linux/fs/btrfs/ioctl.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/kernel.h>
   7#include <linux/bio.h>
   8#include <linux/file.h>
   9#include <linux/fs.h>
  10#include <linux/fsnotify.h>
  11#include <linux/pagemap.h>
  12#include <linux/highmem.h>
  13#include <linux/time.h>
  14#include <linux/string.h>
  15#include <linux/backing-dev.h>
  16#include <linux/mount.h>
  17#include <linux/namei.h>
  18#include <linux/writeback.h>
  19#include <linux/compat.h>
  20#include <linux/security.h>
  21#include <linux/xattr.h>
  22#include <linux/mm.h>
  23#include <linux/slab.h>
  24#include <linux/blkdev.h>
  25#include <linux/uuid.h>
  26#include <linux/btrfs.h>
  27#include <linux/uaccess.h>
  28#include <linux/iversion.h>
  29#include "ctree.h"
  30#include "disk-io.h"
  31#include "transaction.h"
  32#include "btrfs_inode.h"
  33#include "print-tree.h"
  34#include "volumes.h"
  35#include "locking.h"
  36#include "inode-map.h"
  37#include "backref.h"
  38#include "rcu-string.h"
  39#include "send.h"
  40#include "dev-replace.h"
  41#include "props.h"
  42#include "sysfs.h"
  43#include "qgroup.h"
  44#include "tree-log.h"
  45#include "compression.h"
  46#include "space-info.h"
  47#include "delalloc-space.h"
  48#include "block-group.h"
  49
  50#ifdef CONFIG_64BIT
  51/* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
  52 * structures are incorrect, as the timespec structure from userspace
  53 * is 4 bytes too small. We define these alternatives here to teach
  54 * the kernel about the 32-bit struct packing.
  55 */
  56struct btrfs_ioctl_timespec_32 {
  57        __u64 sec;
  58        __u32 nsec;
  59} __attribute__ ((__packed__));
  60
  61struct btrfs_ioctl_received_subvol_args_32 {
  62        char    uuid[BTRFS_UUID_SIZE];  /* in */
  63        __u64   stransid;               /* in */
  64        __u64   rtransid;               /* out */
  65        struct btrfs_ioctl_timespec_32 stime; /* in */
  66        struct btrfs_ioctl_timespec_32 rtime; /* out */
  67        __u64   flags;                  /* in */
  68        __u64   reserved[16];           /* in */
  69} __attribute__ ((__packed__));
  70
  71#define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
  72                                struct btrfs_ioctl_received_subvol_args_32)
  73#endif
  74
  75#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
  76struct btrfs_ioctl_send_args_32 {
  77        __s64 send_fd;                  /* in */
  78        __u64 clone_sources_count;      /* in */
  79        compat_uptr_t clone_sources;    /* in */
  80        __u64 parent_root;              /* in */
  81        __u64 flags;                    /* in */
  82        __u64 reserved[4];              /* in */
  83} __attribute__ ((__packed__));
  84
  85#define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
  86                               struct btrfs_ioctl_send_args_32)
  87#endif
  88
  89static int btrfs_clone(struct inode *src, struct inode *inode,
  90                       u64 off, u64 olen, u64 olen_aligned, u64 destoff,
  91                       int no_time_update);
  92
  93/* Mask out flags that are inappropriate for the given type of inode. */
  94static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
  95                unsigned int flags)
  96{
  97        if (S_ISDIR(inode->i_mode))
  98                return flags;
  99        else if (S_ISREG(inode->i_mode))
 100                return flags & ~FS_DIRSYNC_FL;
 101        else
 102                return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
 103}
 104
 105/*
 106 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
 107 * ioctl.
 108 */
 109static unsigned int btrfs_inode_flags_to_fsflags(unsigned int flags)
 110{
 111        unsigned int iflags = 0;
 112
 113        if (flags & BTRFS_INODE_SYNC)
 114                iflags |= FS_SYNC_FL;
 115        if (flags & BTRFS_INODE_IMMUTABLE)
 116                iflags |= FS_IMMUTABLE_FL;
 117        if (flags & BTRFS_INODE_APPEND)
 118                iflags |= FS_APPEND_FL;
 119        if (flags & BTRFS_INODE_NODUMP)
 120                iflags |= FS_NODUMP_FL;
 121        if (flags & BTRFS_INODE_NOATIME)
 122                iflags |= FS_NOATIME_FL;
 123        if (flags & BTRFS_INODE_DIRSYNC)
 124                iflags |= FS_DIRSYNC_FL;
 125        if (flags & BTRFS_INODE_NODATACOW)
 126                iflags |= FS_NOCOW_FL;
 127
 128        if (flags & BTRFS_INODE_NOCOMPRESS)
 129                iflags |= FS_NOCOMP_FL;
 130        else if (flags & BTRFS_INODE_COMPRESS)
 131                iflags |= FS_COMPR_FL;
 132
 133        return iflags;
 134}
 135
 136/*
 137 * Update inode->i_flags based on the btrfs internal flags.
 138 */
 139void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
 140{
 141        struct btrfs_inode *binode = BTRFS_I(inode);
 142        unsigned int new_fl = 0;
 143
 144        if (binode->flags & BTRFS_INODE_SYNC)
 145                new_fl |= S_SYNC;
 146        if (binode->flags & BTRFS_INODE_IMMUTABLE)
 147                new_fl |= S_IMMUTABLE;
 148        if (binode->flags & BTRFS_INODE_APPEND)
 149                new_fl |= S_APPEND;
 150        if (binode->flags & BTRFS_INODE_NOATIME)
 151                new_fl |= S_NOATIME;
 152        if (binode->flags & BTRFS_INODE_DIRSYNC)
 153                new_fl |= S_DIRSYNC;
 154
 155        set_mask_bits(&inode->i_flags,
 156                      S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
 157                      new_fl);
 158}
 159
 160static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
 161{
 162        struct btrfs_inode *binode = BTRFS_I(file_inode(file));
 163        unsigned int flags = btrfs_inode_flags_to_fsflags(binode->flags);
 164
 165        if (copy_to_user(arg, &flags, sizeof(flags)))
 166                return -EFAULT;
 167        return 0;
 168}
 169
 170/* Check if @flags are a supported and valid set of FS_*_FL flags */
 171static int check_fsflags(unsigned int flags)
 172{
 173        if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
 174                      FS_NOATIME_FL | FS_NODUMP_FL | \
 175                      FS_SYNC_FL | FS_DIRSYNC_FL | \
 176                      FS_NOCOMP_FL | FS_COMPR_FL |
 177                      FS_NOCOW_FL))
 178                return -EOPNOTSUPP;
 179
 180        if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
 181                return -EINVAL;
 182
 183        return 0;
 184}
 185
 186static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
 187{
 188        struct inode *inode = file_inode(file);
 189        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 190        struct btrfs_inode *binode = BTRFS_I(inode);
 191        struct btrfs_root *root = binode->root;
 192        struct btrfs_trans_handle *trans;
 193        unsigned int fsflags, old_fsflags;
 194        int ret;
 195        const char *comp = NULL;
 196        u32 binode_flags = binode->flags;
 197
 198        if (!inode_owner_or_capable(inode))
 199                return -EPERM;
 200
 201        if (btrfs_root_readonly(root))
 202                return -EROFS;
 203
 204        if (copy_from_user(&fsflags, arg, sizeof(fsflags)))
 205                return -EFAULT;
 206
 207        ret = check_fsflags(fsflags);
 208        if (ret)
 209                return ret;
 210
 211        ret = mnt_want_write_file(file);
 212        if (ret)
 213                return ret;
 214
 215        inode_lock(inode);
 216
 217        fsflags = btrfs_mask_fsflags_for_type(inode, fsflags);
 218        old_fsflags = btrfs_inode_flags_to_fsflags(binode->flags);
 219        ret = vfs_ioc_setflags_prepare(inode, old_fsflags, fsflags);
 220        if (ret)
 221                goto out_unlock;
 222
 223        if (fsflags & FS_SYNC_FL)
 224                binode_flags |= BTRFS_INODE_SYNC;
 225        else
 226                binode_flags &= ~BTRFS_INODE_SYNC;
 227        if (fsflags & FS_IMMUTABLE_FL)
 228                binode_flags |= BTRFS_INODE_IMMUTABLE;
 229        else
 230                binode_flags &= ~BTRFS_INODE_IMMUTABLE;
 231        if (fsflags & FS_APPEND_FL)
 232                binode_flags |= BTRFS_INODE_APPEND;
 233        else
 234                binode_flags &= ~BTRFS_INODE_APPEND;
 235        if (fsflags & FS_NODUMP_FL)
 236                binode_flags |= BTRFS_INODE_NODUMP;
 237        else
 238                binode_flags &= ~BTRFS_INODE_NODUMP;
 239        if (fsflags & FS_NOATIME_FL)
 240                binode_flags |= BTRFS_INODE_NOATIME;
 241        else
 242                binode_flags &= ~BTRFS_INODE_NOATIME;
 243        if (fsflags & FS_DIRSYNC_FL)
 244                binode_flags |= BTRFS_INODE_DIRSYNC;
 245        else
 246                binode_flags &= ~BTRFS_INODE_DIRSYNC;
 247        if (fsflags & FS_NOCOW_FL) {
 248                if (S_ISREG(inode->i_mode)) {
 249                        /*
 250                         * It's safe to turn csums off here, no extents exist.
 251                         * Otherwise we want the flag to reflect the real COW
 252                         * status of the file and will not set it.
 253                         */
 254                        if (inode->i_size == 0)
 255                                binode_flags |= BTRFS_INODE_NODATACOW |
 256                                                BTRFS_INODE_NODATASUM;
 257                } else {
 258                        binode_flags |= BTRFS_INODE_NODATACOW;
 259                }
 260        } else {
 261                /*
 262                 * Revert back under same assumptions as above
 263                 */
 264                if (S_ISREG(inode->i_mode)) {
 265                        if (inode->i_size == 0)
 266                                binode_flags &= ~(BTRFS_INODE_NODATACOW |
 267                                                  BTRFS_INODE_NODATASUM);
 268                } else {
 269                        binode_flags &= ~BTRFS_INODE_NODATACOW;
 270                }
 271        }
 272
 273        /*
 274         * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
 275         * flag may be changed automatically if compression code won't make
 276         * things smaller.
 277         */
 278        if (fsflags & FS_NOCOMP_FL) {
 279                binode_flags &= ~BTRFS_INODE_COMPRESS;
 280                binode_flags |= BTRFS_INODE_NOCOMPRESS;
 281        } else if (fsflags & FS_COMPR_FL) {
 282
 283                if (IS_SWAPFILE(inode)) {
 284                        ret = -ETXTBSY;
 285                        goto out_unlock;
 286                }
 287
 288                binode_flags |= BTRFS_INODE_COMPRESS;
 289                binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
 290
 291                comp = btrfs_compress_type2str(fs_info->compress_type);
 292                if (!comp || comp[0] == 0)
 293                        comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
 294        } else {
 295                binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
 296        }
 297
 298        /*
 299         * 1 for inode item
 300         * 2 for properties
 301         */
 302        trans = btrfs_start_transaction(root, 3);
 303        if (IS_ERR(trans)) {
 304                ret = PTR_ERR(trans);
 305                goto out_unlock;
 306        }
 307
 308        if (comp) {
 309                ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp,
 310                                     strlen(comp), 0);
 311                if (ret) {
 312                        btrfs_abort_transaction(trans, ret);
 313                        goto out_end_trans;
 314                }
 315        } else {
 316                ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL,
 317                                     0, 0);
 318                if (ret && ret != -ENODATA) {
 319                        btrfs_abort_transaction(trans, ret);
 320                        goto out_end_trans;
 321                }
 322        }
 323
 324        binode->flags = binode_flags;
 325        btrfs_sync_inode_flags_to_i_flags(inode);
 326        inode_inc_iversion(inode);
 327        inode->i_ctime = current_time(inode);
 328        ret = btrfs_update_inode(trans, root, inode);
 329
 330 out_end_trans:
 331        btrfs_end_transaction(trans);
 332 out_unlock:
 333        inode_unlock(inode);
 334        mnt_drop_write_file(file);
 335        return ret;
 336}
 337
 338/*
 339 * Translate btrfs internal inode flags to xflags as expected by the
 340 * FS_IOC_FSGETXATT ioctl. Filter only the supported ones, unknown flags are
 341 * silently dropped.
 342 */
 343static unsigned int btrfs_inode_flags_to_xflags(unsigned int flags)
 344{
 345        unsigned int xflags = 0;
 346
 347        if (flags & BTRFS_INODE_APPEND)
 348                xflags |= FS_XFLAG_APPEND;
 349        if (flags & BTRFS_INODE_IMMUTABLE)
 350                xflags |= FS_XFLAG_IMMUTABLE;
 351        if (flags & BTRFS_INODE_NOATIME)
 352                xflags |= FS_XFLAG_NOATIME;
 353        if (flags & BTRFS_INODE_NODUMP)
 354                xflags |= FS_XFLAG_NODUMP;
 355        if (flags & BTRFS_INODE_SYNC)
 356                xflags |= FS_XFLAG_SYNC;
 357
 358        return xflags;
 359}
 360
 361/* Check if @flags are a supported and valid set of FS_XFLAGS_* flags */
 362static int check_xflags(unsigned int flags)
 363{
 364        if (flags & ~(FS_XFLAG_APPEND | FS_XFLAG_IMMUTABLE | FS_XFLAG_NOATIME |
 365                      FS_XFLAG_NODUMP | FS_XFLAG_SYNC))
 366                return -EOPNOTSUPP;
 367        return 0;
 368}
 369
 370/*
 371 * Set the xflags from the internal inode flags. The remaining items of fsxattr
 372 * are zeroed.
 373 */
 374static int btrfs_ioctl_fsgetxattr(struct file *file, void __user *arg)
 375{
 376        struct btrfs_inode *binode = BTRFS_I(file_inode(file));
 377        struct fsxattr fa;
 378
 379        simple_fill_fsxattr(&fa, btrfs_inode_flags_to_xflags(binode->flags));
 380        if (copy_to_user(arg, &fa, sizeof(fa)))
 381                return -EFAULT;
 382
 383        return 0;
 384}
 385
 386static int btrfs_ioctl_fssetxattr(struct file *file, void __user *arg)
 387{
 388        struct inode *inode = file_inode(file);
 389        struct btrfs_inode *binode = BTRFS_I(inode);
 390        struct btrfs_root *root = binode->root;
 391        struct btrfs_trans_handle *trans;
 392        struct fsxattr fa, old_fa;
 393        unsigned old_flags;
 394        unsigned old_i_flags;
 395        int ret = 0;
 396
 397        if (!inode_owner_or_capable(inode))
 398                return -EPERM;
 399
 400        if (btrfs_root_readonly(root))
 401                return -EROFS;
 402
 403        if (copy_from_user(&fa, arg, sizeof(fa)))
 404                return -EFAULT;
 405
 406        ret = check_xflags(fa.fsx_xflags);
 407        if (ret)
 408                return ret;
 409
 410        if (fa.fsx_extsize != 0 || fa.fsx_projid != 0 || fa.fsx_cowextsize != 0)
 411                return -EOPNOTSUPP;
 412
 413        ret = mnt_want_write_file(file);
 414        if (ret)
 415                return ret;
 416
 417        inode_lock(inode);
 418
 419        old_flags = binode->flags;
 420        old_i_flags = inode->i_flags;
 421
 422        simple_fill_fsxattr(&old_fa,
 423                            btrfs_inode_flags_to_xflags(binode->flags));
 424        ret = vfs_ioc_fssetxattr_check(inode, &old_fa, &fa);
 425        if (ret)
 426                goto out_unlock;
 427
 428        if (fa.fsx_xflags & FS_XFLAG_SYNC)
 429                binode->flags |= BTRFS_INODE_SYNC;
 430        else
 431                binode->flags &= ~BTRFS_INODE_SYNC;
 432        if (fa.fsx_xflags & FS_XFLAG_IMMUTABLE)
 433                binode->flags |= BTRFS_INODE_IMMUTABLE;
 434        else
 435                binode->flags &= ~BTRFS_INODE_IMMUTABLE;
 436        if (fa.fsx_xflags & FS_XFLAG_APPEND)
 437                binode->flags |= BTRFS_INODE_APPEND;
 438        else
 439                binode->flags &= ~BTRFS_INODE_APPEND;
 440        if (fa.fsx_xflags & FS_XFLAG_NODUMP)
 441                binode->flags |= BTRFS_INODE_NODUMP;
 442        else
 443                binode->flags &= ~BTRFS_INODE_NODUMP;
 444        if (fa.fsx_xflags & FS_XFLAG_NOATIME)
 445                binode->flags |= BTRFS_INODE_NOATIME;
 446        else
 447                binode->flags &= ~BTRFS_INODE_NOATIME;
 448
 449        /* 1 item for the inode */
 450        trans = btrfs_start_transaction(root, 1);
 451        if (IS_ERR(trans)) {
 452                ret = PTR_ERR(trans);
 453                goto out_unlock;
 454        }
 455
 456        btrfs_sync_inode_flags_to_i_flags(inode);
 457        inode_inc_iversion(inode);
 458        inode->i_ctime = current_time(inode);
 459        ret = btrfs_update_inode(trans, root, inode);
 460
 461        btrfs_end_transaction(trans);
 462
 463out_unlock:
 464        if (ret) {
 465                binode->flags = old_flags;
 466                inode->i_flags = old_i_flags;
 467        }
 468
 469        inode_unlock(inode);
 470        mnt_drop_write_file(file);
 471
 472        return ret;
 473}
 474
 475static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
 476{
 477        struct inode *inode = file_inode(file);
 478
 479        return put_user(inode->i_generation, arg);
 480}
 481
 482static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
 483                                        void __user *arg)
 484{
 485        struct btrfs_device *device;
 486        struct request_queue *q;
 487        struct fstrim_range range;
 488        u64 minlen = ULLONG_MAX;
 489        u64 num_devices = 0;
 490        int ret;
 491
 492        if (!capable(CAP_SYS_ADMIN))
 493                return -EPERM;
 494
 495        /*
 496         * If the fs is mounted with nologreplay, which requires it to be
 497         * mounted in RO mode as well, we can not allow discard on free space
 498         * inside block groups, because log trees refer to extents that are not
 499         * pinned in a block group's free space cache (pinning the extents is
 500         * precisely the first phase of replaying a log tree).
 501         */
 502        if (btrfs_test_opt(fs_info, NOLOGREPLAY))
 503                return -EROFS;
 504
 505        rcu_read_lock();
 506        list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
 507                                dev_list) {
 508                if (!device->bdev)
 509                        continue;
 510                q = bdev_get_queue(device->bdev);
 511                if (blk_queue_discard(q)) {
 512                        num_devices++;
 513                        minlen = min_t(u64, q->limits.discard_granularity,
 514                                     minlen);
 515                }
 516        }
 517        rcu_read_unlock();
 518
 519        if (!num_devices)
 520                return -EOPNOTSUPP;
 521        if (copy_from_user(&range, arg, sizeof(range)))
 522                return -EFAULT;
 523
 524        /*
 525         * NOTE: Don't truncate the range using super->total_bytes.  Bytenr of
 526         * block group is in the logical address space, which can be any
 527         * sectorsize aligned bytenr in  the range [0, U64_MAX].
 528         */
 529        if (range.len < fs_info->sb->s_blocksize)
 530                return -EINVAL;
 531
 532        range.minlen = max(range.minlen, minlen);
 533        ret = btrfs_trim_fs(fs_info, &range);
 534        if (ret < 0)
 535                return ret;
 536
 537        if (copy_to_user(arg, &range, sizeof(range)))
 538                return -EFAULT;
 539
 540        return 0;
 541}
 542
 543int __pure btrfs_is_empty_uuid(u8 *uuid)
 544{
 545        int i;
 546
 547        for (i = 0; i < BTRFS_UUID_SIZE; i++) {
 548                if (uuid[i])
 549                        return 0;
 550        }
 551        return 1;
 552}
 553
 554static noinline int create_subvol(struct inode *dir,
 555                                  struct dentry *dentry,
 556                                  const char *name, int namelen,
 557                                  u64 *async_transid,
 558                                  struct btrfs_qgroup_inherit *inherit)
 559{
 560        struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
 561        struct btrfs_trans_handle *trans;
 562        struct btrfs_key key;
 563        struct btrfs_root_item *root_item;
 564        struct btrfs_inode_item *inode_item;
 565        struct extent_buffer *leaf;
 566        struct btrfs_root *root = BTRFS_I(dir)->root;
 567        struct btrfs_root *new_root;
 568        struct btrfs_block_rsv block_rsv;
 569        struct timespec64 cur_time = current_time(dir);
 570        struct inode *inode;
 571        int ret;
 572        int err;
 573        u64 objectid;
 574        u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
 575        u64 index = 0;
 576        uuid_le new_uuid;
 577
 578        root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
 579        if (!root_item)
 580                return -ENOMEM;
 581
 582        ret = btrfs_find_free_objectid(fs_info->tree_root, &objectid);
 583        if (ret)
 584                goto fail_free;
 585
 586        /*
 587         * Don't create subvolume whose level is not zero. Or qgroup will be
 588         * screwed up since it assumes subvolume qgroup's level to be 0.
 589         */
 590        if (btrfs_qgroup_level(objectid)) {
 591                ret = -ENOSPC;
 592                goto fail_free;
 593        }
 594
 595        btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
 596        /*
 597         * The same as the snapshot creation, please see the comment
 598         * of create_snapshot().
 599         */
 600        ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false);
 601        if (ret)
 602                goto fail_free;
 603
 604        trans = btrfs_start_transaction(root, 0);
 605        if (IS_ERR(trans)) {
 606                ret = PTR_ERR(trans);
 607                btrfs_subvolume_release_metadata(fs_info, &block_rsv);
 608                goto fail_free;
 609        }
 610        trans->block_rsv = &block_rsv;
 611        trans->bytes_reserved = block_rsv.size;
 612
 613        ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit);
 614        if (ret)
 615                goto fail;
 616
 617        leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
 618        if (IS_ERR(leaf)) {
 619                ret = PTR_ERR(leaf);
 620                goto fail;
 621        }
 622
 623        btrfs_mark_buffer_dirty(leaf);
 624
 625        inode_item = &root_item->inode;
 626        btrfs_set_stack_inode_generation(inode_item, 1);
 627        btrfs_set_stack_inode_size(inode_item, 3);
 628        btrfs_set_stack_inode_nlink(inode_item, 1);
 629        btrfs_set_stack_inode_nbytes(inode_item,
 630                                     fs_info->nodesize);
 631        btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
 632
 633        btrfs_set_root_flags(root_item, 0);
 634        btrfs_set_root_limit(root_item, 0);
 635        btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
 636
 637        btrfs_set_root_bytenr(root_item, leaf->start);
 638        btrfs_set_root_generation(root_item, trans->transid);
 639        btrfs_set_root_level(root_item, 0);
 640        btrfs_set_root_refs(root_item, 1);
 641        btrfs_set_root_used(root_item, leaf->len);
 642        btrfs_set_root_last_snapshot(root_item, 0);
 643
 644        btrfs_set_root_generation_v2(root_item,
 645                        btrfs_root_generation(root_item));
 646        uuid_le_gen(&new_uuid);
 647        memcpy(root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
 648        btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
 649        btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
 650        root_item->ctime = root_item->otime;
 651        btrfs_set_root_ctransid(root_item, trans->transid);
 652        btrfs_set_root_otransid(root_item, trans->transid);
 653
 654        btrfs_tree_unlock(leaf);
 655        free_extent_buffer(leaf);
 656        leaf = NULL;
 657
 658        btrfs_set_root_dirid(root_item, new_dirid);
 659
 660        key.objectid = objectid;
 661        key.offset = 0;
 662        key.type = BTRFS_ROOT_ITEM_KEY;
 663        ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
 664                                root_item);
 665        if (ret)
 666                goto fail;
 667
 668        key.offset = (u64)-1;
 669        new_root = btrfs_read_fs_root_no_name(fs_info, &key);
 670        if (IS_ERR(new_root)) {
 671                ret = PTR_ERR(new_root);
 672                btrfs_abort_transaction(trans, ret);
 673                goto fail;
 674        }
 675
 676        btrfs_record_root_in_trans(trans, new_root);
 677
 678        ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
 679        if (ret) {
 680                /* We potentially lose an unused inode item here */
 681                btrfs_abort_transaction(trans, ret);
 682                goto fail;
 683        }
 684
 685        mutex_lock(&new_root->objectid_mutex);
 686        new_root->highest_objectid = new_dirid;
 687        mutex_unlock(&new_root->objectid_mutex);
 688
 689        /*
 690         * insert the directory item
 691         */
 692        ret = btrfs_set_inode_index(BTRFS_I(dir), &index);
 693        if (ret) {
 694                btrfs_abort_transaction(trans, ret);
 695                goto fail;
 696        }
 697
 698        ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key,
 699                                    BTRFS_FT_DIR, index);
 700        if (ret) {
 701                btrfs_abort_transaction(trans, ret);
 702                goto fail;
 703        }
 704
 705        btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2);
 706        ret = btrfs_update_inode(trans, root, dir);
 707        if (ret) {
 708                btrfs_abort_transaction(trans, ret);
 709                goto fail;
 710        }
 711
 712        ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid,
 713                                 btrfs_ino(BTRFS_I(dir)), index, name, namelen);
 714        if (ret) {
 715                btrfs_abort_transaction(trans, ret);
 716                goto fail;
 717        }
 718
 719        ret = btrfs_uuid_tree_add(trans, root_item->uuid,
 720                                  BTRFS_UUID_KEY_SUBVOL, objectid);
 721        if (ret)
 722                btrfs_abort_transaction(trans, ret);
 723
 724fail:
 725        kfree(root_item);
 726        trans->block_rsv = NULL;
 727        trans->bytes_reserved = 0;
 728        btrfs_subvolume_release_metadata(fs_info, &block_rsv);
 729
 730        if (async_transid) {
 731                *async_transid = trans->transid;
 732                err = btrfs_commit_transaction_async(trans, 1);
 733                if (err)
 734                        err = btrfs_commit_transaction(trans);
 735        } else {
 736                err = btrfs_commit_transaction(trans);
 737        }
 738        if (err && !ret)
 739                ret = err;
 740
 741        if (!ret) {
 742                inode = btrfs_lookup_dentry(dir, dentry);
 743                if (IS_ERR(inode))
 744                        return PTR_ERR(inode);
 745                d_instantiate(dentry, inode);
 746        }
 747        return ret;
 748
 749fail_free:
 750        kfree(root_item);
 751        return ret;
 752}
 753
 754static int create_snapshot(struct btrfs_root *root, struct inode *dir,
 755                           struct dentry *dentry,
 756                           u64 *async_transid, bool readonly,
 757                           struct btrfs_qgroup_inherit *inherit)
 758{
 759        struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
 760        struct inode *inode;
 761        struct btrfs_pending_snapshot *pending_snapshot;
 762        struct btrfs_trans_handle *trans;
 763        int ret;
 764        bool snapshot_force_cow = false;
 765
 766        if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
 767                return -EINVAL;
 768
 769        if (atomic_read(&root->nr_swapfiles)) {
 770                btrfs_warn(fs_info,
 771                           "cannot snapshot subvolume with active swapfile");
 772                return -ETXTBSY;
 773        }
 774
 775        pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
 776        if (!pending_snapshot)
 777                return -ENOMEM;
 778
 779        pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
 780                        GFP_KERNEL);
 781        pending_snapshot->path = btrfs_alloc_path();
 782        if (!pending_snapshot->root_item || !pending_snapshot->path) {
 783                ret = -ENOMEM;
 784                goto free_pending;
 785        }
 786
 787        /*
 788         * Force new buffered writes to reserve space even when NOCOW is
 789         * possible. This is to avoid later writeback (running dealloc) to
 790         * fallback to COW mode and unexpectedly fail with ENOSPC.
 791         */
 792        atomic_inc(&root->will_be_snapshotted);
 793        smp_mb__after_atomic();
 794        /* wait for no snapshot writes */
 795        wait_event(root->subv_writers->wait,
 796                   percpu_counter_sum(&root->subv_writers->counter) == 0);
 797
 798        ret = btrfs_start_delalloc_snapshot(root);
 799        if (ret)
 800                goto dec_and_free;
 801
 802        /*
 803         * All previous writes have started writeback in NOCOW mode, so now
 804         * we force future writes to fallback to COW mode during snapshot
 805         * creation.
 806         */
 807        atomic_inc(&root->snapshot_force_cow);
 808        snapshot_force_cow = true;
 809
 810        btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
 811
 812        btrfs_init_block_rsv(&pending_snapshot->block_rsv,
 813                             BTRFS_BLOCK_RSV_TEMP);
 814        /*
 815         * 1 - parent dir inode
 816         * 2 - dir entries
 817         * 1 - root item
 818         * 2 - root ref/backref
 819         * 1 - root of snapshot
 820         * 1 - UUID item
 821         */
 822        ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
 823                                        &pending_snapshot->block_rsv, 8,
 824                                        false);
 825        if (ret)
 826                goto dec_and_free;
 827
 828        pending_snapshot->dentry = dentry;
 829        pending_snapshot->root = root;
 830        pending_snapshot->readonly = readonly;
 831        pending_snapshot->dir = dir;
 832        pending_snapshot->inherit = inherit;
 833
 834        trans = btrfs_start_transaction(root, 0);
 835        if (IS_ERR(trans)) {
 836                ret = PTR_ERR(trans);
 837                goto fail;
 838        }
 839
 840        spin_lock(&fs_info->trans_lock);
 841        list_add(&pending_snapshot->list,
 842                 &trans->transaction->pending_snapshots);
 843        spin_unlock(&fs_info->trans_lock);
 844        if (async_transid) {
 845                *async_transid = trans->transid;
 846                ret = btrfs_commit_transaction_async(trans, 1);
 847                if (ret)
 848                        ret = btrfs_commit_transaction(trans);
 849        } else {
 850                ret = btrfs_commit_transaction(trans);
 851        }
 852        if (ret)
 853                goto fail;
 854
 855        ret = pending_snapshot->error;
 856        if (ret)
 857                goto fail;
 858
 859        ret = btrfs_orphan_cleanup(pending_snapshot->snap);
 860        if (ret)
 861                goto fail;
 862
 863        inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
 864        if (IS_ERR(inode)) {
 865                ret = PTR_ERR(inode);
 866                goto fail;
 867        }
 868
 869        d_instantiate(dentry, inode);
 870        ret = 0;
 871fail:
 872        btrfs_subvolume_release_metadata(fs_info, &pending_snapshot->block_rsv);
 873dec_and_free:
 874        if (snapshot_force_cow)
 875                atomic_dec(&root->snapshot_force_cow);
 876        if (atomic_dec_and_test(&root->will_be_snapshotted))
 877                wake_up_var(&root->will_be_snapshotted);
 878free_pending:
 879        kfree(pending_snapshot->root_item);
 880        btrfs_free_path(pending_snapshot->path);
 881        kfree(pending_snapshot);
 882
 883        return ret;
 884}
 885
 886/*  copy of may_delete in fs/namei.c()
 887 *      Check whether we can remove a link victim from directory dir, check
 888 *  whether the type of victim is right.
 889 *  1. We can't do it if dir is read-only (done in permission())
 890 *  2. We should have write and exec permissions on dir
 891 *  3. We can't remove anything from append-only dir
 892 *  4. We can't do anything with immutable dir (done in permission())
 893 *  5. If the sticky bit on dir is set we should either
 894 *      a. be owner of dir, or
 895 *      b. be owner of victim, or
 896 *      c. have CAP_FOWNER capability
 897 *  6. If the victim is append-only or immutable we can't do anything with
 898 *     links pointing to it.
 899 *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
 900 *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
 901 *  9. We can't remove a root or mountpoint.
 902 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
 903 *     nfs_async_unlink().
 904 */
 905
 906static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
 907{
 908        int error;
 909
 910        if (d_really_is_negative(victim))
 911                return -ENOENT;
 912
 913        BUG_ON(d_inode(victim->d_parent) != dir);
 914        audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
 915
 916        error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
 917        if (error)
 918                return error;
 919        if (IS_APPEND(dir))
 920                return -EPERM;
 921        if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) ||
 922            IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim)))
 923                return -EPERM;
 924        if (isdir) {
 925                if (!d_is_dir(victim))
 926                        return -ENOTDIR;
 927                if (IS_ROOT(victim))
 928                        return -EBUSY;
 929        } else if (d_is_dir(victim))
 930                return -EISDIR;
 931        if (IS_DEADDIR(dir))
 932                return -ENOENT;
 933        if (victim->d_flags & DCACHE_NFSFS_RENAMED)
 934                return -EBUSY;
 935        return 0;
 936}
 937
 938/* copy of may_create in fs/namei.c() */
 939static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
 940{
 941        if (d_really_is_positive(child))
 942                return -EEXIST;
 943        if (IS_DEADDIR(dir))
 944                return -ENOENT;
 945        return inode_permission(dir, MAY_WRITE | MAY_EXEC);
 946}
 947
 948/*
 949 * Create a new subvolume below @parent.  This is largely modeled after
 950 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
 951 * inside this filesystem so it's quite a bit simpler.
 952 */
 953static noinline int btrfs_mksubvol(const struct path *parent,
 954                                   const char *name, int namelen,
 955                                   struct btrfs_root *snap_src,
 956                                   u64 *async_transid, bool readonly,
 957                                   struct btrfs_qgroup_inherit *inherit)
 958{
 959        struct inode *dir = d_inode(parent->dentry);
 960        struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
 961        struct dentry *dentry;
 962        int error;
 963
 964        error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
 965        if (error == -EINTR)
 966                return error;
 967
 968        dentry = lookup_one_len(name, parent->dentry, namelen);
 969        error = PTR_ERR(dentry);
 970        if (IS_ERR(dentry))
 971                goto out_unlock;
 972
 973        error = btrfs_may_create(dir, dentry);
 974        if (error)
 975                goto out_dput;
 976
 977        /*
 978         * even if this name doesn't exist, we may get hash collisions.
 979         * check for them now when we can safely fail
 980         */
 981        error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
 982                                               dir->i_ino, name,
 983                                               namelen);
 984        if (error)
 985                goto out_dput;
 986
 987        down_read(&fs_info->subvol_sem);
 988
 989        if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
 990                goto out_up_read;
 991
 992        if (snap_src) {
 993                error = create_snapshot(snap_src, dir, dentry,
 994                                        async_transid, readonly, inherit);
 995        } else {
 996                error = create_subvol(dir, dentry, name, namelen,
 997                                      async_transid, inherit);
 998        }
 999        if (!error)
1000                fsnotify_mkdir(dir, dentry);
1001out_up_read:
1002        up_read(&fs_info->subvol_sem);
1003out_dput:
1004        dput(dentry);
1005out_unlock:
1006        inode_unlock(dir);
1007        return error;
1008}
1009
1010/*
1011 * When we're defragging a range, we don't want to kick it off again
1012 * if it is really just waiting for delalloc to send it down.
1013 * If we find a nice big extent or delalloc range for the bytes in the
1014 * file you want to defrag, we return 0 to let you know to skip this
1015 * part of the file
1016 */
1017static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
1018{
1019        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1020        struct extent_map *em = NULL;
1021        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1022        u64 end;
1023
1024        read_lock(&em_tree->lock);
1025        em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE);
1026        read_unlock(&em_tree->lock);
1027
1028        if (em) {
1029                end = extent_map_end(em);
1030                free_extent_map(em);
1031                if (end - offset > thresh)
1032                        return 0;
1033        }
1034        /* if we already have a nice delalloc here, just stop */
1035        thresh /= 2;
1036        end = count_range_bits(io_tree, &offset, offset + thresh,
1037                               thresh, EXTENT_DELALLOC, 1);
1038        if (end >= thresh)
1039                return 0;
1040        return 1;
1041}
1042
1043/*
1044 * helper function to walk through a file and find extents
1045 * newer than a specific transid, and smaller than thresh.
1046 *
1047 * This is used by the defragging code to find new and small
1048 * extents
1049 */
1050static int find_new_extents(struct btrfs_root *root,
1051                            struct inode *inode, u64 newer_than,
1052                            u64 *off, u32 thresh)
1053{
1054        struct btrfs_path *path;
1055        struct btrfs_key min_key;
1056        struct extent_buffer *leaf;
1057        struct btrfs_file_extent_item *extent;
1058        int type;
1059        int ret;
1060        u64 ino = btrfs_ino(BTRFS_I(inode));
1061
1062        path = btrfs_alloc_path();
1063        if (!path)
1064                return -ENOMEM;
1065
1066        min_key.objectid = ino;
1067        min_key.type = BTRFS_EXTENT_DATA_KEY;
1068        min_key.offset = *off;
1069
1070        while (1) {
1071                ret = btrfs_search_forward(root, &min_key, path, newer_than);
1072                if (ret != 0)
1073                        goto none;
1074process_slot:
1075                if (min_key.objectid != ino)
1076                        goto none;
1077                if (min_key.type != BTRFS_EXTENT_DATA_KEY)
1078                        goto none;
1079
1080                leaf = path->nodes[0];
1081                extent = btrfs_item_ptr(leaf, path->slots[0],
1082                                        struct btrfs_file_extent_item);
1083
1084                type = btrfs_file_extent_type(leaf, extent);
1085                if (type == BTRFS_FILE_EXTENT_REG &&
1086                    btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
1087                    check_defrag_in_cache(inode, min_key.offset, thresh)) {
1088                        *off = min_key.offset;
1089                        btrfs_free_path(path);
1090                        return 0;
1091                }
1092
1093                path->slots[0]++;
1094                if (path->slots[0] < btrfs_header_nritems(leaf)) {
1095                        btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
1096                        goto process_slot;
1097                }
1098
1099                if (min_key.offset == (u64)-1)
1100                        goto none;
1101
1102                min_key.offset++;
1103                btrfs_release_path(path);
1104        }
1105none:
1106        btrfs_free_path(path);
1107        return -ENOENT;
1108}
1109
1110static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
1111{
1112        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1113        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1114        struct extent_map *em;
1115        u64 len = PAGE_SIZE;
1116
1117        /*
1118         * hopefully we have this extent in the tree already, try without
1119         * the full extent lock
1120         */
1121        read_lock(&em_tree->lock);
1122        em = lookup_extent_mapping(em_tree, start, len);
1123        read_unlock(&em_tree->lock);
1124
1125        if (!em) {
1126                struct extent_state *cached = NULL;
1127                u64 end = start + len - 1;
1128
1129                /* get the big lock and read metadata off disk */
1130                lock_extent_bits(io_tree, start, end, &cached);
1131                em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
1132                unlock_extent_cached(io_tree, start, end, &cached);
1133
1134                if (IS_ERR(em))
1135                        return NULL;
1136        }
1137
1138        return em;
1139}
1140
1141static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
1142{
1143        struct extent_map *next;
1144        bool ret = true;
1145
1146        /* this is the last extent */
1147        if (em->start + em->len >= i_size_read(inode))
1148                return false;
1149
1150        next = defrag_lookup_extent(inode, em->start + em->len);
1151        if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1152                ret = false;
1153        else if ((em->block_start + em->block_len == next->block_start) &&
1154                 (em->block_len > SZ_128K && next->block_len > SZ_128K))
1155                ret = false;
1156
1157        free_extent_map(next);
1158        return ret;
1159}
1160
1161static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1162                               u64 *last_len, u64 *skip, u64 *defrag_end,
1163                               int compress)
1164{
1165        struct extent_map *em;
1166        int ret = 1;
1167        bool next_mergeable = true;
1168        bool prev_mergeable = true;
1169
1170        /*
1171         * make sure that once we start defragging an extent, we keep on
1172         * defragging it
1173         */
1174        if (start < *defrag_end)
1175                return 1;
1176
1177        *skip = 0;
1178
1179        em = defrag_lookup_extent(inode, start);
1180        if (!em)
1181                return 0;
1182
1183        /* this will cover holes, and inline extents */
1184        if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1185                ret = 0;
1186                goto out;
1187        }
1188
1189        if (!*defrag_end)
1190                prev_mergeable = false;
1191
1192        next_mergeable = defrag_check_next_extent(inode, em);
1193        /*
1194         * we hit a real extent, if it is big or the next extent is not a
1195         * real extent, don't bother defragging it
1196         */
1197        if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1198            (em->len >= thresh || (!next_mergeable && !prev_mergeable)))
1199                ret = 0;
1200out:
1201        /*
1202         * last_len ends up being a counter of how many bytes we've defragged.
1203         * every time we choose not to defrag an extent, we reset *last_len
1204         * so that the next tiny extent will force a defrag.
1205         *
1206         * The end result of this is that tiny extents before a single big
1207         * extent will force at least part of that big extent to be defragged.
1208         */
1209        if (ret) {
1210                *defrag_end = extent_map_end(em);
1211        } else {
1212                *last_len = 0;
1213                *skip = extent_map_end(em);
1214                *defrag_end = 0;
1215        }
1216
1217        free_extent_map(em);
1218        return ret;
1219}
1220
1221/*
1222 * it doesn't do much good to defrag one or two pages
1223 * at a time.  This pulls in a nice chunk of pages
1224 * to COW and defrag.
1225 *
1226 * It also makes sure the delalloc code has enough
1227 * dirty data to avoid making new small extents as part
1228 * of the defrag
1229 *
1230 * It's a good idea to start RA on this range
1231 * before calling this.
1232 */
1233static int cluster_pages_for_defrag(struct inode *inode,
1234                                    struct page **pages,
1235                                    unsigned long start_index,
1236                                    unsigned long num_pages)
1237{
1238        unsigned long file_end;
1239        u64 isize = i_size_read(inode);
1240        u64 page_start;
1241        u64 page_end;
1242        u64 page_cnt;
1243        int ret;
1244        int i;
1245        int i_done;
1246        struct btrfs_ordered_extent *ordered;
1247        struct extent_state *cached_state = NULL;
1248        struct extent_io_tree *tree;
1249        struct extent_changeset *data_reserved = NULL;
1250        gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1251
1252        file_end = (isize - 1) >> PAGE_SHIFT;
1253        if (!isize || start_index > file_end)
1254                return 0;
1255
1256        page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1257
1258        ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
1259                        start_index << PAGE_SHIFT,
1260                        page_cnt << PAGE_SHIFT);
1261        if (ret)
1262                return ret;
1263        i_done = 0;
1264        tree = &BTRFS_I(inode)->io_tree;
1265
1266        /* step one, lock all the pages */
1267        for (i = 0; i < page_cnt; i++) {
1268                struct page *page;
1269again:
1270                page = find_or_create_page(inode->i_mapping,
1271                                           start_index + i, mask);
1272                if (!page)
1273                        break;
1274
1275                page_start = page_offset(page);
1276                page_end = page_start + PAGE_SIZE - 1;
1277                while (1) {
1278                        lock_extent_bits(tree, page_start, page_end,
1279                                         &cached_state);
1280                        ordered = btrfs_lookup_ordered_extent(inode,
1281                                                              page_start);
1282                        unlock_extent_cached(tree, page_start, page_end,
1283                                             &cached_state);
1284                        if (!ordered)
1285                                break;
1286
1287                        unlock_page(page);
1288                        btrfs_start_ordered_extent(inode, ordered, 1);
1289                        btrfs_put_ordered_extent(ordered);
1290                        lock_page(page);
1291                        /*
1292                         * we unlocked the page above, so we need check if
1293                         * it was released or not.
1294                         */
1295                        if (page->mapping != inode->i_mapping) {
1296                                unlock_page(page);
1297                                put_page(page);
1298                                goto again;
1299                        }
1300                }
1301
1302                if (!PageUptodate(page)) {
1303                        btrfs_readpage(NULL, page);
1304                        lock_page(page);
1305                        if (!PageUptodate(page)) {
1306                                unlock_page(page);
1307                                put_page(page);
1308                                ret = -EIO;
1309                                break;
1310                        }
1311                }
1312
1313                if (page->mapping != inode->i_mapping) {
1314                        unlock_page(page);
1315                        put_page(page);
1316                        goto again;
1317                }
1318
1319                pages[i] = page;
1320                i_done++;
1321        }
1322        if (!i_done || ret)
1323                goto out;
1324
1325        if (!(inode->i_sb->s_flags & SB_ACTIVE))
1326                goto out;
1327
1328        /*
1329         * so now we have a nice long stream of locked
1330         * and up to date pages, lets wait on them
1331         */
1332        for (i = 0; i < i_done; i++)
1333                wait_on_page_writeback(pages[i]);
1334
1335        page_start = page_offset(pages[0]);
1336        page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE;
1337
1338        lock_extent_bits(&BTRFS_I(inode)->io_tree,
1339                         page_start, page_end - 1, &cached_state);
1340        clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1341                          page_end - 1, EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
1342                          EXTENT_DEFRAG, 0, 0, &cached_state);
1343
1344        if (i_done != page_cnt) {
1345                spin_lock(&BTRFS_I(inode)->lock);
1346                btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1347                spin_unlock(&BTRFS_I(inode)->lock);
1348                btrfs_delalloc_release_space(inode, data_reserved,
1349                                start_index << PAGE_SHIFT,
1350                                (page_cnt - i_done) << PAGE_SHIFT, true);
1351        }
1352
1353
1354        set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1355                          &cached_state);
1356
1357        unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1358                             page_start, page_end - 1, &cached_state);
1359
1360        for (i = 0; i < i_done; i++) {
1361                clear_page_dirty_for_io(pages[i]);
1362                ClearPageChecked(pages[i]);
1363                set_page_extent_mapped(pages[i]);
1364                set_page_dirty(pages[i]);
1365                unlock_page(pages[i]);
1366                put_page(pages[i]);
1367        }
1368        btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT);
1369        extent_changeset_free(data_reserved);
1370        return i_done;
1371out:
1372        for (i = 0; i < i_done; i++) {
1373                unlock_page(pages[i]);
1374                put_page(pages[i]);
1375        }
1376        btrfs_delalloc_release_space(inode, data_reserved,
1377                        start_index << PAGE_SHIFT,
1378                        page_cnt << PAGE_SHIFT, true);
1379        btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT);
1380        extent_changeset_free(data_reserved);
1381        return ret;
1382
1383}
1384
1385int btrfs_defrag_file(struct inode *inode, struct file *file,
1386                      struct btrfs_ioctl_defrag_range_args *range,
1387                      u64 newer_than, unsigned long max_to_defrag)
1388{
1389        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1390        struct btrfs_root *root = BTRFS_I(inode)->root;
1391        struct file_ra_state *ra = NULL;
1392        unsigned long last_index;
1393        u64 isize = i_size_read(inode);
1394        u64 last_len = 0;
1395        u64 skip = 0;
1396        u64 defrag_end = 0;
1397        u64 newer_off = range->start;
1398        unsigned long i;
1399        unsigned long ra_index = 0;
1400        int ret;
1401        int defrag_count = 0;
1402        int compress_type = BTRFS_COMPRESS_ZLIB;
1403        u32 extent_thresh = range->extent_thresh;
1404        unsigned long max_cluster = SZ_256K >> PAGE_SHIFT;
1405        unsigned long cluster = max_cluster;
1406        u64 new_align = ~((u64)SZ_128K - 1);
1407        struct page **pages = NULL;
1408        bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS;
1409
1410        if (isize == 0)
1411                return 0;
1412
1413        if (range->start >= isize)
1414                return -EINVAL;
1415
1416        if (do_compress) {
1417                if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES)
1418                        return -EINVAL;
1419                if (range->compress_type)
1420                        compress_type = range->compress_type;
1421        }
1422
1423        if (extent_thresh == 0)
1424                extent_thresh = SZ_256K;
1425
1426        /*
1427         * If we were not given a file, allocate a readahead context. As
1428         * readahead is just an optimization, defrag will work without it so
1429         * we don't error out.
1430         */
1431        if (!file) {
1432                ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1433                if (ra)
1434                        file_ra_state_init(ra, inode->i_mapping);
1435        } else {
1436                ra = &file->f_ra;
1437        }
1438
1439        pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL);
1440        if (!pages) {
1441                ret = -ENOMEM;
1442                goto out_ra;
1443        }
1444
1445        /* find the last page to defrag */
1446        if (range->start + range->len > range->start) {
1447                last_index = min_t(u64, isize - 1,
1448                         range->start + range->len - 1) >> PAGE_SHIFT;
1449        } else {
1450                last_index = (isize - 1) >> PAGE_SHIFT;
1451        }
1452
1453        if (newer_than) {
1454                ret = find_new_extents(root, inode, newer_than,
1455                                       &newer_off, SZ_64K);
1456                if (!ret) {
1457                        range->start = newer_off;
1458                        /*
1459                         * we always align our defrag to help keep
1460                         * the extents in the file evenly spaced
1461                         */
1462                        i = (newer_off & new_align) >> PAGE_SHIFT;
1463                } else
1464                        goto out_ra;
1465        } else {
1466                i = range->start >> PAGE_SHIFT;
1467        }
1468        if (!max_to_defrag)
1469                max_to_defrag = last_index - i + 1;
1470
1471        /*
1472         * make writeback starts from i, so the defrag range can be
1473         * written sequentially.
1474         */
1475        if (i < inode->i_mapping->writeback_index)
1476                inode->i_mapping->writeback_index = i;
1477
1478        while (i <= last_index && defrag_count < max_to_defrag &&
1479               (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) {
1480                /*
1481                 * make sure we stop running if someone unmounts
1482                 * the FS
1483                 */
1484                if (!(inode->i_sb->s_flags & SB_ACTIVE))
1485                        break;
1486
1487                if (btrfs_defrag_cancelled(fs_info)) {
1488                        btrfs_debug(fs_info, "defrag_file cancelled");
1489                        ret = -EAGAIN;
1490                        break;
1491                }
1492
1493                if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT,
1494                                         extent_thresh, &last_len, &skip,
1495                                         &defrag_end, do_compress)){
1496                        unsigned long next;
1497                        /*
1498                         * the should_defrag function tells us how much to skip
1499                         * bump our counter by the suggested amount
1500                         */
1501                        next = DIV_ROUND_UP(skip, PAGE_SIZE);
1502                        i = max(i + 1, next);
1503                        continue;
1504                }
1505
1506                if (!newer_than) {
1507                        cluster = (PAGE_ALIGN(defrag_end) >>
1508                                   PAGE_SHIFT) - i;
1509                        cluster = min(cluster, max_cluster);
1510                } else {
1511                        cluster = max_cluster;
1512                }
1513
1514                if (i + cluster > ra_index) {
1515                        ra_index = max(i, ra_index);
1516                        if (ra)
1517                                page_cache_sync_readahead(inode->i_mapping, ra,
1518                                                file, ra_index, cluster);
1519                        ra_index += cluster;
1520                }
1521
1522                inode_lock(inode);
1523                if (IS_SWAPFILE(inode)) {
1524                        ret = -ETXTBSY;
1525                } else {
1526                        if (do_compress)
1527                                BTRFS_I(inode)->defrag_compress = compress_type;
1528                        ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1529                }
1530                if (ret < 0) {
1531                        inode_unlock(inode);
1532                        goto out_ra;
1533                }
1534
1535                defrag_count += ret;
1536                balance_dirty_pages_ratelimited(inode->i_mapping);
1537                inode_unlock(inode);
1538
1539                if (newer_than) {
1540                        if (newer_off == (u64)-1)
1541                                break;
1542
1543                        if (ret > 0)
1544                                i += ret;
1545
1546                        newer_off = max(newer_off + 1,
1547                                        (u64)i << PAGE_SHIFT);
1548
1549                        ret = find_new_extents(root, inode, newer_than,
1550                                               &newer_off, SZ_64K);
1551                        if (!ret) {
1552                                range->start = newer_off;
1553                                i = (newer_off & new_align) >> PAGE_SHIFT;
1554                        } else {
1555                                break;
1556                        }
1557                } else {
1558                        if (ret > 0) {
1559                                i += ret;
1560                                last_len += ret << PAGE_SHIFT;
1561                        } else {
1562                                i++;
1563                                last_len = 0;
1564                        }
1565                }
1566        }
1567
1568        if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1569                filemap_flush(inode->i_mapping);
1570                if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1571                             &BTRFS_I(inode)->runtime_flags))
1572                        filemap_flush(inode->i_mapping);
1573        }
1574
1575        if (range->compress_type == BTRFS_COMPRESS_LZO) {
1576                btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1577        } else if (range->compress_type == BTRFS_COMPRESS_ZSTD) {
1578                btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1579        }
1580
1581        ret = defrag_count;
1582
1583out_ra:
1584        if (do_compress) {
1585                inode_lock(inode);
1586                BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1587                inode_unlock(inode);
1588        }
1589        if (!file)
1590                kfree(ra);
1591        kfree(pages);
1592        return ret;
1593}
1594
1595static noinline int btrfs_ioctl_resize(struct file *file,
1596                                        void __user *arg)
1597{
1598        struct inode *inode = file_inode(file);
1599        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1600        u64 new_size;
1601        u64 old_size;
1602        u64 devid = 1;
1603        struct btrfs_root *root = BTRFS_I(inode)->root;
1604        struct btrfs_ioctl_vol_args *vol_args;
1605        struct btrfs_trans_handle *trans;
1606        struct btrfs_device *device = NULL;
1607        char *sizestr;
1608        char *retptr;
1609        char *devstr = NULL;
1610        int ret = 0;
1611        int mod = 0;
1612
1613        if (!capable(CAP_SYS_ADMIN))
1614                return -EPERM;
1615
1616        ret = mnt_want_write_file(file);
1617        if (ret)
1618                return ret;
1619
1620        if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
1621                mnt_drop_write_file(file);
1622                return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1623        }
1624
1625        vol_args = memdup_user(arg, sizeof(*vol_args));
1626        if (IS_ERR(vol_args)) {
1627                ret = PTR_ERR(vol_args);
1628                goto out;
1629        }
1630
1631        vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1632
1633        sizestr = vol_args->name;
1634        devstr = strchr(sizestr, ':');
1635        if (devstr) {
1636                sizestr = devstr + 1;
1637                *devstr = '\0';
1638                devstr = vol_args->name;
1639                ret = kstrtoull(devstr, 10, &devid);
1640                if (ret)
1641                        goto out_free;
1642                if (!devid) {
1643                        ret = -EINVAL;
1644                        goto out_free;
1645                }
1646                btrfs_info(fs_info, "resizing devid %llu", devid);
1647        }
1648
1649        device = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
1650        if (!device) {
1651                btrfs_info(fs_info, "resizer unable to find device %llu",
1652                           devid);
1653                ret = -ENODEV;
1654                goto out_free;
1655        }
1656
1657        if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1658                btrfs_info(fs_info,
1659                           "resizer unable to apply on readonly device %llu",
1660                       devid);
1661                ret = -EPERM;
1662                goto out_free;
1663        }
1664
1665        if (!strcmp(sizestr, "max"))
1666                new_size = device->bdev->bd_inode->i_size;
1667        else {
1668                if (sizestr[0] == '-') {
1669                        mod = -1;
1670                        sizestr++;
1671                } else if (sizestr[0] == '+') {
1672                        mod = 1;
1673                        sizestr++;
1674                }
1675                new_size = memparse(sizestr, &retptr);
1676                if (*retptr != '\0' || new_size == 0) {
1677                        ret = -EINVAL;
1678                        goto out_free;
1679                }
1680        }
1681
1682        if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1683                ret = -EPERM;
1684                goto out_free;
1685        }
1686
1687        old_size = btrfs_device_get_total_bytes(device);
1688
1689        if (mod < 0) {
1690                if (new_size > old_size) {
1691                        ret = -EINVAL;
1692                        goto out_free;
1693                }
1694                new_size = old_size - new_size;
1695        } else if (mod > 0) {
1696                if (new_size > ULLONG_MAX - old_size) {
1697                        ret = -ERANGE;
1698                        goto out_free;
1699                }
1700                new_size = old_size + new_size;
1701        }
1702
1703        if (new_size < SZ_256M) {
1704                ret = -EINVAL;
1705                goto out_free;
1706        }
1707        if (new_size > device->bdev->bd_inode->i_size) {
1708                ret = -EFBIG;
1709                goto out_free;
1710        }
1711
1712        new_size = round_down(new_size, fs_info->sectorsize);
1713
1714        btrfs_info_in_rcu(fs_info, "new size for %s is %llu",
1715                          rcu_str_deref(device->name), new_size);
1716
1717        if (new_size > old_size) {
1718                trans = btrfs_start_transaction(root, 0);
1719                if (IS_ERR(trans)) {
1720                        ret = PTR_ERR(trans);
1721                        goto out_free;
1722                }
1723                ret = btrfs_grow_device(trans, device, new_size);
1724                btrfs_commit_transaction(trans);
1725        } else if (new_size < old_size) {
1726                ret = btrfs_shrink_device(device, new_size);
1727        } /* equal, nothing need to do */
1728
1729out_free:
1730        kfree(vol_args);
1731out:
1732        clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
1733        mnt_drop_write_file(file);
1734        return ret;
1735}
1736
1737static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1738                                const char *name, unsigned long fd, int subvol,
1739                                u64 *transid, bool readonly,
1740                                struct btrfs_qgroup_inherit *inherit)
1741{
1742        int namelen;
1743        int ret = 0;
1744
1745        if (!S_ISDIR(file_inode(file)->i_mode))
1746                return -ENOTDIR;
1747
1748        ret = mnt_want_write_file(file);
1749        if (ret)
1750                goto out;
1751
1752        namelen = strlen(name);
1753        if (strchr(name, '/')) {
1754                ret = -EINVAL;
1755                goto out_drop_write;
1756        }
1757
1758        if (name[0] == '.' &&
1759           (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1760                ret = -EEXIST;
1761                goto out_drop_write;
1762        }
1763
1764        if (subvol) {
1765                ret = btrfs_mksubvol(&file->f_path, name, namelen,
1766                                     NULL, transid, readonly, inherit);
1767        } else {
1768                struct fd src = fdget(fd);
1769                struct inode *src_inode;
1770                if (!src.file) {
1771                        ret = -EINVAL;
1772                        goto out_drop_write;
1773                }
1774
1775                src_inode = file_inode(src.file);
1776                if (src_inode->i_sb != file_inode(file)->i_sb) {
1777                        btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1778                                   "Snapshot src from another FS");
1779                        ret = -EXDEV;
1780                } else if (!inode_owner_or_capable(src_inode)) {
1781                        /*
1782                         * Subvolume creation is not restricted, but snapshots
1783                         * are limited to own subvolumes only
1784                         */
1785                        ret = -EPERM;
1786                } else {
1787                        ret = btrfs_mksubvol(&file->f_path, name, namelen,
1788                                             BTRFS_I(src_inode)->root,
1789                                             transid, readonly, inherit);
1790                }
1791                fdput(src);
1792        }
1793out_drop_write:
1794        mnt_drop_write_file(file);
1795out:
1796        return ret;
1797}
1798
1799static noinline int btrfs_ioctl_snap_create(struct file *file,
1800                                            void __user *arg, int subvol)
1801{
1802        struct btrfs_ioctl_vol_args *vol_args;
1803        int ret;
1804
1805        if (!S_ISDIR(file_inode(file)->i_mode))
1806                return -ENOTDIR;
1807
1808        vol_args = memdup_user(arg, sizeof(*vol_args));
1809        if (IS_ERR(vol_args))
1810                return PTR_ERR(vol_args);
1811        vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1812
1813        ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1814                                              vol_args->fd, subvol,
1815                                              NULL, false, NULL);
1816
1817        kfree(vol_args);
1818        return ret;
1819}
1820
1821static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1822                                               void __user *arg, int subvol)
1823{
1824        struct btrfs_ioctl_vol_args_v2 *vol_args;
1825        int ret;
1826        u64 transid = 0;
1827        u64 *ptr = NULL;
1828        bool readonly = false;
1829        struct btrfs_qgroup_inherit *inherit = NULL;
1830
1831        if (!S_ISDIR(file_inode(file)->i_mode))
1832                return -ENOTDIR;
1833
1834        vol_args = memdup_user(arg, sizeof(*vol_args));
1835        if (IS_ERR(vol_args))
1836                return PTR_ERR(vol_args);
1837        vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1838
1839        if (vol_args->flags &
1840            ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1841              BTRFS_SUBVOL_QGROUP_INHERIT)) {
1842                ret = -EOPNOTSUPP;
1843                goto free_args;
1844        }
1845
1846        if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1847                struct inode *inode = file_inode(file);
1848                struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1849
1850                btrfs_warn(fs_info,
1851"SNAP_CREATE_V2 ioctl with CREATE_ASYNC is deprecated and will be removed in kernel 5.7");
1852
1853                ptr = &transid;
1854        }
1855        if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1856                readonly = true;
1857        if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1858                if (vol_args->size > PAGE_SIZE) {
1859                        ret = -EINVAL;
1860                        goto free_args;
1861                }
1862                inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1863                if (IS_ERR(inherit)) {
1864                        ret = PTR_ERR(inherit);
1865                        goto free_args;
1866                }
1867        }
1868
1869        ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1870                                              vol_args->fd, subvol, ptr,
1871                                              readonly, inherit);
1872        if (ret)
1873                goto free_inherit;
1874
1875        if (ptr && copy_to_user(arg +
1876                                offsetof(struct btrfs_ioctl_vol_args_v2,
1877                                        transid),
1878                                ptr, sizeof(*ptr)))
1879                ret = -EFAULT;
1880
1881free_inherit:
1882        kfree(inherit);
1883free_args:
1884        kfree(vol_args);
1885        return ret;
1886}
1887
1888static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1889                                                void __user *arg)
1890{
1891        struct inode *inode = file_inode(file);
1892        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1893        struct btrfs_root *root = BTRFS_I(inode)->root;
1894        int ret = 0;
1895        u64 flags = 0;
1896
1897        if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1898                return -EINVAL;
1899
1900        down_read(&fs_info->subvol_sem);
1901        if (btrfs_root_readonly(root))
1902                flags |= BTRFS_SUBVOL_RDONLY;
1903        up_read(&fs_info->subvol_sem);
1904
1905        if (copy_to_user(arg, &flags, sizeof(flags)))
1906                ret = -EFAULT;
1907
1908        return ret;
1909}
1910
1911static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1912                                              void __user *arg)
1913{
1914        struct inode *inode = file_inode(file);
1915        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1916        struct btrfs_root *root = BTRFS_I(inode)->root;
1917        struct btrfs_trans_handle *trans;
1918        u64 root_flags;
1919        u64 flags;
1920        int ret = 0;
1921
1922        if (!inode_owner_or_capable(inode))
1923                return -EPERM;
1924
1925        ret = mnt_want_write_file(file);
1926        if (ret)
1927                goto out;
1928
1929        if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1930                ret = -EINVAL;
1931                goto out_drop_write;
1932        }
1933
1934        if (copy_from_user(&flags, arg, sizeof(flags))) {
1935                ret = -EFAULT;
1936                goto out_drop_write;
1937        }
1938
1939        if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1940                ret = -EINVAL;
1941                goto out_drop_write;
1942        }
1943
1944        if (flags & ~BTRFS_SUBVOL_RDONLY) {
1945                ret = -EOPNOTSUPP;
1946                goto out_drop_write;
1947        }
1948
1949        down_write(&fs_info->subvol_sem);
1950
1951        /* nothing to do */
1952        if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1953                goto out_drop_sem;
1954
1955        root_flags = btrfs_root_flags(&root->root_item);
1956        if (flags & BTRFS_SUBVOL_RDONLY) {
1957                btrfs_set_root_flags(&root->root_item,
1958                                     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1959        } else {
1960                /*
1961                 * Block RO -> RW transition if this subvolume is involved in
1962                 * send
1963                 */
1964                spin_lock(&root->root_item_lock);
1965                if (root->send_in_progress == 0) {
1966                        btrfs_set_root_flags(&root->root_item,
1967                                     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1968                        spin_unlock(&root->root_item_lock);
1969                } else {
1970                        spin_unlock(&root->root_item_lock);
1971                        btrfs_warn(fs_info,
1972                                   "Attempt to set subvolume %llu read-write during send",
1973                                   root->root_key.objectid);
1974                        ret = -EPERM;
1975                        goto out_drop_sem;
1976                }
1977        }
1978
1979        trans = btrfs_start_transaction(root, 1);
1980        if (IS_ERR(trans)) {
1981                ret = PTR_ERR(trans);
1982                goto out_reset;
1983        }
1984
1985        ret = btrfs_update_root(trans, fs_info->tree_root,
1986                                &root->root_key, &root->root_item);
1987        if (ret < 0) {
1988                btrfs_end_transaction(trans);
1989                goto out_reset;
1990        }
1991
1992        ret = btrfs_commit_transaction(trans);
1993
1994out_reset:
1995        if (ret)
1996                btrfs_set_root_flags(&root->root_item, root_flags);
1997out_drop_sem:
1998        up_write(&fs_info->subvol_sem);
1999out_drop_write:
2000        mnt_drop_write_file(file);
2001out:
2002        return ret;
2003}
2004
2005static noinline int key_in_sk(struct btrfs_key *key,
2006                              struct btrfs_ioctl_search_key *sk)
2007{
2008        struct btrfs_key test;
2009        int ret;
2010
2011        test.objectid = sk->min_objectid;
2012        test.type = sk->min_type;
2013        test.offset = sk->min_offset;
2014
2015        ret = btrfs_comp_cpu_keys(key, &test);
2016        if (ret < 0)
2017                return 0;
2018
2019        test.objectid = sk->max_objectid;
2020        test.type = sk->max_type;
2021        test.offset = sk->max_offset;
2022
2023        ret = btrfs_comp_cpu_keys(key, &test);
2024        if (ret > 0)
2025                return 0;
2026        return 1;
2027}
2028
2029static noinline int copy_to_sk(struct btrfs_path *path,
2030                               struct btrfs_key *key,
2031                               struct btrfs_ioctl_search_key *sk,
2032                               size_t *buf_size,
2033                               char __user *ubuf,
2034                               unsigned long *sk_offset,
2035                               int *num_found)
2036{
2037        u64 found_transid;
2038        struct extent_buffer *leaf;
2039        struct btrfs_ioctl_search_header sh;
2040        struct btrfs_key test;
2041        unsigned long item_off;
2042        unsigned long item_len;
2043        int nritems;
2044        int i;
2045        int slot;
2046        int ret = 0;
2047
2048        leaf = path->nodes[0];
2049        slot = path->slots[0];
2050        nritems = btrfs_header_nritems(leaf);
2051
2052        if (btrfs_header_generation(leaf) > sk->max_transid) {
2053                i = nritems;
2054                goto advance_key;
2055        }
2056        found_transid = btrfs_header_generation(leaf);
2057
2058        for (i = slot; i < nritems; i++) {
2059                item_off = btrfs_item_ptr_offset(leaf, i);
2060                item_len = btrfs_item_size_nr(leaf, i);
2061
2062                btrfs_item_key_to_cpu(leaf, key, i);
2063                if (!key_in_sk(key, sk))
2064                        continue;
2065
2066                if (sizeof(sh) + item_len > *buf_size) {
2067                        if (*num_found) {
2068                                ret = 1;
2069                                goto out;
2070                        }
2071
2072                        /*
2073                         * return one empty item back for v1, which does not
2074                         * handle -EOVERFLOW
2075                         */
2076
2077                        *buf_size = sizeof(sh) + item_len;
2078                        item_len = 0;
2079                        ret = -EOVERFLOW;
2080                }
2081
2082                if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
2083                        ret = 1;
2084                        goto out;
2085                }
2086
2087                sh.objectid = key->objectid;
2088                sh.offset = key->offset;
2089                sh.type = key->type;
2090                sh.len = item_len;
2091                sh.transid = found_transid;
2092
2093                /* copy search result header */
2094                if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) {
2095                        ret = -EFAULT;
2096                        goto out;
2097                }
2098
2099                *sk_offset += sizeof(sh);
2100
2101                if (item_len) {
2102                        char __user *up = ubuf + *sk_offset;
2103                        /* copy the item */
2104                        if (read_extent_buffer_to_user(leaf, up,
2105                                                       item_off, item_len)) {
2106                                ret = -EFAULT;
2107                                goto out;
2108                        }
2109
2110                        *sk_offset += item_len;
2111                }
2112                (*num_found)++;
2113
2114                if (ret) /* -EOVERFLOW from above */
2115                        goto out;
2116
2117                if (*num_found >= sk->nr_items) {
2118                        ret = 1;
2119                        goto out;
2120                }
2121        }
2122advance_key:
2123        ret = 0;
2124        test.objectid = sk->max_objectid;
2125        test.type = sk->max_type;
2126        test.offset = sk->max_offset;
2127        if (btrfs_comp_cpu_keys(key, &test) >= 0)
2128                ret = 1;
2129        else if (key->offset < (u64)-1)
2130                key->offset++;
2131        else if (key->type < (u8)-1) {
2132                key->offset = 0;
2133                key->type++;
2134        } else if (key->objectid < (u64)-1) {
2135                key->offset = 0;
2136                key->type = 0;
2137                key->objectid++;
2138        } else
2139                ret = 1;
2140out:
2141        /*
2142         *  0: all items from this leaf copied, continue with next
2143         *  1: * more items can be copied, but unused buffer is too small
2144         *     * all items were found
2145         *     Either way, it will stops the loop which iterates to the next
2146         *     leaf
2147         *  -EOVERFLOW: item was to large for buffer
2148         *  -EFAULT: could not copy extent buffer back to userspace
2149         */
2150        return ret;
2151}
2152
2153static noinline int search_ioctl(struct inode *inode,
2154                                 struct btrfs_ioctl_search_key *sk,
2155                                 size_t *buf_size,
2156                                 char __user *ubuf)
2157{
2158        struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
2159        struct btrfs_root *root;
2160        struct btrfs_key key;
2161        struct btrfs_path *path;
2162        int ret;
2163        int num_found = 0;
2164        unsigned long sk_offset = 0;
2165
2166        if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2167                *buf_size = sizeof(struct btrfs_ioctl_search_header);
2168                return -EOVERFLOW;
2169        }
2170
2171        path = btrfs_alloc_path();
2172        if (!path)
2173                return -ENOMEM;
2174
2175        if (sk->tree_id == 0) {
2176                /* search the root of the inode that was passed */
2177                root = BTRFS_I(inode)->root;
2178        } else {
2179                key.objectid = sk->tree_id;
2180                key.type = BTRFS_ROOT_ITEM_KEY;
2181                key.offset = (u64)-1;
2182                root = btrfs_read_fs_root_no_name(info, &key);
2183                if (IS_ERR(root)) {
2184                        btrfs_free_path(path);
2185                        return PTR_ERR(root);
2186                }
2187        }
2188
2189        key.objectid = sk->min_objectid;
2190        key.type = sk->min_type;
2191        key.offset = sk->min_offset;
2192
2193        while (1) {
2194                ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2195                if (ret != 0) {
2196                        if (ret > 0)
2197                                ret = 0;
2198                        goto err;
2199                }
2200                ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
2201                                 &sk_offset, &num_found);
2202                btrfs_release_path(path);
2203                if (ret)
2204                        break;
2205
2206        }
2207        if (ret > 0)
2208                ret = 0;
2209err:
2210        sk->nr_items = num_found;
2211        btrfs_free_path(path);
2212        return ret;
2213}
2214
2215static noinline int btrfs_ioctl_tree_search(struct file *file,
2216                                           void __user *argp)
2217{
2218        struct btrfs_ioctl_search_args __user *uargs;
2219        struct btrfs_ioctl_search_key sk;
2220        struct inode *inode;
2221        int ret;
2222        size_t buf_size;
2223
2224        if (!capable(CAP_SYS_ADMIN))
2225                return -EPERM;
2226
2227        uargs = (struct btrfs_ioctl_search_args __user *)argp;
2228
2229        if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2230                return -EFAULT;
2231
2232        buf_size = sizeof(uargs->buf);
2233
2234        inode = file_inode(file);
2235        ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2236
2237        /*
2238         * In the origin implementation an overflow is handled by returning a
2239         * search header with a len of zero, so reset ret.
2240         */
2241        if (ret == -EOVERFLOW)
2242                ret = 0;
2243
2244        if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2245                ret = -EFAULT;
2246        return ret;
2247}
2248
2249static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2250                                               void __user *argp)
2251{
2252        struct btrfs_ioctl_search_args_v2 __user *uarg;
2253        struct btrfs_ioctl_search_args_v2 args;
2254        struct inode *inode;
2255        int ret;
2256        size_t buf_size;
2257        const size_t buf_limit = SZ_16M;
2258
2259        if (!capable(CAP_SYS_ADMIN))
2260                return -EPERM;
2261
2262        /* copy search header and buffer size */
2263        uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2264        if (copy_from_user(&args, uarg, sizeof(args)))
2265                return -EFAULT;
2266
2267        buf_size = args.buf_size;
2268
2269        /* limit result size to 16MB */
2270        if (buf_size > buf_limit)
2271                buf_size = buf_limit;
2272
2273        inode = file_inode(file);
2274        ret = search_ioctl(inode, &args.key, &buf_size,
2275                           (char __user *)(&uarg->buf[0]));
2276        if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2277                ret = -EFAULT;
2278        else if (ret == -EOVERFLOW &&
2279                copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2280                ret = -EFAULT;
2281
2282        return ret;
2283}
2284
2285/*
2286 * Search INODE_REFs to identify path name of 'dirid' directory
2287 * in a 'tree_id' tree. and sets path name to 'name'.
2288 */
2289static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2290                                u64 tree_id, u64 dirid, char *name)
2291{
2292        struct btrfs_root *root;
2293        struct btrfs_key key;
2294        char *ptr;
2295        int ret = -1;
2296        int slot;
2297        int len;
2298        int total_len = 0;
2299        struct btrfs_inode_ref *iref;
2300        struct extent_buffer *l;
2301        struct btrfs_path *path;
2302
2303        if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2304                name[0]='\0';
2305                return 0;
2306        }
2307
2308        path = btrfs_alloc_path();
2309        if (!path)
2310                return -ENOMEM;
2311
2312        ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
2313
2314        key.objectid = tree_id;
2315        key.type = BTRFS_ROOT_ITEM_KEY;
2316        key.offset = (u64)-1;
2317        root = btrfs_read_fs_root_no_name(info, &key);
2318        if (IS_ERR(root)) {
2319                ret = PTR_ERR(root);
2320                goto out;
2321        }
2322
2323        key.objectid = dirid;
2324        key.type = BTRFS_INODE_REF_KEY;
2325        key.offset = (u64)-1;
2326
2327        while (1) {
2328                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2329                if (ret < 0)
2330                        goto out;
2331                else if (ret > 0) {
2332                        ret = btrfs_previous_item(root, path, dirid,
2333                                                  BTRFS_INODE_REF_KEY);
2334                        if (ret < 0)
2335                                goto out;
2336                        else if (ret > 0) {
2337                                ret = -ENOENT;
2338                                goto out;
2339                        }
2340                }
2341
2342                l = path->nodes[0];
2343                slot = path->slots[0];
2344                btrfs_item_key_to_cpu(l, &key, slot);
2345
2346                iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2347                len = btrfs_inode_ref_name_len(l, iref);
2348                ptr -= len + 1;
2349                total_len += len + 1;
2350                if (ptr < name) {
2351                        ret = -ENAMETOOLONG;
2352                        goto out;
2353                }
2354
2355                *(ptr + len) = '/';
2356                read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2357
2358                if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2359                        break;
2360
2361                btrfs_release_path(path);
2362                key.objectid = key.offset;
2363                key.offset = (u64)-1;
2364                dirid = key.objectid;
2365        }
2366        memmove(name, ptr, total_len);
2367        name[total_len] = '\0';
2368        ret = 0;
2369out:
2370        btrfs_free_path(path);
2371        return ret;
2372}
2373
2374static int btrfs_search_path_in_tree_user(struct inode *inode,
2375                                struct btrfs_ioctl_ino_lookup_user_args *args)
2376{
2377        struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2378        struct super_block *sb = inode->i_sb;
2379        struct btrfs_key upper_limit = BTRFS_I(inode)->location;
2380        u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
2381        u64 dirid = args->dirid;
2382        unsigned long item_off;
2383        unsigned long item_len;
2384        struct btrfs_inode_ref *iref;
2385        struct btrfs_root_ref *rref;
2386        struct btrfs_root *root;
2387        struct btrfs_path *path;
2388        struct btrfs_key key, key2;
2389        struct extent_buffer *leaf;
2390        struct inode *temp_inode;
2391        char *ptr;
2392        int slot;
2393        int len;
2394        int total_len = 0;
2395        int ret;
2396
2397        path = btrfs_alloc_path();
2398        if (!path)
2399                return -ENOMEM;
2400
2401        /*
2402         * If the bottom subvolume does not exist directly under upper_limit,
2403         * construct the path in from the bottom up.
2404         */
2405        if (dirid != upper_limit.objectid) {
2406                ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
2407
2408                key.objectid = treeid;
2409                key.type = BTRFS_ROOT_ITEM_KEY;
2410                key.offset = (u64)-1;
2411                root = btrfs_read_fs_root_no_name(fs_info, &key);
2412                if (IS_ERR(root)) {
2413                        ret = PTR_ERR(root);
2414                        goto out;
2415                }
2416
2417                key.objectid = dirid;
2418                key.type = BTRFS_INODE_REF_KEY;
2419                key.offset = (u64)-1;
2420                while (1) {
2421                        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2422                        if (ret < 0) {
2423                                goto out;
2424                        } else if (ret > 0) {
2425                                ret = btrfs_previous_item(root, path, dirid,
2426                                                          BTRFS_INODE_REF_KEY);
2427                                if (ret < 0) {
2428                                        goto out;
2429                                } else if (ret > 0) {
2430                                        ret = -ENOENT;
2431                                        goto out;
2432                                }
2433                        }
2434
2435                        leaf = path->nodes[0];
2436                        slot = path->slots[0];
2437                        btrfs_item_key_to_cpu(leaf, &key, slot);
2438
2439                        iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
2440                        len = btrfs_inode_ref_name_len(leaf, iref);
2441                        ptr -= len + 1;
2442                        total_len += len + 1;
2443                        if (ptr < args->path) {
2444                                ret = -ENAMETOOLONG;
2445                                goto out;
2446                        }
2447
2448                        *(ptr + len) = '/';
2449                        read_extent_buffer(leaf, ptr,
2450                                        (unsigned long)(iref + 1), len);
2451
2452                        /* Check the read+exec permission of this directory */
2453                        ret = btrfs_previous_item(root, path, dirid,
2454                                                  BTRFS_INODE_ITEM_KEY);
2455                        if (ret < 0) {
2456                                goto out;
2457                        } else if (ret > 0) {
2458                                ret = -ENOENT;
2459                                goto out;
2460                        }
2461
2462                        leaf = path->nodes[0];
2463                        slot = path->slots[0];
2464                        btrfs_item_key_to_cpu(leaf, &key2, slot);
2465                        if (key2.objectid != dirid) {
2466                                ret = -ENOENT;
2467                                goto out;
2468                        }
2469
2470                        temp_inode = btrfs_iget(sb, &key2, root);
2471                        if (IS_ERR(temp_inode)) {
2472                                ret = PTR_ERR(temp_inode);
2473                                goto out;
2474                        }
2475                        ret = inode_permission(temp_inode, MAY_READ | MAY_EXEC);
2476                        iput(temp_inode);
2477                        if (ret) {
2478                                ret = -EACCES;
2479                                goto out;
2480                        }
2481
2482                        if (key.offset == upper_limit.objectid)
2483                                break;
2484                        if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
2485                                ret = -EACCES;
2486                                goto out;
2487                        }
2488
2489                        btrfs_release_path(path);
2490                        key.objectid = key.offset;
2491                        key.offset = (u64)-1;
2492                        dirid = key.objectid;
2493                }
2494
2495                memmove(args->path, ptr, total_len);
2496                args->path[total_len] = '\0';
2497                btrfs_release_path(path);
2498        }
2499
2500        /* Get the bottom subvolume's name from ROOT_REF */
2501        root = fs_info->tree_root;
2502        key.objectid = treeid;
2503        key.type = BTRFS_ROOT_REF_KEY;
2504        key.offset = args->treeid;
2505        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2506        if (ret < 0) {
2507                goto out;
2508        } else if (ret > 0) {
2509                ret = -ENOENT;
2510                goto out;
2511        }
2512
2513        leaf = path->nodes[0];
2514        slot = path->slots[0];
2515        btrfs_item_key_to_cpu(leaf, &key, slot);
2516
2517        item_off = btrfs_item_ptr_offset(leaf, slot);
2518        item_len = btrfs_item_size_nr(leaf, slot);
2519        /* Check if dirid in ROOT_REF corresponds to passed dirid */
2520        rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2521        if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2522                ret = -EINVAL;
2523                goto out;
2524        }
2525
2526        /* Copy subvolume's name */
2527        item_off += sizeof(struct btrfs_root_ref);
2528        item_len -= sizeof(struct btrfs_root_ref);
2529        read_extent_buffer(leaf, args->name, item_off, item_len);
2530        args->name[item_len] = 0;
2531
2532out:
2533        btrfs_free_path(path);
2534        return ret;
2535}
2536
2537static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2538                                           void __user *argp)
2539{
2540        struct btrfs_ioctl_ino_lookup_args *args;
2541        struct inode *inode;
2542        int ret = 0;
2543
2544        args = memdup_user(argp, sizeof(*args));
2545        if (IS_ERR(args))
2546                return PTR_ERR(args);
2547
2548        inode = file_inode(file);
2549
2550        /*
2551         * Unprivileged query to obtain the containing subvolume root id. The
2552         * path is reset so it's consistent with btrfs_search_path_in_tree.
2553         */
2554        if (args->treeid == 0)
2555                args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2556
2557        if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2558                args->name[0] = 0;
2559                goto out;
2560        }
2561
2562        if (!capable(CAP_SYS_ADMIN)) {
2563                ret = -EPERM;
2564                goto out;
2565        }
2566
2567        ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2568                                        args->treeid, args->objectid,
2569                                        args->name);
2570
2571out:
2572        if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2573                ret = -EFAULT;
2574
2575        kfree(args);
2576        return ret;
2577}
2578
2579/*
2580 * Version of ino_lookup ioctl (unprivileged)
2581 *
2582 * The main differences from ino_lookup ioctl are:
2583 *
2584 *   1. Read + Exec permission will be checked using inode_permission() during
2585 *      path construction. -EACCES will be returned in case of failure.
2586 *   2. Path construction will be stopped at the inode number which corresponds
2587 *      to the fd with which this ioctl is called. If constructed path does not
2588 *      exist under fd's inode, -EACCES will be returned.
2589 *   3. The name of bottom subvolume is also searched and filled.
2590 */
2591static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2592{
2593        struct btrfs_ioctl_ino_lookup_user_args *args;
2594        struct inode *inode;
2595        int ret;
2596
2597        args = memdup_user(argp, sizeof(*args));
2598        if (IS_ERR(args))
2599                return PTR_ERR(args);
2600
2601        inode = file_inode(file);
2602
2603        if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2604            BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
2605                /*
2606                 * The subvolume does not exist under fd with which this is
2607                 * called
2608                 */
2609                kfree(args);
2610                return -EACCES;
2611        }
2612
2613        ret = btrfs_search_path_in_tree_user(inode, args);
2614
2615        if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2616                ret = -EFAULT;
2617
2618        kfree(args);
2619        return ret;
2620}
2621
2622/* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
2623static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp)
2624{
2625        struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2626        struct btrfs_fs_info *fs_info;
2627        struct btrfs_root *root;
2628        struct btrfs_path *path;
2629        struct btrfs_key key;
2630        struct btrfs_root_item *root_item;
2631        struct btrfs_root_ref *rref;
2632        struct extent_buffer *leaf;
2633        unsigned long item_off;
2634        unsigned long item_len;
2635        struct inode *inode;
2636        int slot;
2637        int ret = 0;
2638
2639        path = btrfs_alloc_path();
2640        if (!path)
2641                return -ENOMEM;
2642
2643        subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2644        if (!subvol_info) {
2645                btrfs_free_path(path);
2646                return -ENOMEM;
2647        }
2648
2649        inode = file_inode(file);
2650        fs_info = BTRFS_I(inode)->root->fs_info;
2651
2652        /* Get root_item of inode's subvolume */
2653        key.objectid = BTRFS_I(inode)->root->root_key.objectid;
2654        key.type = BTRFS_ROOT_ITEM_KEY;
2655        key.offset = (u64)-1;
2656        root = btrfs_read_fs_root_no_name(fs_info, &key);
2657        if (IS_ERR(root)) {
2658                ret = PTR_ERR(root);
2659                goto out;
2660        }
2661        root_item = &root->root_item;
2662
2663        subvol_info->treeid = key.objectid;
2664
2665        subvol_info->generation = btrfs_root_generation(root_item);
2666        subvol_info->flags = btrfs_root_flags(root_item);
2667
2668        memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2669        memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2670                                                    BTRFS_UUID_SIZE);
2671        memcpy(subvol_info->received_uuid, root_item->received_uuid,
2672                                                    BTRFS_UUID_SIZE);
2673
2674        subvol_info->ctransid = btrfs_root_ctransid(root_item);
2675        subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2676        subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2677
2678        subvol_info->otransid = btrfs_root_otransid(root_item);
2679        subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2680        subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2681
2682        subvol_info->stransid = btrfs_root_stransid(root_item);
2683        subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2684        subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2685
2686        subvol_info->rtransid = btrfs_root_rtransid(root_item);
2687        subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2688        subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2689
2690        if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2691                /* Search root tree for ROOT_BACKREF of this subvolume */
2692                root = fs_info->tree_root;
2693
2694                key.type = BTRFS_ROOT_BACKREF_KEY;
2695                key.offset = 0;
2696                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2697                if (ret < 0) {
2698                        goto out;
2699                } else if (path->slots[0] >=
2700                           btrfs_header_nritems(path->nodes[0])) {
2701                        ret = btrfs_next_leaf(root, path);
2702                        if (ret < 0) {
2703                                goto out;
2704                        } else if (ret > 0) {
2705                                ret = -EUCLEAN;
2706                                goto out;
2707                        }
2708                }
2709
2710                leaf = path->nodes[0];
2711                slot = path->slots[0];
2712                btrfs_item_key_to_cpu(leaf, &key, slot);
2713                if (key.objectid == subvol_info->treeid &&
2714                    key.type == BTRFS_ROOT_BACKREF_KEY) {
2715                        subvol_info->parent_id = key.offset;
2716
2717                        rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2718                        subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2719
2720                        item_off = btrfs_item_ptr_offset(leaf, slot)
2721                                        + sizeof(struct btrfs_root_ref);
2722                        item_len = btrfs_item_size_nr(leaf, slot)
2723                                        - sizeof(struct btrfs_root_ref);
2724                        read_extent_buffer(leaf, subvol_info->name,
2725                                           item_off, item_len);
2726                } else {
2727                        ret = -ENOENT;
2728                        goto out;
2729                }
2730        }
2731
2732        if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2733                ret = -EFAULT;
2734
2735out:
2736        btrfs_free_path(path);
2737        kzfree(subvol_info);
2738        return ret;
2739}
2740
2741/*
2742 * Return ROOT_REF information of the subvolume containing this inode
2743 * except the subvolume name.
2744 */
2745static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp)
2746{
2747        struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2748        struct btrfs_root_ref *rref;
2749        struct btrfs_root *root;
2750        struct btrfs_path *path;
2751        struct btrfs_key key;
2752        struct extent_buffer *leaf;
2753        struct inode *inode;
2754        u64 objectid;
2755        int slot;
2756        int ret;
2757        u8 found;
2758
2759        path = btrfs_alloc_path();
2760        if (!path)
2761                return -ENOMEM;
2762
2763        rootrefs = memdup_user(argp, sizeof(*rootrefs));
2764        if (IS_ERR(rootrefs)) {
2765                btrfs_free_path(path);
2766                return PTR_ERR(rootrefs);
2767        }
2768
2769        inode = file_inode(file);
2770        root = BTRFS_I(inode)->root->fs_info->tree_root;
2771        objectid = BTRFS_I(inode)->root->root_key.objectid;
2772
2773        key.objectid = objectid;
2774        key.type = BTRFS_ROOT_REF_KEY;
2775        key.offset = rootrefs->min_treeid;
2776        found = 0;
2777
2778        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2779        if (ret < 0) {
2780                goto out;
2781        } else if (path->slots[0] >=
2782                   btrfs_header_nritems(path->nodes[0])) {
2783                ret = btrfs_next_leaf(root, path);
2784                if (ret < 0) {
2785                        goto out;
2786                } else if (ret > 0) {
2787                        ret = -EUCLEAN;
2788                        goto out;
2789                }
2790        }
2791        while (1) {
2792                leaf = path->nodes[0];
2793                slot = path->slots[0];
2794
2795                btrfs_item_key_to_cpu(leaf, &key, slot);
2796                if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2797                        ret = 0;
2798                        goto out;
2799                }
2800
2801                if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2802                        ret = -EOVERFLOW;
2803                        goto out;
2804                }
2805
2806                rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2807                rootrefs->rootref[found].treeid = key.offset;
2808                rootrefs->rootref[found].dirid =
2809                                  btrfs_root_ref_dirid(leaf, rref);
2810                found++;
2811
2812                ret = btrfs_next_item(root, path);
2813                if (ret < 0) {
2814                        goto out;
2815                } else if (ret > 0) {
2816                        ret = -EUCLEAN;
2817                        goto out;
2818                }
2819        }
2820
2821out:
2822        if (!ret || ret == -EOVERFLOW) {
2823                rootrefs->num_items = found;
2824                /* update min_treeid for next search */
2825                if (found)
2826                        rootrefs->min_treeid =
2827                                rootrefs->rootref[found - 1].treeid + 1;
2828                if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2829                        ret = -EFAULT;
2830        }
2831
2832        kfree(rootrefs);
2833        btrfs_free_path(path);
2834
2835        return ret;
2836}
2837
2838static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2839                                             void __user *arg)
2840{
2841        struct dentry *parent = file->f_path.dentry;
2842        struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2843        struct dentry *dentry;
2844        struct inode *dir = d_inode(parent);
2845        struct inode *inode;
2846        struct btrfs_root *root = BTRFS_I(dir)->root;
2847        struct btrfs_root *dest = NULL;
2848        struct btrfs_ioctl_vol_args *vol_args;
2849        int namelen;
2850        int err = 0;
2851
2852        if (!S_ISDIR(dir->i_mode))
2853                return -ENOTDIR;
2854
2855        vol_args = memdup_user(arg, sizeof(*vol_args));
2856        if (IS_ERR(vol_args))
2857                return PTR_ERR(vol_args);
2858
2859        vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2860        namelen = strlen(vol_args->name);
2861        if (strchr(vol_args->name, '/') ||
2862            strncmp(vol_args->name, "..", namelen) == 0) {
2863                err = -EINVAL;
2864                goto out;
2865        }
2866
2867        err = mnt_want_write_file(file);
2868        if (err)
2869                goto out;
2870
2871
2872        err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2873        if (err == -EINTR)
2874                goto out_drop_write;
2875        dentry = lookup_one_len(vol_args->name, parent, namelen);
2876        if (IS_ERR(dentry)) {
2877                err = PTR_ERR(dentry);
2878                goto out_unlock_dir;
2879        }
2880
2881        if (d_really_is_negative(dentry)) {
2882                err = -ENOENT;
2883                goto out_dput;
2884        }
2885
2886        inode = d_inode(dentry);
2887        dest = BTRFS_I(inode)->root;
2888        if (!capable(CAP_SYS_ADMIN)) {
2889                /*
2890                 * Regular user.  Only allow this with a special mount
2891                 * option, when the user has write+exec access to the
2892                 * subvol root, and when rmdir(2) would have been
2893                 * allowed.
2894                 *
2895                 * Note that this is _not_ check that the subvol is
2896                 * empty or doesn't contain data that we wouldn't
2897                 * otherwise be able to delete.
2898                 *
2899                 * Users who want to delete empty subvols should try
2900                 * rmdir(2).
2901                 */
2902                err = -EPERM;
2903                if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2904                        goto out_dput;
2905
2906                /*
2907                 * Do not allow deletion if the parent dir is the same
2908                 * as the dir to be deleted.  That means the ioctl
2909                 * must be called on the dentry referencing the root
2910                 * of the subvol, not a random directory contained
2911                 * within it.
2912                 */
2913                err = -EINVAL;
2914                if (root == dest)
2915                        goto out_dput;
2916
2917                err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2918                if (err)
2919                        goto out_dput;
2920        }
2921
2922        /* check if subvolume may be deleted by a user */
2923        err = btrfs_may_delete(dir, dentry, 1);
2924        if (err)
2925                goto out_dput;
2926
2927        if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2928                err = -EINVAL;
2929                goto out_dput;
2930        }
2931
2932        inode_lock(inode);
2933        err = btrfs_delete_subvolume(dir, dentry);
2934        inode_unlock(inode);
2935        if (!err) {
2936                fsnotify_rmdir(dir, dentry);
2937                d_delete(dentry);
2938        }
2939
2940out_dput:
2941        dput(dentry);
2942out_unlock_dir:
2943        inode_unlock(dir);
2944out_drop_write:
2945        mnt_drop_write_file(file);
2946out:
2947        kfree(vol_args);
2948        return err;
2949}
2950
2951static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2952{
2953        struct inode *inode = file_inode(file);
2954        struct btrfs_root *root = BTRFS_I(inode)->root;
2955        struct btrfs_ioctl_defrag_range_args *range;
2956        int ret;
2957
2958        ret = mnt_want_write_file(file);
2959        if (ret)
2960                return ret;
2961
2962        if (btrfs_root_readonly(root)) {
2963                ret = -EROFS;
2964                goto out;
2965        }
2966
2967        switch (inode->i_mode & S_IFMT) {
2968        case S_IFDIR:
2969                if (!capable(CAP_SYS_ADMIN)) {
2970                        ret = -EPERM;
2971                        goto out;
2972                }
2973                ret = btrfs_defrag_root(root);
2974                break;
2975        case S_IFREG:
2976                /*
2977                 * Note that this does not check the file descriptor for write
2978                 * access. This prevents defragmenting executables that are
2979                 * running and allows defrag on files open in read-only mode.
2980                 */
2981                if (!capable(CAP_SYS_ADMIN) &&
2982                    inode_permission(inode, MAY_WRITE)) {
2983                        ret = -EPERM;
2984                        goto out;
2985                }
2986
2987                range = kzalloc(sizeof(*range), GFP_KERNEL);
2988                if (!range) {
2989                        ret = -ENOMEM;
2990                        goto out;
2991                }
2992
2993                if (argp) {
2994                        if (copy_from_user(range, argp,
2995                                           sizeof(*range))) {
2996                                ret = -EFAULT;
2997                                kfree(range);
2998                                goto out;
2999                        }
3000                        /* compression requires us to start the IO */
3001                        if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
3002                                range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
3003                                range->extent_thresh = (u32)-1;
3004                        }
3005                } else {
3006                        /* the rest are all set to zero by kzalloc */
3007                        range->len = (u64)-1;
3008                }
3009                ret = btrfs_defrag_file(file_inode(file), file,
3010                                        range, BTRFS_OLDEST_GENERATION, 0);
3011                if (ret > 0)
3012                        ret = 0;
3013                kfree(range);
3014                break;
3015        default:
3016                ret = -EINVAL;
3017        }
3018out:
3019        mnt_drop_write_file(file);
3020        return ret;
3021}
3022
3023static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
3024{
3025        struct btrfs_ioctl_vol_args *vol_args;
3026        int ret;
3027
3028        if (!capable(CAP_SYS_ADMIN))
3029                return -EPERM;
3030
3031        if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
3032                return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3033
3034        vol_args = memdup_user(arg, sizeof(*vol_args));
3035        if (IS_ERR(vol_args)) {
3036                ret = PTR_ERR(vol_args);
3037                goto out;
3038        }
3039
3040        vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3041        ret = btrfs_init_new_device(fs_info, vol_args->name);
3042
3043        if (!ret)
3044                btrfs_info(fs_info, "disk added %s", vol_args->name);
3045
3046        kfree(vol_args);
3047out:
3048        clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3049        return ret;
3050}
3051
3052static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
3053{
3054        struct inode *inode = file_inode(file);
3055        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3056        struct btrfs_ioctl_vol_args_v2 *vol_args;
3057        int ret;
3058
3059        if (!capable(CAP_SYS_ADMIN))
3060                return -EPERM;
3061
3062        ret = mnt_want_write_file(file);
3063        if (ret)
3064                return ret;
3065
3066        vol_args = memdup_user(arg, sizeof(*vol_args));
3067        if (IS_ERR(vol_args)) {
3068                ret = PTR_ERR(vol_args);
3069                goto err_drop;
3070        }
3071
3072        /* Check for compatibility reject unknown flags */
3073        if (vol_args->flags & ~BTRFS_VOL_ARG_V2_FLAGS_SUPPORTED) {
3074                ret = -EOPNOTSUPP;
3075                goto out;
3076        }
3077
3078        if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
3079                ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3080                goto out;
3081        }
3082
3083        if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
3084                ret = btrfs_rm_device(fs_info, NULL, vol_args->devid);
3085        } else {
3086                vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
3087                ret = btrfs_rm_device(fs_info, vol_args->name, 0);
3088        }
3089        clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3090
3091        if (!ret) {
3092                if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
3093                        btrfs_info(fs_info, "device deleted: id %llu",
3094                                        vol_args->devid);
3095                else
3096                        btrfs_info(fs_info, "device deleted: %s",
3097                                        vol_args->name);
3098        }
3099out:
3100        kfree(vol_args);
3101err_drop:
3102        mnt_drop_write_file(file);
3103        return ret;
3104}
3105
3106static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
3107{
3108        struct inode *inode = file_inode(file);
3109        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3110        struct btrfs_ioctl_vol_args *vol_args;
3111        int ret;
3112
3113        if (!capable(CAP_SYS_ADMIN))
3114                return -EPERM;
3115
3116        ret = mnt_want_write_file(file);
3117        if (ret)
3118                return ret;
3119
3120        if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
3121                ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3122                goto out_drop_write;
3123        }
3124
3125        vol_args = memdup_user(arg, sizeof(*vol_args));
3126        if (IS_ERR(vol_args)) {
3127                ret = PTR_ERR(vol_args);
3128                goto out;
3129        }
3130
3131        vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3132        ret = btrfs_rm_device(fs_info, vol_args->name, 0);
3133
3134        if (!ret)
3135                btrfs_info(fs_info, "disk deleted %s", vol_args->name);
3136        kfree(vol_args);
3137out:
3138        clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3139out_drop_write:
3140        mnt_drop_write_file(file);
3141
3142        return ret;
3143}
3144
3145static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
3146                                void __user *arg)
3147{
3148        struct btrfs_ioctl_fs_info_args *fi_args;
3149        struct btrfs_device *device;
3150        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3151        int ret = 0;
3152
3153        fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
3154        if (!fi_args)
3155                return -ENOMEM;
3156
3157        rcu_read_lock();
3158        fi_args->num_devices = fs_devices->num_devices;
3159
3160        list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
3161                if (device->devid > fi_args->max_id)
3162                        fi_args->max_id = device->devid;
3163        }
3164        rcu_read_unlock();
3165
3166        memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
3167        fi_args->nodesize = fs_info->nodesize;
3168        fi_args->sectorsize = fs_info->sectorsize;
3169        fi_args->clone_alignment = fs_info->sectorsize;
3170
3171        if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
3172                ret = -EFAULT;
3173
3174        kfree(fi_args);
3175        return ret;
3176}
3177
3178static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
3179                                 void __user *arg)
3180{
3181        struct btrfs_ioctl_dev_info_args *di_args;
3182        struct btrfs_device *dev;
3183        int ret = 0;
3184        char *s_uuid = NULL;
3185
3186        di_args = memdup_user(arg, sizeof(*di_args));
3187        if (IS_ERR(di_args))
3188                return PTR_ERR(di_args);
3189
3190        if (!btrfs_is_empty_uuid(di_args->uuid))
3191                s_uuid = di_args->uuid;
3192
3193        rcu_read_lock();
3194        dev = btrfs_find_device(fs_info->fs_devices, di_args->devid, s_uuid,
3195                                NULL, true);
3196
3197        if (!dev) {
3198                ret = -ENODEV;
3199                goto out;
3200        }
3201
3202        di_args->devid = dev->devid;
3203        di_args->bytes_used = btrfs_device_get_bytes_used(dev);
3204        di_args->total_bytes = btrfs_device_get_total_bytes(dev);
3205        memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
3206        if (dev->name) {
3207                strncpy(di_args->path, rcu_str_deref(dev->name),
3208                                sizeof(di_args->path) - 1);
3209                di_args->path[sizeof(di_args->path) - 1] = 0;
3210        } else {
3211                di_args->path[0] = '\0';
3212        }
3213
3214out:
3215        rcu_read_unlock();
3216        if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
3217                ret = -EFAULT;
3218
3219        kfree(di_args);
3220        return ret;
3221}
3222
3223static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
3224                                       struct inode *inode2, u64 loff2, u64 len)
3225{
3226        unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
3227        unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
3228}
3229
3230static void btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
3231                                     struct inode *inode2, u64 loff2, u64 len)
3232{
3233        if (inode1 < inode2) {
3234                swap(inode1, inode2);
3235                swap(loff1, loff2);
3236        } else if (inode1 == inode2 && loff2 < loff1) {
3237                swap(loff1, loff2);
3238        }
3239        lock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
3240        lock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
3241}
3242
3243static int btrfs_extent_same_range(struct inode *src, u64 loff, u64 len,
3244                                   struct inode *dst, u64 dst_loff)
3245{
3246        int ret;
3247
3248        /*
3249         * Lock destination range to serialize with concurrent readpages() and
3250         * source range to serialize with relocation.
3251         */
3252        btrfs_double_extent_lock(src, loff, dst, dst_loff, len);
3253        ret = btrfs_clone(src, dst, loff, len, len, dst_loff, 1);
3254        btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
3255
3256        return ret;
3257}
3258
3259#define BTRFS_MAX_DEDUPE_LEN    SZ_16M
3260
3261static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
3262                             struct inode *dst, u64 dst_loff)
3263{
3264        int ret;
3265        u64 i, tail_len, chunk_count;
3266        struct btrfs_root *root_dst = BTRFS_I(dst)->root;
3267
3268        spin_lock(&root_dst->root_item_lock);
3269        if (root_dst->send_in_progress) {
3270                btrfs_warn_rl(root_dst->fs_info,
3271"cannot deduplicate to root %llu while send operations are using it (%d in progress)",
3272                              root_dst->root_key.objectid,
3273                              root_dst->send_in_progress);
3274                spin_unlock(&root_dst->root_item_lock);
3275                return -EAGAIN;
3276        }
3277        root_dst->dedupe_in_progress++;
3278        spin_unlock(&root_dst->root_item_lock);
3279
3280        tail_len = olen % BTRFS_MAX_DEDUPE_LEN;
3281        chunk_count = div_u64(olen, BTRFS_MAX_DEDUPE_LEN);
3282
3283        for (i = 0; i < chunk_count; i++) {
3284                ret = btrfs_extent_same_range(src, loff, BTRFS_MAX_DEDUPE_LEN,
3285                                              dst, dst_loff);
3286                if (ret)
3287                        goto out;
3288
3289                loff += BTRFS_MAX_DEDUPE_LEN;
3290                dst_loff += BTRFS_MAX_DEDUPE_LEN;
3291        }
3292
3293        if (tail_len > 0)
3294                ret = btrfs_extent_same_range(src, loff, tail_len, dst,
3295                                              dst_loff);
3296out:
3297        spin_lock(&root_dst->root_item_lock);
3298        root_dst->dedupe_in_progress--;
3299        spin_unlock(&root_dst->root_item_lock);
3300
3301        return ret;
3302}
3303
3304static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
3305                                     struct inode *inode,
3306                                     u64 endoff,
3307                                     const u64 destoff,
3308                                     const u64 olen,
3309                                     int no_time_update)
3310{
3311        struct btrfs_root *root = BTRFS_I(inode)->root;
3312        int ret;
3313
3314        inode_inc_iversion(inode);
3315        if (!no_time_update)
3316                inode->i_mtime = inode->i_ctime = current_time(inode);
3317        /*
3318         * We round up to the block size at eof when determining which
3319         * extents to clone above, but shouldn't round up the file size.
3320         */
3321        if (endoff > destoff + olen)
3322                endoff = destoff + olen;
3323        if (endoff > inode->i_size)
3324                btrfs_i_size_write(BTRFS_I(inode), endoff);
3325
3326        ret = btrfs_update_inode(trans, root, inode);
3327        if (ret) {
3328                btrfs_abort_transaction(trans, ret);
3329                btrfs_end_transaction(trans);
3330                goto out;
3331        }
3332        ret = btrfs_end_transaction(trans);
3333out:
3334        return ret;
3335}
3336
3337/*
3338 * Make sure we do not end up inserting an inline extent into a file that has
3339 * already other (non-inline) extents. If a file has an inline extent it can
3340 * not have any other extents and the (single) inline extent must start at the
3341 * file offset 0. Failing to respect these rules will lead to file corruption,
3342 * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc
3343 *
3344 * We can have extents that have been already written to disk or we can have
3345 * dirty ranges still in delalloc, in which case the extent maps and items are
3346 * created only when we run delalloc, and the delalloc ranges might fall outside
3347 * the range we are currently locking in the inode's io tree. So we check the
3348 * inode's i_size because of that (i_size updates are done while holding the
3349 * i_mutex, which we are holding here).
3350 * We also check to see if the inode has a size not greater than "datal" but has
3351 * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are
3352 * protected against such concurrent fallocate calls by the i_mutex).
3353 *
3354 * If the file has no extents but a size greater than datal, do not allow the
3355 * copy because we would need turn the inline extent into a non-inline one (even
3356 * with NO_HOLES enabled). If we find our destination inode only has one inline
3357 * extent, just overwrite it with the source inline extent if its size is less
3358 * than the source extent's size, or we could copy the source inline extent's
3359 * data into the destination inode's inline extent if the later is greater then
3360 * the former.
3361 */
3362static int clone_copy_inline_extent(struct inode *dst,
3363                                    struct btrfs_trans_handle *trans,
3364                                    struct btrfs_path *path,
3365                                    struct btrfs_key *new_key,
3366                                    const u64 drop_start,
3367                                    const u64 datal,
3368                                    const u64 skip,
3369                                    const u64 size,
3370                                    char *inline_data)
3371{
3372        struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb);
3373        struct btrfs_root *root = BTRFS_I(dst)->root;
3374        const u64 aligned_end = ALIGN(new_key->offset + datal,
3375                                      fs_info->sectorsize);
3376        int ret;
3377        struct btrfs_key key;
3378
3379        if (new_key->offset > 0)
3380                return -EOPNOTSUPP;
3381
3382        key.objectid = btrfs_ino(BTRFS_I(dst));
3383        key.type = BTRFS_EXTENT_DATA_KEY;
3384        key.offset = 0;
3385        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3386        if (ret < 0) {
3387                return ret;
3388        } else if (ret > 0) {
3389                if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
3390                        ret = btrfs_next_leaf(root, path);
3391                        if (ret < 0)
3392                                return ret;
3393                        else if (ret > 0)
3394                                goto copy_inline_extent;
3395                }
3396                btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3397                if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
3398                    key.type == BTRFS_EXTENT_DATA_KEY) {
3399                        ASSERT(key.offset > 0);
3400                        return -EOPNOTSUPP;
3401                }
3402        } else if (i_size_read(dst) <= datal) {
3403                struct btrfs_file_extent_item *ei;
3404                u64 ext_len;
3405
3406                /*
3407                 * If the file size is <= datal, make sure there are no other
3408                 * extents following (can happen do to an fallocate call with
3409                 * the flag FALLOC_FL_KEEP_SIZE).
3410                 */
3411                ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3412                                    struct btrfs_file_extent_item);
3413                /*
3414                 * If it's an inline extent, it can not have other extents
3415                 * following it.
3416                 */
3417                if (btrfs_file_extent_type(path->nodes[0], ei) ==
3418                    BTRFS_FILE_EXTENT_INLINE)
3419                        goto copy_inline_extent;
3420
3421                ext_len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
3422                if (ext_len > aligned_end)
3423                        return -EOPNOTSUPP;
3424
3425                ret = btrfs_next_item(root, path);
3426                if (ret < 0) {
3427                        return ret;
3428                } else if (ret == 0) {
3429                        btrfs_item_key_to_cpu(path->nodes[0], &key,
3430                                              path->slots[0]);
3431                        if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
3432                            key.type == BTRFS_EXTENT_DATA_KEY)
3433                                return -EOPNOTSUPP;
3434                }
3435        }
3436
3437copy_inline_extent:
3438        /*
3439         * We have no extent items, or we have an extent at offset 0 which may
3440         * or may not be inlined. All these cases are dealt the same way.
3441         */
3442        if (i_size_read(dst) > datal) {
3443                /*
3444                 * If the destination inode has an inline extent...
3445                 * This would require copying the data from the source inline
3446                 * extent into the beginning of the destination's inline extent.
3447                 * But this is really complex, both extents can be compressed
3448                 * or just one of them, which would require decompressing and
3449                 * re-compressing data (which could increase the new compressed
3450                 * size, not allowing the compressed data to fit anymore in an
3451                 * inline extent).
3452                 * So just don't support this case for now (it should be rare,
3453                 * we are not really saving space when cloning inline extents).
3454                 */
3455                return -EOPNOTSUPP;
3456        }
3457
3458        btrfs_release_path(path);
3459        ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1);
3460        if (ret)
3461                return ret;
3462        ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
3463        if (ret)
3464                return ret;
3465
3466        if (skip) {
3467                const u32 start = btrfs_file_extent_calc_inline_size(0);
3468
3469                memmove(inline_data + start, inline_data + start + skip, datal);
3470        }
3471
3472        write_extent_buffer(path->nodes[0], inline_data,
3473                            btrfs_item_ptr_offset(path->nodes[0],
3474                                                  path->slots[0]),
3475                            size);
3476        inode_add_bytes(dst, datal);
3477        set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(dst)->runtime_flags);
3478
3479        return 0;
3480}
3481
3482/**
3483 * btrfs_clone() - clone a range from inode file to another
3484 *
3485 * @src: Inode to clone from
3486 * @inode: Inode to clone to
3487 * @off: Offset within source to start clone from
3488 * @olen: Original length, passed by user, of range to clone
3489 * @olen_aligned: Block-aligned value of olen
3490 * @destoff: Offset within @inode to start clone
3491 * @no_time_update: Whether to update mtime/ctime on the target inode
3492 */
3493static int btrfs_clone(struct inode *src, struct inode *inode,
3494                       const u64 off, const u64 olen, const u64 olen_aligned,
3495                       const u64 destoff, int no_time_update)
3496{
3497        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3498        struct btrfs_root *root = BTRFS_I(inode)->root;
3499        struct btrfs_path *path = NULL;
3500        struct extent_buffer *leaf;
3501        struct btrfs_trans_handle *trans;
3502        char *buf = NULL;
3503        struct btrfs_key key;
3504        u32 nritems;
3505        int slot;
3506        int ret;
3507        const u64 len = olen_aligned;
3508        u64 last_dest_end = destoff;
3509
3510        ret = -ENOMEM;
3511        buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
3512        if (!buf)
3513                return ret;
3514
3515        path = btrfs_alloc_path();
3516        if (!path) {
3517                kvfree(buf);
3518                return ret;
3519        }
3520
3521        path->reada = READA_FORWARD;
3522        /* clone data */
3523        key.objectid = btrfs_ino(BTRFS_I(src));
3524        key.type = BTRFS_EXTENT_DATA_KEY;
3525        key.offset = off;
3526
3527        while (1) {
3528                u64 next_key_min_offset = key.offset + 1;
3529                struct btrfs_file_extent_item *extent;
3530                int type;
3531                u32 size;
3532                struct btrfs_key new_key;
3533                u64 disko = 0, diskl = 0;
3534                u64 datao = 0, datal = 0;
3535                u8 comp;
3536                u64 drop_start;
3537
3538                /*
3539                 * note the key will change type as we walk through the
3540                 * tree.
3541                 */
3542                path->leave_spinning = 1;
3543                ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
3544                                0, 0);
3545                if (ret < 0)
3546                        goto out;
3547                /*
3548                 * First search, if no extent item that starts at offset off was
3549                 * found but the previous item is an extent item, it's possible
3550                 * it might overlap our target range, therefore process it.
3551                 */
3552                if (key.offset == off && ret > 0 && path->slots[0] > 0) {
3553                        btrfs_item_key_to_cpu(path->nodes[0], &key,
3554                                              path->slots[0] - 1);
3555                        if (key.type == BTRFS_EXTENT_DATA_KEY)
3556                                path->slots[0]--;
3557                }
3558
3559                nritems = btrfs_header_nritems(path->nodes[0]);
3560process_slot:
3561                if (path->slots[0] >= nritems) {
3562                        ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
3563                        if (ret < 0)
3564                                goto out;
3565                        if (ret > 0)
3566                                break;
3567                        nritems = btrfs_header_nritems(path->nodes[0]);
3568                }
3569                leaf = path->nodes[0];
3570                slot = path->slots[0];
3571
3572                btrfs_item_key_to_cpu(leaf, &key, slot);
3573                if (key.type > BTRFS_EXTENT_DATA_KEY ||
3574                    key.objectid != btrfs_ino(BTRFS_I(src)))
3575                        break;
3576
3577                ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
3578
3579                extent = btrfs_item_ptr(leaf, slot,
3580                                        struct btrfs_file_extent_item);
3581                comp = btrfs_file_extent_compression(leaf, extent);
3582                type = btrfs_file_extent_type(leaf, extent);
3583                if (type == BTRFS_FILE_EXTENT_REG ||
3584                    type == BTRFS_FILE_EXTENT_PREALLOC) {
3585                        disko = btrfs_file_extent_disk_bytenr(leaf, extent);
3586                        diskl = btrfs_file_extent_disk_num_bytes(leaf, extent);
3587                        datao = btrfs_file_extent_offset(leaf, extent);
3588                        datal = btrfs_file_extent_num_bytes(leaf, extent);
3589                } else if (type == BTRFS_FILE_EXTENT_INLINE) {
3590                        /* Take upper bound, may be compressed */
3591                        datal = btrfs_file_extent_ram_bytes(leaf, extent);
3592                }
3593
3594                /*
3595                 * The first search might have left us at an extent item that
3596                 * ends before our target range's start, can happen if we have
3597                 * holes and NO_HOLES feature enabled.
3598                 */
3599                if (key.offset + datal <= off) {
3600                        path->slots[0]++;
3601                        goto process_slot;
3602                } else if (key.offset >= off + len) {
3603                        break;
3604                }
3605                next_key_min_offset = key.offset + datal;
3606                size = btrfs_item_size_nr(leaf, slot);
3607                read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, slot),
3608                                   size);
3609
3610                btrfs_release_path(path);
3611                path->leave_spinning = 0;
3612
3613                memcpy(&new_key, &key, sizeof(new_key));
3614                new_key.objectid = btrfs_ino(BTRFS_I(inode));
3615                if (off <= key.offset)
3616                        new_key.offset = key.offset + destoff - off;
3617                else
3618                        new_key.offset = destoff;
3619
3620                /*
3621                 * Deal with a hole that doesn't have an extent item that
3622                 * represents it (NO_HOLES feature enabled).
3623                 * This hole is either in the middle of the cloning range or at
3624                 * the beginning (fully overlaps it or partially overlaps it).
3625                 */
3626                if (new_key.offset != last_dest_end)
3627                        drop_start = last_dest_end;
3628                else
3629                        drop_start = new_key.offset;
3630
3631                if (type == BTRFS_FILE_EXTENT_REG ||
3632                    type == BTRFS_FILE_EXTENT_PREALLOC) {
3633                        struct btrfs_clone_extent_info clone_info;
3634
3635                        /*
3636                         *    a  | --- range to clone ---|  b
3637                         * | ------------- extent ------------- |
3638                         */
3639
3640                        /* Subtract range b */
3641                        if (key.offset + datal > off + len)
3642                                datal = off + len - key.offset;
3643
3644                        /* Subtract range a */
3645                        if (off > key.offset) {
3646                                datao += off - key.offset;
3647                                datal -= off - key.offset;
3648                        }
3649
3650                        clone_info.disk_offset = disko;
3651                        clone_info.disk_len = diskl;
3652                        clone_info.data_offset = datao;
3653                        clone_info.data_len = datal;
3654                        clone_info.file_offset = new_key.offset;
3655                        clone_info.extent_buf = buf;
3656                        clone_info.item_size = size;
3657                        ret = btrfs_punch_hole_range(inode, path,
3658                                                     drop_start,
3659                                                     new_key.offset + datal - 1,
3660                                                     &clone_info, &trans);
3661                        if (ret)
3662                                goto out;
3663                } else if (type == BTRFS_FILE_EXTENT_INLINE) {
3664                        u64 skip = 0;
3665                        u64 trim = 0;
3666
3667                        if (off > key.offset) {
3668                                skip = off - key.offset;
3669                                new_key.offset += skip;
3670                        }
3671
3672                        if (key.offset + datal > off + len)
3673                                trim = key.offset + datal - (off + len);
3674
3675                        if (comp && (skip || trim)) {
3676                                ret = -EINVAL;
3677                                goto out;
3678                        }
3679                        size -= skip + trim;
3680                        datal -= skip + trim;
3681
3682                        /*
3683                         * If our extent is inline, we know we will drop or
3684                         * adjust at most 1 extent item in the destination root.
3685                         *
3686                         * 1 - adjusting old extent (we may have to split it)
3687                         * 1 - add new extent
3688                         * 1 - inode update
3689                         */
3690                        trans = btrfs_start_transaction(root, 3);
3691                        if (IS_ERR(trans)) {
3692                                ret = PTR_ERR(trans);
3693                                goto out;
3694                        }
3695
3696                        ret = clone_copy_inline_extent(inode, trans, path,
3697                                                       &new_key, drop_start,
3698                                                       datal, skip, size, buf);
3699                        if (ret) {
3700                                if (ret != -EOPNOTSUPP)
3701                                        btrfs_abort_transaction(trans, ret);
3702                                btrfs_end_transaction(trans);
3703                                goto out;
3704                        }
3705                }
3706
3707                btrfs_release_path(path);
3708
3709                last_dest_end = ALIGN(new_key.offset + datal,
3710                                      fs_info->sectorsize);
3711                ret = clone_finish_inode_update(trans, inode, last_dest_end,
3712                                                destoff, olen, no_time_update);
3713                if (ret)
3714                        goto out;
3715                if (new_key.offset + datal >= destoff + len)
3716                        break;
3717
3718                btrfs_release_path(path);
3719                key.offset = next_key_min_offset;
3720
3721                if (fatal_signal_pending(current)) {
3722                        ret = -EINTR;
3723                        goto out;
3724                }
3725        }
3726        ret = 0;
3727
3728        if (last_dest_end < destoff + len) {
3729                /*
3730                 * We have an implicit hole that fully or partially overlaps our
3731                 * cloning range at its end. This means that we either have the
3732                 * NO_HOLES feature enabled or the implicit hole happened due to
3733                 * mixing buffered and direct IO writes against this file.
3734                 */
3735                btrfs_release_path(path);
3736                path->leave_spinning = 0;
3737
3738                ret = btrfs_punch_hole_range(inode, path,
3739                                             last_dest_end, destoff + len - 1,
3740                                             NULL, &trans);
3741                if (ret)
3742                        goto out;
3743
3744                ret = clone_finish_inode_update(trans, inode, destoff + len,
3745                                                destoff, olen, no_time_update);
3746        }
3747
3748out:
3749        btrfs_free_path(path);
3750        kvfree(buf);
3751        return ret;
3752}
3753
3754static noinline int btrfs_clone_files(struct file *file, struct file *file_src,
3755                                        u64 off, u64 olen, u64 destoff)
3756{
3757        struct inode *inode = file_inode(file);
3758        struct inode *src = file_inode(file_src);
3759        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3760        int ret;
3761        u64 len = olen;
3762        u64 bs = fs_info->sb->s_blocksize;
3763
3764        /*
3765         * TODO:
3766         * - split compressed inline extents.  annoying: we need to
3767         *   decompress into destination's address_space (the file offset
3768         *   may change, so source mapping won't do), then recompress (or
3769         *   otherwise reinsert) a subrange.
3770         *
3771         * - split destination inode's inline extents.  The inline extents can
3772         *   be either compressed or non-compressed.
3773         */
3774
3775        /*
3776         * VFS's generic_remap_file_range_prep() protects us from cloning the
3777         * eof block into the middle of a file, which would result in corruption
3778         * if the file size is not blocksize aligned. So we don't need to check
3779         * for that case here.
3780         */
3781        if (off + len == src->i_size)
3782                len = ALIGN(src->i_size, bs) - off;
3783
3784        if (destoff > inode->i_size) {
3785                const u64 wb_start = ALIGN_DOWN(inode->i_size, bs);
3786
3787                ret = btrfs_cont_expand(inode, inode->i_size, destoff);
3788                if (ret)
3789                        return ret;
3790                /*
3791                 * We may have truncated the last block if the inode's size is
3792                 * not sector size aligned, so we need to wait for writeback to
3793                 * complete before proceeding further, otherwise we can race
3794                 * with cloning and attempt to increment a reference to an
3795                 * extent that no longer exists (writeback completed right after
3796                 * we found the previous extent covering eof and before we
3797                 * attempted to increment its reference count).
3798                 */
3799                ret = btrfs_wait_ordered_range(inode, wb_start,
3800                                               destoff - wb_start);
3801                if (ret)
3802                        return ret;
3803        }
3804
3805        /*
3806         * Lock destination range to serialize with concurrent readpages() and
3807         * source range to serialize with relocation.
3808         */
3809        btrfs_double_extent_lock(src, off, inode, destoff, len);
3810        ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
3811        btrfs_double_extent_unlock(src, off, inode, destoff, len);
3812        /*
3813         * Truncate page cache pages so that future reads will see the cloned
3814         * data immediately and not the previous data.
3815         */
3816        truncate_inode_pages_range(&inode->i_data,
3817                                round_down(destoff, PAGE_SIZE),
3818                                round_up(destoff + len, PAGE_SIZE) - 1);
3819
3820        return ret;
3821}
3822
3823static int btrfs_remap_file_range_prep(struct file *file_in, loff_t pos_in,
3824                                       struct file *file_out, loff_t pos_out,
3825                                       loff_t *len, unsigned int remap_flags)
3826{
3827        struct inode *inode_in = file_inode(file_in);
3828        struct inode *inode_out = file_inode(file_out);
3829        u64 bs = BTRFS_I(inode_out)->root->fs_info->sb->s_blocksize;
3830        bool same_inode = inode_out == inode_in;
3831        u64 wb_len;
3832        int ret;
3833
3834        if (!(remap_flags & REMAP_FILE_DEDUP)) {
3835                struct btrfs_root *root_out = BTRFS_I(inode_out)->root;
3836
3837                if (btrfs_root_readonly(root_out))
3838                        return -EROFS;
3839
3840                if (file_in->f_path.mnt != file_out->f_path.mnt ||
3841                    inode_in->i_sb != inode_out->i_sb)
3842                        return -EXDEV;
3843        }
3844
3845        /* don't make the dst file partly checksummed */
3846        if ((BTRFS_I(inode_in)->flags & BTRFS_INODE_NODATASUM) !=
3847            (BTRFS_I(inode_out)->flags & BTRFS_INODE_NODATASUM)) {
3848                return -EINVAL;
3849        }
3850
3851        /*
3852         * Now that the inodes are locked, we need to start writeback ourselves
3853         * and can not rely on the writeback from the VFS's generic helper
3854         * generic_remap_file_range_prep() because:
3855         *
3856         * 1) For compression we must call filemap_fdatawrite_range() range
3857         *    twice (btrfs_fdatawrite_range() does it for us), and the generic
3858         *    helper only calls it once;
3859         *
3860         * 2) filemap_fdatawrite_range(), called by the generic helper only
3861         *    waits for the writeback to complete, i.e. for IO to be done, and
3862         *    not for the ordered extents to complete. We need to wait for them
3863         *    to complete so that new file extent items are in the fs tree.
3864         */
3865        if (*len == 0 && !(remap_flags & REMAP_FILE_DEDUP))
3866                wb_len = ALIGN(inode_in->i_size, bs) - ALIGN_DOWN(pos_in, bs);
3867        else
3868                wb_len = ALIGN(*len, bs);
3869
3870        /*
3871         * Since we don't lock ranges, wait for ongoing lockless dio writes (as
3872         * any in progress could create its ordered extents after we wait for
3873         * existing ordered extents below).
3874         */
3875        inode_dio_wait(inode_in);
3876        if (!same_inode)
3877                inode_dio_wait(inode_out);
3878
3879        /*
3880         * Workaround to make sure NOCOW buffered write reach disk as NOCOW.
3881         *
3882         * Btrfs' back references do not have a block level granularity, they
3883         * work at the whole extent level.
3884         * NOCOW buffered write without data space reserved may not be able
3885         * to fall back to CoW due to lack of data space, thus could cause
3886         * data loss.
3887         *
3888         * Here we take a shortcut by flushing the whole inode, so that all
3889         * nocow write should reach disk as nocow before we increase the
3890         * reference of the extent. We could do better by only flushing NOCOW
3891         * data, but that needs extra accounting.
3892         *
3893         * Also we don't need to check ASYNC_EXTENT, as async extent will be
3894         * CoWed anyway, not affecting nocow part.
3895         */
3896        ret = filemap_flush(inode_in->i_mapping);
3897        if (ret < 0)
3898                return ret;
3899
3900        ret = btrfs_wait_ordered_range(inode_in, ALIGN_DOWN(pos_in, bs),
3901                                       wb_len);
3902        if (ret < 0)
3903                return ret;
3904        ret = btrfs_wait_ordered_range(inode_out, ALIGN_DOWN(pos_out, bs),
3905                                       wb_len);
3906        if (ret < 0)
3907                return ret;
3908
3909        return generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
3910                                            len, remap_flags);
3911}
3912
3913loff_t btrfs_remap_file_range(struct file *src_file, loff_t off,
3914                struct file *dst_file, loff_t destoff, loff_t len,
3915                unsigned int remap_flags)
3916{
3917        struct inode *src_inode = file_inode(src_file);
3918        struct inode *dst_inode = file_inode(dst_file);
3919        bool same_inode = dst_inode == src_inode;
3920        int ret;
3921
3922        if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
3923                return -EINVAL;
3924
3925        if (same_inode)
3926                inode_lock(src_inode);
3927        else
3928                lock_two_nondirectories(src_inode, dst_inode);
3929
3930        ret = btrfs_remap_file_range_prep(src_file, off, dst_file, destoff,
3931                                          &len, remap_flags);
3932        if (ret < 0 || len == 0)
3933                goto out_unlock;
3934
3935        if (remap_flags & REMAP_FILE_DEDUP)
3936                ret = btrfs_extent_same(src_inode, off, len, dst_inode, destoff);
3937        else
3938                ret = btrfs_clone_files(dst_file, src_file, off, len, destoff);
3939
3940out_unlock:
3941        if (same_inode)
3942                inode_unlock(src_inode);
3943        else
3944                unlock_two_nondirectories(src_inode, dst_inode);
3945
3946        return ret < 0 ? ret : len;
3947}
3948
3949static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
3950{
3951        struct inode *inode = file_inode(file);
3952        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3953        struct btrfs_root *root = BTRFS_I(inode)->root;
3954        struct btrfs_root *new_root;
3955        struct btrfs_dir_item *di;
3956        struct btrfs_trans_handle *trans;
3957        struct btrfs_path *path;
3958        struct btrfs_key location;
3959        struct btrfs_disk_key disk_key;
3960        u64 objectid = 0;
3961        u64 dir_id;
3962        int ret;
3963
3964        if (!capable(CAP_SYS_ADMIN))
3965                return -EPERM;
3966
3967        ret = mnt_want_write_file(file);
3968        if (ret)
3969                return ret;
3970
3971        if (copy_from_user(&objectid, argp, sizeof(objectid))) {
3972                ret = -EFAULT;
3973                goto out;
3974        }
3975
3976        if (!objectid)
3977                objectid = BTRFS_FS_TREE_OBJECTID;
3978
3979        location.objectid = objectid;
3980        location.type = BTRFS_ROOT_ITEM_KEY;
3981        location.offset = (u64)-1;
3982
3983        new_root = btrfs_read_fs_root_no_name(fs_info, &location);
3984        if (IS_ERR(new_root)) {
3985                ret = PTR_ERR(new_root);
3986                goto out;
3987        }
3988        if (!is_fstree(new_root->root_key.objectid)) {
3989                ret = -ENOENT;
3990                goto out;
3991        }
3992
3993        path = btrfs_alloc_path();
3994        if (!path) {
3995                ret = -ENOMEM;
3996                goto out;
3997        }
3998        path->leave_spinning = 1;
3999
4000        trans = btrfs_start_transaction(root, 1);
4001        if (IS_ERR(trans)) {
4002                btrfs_free_path(path);
4003                ret = PTR_ERR(trans);
4004                goto out;
4005        }
4006
4007        dir_id = btrfs_super_root_dir(fs_info->super_copy);
4008        di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
4009                                   dir_id, "default", 7, 1);
4010        if (IS_ERR_OR_NULL(di)) {
4011                btrfs_free_path(path);
4012                btrfs_end_transaction(trans);
4013                btrfs_err(fs_info,
4014                          "Umm, you don't have the default diritem, this isn't going to work");
4015                ret = -ENOENT;
4016                goto out;
4017        }
4018
4019        btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
4020        btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
4021        btrfs_mark_buffer_dirty(path->nodes[0]);
4022        btrfs_free_path(path);
4023
4024        btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
4025        btrfs_end_transaction(trans);
4026out:
4027        mnt_drop_write_file(file);
4028        return ret;
4029}
4030
4031static void get_block_group_info(struct list_head *groups_list,
4032                                 struct btrfs_ioctl_space_info *space)
4033{
4034        struct btrfs_block_group *block_group;
4035
4036        space->total_bytes = 0;
4037        space->used_bytes = 0;
4038        space->flags = 0;
4039        list_for_each_entry(block_group, groups_list, list) {
4040                space->flags = block_group->flags;
4041                space->total_bytes += block_group->length;
4042                space->used_bytes += block_group->used;
4043        }
4044}
4045
4046static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
4047                                   void __user *arg)
4048{
4049        struct btrfs_ioctl_space_args space_args;
4050        struct btrfs_ioctl_space_info space;
4051        struct btrfs_ioctl_space_info *dest;
4052        struct btrfs_ioctl_space_info *dest_orig;
4053        struct btrfs_ioctl_space_info __user *user_dest;
4054        struct btrfs_space_info *info;
4055        static const u64 types[] = {
4056                BTRFS_BLOCK_GROUP_DATA,
4057                BTRFS_BLOCK_GROUP_SYSTEM,
4058                BTRFS_BLOCK_GROUP_METADATA,
4059                BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
4060        };
4061        int num_types = 4;
4062        int alloc_size;
4063        int ret = 0;
4064        u64 slot_count = 0;
4065        int i, c;
4066
4067        if (copy_from_user(&space_args,
4068                           (struct btrfs_ioctl_space_args __user *)arg,
4069                           sizeof(space_args)))
4070                return -EFAULT;
4071
4072        for (i = 0; i < num_types; i++) {
4073                struct btrfs_space_info *tmp;
4074
4075                info = NULL;
4076                rcu_read_lock();
4077                list_for_each_entry_rcu(tmp, &fs_info->space_info,
4078                                        list) {
4079                        if (tmp->flags == types[i]) {
4080                                info = tmp;
4081                                break;
4082                        }
4083                }
4084                rcu_read_unlock();
4085
4086                if (!info)
4087                        continue;
4088
4089                down_read(&info->groups_sem);
4090                for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4091                        if (!list_empty(&info->block_groups[c]))
4092                                slot_count++;
4093                }
4094                up_read(&info->groups_sem);
4095        }
4096
4097        /*
4098         * Global block reserve, exported as a space_info
4099         */
4100        slot_count++;
4101
4102        /* space_slots == 0 means they are asking for a count */
4103        if (space_args.space_slots == 0) {
4104                space_args.total_spaces = slot_count;
4105                goto out;
4106        }
4107
4108        slot_count = min_t(u64, space_args.space_slots, slot_count);
4109
4110        alloc_size = sizeof(*dest) * slot_count;
4111
4112        /* we generally have at most 6 or so space infos, one for each raid
4113         * level.  So, a whole page should be more than enough for everyone
4114         */
4115        if (alloc_size > PAGE_SIZE)
4116                return -ENOMEM;
4117
4118        space_args.total_spaces = 0;
4119        dest = kmalloc(alloc_size, GFP_KERNEL);
4120        if (!dest)
4121                return -ENOMEM;
4122        dest_orig = dest;
4123
4124        /* now we have a buffer to copy into */
4125        for (i = 0; i < num_types; i++) {
4126                struct btrfs_space_info *tmp;
4127
4128                if (!slot_count)
4129                        break;
4130
4131                info = NULL;
4132                rcu_read_lock();
4133                list_for_each_entry_rcu(tmp, &fs_info->space_info,
4134                                        list) {
4135                        if (tmp->flags == types[i]) {
4136                                info = tmp;
4137                                break;
4138                        }
4139                }
4140                rcu_read_unlock();
4141
4142                if (!info)
4143                        continue;
4144                down_read(&info->groups_sem);
4145                for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4146                        if (!list_empty(&info->block_groups[c])) {
4147                                get_block_group_info(&info->block_groups[c],
4148                                                     &space);
4149                                memcpy(dest, &space, sizeof(space));
4150                                dest++;
4151                                space_args.total_spaces++;
4152                                slot_count--;
4153                        }
4154                        if (!slot_count)
4155                                break;
4156                }
4157                up_read(&info->groups_sem);
4158        }
4159
4160        /*
4161         * Add global block reserve
4162         */
4163        if (slot_count) {
4164                struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4165
4166                spin_lock(&block_rsv->lock);
4167                space.total_bytes = block_rsv->size;
4168                space.used_bytes = block_rsv->size - block_rsv->reserved;
4169                spin_unlock(&block_rsv->lock);
4170                space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
4171                memcpy(dest, &space, sizeof(space));
4172                space_args.total_spaces++;
4173        }
4174
4175        user_dest = (struct btrfs_ioctl_space_info __user *)
4176                (arg + sizeof(struct btrfs_ioctl_space_args));
4177
4178        if (copy_to_user(user_dest, dest_orig, alloc_size))
4179                ret = -EFAULT;
4180
4181        kfree(dest_orig);
4182out:
4183        if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
4184                ret = -EFAULT;
4185
4186        return ret;
4187}
4188
4189static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
4190                                            void __user *argp)
4191{
4192        struct btrfs_trans_handle *trans;
4193        u64 transid;
4194        int ret;
4195
4196        trans = btrfs_attach_transaction_barrier(root);
4197        if (IS_ERR(trans)) {
4198                if (PTR_ERR(trans) != -ENOENT)
4199                        return PTR_ERR(trans);
4200
4201                /* No running transaction, don't bother */
4202                transid = root->fs_info->last_trans_committed;
4203                goto out;
4204        }
4205        transid = trans->transid;
4206        ret = btrfs_commit_transaction_async(trans, 0);
4207        if (ret) {
4208                btrfs_end_transaction(trans);
4209                return ret;
4210        }
4211out:
4212        if (argp)
4213                if (copy_to_user(argp, &transid, sizeof(transid)))
4214                        return -EFAULT;
4215        return 0;
4216}
4217
4218static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
4219                                           void __user *argp)
4220{
4221        u64 transid;
4222
4223        if (argp) {
4224                if (copy_from_user(&transid, argp, sizeof(transid)))
4225                        return -EFAULT;
4226        } else {
4227                transid = 0;  /* current trans */
4228        }
4229        return btrfs_wait_for_commit(fs_info, transid);
4230}
4231
4232static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
4233{
4234        struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
4235        struct btrfs_ioctl_scrub_args *sa;
4236        int ret;
4237
4238        if (!capable(CAP_SYS_ADMIN))
4239                return -EPERM;
4240
4241        sa = memdup_user(arg, sizeof(*sa));
4242        if (IS_ERR(sa))
4243                return PTR_ERR(sa);
4244
4245        if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
4246                ret = mnt_want_write_file(file);
4247                if (ret)
4248                        goto out;
4249        }
4250
4251        ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
4252                              &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
4253                              0);
4254
4255        /*
4256         * Copy scrub args to user space even if btrfs_scrub_dev() returned an
4257         * error. This is important as it allows user space to know how much
4258         * progress scrub has done. For example, if scrub is canceled we get
4259         * -ECANCELED from btrfs_scrub_dev() and return that error back to user
4260         * space. Later user space can inspect the progress from the structure
4261         * btrfs_ioctl_scrub_args and resume scrub from where it left off
4262         * previously (btrfs-progs does this).
4263         * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
4264         * then return -EFAULT to signal the structure was not copied or it may
4265         * be corrupt and unreliable due to a partial copy.
4266         */
4267        if (copy_to_user(arg, sa, sizeof(*sa)))
4268                ret = -EFAULT;
4269
4270        if (!(sa->flags & BTRFS_SCRUB_READONLY))
4271                mnt_drop_write_file(file);
4272out:
4273        kfree(sa);
4274        return ret;
4275}
4276
4277static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
4278{
4279        if (!capable(CAP_SYS_ADMIN))
4280                return -EPERM;
4281
4282        return btrfs_scrub_cancel(fs_info);
4283}
4284
4285static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
4286                                       void __user *arg)
4287{
4288        struct btrfs_ioctl_scrub_args *sa;
4289        int ret;
4290
4291        if (!capable(CAP_SYS_ADMIN))
4292                return -EPERM;
4293
4294        sa = memdup_user(arg, sizeof(*sa));
4295        if (IS_ERR(sa))
4296                return PTR_ERR(sa);
4297
4298        ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
4299
4300        if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
4301                ret = -EFAULT;
4302
4303        kfree(sa);
4304        return ret;
4305}
4306
4307static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
4308                                      void __user *arg)
4309{
4310        struct btrfs_ioctl_get_dev_stats *sa;
4311        int ret;
4312
4313        sa = memdup_user(arg, sizeof(*sa));
4314        if (IS_ERR(sa))
4315                return PTR_ERR(sa);
4316
4317        if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
4318                kfree(sa);
4319                return -EPERM;
4320        }
4321
4322        ret = btrfs_get_dev_stats(fs_info, sa);
4323
4324        if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
4325                ret = -EFAULT;
4326
4327        kfree(sa);
4328        return ret;
4329}
4330
4331static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
4332                                    void __user *arg)
4333{
4334        struct btrfs_ioctl_dev_replace_args *p;
4335        int ret;
4336
4337        if (!capable(CAP_SYS_ADMIN))
4338                return -EPERM;
4339
4340        p = memdup_user(arg, sizeof(*p));
4341        if (IS_ERR(p))
4342                return PTR_ERR(p);
4343
4344        switch (p->cmd) {
4345        case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
4346                if (sb_rdonly(fs_info->sb)) {
4347                        ret = -EROFS;
4348                        goto out;
4349                }
4350                if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
4351                        ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4352                } else {
4353                        ret = btrfs_dev_replace_by_ioctl(fs_info, p);
4354                        clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4355                }
4356                break;
4357        case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
4358                btrfs_dev_replace_status(fs_info, p);
4359                ret = 0;
4360                break;
4361        case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
4362                p->result = btrfs_dev_replace_cancel(fs_info);
4363                ret = 0;
4364                break;
4365        default:
4366                ret = -EINVAL;
4367                break;
4368        }
4369
4370        if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
4371                ret = -EFAULT;
4372out:
4373        kfree(p);
4374        return ret;
4375}
4376
4377static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
4378{
4379        int ret = 0;
4380        int i;
4381        u64 rel_ptr;
4382        int size;
4383        struct btrfs_ioctl_ino_path_args *ipa = NULL;
4384        struct inode_fs_paths *ipath = NULL;
4385        struct btrfs_path *path;
4386
4387        if (!capable(CAP_DAC_READ_SEARCH))
4388                return -EPERM;
4389
4390        path = btrfs_alloc_path();
4391        if (!path) {
4392                ret = -ENOMEM;
4393                goto out;
4394        }
4395
4396        ipa = memdup_user(arg, sizeof(*ipa));
4397        if (IS_ERR(ipa)) {
4398                ret = PTR_ERR(ipa);
4399                ipa = NULL;
4400                goto out;
4401        }
4402
4403        size = min_t(u32, ipa->size, 4096);
4404        ipath = init_ipath(size, root, path);
4405        if (IS_ERR(ipath)) {
4406                ret = PTR_ERR(ipath);
4407                ipath = NULL;
4408                goto out;
4409        }
4410
4411        ret = paths_from_inode(ipa->inum, ipath);
4412        if (ret < 0)
4413                goto out;
4414
4415        for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
4416                rel_ptr = ipath->fspath->val[i] -
4417                          (u64)(unsigned long)ipath->fspath->val;
4418                ipath->fspath->val[i] = rel_ptr;
4419        }
4420
4421        ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
4422                           ipath->fspath, size);
4423        if (ret) {
4424                ret = -EFAULT;
4425                goto out;
4426        }
4427
4428out:
4429        btrfs_free_path(path);
4430        free_ipath(ipath);
4431        kfree(ipa);
4432
4433        return ret;
4434}
4435
4436static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
4437{
4438        struct btrfs_data_container *inodes = ctx;
4439        const size_t c = 3 * sizeof(u64);
4440
4441        if (inodes->bytes_left >= c) {
4442                inodes->bytes_left -= c;
4443                inodes->val[inodes->elem_cnt] = inum;
4444                inodes->val[inodes->elem_cnt + 1] = offset;
4445                inodes->val[inodes->elem_cnt + 2] = root;
4446                inodes->elem_cnt += 3;
4447        } else {
4448                inodes->bytes_missing += c - inodes->bytes_left;
4449                inodes->bytes_left = 0;
4450                inodes->elem_missed += 3;
4451        }
4452
4453        return 0;
4454}
4455
4456static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
4457                                        void __user *arg, int version)
4458{
4459        int ret = 0;
4460        int size;
4461        struct btrfs_ioctl_logical_ino_args *loi;
4462        struct btrfs_data_container *inodes = NULL;
4463        struct btrfs_path *path = NULL;
4464        bool ignore_offset;
4465
4466        if (!capable(CAP_SYS_ADMIN))
4467                return -EPERM;
4468
4469        loi = memdup_user(arg, sizeof(*loi));
4470        if (IS_ERR(loi))
4471                return PTR_ERR(loi);
4472
4473        if (version == 1) {
4474                ignore_offset = false;
4475                size = min_t(u32, loi->size, SZ_64K);
4476        } else {
4477                /* All reserved bits must be 0 for now */
4478                if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
4479                        ret = -EINVAL;
4480                        goto out_loi;
4481                }
4482                /* Only accept flags we have defined so far */
4483                if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
4484                        ret = -EINVAL;
4485                        goto out_loi;
4486                }
4487                ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
4488                size = min_t(u32, loi->size, SZ_16M);
4489        }
4490
4491        path = btrfs_alloc_path();
4492        if (!path) {
4493                ret = -ENOMEM;
4494                goto out;
4495        }
4496
4497        inodes = init_data_container(size);
4498        if (IS_ERR(inodes)) {
4499                ret = PTR_ERR(inodes);
4500                inodes = NULL;
4501                goto out;
4502        }
4503
4504        ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
4505                                          build_ino_list, inodes, ignore_offset);
4506        if (ret == -EINVAL)
4507                ret = -ENOENT;
4508        if (ret < 0)
4509                goto out;
4510
4511        ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
4512                           size);
4513        if (ret)
4514                ret = -EFAULT;
4515
4516out:
4517        btrfs_free_path(path);
4518        kvfree(inodes);
4519out_loi:
4520        kfree(loi);
4521
4522        return ret;
4523}
4524
4525void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
4526                               struct btrfs_ioctl_balance_args *bargs)
4527{
4528        struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4529
4530        bargs->flags = bctl->flags;
4531
4532        if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
4533                bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
4534        if (atomic_read(&fs_info->balance_pause_req))
4535                bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
4536        if (atomic_read(&fs_info->balance_cancel_req))
4537                bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
4538
4539        memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
4540        memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
4541        memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
4542
4543        spin_lock(&fs_info->balance_lock);
4544        memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4545        spin_unlock(&fs_info->balance_lock);
4546}
4547
4548static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4549{
4550        struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4551        struct btrfs_fs_info *fs_info = root->fs_info;
4552        struct btrfs_ioctl_balance_args *bargs;
4553        struct btrfs_balance_control *bctl;
4554        bool need_unlock; /* for mut. excl. ops lock */
4555        int ret;
4556
4557        if (!capable(CAP_SYS_ADMIN))
4558                return -EPERM;
4559
4560        ret = mnt_want_write_file(file);
4561        if (ret)
4562                return ret;
4563
4564again:
4565        if (!test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
4566                mutex_lock(&fs_info->balance_mutex);
4567                need_unlock = true;
4568                goto locked;
4569        }
4570
4571        /*
4572         * mut. excl. ops lock is locked.  Three possibilities:
4573         *   (1) some other op is running
4574         *   (2) balance is running
4575         *   (3) balance is paused -- special case (think resume)
4576         */
4577        mutex_lock(&fs_info->balance_mutex);
4578        if (fs_info->balance_ctl) {
4579                /* this is either (2) or (3) */
4580                if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4581                        mutex_unlock(&fs_info->balance_mutex);
4582                        /*
4583                         * Lock released to allow other waiters to continue,
4584                         * we'll reexamine the status again.
4585                         */
4586                        mutex_lock(&fs_info->balance_mutex);
4587
4588                        if (fs_info->balance_ctl &&
4589                            !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4590                                /* this is (3) */
4591                                need_unlock = false;
4592                                goto locked;
4593                        }
4594
4595                        mutex_unlock(&fs_info->balance_mutex);
4596                        goto again;
4597                } else {
4598                        /* this is (2) */
4599                        mutex_unlock(&fs_info->balance_mutex);
4600                        ret = -EINPROGRESS;
4601                        goto out;
4602                }
4603        } else {
4604                /* this is (1) */
4605                mutex_unlock(&fs_info->balance_mutex);
4606                ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4607                goto out;
4608        }
4609
4610locked:
4611        BUG_ON(!test_bit(BTRFS_FS_EXCL_OP, &fs_info->flags));
4612
4613        if (arg) {
4614                bargs = memdup_user(arg, sizeof(*bargs));
4615                if (IS_ERR(bargs)) {
4616                        ret = PTR_ERR(bargs);
4617                        goto out_unlock;
4618                }
4619
4620                if (bargs->flags & BTRFS_BALANCE_RESUME) {
4621                        if (!fs_info->balance_ctl) {
4622                                ret = -ENOTCONN;
4623                                goto out_bargs;
4624                        }
4625
4626                        bctl = fs_info->balance_ctl;
4627                        spin_lock(&fs_info->balance_lock);
4628                        bctl->flags |= BTRFS_BALANCE_RESUME;
4629                        spin_unlock(&fs_info->balance_lock);
4630
4631                        goto do_balance;
4632                }
4633        } else {
4634                bargs = NULL;
4635        }
4636
4637        if (fs_info->balance_ctl) {
4638                ret = -EINPROGRESS;
4639                goto out_bargs;
4640        }
4641
4642        bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
4643        if (!bctl) {
4644                ret = -ENOMEM;
4645                goto out_bargs;
4646        }
4647
4648        if (arg) {
4649                memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4650                memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4651                memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4652
4653                bctl->flags = bargs->flags;
4654        } else {
4655                /* balance everything - no filters */
4656                bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4657        }
4658
4659        if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4660                ret = -EINVAL;
4661                goto out_bctl;
4662        }
4663
4664do_balance:
4665        /*
4666         * Ownership of bctl and filesystem flag BTRFS_FS_EXCL_OP goes to
4667         * btrfs_balance.  bctl is freed in reset_balance_state, or, if
4668         * restriper was paused all the way until unmount, in free_fs_info.
4669         * The flag should be cleared after reset_balance_state.
4670         */
4671        need_unlock = false;
4672
4673        ret = btrfs_balance(fs_info, bctl, bargs);
4674        bctl = NULL;
4675
4676        if ((ret == 0 || ret == -ECANCELED) && arg) {
4677                if (copy_to_user(arg, bargs, sizeof(*bargs)))
4678                        ret = -EFAULT;
4679        }
4680
4681out_bctl:
4682        kfree(bctl);
4683out_bargs:
4684        kfree(bargs);
4685out_unlock:
4686        mutex_unlock(&fs_info->balance_mutex);
4687        if (need_unlock)
4688                clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4689out:
4690        mnt_drop_write_file(file);
4691        return ret;
4692}
4693
4694static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
4695{
4696        if (!capable(CAP_SYS_ADMIN))
4697                return -EPERM;
4698
4699        switch (cmd) {
4700        case BTRFS_BALANCE_CTL_PAUSE:
4701                return btrfs_pause_balance(fs_info);
4702        case BTRFS_BALANCE_CTL_CANCEL:
4703                return btrfs_cancel_balance(fs_info);
4704        }
4705
4706        return -EINVAL;
4707}
4708
4709static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
4710                                         void __user *arg)
4711{
4712        struct btrfs_ioctl_balance_args *bargs;
4713        int ret = 0;
4714
4715        if (!capable(CAP_SYS_ADMIN))
4716                return -EPERM;
4717
4718        mutex_lock(&fs_info->balance_mutex);
4719        if (!fs_info->balance_ctl) {
4720                ret = -ENOTCONN;
4721                goto out;
4722        }
4723
4724        bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4725        if (!bargs) {
4726                ret = -ENOMEM;
4727                goto out;
4728        }
4729
4730        btrfs_update_ioctl_balance_args(fs_info, bargs);
4731
4732        if (copy_to_user(arg, bargs, sizeof(*bargs)))
4733                ret = -EFAULT;
4734
4735        kfree(bargs);
4736out:
4737        mutex_unlock(&fs_info->balance_mutex);
4738        return ret;
4739}
4740
4741static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4742{
4743        struct inode *inode = file_inode(file);
4744        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4745        struct btrfs_ioctl_quota_ctl_args *sa;
4746        int ret;
4747
4748        if (!capable(CAP_SYS_ADMIN))
4749                return -EPERM;
4750
4751        ret = mnt_want_write_file(file);
4752        if (ret)
4753                return ret;
4754
4755        sa = memdup_user(arg, sizeof(*sa));
4756        if (IS_ERR(sa)) {
4757                ret = PTR_ERR(sa);
4758                goto drop_write;
4759        }
4760
4761        down_write(&fs_info->subvol_sem);
4762
4763        switch (sa->cmd) {
4764        case BTRFS_QUOTA_CTL_ENABLE:
4765                ret = btrfs_quota_enable(fs_info);
4766                break;
4767        case BTRFS_QUOTA_CTL_DISABLE:
4768                ret = btrfs_quota_disable(fs_info);
4769                break;
4770        default:
4771                ret = -EINVAL;
4772                break;
4773        }
4774
4775        kfree(sa);
4776        up_write(&fs_info->subvol_sem);
4777drop_write:
4778        mnt_drop_write_file(file);
4779        return ret;
4780}
4781
4782static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4783{
4784        struct inode *inode = file_inode(file);
4785        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4786        struct btrfs_root *root = BTRFS_I(inode)->root;
4787        struct btrfs_ioctl_qgroup_assign_args *sa;
4788        struct btrfs_trans_handle *trans;
4789        int ret;
4790        int err;
4791
4792        if (!capable(CAP_SYS_ADMIN))
4793                return -EPERM;
4794
4795        ret = mnt_want_write_file(file);
4796        if (ret)
4797                return ret;
4798
4799        sa = memdup_user(arg, sizeof(*sa));
4800        if (IS_ERR(sa)) {
4801                ret = PTR_ERR(sa);
4802                goto drop_write;
4803        }
4804
4805        trans = btrfs_join_transaction(root);
4806        if (IS_ERR(trans)) {
4807                ret = PTR_ERR(trans);
4808                goto out;
4809        }
4810
4811        if (sa->assign) {
4812                ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst);
4813        } else {
4814                ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
4815        }
4816
4817        /* update qgroup status and info */
4818        err = btrfs_run_qgroups(trans);
4819        if (err < 0)
4820                btrfs_handle_fs_error(fs_info, err,
4821                                      "failed to update qgroup status and info");
4822        err = btrfs_end_transaction(trans);
4823        if (err && !ret)
4824                ret = err;
4825
4826out:
4827        kfree(sa);
4828drop_write:
4829        mnt_drop_write_file(file);
4830        return ret;
4831}
4832
4833static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4834{
4835        struct inode *inode = file_inode(file);
4836        struct btrfs_root *root = BTRFS_I(inode)->root;
4837        struct btrfs_ioctl_qgroup_create_args *sa;
4838        struct btrfs_trans_handle *trans;
4839        int ret;
4840        int err;
4841
4842        if (!capable(CAP_SYS_ADMIN))
4843                return -EPERM;
4844
4845        ret = mnt_want_write_file(file);
4846        if (ret)
4847                return ret;
4848
4849        sa = memdup_user(arg, sizeof(*sa));
4850        if (IS_ERR(sa)) {
4851                ret = PTR_ERR(sa);
4852                goto drop_write;
4853        }
4854
4855        if (!sa->qgroupid) {
4856                ret = -EINVAL;
4857                goto out;
4858        }
4859
4860        trans = btrfs_join_transaction(root);
4861        if (IS_ERR(trans)) {
4862                ret = PTR_ERR(trans);
4863                goto out;
4864        }
4865
4866        if (sa->create) {
4867                ret = btrfs_create_qgroup(trans, sa->qgroupid);
4868        } else {
4869                ret = btrfs_remove_qgroup(trans, sa->qgroupid);
4870        }
4871
4872        err = btrfs_end_transaction(trans);
4873        if (err && !ret)
4874                ret = err;
4875
4876out:
4877        kfree(sa);
4878drop_write:
4879        mnt_drop_write_file(file);
4880        return ret;
4881}
4882
4883static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4884{
4885        struct inode *inode = file_inode(file);
4886        struct btrfs_root *root = BTRFS_I(inode)->root;
4887        struct btrfs_ioctl_qgroup_limit_args *sa;
4888        struct btrfs_trans_handle *trans;
4889        int ret;
4890        int err;
4891        u64 qgroupid;
4892
4893        if (!capable(CAP_SYS_ADMIN))
4894                return -EPERM;
4895
4896        ret = mnt_want_write_file(file);
4897        if (ret)
4898                return ret;
4899
4900        sa = memdup_user(arg, sizeof(*sa));
4901        if (IS_ERR(sa)) {
4902                ret = PTR_ERR(sa);
4903                goto drop_write;
4904        }
4905
4906        trans = btrfs_join_transaction(root);
4907        if (IS_ERR(trans)) {
4908                ret = PTR_ERR(trans);
4909                goto out;
4910        }
4911
4912        qgroupid = sa->qgroupid;
4913        if (!qgroupid) {
4914                /* take the current subvol as qgroup */
4915                qgroupid = root->root_key.objectid;
4916        }
4917
4918        ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
4919
4920        err = btrfs_end_transaction(trans);
4921        if (err && !ret)
4922                ret = err;
4923
4924out:
4925        kfree(sa);
4926drop_write:
4927        mnt_drop_write_file(file);
4928        return ret;
4929}
4930
4931static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4932{
4933        struct inode *inode = file_inode(file);
4934        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4935        struct btrfs_ioctl_quota_rescan_args *qsa;
4936        int ret;
4937
4938        if (!capable(CAP_SYS_ADMIN))
4939                return -EPERM;
4940
4941        ret = mnt_want_write_file(file);
4942        if (ret)
4943                return ret;
4944
4945        qsa = memdup_user(arg, sizeof(*qsa));
4946        if (IS_ERR(qsa)) {
4947                ret = PTR_ERR(qsa);
4948                goto drop_write;
4949        }
4950
4951        if (qsa->flags) {
4952                ret = -EINVAL;
4953                goto out;
4954        }
4955
4956        ret = btrfs_qgroup_rescan(fs_info);
4957
4958out:
4959        kfree(qsa);
4960drop_write:
4961        mnt_drop_write_file(file);
4962        return ret;
4963}
4964
4965static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
4966                                                void __user *arg)
4967{
4968        struct btrfs_ioctl_quota_rescan_args *qsa;
4969        int ret = 0;
4970
4971        if (!capable(CAP_SYS_ADMIN))
4972                return -EPERM;
4973
4974        qsa = kzalloc(sizeof(*qsa), GFP_KERNEL);
4975        if (!qsa)
4976                return -ENOMEM;
4977
4978        if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4979                qsa->flags = 1;
4980                qsa->progress = fs_info->qgroup_rescan_progress.objectid;
4981        }
4982
4983        if (copy_to_user(arg, qsa, sizeof(*qsa)))
4984                ret = -EFAULT;
4985
4986        kfree(qsa);
4987        return ret;
4988}
4989
4990static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info,
4991                                                void __user *arg)
4992{
4993        if (!capable(CAP_SYS_ADMIN))
4994                return -EPERM;
4995
4996        return btrfs_qgroup_wait_for_completion(fs_info, true);
4997}
4998
4999static long _btrfs_ioctl_set_received_subvol(struct file *file,
5000                                            struct btrfs_ioctl_received_subvol_args *sa)
5001{
5002        struct inode *inode = file_inode(file);
5003        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5004        struct btrfs_root *root = BTRFS_I(inode)->root;
5005        struct btrfs_root_item *root_item = &root->root_item;
5006        struct btrfs_trans_handle *trans;
5007        struct timespec64 ct = current_time(inode);
5008        int ret = 0;
5009        int received_uuid_changed;
5010
5011        if (!inode_owner_or_capable(inode))
5012                return -EPERM;
5013
5014        ret = mnt_want_write_file(file);
5015        if (ret < 0)
5016                return ret;
5017
5018        down_write(&fs_info->subvol_sem);
5019
5020        if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
5021                ret = -EINVAL;
5022                goto out;
5023        }
5024
5025        if (btrfs_root_readonly(root)) {
5026                ret = -EROFS;
5027                goto out;
5028        }
5029
5030        /*
5031         * 1 - root item
5032         * 2 - uuid items (received uuid + subvol uuid)
5033         */
5034        trans = btrfs_start_transaction(root, 3);
5035        if (IS_ERR(trans)) {
5036                ret = PTR_ERR(trans);
5037                trans = NULL;
5038                goto out;
5039        }
5040
5041        sa->rtransid = trans->transid;
5042        sa->rtime.sec = ct.tv_sec;
5043        sa->rtime.nsec = ct.tv_nsec;
5044
5045        received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
5046                                       BTRFS_UUID_SIZE);
5047        if (received_uuid_changed &&
5048            !btrfs_is_empty_uuid(root_item->received_uuid)) {
5049                ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
5050                                          BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5051                                          root->root_key.objectid);
5052                if (ret && ret != -ENOENT) {
5053                        btrfs_abort_transaction(trans, ret);
5054                        btrfs_end_transaction(trans);
5055                        goto out;
5056                }
5057        }
5058        memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
5059        btrfs_set_root_stransid(root_item, sa->stransid);
5060        btrfs_set_root_rtransid(root_item, sa->rtransid);
5061        btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
5062        btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
5063        btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
5064        btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
5065
5066        ret = btrfs_update_root(trans, fs_info->tree_root,
5067                                &root->root_key, &root->root_item);
5068        if (ret < 0) {
5069                btrfs_end_transaction(trans);
5070                goto out;
5071        }
5072        if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
5073                ret = btrfs_uuid_tree_add(trans, sa->uuid,
5074                                          BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5075                                          root->root_key.objectid);
5076                if (ret < 0 && ret != -EEXIST) {
5077                        btrfs_abort_transaction(trans, ret);
5078                        btrfs_end_transaction(trans);
5079                        goto out;
5080                }
5081        }
5082        ret = btrfs_commit_transaction(trans);
5083out:
5084        up_write(&fs_info->subvol_sem);
5085        mnt_drop_write_file(file);
5086        return ret;
5087}
5088
5089#ifdef CONFIG_64BIT
5090static long btrfs_ioctl_set_received_subvol_32(struct file *file,
5091                                                void __user *arg)
5092{
5093        struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
5094        struct btrfs_ioctl_received_subvol_args *args64 = NULL;
5095        int ret = 0;
5096
5097        args32 = memdup_user(arg, sizeof(*args32));
5098        if (IS_ERR(args32))
5099                return PTR_ERR(args32);
5100
5101        args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
5102        if (!args64) {
5103                ret = -ENOMEM;
5104                goto out;
5105        }
5106
5107        memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
5108        args64->stransid = args32->stransid;
5109        args64->rtransid = args32->rtransid;
5110        args64->stime.sec = args32->stime.sec;
5111        args64->stime.nsec = args32->stime.nsec;
5112        args64->rtime.sec = args32->rtime.sec;
5113        args64->rtime.nsec = args32->rtime.nsec;
5114        args64->flags = args32->flags;
5115
5116        ret = _btrfs_ioctl_set_received_subvol(file, args64);
5117        if (ret)
5118                goto out;
5119
5120        memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
5121        args32->stransid = args64->stransid;
5122        args32->rtransid = args64->rtransid;
5123        args32->stime.sec = args64->stime.sec;
5124        args32->stime.nsec = args64->stime.nsec;
5125        args32->rtime.sec = args64->rtime.sec;
5126        args32->rtime.nsec = args64->rtime.nsec;
5127        args32->flags = args64->flags;
5128
5129        ret = copy_to_user(arg, args32, sizeof(*args32));
5130        if (ret)
5131                ret = -EFAULT;
5132
5133out:
5134        kfree(args32);
5135        kfree(args64);
5136        return ret;
5137}
5138#endif
5139
5140static long btrfs_ioctl_set_received_subvol(struct file *file,
5141                                            void __user *arg)
5142{
5143        struct btrfs_ioctl_received_subvol_args *sa = NULL;
5144        int ret = 0;
5145
5146        sa = memdup_user(arg, sizeof(*sa));
5147        if (IS_ERR(sa))
5148                return PTR_ERR(sa);
5149
5150        ret = _btrfs_ioctl_set_received_subvol(file, sa);
5151
5152        if (ret)
5153                goto out;
5154
5155        ret = copy_to_user(arg, sa, sizeof(*sa));
5156        if (ret)
5157                ret = -EFAULT;
5158
5159out:
5160        kfree(sa);
5161        return ret;
5162}
5163
5164static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
5165                                        void __user *arg)
5166{
5167        size_t len;
5168        int ret;
5169        char label[BTRFS_LABEL_SIZE];
5170
5171        spin_lock(&fs_info->super_lock);
5172        memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
5173        spin_unlock(&fs_info->super_lock);
5174
5175        len = strnlen(label, BTRFS_LABEL_SIZE);
5176
5177        if (len == BTRFS_LABEL_SIZE) {
5178                btrfs_warn(fs_info,
5179                           "label is too long, return the first %zu bytes",
5180                           --len);
5181        }
5182
5183        ret = copy_to_user(arg, label, len);
5184
5185        return ret ? -EFAULT : 0;
5186}
5187
5188static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
5189{
5190        struct inode *inode = file_inode(file);
5191        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5192        struct btrfs_root *root = BTRFS_I(inode)->root;
5193        struct btrfs_super_block *super_block = fs_info->super_copy;
5194        struct btrfs_trans_handle *trans;
5195        char label[BTRFS_LABEL_SIZE];
5196        int ret;
5197
5198        if (!capable(CAP_SYS_ADMIN))
5199                return -EPERM;
5200
5201        if (copy_from_user(label, arg, sizeof(label)))
5202                return -EFAULT;
5203
5204        if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
5205                btrfs_err(fs_info,
5206                          "unable to set label with more than %d bytes",
5207                          BTRFS_LABEL_SIZE - 1);
5208                return -EINVAL;
5209        }
5210
5211        ret = mnt_want_write_file(file);
5212        if (ret)
5213                return ret;
5214
5215        trans = btrfs_start_transaction(root, 0);
5216        if (IS_ERR(trans)) {
5217                ret = PTR_ERR(trans);
5218                goto out_unlock;
5219        }
5220
5221        spin_lock(&fs_info->super_lock);
5222        strcpy(super_block->label, label);
5223        spin_unlock(&fs_info->super_lock);
5224        ret = btrfs_commit_transaction(trans);
5225
5226out_unlock:
5227        mnt_drop_write_file(file);
5228        return ret;
5229}
5230
5231#define INIT_FEATURE_FLAGS(suffix) \
5232        { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
5233          .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
5234          .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
5235
5236int btrfs_ioctl_get_supported_features(void __user *arg)
5237{
5238        static const struct btrfs_ioctl_feature_flags features[3] = {
5239                INIT_FEATURE_FLAGS(SUPP),
5240                INIT_FEATURE_FLAGS(SAFE_SET),
5241                INIT_FEATURE_FLAGS(SAFE_CLEAR)
5242        };
5243
5244        if (copy_to_user(arg, &features, sizeof(features)))
5245                return -EFAULT;
5246
5247        return 0;
5248}
5249
5250static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
5251                                        void __user *arg)
5252{
5253        struct btrfs_super_block *super_block = fs_info->super_copy;
5254        struct btrfs_ioctl_feature_flags features;
5255
5256        features.compat_flags = btrfs_super_compat_flags(super_block);
5257        features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
5258        features.incompat_flags = btrfs_super_incompat_flags(super_block);
5259
5260        if (copy_to_user(arg, &features, sizeof(features)))
5261                return -EFAULT;
5262
5263        return 0;
5264}
5265
5266static int check_feature_bits(struct btrfs_fs_info *fs_info,
5267                              enum btrfs_feature_set set,
5268                              u64 change_mask, u64 flags, u64 supported_flags,
5269                              u64 safe_set, u64 safe_clear)
5270{
5271        const char *type = btrfs_feature_set_name(set);
5272        char *names;
5273        u64 disallowed, unsupported;
5274        u64 set_mask = flags & change_mask;
5275        u64 clear_mask = ~flags & change_mask;
5276
5277        unsupported = set_mask & ~supported_flags;
5278        if (unsupported) {
5279                names = btrfs_printable_features(set, unsupported);
5280                if (names) {
5281                        btrfs_warn(fs_info,
5282                                   "this kernel does not support the %s feature bit%s",
5283                                   names, strchr(names, ',') ? "s" : "");
5284                        kfree(names);
5285                } else
5286                        btrfs_warn(fs_info,
5287                                   "this kernel does not support %s bits 0x%llx",
5288                                   type, unsupported);
5289                return -EOPNOTSUPP;
5290        }
5291
5292        disallowed = set_mask & ~safe_set;
5293        if (disallowed) {
5294                names = btrfs_printable_features(set, disallowed);
5295                if (names) {
5296                        btrfs_warn(fs_info,
5297                                   "can't set the %s feature bit%s while mounted",
5298                                   names, strchr(names, ',') ? "s" : "");
5299                        kfree(names);
5300                } else
5301                        btrfs_warn(fs_info,
5302                                   "can't set %s bits 0x%llx while mounted",
5303                                   type, disallowed);
5304                return -EPERM;
5305        }
5306
5307        disallowed = clear_mask & ~safe_clear;
5308        if (disallowed) {
5309                names = btrfs_printable_features(set, disallowed);
5310                if (names) {
5311                        btrfs_warn(fs_info,
5312                                   "can't clear the %s feature bit%s while mounted",
5313                                   names, strchr(names, ',') ? "s" : "");
5314                        kfree(names);
5315                } else
5316                        btrfs_warn(fs_info,
5317                                   "can't clear %s bits 0x%llx while mounted",
5318                                   type, disallowed);
5319                return -EPERM;
5320        }
5321
5322        return 0;
5323}
5324
5325#define check_feature(fs_info, change_mask, flags, mask_base)   \
5326check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags,       \
5327                   BTRFS_FEATURE_ ## mask_base ## _SUPP,        \
5328                   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,    \
5329                   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
5330
5331static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
5332{
5333        struct inode *inode = file_inode(file);
5334        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5335        struct btrfs_root *root = BTRFS_I(inode)->root;
5336        struct btrfs_super_block *super_block = fs_info->super_copy;
5337        struct btrfs_ioctl_feature_flags flags[2];
5338        struct btrfs_trans_handle *trans;
5339        u64 newflags;
5340        int ret;
5341
5342        if (!capable(CAP_SYS_ADMIN))
5343                return -EPERM;
5344
5345        if (copy_from_user(flags, arg, sizeof(flags)))
5346                return -EFAULT;
5347
5348        /* Nothing to do */
5349        if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
5350            !flags[0].incompat_flags)
5351                return 0;
5352
5353        ret = check_feature(fs_info, flags[0].compat_flags,
5354                            flags[1].compat_flags, COMPAT);
5355        if (ret)
5356                return ret;
5357
5358        ret = check_feature(fs_info, flags[0].compat_ro_flags,
5359                            flags[1].compat_ro_flags, COMPAT_RO);
5360        if (ret)
5361                return ret;
5362
5363        ret = check_feature(fs_info, flags[0].incompat_flags,
5364                            flags[1].incompat_flags, INCOMPAT);
5365        if (ret)
5366                return ret;
5367
5368        ret = mnt_want_write_file(file);
5369        if (ret)
5370                return ret;
5371
5372        trans = btrfs_start_transaction(root, 0);
5373        if (IS_ERR(trans)) {
5374                ret = PTR_ERR(trans);
5375                goto out_drop_write;
5376        }
5377
5378        spin_lock(&fs_info->super_lock);
5379        newflags = btrfs_super_compat_flags(super_block);
5380        newflags |= flags[0].compat_flags & flags[1].compat_flags;
5381        newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
5382        btrfs_set_super_compat_flags(super_block, newflags);
5383
5384        newflags = btrfs_super_compat_ro_flags(super_block);
5385        newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
5386        newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
5387        btrfs_set_super_compat_ro_flags(super_block, newflags);
5388
5389        newflags = btrfs_super_incompat_flags(super_block);
5390        newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
5391        newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
5392        btrfs_set_super_incompat_flags(super_block, newflags);
5393        spin_unlock(&fs_info->super_lock);
5394
5395        ret = btrfs_commit_transaction(trans);
5396out_drop_write:
5397        mnt_drop_write_file(file);
5398
5399        return ret;
5400}
5401
5402static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat)
5403{
5404        struct btrfs_ioctl_send_args *arg;
5405        int ret;
5406
5407        if (compat) {
5408#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5409                struct btrfs_ioctl_send_args_32 args32;
5410
5411                ret = copy_from_user(&args32, argp, sizeof(args32));
5412                if (ret)
5413                        return -EFAULT;
5414                arg = kzalloc(sizeof(*arg), GFP_KERNEL);
5415                if (!arg)
5416                        return -ENOMEM;
5417                arg->send_fd = args32.send_fd;
5418                arg->clone_sources_count = args32.clone_sources_count;
5419                arg->clone_sources = compat_ptr(args32.clone_sources);
5420                arg->parent_root = args32.parent_root;
5421                arg->flags = args32.flags;
5422                memcpy(arg->reserved, args32.reserved,
5423                       sizeof(args32.reserved));
5424#else
5425                return -ENOTTY;
5426#endif
5427        } else {
5428                arg = memdup_user(argp, sizeof(*arg));
5429                if (IS_ERR(arg))
5430                        return PTR_ERR(arg);
5431        }
5432        ret = btrfs_ioctl_send(file, arg);
5433        kfree(arg);
5434        return ret;
5435}
5436
5437long btrfs_ioctl(struct file *file, unsigned int
5438                cmd, unsigned long arg)
5439{
5440        struct inode *inode = file_inode(file);
5441        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5442        struct btrfs_root *root = BTRFS_I(inode)->root;
5443        void __user *argp = (void __user *)arg;
5444
5445        switch (cmd) {
5446        case FS_IOC_GETFLAGS:
5447                return btrfs_ioctl_getflags(file, argp);
5448        case FS_IOC_SETFLAGS:
5449                return btrfs_ioctl_setflags(file, argp);
5450        case FS_IOC_GETVERSION:
5451                return btrfs_ioctl_getversion(file, argp);
5452        case FS_IOC_GETFSLABEL:
5453                return btrfs_ioctl_get_fslabel(fs_info, argp);
5454        case FS_IOC_SETFSLABEL:
5455                return btrfs_ioctl_set_fslabel(file, argp);
5456        case FITRIM:
5457                return btrfs_ioctl_fitrim(fs_info, argp);
5458        case BTRFS_IOC_SNAP_CREATE:
5459                return btrfs_ioctl_snap_create(file, argp, 0);
5460        case BTRFS_IOC_SNAP_CREATE_V2:
5461                return btrfs_ioctl_snap_create_v2(file, argp, 0);
5462        case BTRFS_IOC_SUBVOL_CREATE:
5463                return btrfs_ioctl_snap_create(file, argp, 1);
5464        case BTRFS_IOC_SUBVOL_CREATE_V2:
5465                return btrfs_ioctl_snap_create_v2(file, argp, 1);
5466        case BTRFS_IOC_SNAP_DESTROY:
5467                return btrfs_ioctl_snap_destroy(file, argp);
5468        case BTRFS_IOC_SUBVOL_GETFLAGS:
5469                return btrfs_ioctl_subvol_getflags(file, argp);
5470        case BTRFS_IOC_SUBVOL_SETFLAGS:
5471                return btrfs_ioctl_subvol_setflags(file, argp);
5472        case BTRFS_IOC_DEFAULT_SUBVOL:
5473                return btrfs_ioctl_default_subvol(file, argp);
5474        case BTRFS_IOC_DEFRAG:
5475                return btrfs_ioctl_defrag(file, NULL);
5476        case BTRFS_IOC_DEFRAG_RANGE:
5477                return btrfs_ioctl_defrag(file, argp);
5478        case BTRFS_IOC_RESIZE:
5479                return btrfs_ioctl_resize(file, argp);
5480        case BTRFS_IOC_ADD_DEV:
5481                return btrfs_ioctl_add_dev(fs_info, argp);
5482        case BTRFS_IOC_RM_DEV:
5483                return btrfs_ioctl_rm_dev(file, argp);
5484        case BTRFS_IOC_RM_DEV_V2:
5485                return btrfs_ioctl_rm_dev_v2(file, argp);
5486        case BTRFS_IOC_FS_INFO:
5487                return btrfs_ioctl_fs_info(fs_info, argp);
5488        case BTRFS_IOC_DEV_INFO:
5489                return btrfs_ioctl_dev_info(fs_info, argp);
5490        case BTRFS_IOC_BALANCE:
5491                return btrfs_ioctl_balance(file, NULL);
5492        case BTRFS_IOC_TREE_SEARCH:
5493                return btrfs_ioctl_tree_search(file, argp);
5494        case BTRFS_IOC_TREE_SEARCH_V2:
5495                return btrfs_ioctl_tree_search_v2(file, argp);
5496        case BTRFS_IOC_INO_LOOKUP:
5497                return btrfs_ioctl_ino_lookup(file, argp);
5498        case BTRFS_IOC_INO_PATHS:
5499                return btrfs_ioctl_ino_to_path(root, argp);
5500        case BTRFS_IOC_LOGICAL_INO:
5501                return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
5502        case BTRFS_IOC_LOGICAL_INO_V2:
5503                return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
5504        case BTRFS_IOC_SPACE_INFO:
5505                return btrfs_ioctl_space_info(fs_info, argp);
5506        case BTRFS_IOC_SYNC: {
5507                int ret;
5508
5509                ret = btrfs_start_delalloc_roots(fs_info, -1);
5510                if (ret)
5511                        return ret;
5512                ret = btrfs_sync_fs(inode->i_sb, 1);
5513                /*
5514                 * The transaction thread may want to do more work,
5515                 * namely it pokes the cleaner kthread that will start
5516                 * processing uncleaned subvols.
5517                 */
5518                wake_up_process(fs_info->transaction_kthread);
5519                return ret;
5520        }
5521        case BTRFS_IOC_START_SYNC:
5522                return btrfs_ioctl_start_sync(root, argp);
5523        case BTRFS_IOC_WAIT_SYNC:
5524                return btrfs_ioctl_wait_sync(fs_info, argp);
5525        case BTRFS_IOC_SCRUB:
5526                return btrfs_ioctl_scrub(file, argp);
5527        case BTRFS_IOC_SCRUB_CANCEL:
5528                return btrfs_ioctl_scrub_cancel(fs_info);
5529        case BTRFS_IOC_SCRUB_PROGRESS:
5530                return btrfs_ioctl_scrub_progress(fs_info, argp);
5531        case BTRFS_IOC_BALANCE_V2:
5532                return btrfs_ioctl_balance(file, argp);
5533        case BTRFS_IOC_BALANCE_CTL:
5534                return btrfs_ioctl_balance_ctl(fs_info, arg);
5535        case BTRFS_IOC_BALANCE_PROGRESS:
5536                return btrfs_ioctl_balance_progress(fs_info, argp);
5537        case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5538                return btrfs_ioctl_set_received_subvol(file, argp);
5539#ifdef CONFIG_64BIT
5540        case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5541                return btrfs_ioctl_set_received_subvol_32(file, argp);
5542#endif
5543        case BTRFS_IOC_SEND:
5544                return _btrfs_ioctl_send(file, argp, false);
5545#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5546        case BTRFS_IOC_SEND_32:
5547                return _btrfs_ioctl_send(file, argp, true);
5548#endif
5549        case BTRFS_IOC_GET_DEV_STATS:
5550                return btrfs_ioctl_get_dev_stats(fs_info, argp);
5551        case BTRFS_IOC_QUOTA_CTL:
5552                return btrfs_ioctl_quota_ctl(file, argp);
5553        case BTRFS_IOC_QGROUP_ASSIGN:
5554                return btrfs_ioctl_qgroup_assign(file, argp);
5555        case BTRFS_IOC_QGROUP_CREATE:
5556                return btrfs_ioctl_qgroup_create(file, argp);
5557        case BTRFS_IOC_QGROUP_LIMIT:
5558                return btrfs_ioctl_qgroup_limit(file, argp);
5559        case BTRFS_IOC_QUOTA_RESCAN:
5560                return btrfs_ioctl_quota_rescan(file, argp);
5561        case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5562                return btrfs_ioctl_quota_rescan_status(fs_info, argp);
5563        case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5564                return btrfs_ioctl_quota_rescan_wait(fs_info, argp);
5565        case BTRFS_IOC_DEV_REPLACE:
5566                return btrfs_ioctl_dev_replace(fs_info, argp);
5567        case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5568                return btrfs_ioctl_get_supported_features(argp);
5569        case BTRFS_IOC_GET_FEATURES:
5570                return btrfs_ioctl_get_features(fs_info, argp);
5571        case BTRFS_IOC_SET_FEATURES:
5572                return btrfs_ioctl_set_features(file, argp);
5573        case FS_IOC_FSGETXATTR:
5574                return btrfs_ioctl_fsgetxattr(file, argp);
5575        case FS_IOC_FSSETXATTR:
5576                return btrfs_ioctl_fssetxattr(file, argp);
5577        case BTRFS_IOC_GET_SUBVOL_INFO:
5578                return btrfs_ioctl_get_subvol_info(file, argp);
5579        case BTRFS_IOC_GET_SUBVOL_ROOTREF:
5580                return btrfs_ioctl_get_subvol_rootref(file, argp);
5581        case BTRFS_IOC_INO_LOOKUP_USER:
5582                return btrfs_ioctl_ino_lookup_user(file, argp);
5583        }
5584
5585        return -ENOTTY;
5586}
5587
5588#ifdef CONFIG_COMPAT
5589long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5590{
5591        /*
5592         * These all access 32-bit values anyway so no further
5593         * handling is necessary.
5594         */
5595        switch (cmd) {
5596        case FS_IOC32_GETFLAGS:
5597                cmd = FS_IOC_GETFLAGS;
5598                break;
5599        case FS_IOC32_SETFLAGS:
5600                cmd = FS_IOC_SETFLAGS;
5601                break;
5602        case FS_IOC32_GETVERSION:
5603                cmd = FS_IOC_GETVERSION;
5604                break;
5605        }
5606
5607        return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5608}
5609#endif
5610