linux/fs/btrfs/ctree.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007,2008 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/slab.h>
   8#include <linux/rbtree.h>
   9#include <linux/mm.h>
  10#include "ctree.h"
  11#include "disk-io.h"
  12#include "transaction.h"
  13#include "print-tree.h"
  14#include "locking.h"
  15#include "volumes.h"
  16#include "qgroup.h"
  17
  18static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  19                      *root, struct btrfs_path *path, int level);
  20static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  21                      const struct btrfs_key *ins_key, struct btrfs_path *path,
  22                      int data_size, int extend);
  23static int push_node_left(struct btrfs_trans_handle *trans,
  24                          struct extent_buffer *dst,
  25                          struct extent_buffer *src, int empty);
  26static int balance_node_right(struct btrfs_trans_handle *trans,
  27                              struct extent_buffer *dst_buf,
  28                              struct extent_buffer *src_buf);
  29static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
  30                    int level, int slot);
  31
  32static const struct btrfs_csums {
  33        u16             size;
  34        const char      *name;
  35        const char      *driver;
  36} btrfs_csums[] = {
  37        [BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
  38        [BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
  39        [BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
  40        [BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
  41                                     .driver = "blake2b-256" },
  42};
  43
  44int btrfs_super_csum_size(const struct btrfs_super_block *s)
  45{
  46        u16 t = btrfs_super_csum_type(s);
  47        /*
  48         * csum type is validated at mount time
  49         */
  50        return btrfs_csums[t].size;
  51}
  52
  53const char *btrfs_super_csum_name(u16 csum_type)
  54{
  55        /* csum type is validated at mount time */
  56        return btrfs_csums[csum_type].name;
  57}
  58
  59/*
  60 * Return driver name if defined, otherwise the name that's also a valid driver
  61 * name
  62 */
  63const char *btrfs_super_csum_driver(u16 csum_type)
  64{
  65        /* csum type is validated at mount time */
  66        return btrfs_csums[csum_type].driver ?:
  67                btrfs_csums[csum_type].name;
  68}
  69
  70size_t __const btrfs_get_num_csums(void)
  71{
  72        return ARRAY_SIZE(btrfs_csums);
  73}
  74
  75struct btrfs_path *btrfs_alloc_path(void)
  76{
  77        return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
  78}
  79
  80/* this also releases the path */
  81void btrfs_free_path(struct btrfs_path *p)
  82{
  83        if (!p)
  84                return;
  85        btrfs_release_path(p);
  86        kmem_cache_free(btrfs_path_cachep, p);
  87}
  88
  89/*
  90 * path release drops references on the extent buffers in the path
  91 * and it drops any locks held by this path
  92 *
  93 * It is safe to call this on paths that no locks or extent buffers held.
  94 */
  95noinline void btrfs_release_path(struct btrfs_path *p)
  96{
  97        int i;
  98
  99        for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
 100                p->slots[i] = 0;
 101                if (!p->nodes[i])
 102                        continue;
 103                if (p->locks[i]) {
 104                        btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
 105                        p->locks[i] = 0;
 106                }
 107                free_extent_buffer(p->nodes[i]);
 108                p->nodes[i] = NULL;
 109        }
 110}
 111
 112/*
 113 * safely gets a reference on the root node of a tree.  A lock
 114 * is not taken, so a concurrent writer may put a different node
 115 * at the root of the tree.  See btrfs_lock_root_node for the
 116 * looping required.
 117 *
 118 * The extent buffer returned by this has a reference taken, so
 119 * it won't disappear.  It may stop being the root of the tree
 120 * at any time because there are no locks held.
 121 */
 122struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
 123{
 124        struct extent_buffer *eb;
 125
 126        while (1) {
 127                rcu_read_lock();
 128                eb = rcu_dereference(root->node);
 129
 130                /*
 131                 * RCU really hurts here, we could free up the root node because
 132                 * it was COWed but we may not get the new root node yet so do
 133                 * the inc_not_zero dance and if it doesn't work then
 134                 * synchronize_rcu and try again.
 135                 */
 136                if (atomic_inc_not_zero(&eb->refs)) {
 137                        rcu_read_unlock();
 138                        break;
 139                }
 140                rcu_read_unlock();
 141                synchronize_rcu();
 142        }
 143        return eb;
 144}
 145
 146/* loop around taking references on and locking the root node of the
 147 * tree until you end up with a lock on the root.  A locked buffer
 148 * is returned, with a reference held.
 149 */
 150struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
 151{
 152        struct extent_buffer *eb;
 153
 154        while (1) {
 155                eb = btrfs_root_node(root);
 156                btrfs_tree_lock(eb);
 157                if (eb == root->node)
 158                        break;
 159                btrfs_tree_unlock(eb);
 160                free_extent_buffer(eb);
 161        }
 162        return eb;
 163}
 164
 165/* loop around taking references on and locking the root node of the
 166 * tree until you end up with a lock on the root.  A locked buffer
 167 * is returned, with a reference held.
 168 */
 169struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
 170{
 171        struct extent_buffer *eb;
 172
 173        while (1) {
 174                eb = btrfs_root_node(root);
 175                btrfs_tree_read_lock(eb);
 176                if (eb == root->node)
 177                        break;
 178                btrfs_tree_read_unlock(eb);
 179                free_extent_buffer(eb);
 180        }
 181        return eb;
 182}
 183
 184/* cowonly root (everything not a reference counted cow subvolume), just get
 185 * put onto a simple dirty list.  transaction.c walks this to make sure they
 186 * get properly updated on disk.
 187 */
 188static void add_root_to_dirty_list(struct btrfs_root *root)
 189{
 190        struct btrfs_fs_info *fs_info = root->fs_info;
 191
 192        if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
 193            !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
 194                return;
 195
 196        spin_lock(&fs_info->trans_lock);
 197        if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
 198                /* Want the extent tree to be the last on the list */
 199                if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
 200                        list_move_tail(&root->dirty_list,
 201                                       &fs_info->dirty_cowonly_roots);
 202                else
 203                        list_move(&root->dirty_list,
 204                                  &fs_info->dirty_cowonly_roots);
 205        }
 206        spin_unlock(&fs_info->trans_lock);
 207}
 208
 209/*
 210 * used by snapshot creation to make a copy of a root for a tree with
 211 * a given objectid.  The buffer with the new root node is returned in
 212 * cow_ret, and this func returns zero on success or a negative error code.
 213 */
 214int btrfs_copy_root(struct btrfs_trans_handle *trans,
 215                      struct btrfs_root *root,
 216                      struct extent_buffer *buf,
 217                      struct extent_buffer **cow_ret, u64 new_root_objectid)
 218{
 219        struct btrfs_fs_info *fs_info = root->fs_info;
 220        struct extent_buffer *cow;
 221        int ret = 0;
 222        int level;
 223        struct btrfs_disk_key disk_key;
 224
 225        WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 226                trans->transid != fs_info->running_transaction->transid);
 227        WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 228                trans->transid != root->last_trans);
 229
 230        level = btrfs_header_level(buf);
 231        if (level == 0)
 232                btrfs_item_key(buf, &disk_key, 0);
 233        else
 234                btrfs_node_key(buf, &disk_key, 0);
 235
 236        cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
 237                        &disk_key, level, buf->start, 0);
 238        if (IS_ERR(cow))
 239                return PTR_ERR(cow);
 240
 241        copy_extent_buffer_full(cow, buf);
 242        btrfs_set_header_bytenr(cow, cow->start);
 243        btrfs_set_header_generation(cow, trans->transid);
 244        btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
 245        btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
 246                                     BTRFS_HEADER_FLAG_RELOC);
 247        if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 248                btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
 249        else
 250                btrfs_set_header_owner(cow, new_root_objectid);
 251
 252        write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
 253
 254        WARN_ON(btrfs_header_generation(buf) > trans->transid);
 255        if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 256                ret = btrfs_inc_ref(trans, root, cow, 1);
 257        else
 258                ret = btrfs_inc_ref(trans, root, cow, 0);
 259
 260        if (ret)
 261                return ret;
 262
 263        btrfs_mark_buffer_dirty(cow);
 264        *cow_ret = cow;
 265        return 0;
 266}
 267
 268enum mod_log_op {
 269        MOD_LOG_KEY_REPLACE,
 270        MOD_LOG_KEY_ADD,
 271        MOD_LOG_KEY_REMOVE,
 272        MOD_LOG_KEY_REMOVE_WHILE_FREEING,
 273        MOD_LOG_KEY_REMOVE_WHILE_MOVING,
 274        MOD_LOG_MOVE_KEYS,
 275        MOD_LOG_ROOT_REPLACE,
 276};
 277
 278struct tree_mod_root {
 279        u64 logical;
 280        u8 level;
 281};
 282
 283struct tree_mod_elem {
 284        struct rb_node node;
 285        u64 logical;
 286        u64 seq;
 287        enum mod_log_op op;
 288
 289        /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
 290        int slot;
 291
 292        /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
 293        u64 generation;
 294
 295        /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
 296        struct btrfs_disk_key key;
 297        u64 blockptr;
 298
 299        /* this is used for op == MOD_LOG_MOVE_KEYS */
 300        struct {
 301                int dst_slot;
 302                int nr_items;
 303        } move;
 304
 305        /* this is used for op == MOD_LOG_ROOT_REPLACE */
 306        struct tree_mod_root old_root;
 307};
 308
 309/*
 310 * Pull a new tree mod seq number for our operation.
 311 */
 312static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
 313{
 314        return atomic64_inc_return(&fs_info->tree_mod_seq);
 315}
 316
 317/*
 318 * This adds a new blocker to the tree mod log's blocker list if the @elem
 319 * passed does not already have a sequence number set. So when a caller expects
 320 * to record tree modifications, it should ensure to set elem->seq to zero
 321 * before calling btrfs_get_tree_mod_seq.
 322 * Returns a fresh, unused tree log modification sequence number, even if no new
 323 * blocker was added.
 324 */
 325u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
 326                           struct seq_list *elem)
 327{
 328        write_lock(&fs_info->tree_mod_log_lock);
 329        spin_lock(&fs_info->tree_mod_seq_lock);
 330        if (!elem->seq) {
 331                elem->seq = btrfs_inc_tree_mod_seq(fs_info);
 332                list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
 333        }
 334        spin_unlock(&fs_info->tree_mod_seq_lock);
 335        write_unlock(&fs_info->tree_mod_log_lock);
 336
 337        return elem->seq;
 338}
 339
 340void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
 341                            struct seq_list *elem)
 342{
 343        struct rb_root *tm_root;
 344        struct rb_node *node;
 345        struct rb_node *next;
 346        struct seq_list *cur_elem;
 347        struct tree_mod_elem *tm;
 348        u64 min_seq = (u64)-1;
 349        u64 seq_putting = elem->seq;
 350
 351        if (!seq_putting)
 352                return;
 353
 354        spin_lock(&fs_info->tree_mod_seq_lock);
 355        list_del(&elem->list);
 356        elem->seq = 0;
 357
 358        list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
 359                if (cur_elem->seq < min_seq) {
 360                        if (seq_putting > cur_elem->seq) {
 361                                /*
 362                                 * blocker with lower sequence number exists, we
 363                                 * cannot remove anything from the log
 364                                 */
 365                                spin_unlock(&fs_info->tree_mod_seq_lock);
 366                                return;
 367                        }
 368                        min_seq = cur_elem->seq;
 369                }
 370        }
 371        spin_unlock(&fs_info->tree_mod_seq_lock);
 372
 373        /*
 374         * anything that's lower than the lowest existing (read: blocked)
 375         * sequence number can be removed from the tree.
 376         */
 377        write_lock(&fs_info->tree_mod_log_lock);
 378        tm_root = &fs_info->tree_mod_log;
 379        for (node = rb_first(tm_root); node; node = next) {
 380                next = rb_next(node);
 381                tm = rb_entry(node, struct tree_mod_elem, node);
 382                if (tm->seq >= min_seq)
 383                        continue;
 384                rb_erase(node, tm_root);
 385                kfree(tm);
 386        }
 387        write_unlock(&fs_info->tree_mod_log_lock);
 388}
 389
 390/*
 391 * key order of the log:
 392 *       node/leaf start address -> sequence
 393 *
 394 * The 'start address' is the logical address of the *new* root node
 395 * for root replace operations, or the logical address of the affected
 396 * block for all other operations.
 397 */
 398static noinline int
 399__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
 400{
 401        struct rb_root *tm_root;
 402        struct rb_node **new;
 403        struct rb_node *parent = NULL;
 404        struct tree_mod_elem *cur;
 405
 406        lockdep_assert_held_write(&fs_info->tree_mod_log_lock);
 407
 408        tm->seq = btrfs_inc_tree_mod_seq(fs_info);
 409
 410        tm_root = &fs_info->tree_mod_log;
 411        new = &tm_root->rb_node;
 412        while (*new) {
 413                cur = rb_entry(*new, struct tree_mod_elem, node);
 414                parent = *new;
 415                if (cur->logical < tm->logical)
 416                        new = &((*new)->rb_left);
 417                else if (cur->logical > tm->logical)
 418                        new = &((*new)->rb_right);
 419                else if (cur->seq < tm->seq)
 420                        new = &((*new)->rb_left);
 421                else if (cur->seq > tm->seq)
 422                        new = &((*new)->rb_right);
 423                else
 424                        return -EEXIST;
 425        }
 426
 427        rb_link_node(&tm->node, parent, new);
 428        rb_insert_color(&tm->node, tm_root);
 429        return 0;
 430}
 431
 432/*
 433 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
 434 * returns zero with the tree_mod_log_lock acquired. The caller must hold
 435 * this until all tree mod log insertions are recorded in the rb tree and then
 436 * write unlock fs_info::tree_mod_log_lock.
 437 */
 438static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
 439                                    struct extent_buffer *eb) {
 440        smp_mb();
 441        if (list_empty(&(fs_info)->tree_mod_seq_list))
 442                return 1;
 443        if (eb && btrfs_header_level(eb) == 0)
 444                return 1;
 445
 446        write_lock(&fs_info->tree_mod_log_lock);
 447        if (list_empty(&(fs_info)->tree_mod_seq_list)) {
 448                write_unlock(&fs_info->tree_mod_log_lock);
 449                return 1;
 450        }
 451
 452        return 0;
 453}
 454
 455/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
 456static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
 457                                    struct extent_buffer *eb)
 458{
 459        smp_mb();
 460        if (list_empty(&(fs_info)->tree_mod_seq_list))
 461                return 0;
 462        if (eb && btrfs_header_level(eb) == 0)
 463                return 0;
 464
 465        return 1;
 466}
 467
 468static struct tree_mod_elem *
 469alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
 470                    enum mod_log_op op, gfp_t flags)
 471{
 472        struct tree_mod_elem *tm;
 473
 474        tm = kzalloc(sizeof(*tm), flags);
 475        if (!tm)
 476                return NULL;
 477
 478        tm->logical = eb->start;
 479        if (op != MOD_LOG_KEY_ADD) {
 480                btrfs_node_key(eb, &tm->key, slot);
 481                tm->blockptr = btrfs_node_blockptr(eb, slot);
 482        }
 483        tm->op = op;
 484        tm->slot = slot;
 485        tm->generation = btrfs_node_ptr_generation(eb, slot);
 486        RB_CLEAR_NODE(&tm->node);
 487
 488        return tm;
 489}
 490
 491static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot,
 492                enum mod_log_op op, gfp_t flags)
 493{
 494        struct tree_mod_elem *tm;
 495        int ret;
 496
 497        if (!tree_mod_need_log(eb->fs_info, eb))
 498                return 0;
 499
 500        tm = alloc_tree_mod_elem(eb, slot, op, flags);
 501        if (!tm)
 502                return -ENOMEM;
 503
 504        if (tree_mod_dont_log(eb->fs_info, eb)) {
 505                kfree(tm);
 506                return 0;
 507        }
 508
 509        ret = __tree_mod_log_insert(eb->fs_info, tm);
 510        write_unlock(&eb->fs_info->tree_mod_log_lock);
 511        if (ret)
 512                kfree(tm);
 513
 514        return ret;
 515}
 516
 517static noinline int tree_mod_log_insert_move(struct extent_buffer *eb,
 518                int dst_slot, int src_slot, int nr_items)
 519{
 520        struct tree_mod_elem *tm = NULL;
 521        struct tree_mod_elem **tm_list = NULL;
 522        int ret = 0;
 523        int i;
 524        int locked = 0;
 525
 526        if (!tree_mod_need_log(eb->fs_info, eb))
 527                return 0;
 528
 529        tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
 530        if (!tm_list)
 531                return -ENOMEM;
 532
 533        tm = kzalloc(sizeof(*tm), GFP_NOFS);
 534        if (!tm) {
 535                ret = -ENOMEM;
 536                goto free_tms;
 537        }
 538
 539        tm->logical = eb->start;
 540        tm->slot = src_slot;
 541        tm->move.dst_slot = dst_slot;
 542        tm->move.nr_items = nr_items;
 543        tm->op = MOD_LOG_MOVE_KEYS;
 544
 545        for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
 546                tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
 547                    MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
 548                if (!tm_list[i]) {
 549                        ret = -ENOMEM;
 550                        goto free_tms;
 551                }
 552        }
 553
 554        if (tree_mod_dont_log(eb->fs_info, eb))
 555                goto free_tms;
 556        locked = 1;
 557
 558        /*
 559         * When we override something during the move, we log these removals.
 560         * This can only happen when we move towards the beginning of the
 561         * buffer, i.e. dst_slot < src_slot.
 562         */
 563        for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
 564                ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]);
 565                if (ret)
 566                        goto free_tms;
 567        }
 568
 569        ret = __tree_mod_log_insert(eb->fs_info, tm);
 570        if (ret)
 571                goto free_tms;
 572        write_unlock(&eb->fs_info->tree_mod_log_lock);
 573        kfree(tm_list);
 574
 575        return 0;
 576free_tms:
 577        for (i = 0; i < nr_items; i++) {
 578                if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
 579                        rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log);
 580                kfree(tm_list[i]);
 581        }
 582        if (locked)
 583                write_unlock(&eb->fs_info->tree_mod_log_lock);
 584        kfree(tm_list);
 585        kfree(tm);
 586
 587        return ret;
 588}
 589
 590static inline int
 591__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
 592                       struct tree_mod_elem **tm_list,
 593                       int nritems)
 594{
 595        int i, j;
 596        int ret;
 597
 598        for (i = nritems - 1; i >= 0; i--) {
 599                ret = __tree_mod_log_insert(fs_info, tm_list[i]);
 600                if (ret) {
 601                        for (j = nritems - 1; j > i; j--)
 602                                rb_erase(&tm_list[j]->node,
 603                                         &fs_info->tree_mod_log);
 604                        return ret;
 605                }
 606        }
 607
 608        return 0;
 609}
 610
 611static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root,
 612                         struct extent_buffer *new_root, int log_removal)
 613{
 614        struct btrfs_fs_info *fs_info = old_root->fs_info;
 615        struct tree_mod_elem *tm = NULL;
 616        struct tree_mod_elem **tm_list = NULL;
 617        int nritems = 0;
 618        int ret = 0;
 619        int i;
 620
 621        if (!tree_mod_need_log(fs_info, NULL))
 622                return 0;
 623
 624        if (log_removal && btrfs_header_level(old_root) > 0) {
 625                nritems = btrfs_header_nritems(old_root);
 626                tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
 627                                  GFP_NOFS);
 628                if (!tm_list) {
 629                        ret = -ENOMEM;
 630                        goto free_tms;
 631                }
 632                for (i = 0; i < nritems; i++) {
 633                        tm_list[i] = alloc_tree_mod_elem(old_root, i,
 634                            MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
 635                        if (!tm_list[i]) {
 636                                ret = -ENOMEM;
 637                                goto free_tms;
 638                        }
 639                }
 640        }
 641
 642        tm = kzalloc(sizeof(*tm), GFP_NOFS);
 643        if (!tm) {
 644                ret = -ENOMEM;
 645                goto free_tms;
 646        }
 647
 648        tm->logical = new_root->start;
 649        tm->old_root.logical = old_root->start;
 650        tm->old_root.level = btrfs_header_level(old_root);
 651        tm->generation = btrfs_header_generation(old_root);
 652        tm->op = MOD_LOG_ROOT_REPLACE;
 653
 654        if (tree_mod_dont_log(fs_info, NULL))
 655                goto free_tms;
 656
 657        if (tm_list)
 658                ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
 659        if (!ret)
 660                ret = __tree_mod_log_insert(fs_info, tm);
 661
 662        write_unlock(&fs_info->tree_mod_log_lock);
 663        if (ret)
 664                goto free_tms;
 665        kfree(tm_list);
 666
 667        return ret;
 668
 669free_tms:
 670        if (tm_list) {
 671                for (i = 0; i < nritems; i++)
 672                        kfree(tm_list[i]);
 673                kfree(tm_list);
 674        }
 675        kfree(tm);
 676
 677        return ret;
 678}
 679
 680static struct tree_mod_elem *
 681__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
 682                      int smallest)
 683{
 684        struct rb_root *tm_root;
 685        struct rb_node *node;
 686        struct tree_mod_elem *cur = NULL;
 687        struct tree_mod_elem *found = NULL;
 688
 689        read_lock(&fs_info->tree_mod_log_lock);
 690        tm_root = &fs_info->tree_mod_log;
 691        node = tm_root->rb_node;
 692        while (node) {
 693                cur = rb_entry(node, struct tree_mod_elem, node);
 694                if (cur->logical < start) {
 695                        node = node->rb_left;
 696                } else if (cur->logical > start) {
 697                        node = node->rb_right;
 698                } else if (cur->seq < min_seq) {
 699                        node = node->rb_left;
 700                } else if (!smallest) {
 701                        /* we want the node with the highest seq */
 702                        if (found)
 703                                BUG_ON(found->seq > cur->seq);
 704                        found = cur;
 705                        node = node->rb_left;
 706                } else if (cur->seq > min_seq) {
 707                        /* we want the node with the smallest seq */
 708                        if (found)
 709                                BUG_ON(found->seq < cur->seq);
 710                        found = cur;
 711                        node = node->rb_right;
 712                } else {
 713                        found = cur;
 714                        break;
 715                }
 716        }
 717        read_unlock(&fs_info->tree_mod_log_lock);
 718
 719        return found;
 720}
 721
 722/*
 723 * this returns the element from the log with the smallest time sequence
 724 * value that's in the log (the oldest log item). any element with a time
 725 * sequence lower than min_seq will be ignored.
 726 */
 727static struct tree_mod_elem *
 728tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
 729                           u64 min_seq)
 730{
 731        return __tree_mod_log_search(fs_info, start, min_seq, 1);
 732}
 733
 734/*
 735 * this returns the element from the log with the largest time sequence
 736 * value that's in the log (the most recent log item). any element with
 737 * a time sequence lower than min_seq will be ignored.
 738 */
 739static struct tree_mod_elem *
 740tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
 741{
 742        return __tree_mod_log_search(fs_info, start, min_seq, 0);
 743}
 744
 745static noinline int tree_mod_log_eb_copy(struct extent_buffer *dst,
 746                     struct extent_buffer *src, unsigned long dst_offset,
 747                     unsigned long src_offset, int nr_items)
 748{
 749        struct btrfs_fs_info *fs_info = dst->fs_info;
 750        int ret = 0;
 751        struct tree_mod_elem **tm_list = NULL;
 752        struct tree_mod_elem **tm_list_add, **tm_list_rem;
 753        int i;
 754        int locked = 0;
 755
 756        if (!tree_mod_need_log(fs_info, NULL))
 757                return 0;
 758
 759        if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
 760                return 0;
 761
 762        tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
 763                          GFP_NOFS);
 764        if (!tm_list)
 765                return -ENOMEM;
 766
 767        tm_list_add = tm_list;
 768        tm_list_rem = tm_list + nr_items;
 769        for (i = 0; i < nr_items; i++) {
 770                tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
 771                    MOD_LOG_KEY_REMOVE, GFP_NOFS);
 772                if (!tm_list_rem[i]) {
 773                        ret = -ENOMEM;
 774                        goto free_tms;
 775                }
 776
 777                tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
 778                    MOD_LOG_KEY_ADD, GFP_NOFS);
 779                if (!tm_list_add[i]) {
 780                        ret = -ENOMEM;
 781                        goto free_tms;
 782                }
 783        }
 784
 785        if (tree_mod_dont_log(fs_info, NULL))
 786                goto free_tms;
 787        locked = 1;
 788
 789        for (i = 0; i < nr_items; i++) {
 790                ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
 791                if (ret)
 792                        goto free_tms;
 793                ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
 794                if (ret)
 795                        goto free_tms;
 796        }
 797
 798        write_unlock(&fs_info->tree_mod_log_lock);
 799        kfree(tm_list);
 800
 801        return 0;
 802
 803free_tms:
 804        for (i = 0; i < nr_items * 2; i++) {
 805                if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
 806                        rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
 807                kfree(tm_list[i]);
 808        }
 809        if (locked)
 810                write_unlock(&fs_info->tree_mod_log_lock);
 811        kfree(tm_list);
 812
 813        return ret;
 814}
 815
 816static noinline int tree_mod_log_free_eb(struct extent_buffer *eb)
 817{
 818        struct tree_mod_elem **tm_list = NULL;
 819        int nritems = 0;
 820        int i;
 821        int ret = 0;
 822
 823        if (btrfs_header_level(eb) == 0)
 824                return 0;
 825
 826        if (!tree_mod_need_log(eb->fs_info, NULL))
 827                return 0;
 828
 829        nritems = btrfs_header_nritems(eb);
 830        tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
 831        if (!tm_list)
 832                return -ENOMEM;
 833
 834        for (i = 0; i < nritems; i++) {
 835                tm_list[i] = alloc_tree_mod_elem(eb, i,
 836                    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
 837                if (!tm_list[i]) {
 838                        ret = -ENOMEM;
 839                        goto free_tms;
 840                }
 841        }
 842
 843        if (tree_mod_dont_log(eb->fs_info, eb))
 844                goto free_tms;
 845
 846        ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems);
 847        write_unlock(&eb->fs_info->tree_mod_log_lock);
 848        if (ret)
 849                goto free_tms;
 850        kfree(tm_list);
 851
 852        return 0;
 853
 854free_tms:
 855        for (i = 0; i < nritems; i++)
 856                kfree(tm_list[i]);
 857        kfree(tm_list);
 858
 859        return ret;
 860}
 861
 862/*
 863 * check if the tree block can be shared by multiple trees
 864 */
 865int btrfs_block_can_be_shared(struct btrfs_root *root,
 866                              struct extent_buffer *buf)
 867{
 868        /*
 869         * Tree blocks not in reference counted trees and tree roots
 870         * are never shared. If a block was allocated after the last
 871         * snapshot and the block was not allocated by tree relocation,
 872         * we know the block is not shared.
 873         */
 874        if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 875            buf != root->node && buf != root->commit_root &&
 876            (btrfs_header_generation(buf) <=
 877             btrfs_root_last_snapshot(&root->root_item) ||
 878             btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
 879                return 1;
 880
 881        return 0;
 882}
 883
 884static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
 885                                       struct btrfs_root *root,
 886                                       struct extent_buffer *buf,
 887                                       struct extent_buffer *cow,
 888                                       int *last_ref)
 889{
 890        struct btrfs_fs_info *fs_info = root->fs_info;
 891        u64 refs;
 892        u64 owner;
 893        u64 flags;
 894        u64 new_flags = 0;
 895        int ret;
 896
 897        /*
 898         * Backrefs update rules:
 899         *
 900         * Always use full backrefs for extent pointers in tree block
 901         * allocated by tree relocation.
 902         *
 903         * If a shared tree block is no longer referenced by its owner
 904         * tree (btrfs_header_owner(buf) == root->root_key.objectid),
 905         * use full backrefs for extent pointers in tree block.
 906         *
 907         * If a tree block is been relocating
 908         * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
 909         * use full backrefs for extent pointers in tree block.
 910         * The reason for this is some operations (such as drop tree)
 911         * are only allowed for blocks use full backrefs.
 912         */
 913
 914        if (btrfs_block_can_be_shared(root, buf)) {
 915                ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
 916                                               btrfs_header_level(buf), 1,
 917                                               &refs, &flags);
 918                if (ret)
 919                        return ret;
 920                if (refs == 0) {
 921                        ret = -EROFS;
 922                        btrfs_handle_fs_error(fs_info, ret, NULL);
 923                        return ret;
 924                }
 925        } else {
 926                refs = 1;
 927                if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
 928                    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
 929                        flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
 930                else
 931                        flags = 0;
 932        }
 933
 934        owner = btrfs_header_owner(buf);
 935        BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
 936               !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
 937
 938        if (refs > 1) {
 939                if ((owner == root->root_key.objectid ||
 940                     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
 941                    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
 942                        ret = btrfs_inc_ref(trans, root, buf, 1);
 943                        if (ret)
 944                                return ret;
 945
 946                        if (root->root_key.objectid ==
 947                            BTRFS_TREE_RELOC_OBJECTID) {
 948                                ret = btrfs_dec_ref(trans, root, buf, 0);
 949                                if (ret)
 950                                        return ret;
 951                                ret = btrfs_inc_ref(trans, root, cow, 1);
 952                                if (ret)
 953                                        return ret;
 954                        }
 955                        new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
 956                } else {
 957
 958                        if (root->root_key.objectid ==
 959                            BTRFS_TREE_RELOC_OBJECTID)
 960                                ret = btrfs_inc_ref(trans, root, cow, 1);
 961                        else
 962                                ret = btrfs_inc_ref(trans, root, cow, 0);
 963                        if (ret)
 964                                return ret;
 965                }
 966                if (new_flags != 0) {
 967                        int level = btrfs_header_level(buf);
 968
 969                        ret = btrfs_set_disk_extent_flags(trans,
 970                                                          buf->start,
 971                                                          buf->len,
 972                                                          new_flags, level, 0);
 973                        if (ret)
 974                                return ret;
 975                }
 976        } else {
 977                if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
 978                        if (root->root_key.objectid ==
 979                            BTRFS_TREE_RELOC_OBJECTID)
 980                                ret = btrfs_inc_ref(trans, root, cow, 1);
 981                        else
 982                                ret = btrfs_inc_ref(trans, root, cow, 0);
 983                        if (ret)
 984                                return ret;
 985                        ret = btrfs_dec_ref(trans, root, buf, 1);
 986                        if (ret)
 987                                return ret;
 988                }
 989                btrfs_clean_tree_block(buf);
 990                *last_ref = 1;
 991        }
 992        return 0;
 993}
 994
 995static struct extent_buffer *alloc_tree_block_no_bg_flush(
 996                                          struct btrfs_trans_handle *trans,
 997                                          struct btrfs_root *root,
 998                                          u64 parent_start,
 999                                          const struct btrfs_disk_key *disk_key,
1000                                          int level,
1001                                          u64 hint,
1002                                          u64 empty_size)
1003{
1004        struct btrfs_fs_info *fs_info = root->fs_info;
1005        struct extent_buffer *ret;
1006
1007        /*
1008         * If we are COWing a node/leaf from the extent, chunk, device or free
1009         * space trees, make sure that we do not finish block group creation of
1010         * pending block groups. We do this to avoid a deadlock.
1011         * COWing can result in allocation of a new chunk, and flushing pending
1012         * block groups (btrfs_create_pending_block_groups()) can be triggered
1013         * when finishing allocation of a new chunk. Creation of a pending block
1014         * group modifies the extent, chunk, device and free space trees,
1015         * therefore we could deadlock with ourselves since we are holding a
1016         * lock on an extent buffer that btrfs_create_pending_block_groups() may
1017         * try to COW later.
1018         * For similar reasons, we also need to delay flushing pending block
1019         * groups when splitting a leaf or node, from one of those trees, since
1020         * we are holding a write lock on it and its parent or when inserting a
1021         * new root node for one of those trees.
1022         */
1023        if (root == fs_info->extent_root ||
1024            root == fs_info->chunk_root ||
1025            root == fs_info->dev_root ||
1026            root == fs_info->free_space_root)
1027                trans->can_flush_pending_bgs = false;
1028
1029        ret = btrfs_alloc_tree_block(trans, root, parent_start,
1030                                     root->root_key.objectid, disk_key, level,
1031                                     hint, empty_size);
1032        trans->can_flush_pending_bgs = true;
1033
1034        return ret;
1035}
1036
1037/*
1038 * does the dirty work in cow of a single block.  The parent block (if
1039 * supplied) is updated to point to the new cow copy.  The new buffer is marked
1040 * dirty and returned locked.  If you modify the block it needs to be marked
1041 * dirty again.
1042 *
1043 * search_start -- an allocation hint for the new block
1044 *
1045 * empty_size -- a hint that you plan on doing more cow.  This is the size in
1046 * bytes the allocator should try to find free next to the block it returns.
1047 * This is just a hint and may be ignored by the allocator.
1048 */
1049static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1050                             struct btrfs_root *root,
1051                             struct extent_buffer *buf,
1052                             struct extent_buffer *parent, int parent_slot,
1053                             struct extent_buffer **cow_ret,
1054                             u64 search_start, u64 empty_size)
1055{
1056        struct btrfs_fs_info *fs_info = root->fs_info;
1057        struct btrfs_disk_key disk_key;
1058        struct extent_buffer *cow;
1059        int level, ret;
1060        int last_ref = 0;
1061        int unlock_orig = 0;
1062        u64 parent_start = 0;
1063
1064        if (*cow_ret == buf)
1065                unlock_orig = 1;
1066
1067        btrfs_assert_tree_locked(buf);
1068
1069        WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1070                trans->transid != fs_info->running_transaction->transid);
1071        WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1072                trans->transid != root->last_trans);
1073
1074        level = btrfs_header_level(buf);
1075
1076        if (level == 0)
1077                btrfs_item_key(buf, &disk_key, 0);
1078        else
1079                btrfs_node_key(buf, &disk_key, 0);
1080
1081        if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
1082                parent_start = parent->start;
1083
1084        cow = alloc_tree_block_no_bg_flush(trans, root, parent_start, &disk_key,
1085                                           level, search_start, empty_size);
1086        if (IS_ERR(cow))
1087                return PTR_ERR(cow);
1088
1089        /* cow is set to blocking by btrfs_init_new_buffer */
1090
1091        copy_extent_buffer_full(cow, buf);
1092        btrfs_set_header_bytenr(cow, cow->start);
1093        btrfs_set_header_generation(cow, trans->transid);
1094        btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1095        btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1096                                     BTRFS_HEADER_FLAG_RELOC);
1097        if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1098                btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1099        else
1100                btrfs_set_header_owner(cow, root->root_key.objectid);
1101
1102        write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
1103
1104        ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1105        if (ret) {
1106                btrfs_abort_transaction(trans, ret);
1107                return ret;
1108        }
1109
1110        if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1111                ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1112                if (ret) {
1113                        btrfs_abort_transaction(trans, ret);
1114                        return ret;
1115                }
1116        }
1117
1118        if (buf == root->node) {
1119                WARN_ON(parent && parent != buf);
1120                if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1121                    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1122                        parent_start = buf->start;
1123
1124                atomic_inc(&cow->refs);
1125                ret = tree_mod_log_insert_root(root->node, cow, 1);
1126                BUG_ON(ret < 0);
1127                rcu_assign_pointer(root->node, cow);
1128
1129                btrfs_free_tree_block(trans, root, buf, parent_start,
1130                                      last_ref);
1131                free_extent_buffer(buf);
1132                add_root_to_dirty_list(root);
1133        } else {
1134                WARN_ON(trans->transid != btrfs_header_generation(parent));
1135                tree_mod_log_insert_key(parent, parent_slot,
1136                                        MOD_LOG_KEY_REPLACE, GFP_NOFS);
1137                btrfs_set_node_blockptr(parent, parent_slot,
1138                                        cow->start);
1139                btrfs_set_node_ptr_generation(parent, parent_slot,
1140                                              trans->transid);
1141                btrfs_mark_buffer_dirty(parent);
1142                if (last_ref) {
1143                        ret = tree_mod_log_free_eb(buf);
1144                        if (ret) {
1145                                btrfs_abort_transaction(trans, ret);
1146                                return ret;
1147                        }
1148                }
1149                btrfs_free_tree_block(trans, root, buf, parent_start,
1150                                      last_ref);
1151        }
1152        if (unlock_orig)
1153                btrfs_tree_unlock(buf);
1154        free_extent_buffer_stale(buf);
1155        btrfs_mark_buffer_dirty(cow);
1156        *cow_ret = cow;
1157        return 0;
1158}
1159
1160/*
1161 * returns the logical address of the oldest predecessor of the given root.
1162 * entries older than time_seq are ignored.
1163 */
1164static struct tree_mod_elem *__tree_mod_log_oldest_root(
1165                struct extent_buffer *eb_root, u64 time_seq)
1166{
1167        struct tree_mod_elem *tm;
1168        struct tree_mod_elem *found = NULL;
1169        u64 root_logical = eb_root->start;
1170        int looped = 0;
1171
1172        if (!time_seq)
1173                return NULL;
1174
1175        /*
1176         * the very last operation that's logged for a root is the
1177         * replacement operation (if it is replaced at all). this has
1178         * the logical address of the *new* root, making it the very
1179         * first operation that's logged for this root.
1180         */
1181        while (1) {
1182                tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical,
1183                                                time_seq);
1184                if (!looped && !tm)
1185                        return NULL;
1186                /*
1187                 * if there are no tree operation for the oldest root, we simply
1188                 * return it. this should only happen if that (old) root is at
1189                 * level 0.
1190                 */
1191                if (!tm)
1192                        break;
1193
1194                /*
1195                 * if there's an operation that's not a root replacement, we
1196                 * found the oldest version of our root. normally, we'll find a
1197                 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1198                 */
1199                if (tm->op != MOD_LOG_ROOT_REPLACE)
1200                        break;
1201
1202                found = tm;
1203                root_logical = tm->old_root.logical;
1204                looped = 1;
1205        }
1206
1207        /* if there's no old root to return, return what we found instead */
1208        if (!found)
1209                found = tm;
1210
1211        return found;
1212}
1213
1214/*
1215 * tm is a pointer to the first operation to rewind within eb. then, all
1216 * previous operations will be rewound (until we reach something older than
1217 * time_seq).
1218 */
1219static void
1220__tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1221                      u64 time_seq, struct tree_mod_elem *first_tm)
1222{
1223        u32 n;
1224        struct rb_node *next;
1225        struct tree_mod_elem *tm = first_tm;
1226        unsigned long o_dst;
1227        unsigned long o_src;
1228        unsigned long p_size = sizeof(struct btrfs_key_ptr);
1229
1230        n = btrfs_header_nritems(eb);
1231        read_lock(&fs_info->tree_mod_log_lock);
1232        while (tm && tm->seq >= time_seq) {
1233                /*
1234                 * all the operations are recorded with the operator used for
1235                 * the modification. as we're going backwards, we do the
1236                 * opposite of each operation here.
1237                 */
1238                switch (tm->op) {
1239                case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1240                        BUG_ON(tm->slot < n);
1241                        /* Fallthrough */
1242                case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1243                case MOD_LOG_KEY_REMOVE:
1244                        btrfs_set_node_key(eb, &tm->key, tm->slot);
1245                        btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1246                        btrfs_set_node_ptr_generation(eb, tm->slot,
1247                                                      tm->generation);
1248                        n++;
1249                        break;
1250                case MOD_LOG_KEY_REPLACE:
1251                        BUG_ON(tm->slot >= n);
1252                        btrfs_set_node_key(eb, &tm->key, tm->slot);
1253                        btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1254                        btrfs_set_node_ptr_generation(eb, tm->slot,
1255                                                      tm->generation);
1256                        break;
1257                case MOD_LOG_KEY_ADD:
1258                        /* if a move operation is needed it's in the log */
1259                        n--;
1260                        break;
1261                case MOD_LOG_MOVE_KEYS:
1262                        o_dst = btrfs_node_key_ptr_offset(tm->slot);
1263                        o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1264                        memmove_extent_buffer(eb, o_dst, o_src,
1265                                              tm->move.nr_items * p_size);
1266                        break;
1267                case MOD_LOG_ROOT_REPLACE:
1268                        /*
1269                         * this operation is special. for roots, this must be
1270                         * handled explicitly before rewinding.
1271                         * for non-roots, this operation may exist if the node
1272                         * was a root: root A -> child B; then A gets empty and
1273                         * B is promoted to the new root. in the mod log, we'll
1274                         * have a root-replace operation for B, a tree block
1275                         * that is no root. we simply ignore that operation.
1276                         */
1277                        break;
1278                }
1279                next = rb_next(&tm->node);
1280                if (!next)
1281                        break;
1282                tm = rb_entry(next, struct tree_mod_elem, node);
1283                if (tm->logical != first_tm->logical)
1284                        break;
1285        }
1286        read_unlock(&fs_info->tree_mod_log_lock);
1287        btrfs_set_header_nritems(eb, n);
1288}
1289
1290/*
1291 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1292 * is returned. If rewind operations happen, a fresh buffer is returned. The
1293 * returned buffer is always read-locked. If the returned buffer is not the
1294 * input buffer, the lock on the input buffer is released and the input buffer
1295 * is freed (its refcount is decremented).
1296 */
1297static struct extent_buffer *
1298tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1299                    struct extent_buffer *eb, u64 time_seq)
1300{
1301        struct extent_buffer *eb_rewin;
1302        struct tree_mod_elem *tm;
1303
1304        if (!time_seq)
1305                return eb;
1306
1307        if (btrfs_header_level(eb) == 0)
1308                return eb;
1309
1310        tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1311        if (!tm)
1312                return eb;
1313
1314        btrfs_set_path_blocking(path);
1315        btrfs_set_lock_blocking_read(eb);
1316
1317        if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1318                BUG_ON(tm->slot != 0);
1319                eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1320                if (!eb_rewin) {
1321                        btrfs_tree_read_unlock_blocking(eb);
1322                        free_extent_buffer(eb);
1323                        return NULL;
1324                }
1325                btrfs_set_header_bytenr(eb_rewin, eb->start);
1326                btrfs_set_header_backref_rev(eb_rewin,
1327                                             btrfs_header_backref_rev(eb));
1328                btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1329                btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1330        } else {
1331                eb_rewin = btrfs_clone_extent_buffer(eb);
1332                if (!eb_rewin) {
1333                        btrfs_tree_read_unlock_blocking(eb);
1334                        free_extent_buffer(eb);
1335                        return NULL;
1336                }
1337        }
1338
1339        btrfs_tree_read_unlock_blocking(eb);
1340        free_extent_buffer(eb);
1341
1342        btrfs_tree_read_lock(eb_rewin);
1343        __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1344        WARN_ON(btrfs_header_nritems(eb_rewin) >
1345                BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1346
1347        return eb_rewin;
1348}
1349
1350/*
1351 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1352 * value. If there are no changes, the current root->root_node is returned. If
1353 * anything changed in between, there's a fresh buffer allocated on which the
1354 * rewind operations are done. In any case, the returned buffer is read locked.
1355 * Returns NULL on error (with no locks held).
1356 */
1357static inline struct extent_buffer *
1358get_old_root(struct btrfs_root *root, u64 time_seq)
1359{
1360        struct btrfs_fs_info *fs_info = root->fs_info;
1361        struct tree_mod_elem *tm;
1362        struct extent_buffer *eb = NULL;
1363        struct extent_buffer *eb_root;
1364        u64 eb_root_owner = 0;
1365        struct extent_buffer *old;
1366        struct tree_mod_root *old_root = NULL;
1367        u64 old_generation = 0;
1368        u64 logical;
1369        int level;
1370
1371        eb_root = btrfs_read_lock_root_node(root);
1372        tm = __tree_mod_log_oldest_root(eb_root, time_seq);
1373        if (!tm)
1374                return eb_root;
1375
1376        if (tm->op == MOD_LOG_ROOT_REPLACE) {
1377                old_root = &tm->old_root;
1378                old_generation = tm->generation;
1379                logical = old_root->logical;
1380                level = old_root->level;
1381        } else {
1382                logical = eb_root->start;
1383                level = btrfs_header_level(eb_root);
1384        }
1385
1386        tm = tree_mod_log_search(fs_info, logical, time_seq);
1387        if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1388                btrfs_tree_read_unlock(eb_root);
1389                free_extent_buffer(eb_root);
1390                old = read_tree_block(fs_info, logical, 0, level, NULL);
1391                if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1392                        if (!IS_ERR(old))
1393                                free_extent_buffer(old);
1394                        btrfs_warn(fs_info,
1395                                   "failed to read tree block %llu from get_old_root",
1396                                   logical);
1397                } else {
1398                        eb = btrfs_clone_extent_buffer(old);
1399                        free_extent_buffer(old);
1400                }
1401        } else if (old_root) {
1402                eb_root_owner = btrfs_header_owner(eb_root);
1403                btrfs_tree_read_unlock(eb_root);
1404                free_extent_buffer(eb_root);
1405                eb = alloc_dummy_extent_buffer(fs_info, logical);
1406        } else {
1407                btrfs_set_lock_blocking_read(eb_root);
1408                eb = btrfs_clone_extent_buffer(eb_root);
1409                btrfs_tree_read_unlock_blocking(eb_root);
1410                free_extent_buffer(eb_root);
1411        }
1412
1413        if (!eb)
1414                return NULL;
1415        btrfs_tree_read_lock(eb);
1416        if (old_root) {
1417                btrfs_set_header_bytenr(eb, eb->start);
1418                btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1419                btrfs_set_header_owner(eb, eb_root_owner);
1420                btrfs_set_header_level(eb, old_root->level);
1421                btrfs_set_header_generation(eb, old_generation);
1422        }
1423        if (tm)
1424                __tree_mod_log_rewind(fs_info, eb, time_seq, tm);
1425        else
1426                WARN_ON(btrfs_header_level(eb) != 0);
1427        WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1428
1429        return eb;
1430}
1431
1432int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1433{
1434        struct tree_mod_elem *tm;
1435        int level;
1436        struct extent_buffer *eb_root = btrfs_root_node(root);
1437
1438        tm = __tree_mod_log_oldest_root(eb_root, time_seq);
1439        if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1440                level = tm->old_root.level;
1441        } else {
1442                level = btrfs_header_level(eb_root);
1443        }
1444        free_extent_buffer(eb_root);
1445
1446        return level;
1447}
1448
1449static inline int should_cow_block(struct btrfs_trans_handle *trans,
1450                                   struct btrfs_root *root,
1451                                   struct extent_buffer *buf)
1452{
1453        if (btrfs_is_testing(root->fs_info))
1454                return 0;
1455
1456        /* Ensure we can see the FORCE_COW bit */
1457        smp_mb__before_atomic();
1458
1459        /*
1460         * We do not need to cow a block if
1461         * 1) this block is not created or changed in this transaction;
1462         * 2) this block does not belong to TREE_RELOC tree;
1463         * 3) the root is not forced COW.
1464         *
1465         * What is forced COW:
1466         *    when we create snapshot during committing the transaction,
1467         *    after we've finished copying src root, we must COW the shared
1468         *    block to ensure the metadata consistency.
1469         */
1470        if (btrfs_header_generation(buf) == trans->transid &&
1471            !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1472            !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1473              btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1474            !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1475                return 0;
1476        return 1;
1477}
1478
1479/*
1480 * cows a single block, see __btrfs_cow_block for the real work.
1481 * This version of it has extra checks so that a block isn't COWed more than
1482 * once per transaction, as long as it hasn't been written yet
1483 */
1484noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1485                    struct btrfs_root *root, struct extent_buffer *buf,
1486                    struct extent_buffer *parent, int parent_slot,
1487                    struct extent_buffer **cow_ret)
1488{
1489        struct btrfs_fs_info *fs_info = root->fs_info;
1490        u64 search_start;
1491        int ret;
1492
1493        if (test_bit(BTRFS_ROOT_DELETING, &root->state))
1494                btrfs_err(fs_info,
1495                        "COW'ing blocks on a fs root that's being dropped");
1496
1497        if (trans->transaction != fs_info->running_transaction)
1498                WARN(1, KERN_CRIT "trans %llu running %llu\n",
1499                       trans->transid,
1500                       fs_info->running_transaction->transid);
1501
1502        if (trans->transid != fs_info->generation)
1503                WARN(1, KERN_CRIT "trans %llu running %llu\n",
1504                       trans->transid, fs_info->generation);
1505
1506        if (!should_cow_block(trans, root, buf)) {
1507                trans->dirty = true;
1508                *cow_ret = buf;
1509                return 0;
1510        }
1511
1512        search_start = buf->start & ~((u64)SZ_1G - 1);
1513
1514        if (parent)
1515                btrfs_set_lock_blocking_write(parent);
1516        btrfs_set_lock_blocking_write(buf);
1517
1518        /*
1519         * Before CoWing this block for later modification, check if it's
1520         * the subtree root and do the delayed subtree trace if needed.
1521         *
1522         * Also We don't care about the error, as it's handled internally.
1523         */
1524        btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
1525        ret = __btrfs_cow_block(trans, root, buf, parent,
1526                                 parent_slot, cow_ret, search_start, 0);
1527
1528        trace_btrfs_cow_block(root, buf, *cow_ret);
1529
1530        return ret;
1531}
1532
1533/*
1534 * helper function for defrag to decide if two blocks pointed to by a
1535 * node are actually close by
1536 */
1537static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1538{
1539        if (blocknr < other && other - (blocknr + blocksize) < 32768)
1540                return 1;
1541        if (blocknr > other && blocknr - (other + blocksize) < 32768)
1542                return 1;
1543        return 0;
1544}
1545
1546/*
1547 * compare two keys in a memcmp fashion
1548 */
1549static int comp_keys(const struct btrfs_disk_key *disk,
1550                     const struct btrfs_key *k2)
1551{
1552        struct btrfs_key k1;
1553
1554        btrfs_disk_key_to_cpu(&k1, disk);
1555
1556        return btrfs_comp_cpu_keys(&k1, k2);
1557}
1558
1559/*
1560 * same as comp_keys only with two btrfs_key's
1561 */
1562int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
1563{
1564        if (k1->objectid > k2->objectid)
1565                return 1;
1566        if (k1->objectid < k2->objectid)
1567                return -1;
1568        if (k1->type > k2->type)
1569                return 1;
1570        if (k1->type < k2->type)
1571                return -1;
1572        if (k1->offset > k2->offset)
1573                return 1;
1574        if (k1->offset < k2->offset)
1575                return -1;
1576        return 0;
1577}
1578
1579/*
1580 * this is used by the defrag code to go through all the
1581 * leaves pointed to by a node and reallocate them so that
1582 * disk order is close to key order
1583 */
1584int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1585                       struct btrfs_root *root, struct extent_buffer *parent,
1586                       int start_slot, u64 *last_ret,
1587                       struct btrfs_key *progress)
1588{
1589        struct btrfs_fs_info *fs_info = root->fs_info;
1590        struct extent_buffer *cur;
1591        u64 blocknr;
1592        u64 gen;
1593        u64 search_start = *last_ret;
1594        u64 last_block = 0;
1595        u64 other;
1596        u32 parent_nritems;
1597        int end_slot;
1598        int i;
1599        int err = 0;
1600        int parent_level;
1601        int uptodate;
1602        u32 blocksize;
1603        int progress_passed = 0;
1604        struct btrfs_disk_key disk_key;
1605
1606        parent_level = btrfs_header_level(parent);
1607
1608        WARN_ON(trans->transaction != fs_info->running_transaction);
1609        WARN_ON(trans->transid != fs_info->generation);
1610
1611        parent_nritems = btrfs_header_nritems(parent);
1612        blocksize = fs_info->nodesize;
1613        end_slot = parent_nritems - 1;
1614
1615        if (parent_nritems <= 1)
1616                return 0;
1617
1618        btrfs_set_lock_blocking_write(parent);
1619
1620        for (i = start_slot; i <= end_slot; i++) {
1621                struct btrfs_key first_key;
1622                int close = 1;
1623
1624                btrfs_node_key(parent, &disk_key, i);
1625                if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1626                        continue;
1627
1628                progress_passed = 1;
1629                blocknr = btrfs_node_blockptr(parent, i);
1630                gen = btrfs_node_ptr_generation(parent, i);
1631                btrfs_node_key_to_cpu(parent, &first_key, i);
1632                if (last_block == 0)
1633                        last_block = blocknr;
1634
1635                if (i > 0) {
1636                        other = btrfs_node_blockptr(parent, i - 1);
1637                        close = close_blocks(blocknr, other, blocksize);
1638                }
1639                if (!close && i < end_slot) {
1640                        other = btrfs_node_blockptr(parent, i + 1);
1641                        close = close_blocks(blocknr, other, blocksize);
1642                }
1643                if (close) {
1644                        last_block = blocknr;
1645                        continue;
1646                }
1647
1648                cur = find_extent_buffer(fs_info, blocknr);
1649                if (cur)
1650                        uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1651                else
1652                        uptodate = 0;
1653                if (!cur || !uptodate) {
1654                        if (!cur) {
1655                                cur = read_tree_block(fs_info, blocknr, gen,
1656                                                      parent_level - 1,
1657                                                      &first_key);
1658                                if (IS_ERR(cur)) {
1659                                        return PTR_ERR(cur);
1660                                } else if (!extent_buffer_uptodate(cur)) {
1661                                        free_extent_buffer(cur);
1662                                        return -EIO;
1663                                }
1664                        } else if (!uptodate) {
1665                                err = btrfs_read_buffer(cur, gen,
1666                                                parent_level - 1,&first_key);
1667                                if (err) {
1668                                        free_extent_buffer(cur);
1669                                        return err;
1670                                }
1671                        }
1672                }
1673                if (search_start == 0)
1674                        search_start = last_block;
1675
1676                btrfs_tree_lock(cur);
1677                btrfs_set_lock_blocking_write(cur);
1678                err = __btrfs_cow_block(trans, root, cur, parent, i,
1679                                        &cur, search_start,
1680                                        min(16 * blocksize,
1681                                            (end_slot - i) * blocksize));
1682                if (err) {
1683                        btrfs_tree_unlock(cur);
1684                        free_extent_buffer(cur);
1685                        break;
1686                }
1687                search_start = cur->start;
1688                last_block = cur->start;
1689                *last_ret = search_start;
1690                btrfs_tree_unlock(cur);
1691                free_extent_buffer(cur);
1692        }
1693        return err;
1694}
1695
1696/*
1697 * search for key in the extent_buffer.  The items start at offset p,
1698 * and they are item_size apart.  There are 'max' items in p.
1699 *
1700 * the slot in the array is returned via slot, and it points to
1701 * the place where you would insert key if it is not found in
1702 * the array.
1703 *
1704 * slot may point to max if the key is bigger than all of the keys
1705 */
1706static noinline int generic_bin_search(struct extent_buffer *eb,
1707                                       unsigned long p, int item_size,
1708                                       const struct btrfs_key *key,
1709                                       int max, int *slot)
1710{
1711        int low = 0;
1712        int high = max;
1713        int mid;
1714        int ret;
1715        struct btrfs_disk_key *tmp = NULL;
1716        struct btrfs_disk_key unaligned;
1717        unsigned long offset;
1718        char *kaddr = NULL;
1719        unsigned long map_start = 0;
1720        unsigned long map_len = 0;
1721        int err;
1722
1723        if (low > high) {
1724                btrfs_err(eb->fs_info,
1725                 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1726                          __func__, low, high, eb->start,
1727                          btrfs_header_owner(eb), btrfs_header_level(eb));
1728                return -EINVAL;
1729        }
1730
1731        while (low < high) {
1732                mid = (low + high) / 2;
1733                offset = p + mid * item_size;
1734
1735                if (!kaddr || offset < map_start ||
1736                    (offset + sizeof(struct btrfs_disk_key)) >
1737                    map_start + map_len) {
1738
1739                        err = map_private_extent_buffer(eb, offset,
1740                                                sizeof(struct btrfs_disk_key),
1741                                                &kaddr, &map_start, &map_len);
1742
1743                        if (!err) {
1744                                tmp = (struct btrfs_disk_key *)(kaddr + offset -
1745                                                        map_start);
1746                        } else if (err == 1) {
1747                                read_extent_buffer(eb, &unaligned,
1748                                                   offset, sizeof(unaligned));
1749                                tmp = &unaligned;
1750                        } else {
1751                                return err;
1752                        }
1753
1754                } else {
1755                        tmp = (struct btrfs_disk_key *)(kaddr + offset -
1756                                                        map_start);
1757                }
1758                ret = comp_keys(tmp, key);
1759
1760                if (ret < 0)
1761                        low = mid + 1;
1762                else if (ret > 0)
1763                        high = mid;
1764                else {
1765                        *slot = mid;
1766                        return 0;
1767                }
1768        }
1769        *slot = low;
1770        return 1;
1771}
1772
1773/*
1774 * simple bin_search frontend that does the right thing for
1775 * leaves vs nodes
1776 */
1777int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
1778                     int level, int *slot)
1779{
1780        if (level == 0)
1781                return generic_bin_search(eb,
1782                                          offsetof(struct btrfs_leaf, items),
1783                                          sizeof(struct btrfs_item),
1784                                          key, btrfs_header_nritems(eb),
1785                                          slot);
1786        else
1787                return generic_bin_search(eb,
1788                                          offsetof(struct btrfs_node, ptrs),
1789                                          sizeof(struct btrfs_key_ptr),
1790                                          key, btrfs_header_nritems(eb),
1791                                          slot);
1792}
1793
1794static void root_add_used(struct btrfs_root *root, u32 size)
1795{
1796        spin_lock(&root->accounting_lock);
1797        btrfs_set_root_used(&root->root_item,
1798                            btrfs_root_used(&root->root_item) + size);
1799        spin_unlock(&root->accounting_lock);
1800}
1801
1802static void root_sub_used(struct btrfs_root *root, u32 size)
1803{
1804        spin_lock(&root->accounting_lock);
1805        btrfs_set_root_used(&root->root_item,
1806                            btrfs_root_used(&root->root_item) - size);
1807        spin_unlock(&root->accounting_lock);
1808}
1809
1810/* given a node and slot number, this reads the blocks it points to.  The
1811 * extent buffer is returned with a reference taken (but unlocked).
1812 */
1813struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
1814                                           int slot)
1815{
1816        int level = btrfs_header_level(parent);
1817        struct extent_buffer *eb;
1818        struct btrfs_key first_key;
1819
1820        if (slot < 0 || slot >= btrfs_header_nritems(parent))
1821                return ERR_PTR(-ENOENT);
1822
1823        BUG_ON(level == 0);
1824
1825        btrfs_node_key_to_cpu(parent, &first_key, slot);
1826        eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
1827                             btrfs_node_ptr_generation(parent, slot),
1828                             level - 1, &first_key);
1829        if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
1830                free_extent_buffer(eb);
1831                eb = ERR_PTR(-EIO);
1832        }
1833
1834        return eb;
1835}
1836
1837/*
1838 * node level balancing, used to make sure nodes are in proper order for
1839 * item deletion.  We balance from the top down, so we have to make sure
1840 * that a deletion won't leave an node completely empty later on.
1841 */
1842static noinline int balance_level(struct btrfs_trans_handle *trans,
1843                         struct btrfs_root *root,
1844                         struct btrfs_path *path, int level)
1845{
1846        struct btrfs_fs_info *fs_info = root->fs_info;
1847        struct extent_buffer *right = NULL;
1848        struct extent_buffer *mid;
1849        struct extent_buffer *left = NULL;
1850        struct extent_buffer *parent = NULL;
1851        int ret = 0;
1852        int wret;
1853        int pslot;
1854        int orig_slot = path->slots[level];
1855        u64 orig_ptr;
1856
1857        ASSERT(level > 0);
1858
1859        mid = path->nodes[level];
1860
1861        WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1862                path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1863        WARN_ON(btrfs_header_generation(mid) != trans->transid);
1864
1865        orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1866
1867        if (level < BTRFS_MAX_LEVEL - 1) {
1868                parent = path->nodes[level + 1];
1869                pslot = path->slots[level + 1];
1870        }
1871
1872        /*
1873         * deal with the case where there is only one pointer in the root
1874         * by promoting the node below to a root
1875         */
1876        if (!parent) {
1877                struct extent_buffer *child;
1878
1879                if (btrfs_header_nritems(mid) != 1)
1880                        return 0;
1881
1882                /* promote the child to a root */
1883                child = btrfs_read_node_slot(mid, 0);
1884                if (IS_ERR(child)) {
1885                        ret = PTR_ERR(child);
1886                        btrfs_handle_fs_error(fs_info, ret, NULL);
1887                        goto enospc;
1888                }
1889
1890                btrfs_tree_lock(child);
1891                btrfs_set_lock_blocking_write(child);
1892                ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1893                if (ret) {
1894                        btrfs_tree_unlock(child);
1895                        free_extent_buffer(child);
1896                        goto enospc;
1897                }
1898
1899                ret = tree_mod_log_insert_root(root->node, child, 1);
1900                BUG_ON(ret < 0);
1901                rcu_assign_pointer(root->node, child);
1902
1903                add_root_to_dirty_list(root);
1904                btrfs_tree_unlock(child);
1905
1906                path->locks[level] = 0;
1907                path->nodes[level] = NULL;
1908                btrfs_clean_tree_block(mid);
1909                btrfs_tree_unlock(mid);
1910                /* once for the path */
1911                free_extent_buffer(mid);
1912
1913                root_sub_used(root, mid->len);
1914                btrfs_free_tree_block(trans, root, mid, 0, 1);
1915                /* once for the root ptr */
1916                free_extent_buffer_stale(mid);
1917                return 0;
1918        }
1919        if (btrfs_header_nritems(mid) >
1920            BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1921                return 0;
1922
1923        left = btrfs_read_node_slot(parent, pslot - 1);
1924        if (IS_ERR(left))
1925                left = NULL;
1926
1927        if (left) {
1928                btrfs_tree_lock(left);
1929                btrfs_set_lock_blocking_write(left);
1930                wret = btrfs_cow_block(trans, root, left,
1931                                       parent, pslot - 1, &left);
1932                if (wret) {
1933                        ret = wret;
1934                        goto enospc;
1935                }
1936        }
1937
1938        right = btrfs_read_node_slot(parent, pslot + 1);
1939        if (IS_ERR(right))
1940                right = NULL;
1941
1942        if (right) {
1943                btrfs_tree_lock(right);
1944                btrfs_set_lock_blocking_write(right);
1945                wret = btrfs_cow_block(trans, root, right,
1946                                       parent, pslot + 1, &right);
1947                if (wret) {
1948                        ret = wret;
1949                        goto enospc;
1950                }
1951        }
1952
1953        /* first, try to make some room in the middle buffer */
1954        if (left) {
1955                orig_slot += btrfs_header_nritems(left);
1956                wret = push_node_left(trans, left, mid, 1);
1957                if (wret < 0)
1958                        ret = wret;
1959        }
1960
1961        /*
1962         * then try to empty the right most buffer into the middle
1963         */
1964        if (right) {
1965                wret = push_node_left(trans, mid, right, 1);
1966                if (wret < 0 && wret != -ENOSPC)
1967                        ret = wret;
1968                if (btrfs_header_nritems(right) == 0) {
1969                        btrfs_clean_tree_block(right);
1970                        btrfs_tree_unlock(right);
1971                        del_ptr(root, path, level + 1, pslot + 1);
1972                        root_sub_used(root, right->len);
1973                        btrfs_free_tree_block(trans, root, right, 0, 1);
1974                        free_extent_buffer_stale(right);
1975                        right = NULL;
1976                } else {
1977                        struct btrfs_disk_key right_key;
1978                        btrfs_node_key(right, &right_key, 0);
1979                        ret = tree_mod_log_insert_key(parent, pslot + 1,
1980                                        MOD_LOG_KEY_REPLACE, GFP_NOFS);
1981                        BUG_ON(ret < 0);
1982                        btrfs_set_node_key(parent, &right_key, pslot + 1);
1983                        btrfs_mark_buffer_dirty(parent);
1984                }
1985        }
1986        if (btrfs_header_nritems(mid) == 1) {
1987                /*
1988                 * we're not allowed to leave a node with one item in the
1989                 * tree during a delete.  A deletion from lower in the tree
1990                 * could try to delete the only pointer in this node.
1991                 * So, pull some keys from the left.
1992                 * There has to be a left pointer at this point because
1993                 * otherwise we would have pulled some pointers from the
1994                 * right
1995                 */
1996                if (!left) {
1997                        ret = -EROFS;
1998                        btrfs_handle_fs_error(fs_info, ret, NULL);
1999                        goto enospc;
2000                }
2001                wret = balance_node_right(trans, mid, left);
2002                if (wret < 0) {
2003                        ret = wret;
2004                        goto enospc;
2005                }
2006                if (wret == 1) {
2007                        wret = push_node_left(trans, left, mid, 1);
2008                        if (wret < 0)
2009                                ret = wret;
2010                }
2011                BUG_ON(wret == 1);
2012        }
2013        if (btrfs_header_nritems(mid) == 0) {
2014                btrfs_clean_tree_block(mid);
2015                btrfs_tree_unlock(mid);
2016                del_ptr(root, path, level + 1, pslot);
2017                root_sub_used(root, mid->len);
2018                btrfs_free_tree_block(trans, root, mid, 0, 1);
2019                free_extent_buffer_stale(mid);
2020                mid = NULL;
2021        } else {
2022                /* update the parent key to reflect our changes */
2023                struct btrfs_disk_key mid_key;
2024                btrfs_node_key(mid, &mid_key, 0);
2025                ret = tree_mod_log_insert_key(parent, pslot,
2026                                MOD_LOG_KEY_REPLACE, GFP_NOFS);
2027                BUG_ON(ret < 0);
2028                btrfs_set_node_key(parent, &mid_key, pslot);
2029                btrfs_mark_buffer_dirty(parent);
2030        }
2031
2032        /* update the path */
2033        if (left) {
2034                if (btrfs_header_nritems(left) > orig_slot) {
2035                        atomic_inc(&left->refs);
2036                        /* left was locked after cow */
2037                        path->nodes[level] = left;
2038                        path->slots[level + 1] -= 1;
2039                        path->slots[level] = orig_slot;
2040                        if (mid) {
2041                                btrfs_tree_unlock(mid);
2042                                free_extent_buffer(mid);
2043                        }
2044                } else {
2045                        orig_slot -= btrfs_header_nritems(left);
2046                        path->slots[level] = orig_slot;
2047                }
2048        }
2049        /* double check we haven't messed things up */
2050        if (orig_ptr !=
2051            btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2052                BUG();
2053enospc:
2054        if (right) {
2055                btrfs_tree_unlock(right);
2056                free_extent_buffer(right);
2057        }
2058        if (left) {
2059                if (path->nodes[level] != left)
2060                        btrfs_tree_unlock(left);
2061                free_extent_buffer(left);
2062        }
2063        return ret;
2064}
2065
2066/* Node balancing for insertion.  Here we only split or push nodes around
2067 * when they are completely full.  This is also done top down, so we
2068 * have to be pessimistic.
2069 */
2070static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2071                                          struct btrfs_root *root,
2072                                          struct btrfs_path *path, int level)
2073{
2074        struct btrfs_fs_info *fs_info = root->fs_info;
2075        struct extent_buffer *right = NULL;
2076        struct extent_buffer *mid;
2077        struct extent_buffer *left = NULL;
2078        struct extent_buffer *parent = NULL;
2079        int ret = 0;
2080        int wret;
2081        int pslot;
2082        int orig_slot = path->slots[level];
2083
2084        if (level == 0)
2085                return 1;
2086
2087        mid = path->nodes[level];
2088        WARN_ON(btrfs_header_generation(mid) != trans->transid);
2089
2090        if (level < BTRFS_MAX_LEVEL - 1) {
2091                parent = path->nodes[level + 1];
2092                pslot = path->slots[level + 1];
2093        }
2094
2095        if (!parent)
2096                return 1;
2097
2098        left = btrfs_read_node_slot(parent, pslot - 1);
2099        if (IS_ERR(left))
2100                left = NULL;
2101
2102        /* first, try to make some room in the middle buffer */
2103        if (left) {
2104                u32 left_nr;
2105
2106                btrfs_tree_lock(left);
2107                btrfs_set_lock_blocking_write(left);
2108
2109                left_nr = btrfs_header_nritems(left);
2110                if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2111                        wret = 1;
2112                } else {
2113                        ret = btrfs_cow_block(trans, root, left, parent,
2114                                              pslot - 1, &left);
2115                        if (ret)
2116                                wret = 1;
2117                        else {
2118                                wret = push_node_left(trans, left, mid, 0);
2119                        }
2120                }
2121                if (wret < 0)
2122                        ret = wret;
2123                if (wret == 0) {
2124                        struct btrfs_disk_key disk_key;
2125                        orig_slot += left_nr;
2126                        btrfs_node_key(mid, &disk_key, 0);
2127                        ret = tree_mod_log_insert_key(parent, pslot,
2128                                        MOD_LOG_KEY_REPLACE, GFP_NOFS);
2129                        BUG_ON(ret < 0);
2130                        btrfs_set_node_key(parent, &disk_key, pslot);
2131                        btrfs_mark_buffer_dirty(parent);
2132                        if (btrfs_header_nritems(left) > orig_slot) {
2133                                path->nodes[level] = left;
2134                                path->slots[level + 1] -= 1;
2135                                path->slots[level] = orig_slot;
2136                                btrfs_tree_unlock(mid);
2137                                free_extent_buffer(mid);
2138                        } else {
2139                                orig_slot -=
2140                                        btrfs_header_nritems(left);
2141                                path->slots[level] = orig_slot;
2142                                btrfs_tree_unlock(left);
2143                                free_extent_buffer(left);
2144                        }
2145                        return 0;
2146                }
2147                btrfs_tree_unlock(left);
2148                free_extent_buffer(left);
2149        }
2150        right = btrfs_read_node_slot(parent, pslot + 1);
2151        if (IS_ERR(right))
2152                right = NULL;
2153
2154        /*
2155         * then try to empty the right most buffer into the middle
2156         */
2157        if (right) {
2158                u32 right_nr;
2159
2160                btrfs_tree_lock(right);
2161                btrfs_set_lock_blocking_write(right);
2162
2163                right_nr = btrfs_header_nritems(right);
2164                if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2165                        wret = 1;
2166                } else {
2167                        ret = btrfs_cow_block(trans, root, right,
2168                                              parent, pslot + 1,
2169                                              &right);
2170                        if (ret)
2171                                wret = 1;
2172                        else {
2173                                wret = balance_node_right(trans, right, mid);
2174                        }
2175                }
2176                if (wret < 0)
2177                        ret = wret;
2178                if (wret == 0) {
2179                        struct btrfs_disk_key disk_key;
2180
2181                        btrfs_node_key(right, &disk_key, 0);
2182                        ret = tree_mod_log_insert_key(parent, pslot + 1,
2183                                        MOD_LOG_KEY_REPLACE, GFP_NOFS);
2184                        BUG_ON(ret < 0);
2185                        btrfs_set_node_key(parent, &disk_key, pslot + 1);
2186                        btrfs_mark_buffer_dirty(parent);
2187
2188                        if (btrfs_header_nritems(mid) <= orig_slot) {
2189                                path->nodes[level] = right;
2190                                path->slots[level + 1] += 1;
2191                                path->slots[level] = orig_slot -
2192                                        btrfs_header_nritems(mid);
2193                                btrfs_tree_unlock(mid);
2194                                free_extent_buffer(mid);
2195                        } else {
2196                                btrfs_tree_unlock(right);
2197                                free_extent_buffer(right);
2198                        }
2199                        return 0;
2200                }
2201                btrfs_tree_unlock(right);
2202                free_extent_buffer(right);
2203        }
2204        return 1;
2205}
2206
2207/*
2208 * readahead one full node of leaves, finding things that are close
2209 * to the block in 'slot', and triggering ra on them.
2210 */
2211static void reada_for_search(struct btrfs_fs_info *fs_info,
2212                             struct btrfs_path *path,
2213                             int level, int slot, u64 objectid)
2214{
2215        struct extent_buffer *node;
2216        struct btrfs_disk_key disk_key;
2217        u32 nritems;
2218        u64 search;
2219        u64 target;
2220        u64 nread = 0;
2221        struct extent_buffer *eb;
2222        u32 nr;
2223        u32 blocksize;
2224        u32 nscan = 0;
2225
2226        if (level != 1)
2227                return;
2228
2229        if (!path->nodes[level])
2230                return;
2231
2232        node = path->nodes[level];
2233
2234        search = btrfs_node_blockptr(node, slot);
2235        blocksize = fs_info->nodesize;
2236        eb = find_extent_buffer(fs_info, search);
2237        if (eb) {
2238                free_extent_buffer(eb);
2239                return;
2240        }
2241
2242        target = search;
2243
2244        nritems = btrfs_header_nritems(node);
2245        nr = slot;
2246
2247        while (1) {
2248                if (path->reada == READA_BACK) {
2249                        if (nr == 0)
2250                                break;
2251                        nr--;
2252                } else if (path->reada == READA_FORWARD) {
2253                        nr++;
2254                        if (nr >= nritems)
2255                                break;
2256                }
2257                if (path->reada == READA_BACK && objectid) {
2258                        btrfs_node_key(node, &disk_key, nr);
2259                        if (btrfs_disk_key_objectid(&disk_key) != objectid)
2260                                break;
2261                }
2262                search = btrfs_node_blockptr(node, nr);
2263                if ((search <= target && target - search <= 65536) ||
2264                    (search > target && search - target <= 65536)) {
2265                        readahead_tree_block(fs_info, search);
2266                        nread += blocksize;
2267                }
2268                nscan++;
2269                if ((nread > 65536 || nscan > 32))
2270                        break;
2271        }
2272}
2273
2274static noinline void reada_for_balance(struct btrfs_fs_info *fs_info,
2275                                       struct btrfs_path *path, int level)
2276{
2277        int slot;
2278        int nritems;
2279        struct extent_buffer *parent;
2280        struct extent_buffer *eb;
2281        u64 gen;
2282        u64 block1 = 0;
2283        u64 block2 = 0;
2284
2285        parent = path->nodes[level + 1];
2286        if (!parent)
2287                return;
2288
2289        nritems = btrfs_header_nritems(parent);
2290        slot = path->slots[level + 1];
2291
2292        if (slot > 0) {
2293                block1 = btrfs_node_blockptr(parent, slot - 1);
2294                gen = btrfs_node_ptr_generation(parent, slot - 1);
2295                eb = find_extent_buffer(fs_info, block1);
2296                /*
2297                 * if we get -eagain from btrfs_buffer_uptodate, we
2298                 * don't want to return eagain here.  That will loop
2299                 * forever
2300                 */
2301                if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2302                        block1 = 0;
2303                free_extent_buffer(eb);
2304        }
2305        if (slot + 1 < nritems) {
2306                block2 = btrfs_node_blockptr(parent, slot + 1);
2307                gen = btrfs_node_ptr_generation(parent, slot + 1);
2308                eb = find_extent_buffer(fs_info, block2);
2309                if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2310                        block2 = 0;
2311                free_extent_buffer(eb);
2312        }
2313
2314        if (block1)
2315                readahead_tree_block(fs_info, block1);
2316        if (block2)
2317                readahead_tree_block(fs_info, block2);
2318}
2319
2320
2321/*
2322 * when we walk down the tree, it is usually safe to unlock the higher layers
2323 * in the tree.  The exceptions are when our path goes through slot 0, because
2324 * operations on the tree might require changing key pointers higher up in the
2325 * tree.
2326 *
2327 * callers might also have set path->keep_locks, which tells this code to keep
2328 * the lock if the path points to the last slot in the block.  This is part of
2329 * walking through the tree, and selecting the next slot in the higher block.
2330 *
2331 * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2332 * if lowest_unlock is 1, level 0 won't be unlocked
2333 */
2334static noinline void unlock_up(struct btrfs_path *path, int level,
2335                               int lowest_unlock, int min_write_lock_level,
2336                               int *write_lock_level)
2337{
2338        int i;
2339        int skip_level = level;
2340        int no_skips = 0;
2341        struct extent_buffer *t;
2342
2343        for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2344                if (!path->nodes[i])
2345                        break;
2346                if (!path->locks[i])
2347                        break;
2348                if (!no_skips && path->slots[i] == 0) {
2349                        skip_level = i + 1;
2350                        continue;
2351                }
2352                if (!no_skips && path->keep_locks) {
2353                        u32 nritems;
2354                        t = path->nodes[i];
2355                        nritems = btrfs_header_nritems(t);
2356                        if (nritems < 1 || path->slots[i] >= nritems - 1) {
2357                                skip_level = i + 1;
2358                                continue;
2359                        }
2360                }
2361                if (skip_level < i && i >= lowest_unlock)
2362                        no_skips = 1;
2363
2364                t = path->nodes[i];
2365                if (i >= lowest_unlock && i > skip_level) {
2366                        btrfs_tree_unlock_rw(t, path->locks[i]);
2367                        path->locks[i] = 0;
2368                        if (write_lock_level &&
2369                            i > min_write_lock_level &&
2370                            i <= *write_lock_level) {
2371                                *write_lock_level = i - 1;
2372                        }
2373                }
2374        }
2375}
2376
2377/*
2378 * helper function for btrfs_search_slot.  The goal is to find a block
2379 * in cache without setting the path to blocking.  If we find the block
2380 * we return zero and the path is unchanged.
2381 *
2382 * If we can't find the block, we set the path blocking and do some
2383 * reada.  -EAGAIN is returned and the search must be repeated.
2384 */
2385static int
2386read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
2387                      struct extent_buffer **eb_ret, int level, int slot,
2388                      const struct btrfs_key *key)
2389{
2390        struct btrfs_fs_info *fs_info = root->fs_info;
2391        u64 blocknr;
2392        u64 gen;
2393        struct extent_buffer *b = *eb_ret;
2394        struct extent_buffer *tmp;
2395        struct btrfs_key first_key;
2396        int ret;
2397        int parent_level;
2398
2399        blocknr = btrfs_node_blockptr(b, slot);
2400        gen = btrfs_node_ptr_generation(b, slot);
2401        parent_level = btrfs_header_level(b);
2402        btrfs_node_key_to_cpu(b, &first_key, slot);
2403
2404        tmp = find_extent_buffer(fs_info, blocknr);
2405        if (tmp) {
2406                /* first we do an atomic uptodate check */
2407                if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2408                        /*
2409                         * Do extra check for first_key, eb can be stale due to
2410                         * being cached, read from scrub, or have multiple
2411                         * parents (shared tree blocks).
2412                         */
2413                        if (btrfs_verify_level_key(tmp,
2414                                        parent_level - 1, &first_key, gen)) {
2415                                free_extent_buffer(tmp);
2416                                return -EUCLEAN;
2417                        }
2418                        *eb_ret = tmp;
2419                        return 0;
2420                }
2421
2422                /* the pages were up to date, but we failed
2423                 * the generation number check.  Do a full
2424                 * read for the generation number that is correct.
2425                 * We must do this without dropping locks so
2426                 * we can trust our generation number
2427                 */
2428                btrfs_set_path_blocking(p);
2429
2430                /* now we're allowed to do a blocking uptodate check */
2431                ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
2432                if (!ret) {
2433                        *eb_ret = tmp;
2434                        return 0;
2435                }
2436                free_extent_buffer(tmp);
2437                btrfs_release_path(p);
2438                return -EIO;
2439        }
2440
2441        /*
2442         * reduce lock contention at high levels
2443         * of the btree by dropping locks before
2444         * we read.  Don't release the lock on the current
2445         * level because we need to walk this node to figure
2446         * out which blocks to read.
2447         */
2448        btrfs_unlock_up_safe(p, level + 1);
2449        btrfs_set_path_blocking(p);
2450
2451        if (p->reada != READA_NONE)
2452                reada_for_search(fs_info, p, level, slot, key->objectid);
2453
2454        ret = -EAGAIN;
2455        tmp = read_tree_block(fs_info, blocknr, gen, parent_level - 1,
2456                              &first_key);
2457        if (!IS_ERR(tmp)) {
2458                /*
2459                 * If the read above didn't mark this buffer up to date,
2460                 * it will never end up being up to date.  Set ret to EIO now
2461                 * and give up so that our caller doesn't loop forever
2462                 * on our EAGAINs.
2463                 */
2464                if (!extent_buffer_uptodate(tmp))
2465                        ret = -EIO;
2466                free_extent_buffer(tmp);
2467        } else {
2468                ret = PTR_ERR(tmp);
2469        }
2470
2471        btrfs_release_path(p);
2472        return ret;
2473}
2474
2475/*
2476 * helper function for btrfs_search_slot.  This does all of the checks
2477 * for node-level blocks and does any balancing required based on
2478 * the ins_len.
2479 *
2480 * If no extra work was required, zero is returned.  If we had to
2481 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2482 * start over
2483 */
2484static int
2485setup_nodes_for_search(struct btrfs_trans_handle *trans,
2486                       struct btrfs_root *root, struct btrfs_path *p,
2487                       struct extent_buffer *b, int level, int ins_len,
2488                       int *write_lock_level)
2489{
2490        struct btrfs_fs_info *fs_info = root->fs_info;
2491        int ret;
2492
2493        if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2494            BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
2495                int sret;
2496
2497                if (*write_lock_level < level + 1) {
2498                        *write_lock_level = level + 1;
2499                        btrfs_release_path(p);
2500                        goto again;
2501                }
2502
2503                btrfs_set_path_blocking(p);
2504                reada_for_balance(fs_info, p, level);
2505                sret = split_node(trans, root, p, level);
2506
2507                BUG_ON(sret > 0);
2508                if (sret) {
2509                        ret = sret;
2510                        goto done;
2511                }
2512                b = p->nodes[level];
2513        } else if (ins_len < 0 && btrfs_header_nritems(b) <
2514                   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
2515                int sret;
2516
2517                if (*write_lock_level < level + 1) {
2518                        *write_lock_level = level + 1;
2519                        btrfs_release_path(p);
2520                        goto again;
2521                }
2522
2523                btrfs_set_path_blocking(p);
2524                reada_for_balance(fs_info, p, level);
2525                sret = balance_level(trans, root, p, level);
2526
2527                if (sret) {
2528                        ret = sret;
2529                        goto done;
2530                }
2531                b = p->nodes[level];
2532                if (!b) {
2533                        btrfs_release_path(p);
2534                        goto again;
2535                }
2536                BUG_ON(btrfs_header_nritems(b) == 1);
2537        }
2538        return 0;
2539
2540again:
2541        ret = -EAGAIN;
2542done:
2543        return ret;
2544}
2545
2546static int key_search(struct extent_buffer *b, const struct btrfs_key *key,
2547                      int level, int *prev_cmp, int *slot)
2548{
2549        if (*prev_cmp != 0) {
2550                *prev_cmp = btrfs_bin_search(b, key, level, slot);
2551                return *prev_cmp;
2552        }
2553
2554        *slot = 0;
2555
2556        return 0;
2557}
2558
2559int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2560                u64 iobjectid, u64 ioff, u8 key_type,
2561                struct btrfs_key *found_key)
2562{
2563        int ret;
2564        struct btrfs_key key;
2565        struct extent_buffer *eb;
2566
2567        ASSERT(path);
2568        ASSERT(found_key);
2569
2570        key.type = key_type;
2571        key.objectid = iobjectid;
2572        key.offset = ioff;
2573
2574        ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2575        if (ret < 0)
2576                return ret;
2577
2578        eb = path->nodes[0];
2579        if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2580                ret = btrfs_next_leaf(fs_root, path);
2581                if (ret)
2582                        return ret;
2583                eb = path->nodes[0];
2584        }
2585
2586        btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2587        if (found_key->type != key.type ||
2588                        found_key->objectid != key.objectid)
2589                return 1;
2590
2591        return 0;
2592}
2593
2594static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
2595                                                        struct btrfs_path *p,
2596                                                        int write_lock_level)
2597{
2598        struct btrfs_fs_info *fs_info = root->fs_info;
2599        struct extent_buffer *b;
2600        int root_lock;
2601        int level = 0;
2602
2603        /* We try very hard to do read locks on the root */
2604        root_lock = BTRFS_READ_LOCK;
2605
2606        if (p->search_commit_root) {
2607                /*
2608                 * The commit roots are read only so we always do read locks,
2609                 * and we always must hold the commit_root_sem when doing
2610                 * searches on them, the only exception is send where we don't
2611                 * want to block transaction commits for a long time, so
2612                 * we need to clone the commit root in order to avoid races
2613                 * with transaction commits that create a snapshot of one of
2614                 * the roots used by a send operation.
2615                 */
2616                if (p->need_commit_sem) {
2617                        down_read(&fs_info->commit_root_sem);
2618                        b = btrfs_clone_extent_buffer(root->commit_root);
2619                        up_read(&fs_info->commit_root_sem);
2620                        if (!b)
2621                                return ERR_PTR(-ENOMEM);
2622
2623                } else {
2624                        b = root->commit_root;
2625                        atomic_inc(&b->refs);
2626                }
2627                level = btrfs_header_level(b);
2628                /*
2629                 * Ensure that all callers have set skip_locking when
2630                 * p->search_commit_root = 1.
2631                 */
2632                ASSERT(p->skip_locking == 1);
2633
2634                goto out;
2635        }
2636
2637        if (p->skip_locking) {
2638                b = btrfs_root_node(root);
2639                level = btrfs_header_level(b);
2640                goto out;
2641        }
2642
2643        /*
2644         * If the level is set to maximum, we can skip trying to get the read
2645         * lock.
2646         */
2647        if (write_lock_level < BTRFS_MAX_LEVEL) {
2648                /*
2649                 * We don't know the level of the root node until we actually
2650                 * have it read locked
2651                 */
2652                b = btrfs_read_lock_root_node(root);
2653                level = btrfs_header_level(b);
2654                if (level > write_lock_level)
2655                        goto out;
2656
2657                /* Whoops, must trade for write lock */
2658                btrfs_tree_read_unlock(b);
2659                free_extent_buffer(b);
2660        }
2661
2662        b = btrfs_lock_root_node(root);
2663        root_lock = BTRFS_WRITE_LOCK;
2664
2665        /* The level might have changed, check again */
2666        level = btrfs_header_level(b);
2667
2668out:
2669        p->nodes[level] = b;
2670        if (!p->skip_locking)
2671                p->locks[level] = root_lock;
2672        /*
2673         * Callers are responsible for dropping b's references.
2674         */
2675        return b;
2676}
2677
2678
2679/*
2680 * btrfs_search_slot - look for a key in a tree and perform necessary
2681 * modifications to preserve tree invariants.
2682 *
2683 * @trans:      Handle of transaction, used when modifying the tree
2684 * @p:          Holds all btree nodes along the search path
2685 * @root:       The root node of the tree
2686 * @key:        The key we are looking for
2687 * @ins_len:    Indicates purpose of search, for inserts it is 1, for
2688 *              deletions it's -1. 0 for plain searches
2689 * @cow:        boolean should CoW operations be performed. Must always be 1
2690 *              when modifying the tree.
2691 *
2692 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2693 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2694 *
2695 * If @key is found, 0 is returned and you can find the item in the leaf level
2696 * of the path (level 0)
2697 *
2698 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2699 * points to the slot where it should be inserted
2700 *
2701 * If an error is encountered while searching the tree a negative error number
2702 * is returned
2703 */
2704int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2705                      const struct btrfs_key *key, struct btrfs_path *p,
2706                      int ins_len, int cow)
2707{
2708        struct extent_buffer *b;
2709        int slot;
2710        int ret;
2711        int err;
2712        int level;
2713        int lowest_unlock = 1;
2714        /* everything at write_lock_level or lower must be write locked */
2715        int write_lock_level = 0;
2716        u8 lowest_level = 0;
2717        int min_write_lock_level;
2718        int prev_cmp;
2719
2720        lowest_level = p->lowest_level;
2721        WARN_ON(lowest_level && ins_len > 0);
2722        WARN_ON(p->nodes[0] != NULL);
2723        BUG_ON(!cow && ins_len);
2724
2725        if (ins_len < 0) {
2726                lowest_unlock = 2;
2727
2728                /* when we are removing items, we might have to go up to level
2729                 * two as we update tree pointers  Make sure we keep write
2730                 * for those levels as well
2731                 */
2732                write_lock_level = 2;
2733        } else if (ins_len > 0) {
2734                /*
2735                 * for inserting items, make sure we have a write lock on
2736                 * level 1 so we can update keys
2737                 */
2738                write_lock_level = 1;
2739        }
2740
2741        if (!cow)
2742                write_lock_level = -1;
2743
2744        if (cow && (p->keep_locks || p->lowest_level))
2745                write_lock_level = BTRFS_MAX_LEVEL;
2746
2747        min_write_lock_level = write_lock_level;
2748
2749again:
2750        prev_cmp = -1;
2751        b = btrfs_search_slot_get_root(root, p, write_lock_level);
2752        if (IS_ERR(b)) {
2753                ret = PTR_ERR(b);
2754                goto done;
2755        }
2756
2757        while (b) {
2758                int dec = 0;
2759
2760                level = btrfs_header_level(b);
2761
2762                if (cow) {
2763                        bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2764
2765                        /*
2766                         * if we don't really need to cow this block
2767                         * then we don't want to set the path blocking,
2768                         * so we test it here
2769                         */
2770                        if (!should_cow_block(trans, root, b)) {
2771                                trans->dirty = true;
2772                                goto cow_done;
2773                        }
2774
2775                        /*
2776                         * must have write locks on this node and the
2777                         * parent
2778                         */
2779                        if (level > write_lock_level ||
2780                            (level + 1 > write_lock_level &&
2781                            level + 1 < BTRFS_MAX_LEVEL &&
2782                            p->nodes[level + 1])) {
2783                                write_lock_level = level + 1;
2784                                btrfs_release_path(p);
2785                                goto again;
2786                        }
2787
2788                        btrfs_set_path_blocking(p);
2789                        if (last_level)
2790                                err = btrfs_cow_block(trans, root, b, NULL, 0,
2791                                                      &b);
2792                        else
2793                                err = btrfs_cow_block(trans, root, b,
2794                                                      p->nodes[level + 1],
2795                                                      p->slots[level + 1], &b);
2796                        if (err) {
2797                                ret = err;
2798                                goto done;
2799                        }
2800                }
2801cow_done:
2802                p->nodes[level] = b;
2803                /*
2804                 * Leave path with blocking locks to avoid massive
2805                 * lock context switch, this is made on purpose.
2806                 */
2807
2808                /*
2809                 * we have a lock on b and as long as we aren't changing
2810                 * the tree, there is no way to for the items in b to change.
2811                 * It is safe to drop the lock on our parent before we
2812                 * go through the expensive btree search on b.
2813                 *
2814                 * If we're inserting or deleting (ins_len != 0), then we might
2815                 * be changing slot zero, which may require changing the parent.
2816                 * So, we can't drop the lock until after we know which slot
2817                 * we're operating on.
2818                 */
2819                if (!ins_len && !p->keep_locks) {
2820                        int u = level + 1;
2821
2822                        if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2823                                btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2824                                p->locks[u] = 0;
2825                        }
2826                }
2827
2828                ret = key_search(b, key, level, &prev_cmp, &slot);
2829                if (ret < 0)
2830                        goto done;
2831
2832                if (level == 0) {
2833                        p->slots[level] = slot;
2834                        if (ins_len > 0 &&
2835                            btrfs_leaf_free_space(b) < ins_len) {
2836                                if (write_lock_level < 1) {
2837                                        write_lock_level = 1;
2838                                        btrfs_release_path(p);
2839                                        goto again;
2840                                }
2841
2842                                btrfs_set_path_blocking(p);
2843                                err = split_leaf(trans, root, key,
2844                                                 p, ins_len, ret == 0);
2845
2846                                BUG_ON(err > 0);
2847                                if (err) {
2848                                        ret = err;
2849                                        goto done;
2850                                }
2851                        }
2852                        if (!p->search_for_split)
2853                                unlock_up(p, level, lowest_unlock,
2854                                          min_write_lock_level, NULL);
2855                        goto done;
2856                }
2857                if (ret && slot > 0) {
2858                        dec = 1;
2859                        slot--;
2860                }
2861                p->slots[level] = slot;
2862                err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
2863                                             &write_lock_level);
2864                if (err == -EAGAIN)
2865                        goto again;
2866                if (err) {
2867                        ret = err;
2868                        goto done;
2869                }
2870                b = p->nodes[level];
2871                slot = p->slots[level];
2872
2873                /*
2874                 * Slot 0 is special, if we change the key we have to update
2875                 * the parent pointer which means we must have a write lock on
2876                 * the parent
2877                 */
2878                if (slot == 0 && ins_len && write_lock_level < level + 1) {
2879                        write_lock_level = level + 1;
2880                        btrfs_release_path(p);
2881                        goto again;
2882                }
2883
2884                unlock_up(p, level, lowest_unlock, min_write_lock_level,
2885                          &write_lock_level);
2886
2887                if (level == lowest_level) {
2888                        if (dec)
2889                                p->slots[level]++;
2890                        goto done;
2891                }
2892
2893                err = read_block_for_search(root, p, &b, level, slot, key);
2894                if (err == -EAGAIN)
2895                        goto again;
2896                if (err) {
2897                        ret = err;
2898                        goto done;
2899                }
2900
2901                if (!p->skip_locking) {
2902                        level = btrfs_header_level(b);
2903                        if (level <= write_lock_level) {
2904                                if (!btrfs_try_tree_write_lock(b)) {
2905                                        btrfs_set_path_blocking(p);
2906                                        btrfs_tree_lock(b);
2907                                }
2908                                p->locks[level] = BTRFS_WRITE_LOCK;
2909                        } else {
2910                                if (!btrfs_tree_read_lock_atomic(b)) {
2911                                        btrfs_set_path_blocking(p);
2912                                        btrfs_tree_read_lock(b);
2913                                }
2914                                p->locks[level] = BTRFS_READ_LOCK;
2915                        }
2916                        p->nodes[level] = b;
2917                }
2918        }
2919        ret = 1;
2920done:
2921        /*
2922         * we don't really know what they plan on doing with the path
2923         * from here on, so for now just mark it as blocking
2924         */
2925        if (!p->leave_spinning)
2926                btrfs_set_path_blocking(p);
2927        if (ret < 0 && !p->skip_release_on_error)
2928                btrfs_release_path(p);
2929        return ret;
2930}
2931
2932/*
2933 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2934 * current state of the tree together with the operations recorded in the tree
2935 * modification log to search for the key in a previous version of this tree, as
2936 * denoted by the time_seq parameter.
2937 *
2938 * Naturally, there is no support for insert, delete or cow operations.
2939 *
2940 * The resulting path and return value will be set up as if we called
2941 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2942 */
2943int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2944                          struct btrfs_path *p, u64 time_seq)
2945{
2946        struct btrfs_fs_info *fs_info = root->fs_info;
2947        struct extent_buffer *b;
2948        int slot;
2949        int ret;
2950        int err;
2951        int level;
2952        int lowest_unlock = 1;
2953        u8 lowest_level = 0;
2954        int prev_cmp = -1;
2955
2956        lowest_level = p->lowest_level;
2957        WARN_ON(p->nodes[0] != NULL);
2958
2959        if (p->search_commit_root) {
2960                BUG_ON(time_seq);
2961                return btrfs_search_slot(NULL, root, key, p, 0, 0);
2962        }
2963
2964again:
2965        b = get_old_root(root, time_seq);
2966        if (!b) {
2967                ret = -EIO;
2968                goto done;
2969        }
2970        level = btrfs_header_level(b);
2971        p->locks[level] = BTRFS_READ_LOCK;
2972
2973        while (b) {
2974                int dec = 0;
2975
2976                level = btrfs_header_level(b);
2977                p->nodes[level] = b;
2978
2979                /*
2980                 * we have a lock on b and as long as we aren't changing
2981                 * the tree, there is no way to for the items in b to change.
2982                 * It is safe to drop the lock on our parent before we
2983                 * go through the expensive btree search on b.
2984                 */
2985                btrfs_unlock_up_safe(p, level + 1);
2986
2987                /*
2988                 * Since we can unwind ebs we want to do a real search every
2989                 * time.
2990                 */
2991                prev_cmp = -1;
2992                ret = key_search(b, key, level, &prev_cmp, &slot);
2993                if (ret < 0)
2994                        goto done;
2995
2996                if (level == 0) {
2997                        p->slots[level] = slot;
2998                        unlock_up(p, level, lowest_unlock, 0, NULL);
2999                        goto done;
3000                }
3001
3002                if (ret && slot > 0) {
3003                        dec = 1;
3004                        slot--;
3005                }
3006                p->slots[level] = slot;
3007                unlock_up(p, level, lowest_unlock, 0, NULL);
3008
3009                if (level == lowest_level) {
3010                        if (dec)
3011                                p->slots[level]++;
3012                        goto done;
3013                }
3014
3015                err = read_block_for_search(root, p, &b, level, slot, key);
3016                if (err == -EAGAIN)
3017                        goto again;
3018                if (err) {
3019                        ret = err;
3020                        goto done;
3021                }
3022
3023                level = btrfs_header_level(b);
3024                if (!btrfs_tree_read_lock_atomic(b)) {
3025                        btrfs_set_path_blocking(p);
3026                        btrfs_tree_read_lock(b);
3027                }
3028                b = tree_mod_log_rewind(fs_info, p, b, time_seq);
3029                if (!b) {
3030                        ret = -ENOMEM;
3031                        goto done;
3032                }
3033                p->locks[level] = BTRFS_READ_LOCK;
3034                p->nodes[level] = b;
3035        }
3036        ret = 1;
3037done:
3038        if (!p->leave_spinning)
3039                btrfs_set_path_blocking(p);
3040        if (ret < 0)
3041                btrfs_release_path(p);
3042
3043        return ret;
3044}
3045
3046/*
3047 * helper to use instead of search slot if no exact match is needed but
3048 * instead the next or previous item should be returned.
3049 * When find_higher is true, the next higher item is returned, the next lower
3050 * otherwise.
3051 * When return_any and find_higher are both true, and no higher item is found,
3052 * return the next lower instead.
3053 * When return_any is true and find_higher is false, and no lower item is found,
3054 * return the next higher instead.
3055 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3056 * < 0 on error
3057 */
3058int btrfs_search_slot_for_read(struct btrfs_root *root,
3059                               const struct btrfs_key *key,
3060                               struct btrfs_path *p, int find_higher,
3061                               int return_any)
3062{
3063        int ret;
3064        struct extent_buffer *leaf;
3065
3066again:
3067        ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3068        if (ret <= 0)
3069                return ret;
3070        /*
3071         * a return value of 1 means the path is at the position where the
3072         * item should be inserted. Normally this is the next bigger item,
3073         * but in case the previous item is the last in a leaf, path points
3074         * to the first free slot in the previous leaf, i.e. at an invalid
3075         * item.
3076         */
3077        leaf = p->nodes[0];
3078
3079        if (find_higher) {
3080                if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3081                        ret = btrfs_next_leaf(root, p);
3082                        if (ret <= 0)
3083                                return ret;
3084                        if (!return_any)
3085                                return 1;
3086                        /*
3087                         * no higher item found, return the next
3088                         * lower instead
3089                         */
3090                        return_any = 0;
3091                        find_higher = 0;
3092                        btrfs_release_path(p);
3093                        goto again;
3094                }
3095        } else {
3096                if (p->slots[0] == 0) {
3097                        ret = btrfs_prev_leaf(root, p);
3098                        if (ret < 0)
3099                                return ret;
3100                        if (!ret) {
3101                                leaf = p->nodes[0];
3102                                if (p->slots[0] == btrfs_header_nritems(leaf))
3103                                        p->slots[0]--;
3104                                return 0;
3105                        }
3106                        if (!return_any)
3107                                return 1;
3108                        /*
3109                         * no lower item found, return the next
3110                         * higher instead
3111                         */
3112                        return_any = 0;
3113                        find_higher = 1;
3114                        btrfs_release_path(p);
3115                        goto again;
3116                } else {
3117                        --p->slots[0];
3118                }
3119        }
3120        return 0;
3121}
3122
3123/*
3124 * adjust the pointers going up the tree, starting at level
3125 * making sure the right key of each node is points to 'key'.
3126 * This is used after shifting pointers to the left, so it stops
3127 * fixing up pointers when a given leaf/node is not in slot 0 of the
3128 * higher levels
3129 *
3130 */
3131static void fixup_low_keys(struct btrfs_path *path,
3132                           struct btrfs_disk_key *key, int level)
3133{
3134        int i;
3135        struct extent_buffer *t;
3136        int ret;
3137
3138        for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3139                int tslot = path->slots[i];
3140
3141                if (!path->nodes[i])
3142                        break;
3143                t = path->nodes[i];
3144                ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE,
3145                                GFP_ATOMIC);
3146                BUG_ON(ret < 0);
3147                btrfs_set_node_key(t, key, tslot);
3148                btrfs_mark_buffer_dirty(path->nodes[i]);
3149                if (tslot != 0)
3150                        break;
3151        }
3152}
3153
3154/*
3155 * update item key.
3156 *
3157 * This function isn't completely safe. It's the caller's responsibility
3158 * that the new key won't break the order
3159 */
3160void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3161                             struct btrfs_path *path,
3162                             const struct btrfs_key *new_key)
3163{
3164        struct btrfs_disk_key disk_key;
3165        struct extent_buffer *eb;
3166        int slot;
3167
3168        eb = path->nodes[0];
3169        slot = path->slots[0];
3170        if (slot > 0) {
3171                btrfs_item_key(eb, &disk_key, slot - 1);
3172                if (unlikely(comp_keys(&disk_key, new_key) >= 0)) {
3173                        btrfs_crit(fs_info,
3174                "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
3175                                   slot, btrfs_disk_key_objectid(&disk_key),
3176                                   btrfs_disk_key_type(&disk_key),
3177                                   btrfs_disk_key_offset(&disk_key),
3178                                   new_key->objectid, new_key->type,
3179                                   new_key->offset);
3180                        btrfs_print_leaf(eb);
3181                        BUG();
3182                }
3183        }
3184        if (slot < btrfs_header_nritems(eb) - 1) {
3185                btrfs_item_key(eb, &disk_key, slot + 1);
3186                if (unlikely(comp_keys(&disk_key, new_key) <= 0)) {
3187                        btrfs_crit(fs_info,
3188                "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
3189                                   slot, btrfs_disk_key_objectid(&disk_key),
3190                                   btrfs_disk_key_type(&disk_key),
3191                                   btrfs_disk_key_offset(&disk_key),
3192                                   new_key->objectid, new_key->type,
3193                                   new_key->offset);
3194                        btrfs_print_leaf(eb);
3195                        BUG();
3196                }
3197        }
3198
3199        btrfs_cpu_key_to_disk(&disk_key, new_key);
3200        btrfs_set_item_key(eb, &disk_key, slot);
3201        btrfs_mark_buffer_dirty(eb);
3202        if (slot == 0)
3203                fixup_low_keys(path, &disk_key, 1);
3204}
3205
3206/*
3207 * try to push data from one node into the next node left in the
3208 * tree.
3209 *
3210 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3211 * error, and > 0 if there was no room in the left hand block.
3212 */
3213static int push_node_left(struct btrfs_trans_handle *trans,
3214                          struct extent_buffer *dst,
3215                          struct extent_buffer *src, int empty)
3216{
3217        struct btrfs_fs_info *fs_info = trans->fs_info;
3218        int push_items = 0;
3219        int src_nritems;
3220        int dst_nritems;
3221        int ret = 0;
3222
3223        src_nritems = btrfs_header_nritems(src);
3224        dst_nritems = btrfs_header_nritems(dst);
3225        push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3226        WARN_ON(btrfs_header_generation(src) != trans->transid);
3227        WARN_ON(btrfs_header_generation(dst) != trans->transid);
3228
3229        if (!empty && src_nritems <= 8)
3230                return 1;
3231
3232        if (push_items <= 0)
3233                return 1;
3234
3235        if (empty) {
3236                push_items = min(src_nritems, push_items);
3237                if (push_items < src_nritems) {
3238                        /* leave at least 8 pointers in the node if
3239                         * we aren't going to empty it
3240                         */
3241                        if (src_nritems - push_items < 8) {
3242                                if (push_items <= 8)
3243                                        return 1;
3244                                push_items -= 8;
3245                        }
3246                }
3247        } else
3248                push_items = min(src_nritems - 8, push_items);
3249
3250        ret = tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
3251        if (ret) {
3252                btrfs_abort_transaction(trans, ret);
3253                return ret;
3254        }
3255        copy_extent_buffer(dst, src,
3256                           btrfs_node_key_ptr_offset(dst_nritems),
3257                           btrfs_node_key_ptr_offset(0),
3258                           push_items * sizeof(struct btrfs_key_ptr));
3259
3260        if (push_items < src_nritems) {
3261                /*
3262                 * Don't call tree_mod_log_insert_move here, key removal was
3263                 * already fully logged by tree_mod_log_eb_copy above.
3264                 */
3265                memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3266                                      btrfs_node_key_ptr_offset(push_items),
3267                                      (src_nritems - push_items) *
3268                                      sizeof(struct btrfs_key_ptr));
3269        }
3270        btrfs_set_header_nritems(src, src_nritems - push_items);
3271        btrfs_set_header_nritems(dst, dst_nritems + push_items);
3272        btrfs_mark_buffer_dirty(src);
3273        btrfs_mark_buffer_dirty(dst);
3274
3275        return ret;
3276}
3277
3278/*
3279 * try to push data from one node into the next node right in the
3280 * tree.
3281 *
3282 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3283 * error, and > 0 if there was no room in the right hand block.
3284 *
3285 * this will  only push up to 1/2 the contents of the left node over
3286 */
3287static int balance_node_right(struct btrfs_trans_handle *trans,
3288                              struct extent_buffer *dst,
3289                              struct extent_buffer *src)
3290{
3291        struct btrfs_fs_info *fs_info = trans->fs_info;
3292        int push_items = 0;
3293        int max_push;
3294        int src_nritems;
3295        int dst_nritems;
3296        int ret = 0;
3297
3298        WARN_ON(btrfs_header_generation(src) != trans->transid);
3299        WARN_ON(btrfs_header_generation(dst) != trans->transid);
3300
3301        src_nritems = btrfs_header_nritems(src);
3302        dst_nritems = btrfs_header_nritems(dst);
3303        push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3304        if (push_items <= 0)
3305                return 1;
3306
3307        if (src_nritems < 4)
3308                return 1;
3309
3310        max_push = src_nritems / 2 + 1;
3311        /* don't try to empty the node */
3312        if (max_push >= src_nritems)
3313                return 1;
3314
3315        if (max_push < push_items)
3316                push_items = max_push;
3317
3318        ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
3319        BUG_ON(ret < 0);
3320        memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3321                                      btrfs_node_key_ptr_offset(0),
3322                                      (dst_nritems) *
3323                                      sizeof(struct btrfs_key_ptr));
3324
3325        ret = tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
3326                                   push_items);
3327        if (ret) {
3328                btrfs_abort_transaction(trans, ret);
3329                return ret;
3330        }
3331        copy_extent_buffer(dst, src,
3332                           btrfs_node_key_ptr_offset(0),
3333                           btrfs_node_key_ptr_offset(src_nritems - push_items),
3334                           push_items * sizeof(struct btrfs_key_ptr));
3335
3336        btrfs_set_header_nritems(src, src_nritems - push_items);
3337        btrfs_set_header_nritems(dst, dst_nritems + push_items);
3338
3339        btrfs_mark_buffer_dirty(src);
3340        btrfs_mark_buffer_dirty(dst);
3341
3342        return ret;
3343}
3344
3345/*
3346 * helper function to insert a new root level in the tree.
3347 * A new node is allocated, and a single item is inserted to
3348 * point to the existing root
3349 *
3350 * returns zero on success or < 0 on failure.
3351 */
3352static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3353                           struct btrfs_root *root,
3354                           struct btrfs_path *path, int level)
3355{
3356        struct btrfs_fs_info *fs_info = root->fs_info;
3357        u64 lower_gen;
3358        struct extent_buffer *lower;
3359        struct extent_buffer *c;
3360        struct extent_buffer *old;
3361        struct btrfs_disk_key lower_key;
3362        int ret;
3363
3364        BUG_ON(path->nodes[level]);
3365        BUG_ON(path->nodes[level-1] != root->node);
3366
3367        lower = path->nodes[level-1];
3368        if (level == 1)
3369                btrfs_item_key(lower, &lower_key, 0);
3370        else
3371                btrfs_node_key(lower, &lower_key, 0);
3372
3373        c = alloc_tree_block_no_bg_flush(trans, root, 0, &lower_key, level,
3374                                         root->node->start, 0);
3375        if (IS_ERR(c))
3376                return PTR_ERR(c);
3377
3378        root_add_used(root, fs_info->nodesize);
3379
3380        btrfs_set_header_nritems(c, 1);
3381        btrfs_set_node_key(c, &lower_key, 0);
3382        btrfs_set_node_blockptr(c, 0, lower->start);
3383        lower_gen = btrfs_header_generation(lower);
3384        WARN_ON(lower_gen != trans->transid);
3385
3386        btrfs_set_node_ptr_generation(c, 0, lower_gen);
3387
3388        btrfs_mark_buffer_dirty(c);
3389
3390        old = root->node;
3391        ret = tree_mod_log_insert_root(root->node, c, 0);
3392        BUG_ON(ret < 0);
3393        rcu_assign_pointer(root->node, c);
3394
3395        /* the super has an extra ref to root->node */
3396        free_extent_buffer(old);
3397
3398        add_root_to_dirty_list(root);
3399        atomic_inc(&c->refs);
3400        path->nodes[level] = c;
3401        path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
3402        path->slots[level] = 0;
3403        return 0;
3404}
3405
3406/*
3407 * worker function to insert a single pointer in a node.
3408 * the node should have enough room for the pointer already
3409 *
3410 * slot and level indicate where you want the key to go, and
3411 * blocknr is the block the key points to.
3412 */
3413static void insert_ptr(struct btrfs_trans_handle *trans,
3414                       struct btrfs_path *path,
3415                       struct btrfs_disk_key *key, u64 bytenr,
3416                       int slot, int level)
3417{
3418        struct extent_buffer *lower;
3419        int nritems;
3420        int ret;
3421
3422        BUG_ON(!path->nodes[level]);
3423        btrfs_assert_tree_locked(path->nodes[level]);
3424        lower = path->nodes[level];
3425        nritems = btrfs_header_nritems(lower);
3426        BUG_ON(slot > nritems);
3427        BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
3428        if (slot != nritems) {
3429                if (level) {
3430                        ret = tree_mod_log_insert_move(lower, slot + 1, slot,
3431                                        nritems - slot);
3432                        BUG_ON(ret < 0);
3433                }
3434                memmove_extent_buffer(lower,
3435                              btrfs_node_key_ptr_offset(slot + 1),
3436                              btrfs_node_key_ptr_offset(slot),
3437                              (nritems - slot) * sizeof(struct btrfs_key_ptr));
3438        }
3439        if (level) {
3440                ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD,
3441                                GFP_NOFS);
3442                BUG_ON(ret < 0);
3443        }
3444        btrfs_set_node_key(lower, key, slot);
3445        btrfs_set_node_blockptr(lower, slot, bytenr);
3446        WARN_ON(trans->transid == 0);
3447        btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3448        btrfs_set_header_nritems(lower, nritems + 1);
3449        btrfs_mark_buffer_dirty(lower);
3450}
3451
3452/*
3453 * split the node at the specified level in path in two.
3454 * The path is corrected to point to the appropriate node after the split
3455 *
3456 * Before splitting this tries to make some room in the node by pushing
3457 * left and right, if either one works, it returns right away.
3458 *
3459 * returns 0 on success and < 0 on failure
3460 */
3461static noinline int split_node(struct btrfs_trans_handle *trans,
3462                               struct btrfs_root *root,
3463                               struct btrfs_path *path, int level)
3464{
3465        struct btrfs_fs_info *fs_info = root->fs_info;
3466        struct extent_buffer *c;
3467        struct extent_buffer *split;
3468        struct btrfs_disk_key disk_key;
3469        int mid;
3470        int ret;
3471        u32 c_nritems;
3472
3473        c = path->nodes[level];
3474        WARN_ON(btrfs_header_generation(c) != trans->transid);
3475        if (c == root->node) {
3476                /*
3477                 * trying to split the root, lets make a new one
3478                 *
3479                 * tree mod log: We don't log_removal old root in
3480                 * insert_new_root, because that root buffer will be kept as a
3481                 * normal node. We are going to log removal of half of the
3482                 * elements below with tree_mod_log_eb_copy. We're holding a
3483                 * tree lock on the buffer, which is why we cannot race with
3484                 * other tree_mod_log users.
3485                 */
3486                ret = insert_new_root(trans, root, path, level + 1);
3487                if (ret)
3488                        return ret;
3489        } else {
3490                ret = push_nodes_for_insert(trans, root, path, level);
3491                c = path->nodes[level];
3492                if (!ret && btrfs_header_nritems(c) <
3493                    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3494                        return 0;
3495                if (ret < 0)
3496                        return ret;
3497        }
3498
3499        c_nritems = btrfs_header_nritems(c);
3500        mid = (c_nritems + 1) / 2;
3501        btrfs_node_key(c, &disk_key, mid);
3502
3503        split = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, level,
3504                                             c->start, 0);
3505        if (IS_ERR(split))
3506                return PTR_ERR(split);
3507
3508        root_add_used(root, fs_info->nodesize);
3509        ASSERT(btrfs_header_level(c) == level);
3510
3511        ret = tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
3512        if (ret) {
3513                btrfs_abort_transaction(trans, ret);
3514                return ret;
3515        }
3516        copy_extent_buffer(split, c,
3517                           btrfs_node_key_ptr_offset(0),
3518                           btrfs_node_key_ptr_offset(mid),
3519                           (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3520        btrfs_set_header_nritems(split, c_nritems - mid);
3521        btrfs_set_header_nritems(c, mid);
3522        ret = 0;
3523
3524        btrfs_mark_buffer_dirty(c);
3525        btrfs_mark_buffer_dirty(split);
3526
3527        insert_ptr(trans, path, &disk_key, split->start,
3528                   path->slots[level + 1] + 1, level + 1);
3529
3530        if (path->slots[level] >= mid) {
3531                path->slots[level] -= mid;
3532                btrfs_tree_unlock(c);
3533                free_extent_buffer(c);
3534                path->nodes[level] = split;
3535                path->slots[level + 1] += 1;
3536        } else {
3537                btrfs_tree_unlock(split);
3538                free_extent_buffer(split);
3539        }
3540        return ret;
3541}
3542
3543/*
3544 * how many bytes are required to store the items in a leaf.  start
3545 * and nr indicate which items in the leaf to check.  This totals up the
3546 * space used both by the item structs and the item data
3547 */
3548static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3549{
3550        struct btrfs_item *start_item;
3551        struct btrfs_item *end_item;
3552        struct btrfs_map_token token;
3553        int data_len;
3554        int nritems = btrfs_header_nritems(l);
3555        int end = min(nritems, start + nr) - 1;
3556
3557        if (!nr)
3558                return 0;
3559        btrfs_init_map_token(&token, l);
3560        start_item = btrfs_item_nr(start);
3561        end_item = btrfs_item_nr(end);
3562        data_len = btrfs_token_item_offset(l, start_item, &token) +
3563                btrfs_token_item_size(l, start_item, &token);
3564        data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3565        data_len += sizeof(struct btrfs_item) * nr;
3566        WARN_ON(data_len < 0);
3567        return data_len;
3568}
3569
3570/*
3571 * The space between the end of the leaf items and
3572 * the start of the leaf data.  IOW, how much room
3573 * the leaf has left for both items and data
3574 */
3575noinline int btrfs_leaf_free_space(struct extent_buffer *leaf)
3576{
3577        struct btrfs_fs_info *fs_info = leaf->fs_info;
3578        int nritems = btrfs_header_nritems(leaf);
3579        int ret;
3580
3581        ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3582        if (ret < 0) {
3583                btrfs_crit(fs_info,
3584                           "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3585                           ret,
3586                           (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3587                           leaf_space_used(leaf, 0, nritems), nritems);
3588        }
3589        return ret;
3590}
3591
3592/*
3593 * min slot controls the lowest index we're willing to push to the
3594 * right.  We'll push up to and including min_slot, but no lower
3595 */
3596static noinline int __push_leaf_right(struct btrfs_path *path,
3597                                      int data_size, int empty,
3598                                      struct extent_buffer *right,
3599                                      int free_space, u32 left_nritems,
3600                                      u32 min_slot)
3601{
3602        struct btrfs_fs_info *fs_info = right->fs_info;
3603        struct extent_buffer *left = path->nodes[0];
3604        struct extent_buffer *upper = path->nodes[1];
3605        struct btrfs_map_token token;
3606        struct btrfs_disk_key disk_key;
3607        int slot;
3608        u32 i;
3609        int push_space = 0;
3610        int push_items = 0;
3611        struct btrfs_item *item;
3612        u32 nr;
3613        u32 right_nritems;
3614        u32 data_end;
3615        u32 this_item_size;
3616
3617        if (empty)
3618                nr = 0;
3619        else
3620                nr = max_t(u32, 1, min_slot);
3621
3622        if (path->slots[0] >= left_nritems)
3623                push_space += data_size;
3624
3625        slot = path->slots[1];
3626        i = left_nritems - 1;
3627        while (i >= nr) {
3628                item = btrfs_item_nr(i);
3629
3630                if (!empty && push_items > 0) {
3631                        if (path->slots[0] > i)
3632                                break;
3633                        if (path->slots[0] == i) {
3634                                int space = btrfs_leaf_free_space(left);
3635
3636                                if (space + push_space * 2 > free_space)
3637                                        break;
3638                        }
3639                }
3640
3641                if (path->slots[0] == i)
3642                        push_space += data_size;
3643
3644                this_item_size = btrfs_item_size(left, item);
3645                if (this_item_size + sizeof(*item) + push_space > free_space)
3646                        break;
3647
3648                push_items++;
3649                push_space += this_item_size + sizeof(*item);
3650                if (i == 0)
3651                        break;
3652                i--;
3653        }
3654
3655        if (push_items == 0)
3656                goto out_unlock;
3657
3658        WARN_ON(!empty && push_items == left_nritems);
3659
3660        /* push left to right */
3661        right_nritems = btrfs_header_nritems(right);
3662
3663        push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3664        push_space -= leaf_data_end(left);
3665
3666        /* make room in the right data area */
3667        data_end = leaf_data_end(right);
3668        memmove_extent_buffer(right,
3669                              BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
3670                              BTRFS_LEAF_DATA_OFFSET + data_end,
3671                              BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3672
3673        /* copy from the left data area */
3674        copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
3675                     BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3676                     BTRFS_LEAF_DATA_OFFSET + leaf_data_end(left),
3677                     push_space);
3678
3679        memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3680                              btrfs_item_nr_offset(0),
3681                              right_nritems * sizeof(struct btrfs_item));
3682
3683        /* copy the items from left to right */
3684        copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3685                   btrfs_item_nr_offset(left_nritems - push_items),
3686                   push_items * sizeof(struct btrfs_item));
3687
3688        /* update the item pointers */
3689        btrfs_init_map_token(&token, right);
3690        right_nritems += push_items;
3691        btrfs_set_header_nritems(right, right_nritems);
3692        push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3693        for (i = 0; i < right_nritems; i++) {
3694                item = btrfs_item_nr(i);
3695                push_space -= btrfs_token_item_size(right, item, &token);
3696                btrfs_set_token_item_offset(right, item, push_space, &token);
3697        }
3698
3699        left_nritems -= push_items;
3700        btrfs_set_header_nritems(left, left_nritems);
3701
3702        if (left_nritems)
3703                btrfs_mark_buffer_dirty(left);
3704        else
3705                btrfs_clean_tree_block(left);
3706
3707        btrfs_mark_buffer_dirty(right);
3708
3709        btrfs_item_key(right, &disk_key, 0);
3710        btrfs_set_node_key(upper, &disk_key, slot + 1);
3711        btrfs_mark_buffer_dirty(upper);
3712
3713        /* then fixup the leaf pointer in the path */
3714        if (path->slots[0] >= left_nritems) {
3715                path->slots[0] -= left_nritems;
3716                if (btrfs_header_nritems(path->nodes[0]) == 0)
3717                        btrfs_clean_tree_block(path->nodes[0]);
3718                btrfs_tree_unlock(path->nodes[0]);
3719                free_extent_buffer(path->nodes[0]);
3720                path->nodes[0] = right;
3721                path->slots[1] += 1;
3722        } else {
3723                btrfs_tree_unlock(right);
3724                free_extent_buffer(right);
3725        }
3726        return 0;
3727
3728out_unlock:
3729        btrfs_tree_unlock(right);
3730        free_extent_buffer(right);
3731        return 1;
3732}
3733
3734/*
3735 * push some data in the path leaf to the right, trying to free up at
3736 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3737 *
3738 * returns 1 if the push failed because the other node didn't have enough
3739 * room, 0 if everything worked out and < 0 if there were major errors.
3740 *
3741 * this will push starting from min_slot to the end of the leaf.  It won't
3742 * push any slot lower than min_slot
3743 */
3744static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3745                           *root, struct btrfs_path *path,
3746                           int min_data_size, int data_size,
3747                           int empty, u32 min_slot)
3748{
3749        struct extent_buffer *left = path->nodes[0];
3750        struct extent_buffer *right;
3751        struct extent_buffer *upper;
3752        int slot;
3753        int free_space;
3754        u32 left_nritems;
3755        int ret;
3756
3757        if (!path->nodes[1])
3758                return 1;
3759
3760        slot = path->slots[1];
3761        upper = path->nodes[1];
3762        if (slot >= btrfs_header_nritems(upper) - 1)
3763                return 1;
3764
3765        btrfs_assert_tree_locked(path->nodes[1]);
3766
3767        right = btrfs_read_node_slot(upper, slot + 1);
3768        /*
3769         * slot + 1 is not valid or we fail to read the right node,
3770         * no big deal, just return.
3771         */
3772        if (IS_ERR(right))
3773                return 1;
3774
3775        btrfs_tree_lock(right);
3776        btrfs_set_lock_blocking_write(right);
3777
3778        free_space = btrfs_leaf_free_space(right);
3779        if (free_space < data_size)
3780                goto out_unlock;
3781
3782        /* cow and double check */
3783        ret = btrfs_cow_block(trans, root, right, upper,
3784                              slot + 1, &right);
3785        if (ret)
3786                goto out_unlock;
3787
3788        free_space = btrfs_leaf_free_space(right);
3789        if (free_space < data_size)
3790                goto out_unlock;
3791
3792        left_nritems = btrfs_header_nritems(left);
3793        if (left_nritems == 0)
3794                goto out_unlock;
3795
3796        if (path->slots[0] == left_nritems && !empty) {
3797                /* Key greater than all keys in the leaf, right neighbor has
3798                 * enough room for it and we're not emptying our leaf to delete
3799                 * it, therefore use right neighbor to insert the new item and
3800                 * no need to touch/dirty our left leaf. */
3801                btrfs_tree_unlock(left);
3802                free_extent_buffer(left);
3803                path->nodes[0] = right;
3804                path->slots[0] = 0;
3805                path->slots[1]++;
3806                return 0;
3807        }
3808
3809        return __push_leaf_right(path, min_data_size, empty,
3810                                right, free_space, left_nritems, min_slot);
3811out_unlock:
3812        btrfs_tree_unlock(right);
3813        free_extent_buffer(right);
3814        return 1;
3815}
3816
3817/*
3818 * push some data in the path leaf to the left, trying to free up at
3819 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3820 *
3821 * max_slot can put a limit on how far into the leaf we'll push items.  The
3822 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3823 * items
3824 */
3825static noinline int __push_leaf_left(struct btrfs_path *path, int data_size,
3826                                     int empty, struct extent_buffer *left,
3827                                     int free_space, u32 right_nritems,
3828                                     u32 max_slot)
3829{
3830        struct btrfs_fs_info *fs_info = left->fs_info;
3831        struct btrfs_disk_key disk_key;
3832        struct extent_buffer *right = path->nodes[0];
3833        int i;
3834        int push_space = 0;
3835        int push_items = 0;
3836        struct btrfs_item *item;
3837        u32 old_left_nritems;
3838        u32 nr;
3839        int ret = 0;
3840        u32 this_item_size;
3841        u32 old_left_item_size;
3842        struct btrfs_map_token token;
3843
3844        if (empty)
3845                nr = min(right_nritems, max_slot);
3846        else
3847                nr = min(right_nritems - 1, max_slot);
3848
3849        for (i = 0; i < nr; i++) {
3850                item = btrfs_item_nr(i);
3851
3852                if (!empty && push_items > 0) {
3853                        if (path->slots[0] < i)
3854                                break;
3855                        if (path->slots[0] == i) {
3856                                int space = btrfs_leaf_free_space(right);
3857
3858                                if (space + push_space * 2 > free_space)
3859                                        break;
3860                        }
3861                }
3862
3863                if (path->slots[0] == i)
3864                        push_space += data_size;
3865
3866                this_item_size = btrfs_item_size(right, item);
3867                if (this_item_size + sizeof(*item) + push_space > free_space)
3868                        break;
3869
3870                push_items++;
3871                push_space += this_item_size + sizeof(*item);
3872        }
3873
3874        if (push_items == 0) {
3875                ret = 1;
3876                goto out;
3877        }
3878        WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3879
3880        /* push data from right to left */
3881        copy_extent_buffer(left, right,
3882                           btrfs_item_nr_offset(btrfs_header_nritems(left)),
3883                           btrfs_item_nr_offset(0),
3884                           push_items * sizeof(struct btrfs_item));
3885
3886        push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3887                     btrfs_item_offset_nr(right, push_items - 1);
3888
3889        copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
3890                     leaf_data_end(left) - push_space,
3891                     BTRFS_LEAF_DATA_OFFSET +
3892                     btrfs_item_offset_nr(right, push_items - 1),
3893                     push_space);
3894        old_left_nritems = btrfs_header_nritems(left);
3895        BUG_ON(old_left_nritems <= 0);
3896
3897        btrfs_init_map_token(&token, left);
3898        old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3899        for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3900                u32 ioff;
3901
3902                item = btrfs_item_nr(i);
3903
3904                ioff = btrfs_token_item_offset(left, item, &token);
3905                btrfs_set_token_item_offset(left, item,
3906                      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size),
3907                      &token);
3908        }
3909        btrfs_set_header_nritems(left, old_left_nritems + push_items);
3910
3911        /* fixup right node */
3912        if (push_items > right_nritems)
3913                WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3914                       right_nritems);
3915
3916        if (push_items < right_nritems) {
3917                push_space = btrfs_item_offset_nr(right, push_items - 1) -
3918                                                  leaf_data_end(right);
3919                memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
3920                                      BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3921                                      BTRFS_LEAF_DATA_OFFSET +
3922                                      leaf_data_end(right), push_space);
3923
3924                memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3925                              btrfs_item_nr_offset(push_items),
3926                             (btrfs_header_nritems(right) - push_items) *
3927                             sizeof(struct btrfs_item));
3928        }
3929
3930        btrfs_init_map_token(&token, right);
3931        right_nritems -= push_items;
3932        btrfs_set_header_nritems(right, right_nritems);
3933        push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3934        for (i = 0; i < right_nritems; i++) {
3935                item = btrfs_item_nr(i);
3936
3937                push_space = push_space - btrfs_token_item_size(right,
3938                                                                item, &token);
3939                btrfs_set_token_item_offset(right, item, push_space, &token);
3940        }
3941
3942        btrfs_mark_buffer_dirty(left);
3943        if (right_nritems)
3944                btrfs_mark_buffer_dirty(right);
3945        else
3946                btrfs_clean_tree_block(right);
3947
3948        btrfs_item_key(right, &disk_key, 0);
3949        fixup_low_keys(path, &disk_key, 1);
3950
3951        /* then fixup the leaf pointer in the path */
3952        if (path->slots[0] < push_items) {
3953                path->slots[0] += old_left_nritems;
3954                btrfs_tree_unlock(path->nodes[0]);
3955                free_extent_buffer(path->nodes[0]);
3956                path->nodes[0] = left;
3957                path->slots[1] -= 1;
3958        } else {
3959                btrfs_tree_unlock(left);
3960                free_extent_buffer(left);
3961                path->slots[0] -= push_items;
3962        }
3963        BUG_ON(path->slots[0] < 0);
3964        return ret;
3965out:
3966        btrfs_tree_unlock(left);
3967        free_extent_buffer(left);
3968        return ret;
3969}
3970
3971/*
3972 * push some data in the path leaf to the left, trying to free up at
3973 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3974 *
3975 * max_slot can put a limit on how far into the leaf we'll push items.  The
3976 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3977 * items
3978 */
3979static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3980                          *root, struct btrfs_path *path, int min_data_size,
3981                          int data_size, int empty, u32 max_slot)
3982{
3983        struct extent_buffer *right = path->nodes[0];
3984        struct extent_buffer *left;
3985        int slot;
3986        int free_space;
3987        u32 right_nritems;
3988        int ret = 0;
3989
3990        slot = path->slots[1];
3991        if (slot == 0)
3992                return 1;
3993        if (!path->nodes[1])
3994                return 1;
3995
3996        right_nritems = btrfs_header_nritems(right);
3997        if (right_nritems == 0)
3998                return 1;
3999
4000        btrfs_assert_tree_locked(path->nodes[1]);
4001
4002        left = btrfs_read_node_slot(path->nodes[1], slot - 1);
4003        /*
4004         * slot - 1 is not valid or we fail to read the left node,
4005         * no big deal, just return.
4006         */
4007        if (IS_ERR(left))
4008                return 1;
4009
4010        btrfs_tree_lock(left);
4011        btrfs_set_lock_blocking_write(left);
4012
4013        free_space = btrfs_leaf_free_space(left);
4014        if (free_space < data_size) {
4015                ret = 1;
4016                goto out;
4017        }
4018
4019        /* cow and double check */
4020        ret = btrfs_cow_block(trans, root, left,
4021                              path->nodes[1], slot - 1, &left);
4022        if (ret) {
4023                /* we hit -ENOSPC, but it isn't fatal here */
4024                if (ret == -ENOSPC)
4025                        ret = 1;
4026                goto out;
4027        }
4028
4029        free_space = btrfs_leaf_free_space(left);
4030        if (free_space < data_size) {
4031                ret = 1;
4032                goto out;
4033        }
4034
4035        return __push_leaf_left(path, min_data_size,
4036                               empty, left, free_space, right_nritems,
4037                               max_slot);
4038out:
4039        btrfs_tree_unlock(left);
4040        free_extent_buffer(left);
4041        return ret;
4042}
4043
4044/*
4045 * split the path's leaf in two, making sure there is at least data_size
4046 * available for the resulting leaf level of the path.
4047 */
4048static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4049                                    struct btrfs_path *path,
4050                                    struct extent_buffer *l,
4051                                    struct extent_buffer *right,
4052                                    int slot, int mid, int nritems)
4053{
4054        struct btrfs_fs_info *fs_info = trans->fs_info;
4055        int data_copy_size;
4056        int rt_data_off;
4057        int i;
4058        struct btrfs_disk_key disk_key;
4059        struct btrfs_map_token token;
4060
4061        nritems = nritems - mid;
4062        btrfs_set_header_nritems(right, nritems);
4063        data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(l);
4064
4065        copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4066                           btrfs_item_nr_offset(mid),
4067                           nritems * sizeof(struct btrfs_item));
4068
4069        copy_extent_buffer(right, l,
4070                     BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
4071                     data_copy_size, BTRFS_LEAF_DATA_OFFSET +
4072                     leaf_data_end(l), data_copy_size);
4073
4074        rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
4075
4076        btrfs_init_map_token(&token, right);
4077        for (i = 0; i < nritems; i++) {
4078                struct btrfs_item *item = btrfs_item_nr(i);
4079                u32 ioff;
4080
4081                ioff = btrfs_token_item_offset(right, item, &token);
4082                btrfs_set_token_item_offset(right, item,
4083                                            ioff + rt_data_off, &token);
4084        }
4085
4086        btrfs_set_header_nritems(l, mid);
4087        btrfs_item_key(right, &disk_key, 0);
4088        insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
4089
4090        btrfs_mark_buffer_dirty(right);
4091        btrfs_mark_buffer_dirty(l);
4092        BUG_ON(path->slots[0] != slot);
4093
4094        if (mid <= slot) {
4095                btrfs_tree_unlock(path->nodes[0]);
4096                free_extent_buffer(path->nodes[0]);
4097                path->nodes[0] = right;
4098                path->slots[0] -= mid;
4099                path->slots[1] += 1;
4100        } else {
4101                btrfs_tree_unlock(right);
4102                free_extent_buffer(right);
4103        }
4104
4105        BUG_ON(path->slots[0] < 0);
4106}
4107
4108/*
4109 * double splits happen when we need to insert a big item in the middle
4110 * of a leaf.  A double split can leave us with 3 mostly empty leaves:
4111 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4112 *          A                 B                 C
4113 *
4114 * We avoid this by trying to push the items on either side of our target
4115 * into the adjacent leaves.  If all goes well we can avoid the double split
4116 * completely.
4117 */
4118static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4119                                          struct btrfs_root *root,
4120                                          struct btrfs_path *path,
4121                                          int data_size)
4122{
4123        int ret;
4124        int progress = 0;
4125        int slot;
4126        u32 nritems;
4127        int space_needed = data_size;
4128
4129        slot = path->slots[0];
4130        if (slot < btrfs_header_nritems(path->nodes[0]))
4131                space_needed -= btrfs_leaf_free_space(path->nodes[0]);
4132
4133        /*
4134         * try to push all the items after our slot into the
4135         * right leaf
4136         */
4137        ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4138        if (ret < 0)
4139                return ret;
4140
4141        if (ret == 0)
4142                progress++;
4143
4144        nritems = btrfs_header_nritems(path->nodes[0]);
4145        /*
4146         * our goal is to get our slot at the start or end of a leaf.  If
4147         * we've done so we're done
4148         */
4149        if (path->slots[0] == 0 || path->slots[0] == nritems)
4150                return 0;
4151
4152        if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
4153                return 0;
4154
4155        /* try to push all the items before our slot into the next leaf */
4156        slot = path->slots[0];
4157        space_needed = data_size;
4158        if (slot > 0)
4159                space_needed -= btrfs_leaf_free_space(path->nodes[0]);
4160        ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4161        if (ret < 0)
4162                return ret;
4163
4164        if (ret == 0)
4165                progress++;
4166
4167        if (progress)
4168                return 0;
4169        return 1;
4170}
4171
4172/*
4173 * split the path's leaf in two, making sure there is at least data_size
4174 * available for the resulting leaf level of the path.
4175 *
4176 * returns 0 if all went well and < 0 on failure.
4177 */
4178static noinline int split_leaf(struct btrfs_trans_handle *trans,
4179                               struct btrfs_root *root,
4180                               const struct btrfs_key *ins_key,
4181                               struct btrfs_path *path, int data_size,
4182                               int extend)
4183{
4184        struct btrfs_disk_key disk_key;
4185        struct extent_buffer *l;
4186        u32 nritems;
4187        int mid;
4188        int slot;
4189        struct extent_buffer *right;
4190        struct btrfs_fs_info *fs_info = root->fs_info;
4191        int ret = 0;
4192        int wret;
4193        int split;
4194        int num_doubles = 0;
4195        int tried_avoid_double = 0;
4196
4197        l = path->nodes[0];
4198        slot = path->slots[0];
4199        if (extend && data_size + btrfs_item_size_nr(l, slot) +
4200            sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
4201                return -EOVERFLOW;
4202
4203        /* first try to make some room by pushing left and right */
4204        if (data_size && path->nodes[1]) {
4205                int space_needed = data_size;
4206
4207                if (slot < btrfs_header_nritems(l))
4208                        space_needed -= btrfs_leaf_free_space(l);
4209
4210                wret = push_leaf_right(trans, root, path, space_needed,
4211                                       space_needed, 0, 0);
4212                if (wret < 0)
4213                        return wret;
4214                if (wret) {
4215                        space_needed = data_size;
4216                        if (slot > 0)
4217                                space_needed -= btrfs_leaf_free_space(l);
4218                        wret = push_leaf_left(trans, root, path, space_needed,
4219                                              space_needed, 0, (u32)-1);
4220                        if (wret < 0)
4221                                return wret;
4222                }
4223                l = path->nodes[0];
4224
4225                /* did the pushes work? */
4226                if (btrfs_leaf_free_space(l) >= data_size)
4227                        return 0;
4228        }
4229
4230        if (!path->nodes[1]) {
4231                ret = insert_new_root(trans, root, path, 1);
4232                if (ret)
4233                        return ret;
4234        }
4235again:
4236        split = 1;
4237        l = path->nodes[0];
4238        slot = path->slots[0];
4239        nritems = btrfs_header_nritems(l);
4240        mid = (nritems + 1) / 2;
4241
4242        if (mid <= slot) {
4243                if (nritems == 1 ||
4244                    leaf_space_used(l, mid, nritems - mid) + data_size >
4245                        BTRFS_LEAF_DATA_SIZE(fs_info)) {
4246                        if (slot >= nritems) {
4247                                split = 0;
4248                        } else {
4249                                mid = slot;
4250                                if (mid != nritems &&
4251                                    leaf_space_used(l, mid, nritems - mid) +
4252                                    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4253                                        if (data_size && !tried_avoid_double)
4254                                                goto push_for_double;
4255                                        split = 2;
4256                                }
4257                        }
4258                }
4259        } else {
4260                if (leaf_space_used(l, 0, mid) + data_size >
4261                        BTRFS_LEAF_DATA_SIZE(fs_info)) {
4262                        if (!extend && data_size && slot == 0) {
4263                                split = 0;
4264                        } else if ((extend || !data_size) && slot == 0) {
4265                                mid = 1;
4266                        } else {
4267                                mid = slot;
4268                                if (mid != nritems &&
4269                                    leaf_space_used(l, mid, nritems - mid) +
4270                                    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4271                                        if (data_size && !tried_avoid_double)
4272                                                goto push_for_double;
4273                                        split = 2;
4274                                }
4275                        }
4276                }
4277        }
4278
4279        if (split == 0)
4280                btrfs_cpu_key_to_disk(&disk_key, ins_key);
4281        else
4282                btrfs_item_key(l, &disk_key, mid);
4283
4284        right = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, 0,
4285                                             l->start, 0);
4286        if (IS_ERR(right))
4287                return PTR_ERR(right);
4288
4289        root_add_used(root, fs_info->nodesize);
4290
4291        if (split == 0) {
4292                if (mid <= slot) {
4293                        btrfs_set_header_nritems(right, 0);
4294                        insert_ptr(trans, path, &disk_key,
4295                                   right->start, path->slots[1] + 1, 1);
4296                        btrfs_tree_unlock(path->nodes[0]);
4297                        free_extent_buffer(path->nodes[0]);
4298                        path->nodes[0] = right;
4299                        path->slots[0] = 0;
4300                        path->slots[1] += 1;
4301                } else {
4302                        btrfs_set_header_nritems(right, 0);
4303                        insert_ptr(trans, path, &disk_key,
4304                                   right->start, path->slots[1], 1);
4305                        btrfs_tree_unlock(path->nodes[0]);
4306                        free_extent_buffer(path->nodes[0]);
4307                        path->nodes[0] = right;
4308                        path->slots[0] = 0;
4309                        if (path->slots[1] == 0)
4310                                fixup_low_keys(path, &disk_key, 1);
4311                }
4312                /*
4313                 * We create a new leaf 'right' for the required ins_len and
4314                 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
4315                 * the content of ins_len to 'right'.
4316                 */
4317                return ret;
4318        }
4319
4320        copy_for_split(trans, path, l, right, slot, mid, nritems);
4321
4322        if (split == 2) {
4323                BUG_ON(num_doubles != 0);
4324                num_doubles++;
4325                goto again;
4326        }
4327
4328        return 0;
4329
4330push_for_double:
4331        push_for_double_split(trans, root, path, data_size);
4332        tried_avoid_double = 1;
4333        if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
4334                return 0;
4335        goto again;
4336}
4337
4338static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4339                                         struct btrfs_root *root,
4340                                         struct btrfs_path *path, int ins_len)
4341{
4342        struct btrfs_key key;
4343        struct extent_buffer *leaf;
4344        struct btrfs_file_extent_item *fi;
4345        u64 extent_len = 0;
4346        u32 item_size;
4347        int ret;
4348
4349        leaf = path->nodes[0];
4350        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4351
4352        BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4353               key.type != BTRFS_EXTENT_CSUM_KEY);
4354
4355        if (btrfs_leaf_free_space(leaf) >= ins_len)
4356                return 0;
4357
4358        item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4359        if (key.type == BTRFS_EXTENT_DATA_KEY) {
4360                fi = btrfs_item_ptr(leaf, path->slots[0],
4361                                    struct btrfs_file_extent_item);
4362                extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4363        }
4364        btrfs_release_path(path);
4365
4366        path->keep_locks = 1;
4367        path->search_for_split = 1;
4368        ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4369        path->search_for_split = 0;
4370        if (ret > 0)
4371                ret = -EAGAIN;
4372        if (ret < 0)
4373                goto err;
4374
4375        ret = -EAGAIN;
4376        leaf = path->nodes[0];
4377        /* if our item isn't there, return now */
4378        if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4379                goto err;
4380
4381        /* the leaf has  changed, it now has room.  return now */
4382        if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
4383                goto err;
4384
4385        if (key.type == BTRFS_EXTENT_DATA_KEY) {
4386                fi = btrfs_item_ptr(leaf, path->slots[0],
4387                                    struct btrfs_file_extent_item);
4388                if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4389                        goto err;
4390        }
4391
4392        btrfs_set_path_blocking(path);
4393        ret = split_leaf(trans, root, &key, path, ins_len, 1);
4394        if (ret)
4395                goto err;
4396
4397        path->keep_locks = 0;
4398        btrfs_unlock_up_safe(path, 1);
4399        return 0;
4400err:
4401        path->keep_locks = 0;
4402        return ret;
4403}
4404
4405static noinline int split_item(struct btrfs_path *path,
4406                               const struct btrfs_key *new_key,
4407                               unsigned long split_offset)
4408{
4409        struct extent_buffer *leaf;
4410        struct btrfs_item *item;
4411        struct btrfs_item *new_item;
4412        int slot;
4413        char *buf;
4414        u32 nritems;
4415        u32 item_size;
4416        u32 orig_offset;
4417        struct btrfs_disk_key disk_key;
4418
4419        leaf = path->nodes[0];
4420        BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item));
4421
4422        btrfs_set_path_blocking(path);
4423
4424        item = btrfs_item_nr(path->slots[0]);
4425        orig_offset = btrfs_item_offset(leaf, item);
4426        item_size = btrfs_item_size(leaf, item);
4427
4428        buf = kmalloc(item_size, GFP_NOFS);
4429        if (!buf)
4430                return -ENOMEM;
4431
4432        read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4433                            path->slots[0]), item_size);
4434
4435        slot = path->slots[0] + 1;
4436        nritems = btrfs_header_nritems(leaf);
4437        if (slot != nritems) {
4438                /* shift the items */
4439                memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4440                                btrfs_item_nr_offset(slot),
4441                                (nritems - slot) * sizeof(struct btrfs_item));
4442        }
4443
4444        btrfs_cpu_key_to_disk(&disk_key, new_key);
4445        btrfs_set_item_key(leaf, &disk_key, slot);
4446
4447        new_item = btrfs_item_nr(slot);
4448
4449        btrfs_set_item_offset(leaf, new_item, orig_offset);
4450        btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4451
4452        btrfs_set_item_offset(leaf, item,
4453                              orig_offset + item_size - split_offset);
4454        btrfs_set_item_size(leaf, item, split_offset);
4455
4456        btrfs_set_header_nritems(leaf, nritems + 1);
4457
4458        /* write the data for the start of the original item */
4459        write_extent_buffer(leaf, buf,
4460                            btrfs_item_ptr_offset(leaf, path->slots[0]),
4461                            split_offset);
4462
4463        /* write the data for the new item */
4464        write_extent_buffer(leaf, buf + split_offset,
4465                            btrfs_item_ptr_offset(leaf, slot),
4466                            item_size - split_offset);
4467        btrfs_mark_buffer_dirty(leaf);
4468
4469        BUG_ON(btrfs_leaf_free_space(leaf) < 0);
4470        kfree(buf);
4471        return 0;
4472}
4473
4474/*
4475 * This function splits a single item into two items,
4476 * giving 'new_key' to the new item and splitting the
4477 * old one at split_offset (from the start of the item).
4478 *
4479 * The path may be released by this operation.  After
4480 * the split, the path is pointing to the old item.  The
4481 * new item is going to be in the same node as the old one.
4482 *
4483 * Note, the item being split must be smaller enough to live alone on
4484 * a tree block with room for one extra struct btrfs_item
4485 *
4486 * This allows us to split the item in place, keeping a lock on the
4487 * leaf the entire time.
4488 */
4489int btrfs_split_item(struct btrfs_trans_handle *trans,
4490                     struct btrfs_root *root,
4491                     struct btrfs_path *path,
4492                     const struct btrfs_key *new_key,
4493                     unsigned long split_offset)
4494{
4495        int ret;
4496        ret = setup_leaf_for_split(trans, root, path,
4497                                   sizeof(struct btrfs_item));
4498        if (ret)
4499                return ret;
4500
4501        ret = split_item(path, new_key, split_offset);
4502        return ret;
4503}
4504
4505/*
4506 * This function duplicate a item, giving 'new_key' to the new item.
4507 * It guarantees both items live in the same tree leaf and the new item
4508 * is contiguous with the original item.
4509 *
4510 * This allows us to split file extent in place, keeping a lock on the
4511 * leaf the entire time.
4512 */
4513int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4514                         struct btrfs_root *root,
4515                         struct btrfs_path *path,
4516                         const struct btrfs_key *new_key)
4517{
4518        struct extent_buffer *leaf;
4519        int ret;
4520        u32 item_size;
4521
4522        leaf = path->nodes[0];
4523        item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4524        ret = setup_leaf_for_split(trans, root, path,
4525                                   item_size + sizeof(struct btrfs_item));
4526        if (ret)
4527                return ret;
4528
4529        path->slots[0]++;
4530        setup_items_for_insert(root, path, new_key, &item_size,
4531                               item_size, item_size +
4532                               sizeof(struct btrfs_item), 1);
4533        leaf = path->nodes[0];
4534        memcpy_extent_buffer(leaf,
4535                             btrfs_item_ptr_offset(leaf, path->slots[0]),
4536                             btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4537                             item_size);
4538        return 0;
4539}
4540
4541/*
4542 * make the item pointed to by the path smaller.  new_size indicates
4543 * how small to make it, and from_end tells us if we just chop bytes
4544 * off the end of the item or if we shift the item to chop bytes off
4545 * the front.
4546 */
4547void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end)
4548{
4549        int slot;
4550        struct extent_buffer *leaf;
4551        struct btrfs_item *item;
4552        u32 nritems;
4553        unsigned int data_end;
4554        unsigned int old_data_start;
4555        unsigned int old_size;
4556        unsigned int size_diff;
4557        int i;
4558        struct btrfs_map_token token;
4559
4560        leaf = path->nodes[0];
4561        slot = path->slots[0];
4562
4563        old_size = btrfs_item_size_nr(leaf, slot);
4564        if (old_size == new_size)
4565                return;
4566
4567        nritems = btrfs_header_nritems(leaf);
4568        data_end = leaf_data_end(leaf);
4569
4570        old_data_start = btrfs_item_offset_nr(leaf, slot);
4571
4572        size_diff = old_size - new_size;
4573
4574        BUG_ON(slot < 0);
4575        BUG_ON(slot >= nritems);
4576
4577        /*
4578         * item0..itemN ... dataN.offset..dataN.size .. data0.size
4579         */
4580        /* first correct the data pointers */
4581        btrfs_init_map_token(&token, leaf);
4582        for (i = slot; i < nritems; i++) {
4583                u32 ioff;
4584                item = btrfs_item_nr(i);
4585
4586                ioff = btrfs_token_item_offset(leaf, item, &token);
4587                btrfs_set_token_item_offset(leaf, item,
4588                                            ioff + size_diff, &token);
4589        }
4590
4591        /* shift the data */
4592        if (from_end) {
4593                memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4594                              data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4595                              data_end, old_data_start + new_size - data_end);
4596        } else {
4597                struct btrfs_disk_key disk_key;
4598                u64 offset;
4599
4600                btrfs_item_key(leaf, &disk_key, slot);
4601
4602                if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4603                        unsigned long ptr;
4604                        struct btrfs_file_extent_item *fi;
4605
4606                        fi = btrfs_item_ptr(leaf, slot,
4607                                            struct btrfs_file_extent_item);
4608                        fi = (struct btrfs_file_extent_item *)(
4609                             (unsigned long)fi - size_diff);
4610
4611                        if (btrfs_file_extent_type(leaf, fi) ==
4612                            BTRFS_FILE_EXTENT_INLINE) {
4613                                ptr = btrfs_item_ptr_offset(leaf, slot);
4614                                memmove_extent_buffer(leaf, ptr,
4615                                      (unsigned long)fi,
4616                                      BTRFS_FILE_EXTENT_INLINE_DATA_START);
4617                        }
4618                }
4619
4620                memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4621                              data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4622                              data_end, old_data_start - data_end);
4623
4624                offset = btrfs_disk_key_offset(&disk_key);
4625                btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4626                btrfs_set_item_key(leaf, &disk_key, slot);
4627                if (slot == 0)
4628                        fixup_low_keys(path, &disk_key, 1);
4629        }
4630
4631        item = btrfs_item_nr(slot);
4632        btrfs_set_item_size(leaf, item, new_size);
4633        btrfs_mark_buffer_dirty(leaf);
4634
4635        if (btrfs_leaf_free_space(leaf) < 0) {
4636                btrfs_print_leaf(leaf);
4637                BUG();
4638        }
4639}
4640
4641/*
4642 * make the item pointed to by the path bigger, data_size is the added size.
4643 */
4644void btrfs_extend_item(struct btrfs_path *path, u32 data_size)
4645{
4646        int slot;
4647        struct extent_buffer *leaf;
4648        struct btrfs_item *item;
4649        u32 nritems;
4650        unsigned int data_end;
4651        unsigned int old_data;
4652        unsigned int old_size;
4653        int i;
4654        struct btrfs_map_token token;
4655
4656        leaf = path->nodes[0];
4657
4658        nritems = btrfs_header_nritems(leaf);
4659        data_end = leaf_data_end(leaf);
4660
4661        if (btrfs_leaf_free_space(leaf) < data_size) {
4662                btrfs_print_leaf(leaf);
4663                BUG();
4664        }
4665        slot = path->slots[0];
4666        old_data = btrfs_item_end_nr(leaf, slot);
4667
4668        BUG_ON(slot < 0);
4669        if (slot >= nritems) {
4670                btrfs_print_leaf(leaf);
4671                btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
4672                           slot, nritems);
4673                BUG();
4674        }
4675
4676        /*
4677         * item0..itemN ... dataN.offset..dataN.size .. data0.size
4678         */
4679        /* first correct the data pointers */
4680        btrfs_init_map_token(&token, leaf);
4681        for (i = slot; i < nritems; i++) {
4682                u32 ioff;
4683                item = btrfs_item_nr(i);
4684
4685                ioff = btrfs_token_item_offset(leaf, item, &token);
4686                btrfs_set_token_item_offset(leaf, item,
4687                                            ioff - data_size, &token);
4688        }
4689
4690        /* shift the data */
4691        memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4692                      data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
4693                      data_end, old_data - data_end);
4694
4695        data_end = old_data;
4696        old_size = btrfs_item_size_nr(leaf, slot);
4697        item = btrfs_item_nr(slot);
4698        btrfs_set_item_size(leaf, item, old_size + data_size);
4699        btrfs_mark_buffer_dirty(leaf);
4700
4701        if (btrfs_leaf_free_space(leaf) < 0) {
4702                btrfs_print_leaf(leaf);
4703                BUG();
4704        }
4705}
4706
4707/*
4708 * this is a helper for btrfs_insert_empty_items, the main goal here is
4709 * to save stack depth by doing the bulk of the work in a function
4710 * that doesn't call btrfs_search_slot
4711 */
4712void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4713                            const struct btrfs_key *cpu_key, u32 *data_size,
4714                            u32 total_data, u32 total_size, int nr)
4715{
4716        struct btrfs_fs_info *fs_info = root->fs_info;
4717        struct btrfs_item *item;
4718        int i;
4719        u32 nritems;
4720        unsigned int data_end;
4721        struct btrfs_disk_key disk_key;
4722        struct extent_buffer *leaf;
4723        int slot;
4724        struct btrfs_map_token token;
4725
4726        if (path->slots[0] == 0) {
4727                btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4728                fixup_low_keys(path, &disk_key, 1);
4729        }
4730        btrfs_unlock_up_safe(path, 1);
4731
4732        leaf = path->nodes[0];
4733        slot = path->slots[0];
4734
4735        nritems = btrfs_header_nritems(leaf);
4736        data_end = leaf_data_end(leaf);
4737
4738        if (btrfs_leaf_free_space(leaf) < total_size) {
4739                btrfs_print_leaf(leaf);
4740                btrfs_crit(fs_info, "not enough freespace need %u have %d",
4741                           total_size, btrfs_leaf_free_space(leaf));
4742                BUG();
4743        }
4744
4745        btrfs_init_map_token(&token, leaf);
4746        if (slot != nritems) {
4747                unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4748
4749                if (old_data < data_end) {
4750                        btrfs_print_leaf(leaf);
4751                        btrfs_crit(fs_info, "slot %d old_data %d data_end %d",
4752                                   slot, old_data, data_end);
4753                        BUG();
4754                }
4755                /*
4756                 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4757                 */
4758                /* first correct the data pointers */
4759                for (i = slot; i < nritems; i++) {
4760                        u32 ioff;
4761
4762                        item = btrfs_item_nr(i);
4763                        ioff = btrfs_token_item_offset(leaf, item, &token);
4764                        btrfs_set_token_item_offset(leaf, item,
4765                                                    ioff - total_data, &token);
4766                }
4767                /* shift the items */
4768                memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4769                              btrfs_item_nr_offset(slot),
4770                              (nritems - slot) * sizeof(struct btrfs_item));
4771
4772                /* shift the data */
4773                memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4774                              data_end - total_data, BTRFS_LEAF_DATA_OFFSET +
4775                              data_end, old_data - data_end);
4776                data_end = old_data;
4777        }
4778
4779        /* setup the item for the new data */
4780        for (i = 0; i < nr; i++) {
4781                btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4782                btrfs_set_item_key(leaf, &disk_key, slot + i);
4783                item = btrfs_item_nr(slot + i);
4784                btrfs_set_token_item_offset(leaf, item,
4785                                            data_end - data_size[i], &token);
4786                data_end -= data_size[i];
4787                btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4788        }
4789
4790        btrfs_set_header_nritems(leaf, nritems + nr);
4791        btrfs_mark_buffer_dirty(leaf);
4792
4793        if (btrfs_leaf_free_space(leaf) < 0) {
4794                btrfs_print_leaf(leaf);
4795                BUG();
4796        }
4797}
4798
4799/*
4800 * Given a key and some data, insert items into the tree.
4801 * This does all the path init required, making room in the tree if needed.
4802 */
4803int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4804                            struct btrfs_root *root,
4805                            struct btrfs_path *path,
4806                            const struct btrfs_key *cpu_key, u32 *data_size,
4807                            int nr)
4808{
4809        int ret = 0;
4810        int slot;
4811        int i;
4812        u32 total_size = 0;
4813        u32 total_data = 0;
4814
4815        for (i = 0; i < nr; i++)
4816                total_data += data_size[i];
4817
4818        total_size = total_data + (nr * sizeof(struct btrfs_item));
4819        ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4820        if (ret == 0)
4821                return -EEXIST;
4822        if (ret < 0)
4823                return ret;
4824
4825        slot = path->slots[0];
4826        BUG_ON(slot < 0);
4827
4828        setup_items_for_insert(root, path, cpu_key, data_size,
4829                               total_data, total_size, nr);
4830        return 0;
4831}
4832
4833/*
4834 * Given a key and some data, insert an item into the tree.
4835 * This does all the path init required, making room in the tree if needed.
4836 */
4837int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4838                      const struct btrfs_key *cpu_key, void *data,
4839                      u32 data_size)
4840{
4841        int ret = 0;
4842        struct btrfs_path *path;
4843        struct extent_buffer *leaf;
4844        unsigned long ptr;
4845
4846        path = btrfs_alloc_path();
4847        if (!path)
4848                return -ENOMEM;
4849        ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4850        if (!ret) {
4851                leaf = path->nodes[0];
4852                ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4853                write_extent_buffer(leaf, data, ptr, data_size);
4854                btrfs_mark_buffer_dirty(leaf);
4855        }
4856        btrfs_free_path(path);
4857        return ret;
4858}
4859
4860/*
4861 * delete the pointer from a given node.
4862 *
4863 * the tree should have been previously balanced so the deletion does not
4864 * empty a node.
4865 */
4866static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4867                    int level, int slot)
4868{
4869        struct extent_buffer *parent = path->nodes[level];
4870        u32 nritems;
4871        int ret;
4872
4873        nritems = btrfs_header_nritems(parent);
4874        if (slot != nritems - 1) {
4875                if (level) {
4876                        ret = tree_mod_log_insert_move(parent, slot, slot + 1,
4877                                        nritems - slot - 1);
4878                        BUG_ON(ret < 0);
4879                }
4880                memmove_extent_buffer(parent,
4881                              btrfs_node_key_ptr_offset(slot),
4882                              btrfs_node_key_ptr_offset(slot + 1),
4883                              sizeof(struct btrfs_key_ptr) *
4884                              (nritems - slot - 1));
4885        } else if (level) {
4886                ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE,
4887                                GFP_NOFS);
4888                BUG_ON(ret < 0);
4889        }
4890
4891        nritems--;
4892        btrfs_set_header_nritems(parent, nritems);
4893        if (nritems == 0 && parent == root->node) {
4894                BUG_ON(btrfs_header_level(root->node) != 1);
4895                /* just turn the root into a leaf and break */
4896                btrfs_set_header_level(root->node, 0);
4897        } else if (slot == 0) {
4898                struct btrfs_disk_key disk_key;
4899
4900                btrfs_node_key(parent, &disk_key, 0);
4901                fixup_low_keys(path, &disk_key, level + 1);
4902        }
4903        btrfs_mark_buffer_dirty(parent);
4904}
4905
4906/*
4907 * a helper function to delete the leaf pointed to by path->slots[1] and
4908 * path->nodes[1].
4909 *
4910 * This deletes the pointer in path->nodes[1] and frees the leaf
4911 * block extent.  zero is returned if it all worked out, < 0 otherwise.
4912 *
4913 * The path must have already been setup for deleting the leaf, including
4914 * all the proper balancing.  path->nodes[1] must be locked.
4915 */
4916static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4917                                    struct btrfs_root *root,
4918                                    struct btrfs_path *path,
4919                                    struct extent_buffer *leaf)
4920{
4921        WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4922        del_ptr(root, path, 1, path->slots[1]);
4923
4924        /*
4925         * btrfs_free_extent is expensive, we want to make sure we
4926         * aren't holding any locks when we call it
4927         */
4928        btrfs_unlock_up_safe(path, 0);
4929
4930        root_sub_used(root, leaf->len);
4931
4932        atomic_inc(&leaf->refs);
4933        btrfs_free_tree_block(trans, root, leaf, 0, 1);
4934        free_extent_buffer_stale(leaf);
4935}
4936/*
4937 * delete the item at the leaf level in path.  If that empties
4938 * the leaf, remove it from the tree
4939 */
4940int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4941                    struct btrfs_path *path, int slot, int nr)
4942{
4943        struct btrfs_fs_info *fs_info = root->fs_info;
4944        struct extent_buffer *leaf;
4945        struct btrfs_item *item;
4946        u32 last_off;
4947        u32 dsize = 0;
4948        int ret = 0;
4949        int wret;
4950        int i;
4951        u32 nritems;
4952
4953        leaf = path->nodes[0];
4954        last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4955
4956        for (i = 0; i < nr; i++)
4957                dsize += btrfs_item_size_nr(leaf, slot + i);
4958
4959        nritems = btrfs_header_nritems(leaf);
4960
4961        if (slot + nr != nritems) {
4962                int data_end = leaf_data_end(leaf);
4963                struct btrfs_map_token token;
4964
4965                memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4966                              data_end + dsize,
4967                              BTRFS_LEAF_DATA_OFFSET + data_end,
4968                              last_off - data_end);
4969
4970                btrfs_init_map_token(&token, leaf);
4971                for (i = slot + nr; i < nritems; i++) {
4972                        u32 ioff;
4973
4974                        item = btrfs_item_nr(i);
4975                        ioff = btrfs_token_item_offset(leaf, item, &token);
4976                        btrfs_set_token_item_offset(leaf, item,
4977                                                    ioff + dsize, &token);
4978                }
4979
4980                memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4981                              btrfs_item_nr_offset(slot + nr),
4982                              sizeof(struct btrfs_item) *
4983                              (nritems - slot - nr));
4984        }
4985        btrfs_set_header_nritems(leaf, nritems - nr);
4986        nritems -= nr;
4987
4988        /* delete the leaf if we've emptied it */
4989        if (nritems == 0) {
4990                if (leaf == root->node) {
4991                        btrfs_set_header_level(leaf, 0);
4992                } else {
4993                        btrfs_set_path_blocking(path);
4994                        btrfs_clean_tree_block(leaf);
4995                        btrfs_del_leaf(trans, root, path, leaf);
4996                }
4997        } else {
4998                int used = leaf_space_used(leaf, 0, nritems);
4999                if (slot == 0) {
5000                        struct btrfs_disk_key disk_key;
5001
5002                        btrfs_item_key(leaf, &disk_key, 0);
5003                        fixup_low_keys(path, &disk_key, 1);
5004                }
5005
5006                /* delete the leaf if it is mostly empty */
5007                if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
5008                        /* push_leaf_left fixes the path.
5009                         * make sure the path still points to our leaf
5010                         * for possible call to del_ptr below
5011                         */
5012                        slot = path->slots[1];
5013                        atomic_inc(&leaf->refs);
5014
5015                        btrfs_set_path_blocking(path);
5016                        wret = push_leaf_left(trans, root, path, 1, 1,
5017                                              1, (u32)-1);
5018                        if (wret < 0 && wret != -ENOSPC)
5019                                ret = wret;
5020
5021                        if (path->nodes[0] == leaf &&
5022                            btrfs_header_nritems(leaf)) {
5023                                wret = push_leaf_right(trans, root, path, 1,
5024                                                       1, 1, 0);
5025                                if (wret < 0 && wret != -ENOSPC)
5026                                        ret = wret;
5027                        }
5028
5029                        if (btrfs_header_nritems(leaf) == 0) {
5030                                path->slots[1] = slot;
5031                                btrfs_del_leaf(trans, root, path, leaf);
5032                                free_extent_buffer(leaf);
5033                                ret = 0;
5034                        } else {
5035                                /* if we're still in the path, make sure
5036                                 * we're dirty.  Otherwise, one of the
5037                                 * push_leaf functions must have already
5038                                 * dirtied this buffer
5039                                 */
5040                                if (path->nodes[0] == leaf)
5041                                        btrfs_mark_buffer_dirty(leaf);
5042                                free_extent_buffer(leaf);
5043                        }
5044                } else {
5045                        btrfs_mark_buffer_dirty(leaf);
5046                }
5047        }
5048        return ret;
5049}
5050
5051/*
5052 * search the tree again to find a leaf with lesser keys
5053 * returns 0 if it found something or 1 if there are no lesser leaves.
5054 * returns < 0 on io errors.
5055 *
5056 * This may release the path, and so you may lose any locks held at the
5057 * time you call it.
5058 */
5059int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5060{
5061        struct btrfs_key key;
5062        struct btrfs_disk_key found_key;
5063        int ret;
5064
5065        btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5066
5067        if (key.offset > 0) {
5068                key.offset--;
5069        } else if (key.type > 0) {
5070                key.type--;
5071                key.offset = (u64)-1;
5072        } else if (key.objectid > 0) {
5073                key.objectid--;
5074                key.type = (u8)-1;
5075                key.offset = (u64)-1;
5076        } else {
5077                return 1;
5078        }
5079
5080        btrfs_release_path(path);
5081        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5082        if (ret < 0)
5083                return ret;
5084        btrfs_item_key(path->nodes[0], &found_key, 0);
5085        ret = comp_keys(&found_key, &key);
5086        /*
5087         * We might have had an item with the previous key in the tree right
5088         * before we released our path. And after we released our path, that
5089         * item might have been pushed to the first slot (0) of the leaf we
5090         * were holding due to a tree balance. Alternatively, an item with the
5091         * previous key can exist as the only element of a leaf (big fat item).
5092         * Therefore account for these 2 cases, so that our callers (like
5093         * btrfs_previous_item) don't miss an existing item with a key matching
5094         * the previous key we computed above.
5095         */
5096        if (ret <= 0)
5097                return 0;
5098        return 1;
5099}
5100
5101/*
5102 * A helper function to walk down the tree starting at min_key, and looking
5103 * for nodes or leaves that are have a minimum transaction id.
5104 * This is used by the btree defrag code, and tree logging
5105 *
5106 * This does not cow, but it does stuff the starting key it finds back
5107 * into min_key, so you can call btrfs_search_slot with cow=1 on the
5108 * key and get a writable path.
5109 *
5110 * This honors path->lowest_level to prevent descent past a given level
5111 * of the tree.
5112 *
5113 * min_trans indicates the oldest transaction that you are interested
5114 * in walking through.  Any nodes or leaves older than min_trans are
5115 * skipped over (without reading them).
5116 *
5117 * returns zero if something useful was found, < 0 on error and 1 if there
5118 * was nothing in the tree that matched the search criteria.
5119 */
5120int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5121                         struct btrfs_path *path,
5122                         u64 min_trans)
5123{
5124        struct extent_buffer *cur;
5125        struct btrfs_key found_key;
5126        int slot;
5127        int sret;
5128        u32 nritems;
5129        int level;
5130        int ret = 1;
5131        int keep_locks = path->keep_locks;
5132
5133        path->keep_locks = 1;
5134again:
5135        cur = btrfs_read_lock_root_node(root);
5136        level = btrfs_header_level(cur);
5137        WARN_ON(path->nodes[level]);
5138        path->nodes[level] = cur;
5139        path->locks[level] = BTRFS_READ_LOCK;
5140
5141        if (btrfs_header_generation(cur) < min_trans) {
5142                ret = 1;
5143                goto out;
5144        }
5145        while (1) {
5146                nritems = btrfs_header_nritems(cur);
5147                level = btrfs_header_level(cur);
5148                sret = btrfs_bin_search(cur, min_key, level, &slot);
5149                if (sret < 0) {
5150                        ret = sret;
5151                        goto out;
5152                }
5153
5154                /* at the lowest level, we're done, setup the path and exit */
5155                if (level == path->lowest_level) {
5156                        if (slot >= nritems)
5157                                goto find_next_key;
5158                        ret = 0;
5159                        path->slots[level] = slot;
5160                        btrfs_item_key_to_cpu(cur, &found_key, slot);
5161                        goto out;
5162                }
5163                if (sret && slot > 0)
5164                        slot--;
5165                /*
5166                 * check this node pointer against the min_trans parameters.
5167                 * If it is too old, old, skip to the next one.
5168                 */
5169                while (slot < nritems) {
5170                        u64 gen;
5171
5172                        gen = btrfs_node_ptr_generation(cur, slot);
5173                        if (gen < min_trans) {
5174                                slot++;
5175                                continue;
5176                        }
5177                        break;
5178                }
5179find_next_key:
5180                /*
5181                 * we didn't find a candidate key in this node, walk forward
5182                 * and find another one
5183                 */
5184                if (slot >= nritems) {
5185                        path->slots[level] = slot;
5186                        btrfs_set_path_blocking(path);
5187                        sret = btrfs_find_next_key(root, path, min_key, level,
5188                                                  min_trans);
5189                        if (sret == 0) {
5190                                btrfs_release_path(path);
5191                                goto again;
5192                        } else {
5193                                goto out;
5194                        }
5195                }
5196                /* save our key for returning back */
5197                btrfs_node_key_to_cpu(cur, &found_key, slot);
5198                path->slots[level] = slot;
5199                if (level == path->lowest_level) {
5200                        ret = 0;
5201                        goto out;
5202                }
5203                btrfs_set_path_blocking(path);
5204                cur = btrfs_read_node_slot(cur, slot);
5205                if (IS_ERR(cur)) {
5206                        ret = PTR_ERR(cur);
5207                        goto out;
5208                }
5209
5210                btrfs_tree_read_lock(cur);
5211
5212                path->locks[level - 1] = BTRFS_READ_LOCK;
5213                path->nodes[level - 1] = cur;
5214                unlock_up(path, level, 1, 0, NULL);
5215        }
5216out:
5217        path->keep_locks = keep_locks;
5218        if (ret == 0) {
5219                btrfs_unlock_up_safe(path, path->lowest_level + 1);
5220                btrfs_set_path_blocking(path);
5221                memcpy(min_key, &found_key, sizeof(found_key));
5222        }
5223        return ret;
5224}
5225
5226/*
5227 * this is similar to btrfs_next_leaf, but does not try to preserve
5228 * and fixup the path.  It looks for and returns the next key in the
5229 * tree based on the current path and the min_trans parameters.
5230 *
5231 * 0 is returned if another key is found, < 0 if there are any errors
5232 * and 1 is returned if there are no higher keys in the tree
5233 *
5234 * path->keep_locks should be set to 1 on the search made before
5235 * calling this function.
5236 */
5237int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5238                        struct btrfs_key *key, int level, u64 min_trans)
5239{
5240        int slot;
5241        struct extent_buffer *c;
5242
5243        WARN_ON(!path->keep_locks && !path->skip_locking);
5244        while (level < BTRFS_MAX_LEVEL) {
5245                if (!path->nodes[level])
5246                        return 1;
5247
5248                slot = path->slots[level] + 1;
5249                c = path->nodes[level];
5250next:
5251                if (slot >= btrfs_header_nritems(c)) {
5252                        int ret;
5253                        int orig_lowest;
5254                        struct btrfs_key cur_key;
5255                        if (level + 1 >= BTRFS_MAX_LEVEL ||
5256                            !path->nodes[level + 1])
5257                                return 1;
5258
5259                        if (path->locks[level + 1] || path->skip_locking) {
5260                                level++;
5261                                continue;
5262                        }
5263
5264                        slot = btrfs_header_nritems(c) - 1;
5265                        if (level == 0)
5266                                btrfs_item_key_to_cpu(c, &cur_key, slot);
5267                        else
5268                                btrfs_node_key_to_cpu(c, &cur_key, slot);
5269
5270                        orig_lowest = path->lowest_level;
5271                        btrfs_release_path(path);
5272                        path->lowest_level = level;
5273                        ret = btrfs_search_slot(NULL, root, &cur_key, path,
5274                                                0, 0);
5275                        path->lowest_level = orig_lowest;
5276                        if (ret < 0)
5277                                return ret;
5278
5279                        c = path->nodes[level];
5280                        slot = path->slots[level];
5281                        if (ret == 0)
5282                                slot++;
5283                        goto next;
5284                }
5285
5286                if (level == 0)
5287                        btrfs_item_key_to_cpu(c, key, slot);
5288                else {
5289                        u64 gen = btrfs_node_ptr_generation(c, slot);
5290
5291                        if (gen < min_trans) {
5292                                slot++;
5293                                goto next;
5294                        }
5295                        btrfs_node_key_to_cpu(c, key, slot);
5296                }
5297                return 0;
5298        }
5299        return 1;
5300}
5301
5302/*
5303 * search the tree again to find a leaf with greater keys
5304 * returns 0 if it found something or 1 if there are no greater leaves.
5305 * returns < 0 on io errors.
5306 */
5307int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5308{
5309        return btrfs_next_old_leaf(root, path, 0);
5310}
5311
5312int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5313                        u64 time_seq)
5314{
5315        int slot;
5316        int level;
5317        struct extent_buffer *c;
5318        struct extent_buffer *next;
5319        struct btrfs_key key;
5320        u32 nritems;
5321        int ret;
5322        int old_spinning = path->leave_spinning;
5323        int next_rw_lock = 0;
5324
5325        nritems = btrfs_header_nritems(path->nodes[0]);
5326        if (nritems == 0)
5327                return 1;
5328
5329        btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5330again:
5331        level = 1;
5332        next = NULL;
5333        next_rw_lock = 0;
5334        btrfs_release_path(path);
5335
5336        path->keep_locks = 1;
5337        path->leave_spinning = 1;
5338
5339        if (time_seq)
5340                ret = btrfs_search_old_slot(root, &key, path, time_seq);
5341        else
5342                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5343        path->keep_locks = 0;
5344
5345        if (ret < 0)
5346                return ret;
5347
5348        nritems = btrfs_header_nritems(path->nodes[0]);
5349        /*
5350         * by releasing the path above we dropped all our locks.  A balance
5351         * could have added more items next to the key that used to be
5352         * at the very end of the block.  So, check again here and
5353         * advance the path if there are now more items available.
5354         */
5355        if (nritems > 0 && path->slots[0] < nritems - 1) {
5356                if (ret == 0)
5357                        path->slots[0]++;
5358                ret = 0;
5359                goto done;
5360        }
5361        /*
5362         * So the above check misses one case:
5363         * - after releasing the path above, someone has removed the item that
5364         *   used to be at the very end of the block, and balance between leafs
5365         *   gets another one with bigger key.offset to replace it.
5366         *
5367         * This one should be returned as well, or we can get leaf corruption
5368         * later(esp. in __btrfs_drop_extents()).
5369         *
5370         * And a bit more explanation about this check,
5371         * with ret > 0, the key isn't found, the path points to the slot
5372         * where it should be inserted, so the path->slots[0] item must be the
5373         * bigger one.
5374         */
5375        if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5376                ret = 0;
5377                goto done;
5378        }
5379
5380        while (level < BTRFS_MAX_LEVEL) {
5381                if (!path->nodes[level]) {
5382                        ret = 1;
5383                        goto done;
5384                }
5385
5386                slot = path->slots[level] + 1;
5387                c = path->nodes[level];
5388                if (slot >= btrfs_header_nritems(c)) {
5389                        level++;
5390                        if (level == BTRFS_MAX_LEVEL) {
5391                                ret = 1;
5392                                goto done;
5393                        }
5394                        continue;
5395                }
5396
5397                if (next) {
5398                        btrfs_tree_unlock_rw(next, next_rw_lock);
5399                        free_extent_buffer(next);
5400                }
5401
5402                next = c;
5403                next_rw_lock = path->locks[level];
5404                ret = read_block_for_search(root, path, &next, level,
5405                                            slot, &key);
5406                if (ret == -EAGAIN)
5407                        goto again;
5408
5409                if (ret < 0) {
5410                        btrfs_release_path(path);
5411                        goto done;
5412                }
5413
5414                if (!path->skip_locking) {
5415                        ret = btrfs_try_tree_read_lock(next);
5416                        if (!ret && time_seq) {
5417                                /*
5418                                 * If we don't get the lock, we may be racing
5419                                 * with push_leaf_left, holding that lock while
5420                                 * itself waiting for the leaf we've currently
5421                                 * locked. To solve this situation, we give up
5422                                 * on our lock and cycle.
5423                                 */
5424                                free_extent_buffer(next);
5425                                btrfs_release_path(path);
5426                                cond_resched();
5427                                goto again;
5428                        }
5429                        if (!ret) {
5430                                btrfs_set_path_blocking(path);
5431                                btrfs_tree_read_lock(next);
5432                        }
5433                        next_rw_lock = BTRFS_READ_LOCK;
5434                }
5435                break;
5436        }
5437        path->slots[level] = slot;
5438        while (1) {
5439                level--;
5440                c = path->nodes[level];
5441                if (path->locks[level])
5442                        btrfs_tree_unlock_rw(c, path->locks[level]);
5443
5444                free_extent_buffer(c);
5445                path->nodes[level] = next;
5446                path->slots[level] = 0;
5447                if (!path->skip_locking)
5448                        path->locks[level] = next_rw_lock;
5449                if (!level)
5450                        break;
5451
5452                ret = read_block_for_search(root, path, &next, level,
5453                                            0, &key);
5454                if (ret == -EAGAIN)
5455                        goto again;
5456
5457                if (ret < 0) {
5458                        btrfs_release_path(path);
5459                        goto done;
5460                }
5461
5462                if (!path->skip_locking) {
5463                        ret = btrfs_try_tree_read_lock(next);
5464                        if (!ret) {
5465                                btrfs_set_path_blocking(path);
5466                                btrfs_tree_read_lock(next);
5467                        }
5468                        next_rw_lock = BTRFS_READ_LOCK;
5469                }
5470        }
5471        ret = 0;
5472done:
5473        unlock_up(path, 0, 1, 0, NULL);
5474        path->leave_spinning = old_spinning;
5475        if (!old_spinning)
5476                btrfs_set_path_blocking(path);
5477
5478        return ret;
5479}
5480
5481/*
5482 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5483 * searching until it gets past min_objectid or finds an item of 'type'
5484 *
5485 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5486 */
5487int btrfs_previous_item(struct btrfs_root *root,
5488                        struct btrfs_path *path, u64 min_objectid,
5489                        int type)
5490{
5491        struct btrfs_key found_key;
5492        struct extent_buffer *leaf;
5493        u32 nritems;
5494        int ret;
5495
5496        while (1) {
5497                if (path->slots[0] == 0) {
5498                        btrfs_set_path_blocking(path);
5499                        ret = btrfs_prev_leaf(root, path);
5500                        if (ret != 0)
5501                                return ret;
5502                } else {
5503                        path->slots[0]--;
5504                }
5505                leaf = path->nodes[0];
5506                nritems = btrfs_header_nritems(leaf);
5507                if (nritems == 0)
5508                        return 1;
5509                if (path->slots[0] == nritems)
5510                        path->slots[0]--;
5511
5512                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5513                if (found_key.objectid < min_objectid)
5514                        break;
5515                if (found_key.type == type)
5516                        return 0;
5517                if (found_key.objectid == min_objectid &&
5518                    found_key.type < type)
5519                        break;
5520        }
5521        return 1;
5522}
5523
5524/*
5525 * search in extent tree to find a previous Metadata/Data extent item with
5526 * min objecitd.
5527 *
5528 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5529 */
5530int btrfs_previous_extent_item(struct btrfs_root *root,
5531                        struct btrfs_path *path, u64 min_objectid)
5532{
5533        struct btrfs_key found_key;
5534        struct extent_buffer *leaf;
5535        u32 nritems;
5536        int ret;
5537
5538        while (1) {
5539                if (path->slots[0] == 0) {
5540                        btrfs_set_path_blocking(path);
5541                        ret = btrfs_prev_leaf(root, path);
5542                        if (ret != 0)
5543                                return ret;
5544                } else {
5545                        path->slots[0]--;
5546                }
5547                leaf = path->nodes[0];
5548                nritems = btrfs_header_nritems(leaf);
5549                if (nritems == 0)
5550                        return 1;
5551                if (path->slots[0] == nritems)
5552                        path->slots[0]--;
5553
5554                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5555                if (found_key.objectid < min_objectid)
5556                        break;
5557                if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5558                    found_key.type == BTRFS_METADATA_ITEM_KEY)
5559                        return 0;
5560                if (found_key.objectid == min_objectid &&
5561                    found_key.type < BTRFS_EXTENT_ITEM_KEY)
5562                        break;
5563        }
5564        return 1;
5565}
5566