linux/fs/eventpoll.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  fs/eventpoll.c (Efficient event retrieval implementation)
   4 *  Copyright (C) 2001,...,2009  Davide Libenzi
   5 *
   6 *  Davide Libenzi <davidel@xmailserver.org>
   7 */
   8
   9#include <linux/init.h>
  10#include <linux/kernel.h>
  11#include <linux/sched/signal.h>
  12#include <linux/fs.h>
  13#include <linux/file.h>
  14#include <linux/signal.h>
  15#include <linux/errno.h>
  16#include <linux/mm.h>
  17#include <linux/slab.h>
  18#include <linux/poll.h>
  19#include <linux/string.h>
  20#include <linux/list.h>
  21#include <linux/hash.h>
  22#include <linux/spinlock.h>
  23#include <linux/syscalls.h>
  24#include <linux/rbtree.h>
  25#include <linux/wait.h>
  26#include <linux/eventpoll.h>
  27#include <linux/mount.h>
  28#include <linux/bitops.h>
  29#include <linux/mutex.h>
  30#include <linux/anon_inodes.h>
  31#include <linux/device.h>
  32#include <linux/uaccess.h>
  33#include <asm/io.h>
  34#include <asm/mman.h>
  35#include <linux/atomic.h>
  36#include <linux/proc_fs.h>
  37#include <linux/seq_file.h>
  38#include <linux/compat.h>
  39#include <linux/rculist.h>
  40#include <net/busy_poll.h>
  41
  42/*
  43 * LOCKING:
  44 * There are three level of locking required by epoll :
  45 *
  46 * 1) epmutex (mutex)
  47 * 2) ep->mtx (mutex)
  48 * 3) ep->lock (rwlock)
  49 *
  50 * The acquire order is the one listed above, from 1 to 3.
  51 * We need a rwlock (ep->lock) because we manipulate objects
  52 * from inside the poll callback, that might be triggered from
  53 * a wake_up() that in turn might be called from IRQ context.
  54 * So we can't sleep inside the poll callback and hence we need
  55 * a spinlock. During the event transfer loop (from kernel to
  56 * user space) we could end up sleeping due a copy_to_user(), so
  57 * we need a lock that will allow us to sleep. This lock is a
  58 * mutex (ep->mtx). It is acquired during the event transfer loop,
  59 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
  60 * Then we also need a global mutex to serialize eventpoll_release_file()
  61 * and ep_free().
  62 * This mutex is acquired by ep_free() during the epoll file
  63 * cleanup path and it is also acquired by eventpoll_release_file()
  64 * if a file has been pushed inside an epoll set and it is then
  65 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
  66 * It is also acquired when inserting an epoll fd onto another epoll
  67 * fd. We do this so that we walk the epoll tree and ensure that this
  68 * insertion does not create a cycle of epoll file descriptors, which
  69 * could lead to deadlock. We need a global mutex to prevent two
  70 * simultaneous inserts (A into B and B into A) from racing and
  71 * constructing a cycle without either insert observing that it is
  72 * going to.
  73 * It is necessary to acquire multiple "ep->mtx"es at once in the
  74 * case when one epoll fd is added to another. In this case, we
  75 * always acquire the locks in the order of nesting (i.e. after
  76 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
  77 * before e2->mtx). Since we disallow cycles of epoll file
  78 * descriptors, this ensures that the mutexes are well-ordered. In
  79 * order to communicate this nesting to lockdep, when walking a tree
  80 * of epoll file descriptors, we use the current recursion depth as
  81 * the lockdep subkey.
  82 * It is possible to drop the "ep->mtx" and to use the global
  83 * mutex "epmutex" (together with "ep->lock") to have it working,
  84 * but having "ep->mtx" will make the interface more scalable.
  85 * Events that require holding "epmutex" are very rare, while for
  86 * normal operations the epoll private "ep->mtx" will guarantee
  87 * a better scalability.
  88 */
  89
  90/* Epoll private bits inside the event mask */
  91#define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
  92
  93#define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
  94
  95#define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
  96                                EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
  97
  98/* Maximum number of nesting allowed inside epoll sets */
  99#define EP_MAX_NESTS 4
 100
 101#define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
 102
 103#define EP_UNACTIVE_PTR ((void *) -1L)
 104
 105#define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
 106
 107struct epoll_filefd {
 108        struct file *file;
 109        int fd;
 110} __packed;
 111
 112/*
 113 * Structure used to track possible nested calls, for too deep recursions
 114 * and loop cycles.
 115 */
 116struct nested_call_node {
 117        struct list_head llink;
 118        void *cookie;
 119        void *ctx;
 120};
 121
 122/*
 123 * This structure is used as collector for nested calls, to check for
 124 * maximum recursion dept and loop cycles.
 125 */
 126struct nested_calls {
 127        struct list_head tasks_call_list;
 128        spinlock_t lock;
 129};
 130
 131/*
 132 * Each file descriptor added to the eventpoll interface will
 133 * have an entry of this type linked to the "rbr" RB tree.
 134 * Avoid increasing the size of this struct, there can be many thousands
 135 * of these on a server and we do not want this to take another cache line.
 136 */
 137struct epitem {
 138        union {
 139                /* RB tree node links this structure to the eventpoll RB tree */
 140                struct rb_node rbn;
 141                /* Used to free the struct epitem */
 142                struct rcu_head rcu;
 143        };
 144
 145        /* List header used to link this structure to the eventpoll ready list */
 146        struct list_head rdllink;
 147
 148        /*
 149         * Works together "struct eventpoll"->ovflist in keeping the
 150         * single linked chain of items.
 151         */
 152        struct epitem *next;
 153
 154        /* The file descriptor information this item refers to */
 155        struct epoll_filefd ffd;
 156
 157        /* Number of active wait queue attached to poll operations */
 158        int nwait;
 159
 160        /* List containing poll wait queues */
 161        struct list_head pwqlist;
 162
 163        /* The "container" of this item */
 164        struct eventpoll *ep;
 165
 166        /* List header used to link this item to the "struct file" items list */
 167        struct list_head fllink;
 168
 169        /* wakeup_source used when EPOLLWAKEUP is set */
 170        struct wakeup_source __rcu *ws;
 171
 172        /* The structure that describe the interested events and the source fd */
 173        struct epoll_event event;
 174};
 175
 176/*
 177 * This structure is stored inside the "private_data" member of the file
 178 * structure and represents the main data structure for the eventpoll
 179 * interface.
 180 */
 181struct eventpoll {
 182        /*
 183         * This mutex is used to ensure that files are not removed
 184         * while epoll is using them. This is held during the event
 185         * collection loop, the file cleanup path, the epoll file exit
 186         * code and the ctl operations.
 187         */
 188        struct mutex mtx;
 189
 190        /* Wait queue used by sys_epoll_wait() */
 191        wait_queue_head_t wq;
 192
 193        /* Wait queue used by file->poll() */
 194        wait_queue_head_t poll_wait;
 195
 196        /* List of ready file descriptors */
 197        struct list_head rdllist;
 198
 199        /* Lock which protects rdllist and ovflist */
 200        rwlock_t lock;
 201
 202        /* RB tree root used to store monitored fd structs */
 203        struct rb_root_cached rbr;
 204
 205        /*
 206         * This is a single linked list that chains all the "struct epitem" that
 207         * happened while transferring ready events to userspace w/out
 208         * holding ->lock.
 209         */
 210        struct epitem *ovflist;
 211
 212        /* wakeup_source used when ep_scan_ready_list is running */
 213        struct wakeup_source *ws;
 214
 215        /* The user that created the eventpoll descriptor */
 216        struct user_struct *user;
 217
 218        struct file *file;
 219
 220        /* used to optimize loop detection check */
 221        int visited;
 222        struct list_head visited_list_link;
 223
 224#ifdef CONFIG_NET_RX_BUSY_POLL
 225        /* used to track busy poll napi_id */
 226        unsigned int napi_id;
 227#endif
 228};
 229
 230/* Wait structure used by the poll hooks */
 231struct eppoll_entry {
 232        /* List header used to link this structure to the "struct epitem" */
 233        struct list_head llink;
 234
 235        /* The "base" pointer is set to the container "struct epitem" */
 236        struct epitem *base;
 237
 238        /*
 239         * Wait queue item that will be linked to the target file wait
 240         * queue head.
 241         */
 242        wait_queue_entry_t wait;
 243
 244        /* The wait queue head that linked the "wait" wait queue item */
 245        wait_queue_head_t *whead;
 246};
 247
 248/* Wrapper struct used by poll queueing */
 249struct ep_pqueue {
 250        poll_table pt;
 251        struct epitem *epi;
 252};
 253
 254/* Used by the ep_send_events() function as callback private data */
 255struct ep_send_events_data {
 256        int maxevents;
 257        struct epoll_event __user *events;
 258        int res;
 259};
 260
 261/*
 262 * Configuration options available inside /proc/sys/fs/epoll/
 263 */
 264/* Maximum number of epoll watched descriptors, per user */
 265static long max_user_watches __read_mostly;
 266
 267/*
 268 * This mutex is used to serialize ep_free() and eventpoll_release_file().
 269 */
 270static DEFINE_MUTEX(epmutex);
 271
 272/* Used to check for epoll file descriptor inclusion loops */
 273static struct nested_calls poll_loop_ncalls;
 274
 275/* Slab cache used to allocate "struct epitem" */
 276static struct kmem_cache *epi_cache __read_mostly;
 277
 278/* Slab cache used to allocate "struct eppoll_entry" */
 279static struct kmem_cache *pwq_cache __read_mostly;
 280
 281/* Visited nodes during ep_loop_check(), so we can unset them when we finish */
 282static LIST_HEAD(visited_list);
 283
 284/*
 285 * List of files with newly added links, where we may need to limit the number
 286 * of emanating paths. Protected by the epmutex.
 287 */
 288static LIST_HEAD(tfile_check_list);
 289
 290#ifdef CONFIG_SYSCTL
 291
 292#include <linux/sysctl.h>
 293
 294static long long_zero;
 295static long long_max = LONG_MAX;
 296
 297struct ctl_table epoll_table[] = {
 298        {
 299                .procname       = "max_user_watches",
 300                .data           = &max_user_watches,
 301                .maxlen         = sizeof(max_user_watches),
 302                .mode           = 0644,
 303                .proc_handler   = proc_doulongvec_minmax,
 304                .extra1         = &long_zero,
 305                .extra2         = &long_max,
 306        },
 307        { }
 308};
 309#endif /* CONFIG_SYSCTL */
 310
 311static const struct file_operations eventpoll_fops;
 312
 313static inline int is_file_epoll(struct file *f)
 314{
 315        return f->f_op == &eventpoll_fops;
 316}
 317
 318/* Setup the structure that is used as key for the RB tree */
 319static inline void ep_set_ffd(struct epoll_filefd *ffd,
 320                              struct file *file, int fd)
 321{
 322        ffd->file = file;
 323        ffd->fd = fd;
 324}
 325
 326/* Compare RB tree keys */
 327static inline int ep_cmp_ffd(struct epoll_filefd *p1,
 328                             struct epoll_filefd *p2)
 329{
 330        return (p1->file > p2->file ? +1:
 331                (p1->file < p2->file ? -1 : p1->fd - p2->fd));
 332}
 333
 334/* Tells us if the item is currently linked */
 335static inline int ep_is_linked(struct epitem *epi)
 336{
 337        return !list_empty(&epi->rdllink);
 338}
 339
 340static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
 341{
 342        return container_of(p, struct eppoll_entry, wait);
 343}
 344
 345/* Get the "struct epitem" from a wait queue pointer */
 346static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
 347{
 348        return container_of(p, struct eppoll_entry, wait)->base;
 349}
 350
 351/* Get the "struct epitem" from an epoll queue wrapper */
 352static inline struct epitem *ep_item_from_epqueue(poll_table *p)
 353{
 354        return container_of(p, struct ep_pqueue, pt)->epi;
 355}
 356
 357/* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
 358static inline int ep_op_has_event(int op)
 359{
 360        return op != EPOLL_CTL_DEL;
 361}
 362
 363/* Initialize the poll safe wake up structure */
 364static void ep_nested_calls_init(struct nested_calls *ncalls)
 365{
 366        INIT_LIST_HEAD(&ncalls->tasks_call_list);
 367        spin_lock_init(&ncalls->lock);
 368}
 369
 370/**
 371 * ep_events_available - Checks if ready events might be available.
 372 *
 373 * @ep: Pointer to the eventpoll context.
 374 *
 375 * Returns: Returns a value different than zero if ready events are available,
 376 *          or zero otherwise.
 377 */
 378static inline int ep_events_available(struct eventpoll *ep)
 379{
 380        return !list_empty_careful(&ep->rdllist) ||
 381                READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR;
 382}
 383
 384#ifdef CONFIG_NET_RX_BUSY_POLL
 385static bool ep_busy_loop_end(void *p, unsigned long start_time)
 386{
 387        struct eventpoll *ep = p;
 388
 389        return ep_events_available(ep) || busy_loop_timeout(start_time);
 390}
 391
 392/*
 393 * Busy poll if globally on and supporting sockets found && no events,
 394 * busy loop will return if need_resched or ep_events_available.
 395 *
 396 * we must do our busy polling with irqs enabled
 397 */
 398static void ep_busy_loop(struct eventpoll *ep, int nonblock)
 399{
 400        unsigned int napi_id = READ_ONCE(ep->napi_id);
 401
 402        if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on())
 403                napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep);
 404}
 405
 406static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep)
 407{
 408        if (ep->napi_id)
 409                ep->napi_id = 0;
 410}
 411
 412/*
 413 * Set epoll busy poll NAPI ID from sk.
 414 */
 415static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
 416{
 417        struct eventpoll *ep;
 418        unsigned int napi_id;
 419        struct socket *sock;
 420        struct sock *sk;
 421        int err;
 422
 423        if (!net_busy_loop_on())
 424                return;
 425
 426        sock = sock_from_file(epi->ffd.file, &err);
 427        if (!sock)
 428                return;
 429
 430        sk = sock->sk;
 431        if (!sk)
 432                return;
 433
 434        napi_id = READ_ONCE(sk->sk_napi_id);
 435        ep = epi->ep;
 436
 437        /* Non-NAPI IDs can be rejected
 438         *      or
 439         * Nothing to do if we already have this ID
 440         */
 441        if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id)
 442                return;
 443
 444        /* record NAPI ID for use in next busy poll */
 445        ep->napi_id = napi_id;
 446}
 447
 448#else
 449
 450static inline void ep_busy_loop(struct eventpoll *ep, int nonblock)
 451{
 452}
 453
 454static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep)
 455{
 456}
 457
 458static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
 459{
 460}
 461
 462#endif /* CONFIG_NET_RX_BUSY_POLL */
 463
 464/**
 465 * ep_call_nested - Perform a bound (possibly) nested call, by checking
 466 *                  that the recursion limit is not exceeded, and that
 467 *                  the same nested call (by the meaning of same cookie) is
 468 *                  no re-entered.
 469 *
 470 * @ncalls: Pointer to the nested_calls structure to be used for this call.
 471 * @nproc: Nested call core function pointer.
 472 * @priv: Opaque data to be passed to the @nproc callback.
 473 * @cookie: Cookie to be used to identify this nested call.
 474 * @ctx: This instance context.
 475 *
 476 * Returns: Returns the code returned by the @nproc callback, or -1 if
 477 *          the maximum recursion limit has been exceeded.
 478 */
 479static int ep_call_nested(struct nested_calls *ncalls,
 480                          int (*nproc)(void *, void *, int), void *priv,
 481                          void *cookie, void *ctx)
 482{
 483        int error, call_nests = 0;
 484        unsigned long flags;
 485        struct list_head *lsthead = &ncalls->tasks_call_list;
 486        struct nested_call_node *tncur;
 487        struct nested_call_node tnode;
 488
 489        spin_lock_irqsave(&ncalls->lock, flags);
 490
 491        /*
 492         * Try to see if the current task is already inside this wakeup call.
 493         * We use a list here, since the population inside this set is always
 494         * very much limited.
 495         */
 496        list_for_each_entry(tncur, lsthead, llink) {
 497                if (tncur->ctx == ctx &&
 498                    (tncur->cookie == cookie || ++call_nests > EP_MAX_NESTS)) {
 499                        /*
 500                         * Ops ... loop detected or maximum nest level reached.
 501                         * We abort this wake by breaking the cycle itself.
 502                         */
 503                        error = -1;
 504                        goto out_unlock;
 505                }
 506        }
 507
 508        /* Add the current task and cookie to the list */
 509        tnode.ctx = ctx;
 510        tnode.cookie = cookie;
 511        list_add(&tnode.llink, lsthead);
 512
 513        spin_unlock_irqrestore(&ncalls->lock, flags);
 514
 515        /* Call the nested function */
 516        error = (*nproc)(priv, cookie, call_nests);
 517
 518        /* Remove the current task from the list */
 519        spin_lock_irqsave(&ncalls->lock, flags);
 520        list_del(&tnode.llink);
 521out_unlock:
 522        spin_unlock_irqrestore(&ncalls->lock, flags);
 523
 524        return error;
 525}
 526
 527/*
 528 * As described in commit 0ccf831cb lockdep: annotate epoll
 529 * the use of wait queues used by epoll is done in a very controlled
 530 * manner. Wake ups can nest inside each other, but are never done
 531 * with the same locking. For example:
 532 *
 533 *   dfd = socket(...);
 534 *   efd1 = epoll_create();
 535 *   efd2 = epoll_create();
 536 *   epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
 537 *   epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
 538 *
 539 * When a packet arrives to the device underneath "dfd", the net code will
 540 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
 541 * callback wakeup entry on that queue, and the wake_up() performed by the
 542 * "dfd" net code will end up in ep_poll_callback(). At this point epoll
 543 * (efd1) notices that it may have some event ready, so it needs to wake up
 544 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
 545 * that ends up in another wake_up(), after having checked about the
 546 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
 547 * avoid stack blasting.
 548 *
 549 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
 550 * this special case of epoll.
 551 */
 552#ifdef CONFIG_DEBUG_LOCK_ALLOC
 553
 554static DEFINE_PER_CPU(int, wakeup_nest);
 555
 556static void ep_poll_safewake(wait_queue_head_t *wq)
 557{
 558        unsigned long flags;
 559        int subclass;
 560
 561        local_irq_save(flags);
 562        preempt_disable();
 563        subclass = __this_cpu_read(wakeup_nest);
 564        spin_lock_nested(&wq->lock, subclass + 1);
 565        __this_cpu_inc(wakeup_nest);
 566        wake_up_locked_poll(wq, POLLIN);
 567        __this_cpu_dec(wakeup_nest);
 568        spin_unlock(&wq->lock);
 569        local_irq_restore(flags);
 570        preempt_enable();
 571}
 572
 573#else
 574
 575static void ep_poll_safewake(wait_queue_head_t *wq)
 576{
 577        wake_up_poll(wq, EPOLLIN);
 578}
 579
 580#endif
 581
 582static void ep_remove_wait_queue(struct eppoll_entry *pwq)
 583{
 584        wait_queue_head_t *whead;
 585
 586        rcu_read_lock();
 587        /*
 588         * If it is cleared by POLLFREE, it should be rcu-safe.
 589         * If we read NULL we need a barrier paired with
 590         * smp_store_release() in ep_poll_callback(), otherwise
 591         * we rely on whead->lock.
 592         */
 593        whead = smp_load_acquire(&pwq->whead);
 594        if (whead)
 595                remove_wait_queue(whead, &pwq->wait);
 596        rcu_read_unlock();
 597}
 598
 599/*
 600 * This function unregisters poll callbacks from the associated file
 601 * descriptor.  Must be called with "mtx" held (or "epmutex" if called from
 602 * ep_free).
 603 */
 604static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
 605{
 606        struct list_head *lsthead = &epi->pwqlist;
 607        struct eppoll_entry *pwq;
 608
 609        while (!list_empty(lsthead)) {
 610                pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
 611
 612                list_del(&pwq->llink);
 613                ep_remove_wait_queue(pwq);
 614                kmem_cache_free(pwq_cache, pwq);
 615        }
 616}
 617
 618/* call only when ep->mtx is held */
 619static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
 620{
 621        return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
 622}
 623
 624/* call only when ep->mtx is held */
 625static inline void ep_pm_stay_awake(struct epitem *epi)
 626{
 627        struct wakeup_source *ws = ep_wakeup_source(epi);
 628
 629        if (ws)
 630                __pm_stay_awake(ws);
 631}
 632
 633static inline bool ep_has_wakeup_source(struct epitem *epi)
 634{
 635        return rcu_access_pointer(epi->ws) ? true : false;
 636}
 637
 638/* call when ep->mtx cannot be held (ep_poll_callback) */
 639static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
 640{
 641        struct wakeup_source *ws;
 642
 643        rcu_read_lock();
 644        ws = rcu_dereference(epi->ws);
 645        if (ws)
 646                __pm_stay_awake(ws);
 647        rcu_read_unlock();
 648}
 649
 650/**
 651 * ep_scan_ready_list - Scans the ready list in a way that makes possible for
 652 *                      the scan code, to call f_op->poll(). Also allows for
 653 *                      O(NumReady) performance.
 654 *
 655 * @ep: Pointer to the epoll private data structure.
 656 * @sproc: Pointer to the scan callback.
 657 * @priv: Private opaque data passed to the @sproc callback.
 658 * @depth: The current depth of recursive f_op->poll calls.
 659 * @ep_locked: caller already holds ep->mtx
 660 *
 661 * Returns: The same integer error code returned by the @sproc callback.
 662 */
 663static __poll_t ep_scan_ready_list(struct eventpoll *ep,
 664                              __poll_t (*sproc)(struct eventpoll *,
 665                                           struct list_head *, void *),
 666                              void *priv, int depth, bool ep_locked)
 667{
 668        __poll_t res;
 669        struct epitem *epi, *nepi;
 670        LIST_HEAD(txlist);
 671
 672        lockdep_assert_irqs_enabled();
 673
 674        /*
 675         * We need to lock this because we could be hit by
 676         * eventpoll_release_file() and epoll_ctl().
 677         */
 678
 679        if (!ep_locked)
 680                mutex_lock_nested(&ep->mtx, depth);
 681
 682        /*
 683         * Steal the ready list, and re-init the original one to the
 684         * empty list. Also, set ep->ovflist to NULL so that events
 685         * happening while looping w/out locks, are not lost. We cannot
 686         * have the poll callback to queue directly on ep->rdllist,
 687         * because we want the "sproc" callback to be able to do it
 688         * in a lockless way.
 689         */
 690        write_lock_irq(&ep->lock);
 691        list_splice_init(&ep->rdllist, &txlist);
 692        WRITE_ONCE(ep->ovflist, NULL);
 693        write_unlock_irq(&ep->lock);
 694
 695        /*
 696         * Now call the callback function.
 697         */
 698        res = (*sproc)(ep, &txlist, priv);
 699
 700        write_lock_irq(&ep->lock);
 701        /*
 702         * During the time we spent inside the "sproc" callback, some
 703         * other events might have been queued by the poll callback.
 704         * We re-insert them inside the main ready-list here.
 705         */
 706        for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL;
 707             nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
 708                /*
 709                 * We need to check if the item is already in the list.
 710                 * During the "sproc" callback execution time, items are
 711                 * queued into ->ovflist but the "txlist" might already
 712                 * contain them, and the list_splice() below takes care of them.
 713                 */
 714                if (!ep_is_linked(epi)) {
 715                        /*
 716                         * ->ovflist is LIFO, so we have to reverse it in order
 717                         * to keep in FIFO.
 718                         */
 719                        list_add(&epi->rdllink, &ep->rdllist);
 720                        ep_pm_stay_awake(epi);
 721                }
 722        }
 723        /*
 724         * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
 725         * releasing the lock, events will be queued in the normal way inside
 726         * ep->rdllist.
 727         */
 728        WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR);
 729
 730        /*
 731         * Quickly re-inject items left on "txlist".
 732         */
 733        list_splice(&txlist, &ep->rdllist);
 734        __pm_relax(ep->ws);
 735        write_unlock_irq(&ep->lock);
 736
 737        if (!ep_locked)
 738                mutex_unlock(&ep->mtx);
 739
 740        return res;
 741}
 742
 743static void epi_rcu_free(struct rcu_head *head)
 744{
 745        struct epitem *epi = container_of(head, struct epitem, rcu);
 746        kmem_cache_free(epi_cache, epi);
 747}
 748
 749/*
 750 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
 751 * all the associated resources. Must be called with "mtx" held.
 752 */
 753static int ep_remove(struct eventpoll *ep, struct epitem *epi)
 754{
 755        struct file *file = epi->ffd.file;
 756
 757        lockdep_assert_irqs_enabled();
 758
 759        /*
 760         * Removes poll wait queue hooks.
 761         */
 762        ep_unregister_pollwait(ep, epi);
 763
 764        /* Remove the current item from the list of epoll hooks */
 765        spin_lock(&file->f_lock);
 766        list_del_rcu(&epi->fllink);
 767        spin_unlock(&file->f_lock);
 768
 769        rb_erase_cached(&epi->rbn, &ep->rbr);
 770
 771        write_lock_irq(&ep->lock);
 772        if (ep_is_linked(epi))
 773                list_del_init(&epi->rdllink);
 774        write_unlock_irq(&ep->lock);
 775
 776        wakeup_source_unregister(ep_wakeup_source(epi));
 777        /*
 778         * At this point it is safe to free the eventpoll item. Use the union
 779         * field epi->rcu, since we are trying to minimize the size of
 780         * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
 781         * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
 782         * use of the rbn field.
 783         */
 784        call_rcu(&epi->rcu, epi_rcu_free);
 785
 786        atomic_long_dec(&ep->user->epoll_watches);
 787
 788        return 0;
 789}
 790
 791static void ep_free(struct eventpoll *ep)
 792{
 793        struct rb_node *rbp;
 794        struct epitem *epi;
 795
 796        /* We need to release all tasks waiting for these file */
 797        if (waitqueue_active(&ep->poll_wait))
 798                ep_poll_safewake(&ep->poll_wait);
 799
 800        /*
 801         * We need to lock this because we could be hit by
 802         * eventpoll_release_file() while we're freeing the "struct eventpoll".
 803         * We do not need to hold "ep->mtx" here because the epoll file
 804         * is on the way to be removed and no one has references to it
 805         * anymore. The only hit might come from eventpoll_release_file() but
 806         * holding "epmutex" is sufficient here.
 807         */
 808        mutex_lock(&epmutex);
 809
 810        /*
 811         * Walks through the whole tree by unregistering poll callbacks.
 812         */
 813        for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
 814                epi = rb_entry(rbp, struct epitem, rbn);
 815
 816                ep_unregister_pollwait(ep, epi);
 817                cond_resched();
 818        }
 819
 820        /*
 821         * Walks through the whole tree by freeing each "struct epitem". At this
 822         * point we are sure no poll callbacks will be lingering around, and also by
 823         * holding "epmutex" we can be sure that no file cleanup code will hit
 824         * us during this operation. So we can avoid the lock on "ep->lock".
 825         * We do not need to lock ep->mtx, either, we only do it to prevent
 826         * a lockdep warning.
 827         */
 828        mutex_lock(&ep->mtx);
 829        while ((rbp = rb_first_cached(&ep->rbr)) != NULL) {
 830                epi = rb_entry(rbp, struct epitem, rbn);
 831                ep_remove(ep, epi);
 832                cond_resched();
 833        }
 834        mutex_unlock(&ep->mtx);
 835
 836        mutex_unlock(&epmutex);
 837        mutex_destroy(&ep->mtx);
 838        free_uid(ep->user);
 839        wakeup_source_unregister(ep->ws);
 840        kfree(ep);
 841}
 842
 843static int ep_eventpoll_release(struct inode *inode, struct file *file)
 844{
 845        struct eventpoll *ep = file->private_data;
 846
 847        if (ep)
 848                ep_free(ep);
 849
 850        return 0;
 851}
 852
 853static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
 854                               void *priv);
 855static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
 856                                 poll_table *pt);
 857
 858/*
 859 * Differs from ep_eventpoll_poll() in that internal callers already have
 860 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
 861 * is correctly annotated.
 862 */
 863static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt,
 864                                 int depth)
 865{
 866        struct eventpoll *ep;
 867        bool locked;
 868
 869        pt->_key = epi->event.events;
 870        if (!is_file_epoll(epi->ffd.file))
 871                return vfs_poll(epi->ffd.file, pt) & epi->event.events;
 872
 873        ep = epi->ffd.file->private_data;
 874        poll_wait(epi->ffd.file, &ep->poll_wait, pt);
 875        locked = pt && (pt->_qproc == ep_ptable_queue_proc);
 876
 877        return ep_scan_ready_list(epi->ffd.file->private_data,
 878                                  ep_read_events_proc, &depth, depth,
 879                                  locked) & epi->event.events;
 880}
 881
 882static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
 883                               void *priv)
 884{
 885        struct epitem *epi, *tmp;
 886        poll_table pt;
 887        int depth = *(int *)priv;
 888
 889        init_poll_funcptr(&pt, NULL);
 890        depth++;
 891
 892        list_for_each_entry_safe(epi, tmp, head, rdllink) {
 893                if (ep_item_poll(epi, &pt, depth)) {
 894                        return EPOLLIN | EPOLLRDNORM;
 895                } else {
 896                        /*
 897                         * Item has been dropped into the ready list by the poll
 898                         * callback, but it's not actually ready, as far as
 899                         * caller requested events goes. We can remove it here.
 900                         */
 901                        __pm_relax(ep_wakeup_source(epi));
 902                        list_del_init(&epi->rdllink);
 903                }
 904        }
 905
 906        return 0;
 907}
 908
 909static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait)
 910{
 911        struct eventpoll *ep = file->private_data;
 912        int depth = 0;
 913
 914        /* Insert inside our poll wait queue */
 915        poll_wait(file, &ep->poll_wait, wait);
 916
 917        /*
 918         * Proceed to find out if wanted events are really available inside
 919         * the ready list.
 920         */
 921        return ep_scan_ready_list(ep, ep_read_events_proc,
 922                                  &depth, depth, false);
 923}
 924
 925#ifdef CONFIG_PROC_FS
 926static void ep_show_fdinfo(struct seq_file *m, struct file *f)
 927{
 928        struct eventpoll *ep = f->private_data;
 929        struct rb_node *rbp;
 930
 931        mutex_lock(&ep->mtx);
 932        for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
 933                struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
 934                struct inode *inode = file_inode(epi->ffd.file);
 935
 936                seq_printf(m, "tfd: %8d events: %8x data: %16llx "
 937                           " pos:%lli ino:%lx sdev:%x\n",
 938                           epi->ffd.fd, epi->event.events,
 939                           (long long)epi->event.data,
 940                           (long long)epi->ffd.file->f_pos,
 941                           inode->i_ino, inode->i_sb->s_dev);
 942                if (seq_has_overflowed(m))
 943                        break;
 944        }
 945        mutex_unlock(&ep->mtx);
 946}
 947#endif
 948
 949/* File callbacks that implement the eventpoll file behaviour */
 950static const struct file_operations eventpoll_fops = {
 951#ifdef CONFIG_PROC_FS
 952        .show_fdinfo    = ep_show_fdinfo,
 953#endif
 954        .release        = ep_eventpoll_release,
 955        .poll           = ep_eventpoll_poll,
 956        .llseek         = noop_llseek,
 957};
 958
 959/*
 960 * This is called from eventpoll_release() to unlink files from the eventpoll
 961 * interface. We need to have this facility to cleanup correctly files that are
 962 * closed without being removed from the eventpoll interface.
 963 */
 964void eventpoll_release_file(struct file *file)
 965{
 966        struct eventpoll *ep;
 967        struct epitem *epi, *next;
 968
 969        /*
 970         * We don't want to get "file->f_lock" because it is not
 971         * necessary. It is not necessary because we're in the "struct file"
 972         * cleanup path, and this means that no one is using this file anymore.
 973         * So, for example, epoll_ctl() cannot hit here since if we reach this
 974         * point, the file counter already went to zero and fget() would fail.
 975         * The only hit might come from ep_free() but by holding the mutex
 976         * will correctly serialize the operation. We do need to acquire
 977         * "ep->mtx" after "epmutex" because ep_remove() requires it when called
 978         * from anywhere but ep_free().
 979         *
 980         * Besides, ep_remove() acquires the lock, so we can't hold it here.
 981         */
 982        mutex_lock(&epmutex);
 983        list_for_each_entry_safe(epi, next, &file->f_ep_links, fllink) {
 984                ep = epi->ep;
 985                mutex_lock_nested(&ep->mtx, 0);
 986                ep_remove(ep, epi);
 987                mutex_unlock(&ep->mtx);
 988        }
 989        mutex_unlock(&epmutex);
 990}
 991
 992static int ep_alloc(struct eventpoll **pep)
 993{
 994        int error;
 995        struct user_struct *user;
 996        struct eventpoll *ep;
 997
 998        user = get_current_user();
 999        error = -ENOMEM;
1000        ep = kzalloc(sizeof(*ep), GFP_KERNEL);
1001        if (unlikely(!ep))
1002                goto free_uid;
1003
1004        mutex_init(&ep->mtx);
1005        rwlock_init(&ep->lock);
1006        init_waitqueue_head(&ep->wq);
1007        init_waitqueue_head(&ep->poll_wait);
1008        INIT_LIST_HEAD(&ep->rdllist);
1009        ep->rbr = RB_ROOT_CACHED;
1010        ep->ovflist = EP_UNACTIVE_PTR;
1011        ep->user = user;
1012
1013        *pep = ep;
1014
1015        return 0;
1016
1017free_uid:
1018        free_uid(user);
1019        return error;
1020}
1021
1022/*
1023 * Search the file inside the eventpoll tree. The RB tree operations
1024 * are protected by the "mtx" mutex, and ep_find() must be called with
1025 * "mtx" held.
1026 */
1027static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
1028{
1029        int kcmp;
1030        struct rb_node *rbp;
1031        struct epitem *epi, *epir = NULL;
1032        struct epoll_filefd ffd;
1033
1034        ep_set_ffd(&ffd, file, fd);
1035        for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
1036                epi = rb_entry(rbp, struct epitem, rbn);
1037                kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
1038                if (kcmp > 0)
1039                        rbp = rbp->rb_right;
1040                else if (kcmp < 0)
1041                        rbp = rbp->rb_left;
1042                else {
1043                        epir = epi;
1044                        break;
1045                }
1046        }
1047
1048        return epir;
1049}
1050
1051#ifdef CONFIG_CHECKPOINT_RESTORE
1052static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
1053{
1054        struct rb_node *rbp;
1055        struct epitem *epi;
1056
1057        for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1058                epi = rb_entry(rbp, struct epitem, rbn);
1059                if (epi->ffd.fd == tfd) {
1060                        if (toff == 0)
1061                                return epi;
1062                        else
1063                                toff--;
1064                }
1065                cond_resched();
1066        }
1067
1068        return NULL;
1069}
1070
1071struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
1072                                     unsigned long toff)
1073{
1074        struct file *file_raw;
1075        struct eventpoll *ep;
1076        struct epitem *epi;
1077
1078        if (!is_file_epoll(file))
1079                return ERR_PTR(-EINVAL);
1080
1081        ep = file->private_data;
1082
1083        mutex_lock(&ep->mtx);
1084        epi = ep_find_tfd(ep, tfd, toff);
1085        if (epi)
1086                file_raw = epi->ffd.file;
1087        else
1088                file_raw = ERR_PTR(-ENOENT);
1089        mutex_unlock(&ep->mtx);
1090
1091        return file_raw;
1092}
1093#endif /* CONFIG_CHECKPOINT_RESTORE */
1094
1095/**
1096 * Adds a new entry to the tail of the list in a lockless way, i.e.
1097 * multiple CPUs are allowed to call this function concurrently.
1098 *
1099 * Beware: it is necessary to prevent any other modifications of the
1100 *         existing list until all changes are completed, in other words
1101 *         concurrent list_add_tail_lockless() calls should be protected
1102 *         with a read lock, where write lock acts as a barrier which
1103 *         makes sure all list_add_tail_lockless() calls are fully
1104 *         completed.
1105 *
1106 *        Also an element can be locklessly added to the list only in one
1107 *        direction i.e. either to the tail either to the head, otherwise
1108 *        concurrent access will corrupt the list.
1109 *
1110 * Returns %false if element has been already added to the list, %true
1111 * otherwise.
1112 */
1113static inline bool list_add_tail_lockless(struct list_head *new,
1114                                          struct list_head *head)
1115{
1116        struct list_head *prev;
1117
1118        /*
1119         * This is simple 'new->next = head' operation, but cmpxchg()
1120         * is used in order to detect that same element has been just
1121         * added to the list from another CPU: the winner observes
1122         * new->next == new.
1123         */
1124        if (cmpxchg(&new->next, new, head) != new)
1125                return false;
1126
1127        /*
1128         * Initially ->next of a new element must be updated with the head
1129         * (we are inserting to the tail) and only then pointers are atomically
1130         * exchanged.  XCHG guarantees memory ordering, thus ->next should be
1131         * updated before pointers are actually swapped and pointers are
1132         * swapped before prev->next is updated.
1133         */
1134
1135        prev = xchg(&head->prev, new);
1136
1137        /*
1138         * It is safe to modify prev->next and new->prev, because a new element
1139         * is added only to the tail and new->next is updated before XCHG.
1140         */
1141
1142        prev->next = new;
1143        new->prev = prev;
1144
1145        return true;
1146}
1147
1148/**
1149 * Chains a new epi entry to the tail of the ep->ovflist in a lockless way,
1150 * i.e. multiple CPUs are allowed to call this function concurrently.
1151 *
1152 * Returns %false if epi element has been already chained, %true otherwise.
1153 */
1154static inline bool chain_epi_lockless(struct epitem *epi)
1155{
1156        struct eventpoll *ep = epi->ep;
1157
1158        /* Check that the same epi has not been just chained from another CPU */
1159        if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR)
1160                return false;
1161
1162        /* Atomically exchange tail */
1163        epi->next = xchg(&ep->ovflist, epi);
1164
1165        return true;
1166}
1167
1168/*
1169 * This is the callback that is passed to the wait queue wakeup
1170 * mechanism. It is called by the stored file descriptors when they
1171 * have events to report.
1172 *
1173 * This callback takes a read lock in order not to content with concurrent
1174 * events from another file descriptors, thus all modifications to ->rdllist
1175 * or ->ovflist are lockless.  Read lock is paired with the write lock from
1176 * ep_scan_ready_list(), which stops all list modifications and guarantees
1177 * that lists state is seen correctly.
1178 *
1179 * Another thing worth to mention is that ep_poll_callback() can be called
1180 * concurrently for the same @epi from different CPUs if poll table was inited
1181 * with several wait queues entries.  Plural wakeup from different CPUs of a
1182 * single wait queue is serialized by wq.lock, but the case when multiple wait
1183 * queues are used should be detected accordingly.  This is detected using
1184 * cmpxchg() operation.
1185 */
1186static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1187{
1188        int pwake = 0;
1189        struct epitem *epi = ep_item_from_wait(wait);
1190        struct eventpoll *ep = epi->ep;
1191        __poll_t pollflags = key_to_poll(key);
1192        unsigned long flags;
1193        int ewake = 0;
1194
1195        read_lock_irqsave(&ep->lock, flags);
1196
1197        ep_set_busy_poll_napi_id(epi);
1198
1199        /*
1200         * If the event mask does not contain any poll(2) event, we consider the
1201         * descriptor to be disabled. This condition is likely the effect of the
1202         * EPOLLONESHOT bit that disables the descriptor when an event is received,
1203         * until the next EPOLL_CTL_MOD will be issued.
1204         */
1205        if (!(epi->event.events & ~EP_PRIVATE_BITS))
1206                goto out_unlock;
1207
1208        /*
1209         * Check the events coming with the callback. At this stage, not
1210         * every device reports the events in the "key" parameter of the
1211         * callback. We need to be able to handle both cases here, hence the
1212         * test for "key" != NULL before the event match test.
1213         */
1214        if (pollflags && !(pollflags & epi->event.events))
1215                goto out_unlock;
1216
1217        /*
1218         * If we are transferring events to userspace, we can hold no locks
1219         * (because we're accessing user memory, and because of linux f_op->poll()
1220         * semantics). All the events that happen during that period of time are
1221         * chained in ep->ovflist and requeued later on.
1222         */
1223        if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) {
1224                if (epi->next == EP_UNACTIVE_PTR &&
1225                    chain_epi_lockless(epi))
1226                        ep_pm_stay_awake_rcu(epi);
1227                goto out_unlock;
1228        }
1229
1230        /* If this file is already in the ready list we exit soon */
1231        if (!ep_is_linked(epi) &&
1232            list_add_tail_lockless(&epi->rdllink, &ep->rdllist)) {
1233                ep_pm_stay_awake_rcu(epi);
1234        }
1235
1236        /*
1237         * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1238         * wait list.
1239         */
1240        if (waitqueue_active(&ep->wq)) {
1241                if ((epi->event.events & EPOLLEXCLUSIVE) &&
1242                                        !(pollflags & POLLFREE)) {
1243                        switch (pollflags & EPOLLINOUT_BITS) {
1244                        case EPOLLIN:
1245                                if (epi->event.events & EPOLLIN)
1246                                        ewake = 1;
1247                                break;
1248                        case EPOLLOUT:
1249                                if (epi->event.events & EPOLLOUT)
1250                                        ewake = 1;
1251                                break;
1252                        case 0:
1253                                ewake = 1;
1254                                break;
1255                        }
1256                }
1257                wake_up(&ep->wq);
1258        }
1259        if (waitqueue_active(&ep->poll_wait))
1260                pwake++;
1261
1262out_unlock:
1263        read_unlock_irqrestore(&ep->lock, flags);
1264
1265        /* We have to call this outside the lock */
1266        if (pwake)
1267                ep_poll_safewake(&ep->poll_wait);
1268
1269        if (!(epi->event.events & EPOLLEXCLUSIVE))
1270                ewake = 1;
1271
1272        if (pollflags & POLLFREE) {
1273                /*
1274                 * If we race with ep_remove_wait_queue() it can miss
1275                 * ->whead = NULL and do another remove_wait_queue() after
1276                 * us, so we can't use __remove_wait_queue().
1277                 */
1278                list_del_init(&wait->entry);
1279                /*
1280                 * ->whead != NULL protects us from the race with ep_free()
1281                 * or ep_remove(), ep_remove_wait_queue() takes whead->lock
1282                 * held by the caller. Once we nullify it, nothing protects
1283                 * ep/epi or even wait.
1284                 */
1285                smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1286        }
1287
1288        return ewake;
1289}
1290
1291/*
1292 * This is the callback that is used to add our wait queue to the
1293 * target file wakeup lists.
1294 */
1295static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1296                                 poll_table *pt)
1297{
1298        struct epitem *epi = ep_item_from_epqueue(pt);
1299        struct eppoll_entry *pwq;
1300
1301        if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
1302                init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1303                pwq->whead = whead;
1304                pwq->base = epi;
1305                if (epi->event.events & EPOLLEXCLUSIVE)
1306                        add_wait_queue_exclusive(whead, &pwq->wait);
1307                else
1308                        add_wait_queue(whead, &pwq->wait);
1309                list_add_tail(&pwq->llink, &epi->pwqlist);
1310                epi->nwait++;
1311        } else {
1312                /* We have to signal that an error occurred */
1313                epi->nwait = -1;
1314        }
1315}
1316
1317static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1318{
1319        int kcmp;
1320        struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
1321        struct epitem *epic;
1322        bool leftmost = true;
1323
1324        while (*p) {
1325                parent = *p;
1326                epic = rb_entry(parent, struct epitem, rbn);
1327                kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1328                if (kcmp > 0) {
1329                        p = &parent->rb_right;
1330                        leftmost = false;
1331                } else
1332                        p = &parent->rb_left;
1333        }
1334        rb_link_node(&epi->rbn, parent, p);
1335        rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
1336}
1337
1338
1339
1340#define PATH_ARR_SIZE 5
1341/*
1342 * These are the number paths of length 1 to 5, that we are allowing to emanate
1343 * from a single file of interest. For example, we allow 1000 paths of length
1344 * 1, to emanate from each file of interest. This essentially represents the
1345 * potential wakeup paths, which need to be limited in order to avoid massive
1346 * uncontrolled wakeup storms. The common use case should be a single ep which
1347 * is connected to n file sources. In this case each file source has 1 path
1348 * of length 1. Thus, the numbers below should be more than sufficient. These
1349 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1350 * and delete can't add additional paths. Protected by the epmutex.
1351 */
1352static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1353static int path_count[PATH_ARR_SIZE];
1354
1355static int path_count_inc(int nests)
1356{
1357        /* Allow an arbitrary number of depth 1 paths */
1358        if (nests == 0)
1359                return 0;
1360
1361        if (++path_count[nests] > path_limits[nests])
1362                return -1;
1363        return 0;
1364}
1365
1366static void path_count_init(void)
1367{
1368        int i;
1369
1370        for (i = 0; i < PATH_ARR_SIZE; i++)
1371                path_count[i] = 0;
1372}
1373
1374static int reverse_path_check_proc(void *priv, void *cookie, int call_nests)
1375{
1376        int error = 0;
1377        struct file *file = priv;
1378        struct file *child_file;
1379        struct epitem *epi;
1380
1381        /* CTL_DEL can remove links here, but that can't increase our count */
1382        rcu_read_lock();
1383        list_for_each_entry_rcu(epi, &file->f_ep_links, fllink) {
1384                child_file = epi->ep->file;
1385                if (is_file_epoll(child_file)) {
1386                        if (list_empty(&child_file->f_ep_links)) {
1387                                if (path_count_inc(call_nests)) {
1388                                        error = -1;
1389                                        break;
1390                                }
1391                        } else {
1392                                error = ep_call_nested(&poll_loop_ncalls,
1393                                                        reverse_path_check_proc,
1394                                                        child_file, child_file,
1395                                                        current);
1396                        }
1397                        if (error != 0)
1398                                break;
1399                } else {
1400                        printk(KERN_ERR "reverse_path_check_proc: "
1401                                "file is not an ep!\n");
1402                }
1403        }
1404        rcu_read_unlock();
1405        return error;
1406}
1407
1408/**
1409 * reverse_path_check - The tfile_check_list is list of file *, which have
1410 *                      links that are proposed to be newly added. We need to
1411 *                      make sure that those added links don't add too many
1412 *                      paths such that we will spend all our time waking up
1413 *                      eventpoll objects.
1414 *
1415 * Returns: Returns zero if the proposed links don't create too many paths,
1416 *          -1 otherwise.
1417 */
1418static int reverse_path_check(void)
1419{
1420        int error = 0;
1421        struct file *current_file;
1422
1423        /* let's call this for all tfiles */
1424        list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) {
1425                path_count_init();
1426                error = ep_call_nested(&poll_loop_ncalls,
1427                                        reverse_path_check_proc, current_file,
1428                                        current_file, current);
1429                if (error)
1430                        break;
1431        }
1432        return error;
1433}
1434
1435static int ep_create_wakeup_source(struct epitem *epi)
1436{
1437        const char *name;
1438        struct wakeup_source *ws;
1439
1440        if (!epi->ep->ws) {
1441                epi->ep->ws = wakeup_source_register(NULL, "eventpoll");
1442                if (!epi->ep->ws)
1443                        return -ENOMEM;
1444        }
1445
1446        name = epi->ffd.file->f_path.dentry->d_name.name;
1447        ws = wakeup_source_register(NULL, name);
1448
1449        if (!ws)
1450                return -ENOMEM;
1451        rcu_assign_pointer(epi->ws, ws);
1452
1453        return 0;
1454}
1455
1456/* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1457static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1458{
1459        struct wakeup_source *ws = ep_wakeup_source(epi);
1460
1461        RCU_INIT_POINTER(epi->ws, NULL);
1462
1463        /*
1464         * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1465         * used internally by wakeup_source_remove, too (called by
1466         * wakeup_source_unregister), so we cannot use call_rcu
1467         */
1468        synchronize_rcu();
1469        wakeup_source_unregister(ws);
1470}
1471
1472/*
1473 * Must be called with "mtx" held.
1474 */
1475static int ep_insert(struct eventpoll *ep, const struct epoll_event *event,
1476                     struct file *tfile, int fd, int full_check)
1477{
1478        int error, pwake = 0;
1479        __poll_t revents;
1480        long user_watches;
1481        struct epitem *epi;
1482        struct ep_pqueue epq;
1483
1484        lockdep_assert_irqs_enabled();
1485
1486        user_watches = atomic_long_read(&ep->user->epoll_watches);
1487        if (unlikely(user_watches >= max_user_watches))
1488                return -ENOSPC;
1489        if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
1490                return -ENOMEM;
1491
1492        /* Item initialization follow here ... */
1493        INIT_LIST_HEAD(&epi->rdllink);
1494        INIT_LIST_HEAD(&epi->fllink);
1495        INIT_LIST_HEAD(&epi->pwqlist);
1496        epi->ep = ep;
1497        ep_set_ffd(&epi->ffd, tfile, fd);
1498        epi->event = *event;
1499        epi->nwait = 0;
1500        epi->next = EP_UNACTIVE_PTR;
1501        if (epi->event.events & EPOLLWAKEUP) {
1502                error = ep_create_wakeup_source(epi);
1503                if (error)
1504                        goto error_create_wakeup_source;
1505        } else {
1506                RCU_INIT_POINTER(epi->ws, NULL);
1507        }
1508
1509        /* Initialize the poll table using the queue callback */
1510        epq.epi = epi;
1511        init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1512
1513        /*
1514         * Attach the item to the poll hooks and get current event bits.
1515         * We can safely use the file* here because its usage count has
1516         * been increased by the caller of this function. Note that after
1517         * this operation completes, the poll callback can start hitting
1518         * the new item.
1519         */
1520        revents = ep_item_poll(epi, &epq.pt, 1);
1521
1522        /*
1523         * We have to check if something went wrong during the poll wait queue
1524         * install process. Namely an allocation for a wait queue failed due
1525         * high memory pressure.
1526         */
1527        error = -ENOMEM;
1528        if (epi->nwait < 0)
1529                goto error_unregister;
1530
1531        /* Add the current item to the list of active epoll hook for this file */
1532        spin_lock(&tfile->f_lock);
1533        list_add_tail_rcu(&epi->fllink, &tfile->f_ep_links);
1534        spin_unlock(&tfile->f_lock);
1535
1536        /*
1537         * Add the current item to the RB tree. All RB tree operations are
1538         * protected by "mtx", and ep_insert() is called with "mtx" held.
1539         */
1540        ep_rbtree_insert(ep, epi);
1541
1542        /* now check if we've created too many backpaths */
1543        error = -EINVAL;
1544        if (full_check && reverse_path_check())
1545                goto error_remove_epi;
1546
1547        /* We have to drop the new item inside our item list to keep track of it */
1548        write_lock_irq(&ep->lock);
1549
1550        /* record NAPI ID of new item if present */
1551        ep_set_busy_poll_napi_id(epi);
1552
1553        /* If the file is already "ready" we drop it inside the ready list */
1554        if (revents && !ep_is_linked(epi)) {
1555                list_add_tail(&epi->rdllink, &ep->rdllist);
1556                ep_pm_stay_awake(epi);
1557
1558                /* Notify waiting tasks that events are available */
1559                if (waitqueue_active(&ep->wq))
1560                        wake_up(&ep->wq);
1561                if (waitqueue_active(&ep->poll_wait))
1562                        pwake++;
1563        }
1564
1565        write_unlock_irq(&ep->lock);
1566
1567        atomic_long_inc(&ep->user->epoll_watches);
1568
1569        /* We have to call this outside the lock */
1570        if (pwake)
1571                ep_poll_safewake(&ep->poll_wait);
1572
1573        return 0;
1574
1575error_remove_epi:
1576        spin_lock(&tfile->f_lock);
1577        list_del_rcu(&epi->fllink);
1578        spin_unlock(&tfile->f_lock);
1579
1580        rb_erase_cached(&epi->rbn, &ep->rbr);
1581
1582error_unregister:
1583        ep_unregister_pollwait(ep, epi);
1584
1585        /*
1586         * We need to do this because an event could have been arrived on some
1587         * allocated wait queue. Note that we don't care about the ep->ovflist
1588         * list, since that is used/cleaned only inside a section bound by "mtx".
1589         * And ep_insert() is called with "mtx" held.
1590         */
1591        write_lock_irq(&ep->lock);
1592        if (ep_is_linked(epi))
1593                list_del_init(&epi->rdllink);
1594        write_unlock_irq(&ep->lock);
1595
1596        wakeup_source_unregister(ep_wakeup_source(epi));
1597
1598error_create_wakeup_source:
1599        kmem_cache_free(epi_cache, epi);
1600
1601        return error;
1602}
1603
1604/*
1605 * Modify the interest event mask by dropping an event if the new mask
1606 * has a match in the current file status. Must be called with "mtx" held.
1607 */
1608static int ep_modify(struct eventpoll *ep, struct epitem *epi,
1609                     const struct epoll_event *event)
1610{
1611        int pwake = 0;
1612        poll_table pt;
1613
1614        lockdep_assert_irqs_enabled();
1615
1616        init_poll_funcptr(&pt, NULL);
1617
1618        /*
1619         * Set the new event interest mask before calling f_op->poll();
1620         * otherwise we might miss an event that happens between the
1621         * f_op->poll() call and the new event set registering.
1622         */
1623        epi->event.events = event->events; /* need barrier below */
1624        epi->event.data = event->data; /* protected by mtx */
1625        if (epi->event.events & EPOLLWAKEUP) {
1626                if (!ep_has_wakeup_source(epi))
1627                        ep_create_wakeup_source(epi);
1628        } else if (ep_has_wakeup_source(epi)) {
1629                ep_destroy_wakeup_source(epi);
1630        }
1631
1632        /*
1633         * The following barrier has two effects:
1634         *
1635         * 1) Flush epi changes above to other CPUs.  This ensures
1636         *    we do not miss events from ep_poll_callback if an
1637         *    event occurs immediately after we call f_op->poll().
1638         *    We need this because we did not take ep->lock while
1639         *    changing epi above (but ep_poll_callback does take
1640         *    ep->lock).
1641         *
1642         * 2) We also need to ensure we do not miss _past_ events
1643         *    when calling f_op->poll().  This barrier also
1644         *    pairs with the barrier in wq_has_sleeper (see
1645         *    comments for wq_has_sleeper).
1646         *
1647         * This barrier will now guarantee ep_poll_callback or f_op->poll
1648         * (or both) will notice the readiness of an item.
1649         */
1650        smp_mb();
1651
1652        /*
1653         * Get current event bits. We can safely use the file* here because
1654         * its usage count has been increased by the caller of this function.
1655         * If the item is "hot" and it is not registered inside the ready
1656         * list, push it inside.
1657         */
1658        if (ep_item_poll(epi, &pt, 1)) {
1659                write_lock_irq(&ep->lock);
1660                if (!ep_is_linked(epi)) {
1661                        list_add_tail(&epi->rdllink, &ep->rdllist);
1662                        ep_pm_stay_awake(epi);
1663
1664                        /* Notify waiting tasks that events are available */
1665                        if (waitqueue_active(&ep->wq))
1666                                wake_up(&ep->wq);
1667                        if (waitqueue_active(&ep->poll_wait))
1668                                pwake++;
1669                }
1670                write_unlock_irq(&ep->lock);
1671        }
1672
1673        /* We have to call this outside the lock */
1674        if (pwake)
1675                ep_poll_safewake(&ep->poll_wait);
1676
1677        return 0;
1678}
1679
1680static __poll_t ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
1681                               void *priv)
1682{
1683        struct ep_send_events_data *esed = priv;
1684        __poll_t revents;
1685        struct epitem *epi, *tmp;
1686        struct epoll_event __user *uevent = esed->events;
1687        struct wakeup_source *ws;
1688        poll_table pt;
1689
1690        init_poll_funcptr(&pt, NULL);
1691        esed->res = 0;
1692
1693        /*
1694         * We can loop without lock because we are passed a task private list.
1695         * Items cannot vanish during the loop because ep_scan_ready_list() is
1696         * holding "mtx" during this call.
1697         */
1698        lockdep_assert_held(&ep->mtx);
1699
1700        list_for_each_entry_safe(epi, tmp, head, rdllink) {
1701                if (esed->res >= esed->maxevents)
1702                        break;
1703
1704                /*
1705                 * Activate ep->ws before deactivating epi->ws to prevent
1706                 * triggering auto-suspend here (in case we reactive epi->ws
1707                 * below).
1708                 *
1709                 * This could be rearranged to delay the deactivation of epi->ws
1710                 * instead, but then epi->ws would temporarily be out of sync
1711                 * with ep_is_linked().
1712                 */
1713                ws = ep_wakeup_source(epi);
1714                if (ws) {
1715                        if (ws->active)
1716                                __pm_stay_awake(ep->ws);
1717                        __pm_relax(ws);
1718                }
1719
1720                list_del_init(&epi->rdllink);
1721
1722                /*
1723                 * If the event mask intersect the caller-requested one,
1724                 * deliver the event to userspace. Again, ep_scan_ready_list()
1725                 * is holding ep->mtx, so no operations coming from userspace
1726                 * can change the item.
1727                 */
1728                revents = ep_item_poll(epi, &pt, 1);
1729                if (!revents)
1730                        continue;
1731
1732                if (__put_user(revents, &uevent->events) ||
1733                    __put_user(epi->event.data, &uevent->data)) {
1734                        list_add(&epi->rdllink, head);
1735                        ep_pm_stay_awake(epi);
1736                        if (!esed->res)
1737                                esed->res = -EFAULT;
1738                        return 0;
1739                }
1740                esed->res++;
1741                uevent++;
1742                if (epi->event.events & EPOLLONESHOT)
1743                        epi->event.events &= EP_PRIVATE_BITS;
1744                else if (!(epi->event.events & EPOLLET)) {
1745                        /*
1746                         * If this file has been added with Level
1747                         * Trigger mode, we need to insert back inside
1748                         * the ready list, so that the next call to
1749                         * epoll_wait() will check again the events
1750                         * availability. At this point, no one can insert
1751                         * into ep->rdllist besides us. The epoll_ctl()
1752                         * callers are locked out by
1753                         * ep_scan_ready_list() holding "mtx" and the
1754                         * poll callback will queue them in ep->ovflist.
1755                         */
1756                        list_add_tail(&epi->rdllink, &ep->rdllist);
1757                        ep_pm_stay_awake(epi);
1758                }
1759        }
1760
1761        return 0;
1762}
1763
1764static int ep_send_events(struct eventpoll *ep,
1765                          struct epoll_event __user *events, int maxevents)
1766{
1767        struct ep_send_events_data esed;
1768
1769        esed.maxevents = maxevents;
1770        esed.events = events;
1771
1772        ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0, false);
1773        return esed.res;
1774}
1775
1776static inline struct timespec64 ep_set_mstimeout(long ms)
1777{
1778        struct timespec64 now, ts = {
1779                .tv_sec = ms / MSEC_PER_SEC,
1780                .tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC),
1781        };
1782
1783        ktime_get_ts64(&now);
1784        return timespec64_add_safe(now, ts);
1785}
1786
1787/**
1788 * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1789 *           event buffer.
1790 *
1791 * @ep: Pointer to the eventpoll context.
1792 * @events: Pointer to the userspace buffer where the ready events should be
1793 *          stored.
1794 * @maxevents: Size (in terms of number of events) of the caller event buffer.
1795 * @timeout: Maximum timeout for the ready events fetch operation, in
1796 *           milliseconds. If the @timeout is zero, the function will not block,
1797 *           while if the @timeout is less than zero, the function will block
1798 *           until at least one event has been retrieved (or an error
1799 *           occurred).
1800 *
1801 * Returns: Returns the number of ready events which have been fetched, or an
1802 *          error code, in case of error.
1803 */
1804static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1805                   int maxevents, long timeout)
1806{
1807        int res = 0, eavail, timed_out = 0;
1808        u64 slack = 0;
1809        bool waiter = false;
1810        wait_queue_entry_t wait;
1811        ktime_t expires, *to = NULL;
1812
1813        lockdep_assert_irqs_enabled();
1814
1815        if (timeout > 0) {
1816                struct timespec64 end_time = ep_set_mstimeout(timeout);
1817
1818                slack = select_estimate_accuracy(&end_time);
1819                to = &expires;
1820                *to = timespec64_to_ktime(end_time);
1821        } else if (timeout == 0) {
1822                /*
1823                 * Avoid the unnecessary trip to the wait queue loop, if the
1824                 * caller specified a non blocking operation. We still need
1825                 * lock because we could race and not see an epi being added
1826                 * to the ready list while in irq callback. Thus incorrectly
1827                 * returning 0 back to userspace.
1828                 */
1829                timed_out = 1;
1830
1831                write_lock_irq(&ep->lock);
1832                eavail = ep_events_available(ep);
1833                write_unlock_irq(&ep->lock);
1834
1835                goto send_events;
1836        }
1837
1838fetch_events:
1839
1840        if (!ep_events_available(ep))
1841                ep_busy_loop(ep, timed_out);
1842
1843        eavail = ep_events_available(ep);
1844        if (eavail)
1845                goto send_events;
1846
1847        /*
1848         * Busy poll timed out.  Drop NAPI ID for now, we can add
1849         * it back in when we have moved a socket with a valid NAPI
1850         * ID onto the ready list.
1851         */
1852        ep_reset_busy_poll_napi_id(ep);
1853
1854        /*
1855         * We don't have any available event to return to the caller.  We need
1856         * to sleep here, and we will be woken by ep_poll_callback() when events
1857         * become available.
1858         */
1859        if (!waiter) {
1860                waiter = true;
1861                init_waitqueue_entry(&wait, current);
1862
1863                spin_lock_irq(&ep->wq.lock);
1864                __add_wait_queue_exclusive(&ep->wq, &wait);
1865                spin_unlock_irq(&ep->wq.lock);
1866        }
1867
1868        for (;;) {
1869                /*
1870                 * We don't want to sleep if the ep_poll_callback() sends us
1871                 * a wakeup in between. That's why we set the task state
1872                 * to TASK_INTERRUPTIBLE before doing the checks.
1873                 */
1874                set_current_state(TASK_INTERRUPTIBLE);
1875                /*
1876                 * Always short-circuit for fatal signals to allow
1877                 * threads to make a timely exit without the chance of
1878                 * finding more events available and fetching
1879                 * repeatedly.
1880                 */
1881                if (fatal_signal_pending(current)) {
1882                        res = -EINTR;
1883                        break;
1884                }
1885
1886                eavail = ep_events_available(ep);
1887                if (eavail)
1888                        break;
1889                if (signal_pending(current)) {
1890                        res = -EINTR;
1891                        break;
1892                }
1893
1894                if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS)) {
1895                        timed_out = 1;
1896                        break;
1897                }
1898        }
1899
1900        __set_current_state(TASK_RUNNING);
1901
1902send_events:
1903        /*
1904         * Try to transfer events to user space. In case we get 0 events and
1905         * there's still timeout left over, we go trying again in search of
1906         * more luck.
1907         */
1908        if (!res && eavail &&
1909            !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
1910                goto fetch_events;
1911
1912        if (waiter) {
1913                spin_lock_irq(&ep->wq.lock);
1914                __remove_wait_queue(&ep->wq, &wait);
1915                spin_unlock_irq(&ep->wq.lock);
1916        }
1917
1918        return res;
1919}
1920
1921/**
1922 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1923 *                      API, to verify that adding an epoll file inside another
1924 *                      epoll structure, does not violate the constraints, in
1925 *                      terms of closed loops, or too deep chains (which can
1926 *                      result in excessive stack usage).
1927 *
1928 * @priv: Pointer to the epoll file to be currently checked.
1929 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1930 *          data structure pointer.
1931 * @call_nests: Current dept of the @ep_call_nested() call stack.
1932 *
1933 * Returns: Returns zero if adding the epoll @file inside current epoll
1934 *          structure @ep does not violate the constraints, or -1 otherwise.
1935 */
1936static int ep_loop_check_proc(void *priv, void *cookie, int call_nests)
1937{
1938        int error = 0;
1939        struct file *file = priv;
1940        struct eventpoll *ep = file->private_data;
1941        struct eventpoll *ep_tovisit;
1942        struct rb_node *rbp;
1943        struct epitem *epi;
1944
1945        mutex_lock_nested(&ep->mtx, call_nests + 1);
1946        ep->visited = 1;
1947        list_add(&ep->visited_list_link, &visited_list);
1948        for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1949                epi = rb_entry(rbp, struct epitem, rbn);
1950                if (unlikely(is_file_epoll(epi->ffd.file))) {
1951                        ep_tovisit = epi->ffd.file->private_data;
1952                        if (ep_tovisit->visited)
1953                                continue;
1954                        error = ep_call_nested(&poll_loop_ncalls,
1955                                        ep_loop_check_proc, epi->ffd.file,
1956                                        ep_tovisit, current);
1957                        if (error != 0)
1958                                break;
1959                } else {
1960                        /*
1961                         * If we've reached a file that is not associated with
1962                         * an ep, then we need to check if the newly added
1963                         * links are going to add too many wakeup paths. We do
1964                         * this by adding it to the tfile_check_list, if it's
1965                         * not already there, and calling reverse_path_check()
1966                         * during ep_insert().
1967                         */
1968                        if (list_empty(&epi->ffd.file->f_tfile_llink))
1969                                list_add(&epi->ffd.file->f_tfile_llink,
1970                                         &tfile_check_list);
1971                }
1972        }
1973        mutex_unlock(&ep->mtx);
1974
1975        return error;
1976}
1977
1978/**
1979 * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
1980 *                 another epoll file (represented by @ep) does not create
1981 *                 closed loops or too deep chains.
1982 *
1983 * @ep: Pointer to the epoll private data structure.
1984 * @file: Pointer to the epoll file to be checked.
1985 *
1986 * Returns: Returns zero if adding the epoll @file inside current epoll
1987 *          structure @ep does not violate the constraints, or -1 otherwise.
1988 */
1989static int ep_loop_check(struct eventpoll *ep, struct file *file)
1990{
1991        int ret;
1992        struct eventpoll *ep_cur, *ep_next;
1993
1994        ret = ep_call_nested(&poll_loop_ncalls,
1995                              ep_loop_check_proc, file, ep, current);
1996        /* clear visited list */
1997        list_for_each_entry_safe(ep_cur, ep_next, &visited_list,
1998                                                        visited_list_link) {
1999                ep_cur->visited = 0;
2000                list_del(&ep_cur->visited_list_link);
2001        }
2002        return ret;
2003}
2004
2005static void clear_tfile_check_list(void)
2006{
2007        struct file *file;
2008
2009        /* first clear the tfile_check_list */
2010        while (!list_empty(&tfile_check_list)) {
2011                file = list_first_entry(&tfile_check_list, struct file,
2012                                        f_tfile_llink);
2013                list_del_init(&file->f_tfile_llink);
2014        }
2015        INIT_LIST_HEAD(&tfile_check_list);
2016}
2017
2018/*
2019 * Open an eventpoll file descriptor.
2020 */
2021static int do_epoll_create(int flags)
2022{
2023        int error, fd;
2024        struct eventpoll *ep = NULL;
2025        struct file *file;
2026
2027        /* Check the EPOLL_* constant for consistency.  */
2028        BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
2029
2030        if (flags & ~EPOLL_CLOEXEC)
2031                return -EINVAL;
2032        /*
2033         * Create the internal data structure ("struct eventpoll").
2034         */
2035        error = ep_alloc(&ep);
2036        if (error < 0)
2037                return error;
2038        /*
2039         * Creates all the items needed to setup an eventpoll file. That is,
2040         * a file structure and a free file descriptor.
2041         */
2042        fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
2043        if (fd < 0) {
2044                error = fd;
2045                goto out_free_ep;
2046        }
2047        file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
2048                                 O_RDWR | (flags & O_CLOEXEC));
2049        if (IS_ERR(file)) {
2050                error = PTR_ERR(file);
2051                goto out_free_fd;
2052        }
2053        ep->file = file;
2054        fd_install(fd, file);
2055        return fd;
2056
2057out_free_fd:
2058        put_unused_fd(fd);
2059out_free_ep:
2060        ep_free(ep);
2061        return error;
2062}
2063
2064SYSCALL_DEFINE1(epoll_create1, int, flags)
2065{
2066        return do_epoll_create(flags);
2067}
2068
2069SYSCALL_DEFINE1(epoll_create, int, size)
2070{
2071        if (size <= 0)
2072                return -EINVAL;
2073
2074        return do_epoll_create(0);
2075}
2076
2077/*
2078 * The following function implements the controller interface for
2079 * the eventpoll file that enables the insertion/removal/change of
2080 * file descriptors inside the interest set.
2081 */
2082SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
2083                struct epoll_event __user *, event)
2084{
2085        int error;
2086        int full_check = 0;
2087        struct fd f, tf;
2088        struct eventpoll *ep;
2089        struct epitem *epi;
2090        struct epoll_event epds;
2091        struct eventpoll *tep = NULL;
2092
2093        error = -EFAULT;
2094        if (ep_op_has_event(op) &&
2095            copy_from_user(&epds, event, sizeof(struct epoll_event)))
2096                goto error_return;
2097
2098        error = -EBADF;
2099        f = fdget(epfd);
2100        if (!f.file)
2101                goto error_return;
2102
2103        /* Get the "struct file *" for the target file */
2104        tf = fdget(fd);
2105        if (!tf.file)
2106                goto error_fput;
2107
2108        /* The target file descriptor must support poll */
2109        error = -EPERM;
2110        if (!file_can_poll(tf.file))
2111                goto error_tgt_fput;
2112
2113        /* Check if EPOLLWAKEUP is allowed */
2114        if (ep_op_has_event(op))
2115                ep_take_care_of_epollwakeup(&epds);
2116
2117        /*
2118         * We have to check that the file structure underneath the file descriptor
2119         * the user passed to us _is_ an eventpoll file. And also we do not permit
2120         * adding an epoll file descriptor inside itself.
2121         */
2122        error = -EINVAL;
2123        if (f.file == tf.file || !is_file_epoll(f.file))
2124                goto error_tgt_fput;
2125
2126        /*
2127         * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2128         * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2129         * Also, we do not currently supported nested exclusive wakeups.
2130         */
2131        if (ep_op_has_event(op) && (epds.events & EPOLLEXCLUSIVE)) {
2132                if (op == EPOLL_CTL_MOD)
2133                        goto error_tgt_fput;
2134                if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) ||
2135                                (epds.events & ~EPOLLEXCLUSIVE_OK_BITS)))
2136                        goto error_tgt_fput;
2137        }
2138
2139        /*
2140         * At this point it is safe to assume that the "private_data" contains
2141         * our own data structure.
2142         */
2143        ep = f.file->private_data;
2144
2145        /*
2146         * When we insert an epoll file descriptor, inside another epoll file
2147         * descriptor, there is the change of creating closed loops, which are
2148         * better be handled here, than in more critical paths. While we are
2149         * checking for loops we also determine the list of files reachable
2150         * and hang them on the tfile_check_list, so we can check that we
2151         * haven't created too many possible wakeup paths.
2152         *
2153         * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2154         * the epoll file descriptor is attaching directly to a wakeup source,
2155         * unless the epoll file descriptor is nested. The purpose of taking the
2156         * 'epmutex' on add is to prevent complex toplogies such as loops and
2157         * deep wakeup paths from forming in parallel through multiple
2158         * EPOLL_CTL_ADD operations.
2159         */
2160        mutex_lock_nested(&ep->mtx, 0);
2161        if (op == EPOLL_CTL_ADD) {
2162                if (!list_empty(&f.file->f_ep_links) ||
2163                                                is_file_epoll(tf.file)) {
2164                        full_check = 1;
2165                        mutex_unlock(&ep->mtx);
2166                        mutex_lock(&epmutex);
2167                        if (is_file_epoll(tf.file)) {
2168                                error = -ELOOP;
2169                                if (ep_loop_check(ep, tf.file) != 0) {
2170                                        clear_tfile_check_list();
2171                                        goto error_tgt_fput;
2172                                }
2173                        } else
2174                                list_add(&tf.file->f_tfile_llink,
2175                                                        &tfile_check_list);
2176                        mutex_lock_nested(&ep->mtx, 0);
2177                        if (is_file_epoll(tf.file)) {
2178                                tep = tf.file->private_data;
2179                                mutex_lock_nested(&tep->mtx, 1);
2180                        }
2181                }
2182        }
2183
2184        /*
2185         * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
2186         * above, we can be sure to be able to use the item looked up by
2187         * ep_find() till we release the mutex.
2188         */
2189        epi = ep_find(ep, tf.file, fd);
2190
2191        error = -EINVAL;
2192        switch (op) {
2193        case EPOLL_CTL_ADD:
2194                if (!epi) {
2195                        epds.events |= EPOLLERR | EPOLLHUP;
2196                        error = ep_insert(ep, &epds, tf.file, fd, full_check);
2197                } else
2198                        error = -EEXIST;
2199                if (full_check)
2200                        clear_tfile_check_list();
2201                break;
2202        case EPOLL_CTL_DEL:
2203                if (epi)
2204                        error = ep_remove(ep, epi);
2205                else
2206                        error = -ENOENT;
2207                break;
2208        case EPOLL_CTL_MOD:
2209                if (epi) {
2210                        if (!(epi->event.events & EPOLLEXCLUSIVE)) {
2211                                epds.events |= EPOLLERR | EPOLLHUP;
2212                                error = ep_modify(ep, epi, &epds);
2213                        }
2214                } else
2215                        error = -ENOENT;
2216                break;
2217        }
2218        if (tep != NULL)
2219                mutex_unlock(&tep->mtx);
2220        mutex_unlock(&ep->mtx);
2221
2222error_tgt_fput:
2223        if (full_check)
2224                mutex_unlock(&epmutex);
2225
2226        fdput(tf);
2227error_fput:
2228        fdput(f);
2229error_return:
2230
2231        return error;
2232}
2233
2234/*
2235 * Implement the event wait interface for the eventpoll file. It is the kernel
2236 * part of the user space epoll_wait(2).
2237 */
2238static int do_epoll_wait(int epfd, struct epoll_event __user *events,
2239                         int maxevents, int timeout)
2240{
2241        int error;
2242        struct fd f;
2243        struct eventpoll *ep;
2244
2245        /* The maximum number of event must be greater than zero */
2246        if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2247                return -EINVAL;
2248
2249        /* Verify that the area passed by the user is writeable */
2250        if (!access_ok(events, maxevents * sizeof(struct epoll_event)))
2251                return -EFAULT;
2252
2253        /* Get the "struct file *" for the eventpoll file */
2254        f = fdget(epfd);
2255        if (!f.file)
2256                return -EBADF;
2257
2258        /*
2259         * We have to check that the file structure underneath the fd
2260         * the user passed to us _is_ an eventpoll file.
2261         */
2262        error = -EINVAL;
2263        if (!is_file_epoll(f.file))
2264                goto error_fput;
2265
2266        /*
2267         * At this point it is safe to assume that the "private_data" contains
2268         * our own data structure.
2269         */
2270        ep = f.file->private_data;
2271
2272        /* Time to fish for events ... */
2273        error = ep_poll(ep, events, maxevents, timeout);
2274
2275error_fput:
2276        fdput(f);
2277        return error;
2278}
2279
2280SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2281                int, maxevents, int, timeout)
2282{
2283        return do_epoll_wait(epfd, events, maxevents, timeout);
2284}
2285
2286/*
2287 * Implement the event wait interface for the eventpoll file. It is the kernel
2288 * part of the user space epoll_pwait(2).
2289 */
2290SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2291                int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2292                size_t, sigsetsize)
2293{
2294        int error;
2295
2296        /*
2297         * If the caller wants a certain signal mask to be set during the wait,
2298         * we apply it here.
2299         */
2300        error = set_user_sigmask(sigmask, sigsetsize);
2301        if (error)
2302                return error;
2303
2304        error = do_epoll_wait(epfd, events, maxevents, timeout);
2305        restore_saved_sigmask_unless(error == -EINTR);
2306
2307        return error;
2308}
2309
2310#ifdef CONFIG_COMPAT
2311COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2312                        struct epoll_event __user *, events,
2313                        int, maxevents, int, timeout,
2314                        const compat_sigset_t __user *, sigmask,
2315                        compat_size_t, sigsetsize)
2316{
2317        long err;
2318
2319        /*
2320         * If the caller wants a certain signal mask to be set during the wait,
2321         * we apply it here.
2322         */
2323        err = set_compat_user_sigmask(sigmask, sigsetsize);
2324        if (err)
2325                return err;
2326
2327        err = do_epoll_wait(epfd, events, maxevents, timeout);
2328        restore_saved_sigmask_unless(err == -EINTR);
2329
2330        return err;
2331}
2332#endif
2333
2334static int __init eventpoll_init(void)
2335{
2336        struct sysinfo si;
2337
2338        si_meminfo(&si);
2339        /*
2340         * Allows top 4% of lomem to be allocated for epoll watches (per user).
2341         */
2342        max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2343                EP_ITEM_COST;
2344        BUG_ON(max_user_watches < 0);
2345
2346        /*
2347         * Initialize the structure used to perform epoll file descriptor
2348         * inclusion loops checks.
2349         */
2350        ep_nested_calls_init(&poll_loop_ncalls);
2351
2352        /*
2353         * We can have many thousands of epitems, so prevent this from
2354         * using an extra cache line on 64-bit (and smaller) CPUs
2355         */
2356        BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2357
2358        /* Allocates slab cache used to allocate "struct epitem" items */
2359        epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2360                        0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
2361
2362        /* Allocates slab cache used to allocate "struct eppoll_entry" */
2363        pwq_cache = kmem_cache_create("eventpoll_pwq",
2364                sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2365
2366        return 0;
2367}
2368fs_initcall(eventpoll_init);
2369