linux/fs/buffer.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/fs/buffer.c
   4 *
   5 *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
   6 */
   7
   8/*
   9 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
  10 *
  11 * Removed a lot of unnecessary code and simplified things now that
  12 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
  13 *
  14 * Speed up hash, lru, and free list operations.  Use gfp() for allocating
  15 * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
  16 *
  17 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
  18 *
  19 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
  20 */
  21
  22#include <linux/kernel.h>
  23#include <linux/sched/signal.h>
  24#include <linux/syscalls.h>
  25#include <linux/fs.h>
  26#include <linux/iomap.h>
  27#include <linux/mm.h>
  28#include <linux/percpu.h>
  29#include <linux/slab.h>
  30#include <linux/capability.h>
  31#include <linux/blkdev.h>
  32#include <linux/file.h>
  33#include <linux/quotaops.h>
  34#include <linux/highmem.h>
  35#include <linux/export.h>
  36#include <linux/backing-dev.h>
  37#include <linux/writeback.h>
  38#include <linux/hash.h>
  39#include <linux/suspend.h>
  40#include <linux/buffer_head.h>
  41#include <linux/task_io_accounting_ops.h>
  42#include <linux/bio.h>
  43#include <linux/cpu.h>
  44#include <linux/bitops.h>
  45#include <linux/mpage.h>
  46#include <linux/bit_spinlock.h>
  47#include <linux/pagevec.h>
  48#include <linux/sched/mm.h>
  49#include <trace/events/block.h>
  50#include <linux/fscrypt.h>
  51
  52#include "internal.h"
  53
  54static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
  55static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
  56                         enum rw_hint hint, struct writeback_control *wbc);
  57
  58#define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
  59
  60inline void touch_buffer(struct buffer_head *bh)
  61{
  62        trace_block_touch_buffer(bh);
  63        mark_page_accessed(bh->b_page);
  64}
  65EXPORT_SYMBOL(touch_buffer);
  66
  67void __lock_buffer(struct buffer_head *bh)
  68{
  69        wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
  70}
  71EXPORT_SYMBOL(__lock_buffer);
  72
  73void unlock_buffer(struct buffer_head *bh)
  74{
  75        clear_bit_unlock(BH_Lock, &bh->b_state);
  76        smp_mb__after_atomic();
  77        wake_up_bit(&bh->b_state, BH_Lock);
  78}
  79EXPORT_SYMBOL(unlock_buffer);
  80
  81/*
  82 * Returns if the page has dirty or writeback buffers. If all the buffers
  83 * are unlocked and clean then the PageDirty information is stale. If
  84 * any of the pages are locked, it is assumed they are locked for IO.
  85 */
  86void buffer_check_dirty_writeback(struct page *page,
  87                                     bool *dirty, bool *writeback)
  88{
  89        struct buffer_head *head, *bh;
  90        *dirty = false;
  91        *writeback = false;
  92
  93        BUG_ON(!PageLocked(page));
  94
  95        if (!page_has_buffers(page))
  96                return;
  97
  98        if (PageWriteback(page))
  99                *writeback = true;
 100
 101        head = page_buffers(page);
 102        bh = head;
 103        do {
 104                if (buffer_locked(bh))
 105                        *writeback = true;
 106
 107                if (buffer_dirty(bh))
 108                        *dirty = true;
 109
 110                bh = bh->b_this_page;
 111        } while (bh != head);
 112}
 113EXPORT_SYMBOL(buffer_check_dirty_writeback);
 114
 115/*
 116 * Block until a buffer comes unlocked.  This doesn't stop it
 117 * from becoming locked again - you have to lock it yourself
 118 * if you want to preserve its state.
 119 */
 120void __wait_on_buffer(struct buffer_head * bh)
 121{
 122        wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
 123}
 124EXPORT_SYMBOL(__wait_on_buffer);
 125
 126static void
 127__clear_page_buffers(struct page *page)
 128{
 129        ClearPagePrivate(page);
 130        set_page_private(page, 0);
 131        put_page(page);
 132}
 133
 134static void buffer_io_error(struct buffer_head *bh, char *msg)
 135{
 136        if (!test_bit(BH_Quiet, &bh->b_state))
 137                printk_ratelimited(KERN_ERR
 138                        "Buffer I/O error on dev %pg, logical block %llu%s\n",
 139                        bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
 140}
 141
 142/*
 143 * End-of-IO handler helper function which does not touch the bh after
 144 * unlocking it.
 145 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
 146 * a race there is benign: unlock_buffer() only use the bh's address for
 147 * hashing after unlocking the buffer, so it doesn't actually touch the bh
 148 * itself.
 149 */
 150static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
 151{
 152        if (uptodate) {
 153                set_buffer_uptodate(bh);
 154        } else {
 155                /* This happens, due to failed read-ahead attempts. */
 156                clear_buffer_uptodate(bh);
 157        }
 158        unlock_buffer(bh);
 159}
 160
 161/*
 162 * Default synchronous end-of-IO handler..  Just mark it up-to-date and
 163 * unlock the buffer. This is what ll_rw_block uses too.
 164 */
 165void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
 166{
 167        __end_buffer_read_notouch(bh, uptodate);
 168        put_bh(bh);
 169}
 170EXPORT_SYMBOL(end_buffer_read_sync);
 171
 172void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
 173{
 174        if (uptodate) {
 175                set_buffer_uptodate(bh);
 176        } else {
 177                buffer_io_error(bh, ", lost sync page write");
 178                mark_buffer_write_io_error(bh);
 179                clear_buffer_uptodate(bh);
 180        }
 181        unlock_buffer(bh);
 182        put_bh(bh);
 183}
 184EXPORT_SYMBOL(end_buffer_write_sync);
 185
 186/*
 187 * Various filesystems appear to want __find_get_block to be non-blocking.
 188 * But it's the page lock which protects the buffers.  To get around this,
 189 * we get exclusion from try_to_free_buffers with the blockdev mapping's
 190 * private_lock.
 191 *
 192 * Hack idea: for the blockdev mapping, private_lock contention
 193 * may be quite high.  This code could TryLock the page, and if that
 194 * succeeds, there is no need to take private_lock.
 195 */
 196static struct buffer_head *
 197__find_get_block_slow(struct block_device *bdev, sector_t block)
 198{
 199        struct inode *bd_inode = bdev->bd_inode;
 200        struct address_space *bd_mapping = bd_inode->i_mapping;
 201        struct buffer_head *ret = NULL;
 202        pgoff_t index;
 203        struct buffer_head *bh;
 204        struct buffer_head *head;
 205        struct page *page;
 206        int all_mapped = 1;
 207        static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
 208
 209        index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
 210        page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
 211        if (!page)
 212                goto out;
 213
 214        spin_lock(&bd_mapping->private_lock);
 215        if (!page_has_buffers(page))
 216                goto out_unlock;
 217        head = page_buffers(page);
 218        bh = head;
 219        do {
 220                if (!buffer_mapped(bh))
 221                        all_mapped = 0;
 222                else if (bh->b_blocknr == block) {
 223                        ret = bh;
 224                        get_bh(bh);
 225                        goto out_unlock;
 226                }
 227                bh = bh->b_this_page;
 228        } while (bh != head);
 229
 230        /* we might be here because some of the buffers on this page are
 231         * not mapped.  This is due to various races between
 232         * file io on the block device and getblk.  It gets dealt with
 233         * elsewhere, don't buffer_error if we had some unmapped buffers
 234         */
 235        ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
 236        if (all_mapped && __ratelimit(&last_warned)) {
 237                printk("__find_get_block_slow() failed. block=%llu, "
 238                       "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
 239                       "device %pg blocksize: %d\n",
 240                       (unsigned long long)block,
 241                       (unsigned long long)bh->b_blocknr,
 242                       bh->b_state, bh->b_size, bdev,
 243                       1 << bd_inode->i_blkbits);
 244        }
 245out_unlock:
 246        spin_unlock(&bd_mapping->private_lock);
 247        put_page(page);
 248out:
 249        return ret;
 250}
 251
 252static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
 253{
 254        unsigned long flags;
 255        struct buffer_head *first;
 256        struct buffer_head *tmp;
 257        struct page *page;
 258        int page_uptodate = 1;
 259
 260        BUG_ON(!buffer_async_read(bh));
 261
 262        page = bh->b_page;
 263        if (uptodate) {
 264                set_buffer_uptodate(bh);
 265        } else {
 266                clear_buffer_uptodate(bh);
 267                buffer_io_error(bh, ", async page read");
 268                SetPageError(page);
 269        }
 270
 271        /*
 272         * Be _very_ careful from here on. Bad things can happen if
 273         * two buffer heads end IO at almost the same time and both
 274         * decide that the page is now completely done.
 275         */
 276        first = page_buffers(page);
 277        local_irq_save(flags);
 278        bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
 279        clear_buffer_async_read(bh);
 280        unlock_buffer(bh);
 281        tmp = bh;
 282        do {
 283                if (!buffer_uptodate(tmp))
 284                        page_uptodate = 0;
 285                if (buffer_async_read(tmp)) {
 286                        BUG_ON(!buffer_locked(tmp));
 287                        goto still_busy;
 288                }
 289                tmp = tmp->b_this_page;
 290        } while (tmp != bh);
 291        bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
 292        local_irq_restore(flags);
 293
 294        /*
 295         * If none of the buffers had errors and they are all
 296         * uptodate then we can set the page uptodate.
 297         */
 298        if (page_uptodate && !PageError(page))
 299                SetPageUptodate(page);
 300        unlock_page(page);
 301        return;
 302
 303still_busy:
 304        bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
 305        local_irq_restore(flags);
 306        return;
 307}
 308
 309struct decrypt_bh_ctx {
 310        struct work_struct work;
 311        struct buffer_head *bh;
 312};
 313
 314static void decrypt_bh(struct work_struct *work)
 315{
 316        struct decrypt_bh_ctx *ctx =
 317                container_of(work, struct decrypt_bh_ctx, work);
 318        struct buffer_head *bh = ctx->bh;
 319        int err;
 320
 321        err = fscrypt_decrypt_pagecache_blocks(bh->b_page, bh->b_size,
 322                                               bh_offset(bh));
 323        end_buffer_async_read(bh, err == 0);
 324        kfree(ctx);
 325}
 326
 327/*
 328 * I/O completion handler for block_read_full_page() - pages
 329 * which come unlocked at the end of I/O.
 330 */
 331static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
 332{
 333        /* Decrypt if needed */
 334        if (uptodate && IS_ENABLED(CONFIG_FS_ENCRYPTION) &&
 335            IS_ENCRYPTED(bh->b_page->mapping->host) &&
 336            S_ISREG(bh->b_page->mapping->host->i_mode)) {
 337                struct decrypt_bh_ctx *ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
 338
 339                if (ctx) {
 340                        INIT_WORK(&ctx->work, decrypt_bh);
 341                        ctx->bh = bh;
 342                        fscrypt_enqueue_decrypt_work(&ctx->work);
 343                        return;
 344                }
 345                uptodate = 0;
 346        }
 347        end_buffer_async_read(bh, uptodate);
 348}
 349
 350/*
 351 * Completion handler for block_write_full_page() - pages which are unlocked
 352 * during I/O, and which have PageWriteback cleared upon I/O completion.
 353 */
 354void end_buffer_async_write(struct buffer_head *bh, int uptodate)
 355{
 356        unsigned long flags;
 357        struct buffer_head *first;
 358        struct buffer_head *tmp;
 359        struct page *page;
 360
 361        BUG_ON(!buffer_async_write(bh));
 362
 363        page = bh->b_page;
 364        if (uptodate) {
 365                set_buffer_uptodate(bh);
 366        } else {
 367                buffer_io_error(bh, ", lost async page write");
 368                mark_buffer_write_io_error(bh);
 369                clear_buffer_uptodate(bh);
 370                SetPageError(page);
 371        }
 372
 373        first = page_buffers(page);
 374        local_irq_save(flags);
 375        bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
 376
 377        clear_buffer_async_write(bh);
 378        unlock_buffer(bh);
 379        tmp = bh->b_this_page;
 380        while (tmp != bh) {
 381                if (buffer_async_write(tmp)) {
 382                        BUG_ON(!buffer_locked(tmp));
 383                        goto still_busy;
 384                }
 385                tmp = tmp->b_this_page;
 386        }
 387        bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
 388        local_irq_restore(flags);
 389        end_page_writeback(page);
 390        return;
 391
 392still_busy:
 393        bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
 394        local_irq_restore(flags);
 395        return;
 396}
 397EXPORT_SYMBOL(end_buffer_async_write);
 398
 399/*
 400 * If a page's buffers are under async readin (end_buffer_async_read
 401 * completion) then there is a possibility that another thread of
 402 * control could lock one of the buffers after it has completed
 403 * but while some of the other buffers have not completed.  This
 404 * locked buffer would confuse end_buffer_async_read() into not unlocking
 405 * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
 406 * that this buffer is not under async I/O.
 407 *
 408 * The page comes unlocked when it has no locked buffer_async buffers
 409 * left.
 410 *
 411 * PageLocked prevents anyone starting new async I/O reads any of
 412 * the buffers.
 413 *
 414 * PageWriteback is used to prevent simultaneous writeout of the same
 415 * page.
 416 *
 417 * PageLocked prevents anyone from starting writeback of a page which is
 418 * under read I/O (PageWriteback is only ever set against a locked page).
 419 */
 420static void mark_buffer_async_read(struct buffer_head *bh)
 421{
 422        bh->b_end_io = end_buffer_async_read_io;
 423        set_buffer_async_read(bh);
 424}
 425
 426static void mark_buffer_async_write_endio(struct buffer_head *bh,
 427                                          bh_end_io_t *handler)
 428{
 429        bh->b_end_io = handler;
 430        set_buffer_async_write(bh);
 431}
 432
 433void mark_buffer_async_write(struct buffer_head *bh)
 434{
 435        mark_buffer_async_write_endio(bh, end_buffer_async_write);
 436}
 437EXPORT_SYMBOL(mark_buffer_async_write);
 438
 439
 440/*
 441 * fs/buffer.c contains helper functions for buffer-backed address space's
 442 * fsync functions.  A common requirement for buffer-based filesystems is
 443 * that certain data from the backing blockdev needs to be written out for
 444 * a successful fsync().  For example, ext2 indirect blocks need to be
 445 * written back and waited upon before fsync() returns.
 446 *
 447 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
 448 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
 449 * management of a list of dependent buffers at ->i_mapping->private_list.
 450 *
 451 * Locking is a little subtle: try_to_free_buffers() will remove buffers
 452 * from their controlling inode's queue when they are being freed.  But
 453 * try_to_free_buffers() will be operating against the *blockdev* mapping
 454 * at the time, not against the S_ISREG file which depends on those buffers.
 455 * So the locking for private_list is via the private_lock in the address_space
 456 * which backs the buffers.  Which is different from the address_space 
 457 * against which the buffers are listed.  So for a particular address_space,
 458 * mapping->private_lock does *not* protect mapping->private_list!  In fact,
 459 * mapping->private_list will always be protected by the backing blockdev's
 460 * ->private_lock.
 461 *
 462 * Which introduces a requirement: all buffers on an address_space's
 463 * ->private_list must be from the same address_space: the blockdev's.
 464 *
 465 * address_spaces which do not place buffers at ->private_list via these
 466 * utility functions are free to use private_lock and private_list for
 467 * whatever they want.  The only requirement is that list_empty(private_list)
 468 * be true at clear_inode() time.
 469 *
 470 * FIXME: clear_inode should not call invalidate_inode_buffers().  The
 471 * filesystems should do that.  invalidate_inode_buffers() should just go
 472 * BUG_ON(!list_empty).
 473 *
 474 * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
 475 * take an address_space, not an inode.  And it should be called
 476 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
 477 * queued up.
 478 *
 479 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
 480 * list if it is already on a list.  Because if the buffer is on a list,
 481 * it *must* already be on the right one.  If not, the filesystem is being
 482 * silly.  This will save a ton of locking.  But first we have to ensure
 483 * that buffers are taken *off* the old inode's list when they are freed
 484 * (presumably in truncate).  That requires careful auditing of all
 485 * filesystems (do it inside bforget()).  It could also be done by bringing
 486 * b_inode back.
 487 */
 488
 489/*
 490 * The buffer's backing address_space's private_lock must be held
 491 */
 492static void __remove_assoc_queue(struct buffer_head *bh)
 493{
 494        list_del_init(&bh->b_assoc_buffers);
 495        WARN_ON(!bh->b_assoc_map);
 496        bh->b_assoc_map = NULL;
 497}
 498
 499int inode_has_buffers(struct inode *inode)
 500{
 501        return !list_empty(&inode->i_data.private_list);
 502}
 503
 504/*
 505 * osync is designed to support O_SYNC io.  It waits synchronously for
 506 * all already-submitted IO to complete, but does not queue any new
 507 * writes to the disk.
 508 *
 509 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
 510 * you dirty the buffers, and then use osync_inode_buffers to wait for
 511 * completion.  Any other dirty buffers which are not yet queued for
 512 * write will not be flushed to disk by the osync.
 513 */
 514static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
 515{
 516        struct buffer_head *bh;
 517        struct list_head *p;
 518        int err = 0;
 519
 520        spin_lock(lock);
 521repeat:
 522        list_for_each_prev(p, list) {
 523                bh = BH_ENTRY(p);
 524                if (buffer_locked(bh)) {
 525                        get_bh(bh);
 526                        spin_unlock(lock);
 527                        wait_on_buffer(bh);
 528                        if (!buffer_uptodate(bh))
 529                                err = -EIO;
 530                        brelse(bh);
 531                        spin_lock(lock);
 532                        goto repeat;
 533                }
 534        }
 535        spin_unlock(lock);
 536        return err;
 537}
 538
 539void emergency_thaw_bdev(struct super_block *sb)
 540{
 541        while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
 542                printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
 543}
 544
 545/**
 546 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
 547 * @mapping: the mapping which wants those buffers written
 548 *
 549 * Starts I/O against the buffers at mapping->private_list, and waits upon
 550 * that I/O.
 551 *
 552 * Basically, this is a convenience function for fsync().
 553 * @mapping is a file or directory which needs those buffers to be written for
 554 * a successful fsync().
 555 */
 556int sync_mapping_buffers(struct address_space *mapping)
 557{
 558        struct address_space *buffer_mapping = mapping->private_data;
 559
 560        if (buffer_mapping == NULL || list_empty(&mapping->private_list))
 561                return 0;
 562
 563        return fsync_buffers_list(&buffer_mapping->private_lock,
 564                                        &mapping->private_list);
 565}
 566EXPORT_SYMBOL(sync_mapping_buffers);
 567
 568/*
 569 * Called when we've recently written block `bblock', and it is known that
 570 * `bblock' was for a buffer_boundary() buffer.  This means that the block at
 571 * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
 572 * dirty, schedule it for IO.  So that indirects merge nicely with their data.
 573 */
 574void write_boundary_block(struct block_device *bdev,
 575                        sector_t bblock, unsigned blocksize)
 576{
 577        struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
 578        if (bh) {
 579                if (buffer_dirty(bh))
 580                        ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
 581                put_bh(bh);
 582        }
 583}
 584
 585void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
 586{
 587        struct address_space *mapping = inode->i_mapping;
 588        struct address_space *buffer_mapping = bh->b_page->mapping;
 589
 590        mark_buffer_dirty(bh);
 591        if (!mapping->private_data) {
 592                mapping->private_data = buffer_mapping;
 593        } else {
 594                BUG_ON(mapping->private_data != buffer_mapping);
 595        }
 596        if (!bh->b_assoc_map) {
 597                spin_lock(&buffer_mapping->private_lock);
 598                list_move_tail(&bh->b_assoc_buffers,
 599                                &mapping->private_list);
 600                bh->b_assoc_map = mapping;
 601                spin_unlock(&buffer_mapping->private_lock);
 602        }
 603}
 604EXPORT_SYMBOL(mark_buffer_dirty_inode);
 605
 606/*
 607 * Mark the page dirty, and set it dirty in the page cache, and mark the inode
 608 * dirty.
 609 *
 610 * If warn is true, then emit a warning if the page is not uptodate and has
 611 * not been truncated.
 612 *
 613 * The caller must hold lock_page_memcg().
 614 */
 615void __set_page_dirty(struct page *page, struct address_space *mapping,
 616                             int warn)
 617{
 618        unsigned long flags;
 619
 620        xa_lock_irqsave(&mapping->i_pages, flags);
 621        if (page->mapping) {    /* Race with truncate? */
 622                WARN_ON_ONCE(warn && !PageUptodate(page));
 623                account_page_dirtied(page, mapping);
 624                __xa_set_mark(&mapping->i_pages, page_index(page),
 625                                PAGECACHE_TAG_DIRTY);
 626        }
 627        xa_unlock_irqrestore(&mapping->i_pages, flags);
 628}
 629EXPORT_SYMBOL_GPL(__set_page_dirty);
 630
 631/*
 632 * Add a page to the dirty page list.
 633 *
 634 * It is a sad fact of life that this function is called from several places
 635 * deeply under spinlocking.  It may not sleep.
 636 *
 637 * If the page has buffers, the uptodate buffers are set dirty, to preserve
 638 * dirty-state coherency between the page and the buffers.  It the page does
 639 * not have buffers then when they are later attached they will all be set
 640 * dirty.
 641 *
 642 * The buffers are dirtied before the page is dirtied.  There's a small race
 643 * window in which a writepage caller may see the page cleanness but not the
 644 * buffer dirtiness.  That's fine.  If this code were to set the page dirty
 645 * before the buffers, a concurrent writepage caller could clear the page dirty
 646 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
 647 * page on the dirty page list.
 648 *
 649 * We use private_lock to lock against try_to_free_buffers while using the
 650 * page's buffer list.  Also use this to protect against clean buffers being
 651 * added to the page after it was set dirty.
 652 *
 653 * FIXME: may need to call ->reservepage here as well.  That's rather up to the
 654 * address_space though.
 655 */
 656int __set_page_dirty_buffers(struct page *page)
 657{
 658        int newly_dirty;
 659        struct address_space *mapping = page_mapping(page);
 660
 661        if (unlikely(!mapping))
 662                return !TestSetPageDirty(page);
 663
 664        spin_lock(&mapping->private_lock);
 665        if (page_has_buffers(page)) {
 666                struct buffer_head *head = page_buffers(page);
 667                struct buffer_head *bh = head;
 668
 669                do {
 670                        set_buffer_dirty(bh);
 671                        bh = bh->b_this_page;
 672                } while (bh != head);
 673        }
 674        /*
 675         * Lock out page->mem_cgroup migration to keep PageDirty
 676         * synchronized with per-memcg dirty page counters.
 677         */
 678        lock_page_memcg(page);
 679        newly_dirty = !TestSetPageDirty(page);
 680        spin_unlock(&mapping->private_lock);
 681
 682        if (newly_dirty)
 683                __set_page_dirty(page, mapping, 1);
 684
 685        unlock_page_memcg(page);
 686
 687        if (newly_dirty)
 688                __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
 689
 690        return newly_dirty;
 691}
 692EXPORT_SYMBOL(__set_page_dirty_buffers);
 693
 694/*
 695 * Write out and wait upon a list of buffers.
 696 *
 697 * We have conflicting pressures: we want to make sure that all
 698 * initially dirty buffers get waited on, but that any subsequently
 699 * dirtied buffers don't.  After all, we don't want fsync to last
 700 * forever if somebody is actively writing to the file.
 701 *
 702 * Do this in two main stages: first we copy dirty buffers to a
 703 * temporary inode list, queueing the writes as we go.  Then we clean
 704 * up, waiting for those writes to complete.
 705 * 
 706 * During this second stage, any subsequent updates to the file may end
 707 * up refiling the buffer on the original inode's dirty list again, so
 708 * there is a chance we will end up with a buffer queued for write but
 709 * not yet completed on that list.  So, as a final cleanup we go through
 710 * the osync code to catch these locked, dirty buffers without requeuing
 711 * any newly dirty buffers for write.
 712 */
 713static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
 714{
 715        struct buffer_head *bh;
 716        struct list_head tmp;
 717        struct address_space *mapping;
 718        int err = 0, err2;
 719        struct blk_plug plug;
 720
 721        INIT_LIST_HEAD(&tmp);
 722        blk_start_plug(&plug);
 723
 724        spin_lock(lock);
 725        while (!list_empty(list)) {
 726                bh = BH_ENTRY(list->next);
 727                mapping = bh->b_assoc_map;
 728                __remove_assoc_queue(bh);
 729                /* Avoid race with mark_buffer_dirty_inode() which does
 730                 * a lockless check and we rely on seeing the dirty bit */
 731                smp_mb();
 732                if (buffer_dirty(bh) || buffer_locked(bh)) {
 733                        list_add(&bh->b_assoc_buffers, &tmp);
 734                        bh->b_assoc_map = mapping;
 735                        if (buffer_dirty(bh)) {
 736                                get_bh(bh);
 737                                spin_unlock(lock);
 738                                /*
 739                                 * Ensure any pending I/O completes so that
 740                                 * write_dirty_buffer() actually writes the
 741                                 * current contents - it is a noop if I/O is
 742                                 * still in flight on potentially older
 743                                 * contents.
 744                                 */
 745                                write_dirty_buffer(bh, REQ_SYNC);
 746
 747                                /*
 748                                 * Kick off IO for the previous mapping. Note
 749                                 * that we will not run the very last mapping,
 750                                 * wait_on_buffer() will do that for us
 751                                 * through sync_buffer().
 752                                 */
 753                                brelse(bh);
 754                                spin_lock(lock);
 755                        }
 756                }
 757        }
 758
 759        spin_unlock(lock);
 760        blk_finish_plug(&plug);
 761        spin_lock(lock);
 762
 763        while (!list_empty(&tmp)) {
 764                bh = BH_ENTRY(tmp.prev);
 765                get_bh(bh);
 766                mapping = bh->b_assoc_map;
 767                __remove_assoc_queue(bh);
 768                /* Avoid race with mark_buffer_dirty_inode() which does
 769                 * a lockless check and we rely on seeing the dirty bit */
 770                smp_mb();
 771                if (buffer_dirty(bh)) {
 772                        list_add(&bh->b_assoc_buffers,
 773                                 &mapping->private_list);
 774                        bh->b_assoc_map = mapping;
 775                }
 776                spin_unlock(lock);
 777                wait_on_buffer(bh);
 778                if (!buffer_uptodate(bh))
 779                        err = -EIO;
 780                brelse(bh);
 781                spin_lock(lock);
 782        }
 783        
 784        spin_unlock(lock);
 785        err2 = osync_buffers_list(lock, list);
 786        if (err)
 787                return err;
 788        else
 789                return err2;
 790}
 791
 792/*
 793 * Invalidate any and all dirty buffers on a given inode.  We are
 794 * probably unmounting the fs, but that doesn't mean we have already
 795 * done a sync().  Just drop the buffers from the inode list.
 796 *
 797 * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
 798 * assumes that all the buffers are against the blockdev.  Not true
 799 * for reiserfs.
 800 */
 801void invalidate_inode_buffers(struct inode *inode)
 802{
 803        if (inode_has_buffers(inode)) {
 804                struct address_space *mapping = &inode->i_data;
 805                struct list_head *list = &mapping->private_list;
 806                struct address_space *buffer_mapping = mapping->private_data;
 807
 808                spin_lock(&buffer_mapping->private_lock);
 809                while (!list_empty(list))
 810                        __remove_assoc_queue(BH_ENTRY(list->next));
 811                spin_unlock(&buffer_mapping->private_lock);
 812        }
 813}
 814EXPORT_SYMBOL(invalidate_inode_buffers);
 815
 816/*
 817 * Remove any clean buffers from the inode's buffer list.  This is called
 818 * when we're trying to free the inode itself.  Those buffers can pin it.
 819 *
 820 * Returns true if all buffers were removed.
 821 */
 822int remove_inode_buffers(struct inode *inode)
 823{
 824        int ret = 1;
 825
 826        if (inode_has_buffers(inode)) {
 827                struct address_space *mapping = &inode->i_data;
 828                struct list_head *list = &mapping->private_list;
 829                struct address_space *buffer_mapping = mapping->private_data;
 830
 831                spin_lock(&buffer_mapping->private_lock);
 832                while (!list_empty(list)) {
 833                        struct buffer_head *bh = BH_ENTRY(list->next);
 834                        if (buffer_dirty(bh)) {
 835                                ret = 0;
 836                                break;
 837                        }
 838                        __remove_assoc_queue(bh);
 839                }
 840                spin_unlock(&buffer_mapping->private_lock);
 841        }
 842        return ret;
 843}
 844
 845/*
 846 * Create the appropriate buffers when given a page for data area and
 847 * the size of each buffer.. Use the bh->b_this_page linked list to
 848 * follow the buffers created.  Return NULL if unable to create more
 849 * buffers.
 850 *
 851 * The retry flag is used to differentiate async IO (paging, swapping)
 852 * which may not fail from ordinary buffer allocations.
 853 */
 854struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
 855                bool retry)
 856{
 857        struct buffer_head *bh, *head;
 858        gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
 859        long offset;
 860        struct mem_cgroup *memcg;
 861
 862        if (retry)
 863                gfp |= __GFP_NOFAIL;
 864
 865        memcg = get_mem_cgroup_from_page(page);
 866        memalloc_use_memcg(memcg);
 867
 868        head = NULL;
 869        offset = PAGE_SIZE;
 870        while ((offset -= size) >= 0) {
 871                bh = alloc_buffer_head(gfp);
 872                if (!bh)
 873                        goto no_grow;
 874
 875                bh->b_this_page = head;
 876                bh->b_blocknr = -1;
 877                head = bh;
 878
 879                bh->b_size = size;
 880
 881                /* Link the buffer to its page */
 882                set_bh_page(bh, page, offset);
 883        }
 884out:
 885        memalloc_unuse_memcg();
 886        mem_cgroup_put(memcg);
 887        return head;
 888/*
 889 * In case anything failed, we just free everything we got.
 890 */
 891no_grow:
 892        if (head) {
 893                do {
 894                        bh = head;
 895                        head = head->b_this_page;
 896                        free_buffer_head(bh);
 897                } while (head);
 898        }
 899
 900        goto out;
 901}
 902EXPORT_SYMBOL_GPL(alloc_page_buffers);
 903
 904static inline void
 905link_dev_buffers(struct page *page, struct buffer_head *head)
 906{
 907        struct buffer_head *bh, *tail;
 908
 909        bh = head;
 910        do {
 911                tail = bh;
 912                bh = bh->b_this_page;
 913        } while (bh);
 914        tail->b_this_page = head;
 915        attach_page_buffers(page, head);
 916}
 917
 918static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
 919{
 920        sector_t retval = ~((sector_t)0);
 921        loff_t sz = i_size_read(bdev->bd_inode);
 922
 923        if (sz) {
 924                unsigned int sizebits = blksize_bits(size);
 925                retval = (sz >> sizebits);
 926        }
 927        return retval;
 928}
 929
 930/*
 931 * Initialise the state of a blockdev page's buffers.
 932 */ 
 933static sector_t
 934init_page_buffers(struct page *page, struct block_device *bdev,
 935                        sector_t block, int size)
 936{
 937        struct buffer_head *head = page_buffers(page);
 938        struct buffer_head *bh = head;
 939        int uptodate = PageUptodate(page);
 940        sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
 941
 942        do {
 943                if (!buffer_mapped(bh)) {
 944                        bh->b_end_io = NULL;
 945                        bh->b_private = NULL;
 946                        bh->b_bdev = bdev;
 947                        bh->b_blocknr = block;
 948                        if (uptodate)
 949                                set_buffer_uptodate(bh);
 950                        if (block < end_block)
 951                                set_buffer_mapped(bh);
 952                }
 953                block++;
 954                bh = bh->b_this_page;
 955        } while (bh != head);
 956
 957        /*
 958         * Caller needs to validate requested block against end of device.
 959         */
 960        return end_block;
 961}
 962
 963/*
 964 * Create the page-cache page that contains the requested block.
 965 *
 966 * This is used purely for blockdev mappings.
 967 */
 968static int
 969grow_dev_page(struct block_device *bdev, sector_t block,
 970              pgoff_t index, int size, int sizebits, gfp_t gfp)
 971{
 972        struct inode *inode = bdev->bd_inode;
 973        struct page *page;
 974        struct buffer_head *bh;
 975        sector_t end_block;
 976        int ret = 0;            /* Will call free_more_memory() */
 977        gfp_t gfp_mask;
 978
 979        gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
 980
 981        /*
 982         * XXX: __getblk_slow() can not really deal with failure and
 983         * will endlessly loop on improvised global reclaim.  Prefer
 984         * looping in the allocator rather than here, at least that
 985         * code knows what it's doing.
 986         */
 987        gfp_mask |= __GFP_NOFAIL;
 988
 989        page = find_or_create_page(inode->i_mapping, index, gfp_mask);
 990
 991        BUG_ON(!PageLocked(page));
 992
 993        if (page_has_buffers(page)) {
 994                bh = page_buffers(page);
 995                if (bh->b_size == size) {
 996                        end_block = init_page_buffers(page, bdev,
 997                                                (sector_t)index << sizebits,
 998                                                size);
 999                        goto done;
1000                }
1001                if (!try_to_free_buffers(page))
1002                        goto failed;
1003        }
1004
1005        /*
1006         * Allocate some buffers for this page
1007         */
1008        bh = alloc_page_buffers(page, size, true);
1009
1010        /*
1011         * Link the page to the buffers and initialise them.  Take the
1012         * lock to be atomic wrt __find_get_block(), which does not
1013         * run under the page lock.
1014         */
1015        spin_lock(&inode->i_mapping->private_lock);
1016        link_dev_buffers(page, bh);
1017        end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1018                        size);
1019        spin_unlock(&inode->i_mapping->private_lock);
1020done:
1021        ret = (block < end_block) ? 1 : -ENXIO;
1022failed:
1023        unlock_page(page);
1024        put_page(page);
1025        return ret;
1026}
1027
1028/*
1029 * Create buffers for the specified block device block's page.  If
1030 * that page was dirty, the buffers are set dirty also.
1031 */
1032static int
1033grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1034{
1035        pgoff_t index;
1036        int sizebits;
1037
1038        sizebits = -1;
1039        do {
1040                sizebits++;
1041        } while ((size << sizebits) < PAGE_SIZE);
1042
1043        index = block >> sizebits;
1044
1045        /*
1046         * Check for a block which wants to lie outside our maximum possible
1047         * pagecache index.  (this comparison is done using sector_t types).
1048         */
1049        if (unlikely(index != block >> sizebits)) {
1050                printk(KERN_ERR "%s: requested out-of-range block %llu for "
1051                        "device %pg\n",
1052                        __func__, (unsigned long long)block,
1053                        bdev);
1054                return -EIO;
1055        }
1056
1057        /* Create a page with the proper size buffers.. */
1058        return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1059}
1060
1061static struct buffer_head *
1062__getblk_slow(struct block_device *bdev, sector_t block,
1063             unsigned size, gfp_t gfp)
1064{
1065        /* Size must be multiple of hard sectorsize */
1066        if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1067                        (size < 512 || size > PAGE_SIZE))) {
1068                printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1069                                        size);
1070                printk(KERN_ERR "logical block size: %d\n",
1071                                        bdev_logical_block_size(bdev));
1072
1073                dump_stack();
1074                return NULL;
1075        }
1076
1077        for (;;) {
1078                struct buffer_head *bh;
1079                int ret;
1080
1081                bh = __find_get_block(bdev, block, size);
1082                if (bh)
1083                        return bh;
1084
1085                ret = grow_buffers(bdev, block, size, gfp);
1086                if (ret < 0)
1087                        return NULL;
1088        }
1089}
1090
1091/*
1092 * The relationship between dirty buffers and dirty pages:
1093 *
1094 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1095 * the page is tagged dirty in the page cache.
1096 *
1097 * At all times, the dirtiness of the buffers represents the dirtiness of
1098 * subsections of the page.  If the page has buffers, the page dirty bit is
1099 * merely a hint about the true dirty state.
1100 *
1101 * When a page is set dirty in its entirety, all its buffers are marked dirty
1102 * (if the page has buffers).
1103 *
1104 * When a buffer is marked dirty, its page is dirtied, but the page's other
1105 * buffers are not.
1106 *
1107 * Also.  When blockdev buffers are explicitly read with bread(), they
1108 * individually become uptodate.  But their backing page remains not
1109 * uptodate - even if all of its buffers are uptodate.  A subsequent
1110 * block_read_full_page() against that page will discover all the uptodate
1111 * buffers, will set the page uptodate and will perform no I/O.
1112 */
1113
1114/**
1115 * mark_buffer_dirty - mark a buffer_head as needing writeout
1116 * @bh: the buffer_head to mark dirty
1117 *
1118 * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1119 * its backing page dirty, then tag the page as dirty in the page cache
1120 * and then attach the address_space's inode to its superblock's dirty
1121 * inode list.
1122 *
1123 * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1124 * i_pages lock and mapping->host->i_lock.
1125 */
1126void mark_buffer_dirty(struct buffer_head *bh)
1127{
1128        WARN_ON_ONCE(!buffer_uptodate(bh));
1129
1130        trace_block_dirty_buffer(bh);
1131
1132        /*
1133         * Very *carefully* optimize the it-is-already-dirty case.
1134         *
1135         * Don't let the final "is it dirty" escape to before we
1136         * perhaps modified the buffer.
1137         */
1138        if (buffer_dirty(bh)) {
1139                smp_mb();
1140                if (buffer_dirty(bh))
1141                        return;
1142        }
1143
1144        if (!test_set_buffer_dirty(bh)) {
1145                struct page *page = bh->b_page;
1146                struct address_space *mapping = NULL;
1147
1148                lock_page_memcg(page);
1149                if (!TestSetPageDirty(page)) {
1150                        mapping = page_mapping(page);
1151                        if (mapping)
1152                                __set_page_dirty(page, mapping, 0);
1153                }
1154                unlock_page_memcg(page);
1155                if (mapping)
1156                        __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1157        }
1158}
1159EXPORT_SYMBOL(mark_buffer_dirty);
1160
1161void mark_buffer_write_io_error(struct buffer_head *bh)
1162{
1163        set_buffer_write_io_error(bh);
1164        /* FIXME: do we need to set this in both places? */
1165        if (bh->b_page && bh->b_page->mapping)
1166                mapping_set_error(bh->b_page->mapping, -EIO);
1167        if (bh->b_assoc_map)
1168                mapping_set_error(bh->b_assoc_map, -EIO);
1169}
1170EXPORT_SYMBOL(mark_buffer_write_io_error);
1171
1172/*
1173 * Decrement a buffer_head's reference count.  If all buffers against a page
1174 * have zero reference count, are clean and unlocked, and if the page is clean
1175 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1176 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1177 * a page but it ends up not being freed, and buffers may later be reattached).
1178 */
1179void __brelse(struct buffer_head * buf)
1180{
1181        if (atomic_read(&buf->b_count)) {
1182                put_bh(buf);
1183                return;
1184        }
1185        WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1186}
1187EXPORT_SYMBOL(__brelse);
1188
1189/*
1190 * bforget() is like brelse(), except it discards any
1191 * potentially dirty data.
1192 */
1193void __bforget(struct buffer_head *bh)
1194{
1195        clear_buffer_dirty(bh);
1196        if (bh->b_assoc_map) {
1197                struct address_space *buffer_mapping = bh->b_page->mapping;
1198
1199                spin_lock(&buffer_mapping->private_lock);
1200                list_del_init(&bh->b_assoc_buffers);
1201                bh->b_assoc_map = NULL;
1202                spin_unlock(&buffer_mapping->private_lock);
1203        }
1204        __brelse(bh);
1205}
1206EXPORT_SYMBOL(__bforget);
1207
1208static struct buffer_head *__bread_slow(struct buffer_head *bh)
1209{
1210        lock_buffer(bh);
1211        if (buffer_uptodate(bh)) {
1212                unlock_buffer(bh);
1213                return bh;
1214        } else {
1215                get_bh(bh);
1216                bh->b_end_io = end_buffer_read_sync;
1217                submit_bh(REQ_OP_READ, 0, bh);
1218                wait_on_buffer(bh);
1219                if (buffer_uptodate(bh))
1220                        return bh;
1221        }
1222        brelse(bh);
1223        return NULL;
1224}
1225
1226/*
1227 * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1228 * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1229 * refcount elevated by one when they're in an LRU.  A buffer can only appear
1230 * once in a particular CPU's LRU.  A single buffer can be present in multiple
1231 * CPU's LRUs at the same time.
1232 *
1233 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1234 * sb_find_get_block().
1235 *
1236 * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1237 * a local interrupt disable for that.
1238 */
1239
1240#define BH_LRU_SIZE     16
1241
1242struct bh_lru {
1243        struct buffer_head *bhs[BH_LRU_SIZE];
1244};
1245
1246static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1247
1248#ifdef CONFIG_SMP
1249#define bh_lru_lock()   local_irq_disable()
1250#define bh_lru_unlock() local_irq_enable()
1251#else
1252#define bh_lru_lock()   preempt_disable()
1253#define bh_lru_unlock() preempt_enable()
1254#endif
1255
1256static inline void check_irqs_on(void)
1257{
1258#ifdef irqs_disabled
1259        BUG_ON(irqs_disabled());
1260#endif
1261}
1262
1263/*
1264 * Install a buffer_head into this cpu's LRU.  If not already in the LRU, it is
1265 * inserted at the front, and the buffer_head at the back if any is evicted.
1266 * Or, if already in the LRU it is moved to the front.
1267 */
1268static void bh_lru_install(struct buffer_head *bh)
1269{
1270        struct buffer_head *evictee = bh;
1271        struct bh_lru *b;
1272        int i;
1273
1274        check_irqs_on();
1275        bh_lru_lock();
1276
1277        b = this_cpu_ptr(&bh_lrus);
1278        for (i = 0; i < BH_LRU_SIZE; i++) {
1279                swap(evictee, b->bhs[i]);
1280                if (evictee == bh) {
1281                        bh_lru_unlock();
1282                        return;
1283                }
1284        }
1285
1286        get_bh(bh);
1287        bh_lru_unlock();
1288        brelse(evictee);
1289}
1290
1291/*
1292 * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1293 */
1294static struct buffer_head *
1295lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1296{
1297        struct buffer_head *ret = NULL;
1298        unsigned int i;
1299
1300        check_irqs_on();
1301        bh_lru_lock();
1302        for (i = 0; i < BH_LRU_SIZE; i++) {
1303                struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1304
1305                if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1306                    bh->b_size == size) {
1307                        if (i) {
1308                                while (i) {
1309                                        __this_cpu_write(bh_lrus.bhs[i],
1310                                                __this_cpu_read(bh_lrus.bhs[i - 1]));
1311                                        i--;
1312                                }
1313                                __this_cpu_write(bh_lrus.bhs[0], bh);
1314                        }
1315                        get_bh(bh);
1316                        ret = bh;
1317                        break;
1318                }
1319        }
1320        bh_lru_unlock();
1321        return ret;
1322}
1323
1324/*
1325 * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1326 * it in the LRU and mark it as accessed.  If it is not present then return
1327 * NULL
1328 */
1329struct buffer_head *
1330__find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1331{
1332        struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1333
1334        if (bh == NULL) {
1335                /* __find_get_block_slow will mark the page accessed */
1336                bh = __find_get_block_slow(bdev, block);
1337                if (bh)
1338                        bh_lru_install(bh);
1339        } else
1340                touch_buffer(bh);
1341
1342        return bh;
1343}
1344EXPORT_SYMBOL(__find_get_block);
1345
1346/*
1347 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1348 * which corresponds to the passed block_device, block and size. The
1349 * returned buffer has its reference count incremented.
1350 *
1351 * __getblk_gfp() will lock up the machine if grow_dev_page's
1352 * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1353 */
1354struct buffer_head *
1355__getblk_gfp(struct block_device *bdev, sector_t block,
1356             unsigned size, gfp_t gfp)
1357{
1358        struct buffer_head *bh = __find_get_block(bdev, block, size);
1359
1360        might_sleep();
1361        if (bh == NULL)
1362                bh = __getblk_slow(bdev, block, size, gfp);
1363        return bh;
1364}
1365EXPORT_SYMBOL(__getblk_gfp);
1366
1367/*
1368 * Do async read-ahead on a buffer..
1369 */
1370void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1371{
1372        struct buffer_head *bh = __getblk(bdev, block, size);
1373        if (likely(bh)) {
1374                ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1375                brelse(bh);
1376        }
1377}
1378EXPORT_SYMBOL(__breadahead);
1379
1380/**
1381 *  __bread_gfp() - reads a specified block and returns the bh
1382 *  @bdev: the block_device to read from
1383 *  @block: number of block
1384 *  @size: size (in bytes) to read
1385 *  @gfp: page allocation flag
1386 *
1387 *  Reads a specified block, and returns buffer head that contains it.
1388 *  The page cache can be allocated from non-movable area
1389 *  not to prevent page migration if you set gfp to zero.
1390 *  It returns NULL if the block was unreadable.
1391 */
1392struct buffer_head *
1393__bread_gfp(struct block_device *bdev, sector_t block,
1394                   unsigned size, gfp_t gfp)
1395{
1396        struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1397
1398        if (likely(bh) && !buffer_uptodate(bh))
1399                bh = __bread_slow(bh);
1400        return bh;
1401}
1402EXPORT_SYMBOL(__bread_gfp);
1403
1404/*
1405 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1406 * This doesn't race because it runs in each cpu either in irq
1407 * or with preempt disabled.
1408 */
1409static void invalidate_bh_lru(void *arg)
1410{
1411        struct bh_lru *b = &get_cpu_var(bh_lrus);
1412        int i;
1413
1414        for (i = 0; i < BH_LRU_SIZE; i++) {
1415                brelse(b->bhs[i]);
1416                b->bhs[i] = NULL;
1417        }
1418        put_cpu_var(bh_lrus);
1419}
1420
1421static bool has_bh_in_lru(int cpu, void *dummy)
1422{
1423        struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1424        int i;
1425        
1426        for (i = 0; i < BH_LRU_SIZE; i++) {
1427                if (b->bhs[i])
1428                        return true;
1429        }
1430
1431        return false;
1432}
1433
1434void invalidate_bh_lrus(void)
1435{
1436        on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1437}
1438EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1439
1440void set_bh_page(struct buffer_head *bh,
1441                struct page *page, unsigned long offset)
1442{
1443        bh->b_page = page;
1444        BUG_ON(offset >= PAGE_SIZE);
1445        if (PageHighMem(page))
1446                /*
1447                 * This catches illegal uses and preserves the offset:
1448                 */
1449                bh->b_data = (char *)(0 + offset);
1450        else
1451                bh->b_data = page_address(page) + offset;
1452}
1453EXPORT_SYMBOL(set_bh_page);
1454
1455/*
1456 * Called when truncating a buffer on a page completely.
1457 */
1458
1459/* Bits that are cleared during an invalidate */
1460#define BUFFER_FLAGS_DISCARD \
1461        (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1462         1 << BH_Delay | 1 << BH_Unwritten)
1463
1464static void discard_buffer(struct buffer_head * bh)
1465{
1466        unsigned long b_state, b_state_old;
1467
1468        lock_buffer(bh);
1469        clear_buffer_dirty(bh);
1470        bh->b_bdev = NULL;
1471        b_state = bh->b_state;
1472        for (;;) {
1473                b_state_old = cmpxchg(&bh->b_state, b_state,
1474                                      (b_state & ~BUFFER_FLAGS_DISCARD));
1475                if (b_state_old == b_state)
1476                        break;
1477                b_state = b_state_old;
1478        }
1479        unlock_buffer(bh);
1480}
1481
1482/**
1483 * block_invalidatepage - invalidate part or all of a buffer-backed page
1484 *
1485 * @page: the page which is affected
1486 * @offset: start of the range to invalidate
1487 * @length: length of the range to invalidate
1488 *
1489 * block_invalidatepage() is called when all or part of the page has become
1490 * invalidated by a truncate operation.
1491 *
1492 * block_invalidatepage() does not have to release all buffers, but it must
1493 * ensure that no dirty buffer is left outside @offset and that no I/O
1494 * is underway against any of the blocks which are outside the truncation
1495 * point.  Because the caller is about to free (and possibly reuse) those
1496 * blocks on-disk.
1497 */
1498void block_invalidatepage(struct page *page, unsigned int offset,
1499                          unsigned int length)
1500{
1501        struct buffer_head *head, *bh, *next;
1502        unsigned int curr_off = 0;
1503        unsigned int stop = length + offset;
1504
1505        BUG_ON(!PageLocked(page));
1506        if (!page_has_buffers(page))
1507                goto out;
1508
1509        /*
1510         * Check for overflow
1511         */
1512        BUG_ON(stop > PAGE_SIZE || stop < length);
1513
1514        head = page_buffers(page);
1515        bh = head;
1516        do {
1517                unsigned int next_off = curr_off + bh->b_size;
1518                next = bh->b_this_page;
1519
1520                /*
1521                 * Are we still fully in range ?
1522                 */
1523                if (next_off > stop)
1524                        goto out;
1525
1526                /*
1527                 * is this block fully invalidated?
1528                 */
1529                if (offset <= curr_off)
1530                        discard_buffer(bh);
1531                curr_off = next_off;
1532                bh = next;
1533        } while (bh != head);
1534
1535        /*
1536         * We release buffers only if the entire page is being invalidated.
1537         * The get_block cached value has been unconditionally invalidated,
1538         * so real IO is not possible anymore.
1539         */
1540        if (length == PAGE_SIZE)
1541                try_to_release_page(page, 0);
1542out:
1543        return;
1544}
1545EXPORT_SYMBOL(block_invalidatepage);
1546
1547
1548/*
1549 * We attach and possibly dirty the buffers atomically wrt
1550 * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1551 * is already excluded via the page lock.
1552 */
1553void create_empty_buffers(struct page *page,
1554                        unsigned long blocksize, unsigned long b_state)
1555{
1556        struct buffer_head *bh, *head, *tail;
1557
1558        head = alloc_page_buffers(page, blocksize, true);
1559        bh = head;
1560        do {
1561                bh->b_state |= b_state;
1562                tail = bh;
1563                bh = bh->b_this_page;
1564        } while (bh);
1565        tail->b_this_page = head;
1566
1567        spin_lock(&page->mapping->private_lock);
1568        if (PageUptodate(page) || PageDirty(page)) {
1569                bh = head;
1570                do {
1571                        if (PageDirty(page))
1572                                set_buffer_dirty(bh);
1573                        if (PageUptodate(page))
1574                                set_buffer_uptodate(bh);
1575                        bh = bh->b_this_page;
1576                } while (bh != head);
1577        }
1578        attach_page_buffers(page, head);
1579        spin_unlock(&page->mapping->private_lock);
1580}
1581EXPORT_SYMBOL(create_empty_buffers);
1582
1583/**
1584 * clean_bdev_aliases: clean a range of buffers in block device
1585 * @bdev: Block device to clean buffers in
1586 * @block: Start of a range of blocks to clean
1587 * @len: Number of blocks to clean
1588 *
1589 * We are taking a range of blocks for data and we don't want writeback of any
1590 * buffer-cache aliases starting from return from this function and until the
1591 * moment when something will explicitly mark the buffer dirty (hopefully that
1592 * will not happen until we will free that block ;-) We don't even need to mark
1593 * it not-uptodate - nobody can expect anything from a newly allocated buffer
1594 * anyway. We used to use unmap_buffer() for such invalidation, but that was
1595 * wrong. We definitely don't want to mark the alias unmapped, for example - it
1596 * would confuse anyone who might pick it with bread() afterwards...
1597 *
1598 * Also..  Note that bforget() doesn't lock the buffer.  So there can be
1599 * writeout I/O going on against recently-freed buffers.  We don't wait on that
1600 * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1601 * need to.  That happens here.
1602 */
1603void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1604{
1605        struct inode *bd_inode = bdev->bd_inode;
1606        struct address_space *bd_mapping = bd_inode->i_mapping;
1607        struct pagevec pvec;
1608        pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1609        pgoff_t end;
1610        int i, count;
1611        struct buffer_head *bh;
1612        struct buffer_head *head;
1613
1614        end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1615        pagevec_init(&pvec);
1616        while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) {
1617                count = pagevec_count(&pvec);
1618                for (i = 0; i < count; i++) {
1619                        struct page *page = pvec.pages[i];
1620
1621                        if (!page_has_buffers(page))
1622                                continue;
1623                        /*
1624                         * We use page lock instead of bd_mapping->private_lock
1625                         * to pin buffers here since we can afford to sleep and
1626                         * it scales better than a global spinlock lock.
1627                         */
1628                        lock_page(page);
1629                        /* Recheck when the page is locked which pins bhs */
1630                        if (!page_has_buffers(page))
1631                                goto unlock_page;
1632                        head = page_buffers(page);
1633                        bh = head;
1634                        do {
1635                                if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1636                                        goto next;
1637                                if (bh->b_blocknr >= block + len)
1638                                        break;
1639                                clear_buffer_dirty(bh);
1640                                wait_on_buffer(bh);
1641                                clear_buffer_req(bh);
1642next:
1643                                bh = bh->b_this_page;
1644                        } while (bh != head);
1645unlock_page:
1646                        unlock_page(page);
1647                }
1648                pagevec_release(&pvec);
1649                cond_resched();
1650                /* End of range already reached? */
1651                if (index > end || !index)
1652                        break;
1653        }
1654}
1655EXPORT_SYMBOL(clean_bdev_aliases);
1656
1657/*
1658 * Size is a power-of-two in the range 512..PAGE_SIZE,
1659 * and the case we care about most is PAGE_SIZE.
1660 *
1661 * So this *could* possibly be written with those
1662 * constraints in mind (relevant mostly if some
1663 * architecture has a slow bit-scan instruction)
1664 */
1665static inline int block_size_bits(unsigned int blocksize)
1666{
1667        return ilog2(blocksize);
1668}
1669
1670static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1671{
1672        BUG_ON(!PageLocked(page));
1673
1674        if (!page_has_buffers(page))
1675                create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits),
1676                                     b_state);
1677        return page_buffers(page);
1678}
1679
1680/*
1681 * NOTE! All mapped/uptodate combinations are valid:
1682 *
1683 *      Mapped  Uptodate        Meaning
1684 *
1685 *      No      No              "unknown" - must do get_block()
1686 *      No      Yes             "hole" - zero-filled
1687 *      Yes     No              "allocated" - allocated on disk, not read in
1688 *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1689 *
1690 * "Dirty" is valid only with the last case (mapped+uptodate).
1691 */
1692
1693/*
1694 * While block_write_full_page is writing back the dirty buffers under
1695 * the page lock, whoever dirtied the buffers may decide to clean them
1696 * again at any time.  We handle that by only looking at the buffer
1697 * state inside lock_buffer().
1698 *
1699 * If block_write_full_page() is called for regular writeback
1700 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1701 * locked buffer.   This only can happen if someone has written the buffer
1702 * directly, with submit_bh().  At the address_space level PageWriteback
1703 * prevents this contention from occurring.
1704 *
1705 * If block_write_full_page() is called with wbc->sync_mode ==
1706 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1707 * causes the writes to be flagged as synchronous writes.
1708 */
1709int __block_write_full_page(struct inode *inode, struct page *page,
1710                        get_block_t *get_block, struct writeback_control *wbc,
1711                        bh_end_io_t *handler)
1712{
1713        int err;
1714        sector_t block;
1715        sector_t last_block;
1716        struct buffer_head *bh, *head;
1717        unsigned int blocksize, bbits;
1718        int nr_underway = 0;
1719        int write_flags = wbc_to_write_flags(wbc);
1720
1721        head = create_page_buffers(page, inode,
1722                                        (1 << BH_Dirty)|(1 << BH_Uptodate));
1723
1724        /*
1725         * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1726         * here, and the (potentially unmapped) buffers may become dirty at
1727         * any time.  If a buffer becomes dirty here after we've inspected it
1728         * then we just miss that fact, and the page stays dirty.
1729         *
1730         * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1731         * handle that here by just cleaning them.
1732         */
1733
1734        bh = head;
1735        blocksize = bh->b_size;
1736        bbits = block_size_bits(blocksize);
1737
1738        block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1739        last_block = (i_size_read(inode) - 1) >> bbits;
1740
1741        /*
1742         * Get all the dirty buffers mapped to disk addresses and
1743         * handle any aliases from the underlying blockdev's mapping.
1744         */
1745        do {
1746                if (block > last_block) {
1747                        /*
1748                         * mapped buffers outside i_size will occur, because
1749                         * this page can be outside i_size when there is a
1750                         * truncate in progress.
1751                         */
1752                        /*
1753                         * The buffer was zeroed by block_write_full_page()
1754                         */
1755                        clear_buffer_dirty(bh);
1756                        set_buffer_uptodate(bh);
1757                } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1758                           buffer_dirty(bh)) {
1759                        WARN_ON(bh->b_size != blocksize);
1760                        err = get_block(inode, block, bh, 1);
1761                        if (err)
1762                                goto recover;
1763                        clear_buffer_delay(bh);
1764                        if (buffer_new(bh)) {
1765                                /* blockdev mappings never come here */
1766                                clear_buffer_new(bh);
1767                                clean_bdev_bh_alias(bh);
1768                        }
1769                }
1770                bh = bh->b_this_page;
1771                block++;
1772        } while (bh != head);
1773
1774        do {
1775                if (!buffer_mapped(bh))
1776                        continue;
1777                /*
1778                 * If it's a fully non-blocking write attempt and we cannot
1779                 * lock the buffer then redirty the page.  Note that this can
1780                 * potentially cause a busy-wait loop from writeback threads
1781                 * and kswapd activity, but those code paths have their own
1782                 * higher-level throttling.
1783                 */
1784                if (wbc->sync_mode != WB_SYNC_NONE) {
1785                        lock_buffer(bh);
1786                } else if (!trylock_buffer(bh)) {
1787                        redirty_page_for_writepage(wbc, page);
1788                        continue;
1789                }
1790                if (test_clear_buffer_dirty(bh)) {
1791                        mark_buffer_async_write_endio(bh, handler);
1792                } else {
1793                        unlock_buffer(bh);
1794                }
1795        } while ((bh = bh->b_this_page) != head);
1796
1797        /*
1798         * The page and its buffers are protected by PageWriteback(), so we can
1799         * drop the bh refcounts early.
1800         */
1801        BUG_ON(PageWriteback(page));
1802        set_page_writeback(page);
1803
1804        do {
1805                struct buffer_head *next = bh->b_this_page;
1806                if (buffer_async_write(bh)) {
1807                        submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1808                                        inode->i_write_hint, wbc);
1809                        nr_underway++;
1810                }
1811                bh = next;
1812        } while (bh != head);
1813        unlock_page(page);
1814
1815        err = 0;
1816done:
1817        if (nr_underway == 0) {
1818                /*
1819                 * The page was marked dirty, but the buffers were
1820                 * clean.  Someone wrote them back by hand with
1821                 * ll_rw_block/submit_bh.  A rare case.
1822                 */
1823                end_page_writeback(page);
1824
1825                /*
1826                 * The page and buffer_heads can be released at any time from
1827                 * here on.
1828                 */
1829        }
1830        return err;
1831
1832recover:
1833        /*
1834         * ENOSPC, or some other error.  We may already have added some
1835         * blocks to the file, so we need to write these out to avoid
1836         * exposing stale data.
1837         * The page is currently locked and not marked for writeback
1838         */
1839        bh = head;
1840        /* Recovery: lock and submit the mapped buffers */
1841        do {
1842                if (buffer_mapped(bh) && buffer_dirty(bh) &&
1843                    !buffer_delay(bh)) {
1844                        lock_buffer(bh);
1845                        mark_buffer_async_write_endio(bh, handler);
1846                } else {
1847                        /*
1848                         * The buffer may have been set dirty during
1849                         * attachment to a dirty page.
1850                         */
1851                        clear_buffer_dirty(bh);
1852                }
1853        } while ((bh = bh->b_this_page) != head);
1854        SetPageError(page);
1855        BUG_ON(PageWriteback(page));
1856        mapping_set_error(page->mapping, err);
1857        set_page_writeback(page);
1858        do {
1859                struct buffer_head *next = bh->b_this_page;
1860                if (buffer_async_write(bh)) {
1861                        clear_buffer_dirty(bh);
1862                        submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1863                                        inode->i_write_hint, wbc);
1864                        nr_underway++;
1865                }
1866                bh = next;
1867        } while (bh != head);
1868        unlock_page(page);
1869        goto done;
1870}
1871EXPORT_SYMBOL(__block_write_full_page);
1872
1873/*
1874 * If a page has any new buffers, zero them out here, and mark them uptodate
1875 * and dirty so they'll be written out (in order to prevent uninitialised
1876 * block data from leaking). And clear the new bit.
1877 */
1878void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1879{
1880        unsigned int block_start, block_end;
1881        struct buffer_head *head, *bh;
1882
1883        BUG_ON(!PageLocked(page));
1884        if (!page_has_buffers(page))
1885                return;
1886
1887        bh = head = page_buffers(page);
1888        block_start = 0;
1889        do {
1890                block_end = block_start + bh->b_size;
1891
1892                if (buffer_new(bh)) {
1893                        if (block_end > from && block_start < to) {
1894                                if (!PageUptodate(page)) {
1895                                        unsigned start, size;
1896
1897                                        start = max(from, block_start);
1898                                        size = min(to, block_end) - start;
1899
1900                                        zero_user(page, start, size);
1901                                        set_buffer_uptodate(bh);
1902                                }
1903
1904                                clear_buffer_new(bh);
1905                                mark_buffer_dirty(bh);
1906                        }
1907                }
1908
1909                block_start = block_end;
1910                bh = bh->b_this_page;
1911        } while (bh != head);
1912}
1913EXPORT_SYMBOL(page_zero_new_buffers);
1914
1915static void
1916iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1917                struct iomap *iomap)
1918{
1919        loff_t offset = block << inode->i_blkbits;
1920
1921        bh->b_bdev = iomap->bdev;
1922
1923        /*
1924         * Block points to offset in file we need to map, iomap contains
1925         * the offset at which the map starts. If the map ends before the
1926         * current block, then do not map the buffer and let the caller
1927         * handle it.
1928         */
1929        BUG_ON(offset >= iomap->offset + iomap->length);
1930
1931        switch (iomap->type) {
1932        case IOMAP_HOLE:
1933                /*
1934                 * If the buffer is not up to date or beyond the current EOF,
1935                 * we need to mark it as new to ensure sub-block zeroing is
1936                 * executed if necessary.
1937                 */
1938                if (!buffer_uptodate(bh) ||
1939                    (offset >= i_size_read(inode)))
1940                        set_buffer_new(bh);
1941                break;
1942        case IOMAP_DELALLOC:
1943                if (!buffer_uptodate(bh) ||
1944                    (offset >= i_size_read(inode)))
1945                        set_buffer_new(bh);
1946                set_buffer_uptodate(bh);
1947                set_buffer_mapped(bh);
1948                set_buffer_delay(bh);
1949                break;
1950        case IOMAP_UNWRITTEN:
1951                /*
1952                 * For unwritten regions, we always need to ensure that regions
1953                 * in the block we are not writing to are zeroed. Mark the
1954                 * buffer as new to ensure this.
1955                 */
1956                set_buffer_new(bh);
1957                set_buffer_unwritten(bh);
1958                /* FALLTHRU */
1959        case IOMAP_MAPPED:
1960                if ((iomap->flags & IOMAP_F_NEW) ||
1961                    offset >= i_size_read(inode))
1962                        set_buffer_new(bh);
1963                bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
1964                                inode->i_blkbits;
1965                set_buffer_mapped(bh);
1966                break;
1967        }
1968}
1969
1970int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
1971                get_block_t *get_block, struct iomap *iomap)
1972{
1973        unsigned from = pos & (PAGE_SIZE - 1);
1974        unsigned to = from + len;
1975        struct inode *inode = page->mapping->host;
1976        unsigned block_start, block_end;
1977        sector_t block;
1978        int err = 0;
1979        unsigned blocksize, bbits;
1980        struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1981
1982        BUG_ON(!PageLocked(page));
1983        BUG_ON(from > PAGE_SIZE);
1984        BUG_ON(to > PAGE_SIZE);
1985        BUG_ON(from > to);
1986
1987        head = create_page_buffers(page, inode, 0);
1988        blocksize = head->b_size;
1989        bbits = block_size_bits(blocksize);
1990
1991        block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1992
1993        for(bh = head, block_start = 0; bh != head || !block_start;
1994            block++, block_start=block_end, bh = bh->b_this_page) {
1995                block_end = block_start + blocksize;
1996                if (block_end <= from || block_start >= to) {
1997                        if (PageUptodate(page)) {
1998                                if (!buffer_uptodate(bh))
1999                                        set_buffer_uptodate(bh);
2000                        }
2001                        continue;
2002                }
2003                if (buffer_new(bh))
2004                        clear_buffer_new(bh);
2005                if (!buffer_mapped(bh)) {
2006                        WARN_ON(bh->b_size != blocksize);
2007                        if (get_block) {
2008                                err = get_block(inode, block, bh, 1);
2009                                if (err)
2010                                        break;
2011                        } else {
2012                                iomap_to_bh(inode, block, bh, iomap);
2013                        }
2014
2015                        if (buffer_new(bh)) {
2016                                clean_bdev_bh_alias(bh);
2017                                if (PageUptodate(page)) {
2018                                        clear_buffer_new(bh);
2019                                        set_buffer_uptodate(bh);
2020                                        mark_buffer_dirty(bh);
2021                                        continue;
2022                                }
2023                                if (block_end > to || block_start < from)
2024                                        zero_user_segments(page,
2025                                                to, block_end,
2026                                                block_start, from);
2027                                continue;
2028                        }
2029                }
2030                if (PageUptodate(page)) {
2031                        if (!buffer_uptodate(bh))
2032                                set_buffer_uptodate(bh);
2033                        continue; 
2034                }
2035                if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2036                    !buffer_unwritten(bh) &&
2037                     (block_start < from || block_end > to)) {
2038                        ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2039                        *wait_bh++=bh;
2040                }
2041        }
2042        /*
2043         * If we issued read requests - let them complete.
2044         */
2045        while(wait_bh > wait) {
2046                wait_on_buffer(*--wait_bh);
2047                if (!buffer_uptodate(*wait_bh))
2048                        err = -EIO;
2049        }
2050        if (unlikely(err))
2051                page_zero_new_buffers(page, from, to);
2052        return err;
2053}
2054
2055int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2056                get_block_t *get_block)
2057{
2058        return __block_write_begin_int(page, pos, len, get_block, NULL);
2059}
2060EXPORT_SYMBOL(__block_write_begin);
2061
2062static int __block_commit_write(struct inode *inode, struct page *page,
2063                unsigned from, unsigned to)
2064{
2065        unsigned block_start, block_end;
2066        int partial = 0;
2067        unsigned blocksize;
2068        struct buffer_head *bh, *head;
2069
2070        bh = head = page_buffers(page);
2071        blocksize = bh->b_size;
2072
2073        block_start = 0;
2074        do {
2075                block_end = block_start + blocksize;
2076                if (block_end <= from || block_start >= to) {
2077                        if (!buffer_uptodate(bh))
2078                                partial = 1;
2079                } else {
2080                        set_buffer_uptodate(bh);
2081                        mark_buffer_dirty(bh);
2082                }
2083                clear_buffer_new(bh);
2084
2085                block_start = block_end;
2086                bh = bh->b_this_page;
2087        } while (bh != head);
2088
2089        /*
2090         * If this is a partial write which happened to make all buffers
2091         * uptodate then we can optimize away a bogus readpage() for
2092         * the next read(). Here we 'discover' whether the page went
2093         * uptodate as a result of this (potentially partial) write.
2094         */
2095        if (!partial)
2096                SetPageUptodate(page);
2097        return 0;
2098}
2099
2100/*
2101 * block_write_begin takes care of the basic task of block allocation and
2102 * bringing partial write blocks uptodate first.
2103 *
2104 * The filesystem needs to handle block truncation upon failure.
2105 */
2106int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2107                unsigned flags, struct page **pagep, get_block_t *get_block)
2108{
2109        pgoff_t index = pos >> PAGE_SHIFT;
2110        struct page *page;
2111        int status;
2112
2113        page = grab_cache_page_write_begin(mapping, index, flags);
2114        if (!page)
2115                return -ENOMEM;
2116
2117        status = __block_write_begin(page, pos, len, get_block);
2118        if (unlikely(status)) {
2119                unlock_page(page);
2120                put_page(page);
2121                page = NULL;
2122        }
2123
2124        *pagep = page;
2125        return status;
2126}
2127EXPORT_SYMBOL(block_write_begin);
2128
2129int block_write_end(struct file *file, struct address_space *mapping,
2130                        loff_t pos, unsigned len, unsigned copied,
2131                        struct page *page, void *fsdata)
2132{
2133        struct inode *inode = mapping->host;
2134        unsigned start;
2135
2136        start = pos & (PAGE_SIZE - 1);
2137
2138        if (unlikely(copied < len)) {
2139                /*
2140                 * The buffers that were written will now be uptodate, so we
2141                 * don't have to worry about a readpage reading them and
2142                 * overwriting a partial write. However if we have encountered
2143                 * a short write and only partially written into a buffer, it
2144                 * will not be marked uptodate, so a readpage might come in and
2145                 * destroy our partial write.
2146                 *
2147                 * Do the simplest thing, and just treat any short write to a
2148                 * non uptodate page as a zero-length write, and force the
2149                 * caller to redo the whole thing.
2150                 */
2151                if (!PageUptodate(page))
2152                        copied = 0;
2153
2154                page_zero_new_buffers(page, start+copied, start+len);
2155        }
2156        flush_dcache_page(page);
2157
2158        /* This could be a short (even 0-length) commit */
2159        __block_commit_write(inode, page, start, start+copied);
2160
2161        return copied;
2162}
2163EXPORT_SYMBOL(block_write_end);
2164
2165int generic_write_end(struct file *file, struct address_space *mapping,
2166                        loff_t pos, unsigned len, unsigned copied,
2167                        struct page *page, void *fsdata)
2168{
2169        struct inode *inode = mapping->host;
2170        loff_t old_size = inode->i_size;
2171        bool i_size_changed = false;
2172
2173        copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2174
2175        /*
2176         * No need to use i_size_read() here, the i_size cannot change under us
2177         * because we hold i_rwsem.
2178         *
2179         * But it's important to update i_size while still holding page lock:
2180         * page writeout could otherwise come in and zero beyond i_size.
2181         */
2182        if (pos + copied > inode->i_size) {
2183                i_size_write(inode, pos + copied);
2184                i_size_changed = true;
2185        }
2186
2187        unlock_page(page);
2188        put_page(page);
2189
2190        if (old_size < pos)
2191                pagecache_isize_extended(inode, old_size, pos);
2192        /*
2193         * Don't mark the inode dirty under page lock. First, it unnecessarily
2194         * makes the holding time of page lock longer. Second, it forces lock
2195         * ordering of page lock and transaction start for journaling
2196         * filesystems.
2197         */
2198        if (i_size_changed)
2199                mark_inode_dirty(inode);
2200        return copied;
2201}
2202EXPORT_SYMBOL(generic_write_end);
2203
2204/*
2205 * block_is_partially_uptodate checks whether buffers within a page are
2206 * uptodate or not.
2207 *
2208 * Returns true if all buffers which correspond to a file portion
2209 * we want to read are uptodate.
2210 */
2211int block_is_partially_uptodate(struct page *page, unsigned long from,
2212                                        unsigned long count)
2213{
2214        unsigned block_start, block_end, blocksize;
2215        unsigned to;
2216        struct buffer_head *bh, *head;
2217        int ret = 1;
2218
2219        if (!page_has_buffers(page))
2220                return 0;
2221
2222        head = page_buffers(page);
2223        blocksize = head->b_size;
2224        to = min_t(unsigned, PAGE_SIZE - from, count);
2225        to = from + to;
2226        if (from < blocksize && to > PAGE_SIZE - blocksize)
2227                return 0;
2228
2229        bh = head;
2230        block_start = 0;
2231        do {
2232                block_end = block_start + blocksize;
2233                if (block_end > from && block_start < to) {
2234                        if (!buffer_uptodate(bh)) {
2235                                ret = 0;
2236                                break;
2237                        }
2238                        if (block_end >= to)
2239                                break;
2240                }
2241                block_start = block_end;
2242                bh = bh->b_this_page;
2243        } while (bh != head);
2244
2245        return ret;
2246}
2247EXPORT_SYMBOL(block_is_partially_uptodate);
2248
2249/*
2250 * Generic "read page" function for block devices that have the normal
2251 * get_block functionality. This is most of the block device filesystems.
2252 * Reads the page asynchronously --- the unlock_buffer() and
2253 * set/clear_buffer_uptodate() functions propagate buffer state into the
2254 * page struct once IO has completed.
2255 */
2256int block_read_full_page(struct page *page, get_block_t *get_block)
2257{
2258        struct inode *inode = page->mapping->host;
2259        sector_t iblock, lblock;
2260        struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2261        unsigned int blocksize, bbits;
2262        int nr, i;
2263        int fully_mapped = 1;
2264
2265        head = create_page_buffers(page, inode, 0);
2266        blocksize = head->b_size;
2267        bbits = block_size_bits(blocksize);
2268
2269        iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2270        lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2271        bh = head;
2272        nr = 0;
2273        i = 0;
2274
2275        do {
2276                if (buffer_uptodate(bh))
2277                        continue;
2278
2279                if (!buffer_mapped(bh)) {
2280                        int err = 0;
2281
2282                        fully_mapped = 0;
2283                        if (iblock < lblock) {
2284                                WARN_ON(bh->b_size != blocksize);
2285                                err = get_block(inode, iblock, bh, 0);
2286                                if (err)
2287                                        SetPageError(page);
2288                        }
2289                        if (!buffer_mapped(bh)) {
2290                                zero_user(page, i * blocksize, blocksize);
2291                                if (!err)
2292                                        set_buffer_uptodate(bh);
2293                                continue;
2294                        }
2295                        /*
2296                         * get_block() might have updated the buffer
2297                         * synchronously
2298                         */
2299                        if (buffer_uptodate(bh))
2300                                continue;
2301                }
2302                arr[nr++] = bh;
2303        } while (i++, iblock++, (bh = bh->b_this_page) != head);
2304
2305        if (fully_mapped)
2306                SetPageMappedToDisk(page);
2307
2308        if (!nr) {
2309                /*
2310                 * All buffers are uptodate - we can set the page uptodate
2311                 * as well. But not if get_block() returned an error.
2312                 */
2313                if (!PageError(page))
2314                        SetPageUptodate(page);
2315                unlock_page(page);
2316                return 0;
2317        }
2318
2319        /* Stage two: lock the buffers */
2320        for (i = 0; i < nr; i++) {
2321                bh = arr[i];
2322                lock_buffer(bh);
2323                mark_buffer_async_read(bh);
2324        }
2325
2326        /*
2327         * Stage 3: start the IO.  Check for uptodateness
2328         * inside the buffer lock in case another process reading
2329         * the underlying blockdev brought it uptodate (the sct fix).
2330         */
2331        for (i = 0; i < nr; i++) {
2332                bh = arr[i];
2333                if (buffer_uptodate(bh))
2334                        end_buffer_async_read(bh, 1);
2335                else
2336                        submit_bh(REQ_OP_READ, 0, bh);
2337        }
2338        return 0;
2339}
2340EXPORT_SYMBOL(block_read_full_page);
2341
2342/* utility function for filesystems that need to do work on expanding
2343 * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2344 * deal with the hole.  
2345 */
2346int generic_cont_expand_simple(struct inode *inode, loff_t size)
2347{
2348        struct address_space *mapping = inode->i_mapping;
2349        struct page *page;
2350        void *fsdata;
2351        int err;
2352
2353        err = inode_newsize_ok(inode, size);
2354        if (err)
2355                goto out;
2356
2357        err = pagecache_write_begin(NULL, mapping, size, 0,
2358                                    AOP_FLAG_CONT_EXPAND, &page, &fsdata);
2359        if (err)
2360                goto out;
2361
2362        err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2363        BUG_ON(err > 0);
2364
2365out:
2366        return err;
2367}
2368EXPORT_SYMBOL(generic_cont_expand_simple);
2369
2370static int cont_expand_zero(struct file *file, struct address_space *mapping,
2371                            loff_t pos, loff_t *bytes)
2372{
2373        struct inode *inode = mapping->host;
2374        unsigned int blocksize = i_blocksize(inode);
2375        struct page *page;
2376        void *fsdata;
2377        pgoff_t index, curidx;
2378        loff_t curpos;
2379        unsigned zerofrom, offset, len;
2380        int err = 0;
2381
2382        index = pos >> PAGE_SHIFT;
2383        offset = pos & ~PAGE_MASK;
2384
2385        while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2386                zerofrom = curpos & ~PAGE_MASK;
2387                if (zerofrom & (blocksize-1)) {
2388                        *bytes |= (blocksize-1);
2389                        (*bytes)++;
2390                }
2391                len = PAGE_SIZE - zerofrom;
2392
2393                err = pagecache_write_begin(file, mapping, curpos, len, 0,
2394                                            &page, &fsdata);
2395                if (err)
2396                        goto out;
2397                zero_user(page, zerofrom, len);
2398                err = pagecache_write_end(file, mapping, curpos, len, len,
2399                                                page, fsdata);
2400                if (err < 0)
2401                        goto out;
2402                BUG_ON(err != len);
2403                err = 0;
2404
2405                balance_dirty_pages_ratelimited(mapping);
2406
2407                if (fatal_signal_pending(current)) {
2408                        err = -EINTR;
2409                        goto out;
2410                }
2411        }
2412
2413        /* page covers the boundary, find the boundary offset */
2414        if (index == curidx) {
2415                zerofrom = curpos & ~PAGE_MASK;
2416                /* if we will expand the thing last block will be filled */
2417                if (offset <= zerofrom) {
2418                        goto out;
2419                }
2420                if (zerofrom & (blocksize-1)) {
2421                        *bytes |= (blocksize-1);
2422                        (*bytes)++;
2423                }
2424                len = offset - zerofrom;
2425
2426                err = pagecache_write_begin(file, mapping, curpos, len, 0,
2427                                            &page, &fsdata);
2428                if (err)
2429                        goto out;
2430                zero_user(page, zerofrom, len);
2431                err = pagecache_write_end(file, mapping, curpos, len, len,
2432                                                page, fsdata);
2433                if (err < 0)
2434                        goto out;
2435                BUG_ON(err != len);
2436                err = 0;
2437        }
2438out:
2439        return err;
2440}
2441
2442/*
2443 * For moronic filesystems that do not allow holes in file.
2444 * We may have to extend the file.
2445 */
2446int cont_write_begin(struct file *file, struct address_space *mapping,
2447                        loff_t pos, unsigned len, unsigned flags,
2448                        struct page **pagep, void **fsdata,
2449                        get_block_t *get_block, loff_t *bytes)
2450{
2451        struct inode *inode = mapping->host;
2452        unsigned int blocksize = i_blocksize(inode);
2453        unsigned int zerofrom;
2454        int err;
2455
2456        err = cont_expand_zero(file, mapping, pos, bytes);
2457        if (err)
2458                return err;
2459
2460        zerofrom = *bytes & ~PAGE_MASK;
2461        if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2462                *bytes |= (blocksize-1);
2463                (*bytes)++;
2464        }
2465
2466        return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2467}
2468EXPORT_SYMBOL(cont_write_begin);
2469
2470int block_commit_write(struct page *page, unsigned from, unsigned to)
2471{
2472        struct inode *inode = page->mapping->host;
2473        __block_commit_write(inode,page,from,to);
2474        return 0;
2475}
2476EXPORT_SYMBOL(block_commit_write);
2477
2478/*
2479 * block_page_mkwrite() is not allowed to change the file size as it gets
2480 * called from a page fault handler when a page is first dirtied. Hence we must
2481 * be careful to check for EOF conditions here. We set the page up correctly
2482 * for a written page which means we get ENOSPC checking when writing into
2483 * holes and correct delalloc and unwritten extent mapping on filesystems that
2484 * support these features.
2485 *
2486 * We are not allowed to take the i_mutex here so we have to play games to
2487 * protect against truncate races as the page could now be beyond EOF.  Because
2488 * truncate writes the inode size before removing pages, once we have the
2489 * page lock we can determine safely if the page is beyond EOF. If it is not
2490 * beyond EOF, then the page is guaranteed safe against truncation until we
2491 * unlock the page.
2492 *
2493 * Direct callers of this function should protect against filesystem freezing
2494 * using sb_start_pagefault() - sb_end_pagefault() functions.
2495 */
2496int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2497                         get_block_t get_block)
2498{
2499        struct page *page = vmf->page;
2500        struct inode *inode = file_inode(vma->vm_file);
2501        unsigned long end;
2502        loff_t size;
2503        int ret;
2504
2505        lock_page(page);
2506        size = i_size_read(inode);
2507        if ((page->mapping != inode->i_mapping) ||
2508            (page_offset(page) > size)) {
2509                /* We overload EFAULT to mean page got truncated */
2510                ret = -EFAULT;
2511                goto out_unlock;
2512        }
2513
2514        /* page is wholly or partially inside EOF */
2515        if (((page->index + 1) << PAGE_SHIFT) > size)
2516                end = size & ~PAGE_MASK;
2517        else
2518                end = PAGE_SIZE;
2519
2520        ret = __block_write_begin(page, 0, end, get_block);
2521        if (!ret)
2522                ret = block_commit_write(page, 0, end);
2523
2524        if (unlikely(ret < 0))
2525                goto out_unlock;
2526        set_page_dirty(page);
2527        wait_for_stable_page(page);
2528        return 0;
2529out_unlock:
2530        unlock_page(page);
2531        return ret;
2532}
2533EXPORT_SYMBOL(block_page_mkwrite);
2534
2535/*
2536 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2537 * immediately, while under the page lock.  So it needs a special end_io
2538 * handler which does not touch the bh after unlocking it.
2539 */
2540static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2541{
2542        __end_buffer_read_notouch(bh, uptodate);
2543}
2544
2545/*
2546 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2547 * the page (converting it to circular linked list and taking care of page
2548 * dirty races).
2549 */
2550static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2551{
2552        struct buffer_head *bh;
2553
2554        BUG_ON(!PageLocked(page));
2555
2556        spin_lock(&page->mapping->private_lock);
2557        bh = head;
2558        do {
2559                if (PageDirty(page))
2560                        set_buffer_dirty(bh);
2561                if (!bh->b_this_page)
2562                        bh->b_this_page = head;
2563                bh = bh->b_this_page;
2564        } while (bh != head);
2565        attach_page_buffers(page, head);
2566        spin_unlock(&page->mapping->private_lock);
2567}
2568
2569/*
2570 * On entry, the page is fully not uptodate.
2571 * On exit the page is fully uptodate in the areas outside (from,to)
2572 * The filesystem needs to handle block truncation upon failure.
2573 */
2574int nobh_write_begin(struct address_space *mapping,
2575                        loff_t pos, unsigned len, unsigned flags,
2576                        struct page **pagep, void **fsdata,
2577                        get_block_t *get_block)
2578{
2579        struct inode *inode = mapping->host;
2580        const unsigned blkbits = inode->i_blkbits;
2581        const unsigned blocksize = 1 << blkbits;
2582        struct buffer_head *head, *bh;
2583        struct page *page;
2584        pgoff_t index;
2585        unsigned from, to;
2586        unsigned block_in_page;
2587        unsigned block_start, block_end;
2588        sector_t block_in_file;
2589        int nr_reads = 0;
2590        int ret = 0;
2591        int is_mapped_to_disk = 1;
2592
2593        index = pos >> PAGE_SHIFT;
2594        from = pos & (PAGE_SIZE - 1);
2595        to = from + len;
2596
2597        page = grab_cache_page_write_begin(mapping, index, flags);
2598        if (!page)
2599                return -ENOMEM;
2600        *pagep = page;
2601        *fsdata = NULL;
2602
2603        if (page_has_buffers(page)) {
2604                ret = __block_write_begin(page, pos, len, get_block);
2605                if (unlikely(ret))
2606                        goto out_release;
2607                return ret;
2608        }
2609
2610        if (PageMappedToDisk(page))
2611                return 0;
2612
2613        /*
2614         * Allocate buffers so that we can keep track of state, and potentially
2615         * attach them to the page if an error occurs. In the common case of
2616         * no error, they will just be freed again without ever being attached
2617         * to the page (which is all OK, because we're under the page lock).
2618         *
2619         * Be careful: the buffer linked list is a NULL terminated one, rather
2620         * than the circular one we're used to.
2621         */
2622        head = alloc_page_buffers(page, blocksize, false);
2623        if (!head) {
2624                ret = -ENOMEM;
2625                goto out_release;
2626        }
2627
2628        block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2629
2630        /*
2631         * We loop across all blocks in the page, whether or not they are
2632         * part of the affected region.  This is so we can discover if the
2633         * page is fully mapped-to-disk.
2634         */
2635        for (block_start = 0, block_in_page = 0, bh = head;
2636                  block_start < PAGE_SIZE;
2637                  block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2638                int create;
2639
2640                block_end = block_start + blocksize;
2641                bh->b_state = 0;
2642                create = 1;
2643                if (block_start >= to)
2644                        create = 0;
2645                ret = get_block(inode, block_in_file + block_in_page,
2646                                        bh, create);
2647                if (ret)
2648                        goto failed;
2649                if (!buffer_mapped(bh))
2650                        is_mapped_to_disk = 0;
2651                if (buffer_new(bh))
2652                        clean_bdev_bh_alias(bh);
2653                if (PageUptodate(page)) {
2654                        set_buffer_uptodate(bh);
2655                        continue;
2656                }
2657                if (buffer_new(bh) || !buffer_mapped(bh)) {
2658                        zero_user_segments(page, block_start, from,
2659                                                        to, block_end);
2660                        continue;
2661                }
2662                if (buffer_uptodate(bh))
2663                        continue;       /* reiserfs does this */
2664                if (block_start < from || block_end > to) {
2665                        lock_buffer(bh);
2666                        bh->b_end_io = end_buffer_read_nobh;
2667                        submit_bh(REQ_OP_READ, 0, bh);
2668                        nr_reads++;
2669                }
2670        }
2671
2672        if (nr_reads) {
2673                /*
2674                 * The page is locked, so these buffers are protected from
2675                 * any VM or truncate activity.  Hence we don't need to care
2676                 * for the buffer_head refcounts.
2677                 */
2678                for (bh = head; bh; bh = bh->b_this_page) {
2679                        wait_on_buffer(bh);
2680                        if (!buffer_uptodate(bh))
2681                                ret = -EIO;
2682                }
2683                if (ret)
2684                        goto failed;
2685        }
2686
2687        if (is_mapped_to_disk)
2688                SetPageMappedToDisk(page);
2689
2690        *fsdata = head; /* to be released by nobh_write_end */
2691
2692        return 0;
2693
2694failed:
2695        BUG_ON(!ret);
2696        /*
2697         * Error recovery is a bit difficult. We need to zero out blocks that
2698         * were newly allocated, and dirty them to ensure they get written out.
2699         * Buffers need to be attached to the page at this point, otherwise
2700         * the handling of potential IO errors during writeout would be hard
2701         * (could try doing synchronous writeout, but what if that fails too?)
2702         */
2703        attach_nobh_buffers(page, head);
2704        page_zero_new_buffers(page, from, to);
2705
2706out_release:
2707        unlock_page(page);
2708        put_page(page);
2709        *pagep = NULL;
2710
2711        return ret;
2712}
2713EXPORT_SYMBOL(nobh_write_begin);
2714
2715int nobh_write_end(struct file *file, struct address_space *mapping,
2716                        loff_t pos, unsigned len, unsigned copied,
2717                        struct page *page, void *fsdata)
2718{
2719        struct inode *inode = page->mapping->host;
2720        struct buffer_head *head = fsdata;
2721        struct buffer_head *bh;
2722        BUG_ON(fsdata != NULL && page_has_buffers(page));
2723
2724        if (unlikely(copied < len) && head)
2725                attach_nobh_buffers(page, head);
2726        if (page_has_buffers(page))
2727                return generic_write_end(file, mapping, pos, len,
2728                                        copied, page, fsdata);
2729
2730        SetPageUptodate(page);
2731        set_page_dirty(page);
2732        if (pos+copied > inode->i_size) {
2733                i_size_write(inode, pos+copied);
2734                mark_inode_dirty(inode);
2735        }
2736
2737        unlock_page(page);
2738        put_page(page);
2739
2740        while (head) {
2741                bh = head;
2742                head = head->b_this_page;
2743                free_buffer_head(bh);
2744        }
2745
2746        return copied;
2747}
2748EXPORT_SYMBOL(nobh_write_end);
2749
2750/*
2751 * nobh_writepage() - based on block_full_write_page() except
2752 * that it tries to operate without attaching bufferheads to
2753 * the page.
2754 */
2755int nobh_writepage(struct page *page, get_block_t *get_block,
2756                        struct writeback_control *wbc)
2757{
2758        struct inode * const inode = page->mapping->host;
2759        loff_t i_size = i_size_read(inode);
2760        const pgoff_t end_index = i_size >> PAGE_SHIFT;
2761        unsigned offset;
2762        int ret;
2763
2764        /* Is the page fully inside i_size? */
2765        if (page->index < end_index)
2766                goto out;
2767
2768        /* Is the page fully outside i_size? (truncate in progress) */
2769        offset = i_size & (PAGE_SIZE-1);
2770        if (page->index >= end_index+1 || !offset) {
2771                /*
2772                 * The page may have dirty, unmapped buffers.  For example,
2773                 * they may have been added in ext3_writepage().  Make them
2774                 * freeable here, so the page does not leak.
2775                 */
2776#if 0
2777                /* Not really sure about this  - do we need this ? */
2778                if (page->mapping->a_ops->invalidatepage)
2779                        page->mapping->a_ops->invalidatepage(page, offset);
2780#endif
2781                unlock_page(page);
2782                return 0; /* don't care */
2783        }
2784
2785        /*
2786         * The page straddles i_size.  It must be zeroed out on each and every
2787         * writepage invocation because it may be mmapped.  "A file is mapped
2788         * in multiples of the page size.  For a file that is not a multiple of
2789         * the  page size, the remaining memory is zeroed when mapped, and
2790         * writes to that region are not written out to the file."
2791         */
2792        zero_user_segment(page, offset, PAGE_SIZE);
2793out:
2794        ret = mpage_writepage(page, get_block, wbc);
2795        if (ret == -EAGAIN)
2796                ret = __block_write_full_page(inode, page, get_block, wbc,
2797                                              end_buffer_async_write);
2798        return ret;
2799}
2800EXPORT_SYMBOL(nobh_writepage);
2801
2802int nobh_truncate_page(struct address_space *mapping,
2803                        loff_t from, get_block_t *get_block)
2804{
2805        pgoff_t index = from >> PAGE_SHIFT;
2806        unsigned offset = from & (PAGE_SIZE-1);
2807        unsigned blocksize;
2808        sector_t iblock;
2809        unsigned length, pos;
2810        struct inode *inode = mapping->host;
2811        struct page *page;
2812        struct buffer_head map_bh;
2813        int err;
2814
2815        blocksize = i_blocksize(inode);
2816        length = offset & (blocksize - 1);
2817
2818        /* Block boundary? Nothing to do */
2819        if (!length)
2820                return 0;
2821
2822        length = blocksize - length;
2823        iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2824
2825        page = grab_cache_page(mapping, index);
2826        err = -ENOMEM;
2827        if (!page)
2828                goto out;
2829
2830        if (page_has_buffers(page)) {
2831has_buffers:
2832                unlock_page(page);
2833                put_page(page);
2834                return block_truncate_page(mapping, from, get_block);
2835        }
2836
2837        /* Find the buffer that contains "offset" */
2838        pos = blocksize;
2839        while (offset >= pos) {
2840                iblock++;
2841                pos += blocksize;
2842        }
2843
2844        map_bh.b_size = blocksize;
2845        map_bh.b_state = 0;
2846        err = get_block(inode, iblock, &map_bh, 0);
2847        if (err)
2848                goto unlock;
2849        /* unmapped? It's a hole - nothing to do */
2850        if (!buffer_mapped(&map_bh))
2851                goto unlock;
2852
2853        /* Ok, it's mapped. Make sure it's up-to-date */
2854        if (!PageUptodate(page)) {
2855                err = mapping->a_ops->readpage(NULL, page);
2856                if (err) {
2857                        put_page(page);
2858                        goto out;
2859                }
2860                lock_page(page);
2861                if (!PageUptodate(page)) {
2862                        err = -EIO;
2863                        goto unlock;
2864                }
2865                if (page_has_buffers(page))
2866                        goto has_buffers;
2867        }
2868        zero_user(page, offset, length);
2869        set_page_dirty(page);
2870        err = 0;
2871
2872unlock:
2873        unlock_page(page);
2874        put_page(page);
2875out:
2876        return err;
2877}
2878EXPORT_SYMBOL(nobh_truncate_page);
2879
2880int block_truncate_page(struct address_space *mapping,
2881                        loff_t from, get_block_t *get_block)
2882{
2883        pgoff_t index = from >> PAGE_SHIFT;
2884        unsigned offset = from & (PAGE_SIZE-1);
2885        unsigned blocksize;
2886        sector_t iblock;
2887        unsigned length, pos;
2888        struct inode *inode = mapping->host;
2889        struct page *page;
2890        struct buffer_head *bh;
2891        int err;
2892
2893        blocksize = i_blocksize(inode);
2894        length = offset & (blocksize - 1);
2895
2896        /* Block boundary? Nothing to do */
2897        if (!length)
2898                return 0;
2899
2900        length = blocksize - length;
2901        iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2902        
2903        page = grab_cache_page(mapping, index);
2904        err = -ENOMEM;
2905        if (!page)
2906                goto out;
2907
2908        if (!page_has_buffers(page))
2909                create_empty_buffers(page, blocksize, 0);
2910
2911        /* Find the buffer that contains "offset" */
2912        bh = page_buffers(page);
2913        pos = blocksize;
2914        while (offset >= pos) {
2915                bh = bh->b_this_page;
2916                iblock++;
2917                pos += blocksize;
2918        }
2919
2920        err = 0;
2921        if (!buffer_mapped(bh)) {
2922                WARN_ON(bh->b_size != blocksize);
2923                err = get_block(inode, iblock, bh, 0);
2924                if (err)
2925                        goto unlock;
2926                /* unmapped? It's a hole - nothing to do */
2927                if (!buffer_mapped(bh))
2928                        goto unlock;
2929        }
2930
2931        /* Ok, it's mapped. Make sure it's up-to-date */
2932        if (PageUptodate(page))
2933                set_buffer_uptodate(bh);
2934
2935        if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2936                err = -EIO;
2937                ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2938                wait_on_buffer(bh);
2939                /* Uhhuh. Read error. Complain and punt. */
2940                if (!buffer_uptodate(bh))
2941                        goto unlock;
2942        }
2943
2944        zero_user(page, offset, length);
2945        mark_buffer_dirty(bh);
2946        err = 0;
2947
2948unlock:
2949        unlock_page(page);
2950        put_page(page);
2951out:
2952        return err;
2953}
2954EXPORT_SYMBOL(block_truncate_page);
2955
2956/*
2957 * The generic ->writepage function for buffer-backed address_spaces
2958 */
2959int block_write_full_page(struct page *page, get_block_t *get_block,
2960                        struct writeback_control *wbc)
2961{
2962        struct inode * const inode = page->mapping->host;
2963        loff_t i_size = i_size_read(inode);
2964        const pgoff_t end_index = i_size >> PAGE_SHIFT;
2965        unsigned offset;
2966
2967        /* Is the page fully inside i_size? */
2968        if (page->index < end_index)
2969                return __block_write_full_page(inode, page, get_block, wbc,
2970                                               end_buffer_async_write);
2971
2972        /* Is the page fully outside i_size? (truncate in progress) */
2973        offset = i_size & (PAGE_SIZE-1);
2974        if (page->index >= end_index+1 || !offset) {
2975                /*
2976                 * The page may have dirty, unmapped buffers.  For example,
2977                 * they may have been added in ext3_writepage().  Make them
2978                 * freeable here, so the page does not leak.
2979                 */
2980                do_invalidatepage(page, 0, PAGE_SIZE);
2981                unlock_page(page);
2982                return 0; /* don't care */
2983        }
2984
2985        /*
2986         * The page straddles i_size.  It must be zeroed out on each and every
2987         * writepage invocation because it may be mmapped.  "A file is mapped
2988         * in multiples of the page size.  For a file that is not a multiple of
2989         * the  page size, the remaining memory is zeroed when mapped, and
2990         * writes to that region are not written out to the file."
2991         */
2992        zero_user_segment(page, offset, PAGE_SIZE);
2993        return __block_write_full_page(inode, page, get_block, wbc,
2994                                                        end_buffer_async_write);
2995}
2996EXPORT_SYMBOL(block_write_full_page);
2997
2998sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2999                            get_block_t *get_block)
3000{
3001        struct inode *inode = mapping->host;
3002        struct buffer_head tmp = {
3003                .b_size = i_blocksize(inode),
3004        };
3005
3006        get_block(inode, block, &tmp, 0);
3007        return tmp.b_blocknr;
3008}
3009EXPORT_SYMBOL(generic_block_bmap);
3010
3011static void end_bio_bh_io_sync(struct bio *bio)
3012{
3013        struct buffer_head *bh = bio->bi_private;
3014
3015        if (unlikely(bio_flagged(bio, BIO_QUIET)))
3016                set_bit(BH_Quiet, &bh->b_state);
3017
3018        bh->b_end_io(bh, !bio->bi_status);
3019        bio_put(bio);
3020}
3021
3022/*
3023 * This allows us to do IO even on the odd last sectors
3024 * of a device, even if the block size is some multiple
3025 * of the physical sector size.
3026 *
3027 * We'll just truncate the bio to the size of the device,
3028 * and clear the end of the buffer head manually.
3029 *
3030 * Truly out-of-range accesses will turn into actual IO
3031 * errors, this only handles the "we need to be able to
3032 * do IO at the final sector" case.
3033 */
3034void guard_bio_eod(struct bio *bio)
3035{
3036        sector_t maxsector;
3037        struct hd_struct *part;
3038
3039        rcu_read_lock();
3040        part = __disk_get_part(bio->bi_disk, bio->bi_partno);
3041        if (part)
3042                maxsector = part_nr_sects_read(part);
3043        else
3044                maxsector = get_capacity(bio->bi_disk);
3045        rcu_read_unlock();
3046
3047        if (!maxsector)
3048                return;
3049
3050        /*
3051         * If the *whole* IO is past the end of the device,
3052         * let it through, and the IO layer will turn it into
3053         * an EIO.
3054         */
3055        if (unlikely(bio->bi_iter.bi_sector >= maxsector))
3056                return;
3057
3058        maxsector -= bio->bi_iter.bi_sector;
3059        if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
3060                return;
3061
3062        bio_truncate(bio, maxsector << 9);
3063}
3064
3065static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3066                         enum rw_hint write_hint, struct writeback_control *wbc)
3067{
3068        struct bio *bio;
3069
3070        BUG_ON(!buffer_locked(bh));
3071        BUG_ON(!buffer_mapped(bh));
3072        BUG_ON(!bh->b_end_io);
3073        BUG_ON(buffer_delay(bh));
3074        BUG_ON(buffer_unwritten(bh));
3075
3076        /*
3077         * Only clear out a write error when rewriting
3078         */
3079        if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3080                clear_buffer_write_io_error(bh);
3081
3082        /*
3083         * from here on down, it's all bio -- do the initial mapping,
3084         * submit_bio -> generic_make_request may further map this bio around
3085         */
3086        bio = bio_alloc(GFP_NOIO, 1);
3087
3088        bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3089        bio_set_dev(bio, bh->b_bdev);
3090        bio->bi_write_hint = write_hint;
3091
3092        bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3093        BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3094
3095        bio->bi_end_io = end_bio_bh_io_sync;
3096        bio->bi_private = bh;
3097
3098        if (buffer_meta(bh))
3099                op_flags |= REQ_META;
3100        if (buffer_prio(bh))
3101                op_flags |= REQ_PRIO;
3102        bio_set_op_attrs(bio, op, op_flags);
3103
3104        /* Take care of bh's that straddle the end of the device */
3105        guard_bio_eod(bio);
3106
3107        if (wbc) {
3108                wbc_init_bio(wbc, bio);
3109                wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
3110        }
3111
3112        submit_bio(bio);
3113        return 0;
3114}
3115
3116int submit_bh(int op, int op_flags, struct buffer_head *bh)
3117{
3118        return submit_bh_wbc(op, op_flags, bh, 0, NULL);
3119}
3120EXPORT_SYMBOL(submit_bh);
3121
3122/**
3123 * ll_rw_block: low-level access to block devices (DEPRECATED)
3124 * @op: whether to %READ or %WRITE
3125 * @op_flags: req_flag_bits
3126 * @nr: number of &struct buffer_heads in the array
3127 * @bhs: array of pointers to &struct buffer_head
3128 *
3129 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3130 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3131 * @op_flags contains flags modifying the detailed I/O behavior, most notably
3132 * %REQ_RAHEAD.
3133 *
3134 * This function drops any buffer that it cannot get a lock on (with the
3135 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3136 * request, and any buffer that appears to be up-to-date when doing read
3137 * request.  Further it marks as clean buffers that are processed for
3138 * writing (the buffer cache won't assume that they are actually clean
3139 * until the buffer gets unlocked).
3140 *
3141 * ll_rw_block sets b_end_io to simple completion handler that marks
3142 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3143 * any waiters. 
3144 *
3145 * All of the buffers must be for the same device, and must also be a
3146 * multiple of the current approved size for the device.
3147 */
3148void ll_rw_block(int op, int op_flags,  int nr, struct buffer_head *bhs[])
3149{
3150        int i;
3151
3152        for (i = 0; i < nr; i++) {
3153                struct buffer_head *bh = bhs[i];
3154
3155                if (!trylock_buffer(bh))
3156                        continue;
3157                if (op == WRITE) {
3158                        if (test_clear_buffer_dirty(bh)) {
3159                                bh->b_end_io = end_buffer_write_sync;
3160                                get_bh(bh);
3161                                submit_bh(op, op_flags, bh);
3162                                continue;
3163                        }
3164                } else {
3165                        if (!buffer_uptodate(bh)) {
3166                                bh->b_end_io = end_buffer_read_sync;
3167                                get_bh(bh);
3168                                submit_bh(op, op_flags, bh);
3169                                continue;
3170                        }
3171                }
3172                unlock_buffer(bh);
3173        }
3174}
3175EXPORT_SYMBOL(ll_rw_block);
3176
3177void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3178{
3179        lock_buffer(bh);
3180        if (!test_clear_buffer_dirty(bh)) {
3181                unlock_buffer(bh);
3182                return;
3183        }
3184        bh->b_end_io = end_buffer_write_sync;
3185        get_bh(bh);
3186        submit_bh(REQ_OP_WRITE, op_flags, bh);
3187}
3188EXPORT_SYMBOL(write_dirty_buffer);
3189
3190/*
3191 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3192 * and then start new I/O and then wait upon it.  The caller must have a ref on
3193 * the buffer_head.
3194 */
3195int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3196{
3197        int ret = 0;
3198
3199        WARN_ON(atomic_read(&bh->b_count) < 1);
3200        lock_buffer(bh);
3201        if (test_clear_buffer_dirty(bh)) {
3202                get_bh(bh);
3203                bh->b_end_io = end_buffer_write_sync;
3204                ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3205                wait_on_buffer(bh);
3206                if (!ret && !buffer_uptodate(bh))
3207                        ret = -EIO;
3208        } else {
3209                unlock_buffer(bh);
3210        }
3211        return ret;
3212}
3213EXPORT_SYMBOL(__sync_dirty_buffer);
3214
3215int sync_dirty_buffer(struct buffer_head *bh)
3216{
3217        return __sync_dirty_buffer(bh, REQ_SYNC);
3218}
3219EXPORT_SYMBOL(sync_dirty_buffer);
3220
3221/*
3222 * try_to_free_buffers() checks if all the buffers on this particular page
3223 * are unused, and releases them if so.
3224 *
3225 * Exclusion against try_to_free_buffers may be obtained by either
3226 * locking the page or by holding its mapping's private_lock.
3227 *
3228 * If the page is dirty but all the buffers are clean then we need to
3229 * be sure to mark the page clean as well.  This is because the page
3230 * may be against a block device, and a later reattachment of buffers
3231 * to a dirty page will set *all* buffers dirty.  Which would corrupt
3232 * filesystem data on the same device.
3233 *
3234 * The same applies to regular filesystem pages: if all the buffers are
3235 * clean then we set the page clean and proceed.  To do that, we require
3236 * total exclusion from __set_page_dirty_buffers().  That is obtained with
3237 * private_lock.
3238 *
3239 * try_to_free_buffers() is non-blocking.
3240 */
3241static inline int buffer_busy(struct buffer_head *bh)
3242{
3243        return atomic_read(&bh->b_count) |
3244                (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3245}
3246
3247static int
3248drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3249{
3250        struct buffer_head *head = page_buffers(page);
3251        struct buffer_head *bh;
3252
3253        bh = head;
3254        do {
3255                if (buffer_busy(bh))
3256                        goto failed;
3257                bh = bh->b_this_page;
3258        } while (bh != head);
3259
3260        do {
3261                struct buffer_head *next = bh->b_this_page;
3262
3263                if (bh->b_assoc_map)
3264                        __remove_assoc_queue(bh);
3265                bh = next;
3266        } while (bh != head);
3267        *buffers_to_free = head;
3268        __clear_page_buffers(page);
3269        return 1;
3270failed:
3271        return 0;
3272}
3273
3274int try_to_free_buffers(struct page *page)
3275{
3276        struct address_space * const mapping = page->mapping;
3277        struct buffer_head *buffers_to_free = NULL;
3278        int ret = 0;
3279
3280        BUG_ON(!PageLocked(page));
3281        if (PageWriteback(page))
3282                return 0;
3283
3284        if (mapping == NULL) {          /* can this still happen? */
3285                ret = drop_buffers(page, &buffers_to_free);
3286                goto out;
3287        }
3288
3289        spin_lock(&mapping->private_lock);
3290        ret = drop_buffers(page, &buffers_to_free);
3291
3292        /*
3293         * If the filesystem writes its buffers by hand (eg ext3)
3294         * then we can have clean buffers against a dirty page.  We
3295         * clean the page here; otherwise the VM will never notice
3296         * that the filesystem did any IO at all.
3297         *
3298         * Also, during truncate, discard_buffer will have marked all
3299         * the page's buffers clean.  We discover that here and clean
3300         * the page also.
3301         *
3302         * private_lock must be held over this entire operation in order
3303         * to synchronise against __set_page_dirty_buffers and prevent the
3304         * dirty bit from being lost.
3305         */
3306        if (ret)
3307                cancel_dirty_page(page);
3308        spin_unlock(&mapping->private_lock);
3309out:
3310        if (buffers_to_free) {
3311                struct buffer_head *bh = buffers_to_free;
3312
3313                do {
3314                        struct buffer_head *next = bh->b_this_page;
3315                        free_buffer_head(bh);
3316                        bh = next;
3317                } while (bh != buffers_to_free);
3318        }
3319        return ret;
3320}
3321EXPORT_SYMBOL(try_to_free_buffers);
3322
3323/*
3324 * There are no bdflush tunables left.  But distributions are
3325 * still running obsolete flush daemons, so we terminate them here.
3326 *
3327 * Use of bdflush() is deprecated and will be removed in a future kernel.
3328 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3329 */
3330SYSCALL_DEFINE2(bdflush, int, func, long, data)
3331{
3332        static int msg_count;
3333
3334        if (!capable(CAP_SYS_ADMIN))
3335                return -EPERM;
3336
3337        if (msg_count < 5) {
3338                msg_count++;
3339                printk(KERN_INFO
3340                        "warning: process `%s' used the obsolete bdflush"
3341                        " system call\n", current->comm);
3342                printk(KERN_INFO "Fix your initscripts?\n");
3343        }
3344
3345        if (func == 1)
3346                do_exit(0);
3347        return 0;
3348}
3349
3350/*
3351 * Buffer-head allocation
3352 */
3353static struct kmem_cache *bh_cachep __read_mostly;
3354
3355/*
3356 * Once the number of bh's in the machine exceeds this level, we start
3357 * stripping them in writeback.
3358 */
3359static unsigned long max_buffer_heads;
3360
3361int buffer_heads_over_limit;
3362
3363struct bh_accounting {
3364        int nr;                 /* Number of live bh's */
3365        int ratelimit;          /* Limit cacheline bouncing */
3366};
3367
3368static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3369
3370static void recalc_bh_state(void)
3371{
3372        int i;
3373        int tot = 0;
3374
3375        if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3376                return;
3377        __this_cpu_write(bh_accounting.ratelimit, 0);
3378        for_each_online_cpu(i)
3379                tot += per_cpu(bh_accounting, i).nr;
3380        buffer_heads_over_limit = (tot > max_buffer_heads);
3381}
3382
3383struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3384{
3385        struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3386        if (ret) {
3387                INIT_LIST_HEAD(&ret->b_assoc_buffers);
3388                preempt_disable();
3389                __this_cpu_inc(bh_accounting.nr);
3390                recalc_bh_state();
3391                preempt_enable();
3392        }
3393        return ret;
3394}
3395EXPORT_SYMBOL(alloc_buffer_head);
3396
3397void free_buffer_head(struct buffer_head *bh)
3398{
3399        BUG_ON(!list_empty(&bh->b_assoc_buffers));
3400        kmem_cache_free(bh_cachep, bh);
3401        preempt_disable();
3402        __this_cpu_dec(bh_accounting.nr);
3403        recalc_bh_state();
3404        preempt_enable();
3405}
3406EXPORT_SYMBOL(free_buffer_head);
3407
3408static int buffer_exit_cpu_dead(unsigned int cpu)
3409{
3410        int i;
3411        struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3412
3413        for (i = 0; i < BH_LRU_SIZE; i++) {
3414                brelse(b->bhs[i]);
3415                b->bhs[i] = NULL;
3416        }
3417        this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3418        per_cpu(bh_accounting, cpu).nr = 0;
3419        return 0;
3420}
3421
3422/**
3423 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3424 * @bh: struct buffer_head
3425 *
3426 * Return true if the buffer is up-to-date and false,
3427 * with the buffer locked, if not.
3428 */
3429int bh_uptodate_or_lock(struct buffer_head *bh)
3430{
3431        if (!buffer_uptodate(bh)) {
3432                lock_buffer(bh);
3433                if (!buffer_uptodate(bh))
3434                        return 0;
3435                unlock_buffer(bh);
3436        }
3437        return 1;
3438}
3439EXPORT_SYMBOL(bh_uptodate_or_lock);
3440
3441/**
3442 * bh_submit_read - Submit a locked buffer for reading
3443 * @bh: struct buffer_head
3444 *
3445 * Returns zero on success and -EIO on error.
3446 */
3447int bh_submit_read(struct buffer_head *bh)
3448{
3449        BUG_ON(!buffer_locked(bh));
3450
3451        if (buffer_uptodate(bh)) {
3452                unlock_buffer(bh);
3453                return 0;
3454        }
3455
3456        get_bh(bh);
3457        bh->b_end_io = end_buffer_read_sync;
3458        submit_bh(REQ_OP_READ, 0, bh);
3459        wait_on_buffer(bh);
3460        if (buffer_uptodate(bh))
3461                return 0;
3462        return -EIO;
3463}
3464EXPORT_SYMBOL(bh_submit_read);
3465
3466void __init buffer_init(void)
3467{
3468        unsigned long nrpages;
3469        int ret;
3470
3471        bh_cachep = kmem_cache_create("buffer_head",
3472                        sizeof(struct buffer_head), 0,
3473                                (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3474                                SLAB_MEM_SPREAD),
3475                                NULL);
3476
3477        /*
3478         * Limit the bh occupancy to 10% of ZONE_NORMAL
3479         */
3480        nrpages = (nr_free_buffer_pages() * 10) / 100;
3481        max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3482        ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3483                                        NULL, buffer_exit_cpu_dead);
3484        WARN_ON(ret < 0);
3485}
3486