linux/fs/btrfs/free-space-cache.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2008 Red Hat.  All rights reserved.
   4 */
   5
   6#include <linux/pagemap.h>
   7#include <linux/sched.h>
   8#include <linux/sched/signal.h>
   9#include <linux/slab.h>
  10#include <linux/math64.h>
  11#include <linux/ratelimit.h>
  12#include <linux/error-injection.h>
  13#include <linux/sched/mm.h>
  14#include "ctree.h"
  15#include "free-space-cache.h"
  16#include "transaction.h"
  17#include "disk-io.h"
  18#include "extent_io.h"
  19#include "inode-map.h"
  20#include "volumes.h"
  21#include "space-info.h"
  22#include "delalloc-space.h"
  23#include "block-group.h"
  24
  25#define BITS_PER_BITMAP         (PAGE_SIZE * 8UL)
  26#define MAX_CACHE_BYTES_PER_GIG SZ_32K
  27
  28struct btrfs_trim_range {
  29        u64 start;
  30        u64 bytes;
  31        struct list_head list;
  32};
  33
  34static int link_free_space(struct btrfs_free_space_ctl *ctl,
  35                           struct btrfs_free_space *info);
  36static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
  37                              struct btrfs_free_space *info);
  38static int btrfs_wait_cache_io_root(struct btrfs_root *root,
  39                             struct btrfs_trans_handle *trans,
  40                             struct btrfs_io_ctl *io_ctl,
  41                             struct btrfs_path *path);
  42
  43static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
  44                                               struct btrfs_path *path,
  45                                               u64 offset)
  46{
  47        struct btrfs_fs_info *fs_info = root->fs_info;
  48        struct btrfs_key key;
  49        struct btrfs_key location;
  50        struct btrfs_disk_key disk_key;
  51        struct btrfs_free_space_header *header;
  52        struct extent_buffer *leaf;
  53        struct inode *inode = NULL;
  54        unsigned nofs_flag;
  55        int ret;
  56
  57        key.objectid = BTRFS_FREE_SPACE_OBJECTID;
  58        key.offset = offset;
  59        key.type = 0;
  60
  61        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  62        if (ret < 0)
  63                return ERR_PTR(ret);
  64        if (ret > 0) {
  65                btrfs_release_path(path);
  66                return ERR_PTR(-ENOENT);
  67        }
  68
  69        leaf = path->nodes[0];
  70        header = btrfs_item_ptr(leaf, path->slots[0],
  71                                struct btrfs_free_space_header);
  72        btrfs_free_space_key(leaf, header, &disk_key);
  73        btrfs_disk_key_to_cpu(&location, &disk_key);
  74        btrfs_release_path(path);
  75
  76        /*
  77         * We are often under a trans handle at this point, so we need to make
  78         * sure NOFS is set to keep us from deadlocking.
  79         */
  80        nofs_flag = memalloc_nofs_save();
  81        inode = btrfs_iget_path(fs_info->sb, &location, root, path);
  82        btrfs_release_path(path);
  83        memalloc_nofs_restore(nofs_flag);
  84        if (IS_ERR(inode))
  85                return inode;
  86
  87        mapping_set_gfp_mask(inode->i_mapping,
  88                        mapping_gfp_constraint(inode->i_mapping,
  89                        ~(__GFP_FS | __GFP_HIGHMEM)));
  90
  91        return inode;
  92}
  93
  94struct inode *lookup_free_space_inode(struct btrfs_block_group *block_group,
  95                struct btrfs_path *path)
  96{
  97        struct btrfs_fs_info *fs_info = block_group->fs_info;
  98        struct inode *inode = NULL;
  99        u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
 100
 101        spin_lock(&block_group->lock);
 102        if (block_group->inode)
 103                inode = igrab(block_group->inode);
 104        spin_unlock(&block_group->lock);
 105        if (inode)
 106                return inode;
 107
 108        inode = __lookup_free_space_inode(fs_info->tree_root, path,
 109                                          block_group->start);
 110        if (IS_ERR(inode))
 111                return inode;
 112
 113        spin_lock(&block_group->lock);
 114        if (!((BTRFS_I(inode)->flags & flags) == flags)) {
 115                btrfs_info(fs_info, "Old style space inode found, converting.");
 116                BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
 117                        BTRFS_INODE_NODATACOW;
 118                block_group->disk_cache_state = BTRFS_DC_CLEAR;
 119        }
 120
 121        if (!block_group->iref) {
 122                block_group->inode = igrab(inode);
 123                block_group->iref = 1;
 124        }
 125        spin_unlock(&block_group->lock);
 126
 127        return inode;
 128}
 129
 130static int __create_free_space_inode(struct btrfs_root *root,
 131                                     struct btrfs_trans_handle *trans,
 132                                     struct btrfs_path *path,
 133                                     u64 ino, u64 offset)
 134{
 135        struct btrfs_key key;
 136        struct btrfs_disk_key disk_key;
 137        struct btrfs_free_space_header *header;
 138        struct btrfs_inode_item *inode_item;
 139        struct extent_buffer *leaf;
 140        u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
 141        int ret;
 142
 143        ret = btrfs_insert_empty_inode(trans, root, path, ino);
 144        if (ret)
 145                return ret;
 146
 147        /* We inline crc's for the free disk space cache */
 148        if (ino != BTRFS_FREE_INO_OBJECTID)
 149                flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
 150
 151        leaf = path->nodes[0];
 152        inode_item = btrfs_item_ptr(leaf, path->slots[0],
 153                                    struct btrfs_inode_item);
 154        btrfs_item_key(leaf, &disk_key, path->slots[0]);
 155        memzero_extent_buffer(leaf, (unsigned long)inode_item,
 156                             sizeof(*inode_item));
 157        btrfs_set_inode_generation(leaf, inode_item, trans->transid);
 158        btrfs_set_inode_size(leaf, inode_item, 0);
 159        btrfs_set_inode_nbytes(leaf, inode_item, 0);
 160        btrfs_set_inode_uid(leaf, inode_item, 0);
 161        btrfs_set_inode_gid(leaf, inode_item, 0);
 162        btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
 163        btrfs_set_inode_flags(leaf, inode_item, flags);
 164        btrfs_set_inode_nlink(leaf, inode_item, 1);
 165        btrfs_set_inode_transid(leaf, inode_item, trans->transid);
 166        btrfs_set_inode_block_group(leaf, inode_item, offset);
 167        btrfs_mark_buffer_dirty(leaf);
 168        btrfs_release_path(path);
 169
 170        key.objectid = BTRFS_FREE_SPACE_OBJECTID;
 171        key.offset = offset;
 172        key.type = 0;
 173        ret = btrfs_insert_empty_item(trans, root, path, &key,
 174                                      sizeof(struct btrfs_free_space_header));
 175        if (ret < 0) {
 176                btrfs_release_path(path);
 177                return ret;
 178        }
 179
 180        leaf = path->nodes[0];
 181        header = btrfs_item_ptr(leaf, path->slots[0],
 182                                struct btrfs_free_space_header);
 183        memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header));
 184        btrfs_set_free_space_key(leaf, header, &disk_key);
 185        btrfs_mark_buffer_dirty(leaf);
 186        btrfs_release_path(path);
 187
 188        return 0;
 189}
 190
 191int create_free_space_inode(struct btrfs_trans_handle *trans,
 192                            struct btrfs_block_group *block_group,
 193                            struct btrfs_path *path)
 194{
 195        int ret;
 196        u64 ino;
 197
 198        ret = btrfs_find_free_objectid(trans->fs_info->tree_root, &ino);
 199        if (ret < 0)
 200                return ret;
 201
 202        return __create_free_space_inode(trans->fs_info->tree_root, trans, path,
 203                                         ino, block_group->start);
 204}
 205
 206int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info *fs_info,
 207                                       struct btrfs_block_rsv *rsv)
 208{
 209        u64 needed_bytes;
 210        int ret;
 211
 212        /* 1 for slack space, 1 for updating the inode */
 213        needed_bytes = btrfs_calc_insert_metadata_size(fs_info, 1) +
 214                btrfs_calc_metadata_size(fs_info, 1);
 215
 216        spin_lock(&rsv->lock);
 217        if (rsv->reserved < needed_bytes)
 218                ret = -ENOSPC;
 219        else
 220                ret = 0;
 221        spin_unlock(&rsv->lock);
 222        return ret;
 223}
 224
 225int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans,
 226                                    struct btrfs_block_group *block_group,
 227                                    struct inode *inode)
 228{
 229        struct btrfs_root *root = BTRFS_I(inode)->root;
 230        int ret = 0;
 231        bool locked = false;
 232
 233        if (block_group) {
 234                struct btrfs_path *path = btrfs_alloc_path();
 235
 236                if (!path) {
 237                        ret = -ENOMEM;
 238                        goto fail;
 239                }
 240                locked = true;
 241                mutex_lock(&trans->transaction->cache_write_mutex);
 242                if (!list_empty(&block_group->io_list)) {
 243                        list_del_init(&block_group->io_list);
 244
 245                        btrfs_wait_cache_io(trans, block_group, path);
 246                        btrfs_put_block_group(block_group);
 247                }
 248
 249                /*
 250                 * now that we've truncated the cache away, its no longer
 251                 * setup or written
 252                 */
 253                spin_lock(&block_group->lock);
 254                block_group->disk_cache_state = BTRFS_DC_CLEAR;
 255                spin_unlock(&block_group->lock);
 256                btrfs_free_path(path);
 257        }
 258
 259        btrfs_i_size_write(BTRFS_I(inode), 0);
 260        truncate_pagecache(inode, 0);
 261
 262        /*
 263         * We skip the throttling logic for free space cache inodes, so we don't
 264         * need to check for -EAGAIN.
 265         */
 266        ret = btrfs_truncate_inode_items(trans, root, inode,
 267                                         0, BTRFS_EXTENT_DATA_KEY);
 268        if (ret)
 269                goto fail;
 270
 271        ret = btrfs_update_inode(trans, root, inode);
 272
 273fail:
 274        if (locked)
 275                mutex_unlock(&trans->transaction->cache_write_mutex);
 276        if (ret)
 277                btrfs_abort_transaction(trans, ret);
 278
 279        return ret;
 280}
 281
 282static void readahead_cache(struct inode *inode)
 283{
 284        struct file_ra_state *ra;
 285        unsigned long last_index;
 286
 287        ra = kzalloc(sizeof(*ra), GFP_NOFS);
 288        if (!ra)
 289                return;
 290
 291        file_ra_state_init(ra, inode->i_mapping);
 292        last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
 293
 294        page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
 295
 296        kfree(ra);
 297}
 298
 299static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
 300                       int write)
 301{
 302        int num_pages;
 303        int check_crcs = 0;
 304
 305        num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
 306
 307        if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FREE_INO_OBJECTID)
 308                check_crcs = 1;
 309
 310        /* Make sure we can fit our crcs and generation into the first page */
 311        if (write && check_crcs &&
 312            (num_pages * sizeof(u32) + sizeof(u64)) > PAGE_SIZE)
 313                return -ENOSPC;
 314
 315        memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
 316
 317        io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
 318        if (!io_ctl->pages)
 319                return -ENOMEM;
 320
 321        io_ctl->num_pages = num_pages;
 322        io_ctl->fs_info = btrfs_sb(inode->i_sb);
 323        io_ctl->check_crcs = check_crcs;
 324        io_ctl->inode = inode;
 325
 326        return 0;
 327}
 328ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO);
 329
 330static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
 331{
 332        kfree(io_ctl->pages);
 333        io_ctl->pages = NULL;
 334}
 335
 336static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
 337{
 338        if (io_ctl->cur) {
 339                io_ctl->cur = NULL;
 340                io_ctl->orig = NULL;
 341        }
 342}
 343
 344static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
 345{
 346        ASSERT(io_ctl->index < io_ctl->num_pages);
 347        io_ctl->page = io_ctl->pages[io_ctl->index++];
 348        io_ctl->cur = page_address(io_ctl->page);
 349        io_ctl->orig = io_ctl->cur;
 350        io_ctl->size = PAGE_SIZE;
 351        if (clear)
 352                clear_page(io_ctl->cur);
 353}
 354
 355static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
 356{
 357        int i;
 358
 359        io_ctl_unmap_page(io_ctl);
 360
 361        for (i = 0; i < io_ctl->num_pages; i++) {
 362                if (io_ctl->pages[i]) {
 363                        ClearPageChecked(io_ctl->pages[i]);
 364                        unlock_page(io_ctl->pages[i]);
 365                        put_page(io_ctl->pages[i]);
 366                }
 367        }
 368}
 369
 370static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, struct inode *inode,
 371                                int uptodate)
 372{
 373        struct page *page;
 374        gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
 375        int i;
 376
 377        for (i = 0; i < io_ctl->num_pages; i++) {
 378                page = find_or_create_page(inode->i_mapping, i, mask);
 379                if (!page) {
 380                        io_ctl_drop_pages(io_ctl);
 381                        return -ENOMEM;
 382                }
 383                io_ctl->pages[i] = page;
 384                if (uptodate && !PageUptodate(page)) {
 385                        btrfs_readpage(NULL, page);
 386                        lock_page(page);
 387                        if (page->mapping != inode->i_mapping) {
 388                                btrfs_err(BTRFS_I(inode)->root->fs_info,
 389                                          "free space cache page truncated");
 390                                io_ctl_drop_pages(io_ctl);
 391                                return -EIO;
 392                        }
 393                        if (!PageUptodate(page)) {
 394                                btrfs_err(BTRFS_I(inode)->root->fs_info,
 395                                           "error reading free space cache");
 396                                io_ctl_drop_pages(io_ctl);
 397                                return -EIO;
 398                        }
 399                }
 400        }
 401
 402        for (i = 0; i < io_ctl->num_pages; i++) {
 403                clear_page_dirty_for_io(io_ctl->pages[i]);
 404                set_page_extent_mapped(io_ctl->pages[i]);
 405        }
 406
 407        return 0;
 408}
 409
 410static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
 411{
 412        __le64 *val;
 413
 414        io_ctl_map_page(io_ctl, 1);
 415
 416        /*
 417         * Skip the csum areas.  If we don't check crcs then we just have a
 418         * 64bit chunk at the front of the first page.
 419         */
 420        if (io_ctl->check_crcs) {
 421                io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
 422                io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
 423        } else {
 424                io_ctl->cur += sizeof(u64);
 425                io_ctl->size -= sizeof(u64) * 2;
 426        }
 427
 428        val = io_ctl->cur;
 429        *val = cpu_to_le64(generation);
 430        io_ctl->cur += sizeof(u64);
 431}
 432
 433static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
 434{
 435        __le64 *gen;
 436
 437        /*
 438         * Skip the crc area.  If we don't check crcs then we just have a 64bit
 439         * chunk at the front of the first page.
 440         */
 441        if (io_ctl->check_crcs) {
 442                io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
 443                io_ctl->size -= sizeof(u64) +
 444                        (sizeof(u32) * io_ctl->num_pages);
 445        } else {
 446                io_ctl->cur += sizeof(u64);
 447                io_ctl->size -= sizeof(u64) * 2;
 448        }
 449
 450        gen = io_ctl->cur;
 451        if (le64_to_cpu(*gen) != generation) {
 452                btrfs_err_rl(io_ctl->fs_info,
 453                        "space cache generation (%llu) does not match inode (%llu)",
 454                                *gen, generation);
 455                io_ctl_unmap_page(io_ctl);
 456                return -EIO;
 457        }
 458        io_ctl->cur += sizeof(u64);
 459        return 0;
 460}
 461
 462static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
 463{
 464        u32 *tmp;
 465        u32 crc = ~(u32)0;
 466        unsigned offset = 0;
 467
 468        if (!io_ctl->check_crcs) {
 469                io_ctl_unmap_page(io_ctl);
 470                return;
 471        }
 472
 473        if (index == 0)
 474                offset = sizeof(u32) * io_ctl->num_pages;
 475
 476        crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
 477        btrfs_crc32c_final(crc, (u8 *)&crc);
 478        io_ctl_unmap_page(io_ctl);
 479        tmp = page_address(io_ctl->pages[0]);
 480        tmp += index;
 481        *tmp = crc;
 482}
 483
 484static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
 485{
 486        u32 *tmp, val;
 487        u32 crc = ~(u32)0;
 488        unsigned offset = 0;
 489
 490        if (!io_ctl->check_crcs) {
 491                io_ctl_map_page(io_ctl, 0);
 492                return 0;
 493        }
 494
 495        if (index == 0)
 496                offset = sizeof(u32) * io_ctl->num_pages;
 497
 498        tmp = page_address(io_ctl->pages[0]);
 499        tmp += index;
 500        val = *tmp;
 501
 502        io_ctl_map_page(io_ctl, 0);
 503        crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
 504        btrfs_crc32c_final(crc, (u8 *)&crc);
 505        if (val != crc) {
 506                btrfs_err_rl(io_ctl->fs_info,
 507                        "csum mismatch on free space cache");
 508                io_ctl_unmap_page(io_ctl);
 509                return -EIO;
 510        }
 511
 512        return 0;
 513}
 514
 515static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
 516                            void *bitmap)
 517{
 518        struct btrfs_free_space_entry *entry;
 519
 520        if (!io_ctl->cur)
 521                return -ENOSPC;
 522
 523        entry = io_ctl->cur;
 524        entry->offset = cpu_to_le64(offset);
 525        entry->bytes = cpu_to_le64(bytes);
 526        entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
 527                BTRFS_FREE_SPACE_EXTENT;
 528        io_ctl->cur += sizeof(struct btrfs_free_space_entry);
 529        io_ctl->size -= sizeof(struct btrfs_free_space_entry);
 530
 531        if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
 532                return 0;
 533
 534        io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 535
 536        /* No more pages to map */
 537        if (io_ctl->index >= io_ctl->num_pages)
 538                return 0;
 539
 540        /* map the next page */
 541        io_ctl_map_page(io_ctl, 1);
 542        return 0;
 543}
 544
 545static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
 546{
 547        if (!io_ctl->cur)
 548                return -ENOSPC;
 549
 550        /*
 551         * If we aren't at the start of the current page, unmap this one and
 552         * map the next one if there is any left.
 553         */
 554        if (io_ctl->cur != io_ctl->orig) {
 555                io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 556                if (io_ctl->index >= io_ctl->num_pages)
 557                        return -ENOSPC;
 558                io_ctl_map_page(io_ctl, 0);
 559        }
 560
 561        copy_page(io_ctl->cur, bitmap);
 562        io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 563        if (io_ctl->index < io_ctl->num_pages)
 564                io_ctl_map_page(io_ctl, 0);
 565        return 0;
 566}
 567
 568static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
 569{
 570        /*
 571         * If we're not on the boundary we know we've modified the page and we
 572         * need to crc the page.
 573         */
 574        if (io_ctl->cur != io_ctl->orig)
 575                io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 576        else
 577                io_ctl_unmap_page(io_ctl);
 578
 579        while (io_ctl->index < io_ctl->num_pages) {
 580                io_ctl_map_page(io_ctl, 1);
 581                io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 582        }
 583}
 584
 585static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
 586                            struct btrfs_free_space *entry, u8 *type)
 587{
 588        struct btrfs_free_space_entry *e;
 589        int ret;
 590
 591        if (!io_ctl->cur) {
 592                ret = io_ctl_check_crc(io_ctl, io_ctl->index);
 593                if (ret)
 594                        return ret;
 595        }
 596
 597        e = io_ctl->cur;
 598        entry->offset = le64_to_cpu(e->offset);
 599        entry->bytes = le64_to_cpu(e->bytes);
 600        *type = e->type;
 601        io_ctl->cur += sizeof(struct btrfs_free_space_entry);
 602        io_ctl->size -= sizeof(struct btrfs_free_space_entry);
 603
 604        if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
 605                return 0;
 606
 607        io_ctl_unmap_page(io_ctl);
 608
 609        return 0;
 610}
 611
 612static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
 613                              struct btrfs_free_space *entry)
 614{
 615        int ret;
 616
 617        ret = io_ctl_check_crc(io_ctl, io_ctl->index);
 618        if (ret)
 619                return ret;
 620
 621        copy_page(entry->bitmap, io_ctl->cur);
 622        io_ctl_unmap_page(io_ctl);
 623
 624        return 0;
 625}
 626
 627/*
 628 * Since we attach pinned extents after the fact we can have contiguous sections
 629 * of free space that are split up in entries.  This poses a problem with the
 630 * tree logging stuff since it could have allocated across what appears to be 2
 631 * entries since we would have merged the entries when adding the pinned extents
 632 * back to the free space cache.  So run through the space cache that we just
 633 * loaded and merge contiguous entries.  This will make the log replay stuff not
 634 * blow up and it will make for nicer allocator behavior.
 635 */
 636static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
 637{
 638        struct btrfs_free_space *e, *prev = NULL;
 639        struct rb_node *n;
 640
 641again:
 642        spin_lock(&ctl->tree_lock);
 643        for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
 644                e = rb_entry(n, struct btrfs_free_space, offset_index);
 645                if (!prev)
 646                        goto next;
 647                if (e->bitmap || prev->bitmap)
 648                        goto next;
 649                if (prev->offset + prev->bytes == e->offset) {
 650                        unlink_free_space(ctl, prev);
 651                        unlink_free_space(ctl, e);
 652                        prev->bytes += e->bytes;
 653                        kmem_cache_free(btrfs_free_space_cachep, e);
 654                        link_free_space(ctl, prev);
 655                        prev = NULL;
 656                        spin_unlock(&ctl->tree_lock);
 657                        goto again;
 658                }
 659next:
 660                prev = e;
 661        }
 662        spin_unlock(&ctl->tree_lock);
 663}
 664
 665static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
 666                                   struct btrfs_free_space_ctl *ctl,
 667                                   struct btrfs_path *path, u64 offset)
 668{
 669        struct btrfs_fs_info *fs_info = root->fs_info;
 670        struct btrfs_free_space_header *header;
 671        struct extent_buffer *leaf;
 672        struct btrfs_io_ctl io_ctl;
 673        struct btrfs_key key;
 674        struct btrfs_free_space *e, *n;
 675        LIST_HEAD(bitmaps);
 676        u64 num_entries;
 677        u64 num_bitmaps;
 678        u64 generation;
 679        u8 type;
 680        int ret = 0;
 681
 682        /* Nothing in the space cache, goodbye */
 683        if (!i_size_read(inode))
 684                return 0;
 685
 686        key.objectid = BTRFS_FREE_SPACE_OBJECTID;
 687        key.offset = offset;
 688        key.type = 0;
 689
 690        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 691        if (ret < 0)
 692                return 0;
 693        else if (ret > 0) {
 694                btrfs_release_path(path);
 695                return 0;
 696        }
 697
 698        ret = -1;
 699
 700        leaf = path->nodes[0];
 701        header = btrfs_item_ptr(leaf, path->slots[0],
 702                                struct btrfs_free_space_header);
 703        num_entries = btrfs_free_space_entries(leaf, header);
 704        num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
 705        generation = btrfs_free_space_generation(leaf, header);
 706        btrfs_release_path(path);
 707
 708        if (!BTRFS_I(inode)->generation) {
 709                btrfs_info(fs_info,
 710                           "the free space cache file (%llu) is invalid, skip it",
 711                           offset);
 712                return 0;
 713        }
 714
 715        if (BTRFS_I(inode)->generation != generation) {
 716                btrfs_err(fs_info,
 717                          "free space inode generation (%llu) did not match free space cache generation (%llu)",
 718                          BTRFS_I(inode)->generation, generation);
 719                return 0;
 720        }
 721
 722        if (!num_entries)
 723                return 0;
 724
 725        ret = io_ctl_init(&io_ctl, inode, 0);
 726        if (ret)
 727                return ret;
 728
 729        readahead_cache(inode);
 730
 731        ret = io_ctl_prepare_pages(&io_ctl, inode, 1);
 732        if (ret)
 733                goto out;
 734
 735        ret = io_ctl_check_crc(&io_ctl, 0);
 736        if (ret)
 737                goto free_cache;
 738
 739        ret = io_ctl_check_generation(&io_ctl, generation);
 740        if (ret)
 741                goto free_cache;
 742
 743        while (num_entries) {
 744                e = kmem_cache_zalloc(btrfs_free_space_cachep,
 745                                      GFP_NOFS);
 746                if (!e)
 747                        goto free_cache;
 748
 749                ret = io_ctl_read_entry(&io_ctl, e, &type);
 750                if (ret) {
 751                        kmem_cache_free(btrfs_free_space_cachep, e);
 752                        goto free_cache;
 753                }
 754
 755                if (!e->bytes) {
 756                        kmem_cache_free(btrfs_free_space_cachep, e);
 757                        goto free_cache;
 758                }
 759
 760                if (type == BTRFS_FREE_SPACE_EXTENT) {
 761                        spin_lock(&ctl->tree_lock);
 762                        ret = link_free_space(ctl, e);
 763                        spin_unlock(&ctl->tree_lock);
 764                        if (ret) {
 765                                btrfs_err(fs_info,
 766                                        "Duplicate entries in free space cache, dumping");
 767                                kmem_cache_free(btrfs_free_space_cachep, e);
 768                                goto free_cache;
 769                        }
 770                } else {
 771                        ASSERT(num_bitmaps);
 772                        num_bitmaps--;
 773                        e->bitmap = kmem_cache_zalloc(
 774                                        btrfs_free_space_bitmap_cachep, GFP_NOFS);
 775                        if (!e->bitmap) {
 776                                kmem_cache_free(
 777                                        btrfs_free_space_cachep, e);
 778                                goto free_cache;
 779                        }
 780                        spin_lock(&ctl->tree_lock);
 781                        ret = link_free_space(ctl, e);
 782                        ctl->total_bitmaps++;
 783                        ctl->op->recalc_thresholds(ctl);
 784                        spin_unlock(&ctl->tree_lock);
 785                        if (ret) {
 786                                btrfs_err(fs_info,
 787                                        "Duplicate entries in free space cache, dumping");
 788                                kmem_cache_free(btrfs_free_space_cachep, e);
 789                                goto free_cache;
 790                        }
 791                        list_add_tail(&e->list, &bitmaps);
 792                }
 793
 794                num_entries--;
 795        }
 796
 797        io_ctl_unmap_page(&io_ctl);
 798
 799        /*
 800         * We add the bitmaps at the end of the entries in order that
 801         * the bitmap entries are added to the cache.
 802         */
 803        list_for_each_entry_safe(e, n, &bitmaps, list) {
 804                list_del_init(&e->list);
 805                ret = io_ctl_read_bitmap(&io_ctl, e);
 806                if (ret)
 807                        goto free_cache;
 808        }
 809
 810        io_ctl_drop_pages(&io_ctl);
 811        merge_space_tree(ctl);
 812        ret = 1;
 813out:
 814        io_ctl_free(&io_ctl);
 815        return ret;
 816free_cache:
 817        io_ctl_drop_pages(&io_ctl);
 818        __btrfs_remove_free_space_cache(ctl);
 819        goto out;
 820}
 821
 822int load_free_space_cache(struct btrfs_block_group *block_group)
 823{
 824        struct btrfs_fs_info *fs_info = block_group->fs_info;
 825        struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
 826        struct inode *inode;
 827        struct btrfs_path *path;
 828        int ret = 0;
 829        bool matched;
 830        u64 used = block_group->used;
 831
 832        /*
 833         * If this block group has been marked to be cleared for one reason or
 834         * another then we can't trust the on disk cache, so just return.
 835         */
 836        spin_lock(&block_group->lock);
 837        if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
 838                spin_unlock(&block_group->lock);
 839                return 0;
 840        }
 841        spin_unlock(&block_group->lock);
 842
 843        path = btrfs_alloc_path();
 844        if (!path)
 845                return 0;
 846        path->search_commit_root = 1;
 847        path->skip_locking = 1;
 848
 849        /*
 850         * We must pass a path with search_commit_root set to btrfs_iget in
 851         * order to avoid a deadlock when allocating extents for the tree root.
 852         *
 853         * When we are COWing an extent buffer from the tree root, when looking
 854         * for a free extent, at extent-tree.c:find_free_extent(), we can find
 855         * block group without its free space cache loaded. When we find one
 856         * we must load its space cache which requires reading its free space
 857         * cache's inode item from the root tree. If this inode item is located
 858         * in the same leaf that we started COWing before, then we end up in
 859         * deadlock on the extent buffer (trying to read lock it when we
 860         * previously write locked it).
 861         *
 862         * It's safe to read the inode item using the commit root because
 863         * block groups, once loaded, stay in memory forever (until they are
 864         * removed) as well as their space caches once loaded. New block groups
 865         * once created get their ->cached field set to BTRFS_CACHE_FINISHED so
 866         * we will never try to read their inode item while the fs is mounted.
 867         */
 868        inode = lookup_free_space_inode(block_group, path);
 869        if (IS_ERR(inode)) {
 870                btrfs_free_path(path);
 871                return 0;
 872        }
 873
 874        /* We may have converted the inode and made the cache invalid. */
 875        spin_lock(&block_group->lock);
 876        if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
 877                spin_unlock(&block_group->lock);
 878                btrfs_free_path(path);
 879                goto out;
 880        }
 881        spin_unlock(&block_group->lock);
 882
 883        ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
 884                                      path, block_group->start);
 885        btrfs_free_path(path);
 886        if (ret <= 0)
 887                goto out;
 888
 889        spin_lock(&ctl->tree_lock);
 890        matched = (ctl->free_space == (block_group->length - used -
 891                                       block_group->bytes_super));
 892        spin_unlock(&ctl->tree_lock);
 893
 894        if (!matched) {
 895                __btrfs_remove_free_space_cache(ctl);
 896                btrfs_warn(fs_info,
 897                           "block group %llu has wrong amount of free space",
 898                           block_group->start);
 899                ret = -1;
 900        }
 901out:
 902        if (ret < 0) {
 903                /* This cache is bogus, make sure it gets cleared */
 904                spin_lock(&block_group->lock);
 905                block_group->disk_cache_state = BTRFS_DC_CLEAR;
 906                spin_unlock(&block_group->lock);
 907                ret = 0;
 908
 909                btrfs_warn(fs_info,
 910                           "failed to load free space cache for block group %llu, rebuilding it now",
 911                           block_group->start);
 912        }
 913
 914        iput(inode);
 915        return ret;
 916}
 917
 918static noinline_for_stack
 919int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
 920                              struct btrfs_free_space_ctl *ctl,
 921                              struct btrfs_block_group *block_group,
 922                              int *entries, int *bitmaps,
 923                              struct list_head *bitmap_list)
 924{
 925        int ret;
 926        struct btrfs_free_cluster *cluster = NULL;
 927        struct btrfs_free_cluster *cluster_locked = NULL;
 928        struct rb_node *node = rb_first(&ctl->free_space_offset);
 929        struct btrfs_trim_range *trim_entry;
 930
 931        /* Get the cluster for this block_group if it exists */
 932        if (block_group && !list_empty(&block_group->cluster_list)) {
 933                cluster = list_entry(block_group->cluster_list.next,
 934                                     struct btrfs_free_cluster,
 935                                     block_group_list);
 936        }
 937
 938        if (!node && cluster) {
 939                cluster_locked = cluster;
 940                spin_lock(&cluster_locked->lock);
 941                node = rb_first(&cluster->root);
 942                cluster = NULL;
 943        }
 944
 945        /* Write out the extent entries */
 946        while (node) {
 947                struct btrfs_free_space *e;
 948
 949                e = rb_entry(node, struct btrfs_free_space, offset_index);
 950                *entries += 1;
 951
 952                ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
 953                                       e->bitmap);
 954                if (ret)
 955                        goto fail;
 956
 957                if (e->bitmap) {
 958                        list_add_tail(&e->list, bitmap_list);
 959                        *bitmaps += 1;
 960                }
 961                node = rb_next(node);
 962                if (!node && cluster) {
 963                        node = rb_first(&cluster->root);
 964                        cluster_locked = cluster;
 965                        spin_lock(&cluster_locked->lock);
 966                        cluster = NULL;
 967                }
 968        }
 969        if (cluster_locked) {
 970                spin_unlock(&cluster_locked->lock);
 971                cluster_locked = NULL;
 972        }
 973
 974        /*
 975         * Make sure we don't miss any range that was removed from our rbtree
 976         * because trimming is running. Otherwise after a umount+mount (or crash
 977         * after committing the transaction) we would leak free space and get
 978         * an inconsistent free space cache report from fsck.
 979         */
 980        list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
 981                ret = io_ctl_add_entry(io_ctl, trim_entry->start,
 982                                       trim_entry->bytes, NULL);
 983                if (ret)
 984                        goto fail;
 985                *entries += 1;
 986        }
 987
 988        return 0;
 989fail:
 990        if (cluster_locked)
 991                spin_unlock(&cluster_locked->lock);
 992        return -ENOSPC;
 993}
 994
 995static noinline_for_stack int
 996update_cache_item(struct btrfs_trans_handle *trans,
 997                  struct btrfs_root *root,
 998                  struct inode *inode,
 999                  struct btrfs_path *path, u64 offset,
1000                  int entries, int bitmaps)
1001{
1002        struct btrfs_key key;
1003        struct btrfs_free_space_header *header;
1004        struct extent_buffer *leaf;
1005        int ret;
1006
1007        key.objectid = BTRFS_FREE_SPACE_OBJECTID;
1008        key.offset = offset;
1009        key.type = 0;
1010
1011        ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1012        if (ret < 0) {
1013                clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1014                                 EXTENT_DELALLOC, 0, 0, NULL);
1015                goto fail;
1016        }
1017        leaf = path->nodes[0];
1018        if (ret > 0) {
1019                struct btrfs_key found_key;
1020                ASSERT(path->slots[0]);
1021                path->slots[0]--;
1022                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1023                if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1024                    found_key.offset != offset) {
1025                        clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1026                                         inode->i_size - 1, EXTENT_DELALLOC, 0,
1027                                         0, NULL);
1028                        btrfs_release_path(path);
1029                        goto fail;
1030                }
1031        }
1032
1033        BTRFS_I(inode)->generation = trans->transid;
1034        header = btrfs_item_ptr(leaf, path->slots[0],
1035                                struct btrfs_free_space_header);
1036        btrfs_set_free_space_entries(leaf, header, entries);
1037        btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1038        btrfs_set_free_space_generation(leaf, header, trans->transid);
1039        btrfs_mark_buffer_dirty(leaf);
1040        btrfs_release_path(path);
1041
1042        return 0;
1043
1044fail:
1045        return -1;
1046}
1047
1048static noinline_for_stack int write_pinned_extent_entries(
1049                            struct btrfs_block_group *block_group,
1050                            struct btrfs_io_ctl *io_ctl,
1051                            int *entries)
1052{
1053        u64 start, extent_start, extent_end, len;
1054        struct extent_io_tree *unpin = NULL;
1055        int ret;
1056
1057        if (!block_group)
1058                return 0;
1059
1060        /*
1061         * We want to add any pinned extents to our free space cache
1062         * so we don't leak the space
1063         *
1064         * We shouldn't have switched the pinned extents yet so this is the
1065         * right one
1066         */
1067        unpin = block_group->fs_info->pinned_extents;
1068
1069        start = block_group->start;
1070
1071        while (start < block_group->start + block_group->length) {
1072                ret = find_first_extent_bit(unpin, start,
1073                                            &extent_start, &extent_end,
1074                                            EXTENT_DIRTY, NULL);
1075                if (ret)
1076                        return 0;
1077
1078                /* This pinned extent is out of our range */
1079                if (extent_start >= block_group->start + block_group->length)
1080                        return 0;
1081
1082                extent_start = max(extent_start, start);
1083                extent_end = min(block_group->start + block_group->length,
1084                                 extent_end + 1);
1085                len = extent_end - extent_start;
1086
1087                *entries += 1;
1088                ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1089                if (ret)
1090                        return -ENOSPC;
1091
1092                start = extent_end;
1093        }
1094
1095        return 0;
1096}
1097
1098static noinline_for_stack int
1099write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1100{
1101        struct btrfs_free_space *entry, *next;
1102        int ret;
1103
1104        /* Write out the bitmaps */
1105        list_for_each_entry_safe(entry, next, bitmap_list, list) {
1106                ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1107                if (ret)
1108                        return -ENOSPC;
1109                list_del_init(&entry->list);
1110        }
1111
1112        return 0;
1113}
1114
1115static int flush_dirty_cache(struct inode *inode)
1116{
1117        int ret;
1118
1119        ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
1120        if (ret)
1121                clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1122                                 EXTENT_DELALLOC, 0, 0, NULL);
1123
1124        return ret;
1125}
1126
1127static void noinline_for_stack
1128cleanup_bitmap_list(struct list_head *bitmap_list)
1129{
1130        struct btrfs_free_space *entry, *next;
1131
1132        list_for_each_entry_safe(entry, next, bitmap_list, list)
1133                list_del_init(&entry->list);
1134}
1135
1136static void noinline_for_stack
1137cleanup_write_cache_enospc(struct inode *inode,
1138                           struct btrfs_io_ctl *io_ctl,
1139                           struct extent_state **cached_state)
1140{
1141        io_ctl_drop_pages(io_ctl);
1142        unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1143                             i_size_read(inode) - 1, cached_state);
1144}
1145
1146static int __btrfs_wait_cache_io(struct btrfs_root *root,
1147                                 struct btrfs_trans_handle *trans,
1148                                 struct btrfs_block_group *block_group,
1149                                 struct btrfs_io_ctl *io_ctl,
1150                                 struct btrfs_path *path, u64 offset)
1151{
1152        int ret;
1153        struct inode *inode = io_ctl->inode;
1154
1155        if (!inode)
1156                return 0;
1157
1158        /* Flush the dirty pages in the cache file. */
1159        ret = flush_dirty_cache(inode);
1160        if (ret)
1161                goto out;
1162
1163        /* Update the cache item to tell everyone this cache file is valid. */
1164        ret = update_cache_item(trans, root, inode, path, offset,
1165                                io_ctl->entries, io_ctl->bitmaps);
1166out:
1167        io_ctl_free(io_ctl);
1168        if (ret) {
1169                invalidate_inode_pages2(inode->i_mapping);
1170                BTRFS_I(inode)->generation = 0;
1171                if (block_group) {
1172#ifdef DEBUG
1173                        btrfs_err(root->fs_info,
1174                                  "failed to write free space cache for block group %llu",
1175                                  block_group->start);
1176#endif
1177                }
1178        }
1179        btrfs_update_inode(trans, root, inode);
1180
1181        if (block_group) {
1182                /* the dirty list is protected by the dirty_bgs_lock */
1183                spin_lock(&trans->transaction->dirty_bgs_lock);
1184
1185                /* the disk_cache_state is protected by the block group lock */
1186                spin_lock(&block_group->lock);
1187
1188                /*
1189                 * only mark this as written if we didn't get put back on
1190                 * the dirty list while waiting for IO.   Otherwise our
1191                 * cache state won't be right, and we won't get written again
1192                 */
1193                if (!ret && list_empty(&block_group->dirty_list))
1194                        block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1195                else if (ret)
1196                        block_group->disk_cache_state = BTRFS_DC_ERROR;
1197
1198                spin_unlock(&block_group->lock);
1199                spin_unlock(&trans->transaction->dirty_bgs_lock);
1200                io_ctl->inode = NULL;
1201                iput(inode);
1202        }
1203
1204        return ret;
1205
1206}
1207
1208static int btrfs_wait_cache_io_root(struct btrfs_root *root,
1209                                    struct btrfs_trans_handle *trans,
1210                                    struct btrfs_io_ctl *io_ctl,
1211                                    struct btrfs_path *path)
1212{
1213        return __btrfs_wait_cache_io(root, trans, NULL, io_ctl, path, 0);
1214}
1215
1216int btrfs_wait_cache_io(struct btrfs_trans_handle *trans,
1217                        struct btrfs_block_group *block_group,
1218                        struct btrfs_path *path)
1219{
1220        return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans,
1221                                     block_group, &block_group->io_ctl,
1222                                     path, block_group->start);
1223}
1224
1225/**
1226 * __btrfs_write_out_cache - write out cached info to an inode
1227 * @root - the root the inode belongs to
1228 * @ctl - the free space cache we are going to write out
1229 * @block_group - the block_group for this cache if it belongs to a block_group
1230 * @trans - the trans handle
1231 *
1232 * This function writes out a free space cache struct to disk for quick recovery
1233 * on mount.  This will return 0 if it was successful in writing the cache out,
1234 * or an errno if it was not.
1235 */
1236static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
1237                                   struct btrfs_free_space_ctl *ctl,
1238                                   struct btrfs_block_group *block_group,
1239                                   struct btrfs_io_ctl *io_ctl,
1240                                   struct btrfs_trans_handle *trans)
1241{
1242        struct extent_state *cached_state = NULL;
1243        LIST_HEAD(bitmap_list);
1244        int entries = 0;
1245        int bitmaps = 0;
1246        int ret;
1247        int must_iput = 0;
1248
1249        if (!i_size_read(inode))
1250                return -EIO;
1251
1252        WARN_ON(io_ctl->pages);
1253        ret = io_ctl_init(io_ctl, inode, 1);
1254        if (ret)
1255                return ret;
1256
1257        if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1258                down_write(&block_group->data_rwsem);
1259                spin_lock(&block_group->lock);
1260                if (block_group->delalloc_bytes) {
1261                        block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1262                        spin_unlock(&block_group->lock);
1263                        up_write(&block_group->data_rwsem);
1264                        BTRFS_I(inode)->generation = 0;
1265                        ret = 0;
1266                        must_iput = 1;
1267                        goto out;
1268                }
1269                spin_unlock(&block_group->lock);
1270        }
1271
1272        /* Lock all pages first so we can lock the extent safely. */
1273        ret = io_ctl_prepare_pages(io_ctl, inode, 0);
1274        if (ret)
1275                goto out_unlock;
1276
1277        lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1278                         &cached_state);
1279
1280        io_ctl_set_generation(io_ctl, trans->transid);
1281
1282        mutex_lock(&ctl->cache_writeout_mutex);
1283        /* Write out the extent entries in the free space cache */
1284        spin_lock(&ctl->tree_lock);
1285        ret = write_cache_extent_entries(io_ctl, ctl,
1286                                         block_group, &entries, &bitmaps,
1287                                         &bitmap_list);
1288        if (ret)
1289                goto out_nospc_locked;
1290
1291        /*
1292         * Some spaces that are freed in the current transaction are pinned,
1293         * they will be added into free space cache after the transaction is
1294         * committed, we shouldn't lose them.
1295         *
1296         * If this changes while we are working we'll get added back to
1297         * the dirty list and redo it.  No locking needed
1298         */
1299        ret = write_pinned_extent_entries(block_group, io_ctl, &entries);
1300        if (ret)
1301                goto out_nospc_locked;
1302
1303        /*
1304         * At last, we write out all the bitmaps and keep cache_writeout_mutex
1305         * locked while doing it because a concurrent trim can be manipulating
1306         * or freeing the bitmap.
1307         */
1308        ret = write_bitmap_entries(io_ctl, &bitmap_list);
1309        spin_unlock(&ctl->tree_lock);
1310        mutex_unlock(&ctl->cache_writeout_mutex);
1311        if (ret)
1312                goto out_nospc;
1313
1314        /* Zero out the rest of the pages just to make sure */
1315        io_ctl_zero_remaining_pages(io_ctl);
1316
1317        /* Everything is written out, now we dirty the pages in the file. */
1318        ret = btrfs_dirty_pages(inode, io_ctl->pages, io_ctl->num_pages, 0,
1319                                i_size_read(inode), &cached_state);
1320        if (ret)
1321                goto out_nospc;
1322
1323        if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1324                up_write(&block_group->data_rwsem);
1325        /*
1326         * Release the pages and unlock the extent, we will flush
1327         * them out later
1328         */
1329        io_ctl_drop_pages(io_ctl);
1330
1331        unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1332                             i_size_read(inode) - 1, &cached_state);
1333
1334        /*
1335         * at this point the pages are under IO and we're happy,
1336         * The caller is responsible for waiting on them and updating the
1337         * the cache and the inode
1338         */
1339        io_ctl->entries = entries;
1340        io_ctl->bitmaps = bitmaps;
1341
1342        ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
1343        if (ret)
1344                goto out;
1345
1346        return 0;
1347
1348out:
1349        io_ctl->inode = NULL;
1350        io_ctl_free(io_ctl);
1351        if (ret) {
1352                invalidate_inode_pages2(inode->i_mapping);
1353                BTRFS_I(inode)->generation = 0;
1354        }
1355        btrfs_update_inode(trans, root, inode);
1356        if (must_iput)
1357                iput(inode);
1358        return ret;
1359
1360out_nospc_locked:
1361        cleanup_bitmap_list(&bitmap_list);
1362        spin_unlock(&ctl->tree_lock);
1363        mutex_unlock(&ctl->cache_writeout_mutex);
1364
1365out_nospc:
1366        cleanup_write_cache_enospc(inode, io_ctl, &cached_state);
1367
1368out_unlock:
1369        if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1370                up_write(&block_group->data_rwsem);
1371
1372        goto out;
1373}
1374
1375int btrfs_write_out_cache(struct btrfs_trans_handle *trans,
1376                          struct btrfs_block_group *block_group,
1377                          struct btrfs_path *path)
1378{
1379        struct btrfs_fs_info *fs_info = trans->fs_info;
1380        struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1381        struct inode *inode;
1382        int ret = 0;
1383
1384        spin_lock(&block_group->lock);
1385        if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1386                spin_unlock(&block_group->lock);
1387                return 0;
1388        }
1389        spin_unlock(&block_group->lock);
1390
1391        inode = lookup_free_space_inode(block_group, path);
1392        if (IS_ERR(inode))
1393                return 0;
1394
1395        ret = __btrfs_write_out_cache(fs_info->tree_root, inode, ctl,
1396                                block_group, &block_group->io_ctl, trans);
1397        if (ret) {
1398#ifdef DEBUG
1399                btrfs_err(fs_info,
1400                          "failed to write free space cache for block group %llu",
1401                          block_group->start);
1402#endif
1403                spin_lock(&block_group->lock);
1404                block_group->disk_cache_state = BTRFS_DC_ERROR;
1405                spin_unlock(&block_group->lock);
1406
1407                block_group->io_ctl.inode = NULL;
1408                iput(inode);
1409        }
1410
1411        /*
1412         * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1413         * to wait for IO and put the inode
1414         */
1415
1416        return ret;
1417}
1418
1419static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1420                                          u64 offset)
1421{
1422        ASSERT(offset >= bitmap_start);
1423        offset -= bitmap_start;
1424        return (unsigned long)(div_u64(offset, unit));
1425}
1426
1427static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1428{
1429        return (unsigned long)(div_u64(bytes, unit));
1430}
1431
1432static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1433                                   u64 offset)
1434{
1435        u64 bitmap_start;
1436        u64 bytes_per_bitmap;
1437
1438        bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1439        bitmap_start = offset - ctl->start;
1440        bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1441        bitmap_start *= bytes_per_bitmap;
1442        bitmap_start += ctl->start;
1443
1444        return bitmap_start;
1445}
1446
1447static int tree_insert_offset(struct rb_root *root, u64 offset,
1448                              struct rb_node *node, int bitmap)
1449{
1450        struct rb_node **p = &root->rb_node;
1451        struct rb_node *parent = NULL;
1452        struct btrfs_free_space *info;
1453
1454        while (*p) {
1455                parent = *p;
1456                info = rb_entry(parent, struct btrfs_free_space, offset_index);
1457
1458                if (offset < info->offset) {
1459                        p = &(*p)->rb_left;
1460                } else if (offset > info->offset) {
1461                        p = &(*p)->rb_right;
1462                } else {
1463                        /*
1464                         * we could have a bitmap entry and an extent entry
1465                         * share the same offset.  If this is the case, we want
1466                         * the extent entry to always be found first if we do a
1467                         * linear search through the tree, since we want to have
1468                         * the quickest allocation time, and allocating from an
1469                         * extent is faster than allocating from a bitmap.  So
1470                         * if we're inserting a bitmap and we find an entry at
1471                         * this offset, we want to go right, or after this entry
1472                         * logically.  If we are inserting an extent and we've
1473                         * found a bitmap, we want to go left, or before
1474                         * logically.
1475                         */
1476                        if (bitmap) {
1477                                if (info->bitmap) {
1478                                        WARN_ON_ONCE(1);
1479                                        return -EEXIST;
1480                                }
1481                                p = &(*p)->rb_right;
1482                        } else {
1483                                if (!info->bitmap) {
1484                                        WARN_ON_ONCE(1);
1485                                        return -EEXIST;
1486                                }
1487                                p = &(*p)->rb_left;
1488                        }
1489                }
1490        }
1491
1492        rb_link_node(node, parent, p);
1493        rb_insert_color(node, root);
1494
1495        return 0;
1496}
1497
1498/*
1499 * searches the tree for the given offset.
1500 *
1501 * fuzzy - If this is set, then we are trying to make an allocation, and we just
1502 * want a section that has at least bytes size and comes at or after the given
1503 * offset.
1504 */
1505static struct btrfs_free_space *
1506tree_search_offset(struct btrfs_free_space_ctl *ctl,
1507                   u64 offset, int bitmap_only, int fuzzy)
1508{
1509        struct rb_node *n = ctl->free_space_offset.rb_node;
1510        struct btrfs_free_space *entry, *prev = NULL;
1511
1512        /* find entry that is closest to the 'offset' */
1513        while (1) {
1514                if (!n) {
1515                        entry = NULL;
1516                        break;
1517                }
1518
1519                entry = rb_entry(n, struct btrfs_free_space, offset_index);
1520                prev = entry;
1521
1522                if (offset < entry->offset)
1523                        n = n->rb_left;
1524                else if (offset > entry->offset)
1525                        n = n->rb_right;
1526                else
1527                        break;
1528        }
1529
1530        if (bitmap_only) {
1531                if (!entry)
1532                        return NULL;
1533                if (entry->bitmap)
1534                        return entry;
1535
1536                /*
1537                 * bitmap entry and extent entry may share same offset,
1538                 * in that case, bitmap entry comes after extent entry.
1539                 */
1540                n = rb_next(n);
1541                if (!n)
1542                        return NULL;
1543                entry = rb_entry(n, struct btrfs_free_space, offset_index);
1544                if (entry->offset != offset)
1545                        return NULL;
1546
1547                WARN_ON(!entry->bitmap);
1548                return entry;
1549        } else if (entry) {
1550                if (entry->bitmap) {
1551                        /*
1552                         * if previous extent entry covers the offset,
1553                         * we should return it instead of the bitmap entry
1554                         */
1555                        n = rb_prev(&entry->offset_index);
1556                        if (n) {
1557                                prev = rb_entry(n, struct btrfs_free_space,
1558                                                offset_index);
1559                                if (!prev->bitmap &&
1560                                    prev->offset + prev->bytes > offset)
1561                                        entry = prev;
1562                        }
1563                }
1564                return entry;
1565        }
1566
1567        if (!prev)
1568                return NULL;
1569
1570        /* find last entry before the 'offset' */
1571        entry = prev;
1572        if (entry->offset > offset) {
1573                n = rb_prev(&entry->offset_index);
1574                if (n) {
1575                        entry = rb_entry(n, struct btrfs_free_space,
1576                                        offset_index);
1577                        ASSERT(entry->offset <= offset);
1578                } else {
1579                        if (fuzzy)
1580                                return entry;
1581                        else
1582                                return NULL;
1583                }
1584        }
1585
1586        if (entry->bitmap) {
1587                n = rb_prev(&entry->offset_index);
1588                if (n) {
1589                        prev = rb_entry(n, struct btrfs_free_space,
1590                                        offset_index);
1591                        if (!prev->bitmap &&
1592                            prev->offset + prev->bytes > offset)
1593                                return prev;
1594                }
1595                if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1596                        return entry;
1597        } else if (entry->offset + entry->bytes > offset)
1598                return entry;
1599
1600        if (!fuzzy)
1601                return NULL;
1602
1603        while (1) {
1604                if (entry->bitmap) {
1605                        if (entry->offset + BITS_PER_BITMAP *
1606                            ctl->unit > offset)
1607                                break;
1608                } else {
1609                        if (entry->offset + entry->bytes > offset)
1610                                break;
1611                }
1612
1613                n = rb_next(&entry->offset_index);
1614                if (!n)
1615                        return NULL;
1616                entry = rb_entry(n, struct btrfs_free_space, offset_index);
1617        }
1618        return entry;
1619}
1620
1621static inline void
1622__unlink_free_space(struct btrfs_free_space_ctl *ctl,
1623                    struct btrfs_free_space *info)
1624{
1625        rb_erase(&info->offset_index, &ctl->free_space_offset);
1626        ctl->free_extents--;
1627}
1628
1629static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1630                              struct btrfs_free_space *info)
1631{
1632        __unlink_free_space(ctl, info);
1633        ctl->free_space -= info->bytes;
1634}
1635
1636static int link_free_space(struct btrfs_free_space_ctl *ctl,
1637                           struct btrfs_free_space *info)
1638{
1639        int ret = 0;
1640
1641        ASSERT(info->bytes || info->bitmap);
1642        ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1643                                 &info->offset_index, (info->bitmap != NULL));
1644        if (ret)
1645                return ret;
1646
1647        ctl->free_space += info->bytes;
1648        ctl->free_extents++;
1649        return ret;
1650}
1651
1652static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
1653{
1654        struct btrfs_block_group *block_group = ctl->private;
1655        u64 max_bytes;
1656        u64 bitmap_bytes;
1657        u64 extent_bytes;
1658        u64 size = block_group->length;
1659        u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
1660        u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
1661
1662        max_bitmaps = max_t(u64, max_bitmaps, 1);
1663
1664        ASSERT(ctl->total_bitmaps <= max_bitmaps);
1665
1666        /*
1667         * The goal is to keep the total amount of memory used per 1gb of space
1668         * at or below 32k, so we need to adjust how much memory we allow to be
1669         * used by extent based free space tracking
1670         */
1671        if (size < SZ_1G)
1672                max_bytes = MAX_CACHE_BYTES_PER_GIG;
1673        else
1674                max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
1675
1676        /*
1677         * we want to account for 1 more bitmap than what we have so we can make
1678         * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1679         * we add more bitmaps.
1680         */
1681        bitmap_bytes = (ctl->total_bitmaps + 1) * ctl->unit;
1682
1683        if (bitmap_bytes >= max_bytes) {
1684                ctl->extents_thresh = 0;
1685                return;
1686        }
1687
1688        /*
1689         * we want the extent entry threshold to always be at most 1/2 the max
1690         * bytes we can have, or whatever is less than that.
1691         */
1692        extent_bytes = max_bytes - bitmap_bytes;
1693        extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
1694
1695        ctl->extents_thresh =
1696                div_u64(extent_bytes, sizeof(struct btrfs_free_space));
1697}
1698
1699static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1700                                       struct btrfs_free_space *info,
1701                                       u64 offset, u64 bytes)
1702{
1703        unsigned long start, count;
1704
1705        start = offset_to_bit(info->offset, ctl->unit, offset);
1706        count = bytes_to_bits(bytes, ctl->unit);
1707        ASSERT(start + count <= BITS_PER_BITMAP);
1708
1709        bitmap_clear(info->bitmap, start, count);
1710
1711        info->bytes -= bytes;
1712        if (info->max_extent_size > ctl->unit)
1713                info->max_extent_size = 0;
1714}
1715
1716static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1717                              struct btrfs_free_space *info, u64 offset,
1718                              u64 bytes)
1719{
1720        __bitmap_clear_bits(ctl, info, offset, bytes);
1721        ctl->free_space -= bytes;
1722}
1723
1724static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1725                            struct btrfs_free_space *info, u64 offset,
1726                            u64 bytes)
1727{
1728        unsigned long start, count;
1729
1730        start = offset_to_bit(info->offset, ctl->unit, offset);
1731        count = bytes_to_bits(bytes, ctl->unit);
1732        ASSERT(start + count <= BITS_PER_BITMAP);
1733
1734        bitmap_set(info->bitmap, start, count);
1735
1736        info->bytes += bytes;
1737        ctl->free_space += bytes;
1738}
1739
1740/*
1741 * If we can not find suitable extent, we will use bytes to record
1742 * the size of the max extent.
1743 */
1744static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1745                         struct btrfs_free_space *bitmap_info, u64 *offset,
1746                         u64 *bytes, bool for_alloc)
1747{
1748        unsigned long found_bits = 0;
1749        unsigned long max_bits = 0;
1750        unsigned long bits, i;
1751        unsigned long next_zero;
1752        unsigned long extent_bits;
1753
1754        /*
1755         * Skip searching the bitmap if we don't have a contiguous section that
1756         * is large enough for this allocation.
1757         */
1758        if (for_alloc &&
1759            bitmap_info->max_extent_size &&
1760            bitmap_info->max_extent_size < *bytes) {
1761                *bytes = bitmap_info->max_extent_size;
1762                return -1;
1763        }
1764
1765        i = offset_to_bit(bitmap_info->offset, ctl->unit,
1766                          max_t(u64, *offset, bitmap_info->offset));
1767        bits = bytes_to_bits(*bytes, ctl->unit);
1768
1769        for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1770                if (for_alloc && bits == 1) {
1771                        found_bits = 1;
1772                        break;
1773                }
1774                next_zero = find_next_zero_bit(bitmap_info->bitmap,
1775                                               BITS_PER_BITMAP, i);
1776                extent_bits = next_zero - i;
1777                if (extent_bits >= bits) {
1778                        found_bits = extent_bits;
1779                        break;
1780                } else if (extent_bits > max_bits) {
1781                        max_bits = extent_bits;
1782                }
1783                i = next_zero;
1784        }
1785
1786        if (found_bits) {
1787                *offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1788                *bytes = (u64)(found_bits) * ctl->unit;
1789                return 0;
1790        }
1791
1792        *bytes = (u64)(max_bits) * ctl->unit;
1793        bitmap_info->max_extent_size = *bytes;
1794        return -1;
1795}
1796
1797static inline u64 get_max_extent_size(struct btrfs_free_space *entry)
1798{
1799        if (entry->bitmap)
1800                return entry->max_extent_size;
1801        return entry->bytes;
1802}
1803
1804/* Cache the size of the max extent in bytes */
1805static struct btrfs_free_space *
1806find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
1807                unsigned long align, u64 *max_extent_size)
1808{
1809        struct btrfs_free_space *entry;
1810        struct rb_node *node;
1811        u64 tmp;
1812        u64 align_off;
1813        int ret;
1814
1815        if (!ctl->free_space_offset.rb_node)
1816                goto out;
1817
1818        entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1819        if (!entry)
1820                goto out;
1821
1822        for (node = &entry->offset_index; node; node = rb_next(node)) {
1823                entry = rb_entry(node, struct btrfs_free_space, offset_index);
1824                if (entry->bytes < *bytes) {
1825                        *max_extent_size = max(get_max_extent_size(entry),
1826                                               *max_extent_size);
1827                        continue;
1828                }
1829
1830                /* make sure the space returned is big enough
1831                 * to match our requested alignment
1832                 */
1833                if (*bytes >= align) {
1834                        tmp = entry->offset - ctl->start + align - 1;
1835                        tmp = div64_u64(tmp, align);
1836                        tmp = tmp * align + ctl->start;
1837                        align_off = tmp - entry->offset;
1838                } else {
1839                        align_off = 0;
1840                        tmp = entry->offset;
1841                }
1842
1843                if (entry->bytes < *bytes + align_off) {
1844                        *max_extent_size = max(get_max_extent_size(entry),
1845                                               *max_extent_size);
1846                        continue;
1847                }
1848
1849                if (entry->bitmap) {
1850                        u64 size = *bytes;
1851
1852                        ret = search_bitmap(ctl, entry, &tmp, &size, true);
1853                        if (!ret) {
1854                                *offset = tmp;
1855                                *bytes = size;
1856                                return entry;
1857                        } else {
1858                                *max_extent_size =
1859                                        max(get_max_extent_size(entry),
1860                                            *max_extent_size);
1861                        }
1862                        continue;
1863                }
1864
1865                *offset = tmp;
1866                *bytes = entry->bytes - align_off;
1867                return entry;
1868        }
1869out:
1870        return NULL;
1871}
1872
1873static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1874                           struct btrfs_free_space *info, u64 offset)
1875{
1876        info->offset = offset_to_bitmap(ctl, offset);
1877        info->bytes = 0;
1878        INIT_LIST_HEAD(&info->list);
1879        link_free_space(ctl, info);
1880        ctl->total_bitmaps++;
1881
1882        ctl->op->recalc_thresholds(ctl);
1883}
1884
1885static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1886                        struct btrfs_free_space *bitmap_info)
1887{
1888        unlink_free_space(ctl, bitmap_info);
1889        kmem_cache_free(btrfs_free_space_bitmap_cachep, bitmap_info->bitmap);
1890        kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1891        ctl->total_bitmaps--;
1892        ctl->op->recalc_thresholds(ctl);
1893}
1894
1895static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1896                              struct btrfs_free_space *bitmap_info,
1897                              u64 *offset, u64 *bytes)
1898{
1899        u64 end;
1900        u64 search_start, search_bytes;
1901        int ret;
1902
1903again:
1904        end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1905
1906        /*
1907         * We need to search for bits in this bitmap.  We could only cover some
1908         * of the extent in this bitmap thanks to how we add space, so we need
1909         * to search for as much as it as we can and clear that amount, and then
1910         * go searching for the next bit.
1911         */
1912        search_start = *offset;
1913        search_bytes = ctl->unit;
1914        search_bytes = min(search_bytes, end - search_start + 1);
1915        ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
1916                            false);
1917        if (ret < 0 || search_start != *offset)
1918                return -EINVAL;
1919
1920        /* We may have found more bits than what we need */
1921        search_bytes = min(search_bytes, *bytes);
1922
1923        /* Cannot clear past the end of the bitmap */
1924        search_bytes = min(search_bytes, end - search_start + 1);
1925
1926        bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
1927        *offset += search_bytes;
1928        *bytes -= search_bytes;
1929
1930        if (*bytes) {
1931                struct rb_node *next = rb_next(&bitmap_info->offset_index);
1932                if (!bitmap_info->bytes)
1933                        free_bitmap(ctl, bitmap_info);
1934
1935                /*
1936                 * no entry after this bitmap, but we still have bytes to
1937                 * remove, so something has gone wrong.
1938                 */
1939                if (!next)
1940                        return -EINVAL;
1941
1942                bitmap_info = rb_entry(next, struct btrfs_free_space,
1943                                       offset_index);
1944
1945                /*
1946                 * if the next entry isn't a bitmap we need to return to let the
1947                 * extent stuff do its work.
1948                 */
1949                if (!bitmap_info->bitmap)
1950                        return -EAGAIN;
1951
1952                /*
1953                 * Ok the next item is a bitmap, but it may not actually hold
1954                 * the information for the rest of this free space stuff, so
1955                 * look for it, and if we don't find it return so we can try
1956                 * everything over again.
1957                 */
1958                search_start = *offset;
1959                search_bytes = ctl->unit;
1960                ret = search_bitmap(ctl, bitmap_info, &search_start,
1961                                    &search_bytes, false);
1962                if (ret < 0 || search_start != *offset)
1963                        return -EAGAIN;
1964
1965                goto again;
1966        } else if (!bitmap_info->bytes)
1967                free_bitmap(ctl, bitmap_info);
1968
1969        return 0;
1970}
1971
1972static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
1973                               struct btrfs_free_space *info, u64 offset,
1974                               u64 bytes)
1975{
1976        u64 bytes_to_set = 0;
1977        u64 end;
1978
1979        end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
1980
1981        bytes_to_set = min(end - offset, bytes);
1982
1983        bitmap_set_bits(ctl, info, offset, bytes_to_set);
1984
1985        /*
1986         * We set some bytes, we have no idea what the max extent size is
1987         * anymore.
1988         */
1989        info->max_extent_size = 0;
1990
1991        return bytes_to_set;
1992
1993}
1994
1995static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
1996                      struct btrfs_free_space *info)
1997{
1998        struct btrfs_block_group *block_group = ctl->private;
1999        struct btrfs_fs_info *fs_info = block_group->fs_info;
2000        bool forced = false;
2001
2002#ifdef CONFIG_BTRFS_DEBUG
2003        if (btrfs_should_fragment_free_space(block_group))
2004                forced = true;
2005#endif
2006
2007        /*
2008         * If we are below the extents threshold then we can add this as an
2009         * extent, and don't have to deal with the bitmap
2010         */
2011        if (!forced && ctl->free_extents < ctl->extents_thresh) {
2012                /*
2013                 * If this block group has some small extents we don't want to
2014                 * use up all of our free slots in the cache with them, we want
2015                 * to reserve them to larger extents, however if we have plenty
2016                 * of cache left then go ahead an dadd them, no sense in adding
2017                 * the overhead of a bitmap if we don't have to.
2018                 */
2019                if (info->bytes <= fs_info->sectorsize * 4) {
2020                        if (ctl->free_extents * 2 <= ctl->extents_thresh)
2021                                return false;
2022                } else {
2023                        return false;
2024                }
2025        }
2026
2027        /*
2028         * The original block groups from mkfs can be really small, like 8
2029         * megabytes, so don't bother with a bitmap for those entries.  However
2030         * some block groups can be smaller than what a bitmap would cover but
2031         * are still large enough that they could overflow the 32k memory limit,
2032         * so allow those block groups to still be allowed to have a bitmap
2033         * entry.
2034         */
2035        if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->length)
2036                return false;
2037
2038        return true;
2039}
2040
2041static const struct btrfs_free_space_op free_space_op = {
2042        .recalc_thresholds      = recalculate_thresholds,
2043        .use_bitmap             = use_bitmap,
2044};
2045
2046static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
2047                              struct btrfs_free_space *info)
2048{
2049        struct btrfs_free_space *bitmap_info;
2050        struct btrfs_block_group *block_group = NULL;
2051        int added = 0;
2052        u64 bytes, offset, bytes_added;
2053        int ret;
2054
2055        bytes = info->bytes;
2056        offset = info->offset;
2057
2058        if (!ctl->op->use_bitmap(ctl, info))
2059                return 0;
2060
2061        if (ctl->op == &free_space_op)
2062                block_group = ctl->private;
2063again:
2064        /*
2065         * Since we link bitmaps right into the cluster we need to see if we
2066         * have a cluster here, and if so and it has our bitmap we need to add
2067         * the free space to that bitmap.
2068         */
2069        if (block_group && !list_empty(&block_group->cluster_list)) {
2070                struct btrfs_free_cluster *cluster;
2071                struct rb_node *node;
2072                struct btrfs_free_space *entry;
2073
2074                cluster = list_entry(block_group->cluster_list.next,
2075                                     struct btrfs_free_cluster,
2076                                     block_group_list);
2077                spin_lock(&cluster->lock);
2078                node = rb_first(&cluster->root);
2079                if (!node) {
2080                        spin_unlock(&cluster->lock);
2081                        goto no_cluster_bitmap;
2082                }
2083
2084                entry = rb_entry(node, struct btrfs_free_space, offset_index);
2085                if (!entry->bitmap) {
2086                        spin_unlock(&cluster->lock);
2087                        goto no_cluster_bitmap;
2088                }
2089
2090                if (entry->offset == offset_to_bitmap(ctl, offset)) {
2091                        bytes_added = add_bytes_to_bitmap(ctl, entry,
2092                                                          offset, bytes);
2093                        bytes -= bytes_added;
2094                        offset += bytes_added;
2095                }
2096                spin_unlock(&cluster->lock);
2097                if (!bytes) {
2098                        ret = 1;
2099                        goto out;
2100                }
2101        }
2102
2103no_cluster_bitmap:
2104        bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2105                                         1, 0);
2106        if (!bitmap_info) {
2107                ASSERT(added == 0);
2108                goto new_bitmap;
2109        }
2110
2111        bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
2112        bytes -= bytes_added;
2113        offset += bytes_added;
2114        added = 0;
2115
2116        if (!bytes) {
2117                ret = 1;
2118                goto out;
2119        } else
2120                goto again;
2121
2122new_bitmap:
2123        if (info && info->bitmap) {
2124                add_new_bitmap(ctl, info, offset);
2125                added = 1;
2126                info = NULL;
2127                goto again;
2128        } else {
2129                spin_unlock(&ctl->tree_lock);
2130
2131                /* no pre-allocated info, allocate a new one */
2132                if (!info) {
2133                        info = kmem_cache_zalloc(btrfs_free_space_cachep,
2134                                                 GFP_NOFS);
2135                        if (!info) {
2136                                spin_lock(&ctl->tree_lock);
2137                                ret = -ENOMEM;
2138                                goto out;
2139                        }
2140                }
2141
2142                /* allocate the bitmap */
2143                info->bitmap = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep,
2144                                                 GFP_NOFS);
2145                spin_lock(&ctl->tree_lock);
2146                if (!info->bitmap) {
2147                        ret = -ENOMEM;
2148                        goto out;
2149                }
2150                goto again;
2151        }
2152
2153out:
2154        if (info) {
2155                if (info->bitmap)
2156                        kmem_cache_free(btrfs_free_space_bitmap_cachep,
2157                                        info->bitmap);
2158                kmem_cache_free(btrfs_free_space_cachep, info);
2159        }
2160
2161        return ret;
2162}
2163
2164static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2165                          struct btrfs_free_space *info, bool update_stat)
2166{
2167        struct btrfs_free_space *left_info;
2168        struct btrfs_free_space *right_info;
2169        bool merged = false;
2170        u64 offset = info->offset;
2171        u64 bytes = info->bytes;
2172
2173        /*
2174         * first we want to see if there is free space adjacent to the range we
2175         * are adding, if there is remove that struct and add a new one to
2176         * cover the entire range
2177         */
2178        right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2179        if (right_info && rb_prev(&right_info->offset_index))
2180                left_info = rb_entry(rb_prev(&right_info->offset_index),
2181                                     struct btrfs_free_space, offset_index);
2182        else
2183                left_info = tree_search_offset(ctl, offset - 1, 0, 0);
2184
2185        if (right_info && !right_info->bitmap) {
2186                if (update_stat)
2187                        unlink_free_space(ctl, right_info);
2188                else
2189                        __unlink_free_space(ctl, right_info);
2190                info->bytes += right_info->bytes;
2191                kmem_cache_free(btrfs_free_space_cachep, right_info);
2192                merged = true;
2193        }
2194
2195        if (left_info && !left_info->bitmap &&
2196            left_info->offset + left_info->bytes == offset) {
2197                if (update_stat)
2198                        unlink_free_space(ctl, left_info);
2199                else
2200                        __unlink_free_space(ctl, left_info);
2201                info->offset = left_info->offset;
2202                info->bytes += left_info->bytes;
2203                kmem_cache_free(btrfs_free_space_cachep, left_info);
2204                merged = true;
2205        }
2206
2207        return merged;
2208}
2209
2210static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2211                                     struct btrfs_free_space *info,
2212                                     bool update_stat)
2213{
2214        struct btrfs_free_space *bitmap;
2215        unsigned long i;
2216        unsigned long j;
2217        const u64 end = info->offset + info->bytes;
2218        const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2219        u64 bytes;
2220
2221        bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2222        if (!bitmap)
2223                return false;
2224
2225        i = offset_to_bit(bitmap->offset, ctl->unit, end);
2226        j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2227        if (j == i)
2228                return false;
2229        bytes = (j - i) * ctl->unit;
2230        info->bytes += bytes;
2231
2232        if (update_stat)
2233                bitmap_clear_bits(ctl, bitmap, end, bytes);
2234        else
2235                __bitmap_clear_bits(ctl, bitmap, end, bytes);
2236
2237        if (!bitmap->bytes)
2238                free_bitmap(ctl, bitmap);
2239
2240        return true;
2241}
2242
2243static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2244                                       struct btrfs_free_space *info,
2245                                       bool update_stat)
2246{
2247        struct btrfs_free_space *bitmap;
2248        u64 bitmap_offset;
2249        unsigned long i;
2250        unsigned long j;
2251        unsigned long prev_j;
2252        u64 bytes;
2253
2254        bitmap_offset = offset_to_bitmap(ctl, info->offset);
2255        /* If we're on a boundary, try the previous logical bitmap. */
2256        if (bitmap_offset == info->offset) {
2257                if (info->offset == 0)
2258                        return false;
2259                bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2260        }
2261
2262        bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2263        if (!bitmap)
2264                return false;
2265
2266        i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2267        j = 0;
2268        prev_j = (unsigned long)-1;
2269        for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2270                if (j > i)
2271                        break;
2272                prev_j = j;
2273        }
2274        if (prev_j == i)
2275                return false;
2276
2277        if (prev_j == (unsigned long)-1)
2278                bytes = (i + 1) * ctl->unit;
2279        else
2280                bytes = (i - prev_j) * ctl->unit;
2281
2282        info->offset -= bytes;
2283        info->bytes += bytes;
2284
2285        if (update_stat)
2286                bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2287        else
2288                __bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2289
2290        if (!bitmap->bytes)
2291                free_bitmap(ctl, bitmap);
2292
2293        return true;
2294}
2295
2296/*
2297 * We prefer always to allocate from extent entries, both for clustered and
2298 * non-clustered allocation requests. So when attempting to add a new extent
2299 * entry, try to see if there's adjacent free space in bitmap entries, and if
2300 * there is, migrate that space from the bitmaps to the extent.
2301 * Like this we get better chances of satisfying space allocation requests
2302 * because we attempt to satisfy them based on a single cache entry, and never
2303 * on 2 or more entries - even if the entries represent a contiguous free space
2304 * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2305 * ends).
2306 */
2307static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2308                              struct btrfs_free_space *info,
2309                              bool update_stat)
2310{
2311        /*
2312         * Only work with disconnected entries, as we can change their offset,
2313         * and must be extent entries.
2314         */
2315        ASSERT(!info->bitmap);
2316        ASSERT(RB_EMPTY_NODE(&info->offset_index));
2317
2318        if (ctl->total_bitmaps > 0) {
2319                bool stole_end;
2320                bool stole_front = false;
2321
2322                stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2323                if (ctl->total_bitmaps > 0)
2324                        stole_front = steal_from_bitmap_to_front(ctl, info,
2325                                                                 update_stat);
2326
2327                if (stole_end || stole_front)
2328                        try_merge_free_space(ctl, info, update_stat);
2329        }
2330}
2331
2332int __btrfs_add_free_space(struct btrfs_fs_info *fs_info,
2333                           struct btrfs_free_space_ctl *ctl,
2334                           u64 offset, u64 bytes)
2335{
2336        struct btrfs_free_space *info;
2337        int ret = 0;
2338
2339        info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2340        if (!info)
2341                return -ENOMEM;
2342
2343        info->offset = offset;
2344        info->bytes = bytes;
2345        RB_CLEAR_NODE(&info->offset_index);
2346
2347        spin_lock(&ctl->tree_lock);
2348
2349        if (try_merge_free_space(ctl, info, true))
2350                goto link;
2351
2352        /*
2353         * There was no extent directly to the left or right of this new
2354         * extent then we know we're going to have to allocate a new extent, so
2355         * before we do that see if we need to drop this into a bitmap
2356         */
2357        ret = insert_into_bitmap(ctl, info);
2358        if (ret < 0) {
2359                goto out;
2360        } else if (ret) {
2361                ret = 0;
2362                goto out;
2363        }
2364link:
2365        /*
2366         * Only steal free space from adjacent bitmaps if we're sure we're not
2367         * going to add the new free space to existing bitmap entries - because
2368         * that would mean unnecessary work that would be reverted. Therefore
2369         * attempt to steal space from bitmaps if we're adding an extent entry.
2370         */
2371        steal_from_bitmap(ctl, info, true);
2372
2373        ret = link_free_space(ctl, info);
2374        if (ret)
2375                kmem_cache_free(btrfs_free_space_cachep, info);
2376out:
2377        spin_unlock(&ctl->tree_lock);
2378
2379        if (ret) {
2380                btrfs_crit(fs_info, "unable to add free space :%d", ret);
2381                ASSERT(ret != -EEXIST);
2382        }
2383
2384        return ret;
2385}
2386
2387int btrfs_add_free_space(struct btrfs_block_group *block_group,
2388                         u64 bytenr, u64 size)
2389{
2390        return __btrfs_add_free_space(block_group->fs_info,
2391                                      block_group->free_space_ctl,
2392                                      bytenr, size);
2393}
2394
2395int btrfs_remove_free_space(struct btrfs_block_group *block_group,
2396                            u64 offset, u64 bytes)
2397{
2398        struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2399        struct btrfs_free_space *info;
2400        int ret;
2401        bool re_search = false;
2402
2403        spin_lock(&ctl->tree_lock);
2404
2405again:
2406        ret = 0;
2407        if (!bytes)
2408                goto out_lock;
2409
2410        info = tree_search_offset(ctl, offset, 0, 0);
2411        if (!info) {
2412                /*
2413                 * oops didn't find an extent that matched the space we wanted
2414                 * to remove, look for a bitmap instead
2415                 */
2416                info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2417                                          1, 0);
2418                if (!info) {
2419                        /*
2420                         * If we found a partial bit of our free space in a
2421                         * bitmap but then couldn't find the other part this may
2422                         * be a problem, so WARN about it.
2423                         */
2424                        WARN_ON(re_search);
2425                        goto out_lock;
2426                }
2427        }
2428
2429        re_search = false;
2430        if (!info->bitmap) {
2431                unlink_free_space(ctl, info);
2432                if (offset == info->offset) {
2433                        u64 to_free = min(bytes, info->bytes);
2434
2435                        info->bytes -= to_free;
2436                        info->offset += to_free;
2437                        if (info->bytes) {
2438                                ret = link_free_space(ctl, info);
2439                                WARN_ON(ret);
2440                        } else {
2441                                kmem_cache_free(btrfs_free_space_cachep, info);
2442                        }
2443
2444                        offset += to_free;
2445                        bytes -= to_free;
2446                        goto again;
2447                } else {
2448                        u64 old_end = info->bytes + info->offset;
2449
2450                        info->bytes = offset - info->offset;
2451                        ret = link_free_space(ctl, info);
2452                        WARN_ON(ret);
2453                        if (ret)
2454                                goto out_lock;
2455
2456                        /* Not enough bytes in this entry to satisfy us */
2457                        if (old_end < offset + bytes) {
2458                                bytes -= old_end - offset;
2459                                offset = old_end;
2460                                goto again;
2461                        } else if (old_end == offset + bytes) {
2462                                /* all done */
2463                                goto out_lock;
2464                        }
2465                        spin_unlock(&ctl->tree_lock);
2466
2467                        ret = btrfs_add_free_space(block_group, offset + bytes,
2468                                                   old_end - (offset + bytes));
2469                        WARN_ON(ret);
2470                        goto out;
2471                }
2472        }
2473
2474        ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2475        if (ret == -EAGAIN) {
2476                re_search = true;
2477                goto again;
2478        }
2479out_lock:
2480        spin_unlock(&ctl->tree_lock);
2481out:
2482        return ret;
2483}
2484
2485void btrfs_dump_free_space(struct btrfs_block_group *block_group,
2486                           u64 bytes)
2487{
2488        struct btrfs_fs_info *fs_info = block_group->fs_info;
2489        struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2490        struct btrfs_free_space *info;
2491        struct rb_node *n;
2492        int count = 0;
2493
2494        spin_lock(&ctl->tree_lock);
2495        for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2496                info = rb_entry(n, struct btrfs_free_space, offset_index);
2497                if (info->bytes >= bytes && !block_group->ro)
2498                        count++;
2499                btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s",
2500                           info->offset, info->bytes,
2501                       (info->bitmap) ? "yes" : "no");
2502        }
2503        spin_unlock(&ctl->tree_lock);
2504        btrfs_info(fs_info, "block group has cluster?: %s",
2505               list_empty(&block_group->cluster_list) ? "no" : "yes");
2506        btrfs_info(fs_info,
2507                   "%d blocks of free space at or bigger than bytes is", count);
2508}
2509
2510void btrfs_init_free_space_ctl(struct btrfs_block_group *block_group)
2511{
2512        struct btrfs_fs_info *fs_info = block_group->fs_info;
2513        struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2514
2515        spin_lock_init(&ctl->tree_lock);
2516        ctl->unit = fs_info->sectorsize;
2517        ctl->start = block_group->start;
2518        ctl->private = block_group;
2519        ctl->op = &free_space_op;
2520        INIT_LIST_HEAD(&ctl->trimming_ranges);
2521        mutex_init(&ctl->cache_writeout_mutex);
2522
2523        /*
2524         * we only want to have 32k of ram per block group for keeping
2525         * track of free space, and if we pass 1/2 of that we want to
2526         * start converting things over to using bitmaps
2527         */
2528        ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
2529}
2530
2531/*
2532 * for a given cluster, put all of its extents back into the free
2533 * space cache.  If the block group passed doesn't match the block group
2534 * pointed to by the cluster, someone else raced in and freed the
2535 * cluster already.  In that case, we just return without changing anything
2536 */
2537static int
2538__btrfs_return_cluster_to_free_space(
2539                             struct btrfs_block_group *block_group,
2540                             struct btrfs_free_cluster *cluster)
2541{
2542        struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2543        struct btrfs_free_space *entry;
2544        struct rb_node *node;
2545
2546        spin_lock(&cluster->lock);
2547        if (cluster->block_group != block_group)
2548                goto out;
2549
2550        cluster->block_group = NULL;
2551        cluster->window_start = 0;
2552        list_del_init(&cluster->block_group_list);
2553
2554        node = rb_first(&cluster->root);
2555        while (node) {
2556                bool bitmap;
2557
2558                entry = rb_entry(node, struct btrfs_free_space, offset_index);
2559                node = rb_next(&entry->offset_index);
2560                rb_erase(&entry->offset_index, &cluster->root);
2561                RB_CLEAR_NODE(&entry->offset_index);
2562
2563                bitmap = (entry->bitmap != NULL);
2564                if (!bitmap) {
2565                        try_merge_free_space(ctl, entry, false);
2566                        steal_from_bitmap(ctl, entry, false);
2567                }
2568                tree_insert_offset(&ctl->free_space_offset,
2569                                   entry->offset, &entry->offset_index, bitmap);
2570        }
2571        cluster->root = RB_ROOT;
2572
2573out:
2574        spin_unlock(&cluster->lock);
2575        btrfs_put_block_group(block_group);
2576        return 0;
2577}
2578
2579static void __btrfs_remove_free_space_cache_locked(
2580                                struct btrfs_free_space_ctl *ctl)
2581{
2582        struct btrfs_free_space *info;
2583        struct rb_node *node;
2584
2585        while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
2586                info = rb_entry(node, struct btrfs_free_space, offset_index);
2587                if (!info->bitmap) {
2588                        unlink_free_space(ctl, info);
2589                        kmem_cache_free(btrfs_free_space_cachep, info);
2590                } else {
2591                        free_bitmap(ctl, info);
2592                }
2593
2594                cond_resched_lock(&ctl->tree_lock);
2595        }
2596}
2597
2598void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
2599{
2600        spin_lock(&ctl->tree_lock);
2601        __btrfs_remove_free_space_cache_locked(ctl);
2602        spin_unlock(&ctl->tree_lock);
2603}
2604
2605void btrfs_remove_free_space_cache(struct btrfs_block_group *block_group)
2606{
2607        struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2608        struct btrfs_free_cluster *cluster;
2609        struct list_head *head;
2610
2611        spin_lock(&ctl->tree_lock);
2612        while ((head = block_group->cluster_list.next) !=
2613               &block_group->cluster_list) {
2614                cluster = list_entry(head, struct btrfs_free_cluster,
2615                                     block_group_list);
2616
2617                WARN_ON(cluster->block_group != block_group);
2618                __btrfs_return_cluster_to_free_space(block_group, cluster);
2619
2620                cond_resched_lock(&ctl->tree_lock);
2621        }
2622        __btrfs_remove_free_space_cache_locked(ctl);
2623        spin_unlock(&ctl->tree_lock);
2624
2625}
2626
2627u64 btrfs_find_space_for_alloc(struct btrfs_block_group *block_group,
2628                               u64 offset, u64 bytes, u64 empty_size,
2629                               u64 *max_extent_size)
2630{
2631        struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2632        struct btrfs_free_space *entry = NULL;
2633        u64 bytes_search = bytes + empty_size;
2634        u64 ret = 0;
2635        u64 align_gap = 0;
2636        u64 align_gap_len = 0;
2637
2638        spin_lock(&ctl->tree_lock);
2639        entry = find_free_space(ctl, &offset, &bytes_search,
2640                                block_group->full_stripe_len, max_extent_size);
2641        if (!entry)
2642                goto out;
2643
2644        ret = offset;
2645        if (entry->bitmap) {
2646                bitmap_clear_bits(ctl, entry, offset, bytes);
2647                if (!entry->bytes)
2648                        free_bitmap(ctl, entry);
2649        } else {
2650                unlink_free_space(ctl, entry);
2651                align_gap_len = offset - entry->offset;
2652                align_gap = entry->offset;
2653
2654                entry->offset = offset + bytes;
2655                WARN_ON(entry->bytes < bytes + align_gap_len);
2656
2657                entry->bytes -= bytes + align_gap_len;
2658                if (!entry->bytes)
2659                        kmem_cache_free(btrfs_free_space_cachep, entry);
2660                else
2661                        link_free_space(ctl, entry);
2662        }
2663out:
2664        spin_unlock(&ctl->tree_lock);
2665
2666        if (align_gap_len)
2667                __btrfs_add_free_space(block_group->fs_info, ctl,
2668                                       align_gap, align_gap_len);
2669        return ret;
2670}
2671
2672/*
2673 * given a cluster, put all of its extents back into the free space
2674 * cache.  If a block group is passed, this function will only free
2675 * a cluster that belongs to the passed block group.
2676 *
2677 * Otherwise, it'll get a reference on the block group pointed to by the
2678 * cluster and remove the cluster from it.
2679 */
2680int btrfs_return_cluster_to_free_space(
2681                               struct btrfs_block_group *block_group,
2682                               struct btrfs_free_cluster *cluster)
2683{
2684        struct btrfs_free_space_ctl *ctl;
2685        int ret;
2686
2687        /* first, get a safe pointer to the block group */
2688        spin_lock(&cluster->lock);
2689        if (!block_group) {
2690                block_group = cluster->block_group;
2691                if (!block_group) {
2692                        spin_unlock(&cluster->lock);
2693                        return 0;
2694                }
2695        } else if (cluster->block_group != block_group) {
2696                /* someone else has already freed it don't redo their work */
2697                spin_unlock(&cluster->lock);
2698                return 0;
2699        }
2700        atomic_inc(&block_group->count);
2701        spin_unlock(&cluster->lock);
2702
2703        ctl = block_group->free_space_ctl;
2704
2705        /* now return any extents the cluster had on it */
2706        spin_lock(&ctl->tree_lock);
2707        ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
2708        spin_unlock(&ctl->tree_lock);
2709
2710        /* finally drop our ref */
2711        btrfs_put_block_group(block_group);
2712        return ret;
2713}
2714
2715static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group *block_group,
2716                                   struct btrfs_free_cluster *cluster,
2717                                   struct btrfs_free_space *entry,
2718                                   u64 bytes, u64 min_start,
2719                                   u64 *max_extent_size)
2720{
2721        struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2722        int err;
2723        u64 search_start = cluster->window_start;
2724        u64 search_bytes = bytes;
2725        u64 ret = 0;
2726
2727        search_start = min_start;
2728        search_bytes = bytes;
2729
2730        err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
2731        if (err) {
2732                *max_extent_size = max(get_max_extent_size(entry),
2733                                       *max_extent_size);
2734                return 0;
2735        }
2736
2737        ret = search_start;
2738        __bitmap_clear_bits(ctl, entry, ret, bytes);
2739
2740        return ret;
2741}
2742
2743/*
2744 * given a cluster, try to allocate 'bytes' from it, returns 0
2745 * if it couldn't find anything suitably large, or a logical disk offset
2746 * if things worked out
2747 */
2748u64 btrfs_alloc_from_cluster(struct btrfs_block_group *block_group,
2749                             struct btrfs_free_cluster *cluster, u64 bytes,
2750                             u64 min_start, u64 *max_extent_size)
2751{
2752        struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2753        struct btrfs_free_space *entry = NULL;
2754        struct rb_node *node;
2755        u64 ret = 0;
2756
2757        spin_lock(&cluster->lock);
2758        if (bytes > cluster->max_size)
2759                goto out;
2760
2761        if (cluster->block_group != block_group)
2762                goto out;
2763
2764        node = rb_first(&cluster->root);
2765        if (!node)
2766                goto out;
2767
2768        entry = rb_entry(node, struct btrfs_free_space, offset_index);
2769        while (1) {
2770                if (entry->bytes < bytes)
2771                        *max_extent_size = max(get_max_extent_size(entry),
2772                                               *max_extent_size);
2773
2774                if (entry->bytes < bytes ||
2775                    (!entry->bitmap && entry->offset < min_start)) {
2776                        node = rb_next(&entry->offset_index);
2777                        if (!node)
2778                                break;
2779                        entry = rb_entry(node, struct btrfs_free_space,
2780                                         offset_index);
2781                        continue;
2782                }
2783
2784                if (entry->bitmap) {
2785                        ret = btrfs_alloc_from_bitmap(block_group,
2786                                                      cluster, entry, bytes,
2787                                                      cluster->window_start,
2788                                                      max_extent_size);
2789                        if (ret == 0) {
2790                                node = rb_next(&entry->offset_index);
2791                                if (!node)
2792                                        break;
2793                                entry = rb_entry(node, struct btrfs_free_space,
2794                                                 offset_index);
2795                                continue;
2796                        }
2797                        cluster->window_start += bytes;
2798                } else {
2799                        ret = entry->offset;
2800
2801                        entry->offset += bytes;
2802                        entry->bytes -= bytes;
2803                }
2804
2805                if (entry->bytes == 0)
2806                        rb_erase(&entry->offset_index, &cluster->root);
2807                break;
2808        }
2809out:
2810        spin_unlock(&cluster->lock);
2811
2812        if (!ret)
2813                return 0;
2814
2815        spin_lock(&ctl->tree_lock);
2816
2817        ctl->free_space -= bytes;
2818        if (entry->bytes == 0) {
2819                ctl->free_extents--;
2820                if (entry->bitmap) {
2821                        kmem_cache_free(btrfs_free_space_bitmap_cachep,
2822                                        entry->bitmap);
2823                        ctl->total_bitmaps--;
2824                        ctl->op->recalc_thresholds(ctl);
2825                }
2826                kmem_cache_free(btrfs_free_space_cachep, entry);
2827        }
2828
2829        spin_unlock(&ctl->tree_lock);
2830
2831        return ret;
2832}
2833
2834static int btrfs_bitmap_cluster(struct btrfs_block_group *block_group,
2835                                struct btrfs_free_space *entry,
2836                                struct btrfs_free_cluster *cluster,
2837                                u64 offset, u64 bytes,
2838                                u64 cont1_bytes, u64 min_bytes)
2839{
2840        struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2841        unsigned long next_zero;
2842        unsigned long i;
2843        unsigned long want_bits;
2844        unsigned long min_bits;
2845        unsigned long found_bits;
2846        unsigned long max_bits = 0;
2847        unsigned long start = 0;
2848        unsigned long total_found = 0;
2849        int ret;
2850
2851        i = offset_to_bit(entry->offset, ctl->unit,
2852                          max_t(u64, offset, entry->offset));
2853        want_bits = bytes_to_bits(bytes, ctl->unit);
2854        min_bits = bytes_to_bits(min_bytes, ctl->unit);
2855
2856        /*
2857         * Don't bother looking for a cluster in this bitmap if it's heavily
2858         * fragmented.
2859         */
2860        if (entry->max_extent_size &&
2861            entry->max_extent_size < cont1_bytes)
2862                return -ENOSPC;
2863again:
2864        found_bits = 0;
2865        for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
2866                next_zero = find_next_zero_bit(entry->bitmap,
2867                                               BITS_PER_BITMAP, i);
2868                if (next_zero - i >= min_bits) {
2869                        found_bits = next_zero - i;
2870                        if (found_bits > max_bits)
2871                                max_bits = found_bits;
2872                        break;
2873                }
2874                if (next_zero - i > max_bits)
2875                        max_bits = next_zero - i;
2876                i = next_zero;
2877        }
2878
2879        if (!found_bits) {
2880                entry->max_extent_size = (u64)max_bits * ctl->unit;
2881                return -ENOSPC;
2882        }
2883
2884        if (!total_found) {
2885                start = i;
2886                cluster->max_size = 0;
2887        }
2888
2889        total_found += found_bits;
2890
2891        if (cluster->max_size < found_bits * ctl->unit)
2892                cluster->max_size = found_bits * ctl->unit;
2893
2894        if (total_found < want_bits || cluster->max_size < cont1_bytes) {
2895                i = next_zero + 1;
2896                goto again;
2897        }
2898
2899        cluster->window_start = start * ctl->unit + entry->offset;
2900        rb_erase(&entry->offset_index, &ctl->free_space_offset);
2901        ret = tree_insert_offset(&cluster->root, entry->offset,
2902                                 &entry->offset_index, 1);
2903        ASSERT(!ret); /* -EEXIST; Logic error */
2904
2905        trace_btrfs_setup_cluster(block_group, cluster,
2906                                  total_found * ctl->unit, 1);
2907        return 0;
2908}
2909
2910/*
2911 * This searches the block group for just extents to fill the cluster with.
2912 * Try to find a cluster with at least bytes total bytes, at least one
2913 * extent of cont1_bytes, and other clusters of at least min_bytes.
2914 */
2915static noinline int
2916setup_cluster_no_bitmap(struct btrfs_block_group *block_group,
2917                        struct btrfs_free_cluster *cluster,
2918                        struct list_head *bitmaps, u64 offset, u64 bytes,
2919                        u64 cont1_bytes, u64 min_bytes)
2920{
2921        struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2922        struct btrfs_free_space *first = NULL;
2923        struct btrfs_free_space *entry = NULL;
2924        struct btrfs_free_space *last;
2925        struct rb_node *node;
2926        u64 window_free;
2927        u64 max_extent;
2928        u64 total_size = 0;
2929
2930        entry = tree_search_offset(ctl, offset, 0, 1);
2931        if (!entry)
2932                return -ENOSPC;
2933
2934        /*
2935         * We don't want bitmaps, so just move along until we find a normal
2936         * extent entry.
2937         */
2938        while (entry->bitmap || entry->bytes < min_bytes) {
2939                if (entry->bitmap && list_empty(&entry->list))
2940                        list_add_tail(&entry->list, bitmaps);
2941                node = rb_next(&entry->offset_index);
2942                if (!node)
2943                        return -ENOSPC;
2944                entry = rb_entry(node, struct btrfs_free_space, offset_index);
2945        }
2946
2947        window_free = entry->bytes;
2948        max_extent = entry->bytes;
2949        first = entry;
2950        last = entry;
2951
2952        for (node = rb_next(&entry->offset_index); node;
2953             node = rb_next(&entry->offset_index)) {
2954                entry = rb_entry(node, struct btrfs_free_space, offset_index);
2955
2956                if (entry->bitmap) {
2957                        if (list_empty(&entry->list))
2958                                list_add_tail(&entry->list, bitmaps);
2959                        continue;
2960                }
2961
2962                if (entry->bytes < min_bytes)
2963                        continue;
2964
2965                last = entry;
2966                window_free += entry->bytes;
2967                if (entry->bytes > max_extent)
2968                        max_extent = entry->bytes;
2969        }
2970
2971        if (window_free < bytes || max_extent < cont1_bytes)
2972                return -ENOSPC;
2973
2974        cluster->window_start = first->offset;
2975
2976        node = &first->offset_index;
2977
2978        /*
2979         * now we've found our entries, pull them out of the free space
2980         * cache and put them into the cluster rbtree
2981         */
2982        do {
2983                int ret;
2984
2985                entry = rb_entry(node, struct btrfs_free_space, offset_index);
2986                node = rb_next(&entry->offset_index);
2987                if (entry->bitmap || entry->bytes < min_bytes)
2988                        continue;
2989
2990                rb_erase(&entry->offset_index, &ctl->free_space_offset);
2991                ret = tree_insert_offset(&cluster->root, entry->offset,
2992                                         &entry->offset_index, 0);
2993                total_size += entry->bytes;
2994                ASSERT(!ret); /* -EEXIST; Logic error */
2995        } while (node && entry != last);
2996
2997        cluster->max_size = max_extent;
2998        trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
2999        return 0;
3000}
3001
3002/*
3003 * This specifically looks for bitmaps that may work in the cluster, we assume
3004 * that we have already failed to find extents that will work.
3005 */
3006static noinline int
3007setup_cluster_bitmap(struct btrfs_block_group *block_group,
3008                     struct btrfs_free_cluster *cluster,
3009                     struct list_head *bitmaps, u64 offset, u64 bytes,
3010                     u64 cont1_bytes, u64 min_bytes)
3011{
3012        struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3013        struct btrfs_free_space *entry = NULL;
3014        int ret = -ENOSPC;
3015        u64 bitmap_offset = offset_to_bitmap(ctl, offset);
3016
3017        if (ctl->total_bitmaps == 0)
3018                return -ENOSPC;
3019
3020        /*
3021         * The bitmap that covers offset won't be in the list unless offset
3022         * is just its start offset.
3023         */
3024        if (!list_empty(bitmaps))
3025                entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
3026
3027        if (!entry || entry->offset != bitmap_offset) {
3028                entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
3029                if (entry && list_empty(&entry->list))
3030                        list_add(&entry->list, bitmaps);
3031        }
3032
3033        list_for_each_entry(entry, bitmaps, list) {
3034                if (entry->bytes < bytes)
3035                        continue;
3036                ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
3037                                           bytes, cont1_bytes, min_bytes);
3038                if (!ret)
3039                        return 0;
3040        }
3041
3042        /*
3043         * The bitmaps list has all the bitmaps that record free space
3044         * starting after offset, so no more search is required.
3045         */
3046        return -ENOSPC;
3047}
3048
3049/*
3050 * here we try to find a cluster of blocks in a block group.  The goal
3051 * is to find at least bytes+empty_size.
3052 * We might not find them all in one contiguous area.
3053 *
3054 * returns zero and sets up cluster if things worked out, otherwise
3055 * it returns -enospc
3056 */
3057int btrfs_find_space_cluster(struct btrfs_block_group *block_group,
3058                             struct btrfs_free_cluster *cluster,
3059                             u64 offset, u64 bytes, u64 empty_size)
3060{
3061        struct btrfs_fs_info *fs_info = block_group->fs_info;
3062        struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3063        struct btrfs_free_space *entry, *tmp;
3064        LIST_HEAD(bitmaps);
3065        u64 min_bytes;
3066        u64 cont1_bytes;
3067        int ret;
3068
3069        /*
3070         * Choose the minimum extent size we'll require for this
3071         * cluster.  For SSD_SPREAD, don't allow any fragmentation.
3072         * For metadata, allow allocates with smaller extents.  For
3073         * data, keep it dense.
3074         */
3075        if (btrfs_test_opt(fs_info, SSD_SPREAD)) {
3076                cont1_bytes = min_bytes = bytes + empty_size;
3077        } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
3078                cont1_bytes = bytes;
3079                min_bytes = fs_info->sectorsize;
3080        } else {
3081                cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
3082                min_bytes = fs_info->sectorsize;
3083        }
3084
3085        spin_lock(&ctl->tree_lock);
3086
3087        /*
3088         * If we know we don't have enough space to make a cluster don't even
3089         * bother doing all the work to try and find one.
3090         */
3091        if (ctl->free_space < bytes) {
3092                spin_unlock(&ctl->tree_lock);
3093                return -ENOSPC;
3094        }
3095
3096        spin_lock(&cluster->lock);
3097
3098        /* someone already found a cluster, hooray */
3099        if (cluster->block_group) {
3100                ret = 0;
3101                goto out;
3102        }
3103
3104        trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
3105                                 min_bytes);
3106
3107        ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3108                                      bytes + empty_size,
3109                                      cont1_bytes, min_bytes);
3110        if (ret)
3111                ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3112                                           offset, bytes + empty_size,
3113                                           cont1_bytes, min_bytes);
3114
3115        /* Clear our temporary list */
3116        list_for_each_entry_safe(entry, tmp, &bitmaps, list)
3117                list_del_init(&entry->list);
3118
3119        if (!ret) {
3120                atomic_inc(&block_group->count);
3121                list_add_tail(&cluster->block_group_list,
3122                              &block_group->cluster_list);
3123                cluster->block_group = block_group;
3124        } else {
3125                trace_btrfs_failed_cluster_setup(block_group);
3126        }
3127out:
3128        spin_unlock(&cluster->lock);
3129        spin_unlock(&ctl->tree_lock);
3130
3131        return ret;
3132}
3133
3134/*
3135 * simple code to zero out a cluster
3136 */
3137void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
3138{
3139        spin_lock_init(&cluster->lock);
3140        spin_lock_init(&cluster->refill_lock);
3141        cluster->root = RB_ROOT;
3142        cluster->max_size = 0;
3143        cluster->fragmented = false;
3144        INIT_LIST_HEAD(&cluster->block_group_list);
3145        cluster->block_group = NULL;
3146}
3147
3148static int do_trimming(struct btrfs_block_group *block_group,
3149                       u64 *total_trimmed, u64 start, u64 bytes,
3150                       u64 reserved_start, u64 reserved_bytes,
3151                       struct btrfs_trim_range *trim_entry)
3152{
3153        struct btrfs_space_info *space_info = block_group->space_info;
3154        struct btrfs_fs_info *fs_info = block_group->fs_info;
3155        struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3156        int ret;
3157        int update = 0;
3158        u64 trimmed = 0;
3159
3160        spin_lock(&space_info->lock);
3161        spin_lock(&block_group->lock);
3162        if (!block_group->ro) {
3163                block_group->reserved += reserved_bytes;
3164                space_info->bytes_reserved += reserved_bytes;
3165                update = 1;
3166        }
3167        spin_unlock(&block_group->lock);
3168        spin_unlock(&space_info->lock);
3169
3170        ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed);
3171        if (!ret)
3172                *total_trimmed += trimmed;
3173
3174        mutex_lock(&ctl->cache_writeout_mutex);
3175        btrfs_add_free_space(block_group, reserved_start, reserved_bytes);
3176        list_del(&trim_entry->list);
3177        mutex_unlock(&ctl->cache_writeout_mutex);
3178
3179        if (update) {
3180                spin_lock(&space_info->lock);
3181                spin_lock(&block_group->lock);
3182                if (block_group->ro)
3183                        space_info->bytes_readonly += reserved_bytes;
3184                block_group->reserved -= reserved_bytes;
3185                space_info->bytes_reserved -= reserved_bytes;
3186                spin_unlock(&block_group->lock);
3187                spin_unlock(&space_info->lock);
3188        }
3189
3190        return ret;
3191}
3192
3193static int trim_no_bitmap(struct btrfs_block_group *block_group,
3194                          u64 *total_trimmed, u64 start, u64 end, u64 minlen)
3195{
3196        struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3197        struct btrfs_free_space *entry;
3198        struct rb_node *node;
3199        int ret = 0;
3200        u64 extent_start;
3201        u64 extent_bytes;
3202        u64 bytes;
3203
3204        while (start < end) {
3205                struct btrfs_trim_range trim_entry;
3206
3207                mutex_lock(&ctl->cache_writeout_mutex);
3208                spin_lock(&ctl->tree_lock);
3209
3210                if (ctl->free_space < minlen) {
3211                        spin_unlock(&ctl->tree_lock);
3212                        mutex_unlock(&ctl->cache_writeout_mutex);
3213                        break;
3214                }
3215
3216                entry = tree_search_offset(ctl, start, 0, 1);
3217                if (!entry) {
3218                        spin_unlock(&ctl->tree_lock);
3219                        mutex_unlock(&ctl->cache_writeout_mutex);
3220                        break;
3221                }
3222
3223                /* skip bitmaps */
3224                while (entry->bitmap) {
3225                        node = rb_next(&entry->offset_index);
3226                        if (!node) {
3227                                spin_unlock(&ctl->tree_lock);
3228                                mutex_unlock(&ctl->cache_writeout_mutex);
3229                                goto out;
3230                        }
3231                        entry = rb_entry(node, struct btrfs_free_space,
3232                                         offset_index);
3233                }
3234
3235                if (entry->offset >= end) {
3236                        spin_unlock(&ctl->tree_lock);
3237                        mutex_unlock(&ctl->cache_writeout_mutex);
3238                        break;
3239                }
3240
3241                extent_start = entry->offset;
3242                extent_bytes = entry->bytes;
3243                start = max(start, extent_start);
3244                bytes = min(extent_start + extent_bytes, end) - start;
3245                if (bytes < minlen) {
3246                        spin_unlock(&ctl->tree_lock);
3247                        mutex_unlock(&ctl->cache_writeout_mutex);
3248                        goto next;
3249                }
3250
3251                unlink_free_space(ctl, entry);
3252                kmem_cache_free(btrfs_free_space_cachep, entry);
3253
3254                spin_unlock(&ctl->tree_lock);
3255                trim_entry.start = extent_start;
3256                trim_entry.bytes = extent_bytes;
3257                list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3258                mutex_unlock(&ctl->cache_writeout_mutex);
3259
3260                ret = do_trimming(block_group, total_trimmed, start, bytes,
3261                                  extent_start, extent_bytes, &trim_entry);
3262                if (ret)
3263                        break;
3264next:
3265                start += bytes;
3266
3267                if (fatal_signal_pending(current)) {
3268                        ret = -ERESTARTSYS;
3269                        break;
3270                }
3271
3272                cond_resched();
3273        }
3274out:
3275        return ret;
3276}
3277
3278static int trim_bitmaps(struct btrfs_block_group *block_group,
3279                        u64 *total_trimmed, u64 start, u64 end, u64 minlen)
3280{
3281        struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3282        struct btrfs_free_space *entry;
3283        int ret = 0;
3284        int ret2;
3285        u64 bytes;
3286        u64 offset = offset_to_bitmap(ctl, start);
3287
3288        while (offset < end) {
3289                bool next_bitmap = false;
3290                struct btrfs_trim_range trim_entry;
3291
3292                mutex_lock(&ctl->cache_writeout_mutex);
3293                spin_lock(&ctl->tree_lock);
3294
3295                if (ctl->free_space < minlen) {
3296                        spin_unlock(&ctl->tree_lock);
3297                        mutex_unlock(&ctl->cache_writeout_mutex);
3298                        break;
3299                }
3300
3301                entry = tree_search_offset(ctl, offset, 1, 0);
3302                if (!entry) {
3303                        spin_unlock(&ctl->tree_lock);
3304                        mutex_unlock(&ctl->cache_writeout_mutex);
3305                        next_bitmap = true;
3306                        goto next;
3307                }
3308
3309                bytes = minlen;
3310                ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
3311                if (ret2 || start >= end) {
3312                        spin_unlock(&ctl->tree_lock);
3313                        mutex_unlock(&ctl->cache_writeout_mutex);
3314                        next_bitmap = true;
3315                        goto next;
3316                }
3317
3318                bytes = min(bytes, end - start);
3319                if (bytes < minlen) {
3320                        spin_unlock(&ctl->tree_lock);
3321                        mutex_unlock(&ctl->cache_writeout_mutex);
3322                        goto next;
3323                }
3324
3325                bitmap_clear_bits(ctl, entry, start, bytes);
3326                if (entry->bytes == 0)
3327                        free_bitmap(ctl, entry);
3328
3329                spin_unlock(&ctl->tree_lock);
3330                trim_entry.start = start;
3331                trim_entry.bytes = bytes;
3332                list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3333                mutex_unlock(&ctl->cache_writeout_mutex);
3334
3335                ret = do_trimming(block_group, total_trimmed, start, bytes,
3336                                  start, bytes, &trim_entry);
3337                if (ret)
3338                        break;
3339next:
3340                if (next_bitmap) {
3341                        offset += BITS_PER_BITMAP * ctl->unit;
3342                } else {
3343                        start += bytes;
3344                        if (start >= offset + BITS_PER_BITMAP * ctl->unit)
3345                                offset += BITS_PER_BITMAP * ctl->unit;
3346                }
3347
3348                if (fatal_signal_pending(current)) {
3349                        ret = -ERESTARTSYS;
3350                        break;
3351                }
3352
3353                cond_resched();
3354        }
3355
3356        return ret;
3357}
3358
3359void btrfs_get_block_group_trimming(struct btrfs_block_group *cache)
3360{
3361        atomic_inc(&cache->trimming);
3362}
3363
3364void btrfs_put_block_group_trimming(struct btrfs_block_group *block_group)
3365{
3366        struct btrfs_fs_info *fs_info = block_group->fs_info;
3367        struct extent_map_tree *em_tree;
3368        struct extent_map *em;
3369        bool cleanup;
3370
3371        spin_lock(&block_group->lock);
3372        cleanup = (atomic_dec_and_test(&block_group->trimming) &&
3373                   block_group->removed);
3374        spin_unlock(&block_group->lock);
3375
3376        if (cleanup) {
3377                mutex_lock(&fs_info->chunk_mutex);
3378                em_tree = &fs_info->mapping_tree;
3379                write_lock(&em_tree->lock);
3380                em = lookup_extent_mapping(em_tree, block_group->start,
3381                                           1);
3382                BUG_ON(!em); /* logic error, can't happen */
3383                remove_extent_mapping(em_tree, em);
3384                write_unlock(&em_tree->lock);
3385                mutex_unlock(&fs_info->chunk_mutex);
3386
3387                /* once for us and once for the tree */
3388                free_extent_map(em);
3389                free_extent_map(em);
3390
3391                /*
3392                 * We've left one free space entry and other tasks trimming
3393                 * this block group have left 1 entry each one. Free them.
3394                 */
3395                __btrfs_remove_free_space_cache(block_group->free_space_ctl);
3396        }
3397}
3398
3399int btrfs_trim_block_group(struct btrfs_block_group *block_group,
3400                           u64 *trimmed, u64 start, u64 end, u64 minlen)
3401{
3402        int ret;
3403
3404        *trimmed = 0;
3405
3406        spin_lock(&block_group->lock);
3407        if (block_group->removed) {
3408                spin_unlock(&block_group->lock);
3409                return 0;
3410        }
3411        btrfs_get_block_group_trimming(block_group);
3412        spin_unlock(&block_group->lock);
3413
3414        ret = trim_no_bitmap(block_group, trimmed, start, end, minlen);
3415        if (ret)
3416                goto out;
3417
3418        ret = trim_bitmaps(block_group, trimmed, start, end, minlen);
3419out:
3420        btrfs_put_block_group_trimming(block_group);
3421        return ret;
3422}
3423
3424/*
3425 * Find the left-most item in the cache tree, and then return the
3426 * smallest inode number in the item.
3427 *
3428 * Note: the returned inode number may not be the smallest one in
3429 * the tree, if the left-most item is a bitmap.
3430 */
3431u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
3432{
3433        struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
3434        struct btrfs_free_space *entry = NULL;
3435        u64 ino = 0;
3436
3437        spin_lock(&ctl->tree_lock);
3438
3439        if (RB_EMPTY_ROOT(&ctl->free_space_offset))
3440                goto out;
3441
3442        entry = rb_entry(rb_first(&ctl->free_space_offset),
3443                         struct btrfs_free_space, offset_index);
3444
3445        if (!entry->bitmap) {
3446                ino = entry->offset;
3447
3448                unlink_free_space(ctl, entry);
3449                entry->offset++;
3450                entry->bytes--;
3451                if (!entry->bytes)
3452                        kmem_cache_free(btrfs_free_space_cachep, entry);
3453                else
3454                        link_free_space(ctl, entry);
3455        } else {
3456                u64 offset = 0;
3457                u64 count = 1;
3458                int ret;
3459
3460                ret = search_bitmap(ctl, entry, &offset, &count, true);
3461                /* Logic error; Should be empty if it can't find anything */
3462                ASSERT(!ret);
3463
3464                ino = offset;
3465                bitmap_clear_bits(ctl, entry, offset, 1);
3466                if (entry->bytes == 0)
3467                        free_bitmap(ctl, entry);
3468        }
3469out:
3470        spin_unlock(&ctl->tree_lock);
3471
3472        return ino;
3473}
3474
3475struct inode *lookup_free_ino_inode(struct btrfs_root *root,
3476                                    struct btrfs_path *path)
3477{
3478        struct inode *inode = NULL;
3479
3480        spin_lock(&root->ino_cache_lock);
3481        if (root->ino_cache_inode)
3482                inode = igrab(root->ino_cache_inode);
3483        spin_unlock(&root->ino_cache_lock);
3484        if (inode)
3485                return inode;
3486
3487        inode = __lookup_free_space_inode(root, path, 0);
3488        if (IS_ERR(inode))
3489                return inode;
3490
3491        spin_lock(&root->ino_cache_lock);
3492        if (!btrfs_fs_closing(root->fs_info))
3493                root->ino_cache_inode = igrab(inode);
3494        spin_unlock(&root->ino_cache_lock);
3495
3496        return inode;
3497}
3498
3499int create_free_ino_inode(struct btrfs_root *root,
3500                          struct btrfs_trans_handle *trans,
3501                          struct btrfs_path *path)
3502{
3503        return __create_free_space_inode(root, trans, path,
3504                                         BTRFS_FREE_INO_OBJECTID, 0);
3505}
3506
3507int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3508{
3509        struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3510        struct btrfs_path *path;
3511        struct inode *inode;
3512        int ret = 0;
3513        u64 root_gen = btrfs_root_generation(&root->root_item);
3514
3515        if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
3516                return 0;
3517
3518        /*
3519         * If we're unmounting then just return, since this does a search on the
3520         * normal root and not the commit root and we could deadlock.
3521         */
3522        if (btrfs_fs_closing(fs_info))
3523                return 0;
3524
3525        path = btrfs_alloc_path();
3526        if (!path)
3527                return 0;
3528
3529        inode = lookup_free_ino_inode(root, path);
3530        if (IS_ERR(inode))
3531                goto out;
3532
3533        if (root_gen != BTRFS_I(inode)->generation)
3534                goto out_put;
3535
3536        ret = __load_free_space_cache(root, inode, ctl, path, 0);
3537
3538        if (ret < 0)
3539                btrfs_err(fs_info,
3540                        "failed to load free ino cache for root %llu",
3541                        root->root_key.objectid);
3542out_put:
3543        iput(inode);
3544out:
3545        btrfs_free_path(path);
3546        return ret;
3547}
3548
3549int btrfs_write_out_ino_cache(struct btrfs_root *root,
3550                              struct btrfs_trans_handle *trans,
3551                              struct btrfs_path *path,
3552                              struct inode *inode)
3553{
3554        struct btrfs_fs_info *fs_info = root->fs_info;
3555        struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3556        int ret;
3557        struct btrfs_io_ctl io_ctl;
3558        bool release_metadata = true;
3559
3560        if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
3561                return 0;
3562
3563        memset(&io_ctl, 0, sizeof(io_ctl));
3564        ret = __btrfs_write_out_cache(root, inode, ctl, NULL, &io_ctl, trans);
3565        if (!ret) {
3566                /*
3567                 * At this point writepages() didn't error out, so our metadata
3568                 * reservation is released when the writeback finishes, at
3569                 * inode.c:btrfs_finish_ordered_io(), regardless of it finishing
3570                 * with or without an error.
3571                 */
3572                release_metadata = false;
3573                ret = btrfs_wait_cache_io_root(root, trans, &io_ctl, path);
3574        }
3575
3576        if (ret) {
3577                if (release_metadata)
3578                        btrfs_delalloc_release_metadata(BTRFS_I(inode),
3579                                        inode->i_size, true);
3580#ifdef DEBUG
3581                btrfs_err(fs_info,
3582                          "failed to write free ino cache for root %llu",
3583                          root->root_key.objectid);
3584#endif
3585        }
3586
3587        return ret;
3588}
3589
3590#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3591/*
3592 * Use this if you need to make a bitmap or extent entry specifically, it
3593 * doesn't do any of the merging that add_free_space does, this acts a lot like
3594 * how the free space cache loading stuff works, so you can get really weird
3595 * configurations.
3596 */
3597int test_add_free_space_entry(struct btrfs_block_group *cache,
3598                              u64 offset, u64 bytes, bool bitmap)
3599{
3600        struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3601        struct btrfs_free_space *info = NULL, *bitmap_info;
3602        void *map = NULL;
3603        u64 bytes_added;
3604        int ret;
3605
3606again:
3607        if (!info) {
3608                info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
3609                if (!info)
3610                        return -ENOMEM;
3611        }
3612
3613        if (!bitmap) {
3614                spin_lock(&ctl->tree_lock);
3615                info->offset = offset;
3616                info->bytes = bytes;
3617                info->max_extent_size = 0;
3618                ret = link_free_space(ctl, info);
3619                spin_unlock(&ctl->tree_lock);
3620                if (ret)
3621                        kmem_cache_free(btrfs_free_space_cachep, info);
3622                return ret;
3623        }
3624
3625        if (!map) {
3626                map = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, GFP_NOFS);
3627                if (!map) {
3628                        kmem_cache_free(btrfs_free_space_cachep, info);
3629                        return -ENOMEM;
3630                }
3631        }
3632
3633        spin_lock(&ctl->tree_lock);
3634        bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3635                                         1, 0);
3636        if (!bitmap_info) {
3637                info->bitmap = map;
3638                map = NULL;
3639                add_new_bitmap(ctl, info, offset);
3640                bitmap_info = info;
3641                info = NULL;
3642        }
3643
3644        bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
3645
3646        bytes -= bytes_added;
3647        offset += bytes_added;
3648        spin_unlock(&ctl->tree_lock);
3649
3650        if (bytes)
3651                goto again;
3652
3653        if (info)
3654                kmem_cache_free(btrfs_free_space_cachep, info);
3655        if (map)
3656                kmem_cache_free(btrfs_free_space_bitmap_cachep, map);
3657        return 0;
3658}
3659
3660/*
3661 * Checks to see if the given range is in the free space cache.  This is really
3662 * just used to check the absence of space, so if there is free space in the
3663 * range at all we will return 1.
3664 */
3665int test_check_exists(struct btrfs_block_group *cache,
3666                      u64 offset, u64 bytes)
3667{
3668        struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3669        struct btrfs_free_space *info;
3670        int ret = 0;
3671
3672        spin_lock(&ctl->tree_lock);
3673        info = tree_search_offset(ctl, offset, 0, 0);
3674        if (!info) {
3675                info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3676                                          1, 0);
3677                if (!info)
3678                        goto out;
3679        }
3680
3681have_info:
3682        if (info->bitmap) {
3683                u64 bit_off, bit_bytes;
3684                struct rb_node *n;
3685                struct btrfs_free_space *tmp;
3686
3687                bit_off = offset;
3688                bit_bytes = ctl->unit;
3689                ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
3690                if (!ret) {
3691                        if (bit_off == offset) {
3692                                ret = 1;
3693                                goto out;
3694                        } else if (bit_off > offset &&
3695                                   offset + bytes > bit_off) {
3696                                ret = 1;
3697                                goto out;
3698                        }
3699                }
3700
3701                n = rb_prev(&info->offset_index);
3702                while (n) {
3703                        tmp = rb_entry(n, struct btrfs_free_space,
3704                                       offset_index);
3705                        if (tmp->offset + tmp->bytes < offset)
3706                                break;
3707                        if (offset + bytes < tmp->offset) {
3708                                n = rb_prev(&tmp->offset_index);
3709                                continue;
3710                        }
3711                        info = tmp;
3712                        goto have_info;
3713                }
3714
3715                n = rb_next(&info->offset_index);
3716                while (n) {
3717                        tmp = rb_entry(n, struct btrfs_free_space,
3718                                       offset_index);
3719                        if (offset + bytes < tmp->offset)
3720                                break;
3721                        if (tmp->offset + tmp->bytes < offset) {
3722                                n = rb_next(&tmp->offset_index);
3723                                continue;
3724                        }
3725                        info = tmp;
3726                        goto have_info;
3727                }
3728
3729                ret = 0;
3730                goto out;
3731        }
3732
3733        if (info->offset == offset) {
3734                ret = 1;
3735                goto out;
3736        }
3737
3738        if (offset > info->offset && offset < info->offset + info->bytes)
3739                ret = 1;
3740out:
3741        spin_unlock(&ctl->tree_lock);
3742        return ret;
3743}
3744#endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */
3745