable lane bonding
2045 *
2046 * Connection manager can call this function to enable lane bonding of a
2047 * switch. If conditions are correct and both switches support the feature,
2048 * lanes are bonded. It is safe to call this to any switch.
2049 */
2050int tb_switch_lane_bonding_enable(struct tb_switch *sw)
2051{
2052        struct tb_switch *parent = tb_to_switch(sw->dev.parent);
2053        struct tb_port *up, *down;
2054        u64 route = tb_route(sw);
2055        int ret;
2056
2057        if (!route)
2058                return 0;
2059
2060        if (!tb_switch_lane_bonding_possible(sw))
2061                return 0;
2062
2063        up = tb_upstream_port(sw);
2064        down = tb_port_at(route, parent);
2065
2066        if (!tb_port_is_width_supported(up, 2) ||
2067            !tb_port_is_width_supported(down, 2))
2068                return 0;
2069
2070        ret = tb_port_lane_bonding_enable(up);
2071        if (ret) {
2072                tb_port_warn(up, "failed to enable lane bonding\n");
2073                return ret;
2074        }
2075
2076        ret = tb_port_lane_bonding_enable(down);
2077        if (ret) {
2078                tb_port_warn(down, "failed to enable lane bonding\n");
2079                tb_port_lane_bonding_disable(up);
2080                return ret;
2081        }
2082
2083        tb_switch_update_link_attributes(sw);
2084
2085        tb_sw_dbg(sw, "lane bonding enabled\n");
2086        return ret;
2087}
2088
2089/**
2090 * tb_switch_lane_bonding_disable() - Disable lane bonding
2091 * @sw: Switch whose lane bonding to disable
2092 *
2093 * Disables lane bonding between @sw and parent. This can be called even
2094 * if lanes were not bonded originally.
2095 */
2096void tb_switch_lane_bonding_disable(struct tb_switch *sw)
2097{
2098        struct tb_switch *parent = tb_to_switch(sw->dev.parent);
2099        struct tb_port *up, *down;
2100
2101        if (!tb_route(sw))
2102                return;
2103
2104        up = tb_upstream_port(sw);
2105        if (!up->bonded)
2106                return;
2107
2108        down = tb_port_at(tb_route(sw), parent);
2109
2110        tb_port_lane_bonding_disable(up);
2111        tb_port_lane_bonding_disable(down);
2112
2113        tb_switch_update_link_attributes(sw);
2114        tb_sw_dbg(sw, "lane bonding disabled\n");
2115}
2116
2117/**
2118 * tb_switch_add() - Add a switch to the domain
2119 * @sw: Switch to add
2120 *
2121 * This is the last step in adding switch to the domain. It will read
2122 * identification information from DROM and initializes ports so that
2123 * they can be used to connect other switches. The switch will be
2124 * exposed to the userspace when this function successfully returns. To
2125 * remove and release the switch, call tb_switch_remove().
2126 *
2127 * Return: %0 in case of success and negative errno in case of failure
2128 */
2129int tb_switch_add(struct tb_switch *sw)
2130{
2131        int i, ret;
2132
2133        /*
2134         * Initialize DMA control port now before we read DROM. Recent
2135         * host controllers have more complete DROM on NVM that includes
2136         * vendor and model identification strings which we then expose
2137         * to the userspace. NVM can be accessed through DMA
2138         * configuration based mailbox.
2139         */
2140        ret = tb_switch_add_dma_port(sw);
2141        if (ret) {
2142                dev_err(&sw->dev, "failed to add DMA port\n");
2143                return ret;
2144        }
2145
2146        if (!sw->safe_mode) {
2147                /* read drom */
2148                ret = tb_drom_read(sw);
2149                if (ret) {
2150                        dev_err(&sw->dev, "reading DROM failed\n");
2151                        return ret;
2152                }
2153                tb_sw_dbg(sw, "uid: %#llx\n", sw->uid);
2154
2155                ret = tb_switch_set_uuid(sw);
2156                if (ret) {
2157                        dev_err(&sw->dev, "failed to set UUID\n");
2158                        return ret;
2159                }
2160
2161                for (i = 0; i <= sw->config.max_port_number; i++) {
2162                        if (sw->ports[i].disabled) {
2163                                tb_port_dbg(&sw->ports[i], "disabled by eeprom\n");
2164                                continue;
2165                        }
2166                        ret = tb_init_port(&sw->ports[i]);
2167                        if (ret) {
2168                                dev_err(&sw->dev, "failed to initialize port %d\n", i);
2169                                return ret;
2170                        }
2171                }
2172
2173                tb_switch_default_link_ports(sw);
2174
2175                ret = tb_switch_update_link_attributes(sw);
2176                if (ret)
2177                        return ret;
2178        }
2179
2180        ret = device_add(&sw->dev);
2181        if (ret) {
2182                dev_err(&sw->dev, "failed to add device: %d\n", ret);
2183                return ret;
2184        }
2185
2186        if (tb_route(sw)) {
2187                dev_info(&sw->dev, "new device found, vendor=%#x device=%#x\n",
2188                         sw->vendor, sw->device);
2189                if (sw->vendor_name && sw->device_name)
2190                        dev_info(&sw->dev, "%s %s\n", sw->vendor_name,
2191                                 sw->device_name);
2192        }
2193
2194        ret = tb_switch_nvm_add(sw);
2195        if (ret) {
2196                dev_err(&sw->dev, "failed to add NVM devices\n");
2197                device_del(&sw->dev);
2198                return ret;
2199        }
2200
2201        pm_runtime_set_active(&sw->dev);
2202        if (sw->rpm) {
2203                pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY);
2204                pm_runtime_use_autosuspend(&sw->dev);
2205                pm_runtime_mark_last_busy(&sw->dev);
2206                pm_runtime_enable(&sw->dev);
2207                pm_request_autosuspend(&sw->dev);
2208        }
2209
2210        return 0;
2211}
2212
2213/**
2214 * tb_switch_remove() - Remove and release a switch
2215 * @sw: Switch to remove
2216 *
2217 * This will remove the switch from the domain and release it after last
2218 * reference count drops to zero. If there are switches connected below
2219 * this switch, they will be removed as well.
2220 */
2221void tb_switch_remove(struct tb_switch *sw)
2222{
2223        struct tb_port *port;
2224
2225        if (sw->rpm) {
2226                pm_runtime_get_sync(&sw->dev);
2227                pm_runtime_disable(&sw->dev);
2228        }
2229
2230        /* port 0 is the switch itself and never has a remote */
2231        tb_switch_for_each_port(sw, port) {
2232                if (tb_port_has_remote(port)) {
2233                        tb_switch_remove(port->remote->sw);
2234                        port->remote = NULL;
2235                } else if (port->xdomain) {
2236                        tb_xdomain_remove(port->xdomain);
2237                        port->xdomain = NULL;
2238                }
2239        }
2240
2241        if (!sw->is_unplugged)
2242                tb_plug_events_active(sw, false);
2243        tb_lc_unconfigure_link(sw);
2244
2245        tb_switch_nvm_remove(sw);
2246
2247        if (tb_route(sw))
2248                dev_info(&sw->dev, "device disconnected\n");
2249        device_unregister(&sw->dev);
2250}
2251
2252/**
2253 * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches
2254 */
2255void tb_sw_set_unplugged(struct tb_switch *sw)
2256{
2257        struct tb_port *port;
2258
2259        if (sw == sw->tb->root_switch) {
2260                tb_sw_WARN(sw, "cannot unplug root switch\n");
2261                return;
2262        }
2263        if (sw->is_unplugged) {
2264                tb_sw_WARN(sw, "is_unplugged already set\n");
2265                return;
2266        }
2267        sw->is_unplugged = true;
2268        tb_switch_for_each_port(sw, port) {
2269                if (tb_port_has_remote(port))
2270                        tb_sw_set_unplugged(port->remote->sw);
2271                else if (port->xdomain)
2272                        port->xdomain->is_unplugged = true;
2273        }
2274}
2275
2276int tb_switch_resume(struct tb_switch *sw)
2277{
2278        struct tb_port *port;
2279        int err;
2280
2281        tb_sw_dbg(sw, "resuming switch\n");
2282
2283        /*
2284         * Check for UID of the connected switches except for root
2285         * switch which we assume cannot be removed.
2286         */
2287        if (tb_route(sw)) {
2288                u64 uid;
2289
2290                /*
2291                 * Check first that we can still read the switch config
2292                 * space. It may be that there is now another domain
2293                 * connected.
2294                 */
2295                err = tb_cfg_get_upstream_port(sw->tb->ctl, tb_route(sw));
2296                if (err < 0) {
2297                        tb_sw_info(sw, "switch not present anymore\n");
2298                        return err;
2299                }
2300
2301                err = tb_drom_read_uid_only(sw, &uid);
2302                if (err) {
2303                        tb_sw_warn(sw, "uid read failed\n");
2304                        return err;
2305                }
2306                if (sw->uid != uid) {
2307                        tb_sw_info(sw,
2308                                "changed while suspended (uid %#llx -> %#llx)\n",
2309                                sw->uid, uid);
2310                        return -ENODEV;
2311                }
2312        }
2313
2314        /* upload configuration */
2315        err = tb_sw_write(sw, 1 + (u32 *) &sw->config, TB_CFG_SWITCH, 1, 3);
2316        if (err)
2317                return err;
2318
2319        err = tb_lc_configure_link(sw);
2320        if (err)
2321                return err;
2322
2323        err = tb_plug_events_active(sw, true);
2324        if (err)
2325                return err;
2326
2327        /* check for surviving downstream switches */
2328        tb_switch_for_each_port(sw, port) {
2329                if (!tb_port_has_remote(port) && !port->xdomain)
2330                        continue;
2331
2332                if (tb_wait_for_port(port, true) <= 0) {
2333                        tb_port_warn(port,
2334                                     "lost during suspend, disconnecting\n");
2335                        if (tb_port_has_remote(port))
2336                                tb_sw_set_unplugged(port->remote->sw);
2337                        else if (port->xdomain)
2338                                port->xdomain->is_unplugged = true;
2339                } else if (tb_port_has_remote(port)) {
2340                        if (tb_switch_resume(port->remote->sw)) {
2341                                tb_port_warn(port,
2342                                             "lost during suspend, disconnecting\n");
2343                                tb_sw_set_unplugged(port->remote->sw);
2344                        }
2345                }
2346        }
2347        return 0;
2348}
2349
2350void tb_switch_suspend(struct tb_switch *sw)
2351{
2352        struct tb_port *port;
2353        int err;
2354
2355        err = tb_plug_events_active(sw, false);
2356        if (err)
2357                return;
2358
2359        tb_switch_for_each_port(sw, port) {
2360                if (tb_port_has_remote(port))
2361                        tb_switch_suspend(port->remote->sw);
2362        }
2363
2364        tb_lc_set_sleep(sw);
2365}
2366
2367/**
2368 * tb_switch_query_dp_resource() - Query availability of DP resource
2369 * @sw: Switch whose DP resource is queried
2370 * @in: DP IN port
2371 *
2372 * Queries availability of DP resource for DP tunneling using switch
2373 * specific means. Returns %true if resource is available.
2374 */
2375bool tb_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
2376{
2377        return tb_lc_dp_sink_query(sw, in);
2378}
2379
2380/**
2381 * tb_switch_alloc_dp_resource() - Allocate available DP resource
2382 * @sw: Switch whose DP resource is allocated
2383 * @in: DP IN port
2384 *
2385 * Allocates DP resource for DP tunneling. The resource must be
2386 * available for this to succeed (see tb_switch_query_dp_resource()).
2387 * Returns %0 in success and negative errno otherwise.
2388 */
2389int tb_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
2390{
2391        return tb_lc_dp_sink_alloc(sw, in);
2392}
2393
2394/**
2395 * tb_switch_dealloc_dp_resource() - De-allocate DP resource
2396 * @sw: Switch whose DP resource is de-allocated
2397 * @in: DP IN port
2398 *
2399 * De-allocates DP resource that was previously allocated for DP
2400 * tunneling.
2401 */
2402void tb_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
2403{
2404        if (tb_lc_dp_sink_dealloc(sw, in)) {
2405                tb_sw_warn(sw, "failed to de-allocate DP resource for port %d\n",
2406                           in->port);
2407        }
2408}
2409
2410struct tb_sw_lookup {
2411        struct tb *tb;
2412        u8 link;
2413        u8 depth;
2414        const uuid_t *uuid;
2415        u64 route;
2416};
2417
2418static int tb_switch_match(struct device *dev, const void *data)
2419{
2420        struct tb_switch *sw = tb_to_switch(dev);
2421        const struct tb_sw_lookup *lookup = data;
2422
2423        if (!sw)
2424                return 0;
2425        if (sw->tb != lookup->tb)
2426                return 0;
2427
2428        if (lookup->uuid)
2429                return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid));
2430
2431        if (lookup->route) {
2432                return sw->config.route_lo == lower_32_bits(lookup->route) &&
2433                       sw->config.route_hi == upper_32_bits(lookup->route);
2434        }
2435
2436        /* Root switch is matched only by depth */
2437        if (!lookup->depth)
2438                return !sw->depth;
2439
2440        return sw->link == lookup->link && sw->depth == lookup->depth;
2441}
2442
2443/**
2444 * tb_switch_find_by_link_depth() - Find switch by link and depth
2445 * @tb: Domain the switch belongs
2446 * @link: Link number the switch is connected
2447 * @depth: Depth of the switch in link
2448 *
2449 * Returned switch has reference count increased so the caller needs to
2450 * call tb_switch_put() when done with the switch.
2451 */
2452struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth)
2453{
2454        struct tb_sw_lookup lookup;
2455        struct device *dev;
2456
2457        memset(&lookup, 0, sizeof(lookup));
2458        lookup.tb = tb;
2459        lookup.link = link;
2460        lookup.depth = depth;
2461
2462        dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2463        if (dev)
2464                return tb_to_switch(dev);
2465
2466        return NULL;
2467}
2468
2469/**
2470 * tb_switch_find_by_uuid() - Find switch by UUID
2471 * @tb: Domain the switch belongs
2472 * @uuid: UUID to look for
2473 *
2474 * Returned switch has reference count increased so the caller needs to
2475 * call tb_switch_put() when done with the switch.
2476 */
2477struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid)
2478{
2479        struct tb_sw_lookup lookup;
2480        struct device *dev;
2481
2482        memset(&lookup, 0, sizeof(lookup));
2483        lookup.tb = tb;
2484        lookup.uuid = uuid;
2485
2486        dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2487        if (dev)
2488                return tb_to_switch(dev);
2489
2490        return NULL;
2491}
2492
2493/**
2494 * tb_switch_find_by_route() - Find switch by route string
2495 * @tb: Domain the switch belongs
2496 * @route: Route string to look for
2497 *
2498 * Returned switch has reference count increased so the caller needs to
2499 * call tb_switch_put() when done with the switch.
2500 */
2501struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route)
2502{
2503        struct tb_sw_lookup lookup;
2504        struct device *dev;
2505
2506        if (!route)
2507                return tb_switch_get(tb->root_switch);
2508
2509        memset(&lookup, 0, sizeof(lookup));
2510        lookup.tb = tb;
2511        lookup.route = route;
2512
2513        dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2514        if (dev)
2515                return tb_to_switch(dev);
2516
2517        return NULL;
2518}
2519
2520void tb_switch_exit(void)
2521{
2522        ida_destroy(&nvm_ida);
2523}
2524