linux/fs/btrfs/scrub.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
   4 */
   5
   6#include <linux/blkdev.h>
   7#include <linux/ratelimit.h>
   8#include <linux/sched/mm.h>
   9#include <crypto/hash.h>
  10#include "ctree.h"
  11#include "volumes.h"
  12#include "disk-io.h"
  13#include "ordered-data.h"
  14#include "transaction.h"
  15#include "backref.h"
  16#include "extent_io.h"
  17#include "dev-replace.h"
  18#include "check-integrity.h"
  19#include "rcu-string.h"
  20#include "raid56.h"
  21#include "block-group.h"
  22
  23/*
  24 * This is only the first step towards a full-features scrub. It reads all
  25 * extent and super block and verifies the checksums. In case a bad checksum
  26 * is found or the extent cannot be read, good data will be written back if
  27 * any can be found.
  28 *
  29 * Future enhancements:
  30 *  - In case an unrepairable extent is encountered, track which files are
  31 *    affected and report them
  32 *  - track and record media errors, throw out bad devices
  33 *  - add a mode to also read unallocated space
  34 */
  35
  36struct scrub_block;
  37struct scrub_ctx;
  38
  39/*
  40 * the following three values only influence the performance.
  41 * The last one configures the number of parallel and outstanding I/O
  42 * operations. The first two values configure an upper limit for the number
  43 * of (dynamically allocated) pages that are added to a bio.
  44 */
  45#define SCRUB_PAGES_PER_RD_BIO  32      /* 128k per bio */
  46#define SCRUB_PAGES_PER_WR_BIO  32      /* 128k per bio */
  47#define SCRUB_BIOS_PER_SCTX     64      /* 8MB per device in flight */
  48
  49/*
  50 * the following value times PAGE_SIZE needs to be large enough to match the
  51 * largest node/leaf/sector size that shall be supported.
  52 * Values larger than BTRFS_STRIPE_LEN are not supported.
  53 */
  54#define SCRUB_MAX_PAGES_PER_BLOCK       16      /* 64k per node/leaf/sector */
  55
  56struct scrub_recover {
  57        refcount_t              refs;
  58        struct btrfs_bio        *bbio;
  59        u64                     map_length;
  60};
  61
  62struct scrub_page {
  63        struct scrub_block      *sblock;
  64        struct page             *page;
  65        struct btrfs_device     *dev;
  66        struct list_head        list;
  67        u64                     flags;  /* extent flags */
  68        u64                     generation;
  69        u64                     logical;
  70        u64                     physical;
  71        u64                     physical_for_dev_replace;
  72        atomic_t                refs;
  73        struct {
  74                unsigned int    mirror_num:8;
  75                unsigned int    have_csum:1;
  76                unsigned int    io_error:1;
  77        };
  78        u8                      csum[BTRFS_CSUM_SIZE];
  79
  80        struct scrub_recover    *recover;
  81};
  82
  83struct scrub_bio {
  84        int                     index;
  85        struct scrub_ctx        *sctx;
  86        struct btrfs_device     *dev;
  87        struct bio              *bio;
  88        blk_status_t            status;
  89        u64                     logical;
  90        u64                     physical;
  91#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
  92        struct scrub_page       *pagev[SCRUB_PAGES_PER_WR_BIO];
  93#else
  94        struct scrub_page       *pagev[SCRUB_PAGES_PER_RD_BIO];
  95#endif
  96        int                     page_count;
  97        int                     next_free;
  98        struct btrfs_work       work;
  99};
 100
 101struct scrub_block {
 102        struct scrub_page       *pagev[SCRUB_MAX_PAGES_PER_BLOCK];
 103        int                     page_count;
 104        atomic_t                outstanding_pages;
 105        refcount_t              refs; /* free mem on transition to zero */
 106        struct scrub_ctx        *sctx;
 107        struct scrub_parity     *sparity;
 108        struct {
 109                unsigned int    header_error:1;
 110                unsigned int    checksum_error:1;
 111                unsigned int    no_io_error_seen:1;
 112                unsigned int    generation_error:1; /* also sets header_error */
 113
 114                /* The following is for the data used to check parity */
 115                /* It is for the data with checksum */
 116                unsigned int    data_corrected:1;
 117        };
 118        struct btrfs_work       work;
 119};
 120
 121/* Used for the chunks with parity stripe such RAID5/6 */
 122struct scrub_parity {
 123        struct scrub_ctx        *sctx;
 124
 125        struct btrfs_device     *scrub_dev;
 126
 127        u64                     logic_start;
 128
 129        u64                     logic_end;
 130
 131        int                     nsectors;
 132
 133        u64                     stripe_len;
 134
 135        refcount_t              refs;
 136
 137        struct list_head        spages;
 138
 139        /* Work of parity check and repair */
 140        struct btrfs_work       work;
 141
 142        /* Mark the parity blocks which have data */
 143        unsigned long           *dbitmap;
 144
 145        /*
 146         * Mark the parity blocks which have data, but errors happen when
 147         * read data or check data
 148         */
 149        unsigned long           *ebitmap;
 150
 151        unsigned long           bitmap[0];
 152};
 153
 154struct scrub_ctx {
 155        struct scrub_bio        *bios[SCRUB_BIOS_PER_SCTX];
 156        struct btrfs_fs_info    *fs_info;
 157        int                     first_free;
 158        int                     curr;
 159        atomic_t                bios_in_flight;
 160        atomic_t                workers_pending;
 161        spinlock_t              list_lock;
 162        wait_queue_head_t       list_wait;
 163        u16                     csum_size;
 164        struct list_head        csum_list;
 165        atomic_t                cancel_req;
 166        int                     readonly;
 167        int                     pages_per_rd_bio;
 168
 169        int                     is_dev_replace;
 170
 171        struct scrub_bio        *wr_curr_bio;
 172        struct mutex            wr_lock;
 173        int                     pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
 174        struct btrfs_device     *wr_tgtdev;
 175        bool                    flush_all_writes;
 176
 177        /*
 178         * statistics
 179         */
 180        struct btrfs_scrub_progress stat;
 181        spinlock_t              stat_lock;
 182
 183        /*
 184         * Use a ref counter to avoid use-after-free issues. Scrub workers
 185         * decrement bios_in_flight and workers_pending and then do a wakeup
 186         * on the list_wait wait queue. We must ensure the main scrub task
 187         * doesn't free the scrub context before or while the workers are
 188         * doing the wakeup() call.
 189         */
 190        refcount_t              refs;
 191};
 192
 193struct scrub_warning {
 194        struct btrfs_path       *path;
 195        u64                     extent_item_size;
 196        const char              *errstr;
 197        u64                     physical;
 198        u64                     logical;
 199        struct btrfs_device     *dev;
 200};
 201
 202struct full_stripe_lock {
 203        struct rb_node node;
 204        u64 logical;
 205        u64 refs;
 206        struct mutex mutex;
 207};
 208
 209static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
 210static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
 211static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
 212static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
 213                                     struct scrub_block *sblocks_for_recheck);
 214static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
 215                                struct scrub_block *sblock,
 216                                int retry_failed_mirror);
 217static void scrub_recheck_block_checksum(struct scrub_block *sblock);
 218static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
 219                                             struct scrub_block *sblock_good);
 220static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
 221                                            struct scrub_block *sblock_good,
 222                                            int page_num, int force_write);
 223static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
 224static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
 225                                           int page_num);
 226static int scrub_checksum_data(struct scrub_block *sblock);
 227static int scrub_checksum_tree_block(struct scrub_block *sblock);
 228static int scrub_checksum_super(struct scrub_block *sblock);
 229static void scrub_block_get(struct scrub_block *sblock);
 230static void scrub_block_put(struct scrub_block *sblock);
 231static void scrub_page_get(struct scrub_page *spage);
 232static void scrub_page_put(struct scrub_page *spage);
 233static void scrub_parity_get(struct scrub_parity *sparity);
 234static void scrub_parity_put(struct scrub_parity *sparity);
 235static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
 236                                    struct scrub_page *spage);
 237static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
 238                       u64 physical, struct btrfs_device *dev, u64 flags,
 239                       u64 gen, int mirror_num, u8 *csum, int force,
 240                       u64 physical_for_dev_replace);
 241static void scrub_bio_end_io(struct bio *bio);
 242static void scrub_bio_end_io_worker(struct btrfs_work *work);
 243static void scrub_block_complete(struct scrub_block *sblock);
 244static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
 245                               u64 extent_logical, u64 extent_len,
 246                               u64 *extent_physical,
 247                               struct btrfs_device **extent_dev,
 248                               int *extent_mirror_num);
 249static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
 250                                    struct scrub_page *spage);
 251static void scrub_wr_submit(struct scrub_ctx *sctx);
 252static void scrub_wr_bio_end_io(struct bio *bio);
 253static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
 254static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
 255static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
 256static void scrub_put_ctx(struct scrub_ctx *sctx);
 257
 258static inline int scrub_is_page_on_raid56(struct scrub_page *page)
 259{
 260        return page->recover &&
 261               (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
 262}
 263
 264static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
 265{
 266        refcount_inc(&sctx->refs);
 267        atomic_inc(&sctx->bios_in_flight);
 268}
 269
 270static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
 271{
 272        atomic_dec(&sctx->bios_in_flight);
 273        wake_up(&sctx->list_wait);
 274        scrub_put_ctx(sctx);
 275}
 276
 277static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
 278{
 279        while (atomic_read(&fs_info->scrub_pause_req)) {
 280                mutex_unlock(&fs_info->scrub_lock);
 281                wait_event(fs_info->scrub_pause_wait,
 282                   atomic_read(&fs_info->scrub_pause_req) == 0);
 283                mutex_lock(&fs_info->scrub_lock);
 284        }
 285}
 286
 287static void scrub_pause_on(struct btrfs_fs_info *fs_info)
 288{
 289        atomic_inc(&fs_info->scrubs_paused);
 290        wake_up(&fs_info->scrub_pause_wait);
 291}
 292
 293static void scrub_pause_off(struct btrfs_fs_info *fs_info)
 294{
 295        mutex_lock(&fs_info->scrub_lock);
 296        __scrub_blocked_if_needed(fs_info);
 297        atomic_dec(&fs_info->scrubs_paused);
 298        mutex_unlock(&fs_info->scrub_lock);
 299
 300        wake_up(&fs_info->scrub_pause_wait);
 301}
 302
 303static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
 304{
 305        scrub_pause_on(fs_info);
 306        scrub_pause_off(fs_info);
 307}
 308
 309/*
 310 * Insert new full stripe lock into full stripe locks tree
 311 *
 312 * Return pointer to existing or newly inserted full_stripe_lock structure if
 313 * everything works well.
 314 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
 315 *
 316 * NOTE: caller must hold full_stripe_locks_root->lock before calling this
 317 * function
 318 */
 319static struct full_stripe_lock *insert_full_stripe_lock(
 320                struct btrfs_full_stripe_locks_tree *locks_root,
 321                u64 fstripe_logical)
 322{
 323        struct rb_node **p;
 324        struct rb_node *parent = NULL;
 325        struct full_stripe_lock *entry;
 326        struct full_stripe_lock *ret;
 327
 328        lockdep_assert_held(&locks_root->lock);
 329
 330        p = &locks_root->root.rb_node;
 331        while (*p) {
 332                parent = *p;
 333                entry = rb_entry(parent, struct full_stripe_lock, node);
 334                if (fstripe_logical < entry->logical) {
 335                        p = &(*p)->rb_left;
 336                } else if (fstripe_logical > entry->logical) {
 337                        p = &(*p)->rb_right;
 338                } else {
 339                        entry->refs++;
 340                        return entry;
 341                }
 342        }
 343
 344        /*
 345         * Insert new lock.
 346         */
 347        ret = kmalloc(sizeof(*ret), GFP_KERNEL);
 348        if (!ret)
 349                return ERR_PTR(-ENOMEM);
 350        ret->logical = fstripe_logical;
 351        ret->refs = 1;
 352        mutex_init(&ret->mutex);
 353
 354        rb_link_node(&ret->node, parent, p);
 355        rb_insert_color(&ret->node, &locks_root->root);
 356        return ret;
 357}
 358
 359/*
 360 * Search for a full stripe lock of a block group
 361 *
 362 * Return pointer to existing full stripe lock if found
 363 * Return NULL if not found
 364 */
 365static struct full_stripe_lock *search_full_stripe_lock(
 366                struct btrfs_full_stripe_locks_tree *locks_root,
 367                u64 fstripe_logical)
 368{
 369        struct rb_node *node;
 370        struct full_stripe_lock *entry;
 371
 372        lockdep_assert_held(&locks_root->lock);
 373
 374        node = locks_root->root.rb_node;
 375        while (node) {
 376                entry = rb_entry(node, struct full_stripe_lock, node);
 377                if (fstripe_logical < entry->logical)
 378                        node = node->rb_left;
 379                else if (fstripe_logical > entry->logical)
 380                        node = node->rb_right;
 381                else
 382                        return entry;
 383        }
 384        return NULL;
 385}
 386
 387/*
 388 * Helper to get full stripe logical from a normal bytenr.
 389 *
 390 * Caller must ensure @cache is a RAID56 block group.
 391 */
 392static u64 get_full_stripe_logical(struct btrfs_block_group *cache, u64 bytenr)
 393{
 394        u64 ret;
 395
 396        /*
 397         * Due to chunk item size limit, full stripe length should not be
 398         * larger than U32_MAX. Just a sanity check here.
 399         */
 400        WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);
 401
 402        /*
 403         * round_down() can only handle power of 2, while RAID56 full
 404         * stripe length can be 64KiB * n, so we need to manually round down.
 405         */
 406        ret = div64_u64(bytenr - cache->start, cache->full_stripe_len) *
 407                        cache->full_stripe_len + cache->start;
 408        return ret;
 409}
 410
 411/*
 412 * Lock a full stripe to avoid concurrency of recovery and read
 413 *
 414 * It's only used for profiles with parities (RAID5/6), for other profiles it
 415 * does nothing.
 416 *
 417 * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
 418 * So caller must call unlock_full_stripe() at the same context.
 419 *
 420 * Return <0 if encounters error.
 421 */
 422static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
 423                            bool *locked_ret)
 424{
 425        struct btrfs_block_group *bg_cache;
 426        struct btrfs_full_stripe_locks_tree *locks_root;
 427        struct full_stripe_lock *existing;
 428        u64 fstripe_start;
 429        int ret = 0;
 430
 431        *locked_ret = false;
 432        bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
 433        if (!bg_cache) {
 434                ASSERT(0);
 435                return -ENOENT;
 436        }
 437
 438        /* Profiles not based on parity don't need full stripe lock */
 439        if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
 440                goto out;
 441        locks_root = &bg_cache->full_stripe_locks_root;
 442
 443        fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
 444
 445        /* Now insert the full stripe lock */
 446        mutex_lock(&locks_root->lock);
 447        existing = insert_full_stripe_lock(locks_root, fstripe_start);
 448        mutex_unlock(&locks_root->lock);
 449        if (IS_ERR(existing)) {
 450                ret = PTR_ERR(existing);
 451                goto out;
 452        }
 453        mutex_lock(&existing->mutex);
 454        *locked_ret = true;
 455out:
 456        btrfs_put_block_group(bg_cache);
 457        return ret;
 458}
 459
 460/*
 461 * Unlock a full stripe.
 462 *
 463 * NOTE: Caller must ensure it's the same context calling corresponding
 464 * lock_full_stripe().
 465 *
 466 * Return 0 if we unlock full stripe without problem.
 467 * Return <0 for error
 468 */
 469static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
 470                              bool locked)
 471{
 472        struct btrfs_block_group *bg_cache;
 473        struct btrfs_full_stripe_locks_tree *locks_root;
 474        struct full_stripe_lock *fstripe_lock;
 475        u64 fstripe_start;
 476        bool freeit = false;
 477        int ret = 0;
 478
 479        /* If we didn't acquire full stripe lock, no need to continue */
 480        if (!locked)
 481                return 0;
 482
 483        bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
 484        if (!bg_cache) {
 485                ASSERT(0);
 486                return -ENOENT;
 487        }
 488        if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
 489                goto out;
 490
 491        locks_root = &bg_cache->full_stripe_locks_root;
 492        fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
 493
 494        mutex_lock(&locks_root->lock);
 495        fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
 496        /* Unpaired unlock_full_stripe() detected */
 497        if (!fstripe_lock) {
 498                WARN_ON(1);
 499                ret = -ENOENT;
 500                mutex_unlock(&locks_root->lock);
 501                goto out;
 502        }
 503
 504        if (fstripe_lock->refs == 0) {
 505                WARN_ON(1);
 506                btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
 507                        fstripe_lock->logical);
 508        } else {
 509                fstripe_lock->refs--;
 510        }
 511
 512        if (fstripe_lock->refs == 0) {
 513                rb_erase(&fstripe_lock->node, &locks_root->root);
 514                freeit = true;
 515        }
 516        mutex_unlock(&locks_root->lock);
 517
 518        mutex_unlock(&fstripe_lock->mutex);
 519        if (freeit)
 520                kfree(fstripe_lock);
 521out:
 522        btrfs_put_block_group(bg_cache);
 523        return ret;
 524}
 525
 526static void scrub_free_csums(struct scrub_ctx *sctx)
 527{
 528        while (!list_empty(&sctx->csum_list)) {
 529                struct btrfs_ordered_sum *sum;
 530                sum = list_first_entry(&sctx->csum_list,
 531                                       struct btrfs_ordered_sum, list);
 532                list_del(&sum->list);
 533                kfree(sum);
 534        }
 535}
 536
 537static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
 538{
 539        int i;
 540
 541        if (!sctx)
 542                return;
 543
 544        /* this can happen when scrub is cancelled */
 545        if (sctx->curr != -1) {
 546                struct scrub_bio *sbio = sctx->bios[sctx->curr];
 547
 548                for (i = 0; i < sbio->page_count; i++) {
 549                        WARN_ON(!sbio->pagev[i]->page);
 550                        scrub_block_put(sbio->pagev[i]->sblock);
 551                }
 552                bio_put(sbio->bio);
 553        }
 554
 555        for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
 556                struct scrub_bio *sbio = sctx->bios[i];
 557
 558                if (!sbio)
 559                        break;
 560                kfree(sbio);
 561        }
 562
 563        kfree(sctx->wr_curr_bio);
 564        scrub_free_csums(sctx);
 565        kfree(sctx);
 566}
 567
 568static void scrub_put_ctx(struct scrub_ctx *sctx)
 569{
 570        if (refcount_dec_and_test(&sctx->refs))
 571                scrub_free_ctx(sctx);
 572}
 573
 574static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
 575                struct btrfs_fs_info *fs_info, int is_dev_replace)
 576{
 577        struct scrub_ctx *sctx;
 578        int             i;
 579
 580        sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
 581        if (!sctx)
 582                goto nomem;
 583        refcount_set(&sctx->refs, 1);
 584        sctx->is_dev_replace = is_dev_replace;
 585        sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
 586        sctx->curr = -1;
 587        sctx->fs_info = fs_info;
 588        INIT_LIST_HEAD(&sctx->csum_list);
 589        for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
 590                struct scrub_bio *sbio;
 591
 592                sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
 593                if (!sbio)
 594                        goto nomem;
 595                sctx->bios[i] = sbio;
 596
 597                sbio->index = i;
 598                sbio->sctx = sctx;
 599                sbio->page_count = 0;
 600                btrfs_init_work(&sbio->work, scrub_bio_end_io_worker, NULL,
 601                                NULL);
 602
 603                if (i != SCRUB_BIOS_PER_SCTX - 1)
 604                        sctx->bios[i]->next_free = i + 1;
 605                else
 606                        sctx->bios[i]->next_free = -1;
 607        }
 608        sctx->first_free = 0;
 609        atomic_set(&sctx->bios_in_flight, 0);
 610        atomic_set(&sctx->workers_pending, 0);
 611        atomic_set(&sctx->cancel_req, 0);
 612        sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
 613
 614        spin_lock_init(&sctx->list_lock);
 615        spin_lock_init(&sctx->stat_lock);
 616        init_waitqueue_head(&sctx->list_wait);
 617
 618        WARN_ON(sctx->wr_curr_bio != NULL);
 619        mutex_init(&sctx->wr_lock);
 620        sctx->wr_curr_bio = NULL;
 621        if (is_dev_replace) {
 622                WARN_ON(!fs_info->dev_replace.tgtdev);
 623                sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
 624                sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
 625                sctx->flush_all_writes = false;
 626        }
 627
 628        return sctx;
 629
 630nomem:
 631        scrub_free_ctx(sctx);
 632        return ERR_PTR(-ENOMEM);
 633}
 634
 635static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
 636                                     void *warn_ctx)
 637{
 638        u64 isize;
 639        u32 nlink;
 640        int ret;
 641        int i;
 642        unsigned nofs_flag;
 643        struct extent_buffer *eb;
 644        struct btrfs_inode_item *inode_item;
 645        struct scrub_warning *swarn = warn_ctx;
 646        struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
 647        struct inode_fs_paths *ipath = NULL;
 648        struct btrfs_root *local_root;
 649        struct btrfs_key root_key;
 650        struct btrfs_key key;
 651
 652        root_key.objectid = root;
 653        root_key.type = BTRFS_ROOT_ITEM_KEY;
 654        root_key.offset = (u64)-1;
 655        local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
 656        if (IS_ERR(local_root)) {
 657                ret = PTR_ERR(local_root);
 658                goto err;
 659        }
 660
 661        /*
 662         * this makes the path point to (inum INODE_ITEM ioff)
 663         */
 664        key.objectid = inum;
 665        key.type = BTRFS_INODE_ITEM_KEY;
 666        key.offset = 0;
 667
 668        ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
 669        if (ret) {
 670                btrfs_release_path(swarn->path);
 671                goto err;
 672        }
 673
 674        eb = swarn->path->nodes[0];
 675        inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
 676                                        struct btrfs_inode_item);
 677        isize = btrfs_inode_size(eb, inode_item);
 678        nlink = btrfs_inode_nlink(eb, inode_item);
 679        btrfs_release_path(swarn->path);
 680
 681        /*
 682         * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
 683         * uses GFP_NOFS in this context, so we keep it consistent but it does
 684         * not seem to be strictly necessary.
 685         */
 686        nofs_flag = memalloc_nofs_save();
 687        ipath = init_ipath(4096, local_root, swarn->path);
 688        memalloc_nofs_restore(nofs_flag);
 689        if (IS_ERR(ipath)) {
 690                ret = PTR_ERR(ipath);
 691                ipath = NULL;
 692                goto err;
 693        }
 694        ret = paths_from_inode(inum, ipath);
 695
 696        if (ret < 0)
 697                goto err;
 698
 699        /*
 700         * we deliberately ignore the bit ipath might have been too small to
 701         * hold all of the paths here
 702         */
 703        for (i = 0; i < ipath->fspath->elem_cnt; ++i)
 704                btrfs_warn_in_rcu(fs_info,
 705"%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
 706                                  swarn->errstr, swarn->logical,
 707                                  rcu_str_deref(swarn->dev->name),
 708                                  swarn->physical,
 709                                  root, inum, offset,
 710                                  min(isize - offset, (u64)PAGE_SIZE), nlink,
 711                                  (char *)(unsigned long)ipath->fspath->val[i]);
 712
 713        free_ipath(ipath);
 714        return 0;
 715
 716err:
 717        btrfs_warn_in_rcu(fs_info,
 718                          "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
 719                          swarn->errstr, swarn->logical,
 720                          rcu_str_deref(swarn->dev->name),
 721                          swarn->physical,
 722                          root, inum, offset, ret);
 723
 724        free_ipath(ipath);
 725        return 0;
 726}
 727
 728static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
 729{
 730        struct btrfs_device *dev;
 731        struct btrfs_fs_info *fs_info;
 732        struct btrfs_path *path;
 733        struct btrfs_key found_key;
 734        struct extent_buffer *eb;
 735        struct btrfs_extent_item *ei;
 736        struct scrub_warning swarn;
 737        unsigned long ptr = 0;
 738        u64 extent_item_pos;
 739        u64 flags = 0;
 740        u64 ref_root;
 741        u32 item_size;
 742        u8 ref_level = 0;
 743        int ret;
 744
 745        WARN_ON(sblock->page_count < 1);
 746        dev = sblock->pagev[0]->dev;
 747        fs_info = sblock->sctx->fs_info;
 748
 749        path = btrfs_alloc_path();
 750        if (!path)
 751                return;
 752
 753        swarn.physical = sblock->pagev[0]->physical;
 754        swarn.logical = sblock->pagev[0]->logical;
 755        swarn.errstr = errstr;
 756        swarn.dev = NULL;
 757
 758        ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
 759                                  &flags);
 760        if (ret < 0)
 761                goto out;
 762
 763        extent_item_pos = swarn.logical - found_key.objectid;
 764        swarn.extent_item_size = found_key.offset;
 765
 766        eb = path->nodes[0];
 767        ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
 768        item_size = btrfs_item_size_nr(eb, path->slots[0]);
 769
 770        if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
 771                do {
 772                        ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
 773                                                      item_size, &ref_root,
 774                                                      &ref_level);
 775                        btrfs_warn_in_rcu(fs_info,
 776"%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
 777                                errstr, swarn.logical,
 778                                rcu_str_deref(dev->name),
 779                                swarn.physical,
 780                                ref_level ? "node" : "leaf",
 781                                ret < 0 ? -1 : ref_level,
 782                                ret < 0 ? -1 : ref_root);
 783                } while (ret != 1);
 784                btrfs_release_path(path);
 785        } else {
 786                btrfs_release_path(path);
 787                swarn.path = path;
 788                swarn.dev = dev;
 789                iterate_extent_inodes(fs_info, found_key.objectid,
 790                                        extent_item_pos, 1,
 791                                        scrub_print_warning_inode, &swarn, false);
 792        }
 793
 794out:
 795        btrfs_free_path(path);
 796}
 797
 798static inline void scrub_get_recover(struct scrub_recover *recover)
 799{
 800        refcount_inc(&recover->refs);
 801}
 802
 803static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
 804                                     struct scrub_recover *recover)
 805{
 806        if (refcount_dec_and_test(&recover->refs)) {
 807                btrfs_bio_counter_dec(fs_info);
 808                btrfs_put_bbio(recover->bbio);
 809                kfree(recover);
 810        }
 811}
 812
 813/*
 814 * scrub_handle_errored_block gets called when either verification of the
 815 * pages failed or the bio failed to read, e.g. with EIO. In the latter
 816 * case, this function handles all pages in the bio, even though only one
 817 * may be bad.
 818 * The goal of this function is to repair the errored block by using the
 819 * contents of one of the mirrors.
 820 */
 821static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
 822{
 823        struct scrub_ctx *sctx = sblock_to_check->sctx;
 824        struct btrfs_device *dev;
 825        struct btrfs_fs_info *fs_info;
 826        u64 logical;
 827        unsigned int failed_mirror_index;
 828        unsigned int is_metadata;
 829        unsigned int have_csum;
 830        struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
 831        struct scrub_block *sblock_bad;
 832        int ret;
 833        int mirror_index;
 834        int page_num;
 835        int success;
 836        bool full_stripe_locked;
 837        unsigned int nofs_flag;
 838        static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
 839                                      DEFAULT_RATELIMIT_BURST);
 840
 841        BUG_ON(sblock_to_check->page_count < 1);
 842        fs_info = sctx->fs_info;
 843        if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
 844                /*
 845                 * if we find an error in a super block, we just report it.
 846                 * They will get written with the next transaction commit
 847                 * anyway
 848                 */
 849                spin_lock(&sctx->stat_lock);
 850                ++sctx->stat.super_errors;
 851                spin_unlock(&sctx->stat_lock);
 852                return 0;
 853        }
 854        logical = sblock_to_check->pagev[0]->logical;
 855        BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
 856        failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
 857        is_metadata = !(sblock_to_check->pagev[0]->flags &
 858                        BTRFS_EXTENT_FLAG_DATA);
 859        have_csum = sblock_to_check->pagev[0]->have_csum;
 860        dev = sblock_to_check->pagev[0]->dev;
 861
 862        /*
 863         * We must use GFP_NOFS because the scrub task might be waiting for a
 864         * worker task executing this function and in turn a transaction commit
 865         * might be waiting the scrub task to pause (which needs to wait for all
 866         * the worker tasks to complete before pausing).
 867         * We do allocations in the workers through insert_full_stripe_lock()
 868         * and scrub_add_page_to_wr_bio(), which happens down the call chain of
 869         * this function.
 870         */
 871        nofs_flag = memalloc_nofs_save();
 872        /*
 873         * For RAID5/6, race can happen for a different device scrub thread.
 874         * For data corruption, Parity and Data threads will both try
 875         * to recovery the data.
 876         * Race can lead to doubly added csum error, or even unrecoverable
 877         * error.
 878         */
 879        ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
 880        if (ret < 0) {
 881                memalloc_nofs_restore(nofs_flag);
 882                spin_lock(&sctx->stat_lock);
 883                if (ret == -ENOMEM)
 884                        sctx->stat.malloc_errors++;
 885                sctx->stat.read_errors++;
 886                sctx->stat.uncorrectable_errors++;
 887                spin_unlock(&sctx->stat_lock);
 888                return ret;
 889        }
 890
 891        /*
 892         * read all mirrors one after the other. This includes to
 893         * re-read the extent or metadata block that failed (that was
 894         * the cause that this fixup code is called) another time,
 895         * page by page this time in order to know which pages
 896         * caused I/O errors and which ones are good (for all mirrors).
 897         * It is the goal to handle the situation when more than one
 898         * mirror contains I/O errors, but the errors do not
 899         * overlap, i.e. the data can be repaired by selecting the
 900         * pages from those mirrors without I/O error on the
 901         * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
 902         * would be that mirror #1 has an I/O error on the first page,
 903         * the second page is good, and mirror #2 has an I/O error on
 904         * the second page, but the first page is good.
 905         * Then the first page of the first mirror can be repaired by
 906         * taking the first page of the second mirror, and the
 907         * second page of the second mirror can be repaired by
 908         * copying the contents of the 2nd page of the 1st mirror.
 909         * One more note: if the pages of one mirror contain I/O
 910         * errors, the checksum cannot be verified. In order to get
 911         * the best data for repairing, the first attempt is to find
 912         * a mirror without I/O errors and with a validated checksum.
 913         * Only if this is not possible, the pages are picked from
 914         * mirrors with I/O errors without considering the checksum.
 915         * If the latter is the case, at the end, the checksum of the
 916         * repaired area is verified in order to correctly maintain
 917         * the statistics.
 918         */
 919
 920        sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
 921                                      sizeof(*sblocks_for_recheck), GFP_KERNEL);
 922        if (!sblocks_for_recheck) {
 923                spin_lock(&sctx->stat_lock);
 924                sctx->stat.malloc_errors++;
 925                sctx->stat.read_errors++;
 926                sctx->stat.uncorrectable_errors++;
 927                spin_unlock(&sctx->stat_lock);
 928                btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
 929                goto out;
 930        }
 931
 932        /* setup the context, map the logical blocks and alloc the pages */
 933        ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
 934        if (ret) {
 935                spin_lock(&sctx->stat_lock);
 936                sctx->stat.read_errors++;
 937                sctx->stat.uncorrectable_errors++;
 938                spin_unlock(&sctx->stat_lock);
 939                btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
 940                goto out;
 941        }
 942        BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
 943        sblock_bad = sblocks_for_recheck + failed_mirror_index;
 944
 945        /* build and submit the bios for the failed mirror, check checksums */
 946        scrub_recheck_block(fs_info, sblock_bad, 1);
 947
 948        if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
 949            sblock_bad->no_io_error_seen) {
 950                /*
 951                 * the error disappeared after reading page by page, or
 952                 * the area was part of a huge bio and other parts of the
 953                 * bio caused I/O errors, or the block layer merged several
 954                 * read requests into one and the error is caused by a
 955                 * different bio (usually one of the two latter cases is
 956                 * the cause)
 957                 */
 958                spin_lock(&sctx->stat_lock);
 959                sctx->stat.unverified_errors++;
 960                sblock_to_check->data_corrected = 1;
 961                spin_unlock(&sctx->stat_lock);
 962
 963                if (sctx->is_dev_replace)
 964                        scrub_write_block_to_dev_replace(sblock_bad);
 965                goto out;
 966        }
 967
 968        if (!sblock_bad->no_io_error_seen) {
 969                spin_lock(&sctx->stat_lock);
 970                sctx->stat.read_errors++;
 971                spin_unlock(&sctx->stat_lock);
 972                if (__ratelimit(&_rs))
 973                        scrub_print_warning("i/o error", sblock_to_check);
 974                btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
 975        } else if (sblock_bad->checksum_error) {
 976                spin_lock(&sctx->stat_lock);
 977                sctx->stat.csum_errors++;
 978                spin_unlock(&sctx->stat_lock);
 979                if (__ratelimit(&_rs))
 980                        scrub_print_warning("checksum error", sblock_to_check);
 981                btrfs_dev_stat_inc_and_print(dev,
 982                                             BTRFS_DEV_STAT_CORRUPTION_ERRS);
 983        } else if (sblock_bad->header_error) {
 984                spin_lock(&sctx->stat_lock);
 985                sctx->stat.verify_errors++;
 986                spin_unlock(&sctx->stat_lock);
 987                if (__ratelimit(&_rs))
 988                        scrub_print_warning("checksum/header error",
 989                                            sblock_to_check);
 990                if (sblock_bad->generation_error)
 991                        btrfs_dev_stat_inc_and_print(dev,
 992                                BTRFS_DEV_STAT_GENERATION_ERRS);
 993                else
 994                        btrfs_dev_stat_inc_and_print(dev,
 995                                BTRFS_DEV_STAT_CORRUPTION_ERRS);
 996        }
 997
 998        if (sctx->readonly) {
 999                ASSERT(!sctx->is_dev_replace);
1000                goto out;
1001        }
1002
1003        /*
1004         * now build and submit the bios for the other mirrors, check
1005         * checksums.
1006         * First try to pick the mirror which is completely without I/O
1007         * errors and also does not have a checksum error.
1008         * If one is found, and if a checksum is present, the full block
1009         * that is known to contain an error is rewritten. Afterwards
1010         * the block is known to be corrected.
1011         * If a mirror is found which is completely correct, and no
1012         * checksum is present, only those pages are rewritten that had
1013         * an I/O error in the block to be repaired, since it cannot be
1014         * determined, which copy of the other pages is better (and it
1015         * could happen otherwise that a correct page would be
1016         * overwritten by a bad one).
1017         */
1018        for (mirror_index = 0; ;mirror_index++) {
1019                struct scrub_block *sblock_other;
1020
1021                if (mirror_index == failed_mirror_index)
1022                        continue;
1023
1024                /* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
1025                if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1026                        if (mirror_index >= BTRFS_MAX_MIRRORS)
1027                                break;
1028                        if (!sblocks_for_recheck[mirror_index].page_count)
1029                                break;
1030
1031                        sblock_other = sblocks_for_recheck + mirror_index;
1032                } else {
1033                        struct scrub_recover *r = sblock_bad->pagev[0]->recover;
1034                        int max_allowed = r->bbio->num_stripes -
1035                                                r->bbio->num_tgtdevs;
1036
1037                        if (mirror_index >= max_allowed)
1038                                break;
1039                        if (!sblocks_for_recheck[1].page_count)
1040                                break;
1041
1042                        ASSERT(failed_mirror_index == 0);
1043                        sblock_other = sblocks_for_recheck + 1;
1044                        sblock_other->pagev[0]->mirror_num = 1 + mirror_index;
1045                }
1046
1047                /* build and submit the bios, check checksums */
1048                scrub_recheck_block(fs_info, sblock_other, 0);
1049
1050                if (!sblock_other->header_error &&
1051                    !sblock_other->checksum_error &&
1052                    sblock_other->no_io_error_seen) {
1053                        if (sctx->is_dev_replace) {
1054                                scrub_write_block_to_dev_replace(sblock_other);
1055                                goto corrected_error;
1056                        } else {
1057                                ret = scrub_repair_block_from_good_copy(
1058                                                sblock_bad, sblock_other);
1059                                if (!ret)
1060                                        goto corrected_error;
1061                        }
1062                }
1063        }
1064
1065        if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
1066                goto did_not_correct_error;
1067
1068        /*
1069         * In case of I/O errors in the area that is supposed to be
1070         * repaired, continue by picking good copies of those pages.
1071         * Select the good pages from mirrors to rewrite bad pages from
1072         * the area to fix. Afterwards verify the checksum of the block
1073         * that is supposed to be repaired. This verification step is
1074         * only done for the purpose of statistic counting and for the
1075         * final scrub report, whether errors remain.
1076         * A perfect algorithm could make use of the checksum and try
1077         * all possible combinations of pages from the different mirrors
1078         * until the checksum verification succeeds. For example, when
1079         * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1080         * of mirror #2 is readable but the final checksum test fails,
1081         * then the 2nd page of mirror #3 could be tried, whether now
1082         * the final checksum succeeds. But this would be a rare
1083         * exception and is therefore not implemented. At least it is
1084         * avoided that the good copy is overwritten.
1085         * A more useful improvement would be to pick the sectors
1086         * without I/O error based on sector sizes (512 bytes on legacy
1087         * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1088         * mirror could be repaired by taking 512 byte of a different
1089         * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1090         * area are unreadable.
1091         */
1092        success = 1;
1093        for (page_num = 0; page_num < sblock_bad->page_count;
1094             page_num++) {
1095                struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1096                struct scrub_block *sblock_other = NULL;
1097
1098                /* skip no-io-error page in scrub */
1099                if (!page_bad->io_error && !sctx->is_dev_replace)
1100                        continue;
1101
1102                if (scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1103                        /*
1104                         * In case of dev replace, if raid56 rebuild process
1105                         * didn't work out correct data, then copy the content
1106                         * in sblock_bad to make sure target device is identical
1107                         * to source device, instead of writing garbage data in
1108                         * sblock_for_recheck array to target device.
1109                         */
1110                        sblock_other = NULL;
1111                } else if (page_bad->io_error) {
1112                        /* try to find no-io-error page in mirrors */
1113                        for (mirror_index = 0;
1114                             mirror_index < BTRFS_MAX_MIRRORS &&
1115                             sblocks_for_recheck[mirror_index].page_count > 0;
1116                             mirror_index++) {
1117                                if (!sblocks_for_recheck[mirror_index].
1118                                    pagev[page_num]->io_error) {
1119                                        sblock_other = sblocks_for_recheck +
1120                                                       mirror_index;
1121                                        break;
1122                                }
1123                        }
1124                        if (!sblock_other)
1125                                success = 0;
1126                }
1127
1128                if (sctx->is_dev_replace) {
1129                        /*
1130                         * did not find a mirror to fetch the page
1131                         * from. scrub_write_page_to_dev_replace()
1132                         * handles this case (page->io_error), by
1133                         * filling the block with zeros before
1134                         * submitting the write request
1135                         */
1136                        if (!sblock_other)
1137                                sblock_other = sblock_bad;
1138
1139                        if (scrub_write_page_to_dev_replace(sblock_other,
1140                                                            page_num) != 0) {
1141                                atomic64_inc(
1142                                        &fs_info->dev_replace.num_write_errors);
1143                                success = 0;
1144                        }
1145                } else if (sblock_other) {
1146                        ret = scrub_repair_page_from_good_copy(sblock_bad,
1147                                                               sblock_other,
1148                                                               page_num, 0);
1149                        if (0 == ret)
1150                                page_bad->io_error = 0;
1151                        else
1152                                success = 0;
1153                }
1154        }
1155
1156        if (success && !sctx->is_dev_replace) {
1157                if (is_metadata || have_csum) {
1158                        /*
1159                         * need to verify the checksum now that all
1160                         * sectors on disk are repaired (the write
1161                         * request for data to be repaired is on its way).
1162                         * Just be lazy and use scrub_recheck_block()
1163                         * which re-reads the data before the checksum
1164                         * is verified, but most likely the data comes out
1165                         * of the page cache.
1166                         */
1167                        scrub_recheck_block(fs_info, sblock_bad, 1);
1168                        if (!sblock_bad->header_error &&
1169                            !sblock_bad->checksum_error &&
1170                            sblock_bad->no_io_error_seen)
1171                                goto corrected_error;
1172                        else
1173                                goto did_not_correct_error;
1174                } else {
1175corrected_error:
1176                        spin_lock(&sctx->stat_lock);
1177                        sctx->stat.corrected_errors++;
1178                        sblock_to_check->data_corrected = 1;
1179                        spin_unlock(&sctx->stat_lock);
1180                        btrfs_err_rl_in_rcu(fs_info,
1181                                "fixed up error at logical %llu on dev %s",
1182                                logical, rcu_str_deref(dev->name));
1183                }
1184        } else {
1185did_not_correct_error:
1186                spin_lock(&sctx->stat_lock);
1187                sctx->stat.uncorrectable_errors++;
1188                spin_unlock(&sctx->stat_lock);
1189                btrfs_err_rl_in_rcu(fs_info,
1190                        "unable to fixup (regular) error at logical %llu on dev %s",
1191                        logical, rcu_str_deref(dev->name));
1192        }
1193
1194out:
1195        if (sblocks_for_recheck) {
1196                for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1197                     mirror_index++) {
1198                        struct scrub_block *sblock = sblocks_for_recheck +
1199                                                     mirror_index;
1200                        struct scrub_recover *recover;
1201                        int page_index;
1202
1203                        for (page_index = 0; page_index < sblock->page_count;
1204                             page_index++) {
1205                                sblock->pagev[page_index]->sblock = NULL;
1206                                recover = sblock->pagev[page_index]->recover;
1207                                if (recover) {
1208                                        scrub_put_recover(fs_info, recover);
1209                                        sblock->pagev[page_index]->recover =
1210                                                                        NULL;
1211                                }
1212                                scrub_page_put(sblock->pagev[page_index]);
1213                        }
1214                }
1215                kfree(sblocks_for_recheck);
1216        }
1217
1218        ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
1219        memalloc_nofs_restore(nofs_flag);
1220        if (ret < 0)
1221                return ret;
1222        return 0;
1223}
1224
1225static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1226{
1227        if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1228                return 2;
1229        else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1230                return 3;
1231        else
1232                return (int)bbio->num_stripes;
1233}
1234
1235static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1236                                                 u64 *raid_map,
1237                                                 u64 mapped_length,
1238                                                 int nstripes, int mirror,
1239                                                 int *stripe_index,
1240                                                 u64 *stripe_offset)
1241{
1242        int i;
1243
1244        if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1245                /* RAID5/6 */
1246                for (i = 0; i < nstripes; i++) {
1247                        if (raid_map[i] == RAID6_Q_STRIPE ||
1248                            raid_map[i] == RAID5_P_STRIPE)
1249                                continue;
1250
1251                        if (logical >= raid_map[i] &&
1252                            logical < raid_map[i] + mapped_length)
1253                                break;
1254                }
1255
1256                *stripe_index = i;
1257                *stripe_offset = logical - raid_map[i];
1258        } else {
1259                /* The other RAID type */
1260                *stripe_index = mirror;
1261                *stripe_offset = 0;
1262        }
1263}
1264
1265static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1266                                     struct scrub_block *sblocks_for_recheck)
1267{
1268        struct scrub_ctx *sctx = original_sblock->sctx;
1269        struct btrfs_fs_info *fs_info = sctx->fs_info;
1270        u64 length = original_sblock->page_count * PAGE_SIZE;
1271        u64 logical = original_sblock->pagev[0]->logical;
1272        u64 generation = original_sblock->pagev[0]->generation;
1273        u64 flags = original_sblock->pagev[0]->flags;
1274        u64 have_csum = original_sblock->pagev[0]->have_csum;
1275        struct scrub_recover *recover;
1276        struct btrfs_bio *bbio;
1277        u64 sublen;
1278        u64 mapped_length;
1279        u64 stripe_offset;
1280        int stripe_index;
1281        int page_index = 0;
1282        int mirror_index;
1283        int nmirrors;
1284        int ret;
1285
1286        /*
1287         * note: the two members refs and outstanding_pages
1288         * are not used (and not set) in the blocks that are used for
1289         * the recheck procedure
1290         */
1291
1292        while (length > 0) {
1293                sublen = min_t(u64, length, PAGE_SIZE);
1294                mapped_length = sublen;
1295                bbio = NULL;
1296
1297                /*
1298                 * with a length of PAGE_SIZE, each returned stripe
1299                 * represents one mirror
1300                 */
1301                btrfs_bio_counter_inc_blocked(fs_info);
1302                ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1303                                logical, &mapped_length, &bbio);
1304                if (ret || !bbio || mapped_length < sublen) {
1305                        btrfs_put_bbio(bbio);
1306                        btrfs_bio_counter_dec(fs_info);
1307                        return -EIO;
1308                }
1309
1310                recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
1311                if (!recover) {
1312                        btrfs_put_bbio(bbio);
1313                        btrfs_bio_counter_dec(fs_info);
1314                        return -ENOMEM;
1315                }
1316
1317                refcount_set(&recover->refs, 1);
1318                recover->bbio = bbio;
1319                recover->map_length = mapped_length;
1320
1321                BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
1322
1323                nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
1324
1325                for (mirror_index = 0; mirror_index < nmirrors;
1326                     mirror_index++) {
1327                        struct scrub_block *sblock;
1328                        struct scrub_page *page;
1329
1330                        sblock = sblocks_for_recheck + mirror_index;
1331                        sblock->sctx = sctx;
1332
1333                        page = kzalloc(sizeof(*page), GFP_NOFS);
1334                        if (!page) {
1335leave_nomem:
1336                                spin_lock(&sctx->stat_lock);
1337                                sctx->stat.malloc_errors++;
1338                                spin_unlock(&sctx->stat_lock);
1339                                scrub_put_recover(fs_info, recover);
1340                                return -ENOMEM;
1341                        }
1342                        scrub_page_get(page);
1343                        sblock->pagev[page_index] = page;
1344                        page->sblock = sblock;
1345                        page->flags = flags;
1346                        page->generation = generation;
1347                        page->logical = logical;
1348                        page->have_csum = have_csum;
1349                        if (have_csum)
1350                                memcpy(page->csum,
1351                                       original_sblock->pagev[0]->csum,
1352                                       sctx->csum_size);
1353
1354                        scrub_stripe_index_and_offset(logical,
1355                                                      bbio->map_type,
1356                                                      bbio->raid_map,
1357                                                      mapped_length,
1358                                                      bbio->num_stripes -
1359                                                      bbio->num_tgtdevs,
1360                                                      mirror_index,
1361                                                      &stripe_index,
1362                                                      &stripe_offset);
1363                        page->physical = bbio->stripes[stripe_index].physical +
1364                                         stripe_offset;
1365                        page->dev = bbio->stripes[stripe_index].dev;
1366
1367                        BUG_ON(page_index >= original_sblock->page_count);
1368                        page->physical_for_dev_replace =
1369                                original_sblock->pagev[page_index]->
1370                                physical_for_dev_replace;
1371                        /* for missing devices, dev->bdev is NULL */
1372                        page->mirror_num = mirror_index + 1;
1373                        sblock->page_count++;
1374                        page->page = alloc_page(GFP_NOFS);
1375                        if (!page->page)
1376                                goto leave_nomem;
1377
1378                        scrub_get_recover(recover);
1379                        page->recover = recover;
1380                }
1381                scrub_put_recover(fs_info, recover);
1382                length -= sublen;
1383                logical += sublen;
1384                page_index++;
1385        }
1386
1387        return 0;
1388}
1389
1390static void scrub_bio_wait_endio(struct bio *bio)
1391{
1392        complete(bio->bi_private);
1393}
1394
1395static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1396                                        struct bio *bio,
1397                                        struct scrub_page *page)
1398{
1399        DECLARE_COMPLETION_ONSTACK(done);
1400        int ret;
1401        int mirror_num;
1402
1403        bio->bi_iter.bi_sector = page->logical >> 9;
1404        bio->bi_private = &done;
1405        bio->bi_end_io = scrub_bio_wait_endio;
1406
1407        mirror_num = page->sblock->pagev[0]->mirror_num;
1408        ret = raid56_parity_recover(fs_info, bio, page->recover->bbio,
1409                                    page->recover->map_length,
1410                                    mirror_num, 0);
1411        if (ret)
1412                return ret;
1413
1414        wait_for_completion_io(&done);
1415        return blk_status_to_errno(bio->bi_status);
1416}
1417
1418static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
1419                                          struct scrub_block *sblock)
1420{
1421        struct scrub_page *first_page = sblock->pagev[0];
1422        struct bio *bio;
1423        int page_num;
1424
1425        /* All pages in sblock belong to the same stripe on the same device. */
1426        ASSERT(first_page->dev);
1427        if (!first_page->dev->bdev)
1428                goto out;
1429
1430        bio = btrfs_io_bio_alloc(BIO_MAX_PAGES);
1431        bio_set_dev(bio, first_page->dev->bdev);
1432
1433        for (page_num = 0; page_num < sblock->page_count; page_num++) {
1434                struct scrub_page *page = sblock->pagev[page_num];
1435
1436                WARN_ON(!page->page);
1437                bio_add_page(bio, page->page, PAGE_SIZE, 0);
1438        }
1439
1440        if (scrub_submit_raid56_bio_wait(fs_info, bio, first_page)) {
1441                bio_put(bio);
1442                goto out;
1443        }
1444
1445        bio_put(bio);
1446
1447        scrub_recheck_block_checksum(sblock);
1448
1449        return;
1450out:
1451        for (page_num = 0; page_num < sblock->page_count; page_num++)
1452                sblock->pagev[page_num]->io_error = 1;
1453
1454        sblock->no_io_error_seen = 0;
1455}
1456
1457/*
1458 * this function will check the on disk data for checksum errors, header
1459 * errors and read I/O errors. If any I/O errors happen, the exact pages
1460 * which are errored are marked as being bad. The goal is to enable scrub
1461 * to take those pages that are not errored from all the mirrors so that
1462 * the pages that are errored in the just handled mirror can be repaired.
1463 */
1464static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1465                                struct scrub_block *sblock,
1466                                int retry_failed_mirror)
1467{
1468        int page_num;
1469
1470        sblock->no_io_error_seen = 1;
1471
1472        /* short cut for raid56 */
1473        if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->pagev[0]))
1474                return scrub_recheck_block_on_raid56(fs_info, sblock);
1475
1476        for (page_num = 0; page_num < sblock->page_count; page_num++) {
1477                struct bio *bio;
1478                struct scrub_page *page = sblock->pagev[page_num];
1479
1480                if (page->dev->bdev == NULL) {
1481                        page->io_error = 1;
1482                        sblock->no_io_error_seen = 0;
1483                        continue;
1484                }
1485
1486                WARN_ON(!page->page);
1487                bio = btrfs_io_bio_alloc(1);
1488                bio_set_dev(bio, page->dev->bdev);
1489
1490                bio_add_page(bio, page->page, PAGE_SIZE, 0);
1491                bio->bi_iter.bi_sector = page->physical >> 9;
1492                bio->bi_opf = REQ_OP_READ;
1493
1494                if (btrfsic_submit_bio_wait(bio)) {
1495                        page->io_error = 1;
1496                        sblock->no_io_error_seen = 0;
1497                }
1498
1499                bio_put(bio);
1500        }
1501
1502        if (sblock->no_io_error_seen)
1503                scrub_recheck_block_checksum(sblock);
1504}
1505
1506static inline int scrub_check_fsid(u8 fsid[],
1507                                   struct scrub_page *spage)
1508{
1509        struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
1510        int ret;
1511
1512        ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1513        return !ret;
1514}
1515
1516static void scrub_recheck_block_checksum(struct scrub_block *sblock)
1517{
1518        sblock->header_error = 0;
1519        sblock->checksum_error = 0;
1520        sblock->generation_error = 0;
1521
1522        if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1523                scrub_checksum_data(sblock);
1524        else
1525                scrub_checksum_tree_block(sblock);
1526}
1527
1528static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1529                                             struct scrub_block *sblock_good)
1530{
1531        int page_num;
1532        int ret = 0;
1533
1534        for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1535                int ret_sub;
1536
1537                ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1538                                                           sblock_good,
1539                                                           page_num, 1);
1540                if (ret_sub)
1541                        ret = ret_sub;
1542        }
1543
1544        return ret;
1545}
1546
1547static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1548                                            struct scrub_block *sblock_good,
1549                                            int page_num, int force_write)
1550{
1551        struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1552        struct scrub_page *page_good = sblock_good->pagev[page_num];
1553        struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1554
1555        BUG_ON(page_bad->page == NULL);
1556        BUG_ON(page_good->page == NULL);
1557        if (force_write || sblock_bad->header_error ||
1558            sblock_bad->checksum_error || page_bad->io_error) {
1559                struct bio *bio;
1560                int ret;
1561
1562                if (!page_bad->dev->bdev) {
1563                        btrfs_warn_rl(fs_info,
1564                                "scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1565                        return -EIO;
1566                }
1567
1568                bio = btrfs_io_bio_alloc(1);
1569                bio_set_dev(bio, page_bad->dev->bdev);
1570                bio->bi_iter.bi_sector = page_bad->physical >> 9;
1571                bio->bi_opf = REQ_OP_WRITE;
1572
1573                ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1574                if (PAGE_SIZE != ret) {
1575                        bio_put(bio);
1576                        return -EIO;
1577                }
1578
1579                if (btrfsic_submit_bio_wait(bio)) {
1580                        btrfs_dev_stat_inc_and_print(page_bad->dev,
1581                                BTRFS_DEV_STAT_WRITE_ERRS);
1582                        atomic64_inc(&fs_info->dev_replace.num_write_errors);
1583                        bio_put(bio);
1584                        return -EIO;
1585                }
1586                bio_put(bio);
1587        }
1588
1589        return 0;
1590}
1591
1592static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1593{
1594        struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1595        int page_num;
1596
1597        /*
1598         * This block is used for the check of the parity on the source device,
1599         * so the data needn't be written into the destination device.
1600         */
1601        if (sblock->sparity)
1602                return;
1603
1604        for (page_num = 0; page_num < sblock->page_count; page_num++) {
1605                int ret;
1606
1607                ret = scrub_write_page_to_dev_replace(sblock, page_num);
1608                if (ret)
1609                        atomic64_inc(&fs_info->dev_replace.num_write_errors);
1610        }
1611}
1612
1613static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1614                                           int page_num)
1615{
1616        struct scrub_page *spage = sblock->pagev[page_num];
1617
1618        BUG_ON(spage->page == NULL);
1619        if (spage->io_error) {
1620                void *mapped_buffer = kmap_atomic(spage->page);
1621
1622                clear_page(mapped_buffer);
1623                flush_dcache_page(spage->page);
1624                kunmap_atomic(mapped_buffer);
1625        }
1626        return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1627}
1628
1629static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1630                                    struct scrub_page *spage)
1631{
1632        struct scrub_bio *sbio;
1633        int ret;
1634
1635        mutex_lock(&sctx->wr_lock);
1636again:
1637        if (!sctx->wr_curr_bio) {
1638                sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1639                                              GFP_KERNEL);
1640                if (!sctx->wr_curr_bio) {
1641                        mutex_unlock(&sctx->wr_lock);
1642                        return -ENOMEM;
1643                }
1644                sctx->wr_curr_bio->sctx = sctx;
1645                sctx->wr_curr_bio->page_count = 0;
1646        }
1647        sbio = sctx->wr_curr_bio;
1648        if (sbio->page_count == 0) {
1649                struct bio *bio;
1650
1651                sbio->physical = spage->physical_for_dev_replace;
1652                sbio->logical = spage->logical;
1653                sbio->dev = sctx->wr_tgtdev;
1654                bio = sbio->bio;
1655                if (!bio) {
1656                        bio = btrfs_io_bio_alloc(sctx->pages_per_wr_bio);
1657                        sbio->bio = bio;
1658                }
1659
1660                bio->bi_private = sbio;
1661                bio->bi_end_io = scrub_wr_bio_end_io;
1662                bio_set_dev(bio, sbio->dev->bdev);
1663                bio->bi_iter.bi_sector = sbio->physical >> 9;
1664                bio->bi_opf = REQ_OP_WRITE;
1665                sbio->status = 0;
1666        } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1667                   spage->physical_for_dev_replace ||
1668                   sbio->logical + sbio->page_count * PAGE_SIZE !=
1669                   spage->logical) {
1670                scrub_wr_submit(sctx);
1671                goto again;
1672        }
1673
1674        ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1675        if (ret != PAGE_SIZE) {
1676                if (sbio->page_count < 1) {
1677                        bio_put(sbio->bio);
1678                        sbio->bio = NULL;
1679                        mutex_unlock(&sctx->wr_lock);
1680                        return -EIO;
1681                }
1682                scrub_wr_submit(sctx);
1683                goto again;
1684        }
1685
1686        sbio->pagev[sbio->page_count] = spage;
1687        scrub_page_get(spage);
1688        sbio->page_count++;
1689        if (sbio->page_count == sctx->pages_per_wr_bio)
1690                scrub_wr_submit(sctx);
1691        mutex_unlock(&sctx->wr_lock);
1692
1693        return 0;
1694}
1695
1696static void scrub_wr_submit(struct scrub_ctx *sctx)
1697{
1698        struct scrub_bio *sbio;
1699
1700        if (!sctx->wr_curr_bio)
1701                return;
1702
1703        sbio = sctx->wr_curr_bio;
1704        sctx->wr_curr_bio = NULL;
1705        WARN_ON(!sbio->bio->bi_disk);
1706        scrub_pending_bio_inc(sctx);
1707        /* process all writes in a single worker thread. Then the block layer
1708         * orders the requests before sending them to the driver which
1709         * doubled the write performance on spinning disks when measured
1710         * with Linux 3.5 */
1711        btrfsic_submit_bio(sbio->bio);
1712}
1713
1714static void scrub_wr_bio_end_io(struct bio *bio)
1715{
1716        struct scrub_bio *sbio = bio->bi_private;
1717        struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
1718
1719        sbio->status = bio->bi_status;
1720        sbio->bio = bio;
1721
1722        btrfs_init_work(&sbio->work, scrub_wr_bio_end_io_worker, NULL, NULL);
1723        btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1724}
1725
1726static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1727{
1728        struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1729        struct scrub_ctx *sctx = sbio->sctx;
1730        int i;
1731
1732        WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1733        if (sbio->status) {
1734                struct btrfs_dev_replace *dev_replace =
1735                        &sbio->sctx->fs_info->dev_replace;
1736
1737                for (i = 0; i < sbio->page_count; i++) {
1738                        struct scrub_page *spage = sbio->pagev[i];
1739
1740                        spage->io_error = 1;
1741                        atomic64_inc(&dev_replace->num_write_errors);
1742                }
1743        }
1744
1745        for (i = 0; i < sbio->page_count; i++)
1746                scrub_page_put(sbio->pagev[i]);
1747
1748        bio_put(sbio->bio);
1749        kfree(sbio);
1750        scrub_pending_bio_dec(sctx);
1751}
1752
1753static int scrub_checksum(struct scrub_block *sblock)
1754{
1755        u64 flags;
1756        int ret;
1757
1758        /*
1759         * No need to initialize these stats currently,
1760         * because this function only use return value
1761         * instead of these stats value.
1762         *
1763         * Todo:
1764         * always use stats
1765         */
1766        sblock->header_error = 0;
1767        sblock->generation_error = 0;
1768        sblock->checksum_error = 0;
1769
1770        WARN_ON(sblock->page_count < 1);
1771        flags = sblock->pagev[0]->flags;
1772        ret = 0;
1773        if (flags & BTRFS_EXTENT_FLAG_DATA)
1774                ret = scrub_checksum_data(sblock);
1775        else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1776                ret = scrub_checksum_tree_block(sblock);
1777        else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1778                (void)scrub_checksum_super(sblock);
1779        else
1780                WARN_ON(1);
1781        if (ret)
1782                scrub_handle_errored_block(sblock);
1783
1784        return ret;
1785}
1786
1787static int scrub_checksum_data(struct scrub_block *sblock)
1788{
1789        struct scrub_ctx *sctx = sblock->sctx;
1790        struct btrfs_fs_info *fs_info = sctx->fs_info;
1791        SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1792        u8 csum[BTRFS_CSUM_SIZE];
1793        u8 *on_disk_csum;
1794        struct page *page;
1795        void *buffer;
1796        u64 len;
1797        int index;
1798
1799        BUG_ON(sblock->page_count < 1);
1800        if (!sblock->pagev[0]->have_csum)
1801                return 0;
1802
1803        shash->tfm = fs_info->csum_shash;
1804        crypto_shash_init(shash);
1805
1806        on_disk_csum = sblock->pagev[0]->csum;
1807        page = sblock->pagev[0]->page;
1808        buffer = kmap_atomic(page);
1809
1810        len = sctx->fs_info->sectorsize;
1811        index = 0;
1812        for (;;) {
1813                u64 l = min_t(u64, len, PAGE_SIZE);
1814
1815                crypto_shash_update(shash, buffer, l);
1816                kunmap_atomic(buffer);
1817                len -= l;
1818                if (len == 0)
1819                        break;
1820                index++;
1821                BUG_ON(index >= sblock->page_count);
1822                BUG_ON(!sblock->pagev[index]->page);
1823                page = sblock->pagev[index]->page;
1824                buffer = kmap_atomic(page);
1825        }
1826
1827        crypto_shash_final(shash, csum);
1828        if (memcmp(csum, on_disk_csum, sctx->csum_size))
1829                sblock->checksum_error = 1;
1830
1831        return sblock->checksum_error;
1832}
1833
1834static int scrub_checksum_tree_block(struct scrub_block *sblock)
1835{
1836        struct scrub_ctx *sctx = sblock->sctx;
1837        struct btrfs_header *h;
1838        struct btrfs_fs_info *fs_info = sctx->fs_info;
1839        SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1840        u8 calculated_csum[BTRFS_CSUM_SIZE];
1841        u8 on_disk_csum[BTRFS_CSUM_SIZE];
1842        struct page *page;
1843        void *mapped_buffer;
1844        u64 mapped_size;
1845        void *p;
1846        u64 len;
1847        int index;
1848
1849        shash->tfm = fs_info->csum_shash;
1850        crypto_shash_init(shash);
1851
1852        BUG_ON(sblock->page_count < 1);
1853        page = sblock->pagev[0]->page;
1854        mapped_buffer = kmap_atomic(page);
1855        h = (struct btrfs_header *)mapped_buffer;
1856        memcpy(on_disk_csum, h->csum, sctx->csum_size);
1857
1858        /*
1859         * we don't use the getter functions here, as we
1860         * a) don't have an extent buffer and
1861         * b) the page is already kmapped
1862         */
1863        if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
1864                sblock->header_error = 1;
1865
1866        if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) {
1867                sblock->header_error = 1;
1868                sblock->generation_error = 1;
1869        }
1870
1871        if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
1872                sblock->header_error = 1;
1873
1874        if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1875                   BTRFS_UUID_SIZE))
1876                sblock->header_error = 1;
1877
1878        len = sctx->fs_info->nodesize - BTRFS_CSUM_SIZE;
1879        mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1880        p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1881        index = 0;
1882        for (;;) {
1883                u64 l = min_t(u64, len, mapped_size);
1884
1885                crypto_shash_update(shash, p, l);
1886                kunmap_atomic(mapped_buffer);
1887                len -= l;
1888                if (len == 0)
1889                        break;
1890                index++;
1891                BUG_ON(index >= sblock->page_count);
1892                BUG_ON(!sblock->pagev[index]->page);
1893                page = sblock->pagev[index]->page;
1894                mapped_buffer = kmap_atomic(page);
1895                mapped_size = PAGE_SIZE;
1896                p = mapped_buffer;
1897        }
1898
1899        crypto_shash_final(shash, calculated_csum);
1900        if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1901                sblock->checksum_error = 1;
1902
1903        return sblock->header_error || sblock->checksum_error;
1904}
1905
1906static int scrub_checksum_super(struct scrub_block *sblock)
1907{
1908        struct btrfs_super_block *s;
1909        struct scrub_ctx *sctx = sblock->sctx;
1910        struct btrfs_fs_info *fs_info = sctx->fs_info;
1911        SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1912        u8 calculated_csum[BTRFS_CSUM_SIZE];
1913        u8 on_disk_csum[BTRFS_CSUM_SIZE];
1914        struct page *page;
1915        void *mapped_buffer;
1916        u64 mapped_size;
1917        void *p;
1918        int fail_gen = 0;
1919        int fail_cor = 0;
1920        u64 len;
1921        int index;
1922
1923        shash->tfm = fs_info->csum_shash;
1924        crypto_shash_init(shash);
1925
1926        BUG_ON(sblock->page_count < 1);
1927        page = sblock->pagev[0]->page;
1928        mapped_buffer = kmap_atomic(page);
1929        s = (struct btrfs_super_block *)mapped_buffer;
1930        memcpy(on_disk_csum, s->csum, sctx->csum_size);
1931
1932        if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1933                ++fail_cor;
1934
1935        if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1936                ++fail_gen;
1937
1938        if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
1939                ++fail_cor;
1940
1941        len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1942        mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1943        p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1944        index = 0;
1945        for (;;) {
1946                u64 l = min_t(u64, len, mapped_size);
1947
1948                crypto_shash_update(shash, p, l);
1949                kunmap_atomic(mapped_buffer);
1950                len -= l;
1951                if (len == 0)
1952                        break;
1953                index++;
1954                BUG_ON(index >= sblock->page_count);
1955                BUG_ON(!sblock->pagev[index]->page);
1956                page = sblock->pagev[index]->page;
1957                mapped_buffer = kmap_atomic(page);
1958                mapped_size = PAGE_SIZE;
1959                p = mapped_buffer;
1960        }
1961
1962        crypto_shash_final(shash, calculated_csum);
1963        if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1964                ++fail_cor;
1965
1966        if (fail_cor + fail_gen) {
1967                /*
1968                 * if we find an error in a super block, we just report it.
1969                 * They will get written with the next transaction commit
1970                 * anyway
1971                 */
1972                spin_lock(&sctx->stat_lock);
1973                ++sctx->stat.super_errors;
1974                spin_unlock(&sctx->stat_lock);
1975                if (fail_cor)
1976                        btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1977                                BTRFS_DEV_STAT_CORRUPTION_ERRS);
1978                else
1979                        btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1980                                BTRFS_DEV_STAT_GENERATION_ERRS);
1981        }
1982
1983        return fail_cor + fail_gen;
1984}
1985
1986static void scrub_block_get(struct scrub_block *sblock)
1987{
1988        refcount_inc(&sblock->refs);
1989}
1990
1991static void scrub_block_put(struct scrub_block *sblock)
1992{
1993        if (refcount_dec_and_test(&sblock->refs)) {
1994                int i;
1995
1996                if (sblock->sparity)
1997                        scrub_parity_put(sblock->sparity);
1998
1999                for (i = 0; i < sblock->page_count; i++)
2000                        scrub_page_put(sblock->pagev[i]);
2001                kfree(sblock);
2002        }
2003}
2004
2005static void scrub_page_get(struct scrub_page *spage)
2006{
2007        atomic_inc(&spage->refs);
2008}
2009
2010static void scrub_page_put(struct scrub_page *spage)
2011{
2012        if (atomic_dec_and_test(&spage->refs)) {
2013                if (spage->page)
2014                        __free_page(spage->page);
2015                kfree(spage);
2016        }
2017}
2018
2019static void scrub_submit(struct scrub_ctx *sctx)
2020{
2021        struct scrub_bio *sbio;
2022
2023        if (sctx->curr == -1)
2024                return;
2025
2026        sbio = sctx->bios[sctx->curr];
2027        sctx->curr = -1;
2028        scrub_pending_bio_inc(sctx);
2029        btrfsic_submit_bio(sbio->bio);
2030}
2031
2032static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
2033                                    struct scrub_page *spage)
2034{
2035        struct scrub_block *sblock = spage->sblock;
2036        struct scrub_bio *sbio;
2037        int ret;
2038
2039again:
2040        /*
2041         * grab a fresh bio or wait for one to become available
2042         */
2043        while (sctx->curr == -1) {
2044                spin_lock(&sctx->list_lock);
2045                sctx->curr = sctx->first_free;
2046                if (sctx->curr != -1) {
2047                        sctx->first_free = sctx->bios[sctx->curr]->next_free;
2048                        sctx->bios[sctx->curr]->next_free = -1;
2049                        sctx->bios[sctx->curr]->page_count = 0;
2050                        spin_unlock(&sctx->list_lock);
2051                } else {
2052                        spin_unlock(&sctx->list_lock);
2053                        wait_event(sctx->list_wait, sctx->first_free != -1);
2054                }
2055        }
2056        sbio = sctx->bios[sctx->curr];
2057        if (sbio->page_count == 0) {
2058                struct bio *bio;
2059
2060                sbio->physical = spage->physical;
2061                sbio->logical = spage->logical;
2062                sbio->dev = spage->dev;
2063                bio = sbio->bio;
2064                if (!bio) {
2065                        bio = btrfs_io_bio_alloc(sctx->pages_per_rd_bio);
2066                        sbio->bio = bio;
2067                }
2068
2069                bio->bi_private = sbio;
2070                bio->bi_end_io = scrub_bio_end_io;
2071                bio_set_dev(bio, sbio->dev->bdev);
2072                bio->bi_iter.bi_sector = sbio->physical >> 9;
2073                bio->bi_opf = REQ_OP_READ;
2074                sbio->status = 0;
2075        } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
2076                   spage->physical ||
2077                   sbio->logical + sbio->page_count * PAGE_SIZE !=
2078                   spage->logical ||
2079                   sbio->dev != spage->dev) {
2080                scrub_submit(sctx);
2081                goto again;
2082        }
2083
2084        sbio->pagev[sbio->page_count] = spage;
2085        ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
2086        if (ret != PAGE_SIZE) {
2087                if (sbio->page_count < 1) {
2088                        bio_put(sbio->bio);
2089                        sbio->bio = NULL;
2090                        return -EIO;
2091                }
2092                scrub_submit(sctx);
2093                goto again;
2094        }
2095
2096        scrub_block_get(sblock); /* one for the page added to the bio */
2097        atomic_inc(&sblock->outstanding_pages);
2098        sbio->page_count++;
2099        if (sbio->page_count == sctx->pages_per_rd_bio)
2100                scrub_submit(sctx);
2101
2102        return 0;
2103}
2104
2105static void scrub_missing_raid56_end_io(struct bio *bio)
2106{
2107        struct scrub_block *sblock = bio->bi_private;
2108        struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2109
2110        if (bio->bi_status)
2111                sblock->no_io_error_seen = 0;
2112
2113        bio_put(bio);
2114
2115        btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
2116}
2117
2118static void scrub_missing_raid56_worker(struct btrfs_work *work)
2119{
2120        struct scrub_block *sblock = container_of(work, struct scrub_block, work);
2121        struct scrub_ctx *sctx = sblock->sctx;
2122        struct btrfs_fs_info *fs_info = sctx->fs_info;
2123        u64 logical;
2124        struct btrfs_device *dev;
2125
2126        logical = sblock->pagev[0]->logical;
2127        dev = sblock->pagev[0]->dev;
2128
2129        if (sblock->no_io_error_seen)
2130                scrub_recheck_block_checksum(sblock);
2131
2132        if (!sblock->no_io_error_seen) {
2133                spin_lock(&sctx->stat_lock);
2134                sctx->stat.read_errors++;
2135                spin_unlock(&sctx->stat_lock);
2136                btrfs_err_rl_in_rcu(fs_info,
2137                        "IO error rebuilding logical %llu for dev %s",
2138                        logical, rcu_str_deref(dev->name));
2139        } else if (sblock->header_error || sblock->checksum_error) {
2140                spin_lock(&sctx->stat_lock);
2141                sctx->stat.uncorrectable_errors++;
2142                spin_unlock(&sctx->stat_lock);
2143                btrfs_err_rl_in_rcu(fs_info,
2144                        "failed to rebuild valid logical %llu for dev %s",
2145                        logical, rcu_str_deref(dev->name));
2146        } else {
2147                scrub_write_block_to_dev_replace(sblock);
2148        }
2149
2150        if (sctx->is_dev_replace && sctx->flush_all_writes) {
2151                mutex_lock(&sctx->wr_lock);
2152                scrub_wr_submit(sctx);
2153                mutex_unlock(&sctx->wr_lock);
2154        }
2155
2156        scrub_block_put(sblock);
2157        scrub_pending_bio_dec(sctx);
2158}
2159
2160static void scrub_missing_raid56_pages(struct scrub_block *sblock)
2161{
2162        struct scrub_ctx *sctx = sblock->sctx;
2163        struct btrfs_fs_info *fs_info = sctx->fs_info;
2164        u64 length = sblock->page_count * PAGE_SIZE;
2165        u64 logical = sblock->pagev[0]->logical;
2166        struct btrfs_bio *bbio = NULL;
2167        struct bio *bio;
2168        struct btrfs_raid_bio *rbio;
2169        int ret;
2170        int i;
2171
2172        btrfs_bio_counter_inc_blocked(fs_info);
2173        ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2174                        &length, &bbio);
2175        if (ret || !bbio || !bbio->raid_map)
2176                goto bbio_out;
2177
2178        if (WARN_ON(!sctx->is_dev_replace ||
2179                    !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2180                /*
2181                 * We shouldn't be scrubbing a missing device. Even for dev
2182                 * replace, we should only get here for RAID 5/6. We either
2183                 * managed to mount something with no mirrors remaining or
2184                 * there's a bug in scrub_remap_extent()/btrfs_map_block().
2185                 */
2186                goto bbio_out;
2187        }
2188
2189        bio = btrfs_io_bio_alloc(0);
2190        bio->bi_iter.bi_sector = logical >> 9;
2191        bio->bi_private = sblock;
2192        bio->bi_end_io = scrub_missing_raid56_end_io;
2193
2194        rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length);
2195        if (!rbio)
2196                goto rbio_out;
2197
2198        for (i = 0; i < sblock->page_count; i++) {
2199                struct scrub_page *spage = sblock->pagev[i];
2200
2201                raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2202        }
2203
2204        btrfs_init_work(&sblock->work, scrub_missing_raid56_worker, NULL, NULL);
2205        scrub_block_get(sblock);
2206        scrub_pending_bio_inc(sctx);
2207        raid56_submit_missing_rbio(rbio);
2208        return;
2209
2210rbio_out:
2211        bio_put(bio);
2212bbio_out:
2213        btrfs_bio_counter_dec(fs_info);
2214        btrfs_put_bbio(bbio);
2215        spin_lock(&sctx->stat_lock);
2216        sctx->stat.malloc_errors++;
2217        spin_unlock(&sctx->stat_lock);
2218}
2219
2220static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2221                       u64 physical, struct btrfs_device *dev, u64 flags,
2222                       u64 gen, int mirror_num, u8 *csum, int force,
2223                       u64 physical_for_dev_replace)
2224{
2225        struct scrub_block *sblock;
2226        int index;
2227
2228        sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2229        if (!sblock) {
2230                spin_lock(&sctx->stat_lock);
2231                sctx->stat.malloc_errors++;
2232                spin_unlock(&sctx->stat_lock);
2233                return -ENOMEM;
2234        }
2235
2236        /* one ref inside this function, plus one for each page added to
2237         * a bio later on */
2238        refcount_set(&sblock->refs, 1);
2239        sblock->sctx = sctx;
2240        sblock->no_io_error_seen = 1;
2241
2242        for (index = 0; len > 0; index++) {
2243                struct scrub_page *spage;
2244                u64 l = min_t(u64, len, PAGE_SIZE);
2245
2246                spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2247                if (!spage) {
2248leave_nomem:
2249                        spin_lock(&sctx->stat_lock);
2250                        sctx->stat.malloc_errors++;
2251                        spin_unlock(&sctx->stat_lock);
2252                        scrub_block_put(sblock);
2253                        return -ENOMEM;
2254                }
2255                BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2256                scrub_page_get(spage);
2257                sblock->pagev[index] = spage;
2258                spage->sblock = sblock;
2259                spage->dev = dev;
2260                spage->flags = flags;
2261                spage->generation = gen;
2262                spage->logical = logical;
2263                spage->physical = physical;
2264                spage->physical_for_dev_replace = physical_for_dev_replace;
2265                spage->mirror_num = mirror_num;
2266                if (csum) {
2267                        spage->have_csum = 1;
2268                        memcpy(spage->csum, csum, sctx->csum_size);
2269                } else {
2270                        spage->have_csum = 0;
2271                }
2272                sblock->page_count++;
2273                spage->page = alloc_page(GFP_KERNEL);
2274                if (!spage->page)
2275                        goto leave_nomem;
2276                len -= l;
2277                logical += l;
2278                physical += l;
2279                physical_for_dev_replace += l;
2280        }
2281
2282        WARN_ON(sblock->page_count == 0);
2283        if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2284                /*
2285                 * This case should only be hit for RAID 5/6 device replace. See
2286                 * the comment in scrub_missing_raid56_pages() for details.
2287                 */
2288                scrub_missing_raid56_pages(sblock);
2289        } else {
2290                for (index = 0; index < sblock->page_count; index++) {
2291                        struct scrub_page *spage = sblock->pagev[index];
2292                        int ret;
2293
2294                        ret = scrub_add_page_to_rd_bio(sctx, spage);
2295                        if (ret) {
2296                                scrub_block_put(sblock);
2297                                return ret;
2298                        }
2299                }
2300
2301                if (force)
2302                        scrub_submit(sctx);
2303        }
2304
2305        /* last one frees, either here or in bio completion for last page */
2306        scrub_block_put(sblock);
2307        return 0;
2308}
2309
2310static void scrub_bio_end_io(struct bio *bio)
2311{
2312        struct scrub_bio *sbio = bio->bi_private;
2313        struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2314
2315        sbio->status = bio->bi_status;
2316        sbio->bio = bio;
2317
2318        btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2319}
2320
2321static void scrub_bio_end_io_worker(struct btrfs_work *work)
2322{
2323        struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2324        struct scrub_ctx *sctx = sbio->sctx;
2325        int i;
2326
2327        BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2328        if (sbio->status) {
2329                for (i = 0; i < sbio->page_count; i++) {
2330                        struct scrub_page *spage = sbio->pagev[i];
2331
2332                        spage->io_error = 1;
2333                        spage->sblock->no_io_error_seen = 0;
2334                }
2335        }
2336
2337        /* now complete the scrub_block items that have all pages completed */
2338        for (i = 0; i < sbio->page_count; i++) {
2339                struct scrub_page *spage = sbio->pagev[i];
2340                struct scrub_block *sblock = spage->sblock;
2341
2342                if (atomic_dec_and_test(&sblock->outstanding_pages))
2343                        scrub_block_complete(sblock);
2344                scrub_block_put(sblock);
2345        }
2346
2347        bio_put(sbio->bio);
2348        sbio->bio = NULL;
2349        spin_lock(&sctx->list_lock);
2350        sbio->next_free = sctx->first_free;
2351        sctx->first_free = sbio->index;
2352        spin_unlock(&sctx->list_lock);
2353
2354        if (sctx->is_dev_replace && sctx->flush_all_writes) {
2355                mutex_lock(&sctx->wr_lock);
2356                scrub_wr_submit(sctx);
2357                mutex_unlock(&sctx->wr_lock);
2358        }
2359
2360        scrub_pending_bio_dec(sctx);
2361}
2362
2363static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2364                                       unsigned long *bitmap,
2365                                       u64 start, u64 len)
2366{
2367        u64 offset;
2368        u64 nsectors64;
2369        u32 nsectors;
2370        int sectorsize = sparity->sctx->fs_info->sectorsize;
2371
2372        if (len >= sparity->stripe_len) {
2373                bitmap_set(bitmap, 0, sparity->nsectors);
2374                return;
2375        }
2376
2377        start -= sparity->logic_start;
2378        start = div64_u64_rem(start, sparity->stripe_len, &offset);
2379        offset = div_u64(offset, sectorsize);
2380        nsectors64 = div_u64(len, sectorsize);
2381
2382        ASSERT(nsectors64 < UINT_MAX);
2383        nsectors = (u32)nsectors64;
2384
2385        if (offset + nsectors <= sparity->nsectors) {
2386                bitmap_set(bitmap, offset, nsectors);
2387                return;
2388        }
2389
2390        bitmap_set(bitmap, offset, sparity->nsectors - offset);
2391        bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
2392}
2393
2394static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2395                                                   u64 start, u64 len)
2396{
2397        __scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
2398}
2399
2400static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2401                                                  u64 start, u64 len)
2402{
2403        __scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
2404}
2405
2406static void scrub_block_complete(struct scrub_block *sblock)
2407{
2408        int corrupted = 0;
2409
2410        if (!sblock->no_io_error_seen) {
2411                corrupted = 1;
2412                scrub_handle_errored_block(sblock);
2413        } else {
2414                /*
2415                 * if has checksum error, write via repair mechanism in
2416                 * dev replace case, otherwise write here in dev replace
2417                 * case.
2418                 */
2419                corrupted = scrub_checksum(sblock);
2420                if (!corrupted && sblock->sctx->is_dev_replace)
2421                        scrub_write_block_to_dev_replace(sblock);
2422        }
2423
2424        if (sblock->sparity && corrupted && !sblock->data_corrected) {
2425                u64 start = sblock->pagev[0]->logical;
2426                u64 end = sblock->pagev[sblock->page_count - 1]->logical +
2427                          PAGE_SIZE;
2428
2429                scrub_parity_mark_sectors_error(sblock->sparity,
2430                                                start, end - start);
2431        }
2432}
2433
2434static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
2435{
2436        struct btrfs_ordered_sum *sum = NULL;
2437        unsigned long index;
2438        unsigned long num_sectors;
2439
2440        while (!list_empty(&sctx->csum_list)) {
2441                sum = list_first_entry(&sctx->csum_list,
2442                                       struct btrfs_ordered_sum, list);
2443                if (sum->bytenr > logical)
2444                        return 0;
2445                if (sum->bytenr + sum->len > logical)
2446                        break;
2447
2448                ++sctx->stat.csum_discards;
2449                list_del(&sum->list);
2450                kfree(sum);
2451                sum = NULL;
2452        }
2453        if (!sum)
2454                return 0;
2455
2456        index = div_u64(logical - sum->bytenr, sctx->fs_info->sectorsize);
2457        ASSERT(index < UINT_MAX);
2458
2459        num_sectors = sum->len / sctx->fs_info->sectorsize;
2460        memcpy(csum, sum->sums + index * sctx->csum_size, sctx->csum_size);
2461        if (index == num_sectors - 1) {
2462                list_del(&sum->list);
2463                kfree(sum);
2464        }
2465        return 1;
2466}
2467
2468/* scrub extent tries to collect up to 64 kB for each bio */
2469static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
2470                        u64 logical, u64 len,
2471                        u64 physical, struct btrfs_device *dev, u64 flags,
2472                        u64 gen, int mirror_num, u64 physical_for_dev_replace)
2473{
2474        int ret;
2475        u8 csum[BTRFS_CSUM_SIZE];
2476        u32 blocksize;
2477
2478        if (flags & BTRFS_EXTENT_FLAG_DATA) {
2479                if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2480                        blocksize = map->stripe_len;
2481                else
2482                        blocksize = sctx->fs_info->sectorsize;
2483                spin_lock(&sctx->stat_lock);
2484                sctx->stat.data_extents_scrubbed++;
2485                sctx->stat.data_bytes_scrubbed += len;
2486                spin_unlock(&sctx->stat_lock);
2487        } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2488                if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2489                        blocksize = map->stripe_len;
2490                else
2491                        blocksize = sctx->fs_info->nodesize;
2492                spin_lock(&sctx->stat_lock);
2493                sctx->stat.tree_extents_scrubbed++;
2494                sctx->stat.tree_bytes_scrubbed += len;
2495                spin_unlock(&sctx->stat_lock);
2496        } else {
2497                blocksize = sctx->fs_info->sectorsize;
2498                WARN_ON(1);
2499        }
2500
2501        while (len) {
2502                u64 l = min_t(u64, len, blocksize);
2503                int have_csum = 0;
2504
2505                if (flags & BTRFS_EXTENT_FLAG_DATA) {
2506                        /* push csums to sbio */
2507                        have_csum = scrub_find_csum(sctx, logical, csum);
2508                        if (have_csum == 0)
2509                                ++sctx->stat.no_csum;
2510                }
2511                ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2512                                  mirror_num, have_csum ? csum : NULL, 0,
2513                                  physical_for_dev_replace);
2514                if (ret)
2515                        return ret;
2516                len -= l;
2517                logical += l;
2518                physical += l;
2519                physical_for_dev_replace += l;
2520        }
2521        return 0;
2522}
2523
2524static int scrub_pages_for_parity(struct scrub_parity *sparity,
2525                                  u64 logical, u64 len,
2526                                  u64 physical, struct btrfs_device *dev,
2527                                  u64 flags, u64 gen, int mirror_num, u8 *csum)
2528{
2529        struct scrub_ctx *sctx = sparity->sctx;
2530        struct scrub_block *sblock;
2531        int index;
2532
2533        sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2534        if (!sblock) {
2535                spin_lock(&sctx->stat_lock);
2536                sctx->stat.malloc_errors++;
2537                spin_unlock(&sctx->stat_lock);
2538                return -ENOMEM;
2539        }
2540
2541        /* one ref inside this function, plus one for each page added to
2542         * a bio later on */
2543        refcount_set(&sblock->refs, 1);
2544        sblock->sctx = sctx;
2545        sblock->no_io_error_seen = 1;
2546        sblock->sparity = sparity;
2547        scrub_parity_get(sparity);
2548
2549        for (index = 0; len > 0; index++) {
2550                struct scrub_page *spage;
2551                u64 l = min_t(u64, len, PAGE_SIZE);
2552
2553                spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2554                if (!spage) {
2555leave_nomem:
2556                        spin_lock(&sctx->stat_lock);
2557                        sctx->stat.malloc_errors++;
2558                        spin_unlock(&sctx->stat_lock);
2559                        scrub_block_put(sblock);
2560                        return -ENOMEM;
2561                }
2562                BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2563                /* For scrub block */
2564                scrub_page_get(spage);
2565                sblock->pagev[index] = spage;
2566                /* For scrub parity */
2567                scrub_page_get(spage);
2568                list_add_tail(&spage->list, &sparity->spages);
2569                spage->sblock = sblock;
2570                spage->dev = dev;
2571                spage->flags = flags;
2572                spage->generation = gen;
2573                spage->logical = logical;
2574                spage->physical = physical;
2575                spage->mirror_num = mirror_num;
2576                if (csum) {
2577                        spage->have_csum = 1;
2578                        memcpy(spage->csum, csum, sctx->csum_size);
2579                } else {
2580                        spage->have_csum = 0;
2581                }
2582                sblock->page_count++;
2583                spage->page = alloc_page(GFP_KERNEL);
2584                if (!spage->page)
2585                        goto leave_nomem;
2586                len -= l;
2587                logical += l;
2588                physical += l;
2589        }
2590
2591        WARN_ON(sblock->page_count == 0);
2592        for (index = 0; index < sblock->page_count; index++) {
2593                struct scrub_page *spage = sblock->pagev[index];
2594                int ret;
2595
2596                ret = scrub_add_page_to_rd_bio(sctx, spage);
2597                if (ret) {
2598                        scrub_block_put(sblock);
2599                        return ret;
2600                }
2601        }
2602
2603        /* last one frees, either here or in bio completion for last page */
2604        scrub_block_put(sblock);
2605        return 0;
2606}
2607
2608static int scrub_extent_for_parity(struct scrub_parity *sparity,
2609                                   u64 logical, u64 len,
2610                                   u64 physical, struct btrfs_device *dev,
2611                                   u64 flags, u64 gen, int mirror_num)
2612{
2613        struct scrub_ctx *sctx = sparity->sctx;
2614        int ret;
2615        u8 csum[BTRFS_CSUM_SIZE];
2616        u32 blocksize;
2617
2618        if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2619                scrub_parity_mark_sectors_error(sparity, logical, len);
2620                return 0;
2621        }
2622
2623        if (flags & BTRFS_EXTENT_FLAG_DATA) {
2624                blocksize = sparity->stripe_len;
2625        } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2626                blocksize = sparity->stripe_len;
2627        } else {
2628                blocksize = sctx->fs_info->sectorsize;
2629                WARN_ON(1);
2630        }
2631
2632        while (len) {
2633                u64 l = min_t(u64, len, blocksize);
2634                int have_csum = 0;
2635
2636                if (flags & BTRFS_EXTENT_FLAG_DATA) {
2637                        /* push csums to sbio */
2638                        have_csum = scrub_find_csum(sctx, logical, csum);
2639                        if (have_csum == 0)
2640                                goto skip;
2641                }
2642                ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
2643                                             flags, gen, mirror_num,
2644                                             have_csum ? csum : NULL);
2645                if (ret)
2646                        return ret;
2647skip:
2648                len -= l;
2649                logical += l;
2650                physical += l;
2651        }
2652        return 0;
2653}
2654
2655/*
2656 * Given a physical address, this will calculate it's
2657 * logical offset. if this is a parity stripe, it will return
2658 * the most left data stripe's logical offset.
2659 *
2660 * return 0 if it is a data stripe, 1 means parity stripe.
2661 */
2662static int get_raid56_logic_offset(u64 physical, int num,
2663                                   struct map_lookup *map, u64 *offset,
2664                                   u64 *stripe_start)
2665{
2666        int i;
2667        int j = 0;
2668        u64 stripe_nr;
2669        u64 last_offset;
2670        u32 stripe_index;
2671        u32 rot;
2672        const int data_stripes = nr_data_stripes(map);
2673
2674        last_offset = (physical - map->stripes[num].physical) * data_stripes;
2675        if (stripe_start)
2676                *stripe_start = last_offset;
2677
2678        *offset = last_offset;
2679        for (i = 0; i < data_stripes; i++) {
2680                *offset = last_offset + i * map->stripe_len;
2681
2682                stripe_nr = div64_u64(*offset, map->stripe_len);
2683                stripe_nr = div_u64(stripe_nr, data_stripes);
2684
2685                /* Work out the disk rotation on this stripe-set */
2686                stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2687                /* calculate which stripe this data locates */
2688                rot += i;
2689                stripe_index = rot % map->num_stripes;
2690                if (stripe_index == num)
2691                        return 0;
2692                if (stripe_index < num)
2693                        j++;
2694        }
2695        *offset = last_offset + j * map->stripe_len;
2696        return 1;
2697}
2698
2699static void scrub_free_parity(struct scrub_parity *sparity)
2700{
2701        struct scrub_ctx *sctx = sparity->sctx;
2702        struct scrub_page *curr, *next;
2703        int nbits;
2704
2705        nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
2706        if (nbits) {
2707                spin_lock(&sctx->stat_lock);
2708                sctx->stat.read_errors += nbits;
2709                sctx->stat.uncorrectable_errors += nbits;
2710                spin_unlock(&sctx->stat_lock);
2711        }
2712
2713        list_for_each_entry_safe(curr, next, &sparity->spages, list) {
2714                list_del_init(&curr->list);
2715                scrub_page_put(curr);
2716        }
2717
2718        kfree(sparity);
2719}
2720
2721static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
2722{
2723        struct scrub_parity *sparity = container_of(work, struct scrub_parity,
2724                                                    work);
2725        struct scrub_ctx *sctx = sparity->sctx;
2726
2727        scrub_free_parity(sparity);
2728        scrub_pending_bio_dec(sctx);
2729}
2730
2731static void scrub_parity_bio_endio(struct bio *bio)
2732{
2733        struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
2734        struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
2735
2736        if (bio->bi_status)
2737                bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2738                          sparity->nsectors);
2739
2740        bio_put(bio);
2741
2742        btrfs_init_work(&sparity->work, scrub_parity_bio_endio_worker, NULL,
2743                        NULL);
2744        btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
2745}
2746
2747static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
2748{
2749        struct scrub_ctx *sctx = sparity->sctx;
2750        struct btrfs_fs_info *fs_info = sctx->fs_info;
2751        struct bio *bio;
2752        struct btrfs_raid_bio *rbio;
2753        struct btrfs_bio *bbio = NULL;
2754        u64 length;
2755        int ret;
2756
2757        if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
2758                           sparity->nsectors))
2759                goto out;
2760
2761        length = sparity->logic_end - sparity->logic_start;
2762
2763        btrfs_bio_counter_inc_blocked(fs_info);
2764        ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
2765                               &length, &bbio);
2766        if (ret || !bbio || !bbio->raid_map)
2767                goto bbio_out;
2768
2769        bio = btrfs_io_bio_alloc(0);
2770        bio->bi_iter.bi_sector = sparity->logic_start >> 9;
2771        bio->bi_private = sparity;
2772        bio->bi_end_io = scrub_parity_bio_endio;
2773
2774        rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio,
2775                                              length, sparity->scrub_dev,
2776                                              sparity->dbitmap,
2777                                              sparity->nsectors);
2778        if (!rbio)
2779                goto rbio_out;
2780
2781        scrub_pending_bio_inc(sctx);
2782        raid56_parity_submit_scrub_rbio(rbio);
2783        return;
2784
2785rbio_out:
2786        bio_put(bio);
2787bbio_out:
2788        btrfs_bio_counter_dec(fs_info);
2789        btrfs_put_bbio(bbio);
2790        bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2791                  sparity->nsectors);
2792        spin_lock(&sctx->stat_lock);
2793        sctx->stat.malloc_errors++;
2794        spin_unlock(&sctx->stat_lock);
2795out:
2796        scrub_free_parity(sparity);
2797}
2798
2799static inline int scrub_calc_parity_bitmap_len(int nsectors)
2800{
2801        return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
2802}
2803
2804static void scrub_parity_get(struct scrub_parity *sparity)
2805{
2806        refcount_inc(&sparity->refs);
2807}
2808
2809static void scrub_parity_put(struct scrub_parity *sparity)
2810{
2811        if (!refcount_dec_and_test(&sparity->refs))
2812                return;
2813
2814        scrub_parity_check_and_repair(sparity);
2815}
2816
2817static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
2818                                                  struct map_lookup *map,
2819                                                  struct btrfs_device *sdev,
2820                                                  struct btrfs_path *path,
2821                                                  u64 logic_start,
2822                                                  u64 logic_end)
2823{
2824        struct btrfs_fs_info *fs_info = sctx->fs_info;
2825        struct btrfs_root *root = fs_info->extent_root;
2826        struct btrfs_root *csum_root = fs_info->csum_root;
2827        struct btrfs_extent_item *extent;
2828        struct btrfs_bio *bbio = NULL;
2829        u64 flags;
2830        int ret;
2831        int slot;
2832        struct extent_buffer *l;
2833        struct btrfs_key key;
2834        u64 generation;
2835        u64 extent_logical;
2836        u64 extent_physical;
2837        u64 extent_len;
2838        u64 mapped_length;
2839        struct btrfs_device *extent_dev;
2840        struct scrub_parity *sparity;
2841        int nsectors;
2842        int bitmap_len;
2843        int extent_mirror_num;
2844        int stop_loop = 0;
2845
2846        nsectors = div_u64(map->stripe_len, fs_info->sectorsize);
2847        bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
2848        sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
2849                          GFP_NOFS);
2850        if (!sparity) {
2851                spin_lock(&sctx->stat_lock);
2852                sctx->stat.malloc_errors++;
2853                spin_unlock(&sctx->stat_lock);
2854                return -ENOMEM;
2855        }
2856
2857        sparity->stripe_len = map->stripe_len;
2858        sparity->nsectors = nsectors;
2859        sparity->sctx = sctx;
2860        sparity->scrub_dev = sdev;
2861        sparity->logic_start = logic_start;
2862        sparity->logic_end = logic_end;
2863        refcount_set(&sparity->refs, 1);
2864        INIT_LIST_HEAD(&sparity->spages);
2865        sparity->dbitmap = sparity->bitmap;
2866        sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;
2867
2868        ret = 0;
2869        while (logic_start < logic_end) {
2870                if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2871                        key.type = BTRFS_METADATA_ITEM_KEY;
2872                else
2873                        key.type = BTRFS_EXTENT_ITEM_KEY;
2874                key.objectid = logic_start;
2875                key.offset = (u64)-1;
2876
2877                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2878                if (ret < 0)
2879                        goto out;
2880
2881                if (ret > 0) {
2882                        ret = btrfs_previous_extent_item(root, path, 0);
2883                        if (ret < 0)
2884                                goto out;
2885                        if (ret > 0) {
2886                                btrfs_release_path(path);
2887                                ret = btrfs_search_slot(NULL, root, &key,
2888                                                        path, 0, 0);
2889                                if (ret < 0)
2890                                        goto out;
2891                        }
2892                }
2893
2894                stop_loop = 0;
2895                while (1) {
2896                        u64 bytes;
2897
2898                        l = path->nodes[0];
2899                        slot = path->slots[0];
2900                        if (slot >= btrfs_header_nritems(l)) {
2901                                ret = btrfs_next_leaf(root, path);
2902                                if (ret == 0)
2903                                        continue;
2904                                if (ret < 0)
2905                                        goto out;
2906
2907                                stop_loop = 1;
2908                                break;
2909                        }
2910                        btrfs_item_key_to_cpu(l, &key, slot);
2911
2912                        if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2913                            key.type != BTRFS_METADATA_ITEM_KEY)
2914                                goto next;
2915
2916                        if (key.type == BTRFS_METADATA_ITEM_KEY)
2917                                bytes = fs_info->nodesize;
2918                        else
2919                                bytes = key.offset;
2920
2921                        if (key.objectid + bytes <= logic_start)
2922                                goto next;
2923
2924                        if (key.objectid >= logic_end) {
2925                                stop_loop = 1;
2926                                break;
2927                        }
2928
2929                        while (key.objectid >= logic_start + map->stripe_len)
2930                                logic_start += map->stripe_len;
2931
2932                        extent = btrfs_item_ptr(l, slot,
2933                                                struct btrfs_extent_item);
2934                        flags = btrfs_extent_flags(l, extent);
2935                        generation = btrfs_extent_generation(l, extent);
2936
2937                        if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
2938                            (key.objectid < logic_start ||
2939                             key.objectid + bytes >
2940                             logic_start + map->stripe_len)) {
2941                                btrfs_err(fs_info,
2942                                          "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
2943                                          key.objectid, logic_start);
2944                                spin_lock(&sctx->stat_lock);
2945                                sctx->stat.uncorrectable_errors++;
2946                                spin_unlock(&sctx->stat_lock);
2947                                goto next;
2948                        }
2949again:
2950                        extent_logical = key.objectid;
2951                        extent_len = bytes;
2952
2953                        if (extent_logical < logic_start) {
2954                                extent_len -= logic_start - extent_logical;
2955                                extent_logical = logic_start;
2956                        }
2957
2958                        if (extent_logical + extent_len >
2959                            logic_start + map->stripe_len)
2960                                extent_len = logic_start + map->stripe_len -
2961                                             extent_logical;
2962
2963                        scrub_parity_mark_sectors_data(sparity, extent_logical,
2964                                                       extent_len);
2965
2966                        mapped_length = extent_len;
2967                        bbio = NULL;
2968                        ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
2969                                        extent_logical, &mapped_length, &bbio,
2970                                        0);
2971                        if (!ret) {
2972                                if (!bbio || mapped_length < extent_len)
2973                                        ret = -EIO;
2974                        }
2975                        if (ret) {
2976                                btrfs_put_bbio(bbio);
2977                                goto out;
2978                        }
2979                        extent_physical = bbio->stripes[0].physical;
2980                        extent_mirror_num = bbio->mirror_num;
2981                        extent_dev = bbio->stripes[0].dev;
2982                        btrfs_put_bbio(bbio);
2983
2984                        ret = btrfs_lookup_csums_range(csum_root,
2985                                                extent_logical,
2986                                                extent_logical + extent_len - 1,
2987                                                &sctx->csum_list, 1);
2988                        if (ret)
2989                                goto out;
2990
2991                        ret = scrub_extent_for_parity(sparity, extent_logical,
2992                                                      extent_len,
2993                                                      extent_physical,
2994                                                      extent_dev, flags,
2995                                                      generation,
2996                                                      extent_mirror_num);
2997
2998                        scrub_free_csums(sctx);
2999
3000                        if (ret)
3001                                goto out;
3002
3003                        if (extent_logical + extent_len <
3004                            key.objectid + bytes) {
3005                                logic_start += map->stripe_len;
3006
3007                                if (logic_start >= logic_end) {
3008                                        stop_loop = 1;
3009                                        break;
3010                                }
3011
3012                                if (logic_start < key.objectid + bytes) {
3013                                        cond_resched();
3014                                        goto again;
3015                                }
3016                        }
3017next:
3018                        path->slots[0]++;
3019                }
3020
3021                btrfs_release_path(path);
3022
3023                if (stop_loop)
3024                        break;
3025
3026                logic_start += map->stripe_len;
3027        }
3028out:
3029        if (ret < 0)
3030                scrub_parity_mark_sectors_error(sparity, logic_start,
3031                                                logic_end - logic_start);
3032        scrub_parity_put(sparity);
3033        scrub_submit(sctx);
3034        mutex_lock(&sctx->wr_lock);
3035        scrub_wr_submit(sctx);
3036        mutex_unlock(&sctx->wr_lock);
3037
3038        btrfs_release_path(path);
3039        return ret < 0 ? ret : 0;
3040}
3041
3042static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3043                                           struct map_lookup *map,
3044                                           struct btrfs_device *scrub_dev,
3045                                           int num, u64 base, u64 length)
3046{
3047        struct btrfs_path *path, *ppath;
3048        struct btrfs_fs_info *fs_info = sctx->fs_info;
3049        struct btrfs_root *root = fs_info->extent_root;
3050        struct btrfs_root *csum_root = fs_info->csum_root;
3051        struct btrfs_extent_item *extent;
3052        struct blk_plug plug;
3053        u64 flags;
3054        int ret;
3055        int slot;
3056        u64 nstripes;
3057        struct extent_buffer *l;
3058        u64 physical;
3059        u64 logical;
3060        u64 logic_end;
3061        u64 physical_end;
3062        u64 generation;
3063        int mirror_num;
3064        struct reada_control *reada1;
3065        struct reada_control *reada2;
3066        struct btrfs_key key;
3067        struct btrfs_key key_end;
3068        u64 increment = map->stripe_len;
3069        u64 offset;
3070        u64 extent_logical;
3071        u64 extent_physical;
3072        u64 extent_len;
3073        u64 stripe_logical;
3074        u64 stripe_end;
3075        struct btrfs_device *extent_dev;
3076        int extent_mirror_num;
3077        int stop_loop = 0;
3078
3079        physical = map->stripes[num].physical;
3080        offset = 0;
3081        nstripes = div64_u64(length, map->stripe_len);
3082        if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3083                offset = map->stripe_len * num;
3084                increment = map->stripe_len * map->num_stripes;
3085                mirror_num = 1;
3086        } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3087                int factor = map->num_stripes / map->sub_stripes;
3088                offset = map->stripe_len * (num / map->sub_stripes);
3089                increment = map->stripe_len * factor;
3090                mirror_num = num % map->sub_stripes + 1;
3091        } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
3092                increment = map->stripe_len;
3093                mirror_num = num % map->num_stripes + 1;
3094        } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3095                increment = map->stripe_len;
3096                mirror_num = num % map->num_stripes + 1;
3097        } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3098                get_raid56_logic_offset(physical, num, map, &offset, NULL);
3099                increment = map->stripe_len * nr_data_stripes(map);
3100                mirror_num = 1;
3101        } else {
3102                increment = map->stripe_len;
3103                mirror_num = 1;
3104        }
3105
3106        path = btrfs_alloc_path();
3107        if (!path)
3108                return -ENOMEM;
3109
3110        ppath = btrfs_alloc_path();
3111        if (!ppath) {
3112                btrfs_free_path(path);
3113                return -ENOMEM;
3114        }
3115
3116        /*
3117         * work on commit root. The related disk blocks are static as
3118         * long as COW is applied. This means, it is save to rewrite
3119         * them to repair disk errors without any race conditions
3120         */
3121        path->search_commit_root = 1;
3122        path->skip_locking = 1;
3123
3124        ppath->search_commit_root = 1;
3125        ppath->skip_locking = 1;
3126        /*
3127         * trigger the readahead for extent tree csum tree and wait for
3128         * completion. During readahead, the scrub is officially paused
3129         * to not hold off transaction commits
3130         */
3131        logical = base + offset;
3132        physical_end = physical + nstripes * map->stripe_len;
3133        if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3134                get_raid56_logic_offset(physical_end, num,
3135                                        map, &logic_end, NULL);
3136                logic_end += base;
3137        } else {
3138                logic_end = logical + increment * nstripes;
3139        }
3140        wait_event(sctx->list_wait,
3141                   atomic_read(&sctx->bios_in_flight) == 0);
3142        scrub_blocked_if_needed(fs_info);
3143
3144        /* FIXME it might be better to start readahead at commit root */
3145        key.objectid = logical;
3146        key.type = BTRFS_EXTENT_ITEM_KEY;
3147        key.offset = (u64)0;
3148        key_end.objectid = logic_end;
3149        key_end.type = BTRFS_METADATA_ITEM_KEY;
3150        key_end.offset = (u64)-1;
3151        reada1 = btrfs_reada_add(root, &key, &key_end);
3152
3153        key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3154        key.type = BTRFS_EXTENT_CSUM_KEY;
3155        key.offset = logical;
3156        key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3157        key_end.type = BTRFS_EXTENT_CSUM_KEY;
3158        key_end.offset = logic_end;
3159        reada2 = btrfs_reada_add(csum_root, &key, &key_end);
3160
3161        if (!IS_ERR(reada1))
3162                btrfs_reada_wait(reada1);
3163        if (!IS_ERR(reada2))
3164                btrfs_reada_wait(reada2);
3165
3166
3167        /*
3168         * collect all data csums for the stripe to avoid seeking during
3169         * the scrub. This might currently (crc32) end up to be about 1MB
3170         */
3171        blk_start_plug(&plug);
3172
3173        /*
3174         * now find all extents for each stripe and scrub them
3175         */
3176        ret = 0;
3177        while (physical < physical_end) {
3178                /*
3179                 * canceled?
3180                 */
3181                if (atomic_read(&fs_info->scrub_cancel_req) ||
3182                    atomic_read(&sctx->cancel_req)) {
3183                        ret = -ECANCELED;
3184                        goto out;
3185                }
3186                /*
3187                 * check to see if we have to pause
3188                 */
3189                if (atomic_read(&fs_info->scrub_pause_req)) {
3190                        /* push queued extents */
3191                        sctx->flush_all_writes = true;
3192                        scrub_submit(sctx);
3193                        mutex_lock(&sctx->wr_lock);
3194                        scrub_wr_submit(sctx);
3195                        mutex_unlock(&sctx->wr_lock);
3196                        wait_event(sctx->list_wait,
3197                                   atomic_read(&sctx->bios_in_flight) == 0);
3198                        sctx->flush_all_writes = false;
3199                        scrub_blocked_if_needed(fs_info);
3200                }
3201
3202                if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3203                        ret = get_raid56_logic_offset(physical, num, map,
3204                                                      &logical,
3205                                                      &stripe_logical);
3206                        logical += base;
3207                        if (ret) {
3208                                /* it is parity strip */
3209                                stripe_logical += base;
3210                                stripe_end = stripe_logical + increment;
3211                                ret = scrub_raid56_parity(sctx, map, scrub_dev,
3212                                                          ppath, stripe_logical,
3213                                                          stripe_end);
3214                                if (ret)
3215                                        goto out;
3216                                goto skip;
3217                        }
3218                }
3219
3220                if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3221                        key.type = BTRFS_METADATA_ITEM_KEY;
3222                else
3223                        key.type = BTRFS_EXTENT_ITEM_KEY;
3224                key.objectid = logical;
3225                key.offset = (u64)-1;
3226
3227                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3228                if (ret < 0)
3229                        goto out;
3230
3231                if (ret > 0) {
3232                        ret = btrfs_previous_extent_item(root, path, 0);
3233                        if (ret < 0)
3234                                goto out;
3235                        if (ret > 0) {
3236                                /* there's no smaller item, so stick with the
3237                                 * larger one */
3238                                btrfs_release_path(path);
3239                                ret = btrfs_search_slot(NULL, root, &key,
3240                                                        path, 0, 0);
3241                                if (ret < 0)
3242                                        goto out;
3243                        }
3244                }
3245
3246                stop_loop = 0;
3247                while (1) {
3248                        u64 bytes;
3249
3250                        l = path->nodes[0];
3251                        slot = path->slots[0];
3252                        if (slot >= btrfs_header_nritems(l)) {
3253                                ret = btrfs_next_leaf(root, path);
3254                                if (ret == 0)
3255                                        continue;
3256                                if (ret < 0)
3257                                        goto out;
3258
3259                                stop_loop = 1;
3260                                break;
3261                        }
3262                        btrfs_item_key_to_cpu(l, &key, slot);
3263
3264                        if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3265                            key.type != BTRFS_METADATA_ITEM_KEY)
3266                                goto next;
3267
3268                        if (key.type == BTRFS_METADATA_ITEM_KEY)
3269                                bytes = fs_info->nodesize;
3270                        else
3271                                bytes = key.offset;
3272
3273                        if (key.objectid + bytes <= logical)
3274                                goto next;
3275
3276                        if (key.objectid >= logical + map->stripe_len) {
3277                                /* out of this device extent */
3278                                if (key.objectid >= logic_end)
3279                                        stop_loop = 1;
3280                                break;
3281                        }
3282
3283                        extent = btrfs_item_ptr(l, slot,
3284                                                struct btrfs_extent_item);
3285                        flags = btrfs_extent_flags(l, extent);
3286                        generation = btrfs_extent_generation(l, extent);
3287
3288                        if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3289                            (key.objectid < logical ||
3290                             key.objectid + bytes >
3291                             logical + map->stripe_len)) {
3292                                btrfs_err(fs_info,
3293                                           "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3294                                       key.objectid, logical);
3295                                spin_lock(&sctx->stat_lock);
3296                                sctx->stat.uncorrectable_errors++;
3297                                spin_unlock(&sctx->stat_lock);
3298                                goto next;
3299                        }
3300
3301again:
3302                        extent_logical = key.objectid;
3303                        extent_len = bytes;
3304
3305                        /*
3306                         * trim extent to this stripe
3307                         */
3308                        if (extent_logical < logical) {
3309                                extent_len -= logical - extent_logical;
3310                                extent_logical = logical;
3311                        }
3312                        if (extent_logical + extent_len >
3313                            logical + map->stripe_len) {
3314                                extent_len = logical + map->stripe_len -
3315                                             extent_logical;
3316                        }
3317
3318                        extent_physical = extent_logical - logical + physical;
3319                        extent_dev = scrub_dev;
3320                        extent_mirror_num = mirror_num;
3321                        if (sctx->is_dev_replace)
3322                                scrub_remap_extent(fs_info, extent_logical,
3323                                                   extent_len, &extent_physical,
3324                                                   &extent_dev,
3325                                                   &extent_mirror_num);
3326
3327                        ret = btrfs_lookup_csums_range(csum_root,
3328                                                       extent_logical,
3329                                                       extent_logical +
3330                                                       extent_len - 1,
3331                                                       &sctx->csum_list, 1);
3332                        if (ret)
3333                                goto out;
3334
3335                        ret = scrub_extent(sctx, map, extent_logical, extent_len,
3336                                           extent_physical, extent_dev, flags,
3337                                           generation, extent_mirror_num,
3338                                           extent_logical - logical + physical);
3339
3340                        scrub_free_csums(sctx);
3341
3342                        if (ret)
3343                                goto out;
3344
3345                        if (extent_logical + extent_len <
3346                            key.objectid + bytes) {
3347                                if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3348                                        /*
3349                                         * loop until we find next data stripe
3350                                         * or we have finished all stripes.
3351                                         */
3352loop:
3353                                        physical += map->stripe_len;
3354                                        ret = get_raid56_logic_offset(physical,
3355                                                        num, map, &logical,
3356                                                        &stripe_logical);
3357                                        logical += base;
3358
3359                                        if (ret && physical < physical_end) {
3360                                                stripe_logical += base;
3361                                                stripe_end = stripe_logical +
3362                                                                increment;
3363                                                ret = scrub_raid56_parity(sctx,
3364                                                        map, scrub_dev, ppath,
3365                                                        stripe_logical,
3366                                                        stripe_end);
3367                                                if (ret)
3368                                                        goto out;
3369                                                goto loop;
3370                                        }
3371                                } else {
3372                                        physical += map->stripe_len;
3373                                        logical += increment;
3374                                }
3375                                if (logical < key.objectid + bytes) {
3376                                        cond_resched();
3377                                        goto again;
3378                                }
3379
3380                                if (physical >= physical_end) {
3381                                        stop_loop = 1;
3382                                        break;
3383                                }
3384                        }
3385next:
3386                        path->slots[0]++;
3387                }
3388                btrfs_release_path(path);
3389skip:
3390                logical += increment;
3391                physical += map->stripe_len;
3392                spin_lock(&sctx->stat_lock);
3393                if (stop_loop)
3394                        sctx->stat.last_physical = map->stripes[num].physical +
3395                                                   length;
3396                else
3397                        sctx->stat.last_physical = physical;
3398                spin_unlock(&sctx->stat_lock);
3399                if (stop_loop)
3400                        break;
3401        }
3402out:
3403        /* push queued extents */
3404        scrub_submit(sctx);
3405        mutex_lock(&sctx->wr_lock);
3406        scrub_wr_submit(sctx);
3407        mutex_unlock(&sctx->wr_lock);
3408
3409        blk_finish_plug(&plug);
3410        btrfs_free_path(path);
3411        btrfs_free_path(ppath);
3412        return ret < 0 ? ret : 0;
3413}
3414
3415static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3416                                          struct btrfs_device *scrub_dev,
3417                                          u64 chunk_offset, u64 length,
3418                                          u64 dev_offset,
3419                                          struct btrfs_block_group *cache)
3420{
3421        struct btrfs_fs_info *fs_info = sctx->fs_info;
3422        struct extent_map_tree *map_tree = &fs_info->mapping_tree;
3423        struct map_lookup *map;
3424        struct extent_map *em;
3425        int i;
3426        int ret = 0;
3427
3428        read_lock(&map_tree->lock);
3429        em = lookup_extent_mapping(map_tree, chunk_offset, 1);
3430        read_unlock(&map_tree->lock);
3431
3432        if (!em) {
3433                /*
3434                 * Might have been an unused block group deleted by the cleaner
3435                 * kthread or relocation.
3436                 */
3437                spin_lock(&cache->lock);
3438                if (!cache->removed)
3439                        ret = -EINVAL;
3440                spin_unlock(&cache->lock);
3441
3442                return ret;
3443        }
3444
3445        map = em->map_lookup;
3446        if (em->start != chunk_offset)
3447                goto out;
3448
3449        if (em->len < length)
3450                goto out;
3451
3452        for (i = 0; i < map->num_stripes; ++i) {
3453                if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3454                    map->stripes[i].physical == dev_offset) {
3455                        ret = scrub_stripe(sctx, map, scrub_dev, i,
3456                                           chunk_offset, length);
3457                        if (ret)
3458                                goto out;
3459                }
3460        }
3461out:
3462        free_extent_map(em);
3463
3464        return ret;
3465}
3466
3467static noinline_for_stack
3468int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3469                           struct btrfs_device *scrub_dev, u64 start, u64 end)
3470{
3471        struct btrfs_dev_extent *dev_extent = NULL;
3472        struct btrfs_path *path;
3473        struct btrfs_fs_info *fs_info = sctx->fs_info;
3474        struct btrfs_root *root = fs_info->dev_root;
3475        u64 length;
3476        u64 chunk_offset;
3477        int ret = 0;
3478        int ro_set;
3479        int slot;
3480        struct extent_buffer *l;
3481        struct btrfs_key key;
3482        struct btrfs_key found_key;
3483        struct btrfs_block_group *cache;
3484        struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
3485
3486        path = btrfs_alloc_path();
3487        if (!path)
3488                return -ENOMEM;
3489
3490        path->reada = READA_FORWARD;
3491        path->search_commit_root = 1;
3492        path->skip_locking = 1;
3493
3494        key.objectid = scrub_dev->devid;
3495        key.offset = 0ull;
3496        key.type = BTRFS_DEV_EXTENT_KEY;
3497
3498        while (1) {
3499                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3500                if (ret < 0)
3501                        break;
3502                if (ret > 0) {
3503                        if (path->slots[0] >=
3504                            btrfs_header_nritems(path->nodes[0])) {
3505                                ret = btrfs_next_leaf(root, path);
3506                                if (ret < 0)
3507                                        break;
3508                                if (ret > 0) {
3509                                        ret = 0;
3510                                        break;
3511                                }
3512                        } else {
3513                                ret = 0;
3514                        }
3515                }
3516
3517                l = path->nodes[0];
3518                slot = path->slots[0];
3519
3520                btrfs_item_key_to_cpu(l, &found_key, slot);
3521
3522                if (found_key.objectid != scrub_dev->devid)
3523                        break;
3524
3525                if (found_key.type != BTRFS_DEV_EXTENT_KEY)
3526                        break;
3527
3528                if (found_key.offset >= end)
3529                        break;
3530
3531                if (found_key.offset < key.offset)
3532                        break;
3533
3534                dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3535                length = btrfs_dev_extent_length(l, dev_extent);
3536
3537                if (found_key.offset + length <= start)
3538                        goto skip;
3539
3540                chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3541
3542                /*
3543                 * get a reference on the corresponding block group to prevent
3544                 * the chunk from going away while we scrub it
3545                 */
3546                cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3547
3548                /* some chunks are removed but not committed to disk yet,
3549                 * continue scrubbing */
3550                if (!cache)
3551                        goto skip;
3552
3553                /*
3554                 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3555                 * to avoid deadlock caused by:
3556                 * btrfs_inc_block_group_ro()
3557                 * -> btrfs_wait_for_commit()
3558                 * -> btrfs_commit_transaction()
3559                 * -> btrfs_scrub_pause()
3560                 */
3561                scrub_pause_on(fs_info);
3562
3563                /*
3564                 * Don't do chunk preallocation for scrub.
3565                 *
3566                 * This is especially important for SYSTEM bgs, or we can hit
3567                 * -EFBIG from btrfs_finish_chunk_alloc() like:
3568                 * 1. The only SYSTEM bg is marked RO.
3569                 *    Since SYSTEM bg is small, that's pretty common.
3570                 * 2. New SYSTEM bg will be allocated
3571                 *    Due to regular version will allocate new chunk.
3572                 * 3. New SYSTEM bg is empty and will get cleaned up
3573                 *    Before cleanup really happens, it's marked RO again.
3574                 * 4. Empty SYSTEM bg get scrubbed
3575                 *    We go back to 2.
3576                 *
3577                 * This can easily boost the amount of SYSTEM chunks if cleaner
3578                 * thread can't be triggered fast enough, and use up all space
3579                 * of btrfs_super_block::sys_chunk_array
3580                 *
3581                 * While for dev replace, we need to try our best to mark block
3582                 * group RO, to prevent race between:
3583                 * - Write duplication
3584                 *   Contains latest data
3585                 * - Scrub copy
3586                 *   Contains data from commit tree
3587                 *
3588                 * If target block group is not marked RO, nocow writes can
3589                 * be overwritten by scrub copy, causing data corruption.
3590                 * So for dev-replace, it's not allowed to continue if a block
3591                 * group is not RO.
3592                 */
3593                ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
3594                if (ret == 0) {
3595                        ro_set = 1;
3596                } else if (ret == -ENOSPC && !sctx->is_dev_replace) {
3597                        /*
3598                         * btrfs_inc_block_group_ro return -ENOSPC when it
3599                         * failed in creating new chunk for metadata.
3600                         * It is not a problem for scrub, because
3601                         * metadata are always cowed, and our scrub paused
3602                         * commit_transactions.
3603                         */
3604                        ro_set = 0;
3605                } else {
3606                        btrfs_warn(fs_info,
3607                                   "failed setting block group ro: %d", ret);
3608                        btrfs_put_block_group(cache);
3609                        scrub_pause_off(fs_info);
3610                        break;
3611                }
3612
3613                /*
3614                 * Now the target block is marked RO, wait for nocow writes to
3615                 * finish before dev-replace.
3616                 * COW is fine, as COW never overwrites extents in commit tree.
3617                 */
3618                if (sctx->is_dev_replace) {
3619                        btrfs_wait_nocow_writers(cache);
3620                        btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start,
3621                                        cache->length);
3622                }
3623
3624                scrub_pause_off(fs_info);
3625                down_write(&dev_replace->rwsem);
3626                dev_replace->cursor_right = found_key.offset + length;
3627                dev_replace->cursor_left = found_key.offset;
3628                dev_replace->item_needs_writeback = 1;
3629                up_write(&dev_replace->rwsem);
3630
3631                ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
3632                                  found_key.offset, cache);
3633
3634                /*
3635                 * flush, submit all pending read and write bios, afterwards
3636                 * wait for them.
3637                 * Note that in the dev replace case, a read request causes
3638                 * write requests that are submitted in the read completion
3639                 * worker. Therefore in the current situation, it is required
3640                 * that all write requests are flushed, so that all read and
3641                 * write requests are really completed when bios_in_flight
3642                 * changes to 0.
3643                 */
3644                sctx->flush_all_writes = true;
3645                scrub_submit(sctx);
3646                mutex_lock(&sctx->wr_lock);
3647                scrub_wr_submit(sctx);
3648                mutex_unlock(&sctx->wr_lock);
3649
3650                wait_event(sctx->list_wait,
3651                           atomic_read(&sctx->bios_in_flight) == 0);
3652
3653                scrub_pause_on(fs_info);
3654
3655                /*
3656                 * must be called before we decrease @scrub_paused.
3657                 * make sure we don't block transaction commit while
3658                 * we are waiting pending workers finished.
3659                 */
3660                wait_event(sctx->list_wait,
3661                           atomic_read(&sctx->workers_pending) == 0);
3662                sctx->flush_all_writes = false;
3663
3664                scrub_pause_off(fs_info);
3665
3666                down_write(&dev_replace->rwsem);
3667                dev_replace->cursor_left = dev_replace->cursor_right;
3668                dev_replace->item_needs_writeback = 1;
3669                up_write(&dev_replace->rwsem);
3670
3671                if (ro_set)
3672                        btrfs_dec_block_group_ro(cache);
3673
3674                /*
3675                 * We might have prevented the cleaner kthread from deleting
3676                 * this block group if it was already unused because we raced
3677                 * and set it to RO mode first. So add it back to the unused
3678                 * list, otherwise it might not ever be deleted unless a manual
3679                 * balance is triggered or it becomes used and unused again.
3680                 */
3681                spin_lock(&cache->lock);
3682                if (!cache->removed && !cache->ro && cache->reserved == 0 &&
3683                    cache->used == 0) {
3684                        spin_unlock(&cache->lock);
3685                        btrfs_mark_bg_unused(cache);
3686                } else {
3687                        spin_unlock(&cache->lock);
3688                }
3689
3690                btrfs_put_block_group(cache);
3691                if (ret)
3692                        break;
3693                if (sctx->is_dev_replace &&
3694                    atomic64_read(&dev_replace->num_write_errors) > 0) {
3695                        ret = -EIO;
3696                        break;
3697                }
3698                if (sctx->stat.malloc_errors > 0) {
3699                        ret = -ENOMEM;
3700                        break;
3701                }
3702skip:
3703                key.offset = found_key.offset + length;
3704                btrfs_release_path(path);
3705        }
3706
3707        btrfs_free_path(path);
3708
3709        return ret;
3710}
3711
3712static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
3713                                           struct btrfs_device *scrub_dev)
3714{
3715        int     i;
3716        u64     bytenr;
3717        u64     gen;
3718        int     ret;
3719        struct btrfs_fs_info *fs_info = sctx->fs_info;
3720
3721        if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3722                return -EIO;
3723
3724        /* Seed devices of a new filesystem has their own generation. */
3725        if (scrub_dev->fs_devices != fs_info->fs_devices)
3726                gen = scrub_dev->generation;
3727        else
3728                gen = fs_info->last_trans_committed;
3729
3730        for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
3731                bytenr = btrfs_sb_offset(i);
3732                if (bytenr + BTRFS_SUPER_INFO_SIZE >
3733                    scrub_dev->commit_total_bytes)
3734                        break;
3735
3736                ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
3737                                  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
3738                                  NULL, 1, bytenr);
3739                if (ret)
3740                        return ret;
3741        }
3742        wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3743
3744        return 0;
3745}
3746
3747/*
3748 * get a reference count on fs_info->scrub_workers. start worker if necessary
3749 */
3750static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
3751                                                int is_dev_replace)
3752{
3753        unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
3754        int max_active = fs_info->thread_pool_size;
3755
3756        lockdep_assert_held(&fs_info->scrub_lock);
3757
3758        if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
3759                ASSERT(fs_info->scrub_workers == NULL);
3760                fs_info->scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub",
3761                                flags, is_dev_replace ? 1 : max_active, 4);
3762                if (!fs_info->scrub_workers)
3763                        goto fail_scrub_workers;
3764
3765                ASSERT(fs_info->scrub_wr_completion_workers == NULL);
3766                fs_info->scrub_wr_completion_workers =
3767                        btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
3768                                              max_active, 2);
3769                if (!fs_info->scrub_wr_completion_workers)
3770                        goto fail_scrub_wr_completion_workers;
3771
3772                ASSERT(fs_info->scrub_parity_workers == NULL);
3773                fs_info->scrub_parity_workers =
3774                        btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
3775                                              max_active, 2);
3776                if (!fs_info->scrub_parity_workers)
3777                        goto fail_scrub_parity_workers;
3778
3779                refcount_set(&fs_info->scrub_workers_refcnt, 1);
3780        } else {
3781                refcount_inc(&fs_info->scrub_workers_refcnt);
3782        }
3783        return 0;
3784
3785fail_scrub_parity_workers:
3786        btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
3787fail_scrub_wr_completion_workers:
3788        btrfs_destroy_workqueue(fs_info->scrub_workers);
3789fail_scrub_workers:
3790        return -ENOMEM;
3791}
3792
3793int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
3794                    u64 end, struct btrfs_scrub_progress *progress,
3795                    int readonly, int is_dev_replace)
3796{
3797        struct scrub_ctx *sctx;
3798        int ret;
3799        struct btrfs_device *dev;
3800        unsigned int nofs_flag;
3801        struct btrfs_workqueue *scrub_workers = NULL;
3802        struct btrfs_workqueue *scrub_wr_comp = NULL;
3803        struct btrfs_workqueue *scrub_parity = NULL;
3804
3805        if (btrfs_fs_closing(fs_info))
3806                return -EAGAIN;
3807
3808        if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
3809                /*
3810                 * in this case scrub is unable to calculate the checksum
3811                 * the way scrub is implemented. Do not handle this
3812                 * situation at all because it won't ever happen.
3813                 */
3814                btrfs_err(fs_info,
3815                           "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
3816                       fs_info->nodesize,
3817                       BTRFS_STRIPE_LEN);
3818                return -EINVAL;
3819        }
3820
3821        if (fs_info->sectorsize != PAGE_SIZE) {
3822                /* not supported for data w/o checksums */
3823                btrfs_err_rl(fs_info,
3824                           "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails",
3825                       fs_info->sectorsize, PAGE_SIZE);
3826                return -EINVAL;
3827        }
3828
3829        if (fs_info->nodesize >
3830            PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
3831            fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
3832                /*
3833                 * would exhaust the array bounds of pagev member in
3834                 * struct scrub_block
3835                 */
3836                btrfs_err(fs_info,
3837                          "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
3838                       fs_info->nodesize,
3839                       SCRUB_MAX_PAGES_PER_BLOCK,
3840                       fs_info->sectorsize,
3841                       SCRUB_MAX_PAGES_PER_BLOCK);
3842                return -EINVAL;
3843        }
3844
3845        /* Allocate outside of device_list_mutex */
3846        sctx = scrub_setup_ctx(fs_info, is_dev_replace);
3847        if (IS_ERR(sctx))
3848                return PTR_ERR(sctx);
3849
3850        mutex_lock(&fs_info->fs_devices->device_list_mutex);
3851        dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
3852        if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
3853                     !is_dev_replace)) {
3854                mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3855                ret = -ENODEV;
3856                goto out_free_ctx;
3857        }
3858
3859        if (!is_dev_replace && !readonly &&
3860            !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
3861                mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3862                btrfs_err_in_rcu(fs_info, "scrub: device %s is not writable",
3863                                rcu_str_deref(dev->name));
3864                ret = -EROFS;
3865                goto out_free_ctx;
3866        }
3867
3868        mutex_lock(&fs_info->scrub_lock);
3869        if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3870            test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
3871                mutex_unlock(&fs_info->scrub_lock);
3872                mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3873                ret = -EIO;
3874                goto out_free_ctx;
3875        }
3876
3877        down_read(&fs_info->dev_replace.rwsem);
3878        if (dev->scrub_ctx ||
3879            (!is_dev_replace &&
3880             btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
3881                up_read(&fs_info->dev_replace.rwsem);
3882                mutex_unlock(&fs_info->scrub_lock);
3883                mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3884                ret = -EINPROGRESS;
3885                goto out_free_ctx;
3886        }
3887        up_read(&fs_info->dev_replace.rwsem);
3888
3889        ret = scrub_workers_get(fs_info, is_dev_replace);
3890        if (ret) {
3891                mutex_unlock(&fs_info->scrub_lock);
3892                mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3893                goto out_free_ctx;
3894        }
3895
3896        sctx->readonly = readonly;
3897        dev->scrub_ctx = sctx;
3898        mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3899
3900        /*
3901         * checking @scrub_pause_req here, we can avoid
3902         * race between committing transaction and scrubbing.
3903         */
3904        __scrub_blocked_if_needed(fs_info);
3905        atomic_inc(&fs_info->scrubs_running);
3906        mutex_unlock(&fs_info->scrub_lock);
3907
3908        /*
3909         * In order to avoid deadlock with reclaim when there is a transaction
3910         * trying to pause scrub, make sure we use GFP_NOFS for all the
3911         * allocations done at btrfs_scrub_pages() and scrub_pages_for_parity()
3912         * invoked by our callees. The pausing request is done when the
3913         * transaction commit starts, and it blocks the transaction until scrub
3914         * is paused (done at specific points at scrub_stripe() or right above
3915         * before incrementing fs_info->scrubs_running).
3916         */
3917        nofs_flag = memalloc_nofs_save();
3918        if (!is_dev_replace) {
3919                btrfs_info(fs_info, "scrub: started on devid %llu", devid);
3920                /*
3921                 * by holding device list mutex, we can
3922                 * kick off writing super in log tree sync.
3923                 */
3924                mutex_lock(&fs_info->fs_devices->device_list_mutex);
3925                ret = scrub_supers(sctx, dev);
3926                mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3927        }
3928
3929        if (!ret)
3930                ret = scrub_enumerate_chunks(sctx, dev, start, end);
3931        memalloc_nofs_restore(nofs_flag);
3932
3933        wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3934        atomic_dec(&fs_info->scrubs_running);
3935        wake_up(&fs_info->scrub_pause_wait);
3936
3937        wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
3938
3939        if (progress)
3940                memcpy(progress, &sctx->stat, sizeof(*progress));
3941
3942        if (!is_dev_replace)
3943                btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
3944                        ret ? "not finished" : "finished", devid, ret);
3945
3946        mutex_lock(&fs_info->scrub_lock);
3947        dev->scrub_ctx = NULL;
3948        if (refcount_dec_and_test(&fs_info->scrub_workers_refcnt)) {
3949                scrub_workers = fs_info->scrub_workers;
3950                scrub_wr_comp = fs_info->scrub_wr_completion_workers;
3951                scrub_parity = fs_info->scrub_parity_workers;
3952
3953                fs_info->scrub_workers = NULL;
3954                fs_info->scrub_wr_completion_workers = NULL;
3955                fs_info->scrub_parity_workers = NULL;
3956        }
3957        mutex_unlock(&fs_info->scrub_lock);
3958
3959        btrfs_destroy_workqueue(scrub_workers);
3960        btrfs_destroy_workqueue(scrub_wr_comp);
3961        btrfs_destroy_workqueue(scrub_parity);
3962        scrub_put_ctx(sctx);
3963
3964        return ret;
3965
3966out_free_ctx:
3967        scrub_free_ctx(sctx);
3968
3969        return ret;
3970}
3971
3972void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
3973{
3974        mutex_lock(&fs_info->scrub_lock);
3975        atomic_inc(&fs_info->scrub_pause_req);
3976        while (atomic_read(&fs_info->scrubs_paused) !=
3977               atomic_read(&fs_info->scrubs_running)) {
3978                mutex_unlock(&fs_info->scrub_lock);
3979                wait_event(fs_info->scrub_pause_wait,
3980                           atomic_read(&fs_info->scrubs_paused) ==
3981                           atomic_read(&fs_info->scrubs_running));
3982                mutex_lock(&fs_info->scrub_lock);
3983        }
3984        mutex_unlock(&fs_info->scrub_lock);
3985}
3986
3987void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
3988{
3989        atomic_dec(&fs_info->scrub_pause_req);
3990        wake_up(&fs_info->scrub_pause_wait);
3991}
3992
3993int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
3994{
3995        mutex_lock(&fs_info->scrub_lock);
3996        if (!atomic_read(&fs_info->scrubs_running)) {
3997                mutex_unlock(&fs_info->scrub_lock);
3998                return -ENOTCONN;
3999        }
4000
4001        atomic_inc(&fs_info->scrub_cancel_req);
4002        while (atomic_read(&fs_info->scrubs_running)) {
4003                mutex_unlock(&fs_info->scrub_lock);
4004                wait_event(fs_info->scrub_pause_wait,
4005                           atomic_read(&fs_info->scrubs_running) == 0);
4006                mutex_lock(&fs_info->scrub_lock);
4007        }
4008        atomic_dec(&fs_info->scrub_cancel_req);
4009        mutex_unlock(&fs_info->scrub_lock);
4010
4011        return 0;
4012}
4013
4014int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
4015{
4016        struct btrfs_fs_info *fs_info = dev->fs_info;
4017        struct scrub_ctx *sctx;
4018
4019        mutex_lock(&fs_info->scrub_lock);
4020        sctx = dev->scrub_ctx;
4021        if (!sctx) {
4022                mutex_unlock(&fs_info->scrub_lock);
4023                return -ENOTCONN;
4024        }
4025        atomic_inc(&sctx->cancel_req);
4026        while (dev->scrub_ctx) {
4027                mutex_unlock(&fs_info->scrub_lock);
4028                wait_event(fs_info->scrub_pause_wait,
4029                           dev->scrub_ctx == NULL);
4030                mutex_lock(&fs_info->scrub_lock);
4031        }
4032        mutex_unlock(&fs_info->scrub_lock);
4033
4034        return 0;
4035}
4036
4037int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
4038                         struct btrfs_scrub_progress *progress)
4039{
4040        struct btrfs_device *dev;
4041        struct scrub_ctx *sctx = NULL;
4042
4043        mutex_lock(&fs_info->fs_devices->device_list_mutex);
4044        dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
4045        if (dev)
4046                sctx = dev->scrub_ctx;
4047        if (sctx)
4048                memcpy(progress, &sctx->stat, sizeof(*progress));
4049        mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4050
4051        return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
4052}
4053
4054static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
4055                               u64 extent_logical, u64 extent_len,
4056                               u64 *extent_physical,
4057                               struct btrfs_device **extent_dev,
4058                               int *extent_mirror_num)
4059{
4060        u64 mapped_length;
4061        struct btrfs_bio *bbio = NULL;
4062        int ret;
4063
4064        mapped_length = extent_len;
4065        ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4066                              &mapped_length, &bbio, 0);
4067        if (ret || !bbio || mapped_length < extent_len ||
4068            !bbio->stripes[0].dev->bdev) {
4069                btrfs_put_bbio(bbio);
4070                return;
4071        }
4072
4073        *extent_physical = bbio->stripes[0].physical;
4074        *extent_mirror_num = bbio->mirror_num;
4075        *extent_dev = bbio->stripes[0].dev;
4076        btrfs_put_bbio(bbio);
4077}
4078