linux/fs/exec.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/fs/exec.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 */
   7
   8/*
   9 * #!-checking implemented by tytso.
  10 */
  11/*
  12 * Demand-loading implemented 01.12.91 - no need to read anything but
  13 * the header into memory. The inode of the executable is put into
  14 * "current->executable", and page faults do the actual loading. Clean.
  15 *
  16 * Once more I can proudly say that linux stood up to being changed: it
  17 * was less than 2 hours work to get demand-loading completely implemented.
  18 *
  19 * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
  20 * current->executable is only used by the procfs.  This allows a dispatch
  21 * table to check for several different types  of binary formats.  We keep
  22 * trying until we recognize the file or we run out of supported binary
  23 * formats.
  24 */
  25
  26#include <linux/slab.h>
  27#include <linux/file.h>
  28#include <linux/fdtable.h>
  29#include <linux/mm.h>
  30#include <linux/vmacache.h>
  31#include <linux/stat.h>
  32#include <linux/fcntl.h>
  33#include <linux/swap.h>
  34#include <linux/string.h>
  35#include <linux/init.h>
  36#include <linux/sched/mm.h>
  37#include <linux/sched/coredump.h>
  38#include <linux/sched/signal.h>
  39#include <linux/sched/numa_balancing.h>
  40#include <linux/sched/task.h>
  41#include <linux/pagemap.h>
  42#include <linux/perf_event.h>
  43#include <linux/highmem.h>
  44#include <linux/spinlock.h>
  45#include <linux/key.h>
  46#include <linux/personality.h>
  47#include <linux/binfmts.h>
  48#include <linux/utsname.h>
  49#include <linux/pid_namespace.h>
  50#include <linux/module.h>
  51#include <linux/namei.h>
  52#include <linux/mount.h>
  53#include <linux/security.h>
  54#include <linux/syscalls.h>
  55#include <linux/tsacct_kern.h>
  56#include <linux/cn_proc.h>
  57#include <linux/audit.h>
  58#include <linux/tracehook.h>
  59#include <linux/kmod.h>
  60#include <linux/fsnotify.h>
  61#include <linux/fs_struct.h>
  62#include <linux/oom.h>
  63#include <linux/compat.h>
  64#include <linux/vmalloc.h>
  65
  66#include <linux/uaccess.h>
  67#include <asm/mmu_context.h>
  68#include <asm/tlb.h>
  69
  70#include <trace/events/task.h>
  71#include "internal.h"
  72
  73#include <trace/events/sched.h>
  74
  75int suid_dumpable = 0;
  76
  77static LIST_HEAD(formats);
  78static DEFINE_RWLOCK(binfmt_lock);
  79
  80void __register_binfmt(struct linux_binfmt * fmt, int insert)
  81{
  82        BUG_ON(!fmt);
  83        if (WARN_ON(!fmt->load_binary))
  84                return;
  85        write_lock(&binfmt_lock);
  86        insert ? list_add(&fmt->lh, &formats) :
  87                 list_add_tail(&fmt->lh, &formats);
  88        write_unlock(&binfmt_lock);
  89}
  90
  91EXPORT_SYMBOL(__register_binfmt);
  92
  93void unregister_binfmt(struct linux_binfmt * fmt)
  94{
  95        write_lock(&binfmt_lock);
  96        list_del(&fmt->lh);
  97        write_unlock(&binfmt_lock);
  98}
  99
 100EXPORT_SYMBOL(unregister_binfmt);
 101
 102static inline void put_binfmt(struct linux_binfmt * fmt)
 103{
 104        module_put(fmt->module);
 105}
 106
 107bool path_noexec(const struct path *path)
 108{
 109        return (path->mnt->mnt_flags & MNT_NOEXEC) ||
 110               (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
 111}
 112
 113#ifdef CONFIG_USELIB
 114/*
 115 * Note that a shared library must be both readable and executable due to
 116 * security reasons.
 117 *
 118 * Also note that we take the address to load from from the file itself.
 119 */
 120SYSCALL_DEFINE1(uselib, const char __user *, library)
 121{
 122        struct linux_binfmt *fmt;
 123        struct file *file;
 124        struct filename *tmp = getname(library);
 125        int error = PTR_ERR(tmp);
 126        static const struct open_flags uselib_flags = {
 127                .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
 128                .acc_mode = MAY_READ | MAY_EXEC,
 129                .intent = LOOKUP_OPEN,
 130                .lookup_flags = LOOKUP_FOLLOW,
 131        };
 132
 133        if (IS_ERR(tmp))
 134                goto out;
 135
 136        file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
 137        putname(tmp);
 138        error = PTR_ERR(file);
 139        if (IS_ERR(file))
 140                goto out;
 141
 142        error = -EINVAL;
 143        if (!S_ISREG(file_inode(file)->i_mode))
 144                goto exit;
 145
 146        error = -EACCES;
 147        if (path_noexec(&file->f_path))
 148                goto exit;
 149
 150        fsnotify_open(file);
 151
 152        error = -ENOEXEC;
 153
 154        read_lock(&binfmt_lock);
 155        list_for_each_entry(fmt, &formats, lh) {
 156                if (!fmt->load_shlib)
 157                        continue;
 158                if (!try_module_get(fmt->module))
 159                        continue;
 160                read_unlock(&binfmt_lock);
 161                error = fmt->load_shlib(file);
 162                read_lock(&binfmt_lock);
 163                put_binfmt(fmt);
 164                if (error != -ENOEXEC)
 165                        break;
 166        }
 167        read_unlock(&binfmt_lock);
 168exit:
 169        fput(file);
 170out:
 171        return error;
 172}
 173#endif /* #ifdef CONFIG_USELIB */
 174
 175#ifdef CONFIG_MMU
 176/*
 177 * The nascent bprm->mm is not visible until exec_mmap() but it can
 178 * use a lot of memory, account these pages in current->mm temporary
 179 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
 180 * change the counter back via acct_arg_size(0).
 181 */
 182static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
 183{
 184        struct mm_struct *mm = current->mm;
 185        long diff = (long)(pages - bprm->vma_pages);
 186
 187        if (!mm || !diff)
 188                return;
 189
 190        bprm->vma_pages = pages;
 191        add_mm_counter(mm, MM_ANONPAGES, diff);
 192}
 193
 194static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
 195                int write)
 196{
 197        struct page *page;
 198        int ret;
 199        unsigned int gup_flags = FOLL_FORCE;
 200
 201#ifdef CONFIG_STACK_GROWSUP
 202        if (write) {
 203                ret = expand_downwards(bprm->vma, pos);
 204                if (ret < 0)
 205                        return NULL;
 206        }
 207#endif
 208
 209        if (write)
 210                gup_flags |= FOLL_WRITE;
 211
 212        /*
 213         * We are doing an exec().  'current' is the process
 214         * doing the exec and bprm->mm is the new process's mm.
 215         */
 216        ret = get_user_pages_remote(current, bprm->mm, pos, 1, gup_flags,
 217                        &page, NULL, NULL);
 218        if (ret <= 0)
 219                return NULL;
 220
 221        if (write)
 222                acct_arg_size(bprm, vma_pages(bprm->vma));
 223
 224        return page;
 225}
 226
 227static void put_arg_page(struct page *page)
 228{
 229        put_page(page);
 230}
 231
 232static void free_arg_pages(struct linux_binprm *bprm)
 233{
 234}
 235
 236static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
 237                struct page *page)
 238{
 239        flush_cache_page(bprm->vma, pos, page_to_pfn(page));
 240}
 241
 242static int __bprm_mm_init(struct linux_binprm *bprm)
 243{
 244        int err;
 245        struct vm_area_struct *vma = NULL;
 246        struct mm_struct *mm = bprm->mm;
 247
 248        bprm->vma = vma = vm_area_alloc(mm);
 249        if (!vma)
 250                return -ENOMEM;
 251        vma_set_anonymous(vma);
 252
 253        if (down_write_killable(&mm->mmap_sem)) {
 254                err = -EINTR;
 255                goto err_free;
 256        }
 257
 258        /*
 259         * Place the stack at the largest stack address the architecture
 260         * supports. Later, we'll move this to an appropriate place. We don't
 261         * use STACK_TOP because that can depend on attributes which aren't
 262         * configured yet.
 263         */
 264        BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
 265        vma->vm_end = STACK_TOP_MAX;
 266        vma->vm_start = vma->vm_end - PAGE_SIZE;
 267        vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
 268        vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
 269
 270        err = insert_vm_struct(mm, vma);
 271        if (err)
 272                goto err;
 273
 274        mm->stack_vm = mm->total_vm = 1;
 275        arch_bprm_mm_init(mm, vma);
 276        up_write(&mm->mmap_sem);
 277        bprm->p = vma->vm_end - sizeof(void *);
 278        return 0;
 279err:
 280        up_write(&mm->mmap_sem);
 281err_free:
 282        bprm->vma = NULL;
 283        vm_area_free(vma);
 284        return err;
 285}
 286
 287static bool valid_arg_len(struct linux_binprm *bprm, long len)
 288{
 289        return len <= MAX_ARG_STRLEN;
 290}
 291
 292#else
 293
 294static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
 295{
 296}
 297
 298static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
 299                int write)
 300{
 301        struct page *page;
 302
 303        page = bprm->page[pos / PAGE_SIZE];
 304        if (!page && write) {
 305                page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
 306                if (!page)
 307                        return NULL;
 308                bprm->page[pos / PAGE_SIZE] = page;
 309        }
 310
 311        return page;
 312}
 313
 314static void put_arg_page(struct page *page)
 315{
 316}
 317
 318static void free_arg_page(struct linux_binprm *bprm, int i)
 319{
 320        if (bprm->page[i]) {
 321                __free_page(bprm->page[i]);
 322                bprm->page[i] = NULL;
 323        }
 324}
 325
 326static void free_arg_pages(struct linux_binprm *bprm)
 327{
 328        int i;
 329
 330        for (i = 0; i < MAX_ARG_PAGES; i++)
 331                free_arg_page(bprm, i);
 332}
 333
 334static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
 335                struct page *page)
 336{
 337}
 338
 339static int __bprm_mm_init(struct linux_binprm *bprm)
 340{
 341        bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
 342        return 0;
 343}
 344
 345static bool valid_arg_len(struct linux_binprm *bprm, long len)
 346{
 347        return len <= bprm->p;
 348}
 349
 350#endif /* CONFIG_MMU */
 351
 352/*
 353 * Create a new mm_struct and populate it with a temporary stack
 354 * vm_area_struct.  We don't have enough context at this point to set the stack
 355 * flags, permissions, and offset, so we use temporary values.  We'll update
 356 * them later in setup_arg_pages().
 357 */
 358static int bprm_mm_init(struct linux_binprm *bprm)
 359{
 360        int err;
 361        struct mm_struct *mm = NULL;
 362
 363        bprm->mm = mm = mm_alloc();
 364        err = -ENOMEM;
 365        if (!mm)
 366                goto err;
 367
 368        /* Save current stack limit for all calculations made during exec. */
 369        task_lock(current->group_leader);
 370        bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
 371        task_unlock(current->group_leader);
 372
 373        err = __bprm_mm_init(bprm);
 374        if (err)
 375                goto err;
 376
 377        return 0;
 378
 379err:
 380        if (mm) {
 381                bprm->mm = NULL;
 382                mmdrop(mm);
 383        }
 384
 385        return err;
 386}
 387
 388struct user_arg_ptr {
 389#ifdef CONFIG_COMPAT
 390        bool is_compat;
 391#endif
 392        union {
 393                const char __user *const __user *native;
 394#ifdef CONFIG_COMPAT
 395                const compat_uptr_t __user *compat;
 396#endif
 397        } ptr;
 398};
 399
 400static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
 401{
 402        const char __user *native;
 403
 404#ifdef CONFIG_COMPAT
 405        if (unlikely(argv.is_compat)) {
 406                compat_uptr_t compat;
 407
 408                if (get_user(compat, argv.ptr.compat + nr))
 409                        return ERR_PTR(-EFAULT);
 410
 411                return compat_ptr(compat);
 412        }
 413#endif
 414
 415        if (get_user(native, argv.ptr.native + nr))
 416                return ERR_PTR(-EFAULT);
 417
 418        return native;
 419}
 420
 421/*
 422 * count() counts the number of strings in array ARGV.
 423 */
 424static int count(struct user_arg_ptr argv, int max)
 425{
 426        int i = 0;
 427
 428        if (argv.ptr.native != NULL) {
 429                for (;;) {
 430                        const char __user *p = get_user_arg_ptr(argv, i);
 431
 432                        if (!p)
 433                                break;
 434
 435                        if (IS_ERR(p))
 436                                return -EFAULT;
 437
 438                        if (i >= max)
 439                                return -E2BIG;
 440                        ++i;
 441
 442                        if (fatal_signal_pending(current))
 443                                return -ERESTARTNOHAND;
 444                        cond_resched();
 445                }
 446        }
 447        return i;
 448}
 449
 450static int prepare_arg_pages(struct linux_binprm *bprm,
 451                        struct user_arg_ptr argv, struct user_arg_ptr envp)
 452{
 453        unsigned long limit, ptr_size;
 454
 455        bprm->argc = count(argv, MAX_ARG_STRINGS);
 456        if (bprm->argc < 0)
 457                return bprm->argc;
 458
 459        bprm->envc = count(envp, MAX_ARG_STRINGS);
 460        if (bprm->envc < 0)
 461                return bprm->envc;
 462
 463        /*
 464         * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
 465         * (whichever is smaller) for the argv+env strings.
 466         * This ensures that:
 467         *  - the remaining binfmt code will not run out of stack space,
 468         *  - the program will have a reasonable amount of stack left
 469         *    to work from.
 470         */
 471        limit = _STK_LIM / 4 * 3;
 472        limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
 473        /*
 474         * We've historically supported up to 32 pages (ARG_MAX)
 475         * of argument strings even with small stacks
 476         */
 477        limit = max_t(unsigned long, limit, ARG_MAX);
 478        /*
 479         * We must account for the size of all the argv and envp pointers to
 480         * the argv and envp strings, since they will also take up space in
 481         * the stack. They aren't stored until much later when we can't
 482         * signal to the parent that the child has run out of stack space.
 483         * Instead, calculate it here so it's possible to fail gracefully.
 484         */
 485        ptr_size = (bprm->argc + bprm->envc) * sizeof(void *);
 486        if (limit <= ptr_size)
 487                return -E2BIG;
 488        limit -= ptr_size;
 489
 490        bprm->argmin = bprm->p - limit;
 491        return 0;
 492}
 493
 494/*
 495 * 'copy_strings()' copies argument/environment strings from the old
 496 * processes's memory to the new process's stack.  The call to get_user_pages()
 497 * ensures the destination page is created and not swapped out.
 498 */
 499static int copy_strings(int argc, struct user_arg_ptr argv,
 500                        struct linux_binprm *bprm)
 501{
 502        struct page *kmapped_page = NULL;
 503        char *kaddr = NULL;
 504        unsigned long kpos = 0;
 505        int ret;
 506
 507        while (argc-- > 0) {
 508                const char __user *str;
 509                int len;
 510                unsigned long pos;
 511
 512                ret = -EFAULT;
 513                str = get_user_arg_ptr(argv, argc);
 514                if (IS_ERR(str))
 515                        goto out;
 516
 517                len = strnlen_user(str, MAX_ARG_STRLEN);
 518                if (!len)
 519                        goto out;
 520
 521                ret = -E2BIG;
 522                if (!valid_arg_len(bprm, len))
 523                        goto out;
 524
 525                /* We're going to work our way backwords. */
 526                pos = bprm->p;
 527                str += len;
 528                bprm->p -= len;
 529#ifdef CONFIG_MMU
 530                if (bprm->p < bprm->argmin)
 531                        goto out;
 532#endif
 533
 534                while (len > 0) {
 535                        int offset, bytes_to_copy;
 536
 537                        if (fatal_signal_pending(current)) {
 538                                ret = -ERESTARTNOHAND;
 539                                goto out;
 540                        }
 541                        cond_resched();
 542
 543                        offset = pos % PAGE_SIZE;
 544                        if (offset == 0)
 545                                offset = PAGE_SIZE;
 546
 547                        bytes_to_copy = offset;
 548                        if (bytes_to_copy > len)
 549                                bytes_to_copy = len;
 550
 551                        offset -= bytes_to_copy;
 552                        pos -= bytes_to_copy;
 553                        str -= bytes_to_copy;
 554                        len -= bytes_to_copy;
 555
 556                        if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
 557                                struct page *page;
 558
 559                                page = get_arg_page(bprm, pos, 1);
 560                                if (!page) {
 561                                        ret = -E2BIG;
 562                                        goto out;
 563                                }
 564
 565                                if (kmapped_page) {
 566                                        flush_kernel_dcache_page(kmapped_page);
 567                                        kunmap(kmapped_page);
 568                                        put_arg_page(kmapped_page);
 569                                }
 570                                kmapped_page = page;
 571                                kaddr = kmap(kmapped_page);
 572                                kpos = pos & PAGE_MASK;
 573                                flush_arg_page(bprm, kpos, kmapped_page);
 574                        }
 575                        if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
 576                                ret = -EFAULT;
 577                                goto out;
 578                        }
 579                }
 580        }
 581        ret = 0;
 582out:
 583        if (kmapped_page) {
 584                flush_kernel_dcache_page(kmapped_page);
 585                kunmap(kmapped_page);
 586                put_arg_page(kmapped_page);
 587        }
 588        return ret;
 589}
 590
 591/*
 592 * Like copy_strings, but get argv and its values from kernel memory.
 593 */
 594int copy_strings_kernel(int argc, const char *const *__argv,
 595                        struct linux_binprm *bprm)
 596{
 597        int r;
 598        mm_segment_t oldfs = get_fs();
 599        struct user_arg_ptr argv = {
 600                .ptr.native = (const char __user *const  __user *)__argv,
 601        };
 602
 603        set_fs(KERNEL_DS);
 604        r = copy_strings(argc, argv, bprm);
 605        set_fs(oldfs);
 606
 607        return r;
 608}
 609EXPORT_SYMBOL(copy_strings_kernel);
 610
 611#ifdef CONFIG_MMU
 612
 613/*
 614 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
 615 * the binfmt code determines where the new stack should reside, we shift it to
 616 * its final location.  The process proceeds as follows:
 617 *
 618 * 1) Use shift to calculate the new vma endpoints.
 619 * 2) Extend vma to cover both the old and new ranges.  This ensures the
 620 *    arguments passed to subsequent functions are consistent.
 621 * 3) Move vma's page tables to the new range.
 622 * 4) Free up any cleared pgd range.
 623 * 5) Shrink the vma to cover only the new range.
 624 */
 625static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
 626{
 627        struct mm_struct *mm = vma->vm_mm;
 628        unsigned long old_start = vma->vm_start;
 629        unsigned long old_end = vma->vm_end;
 630        unsigned long length = old_end - old_start;
 631        unsigned long new_start = old_start - shift;
 632        unsigned long new_end = old_end - shift;
 633        struct mmu_gather tlb;
 634
 635        BUG_ON(new_start > new_end);
 636
 637        /*
 638         * ensure there are no vmas between where we want to go
 639         * and where we are
 640         */
 641        if (vma != find_vma(mm, new_start))
 642                return -EFAULT;
 643
 644        /*
 645         * cover the whole range: [new_start, old_end)
 646         */
 647        if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
 648                return -ENOMEM;
 649
 650        /*
 651         * move the page tables downwards, on failure we rely on
 652         * process cleanup to remove whatever mess we made.
 653         */
 654        if (length != move_page_tables(vma, old_start,
 655                                       vma, new_start, length, false))
 656                return -ENOMEM;
 657
 658        lru_add_drain();
 659        tlb_gather_mmu(&tlb, mm, old_start, old_end);
 660        if (new_end > old_start) {
 661                /*
 662                 * when the old and new regions overlap clear from new_end.
 663                 */
 664                free_pgd_range(&tlb, new_end, old_end, new_end,
 665                        vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
 666        } else {
 667                /*
 668                 * otherwise, clean from old_start; this is done to not touch
 669                 * the address space in [new_end, old_start) some architectures
 670                 * have constraints on va-space that make this illegal (IA64) -
 671                 * for the others its just a little faster.
 672                 */
 673                free_pgd_range(&tlb, old_start, old_end, new_end,
 674                        vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
 675        }
 676        tlb_finish_mmu(&tlb, old_start, old_end);
 677
 678        /*
 679         * Shrink the vma to just the new range.  Always succeeds.
 680         */
 681        vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
 682
 683        return 0;
 684}
 685
 686/*
 687 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
 688 * the stack is optionally relocated, and some extra space is added.
 689 */
 690int setup_arg_pages(struct linux_binprm *bprm,
 691                    unsigned long stack_top,
 692                    int executable_stack)
 693{
 694        unsigned long ret;
 695        unsigned long stack_shift;
 696        struct mm_struct *mm = current->mm;
 697        struct vm_area_struct *vma = bprm->vma;
 698        struct vm_area_struct *prev = NULL;
 699        unsigned long vm_flags;
 700        unsigned long stack_base;
 701        unsigned long stack_size;
 702        unsigned long stack_expand;
 703        unsigned long rlim_stack;
 704
 705#ifdef CONFIG_STACK_GROWSUP
 706        /* Limit stack size */
 707        stack_base = bprm->rlim_stack.rlim_max;
 708        if (stack_base > STACK_SIZE_MAX)
 709                stack_base = STACK_SIZE_MAX;
 710
 711        /* Add space for stack randomization. */
 712        stack_base += (STACK_RND_MASK << PAGE_SHIFT);
 713
 714        /* Make sure we didn't let the argument array grow too large. */
 715        if (vma->vm_end - vma->vm_start > stack_base)
 716                return -ENOMEM;
 717
 718        stack_base = PAGE_ALIGN(stack_top - stack_base);
 719
 720        stack_shift = vma->vm_start - stack_base;
 721        mm->arg_start = bprm->p - stack_shift;
 722        bprm->p = vma->vm_end - stack_shift;
 723#else
 724        stack_top = arch_align_stack(stack_top);
 725        stack_top = PAGE_ALIGN(stack_top);
 726
 727        if (unlikely(stack_top < mmap_min_addr) ||
 728            unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
 729                return -ENOMEM;
 730
 731        stack_shift = vma->vm_end - stack_top;
 732
 733        bprm->p -= stack_shift;
 734        mm->arg_start = bprm->p;
 735#endif
 736
 737        if (bprm->loader)
 738                bprm->loader -= stack_shift;
 739        bprm->exec -= stack_shift;
 740
 741        if (down_write_killable(&mm->mmap_sem))
 742                return -EINTR;
 743
 744        vm_flags = VM_STACK_FLAGS;
 745
 746        /*
 747         * Adjust stack execute permissions; explicitly enable for
 748         * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
 749         * (arch default) otherwise.
 750         */
 751        if (unlikely(executable_stack == EXSTACK_ENABLE_X))
 752                vm_flags |= VM_EXEC;
 753        else if (executable_stack == EXSTACK_DISABLE_X)
 754                vm_flags &= ~VM_EXEC;
 755        vm_flags |= mm->def_flags;
 756        vm_flags |= VM_STACK_INCOMPLETE_SETUP;
 757
 758        ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
 759                        vm_flags);
 760        if (ret)
 761                goto out_unlock;
 762        BUG_ON(prev != vma);
 763
 764        /* Move stack pages down in memory. */
 765        if (stack_shift) {
 766                ret = shift_arg_pages(vma, stack_shift);
 767                if (ret)
 768                        goto out_unlock;
 769        }
 770
 771        /* mprotect_fixup is overkill to remove the temporary stack flags */
 772        vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
 773
 774        stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
 775        stack_size = vma->vm_end - vma->vm_start;
 776        /*
 777         * Align this down to a page boundary as expand_stack
 778         * will align it up.
 779         */
 780        rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
 781#ifdef CONFIG_STACK_GROWSUP
 782        if (stack_size + stack_expand > rlim_stack)
 783                stack_base = vma->vm_start + rlim_stack;
 784        else
 785                stack_base = vma->vm_end + stack_expand;
 786#else
 787        if (stack_size + stack_expand > rlim_stack)
 788                stack_base = vma->vm_end - rlim_stack;
 789        else
 790                stack_base = vma->vm_start - stack_expand;
 791#endif
 792        current->mm->start_stack = bprm->p;
 793        ret = expand_stack(vma, stack_base);
 794        if (ret)
 795                ret = -EFAULT;
 796
 797out_unlock:
 798        up_write(&mm->mmap_sem);
 799        return ret;
 800}
 801EXPORT_SYMBOL(setup_arg_pages);
 802
 803#else
 804
 805/*
 806 * Transfer the program arguments and environment from the holding pages
 807 * onto the stack. The provided stack pointer is adjusted accordingly.
 808 */
 809int transfer_args_to_stack(struct linux_binprm *bprm,
 810                           unsigned long *sp_location)
 811{
 812        unsigned long index, stop, sp;
 813        int ret = 0;
 814
 815        stop = bprm->p >> PAGE_SHIFT;
 816        sp = *sp_location;
 817
 818        for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
 819                unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
 820                char *src = kmap(bprm->page[index]) + offset;
 821                sp -= PAGE_SIZE - offset;
 822                if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
 823                        ret = -EFAULT;
 824                kunmap(bprm->page[index]);
 825                if (ret)
 826                        goto out;
 827        }
 828
 829        *sp_location = sp;
 830
 831out:
 832        return ret;
 833}
 834EXPORT_SYMBOL(transfer_args_to_stack);
 835
 836#endif /* CONFIG_MMU */
 837
 838static struct file *do_open_execat(int fd, struct filename *name, int flags)
 839{
 840        struct file *file;
 841        int err;
 842        struct open_flags open_exec_flags = {
 843                .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
 844                .acc_mode = MAY_EXEC,
 845                .intent = LOOKUP_OPEN,
 846                .lookup_flags = LOOKUP_FOLLOW,
 847        };
 848
 849        if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
 850                return ERR_PTR(-EINVAL);
 851        if (flags & AT_SYMLINK_NOFOLLOW)
 852                open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
 853        if (flags & AT_EMPTY_PATH)
 854                open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
 855
 856        file = do_filp_open(fd, name, &open_exec_flags);
 857        if (IS_ERR(file))
 858                goto out;
 859
 860        err = -EACCES;
 861        if (!S_ISREG(file_inode(file)->i_mode))
 862                goto exit;
 863
 864        if (path_noexec(&file->f_path))
 865                goto exit;
 866
 867        err = deny_write_access(file);
 868        if (err)
 869                goto exit;
 870
 871        if (name->name[0] != '\0')
 872                fsnotify_open(file);
 873
 874out:
 875        return file;
 876
 877exit:
 878        fput(file);
 879        return ERR_PTR(err);
 880}
 881
 882struct file *open_exec(const char *name)
 883{
 884        struct filename *filename = getname_kernel(name);
 885        struct file *f = ERR_CAST(filename);
 886
 887        if (!IS_ERR(filename)) {
 888                f = do_open_execat(AT_FDCWD, filename, 0);
 889                putname(filename);
 890        }
 891        return f;
 892}
 893EXPORT_SYMBOL(open_exec);
 894
 895int kernel_read_file(struct file *file, void **buf, loff_t *size,
 896                     loff_t max_size, enum kernel_read_file_id id)
 897{
 898        loff_t i_size, pos;
 899        ssize_t bytes = 0;
 900        int ret;
 901
 902        if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
 903                return -EINVAL;
 904
 905        ret = deny_write_access(file);
 906        if (ret)
 907                return ret;
 908
 909        ret = security_kernel_read_file(file, id);
 910        if (ret)
 911                goto out;
 912
 913        i_size = i_size_read(file_inode(file));
 914        if (i_size <= 0) {
 915                ret = -EINVAL;
 916                goto out;
 917        }
 918        if (i_size > SIZE_MAX || (max_size > 0 && i_size > max_size)) {
 919                ret = -EFBIG;
 920                goto out;
 921        }
 922
 923        if (id != READING_FIRMWARE_PREALLOC_BUFFER)
 924                *buf = vmalloc(i_size);
 925        if (!*buf) {
 926                ret = -ENOMEM;
 927                goto out;
 928        }
 929
 930        pos = 0;
 931        while (pos < i_size) {
 932                bytes = kernel_read(file, *buf + pos, i_size - pos, &pos);
 933                if (bytes < 0) {
 934                        ret = bytes;
 935                        goto out_free;
 936                }
 937
 938                if (bytes == 0)
 939                        break;
 940        }
 941
 942        if (pos != i_size) {
 943                ret = -EIO;
 944                goto out_free;
 945        }
 946
 947        ret = security_kernel_post_read_file(file, *buf, i_size, id);
 948        if (!ret)
 949                *size = pos;
 950
 951out_free:
 952        if (ret < 0) {
 953                if (id != READING_FIRMWARE_PREALLOC_BUFFER) {
 954                        vfree(*buf);
 955                        *buf = NULL;
 956                }
 957        }
 958
 959out:
 960        allow_write_access(file);
 961        return ret;
 962}
 963EXPORT_SYMBOL_GPL(kernel_read_file);
 964
 965int kernel_read_file_from_path(const char *path, void **buf, loff_t *size,
 966                               loff_t max_size, enum kernel_read_file_id id)
 967{
 968        struct file *file;
 969        int ret;
 970
 971        if (!path || !*path)
 972                return -EINVAL;
 973
 974        file = filp_open(path, O_RDONLY, 0);
 975        if (IS_ERR(file))
 976                return PTR_ERR(file);
 977
 978        ret = kernel_read_file(file, buf, size, max_size, id);
 979        fput(file);
 980        return ret;
 981}
 982EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
 983
 984int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
 985                             enum kernel_read_file_id id)
 986{
 987        struct fd f = fdget(fd);
 988        int ret = -EBADF;
 989
 990        if (!f.file)
 991                goto out;
 992
 993        ret = kernel_read_file(f.file, buf, size, max_size, id);
 994out:
 995        fdput(f);
 996        return ret;
 997}
 998EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
 999
1000ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
1001{
1002        ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
1003        if (res > 0)
1004                flush_icache_range(addr, addr + len);
1005        return res;
1006}
1007EXPORT_SYMBOL(read_code);
1008
1009static int exec_mmap(struct mm_struct *mm)
1010{
1011        struct task_struct *tsk;
1012        struct mm_struct *old_mm, *active_mm;
1013
1014        /* Notify parent that we're no longer interested in the old VM */
1015        tsk = current;
1016        old_mm = current->mm;
1017        exec_mm_release(tsk, old_mm);
1018
1019        if (old_mm) {
1020                sync_mm_rss(old_mm);
1021                /*
1022                 * Make sure that if there is a core dump in progress
1023                 * for the old mm, we get out and die instead of going
1024                 * through with the exec.  We must hold mmap_sem around
1025                 * checking core_state and changing tsk->mm.
1026                 */
1027                down_read(&old_mm->mmap_sem);
1028                if (unlikely(old_mm->core_state)) {
1029                        up_read(&old_mm->mmap_sem);
1030                        return -EINTR;
1031                }
1032        }
1033        task_lock(tsk);
1034        active_mm = tsk->active_mm;
1035        membarrier_exec_mmap(mm);
1036        tsk->mm = mm;
1037        tsk->active_mm = mm;
1038        activate_mm(active_mm, mm);
1039        tsk->mm->vmacache_seqnum = 0;
1040        vmacache_flush(tsk);
1041        task_unlock(tsk);
1042        if (old_mm) {
1043                up_read(&old_mm->mmap_sem);
1044                BUG_ON(active_mm != old_mm);
1045                setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1046                mm_update_next_owner(old_mm);
1047                mmput(old_mm);
1048                return 0;
1049        }
1050        mmdrop(active_mm);
1051        return 0;
1052}
1053
1054/*
1055 * This function makes sure the current process has its own signal table,
1056 * so that flush_signal_handlers can later reset the handlers without
1057 * disturbing other processes.  (Other processes might share the signal
1058 * table via the CLONE_SIGHAND option to clone().)
1059 */
1060static int de_thread(struct task_struct *tsk)
1061{
1062        struct signal_struct *sig = tsk->signal;
1063        struct sighand_struct *oldsighand = tsk->sighand;
1064        spinlock_t *lock = &oldsighand->siglock;
1065
1066        if (thread_group_empty(tsk))
1067                goto no_thread_group;
1068
1069        /*
1070         * Kill all other threads in the thread group.
1071         */
1072        spin_lock_irq(lock);
1073        if (signal_group_exit(sig)) {
1074                /*
1075                 * Another group action in progress, just
1076                 * return so that the signal is processed.
1077                 */
1078                spin_unlock_irq(lock);
1079                return -EAGAIN;
1080        }
1081
1082        sig->group_exit_task = tsk;
1083        sig->notify_count = zap_other_threads(tsk);
1084        if (!thread_group_leader(tsk))
1085                sig->notify_count--;
1086
1087        while (sig->notify_count) {
1088                __set_current_state(TASK_KILLABLE);
1089                spin_unlock_irq(lock);
1090                schedule();
1091                if (__fatal_signal_pending(tsk))
1092                        goto killed;
1093                spin_lock_irq(lock);
1094        }
1095        spin_unlock_irq(lock);
1096
1097        /*
1098         * At this point all other threads have exited, all we have to
1099         * do is to wait for the thread group leader to become inactive,
1100         * and to assume its PID:
1101         */
1102        if (!thread_group_leader(tsk)) {
1103                struct task_struct *leader = tsk->group_leader;
1104
1105                for (;;) {
1106                        cgroup_threadgroup_change_begin(tsk);
1107                        write_lock_irq(&tasklist_lock);
1108                        /*
1109                         * Do this under tasklist_lock to ensure that
1110                         * exit_notify() can't miss ->group_exit_task
1111                         */
1112                        sig->notify_count = -1;
1113                        if (likely(leader->exit_state))
1114                                break;
1115                        __set_current_state(TASK_KILLABLE);
1116                        write_unlock_irq(&tasklist_lock);
1117                        cgroup_threadgroup_change_end(tsk);
1118                        schedule();
1119                        if (__fatal_signal_pending(tsk))
1120                                goto killed;
1121                }
1122
1123                /*
1124                 * The only record we have of the real-time age of a
1125                 * process, regardless of execs it's done, is start_time.
1126                 * All the past CPU time is accumulated in signal_struct
1127                 * from sister threads now dead.  But in this non-leader
1128                 * exec, nothing survives from the original leader thread,
1129                 * whose birth marks the true age of this process now.
1130                 * When we take on its identity by switching to its PID, we
1131                 * also take its birthdate (always earlier than our own).
1132                 */
1133                tsk->start_time = leader->start_time;
1134                tsk->start_boottime = leader->start_boottime;
1135
1136                BUG_ON(!same_thread_group(leader, tsk));
1137                BUG_ON(has_group_leader_pid(tsk));
1138                /*
1139                 * An exec() starts a new thread group with the
1140                 * TGID of the previous thread group. Rehash the
1141                 * two threads with a switched PID, and release
1142                 * the former thread group leader:
1143                 */
1144
1145                /* Become a process group leader with the old leader's pid.
1146                 * The old leader becomes a thread of the this thread group.
1147                 * Note: The old leader also uses this pid until release_task
1148                 *       is called.  Odd but simple and correct.
1149                 */
1150                tsk->pid = leader->pid;
1151                change_pid(tsk, PIDTYPE_PID, task_pid(leader));
1152                transfer_pid(leader, tsk, PIDTYPE_TGID);
1153                transfer_pid(leader, tsk, PIDTYPE_PGID);
1154                transfer_pid(leader, tsk, PIDTYPE_SID);
1155
1156                list_replace_rcu(&leader->tasks, &tsk->tasks);
1157                list_replace_init(&leader->sibling, &tsk->sibling);
1158
1159                tsk->group_leader = tsk;
1160                leader->group_leader = tsk;
1161
1162                tsk->exit_signal = SIGCHLD;
1163                leader->exit_signal = -1;
1164
1165                BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1166                leader->exit_state = EXIT_DEAD;
1167
1168                /*
1169                 * We are going to release_task()->ptrace_unlink() silently,
1170                 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1171                 * the tracer wont't block again waiting for this thread.
1172                 */
1173                if (unlikely(leader->ptrace))
1174                        __wake_up_parent(leader, leader->parent);
1175                write_unlock_irq(&tasklist_lock);
1176                cgroup_threadgroup_change_end(tsk);
1177
1178                release_task(leader);
1179        }
1180
1181        sig->group_exit_task = NULL;
1182        sig->notify_count = 0;
1183
1184no_thread_group:
1185        /* we have changed execution domain */
1186        tsk->exit_signal = SIGCHLD;
1187
1188#ifdef CONFIG_POSIX_TIMERS
1189        exit_itimers(sig);
1190        flush_itimer_signals();
1191#endif
1192
1193        if (refcount_read(&oldsighand->count) != 1) {
1194                struct sighand_struct *newsighand;
1195                /*
1196                 * This ->sighand is shared with the CLONE_SIGHAND
1197                 * but not CLONE_THREAD task, switch to the new one.
1198                 */
1199                newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1200                if (!newsighand)
1201                        return -ENOMEM;
1202
1203                refcount_set(&newsighand->count, 1);
1204                memcpy(newsighand->action, oldsighand->action,
1205                       sizeof(newsighand->action));
1206
1207                write_lock_irq(&tasklist_lock);
1208                spin_lock(&oldsighand->siglock);
1209                rcu_assign_pointer(tsk->sighand, newsighand);
1210                spin_unlock(&oldsighand->siglock);
1211                write_unlock_irq(&tasklist_lock);
1212
1213                __cleanup_sighand(oldsighand);
1214        }
1215
1216        BUG_ON(!thread_group_leader(tsk));
1217        return 0;
1218
1219killed:
1220        /* protects against exit_notify() and __exit_signal() */
1221        read_lock(&tasklist_lock);
1222        sig->group_exit_task = NULL;
1223        sig->notify_count = 0;
1224        read_unlock(&tasklist_lock);
1225        return -EAGAIN;
1226}
1227
1228char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1229{
1230        task_lock(tsk);
1231        strncpy(buf, tsk->comm, buf_size);
1232        task_unlock(tsk);
1233        return buf;
1234}
1235EXPORT_SYMBOL_GPL(__get_task_comm);
1236
1237/*
1238 * These functions flushes out all traces of the currently running executable
1239 * so that a new one can be started
1240 */
1241
1242void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1243{
1244        task_lock(tsk);
1245        trace_task_rename(tsk, buf);
1246        strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1247        task_unlock(tsk);
1248        perf_event_comm(tsk, exec);
1249}
1250
1251/*
1252 * Calling this is the point of no return. None of the failures will be
1253 * seen by userspace since either the process is already taking a fatal
1254 * signal (via de_thread() or coredump), or will have SEGV raised
1255 * (after exec_mmap()) by search_binary_handlers (see below).
1256 */
1257int flush_old_exec(struct linux_binprm * bprm)
1258{
1259        int retval;
1260
1261        /*
1262         * Make sure we have a private signal table and that
1263         * we are unassociated from the previous thread group.
1264         */
1265        retval = de_thread(current);
1266        if (retval)
1267                goto out;
1268
1269        /*
1270         * Must be called _before_ exec_mmap() as bprm->mm is
1271         * not visibile until then. This also enables the update
1272         * to be lockless.
1273         */
1274        set_mm_exe_file(bprm->mm, bprm->file);
1275
1276        /*
1277         * Release all of the old mmap stuff
1278         */
1279        acct_arg_size(bprm, 0);
1280        retval = exec_mmap(bprm->mm);
1281        if (retval)
1282                goto out;
1283
1284        /*
1285         * After clearing bprm->mm (to mark that current is using the
1286         * prepared mm now), we have nothing left of the original
1287         * process. If anything from here on returns an error, the check
1288         * in search_binary_handler() will SEGV current.
1289         */
1290        bprm->mm = NULL;
1291
1292        set_fs(USER_DS);
1293        current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1294                                        PF_NOFREEZE | PF_NO_SETAFFINITY);
1295        flush_thread();
1296        current->personality &= ~bprm->per_clear;
1297
1298        /*
1299         * We have to apply CLOEXEC before we change whether the process is
1300         * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1301         * trying to access the should-be-closed file descriptors of a process
1302         * undergoing exec(2).
1303         */
1304        do_close_on_exec(current->files);
1305        return 0;
1306
1307out:
1308        return retval;
1309}
1310EXPORT_SYMBOL(flush_old_exec);
1311
1312void would_dump(struct linux_binprm *bprm, struct file *file)
1313{
1314        struct inode *inode = file_inode(file);
1315        if (inode_permission(inode, MAY_READ) < 0) {
1316                struct user_namespace *old, *user_ns;
1317                bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1318
1319                /* Ensure mm->user_ns contains the executable */
1320                user_ns = old = bprm->mm->user_ns;
1321                while ((user_ns != &init_user_ns) &&
1322                       !privileged_wrt_inode_uidgid(user_ns, inode))
1323                        user_ns = user_ns->parent;
1324
1325                if (old != user_ns) {
1326                        bprm->mm->user_ns = get_user_ns(user_ns);
1327                        put_user_ns(old);
1328                }
1329        }
1330}
1331EXPORT_SYMBOL(would_dump);
1332
1333void setup_new_exec(struct linux_binprm * bprm)
1334{
1335        /*
1336         * Once here, prepare_binrpm() will not be called any more, so
1337         * the final state of setuid/setgid/fscaps can be merged into the
1338         * secureexec flag.
1339         */
1340        bprm->secureexec |= bprm->cap_elevated;
1341
1342        if (bprm->secureexec) {
1343                /* Make sure parent cannot signal privileged process. */
1344                current->pdeath_signal = 0;
1345
1346                /*
1347                 * For secureexec, reset the stack limit to sane default to
1348                 * avoid bad behavior from the prior rlimits. This has to
1349                 * happen before arch_pick_mmap_layout(), which examines
1350                 * RLIMIT_STACK, but after the point of no return to avoid
1351                 * needing to clean up the change on failure.
1352                 */
1353                if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1354                        bprm->rlim_stack.rlim_cur = _STK_LIM;
1355        }
1356
1357        arch_pick_mmap_layout(current->mm, &bprm->rlim_stack);
1358
1359        current->sas_ss_sp = current->sas_ss_size = 0;
1360
1361        /*
1362         * Figure out dumpability. Note that this checking only of current
1363         * is wrong, but userspace depends on it. This should be testing
1364         * bprm->secureexec instead.
1365         */
1366        if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1367            !(uid_eq(current_euid(), current_uid()) &&
1368              gid_eq(current_egid(), current_gid())))
1369                set_dumpable(current->mm, suid_dumpable);
1370        else
1371                set_dumpable(current->mm, SUID_DUMP_USER);
1372
1373        arch_setup_new_exec();
1374        perf_event_exec();
1375        __set_task_comm(current, kbasename(bprm->filename), true);
1376
1377        /* Set the new mm task size. We have to do that late because it may
1378         * depend on TIF_32BIT which is only updated in flush_thread() on
1379         * some architectures like powerpc
1380         */
1381        current->mm->task_size = TASK_SIZE;
1382
1383        /* An exec changes our domain. We are no longer part of the thread
1384           group */
1385        current->self_exec_id++;
1386        flush_signal_handlers(current, 0);
1387}
1388EXPORT_SYMBOL(setup_new_exec);
1389
1390/* Runs immediately before start_thread() takes over. */
1391void finalize_exec(struct linux_binprm *bprm)
1392{
1393        /* Store any stack rlimit changes before starting thread. */
1394        task_lock(current->group_leader);
1395        current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1396        task_unlock(current->group_leader);
1397}
1398EXPORT_SYMBOL(finalize_exec);
1399
1400/*
1401 * Prepare credentials and lock ->cred_guard_mutex.
1402 * install_exec_creds() commits the new creds and drops the lock.
1403 * Or, if exec fails before, free_bprm() should release ->cred and
1404 * and unlock.
1405 */
1406static int prepare_bprm_creds(struct linux_binprm *bprm)
1407{
1408        if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1409                return -ERESTARTNOINTR;
1410
1411        bprm->cred = prepare_exec_creds();
1412        if (likely(bprm->cred))
1413                return 0;
1414
1415        mutex_unlock(&current->signal->cred_guard_mutex);
1416        return -ENOMEM;
1417}
1418
1419static void free_bprm(struct linux_binprm *bprm)
1420{
1421        free_arg_pages(bprm);
1422        if (bprm->cred) {
1423                mutex_unlock(&current->signal->cred_guard_mutex);
1424                abort_creds(bprm->cred);
1425        }
1426        if (bprm->file) {
1427                allow_write_access(bprm->file);
1428                fput(bprm->file);
1429        }
1430        /* If a binfmt changed the interp, free it. */
1431        if (bprm->interp != bprm->filename)
1432                kfree(bprm->interp);
1433        kfree(bprm);
1434}
1435
1436int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1437{
1438        /* If a binfmt changed the interp, free it first. */
1439        if (bprm->interp != bprm->filename)
1440                kfree(bprm->interp);
1441        bprm->interp = kstrdup(interp, GFP_KERNEL);
1442        if (!bprm->interp)
1443                return -ENOMEM;
1444        return 0;
1445}
1446EXPORT_SYMBOL(bprm_change_interp);
1447
1448/*
1449 * install the new credentials for this executable
1450 */
1451void install_exec_creds(struct linux_binprm *bprm)
1452{
1453        security_bprm_committing_creds(bprm);
1454
1455        commit_creds(bprm->cred);
1456        bprm->cred = NULL;
1457
1458        /*
1459         * Disable monitoring for regular users
1460         * when executing setuid binaries. Must
1461         * wait until new credentials are committed
1462         * by commit_creds() above
1463         */
1464        if (get_dumpable(current->mm) != SUID_DUMP_USER)
1465                perf_event_exit_task(current);
1466        /*
1467         * cred_guard_mutex must be held at least to this point to prevent
1468         * ptrace_attach() from altering our determination of the task's
1469         * credentials; any time after this it may be unlocked.
1470         */
1471        security_bprm_committed_creds(bprm);
1472        mutex_unlock(&current->signal->cred_guard_mutex);
1473}
1474EXPORT_SYMBOL(install_exec_creds);
1475
1476/*
1477 * determine how safe it is to execute the proposed program
1478 * - the caller must hold ->cred_guard_mutex to protect against
1479 *   PTRACE_ATTACH or seccomp thread-sync
1480 */
1481static void check_unsafe_exec(struct linux_binprm *bprm)
1482{
1483        struct task_struct *p = current, *t;
1484        unsigned n_fs;
1485
1486        if (p->ptrace)
1487                bprm->unsafe |= LSM_UNSAFE_PTRACE;
1488
1489        /*
1490         * This isn't strictly necessary, but it makes it harder for LSMs to
1491         * mess up.
1492         */
1493        if (task_no_new_privs(current))
1494                bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1495
1496        t = p;
1497        n_fs = 1;
1498        spin_lock(&p->fs->lock);
1499        rcu_read_lock();
1500        while_each_thread(p, t) {
1501                if (t->fs == p->fs)
1502                        n_fs++;
1503        }
1504        rcu_read_unlock();
1505
1506        if (p->fs->users > n_fs)
1507                bprm->unsafe |= LSM_UNSAFE_SHARE;
1508        else
1509                p->fs->in_exec = 1;
1510        spin_unlock(&p->fs->lock);
1511}
1512
1513static void bprm_fill_uid(struct linux_binprm *bprm)
1514{
1515        struct inode *inode;
1516        unsigned int mode;
1517        kuid_t uid;
1518        kgid_t gid;
1519
1520        /*
1521         * Since this can be called multiple times (via prepare_binprm),
1522         * we must clear any previous work done when setting set[ug]id
1523         * bits from any earlier bprm->file uses (for example when run
1524         * first for a setuid script then again for its interpreter).
1525         */
1526        bprm->cred->euid = current_euid();
1527        bprm->cred->egid = current_egid();
1528
1529        if (!mnt_may_suid(bprm->file->f_path.mnt))
1530                return;
1531
1532        if (task_no_new_privs(current))
1533                return;
1534
1535        inode = bprm->file->f_path.dentry->d_inode;
1536        mode = READ_ONCE(inode->i_mode);
1537        if (!(mode & (S_ISUID|S_ISGID)))
1538                return;
1539
1540        /* Be careful if suid/sgid is set */
1541        inode_lock(inode);
1542
1543        /* reload atomically mode/uid/gid now that lock held */
1544        mode = inode->i_mode;
1545        uid = inode->i_uid;
1546        gid = inode->i_gid;
1547        inode_unlock(inode);
1548
1549        /* We ignore suid/sgid if there are no mappings for them in the ns */
1550        if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1551                 !kgid_has_mapping(bprm->cred->user_ns, gid))
1552                return;
1553
1554        if (mode & S_ISUID) {
1555                bprm->per_clear |= PER_CLEAR_ON_SETID;
1556                bprm->cred->euid = uid;
1557        }
1558
1559        if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1560                bprm->per_clear |= PER_CLEAR_ON_SETID;
1561                bprm->cred->egid = gid;
1562        }
1563}
1564
1565/*
1566 * Fill the binprm structure from the inode.
1567 * Check permissions, then read the first BINPRM_BUF_SIZE bytes
1568 *
1569 * This may be called multiple times for binary chains (scripts for example).
1570 */
1571int prepare_binprm(struct linux_binprm *bprm)
1572{
1573        int retval;
1574        loff_t pos = 0;
1575
1576        bprm_fill_uid(bprm);
1577
1578        /* fill in binprm security blob */
1579        retval = security_bprm_set_creds(bprm);
1580        if (retval)
1581                return retval;
1582        bprm->called_set_creds = 1;
1583
1584        memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1585        return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1586}
1587
1588EXPORT_SYMBOL(prepare_binprm);
1589
1590/*
1591 * Arguments are '\0' separated strings found at the location bprm->p
1592 * points to; chop off the first by relocating brpm->p to right after
1593 * the first '\0' encountered.
1594 */
1595int remove_arg_zero(struct linux_binprm *bprm)
1596{
1597        int ret = 0;
1598        unsigned long offset;
1599        char *kaddr;
1600        struct page *page;
1601
1602        if (!bprm->argc)
1603                return 0;
1604
1605        do {
1606                offset = bprm->p & ~PAGE_MASK;
1607                page = get_arg_page(bprm, bprm->p, 0);
1608                if (!page) {
1609                        ret = -EFAULT;
1610                        goto out;
1611                }
1612                kaddr = kmap_atomic(page);
1613
1614                for (; offset < PAGE_SIZE && kaddr[offset];
1615                                offset++, bprm->p++)
1616                        ;
1617
1618                kunmap_atomic(kaddr);
1619                put_arg_page(page);
1620        } while (offset == PAGE_SIZE);
1621
1622        bprm->p++;
1623        bprm->argc--;
1624        ret = 0;
1625
1626out:
1627        return ret;
1628}
1629EXPORT_SYMBOL(remove_arg_zero);
1630
1631#define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1632/*
1633 * cycle the list of binary formats handler, until one recognizes the image
1634 */
1635int search_binary_handler(struct linux_binprm *bprm)
1636{
1637        bool need_retry = IS_ENABLED(CONFIG_MODULES);
1638        struct linux_binfmt *fmt;
1639        int retval;
1640
1641        /* This allows 4 levels of binfmt rewrites before failing hard. */
1642        if (bprm->recursion_depth > 5)
1643                return -ELOOP;
1644
1645        retval = security_bprm_check(bprm);
1646        if (retval)
1647                return retval;
1648
1649        retval = -ENOENT;
1650 retry:
1651        read_lock(&binfmt_lock);
1652        list_for_each_entry(fmt, &formats, lh) {
1653                if (!try_module_get(fmt->module))
1654                        continue;
1655                read_unlock(&binfmt_lock);
1656
1657                bprm->recursion_depth++;
1658                retval = fmt->load_binary(bprm);
1659                bprm->recursion_depth--;
1660
1661                read_lock(&binfmt_lock);
1662                put_binfmt(fmt);
1663                if (retval < 0 && !bprm->mm) {
1664                        /* we got to flush_old_exec() and failed after it */
1665                        read_unlock(&binfmt_lock);
1666                        force_sigsegv(SIGSEGV);
1667                        return retval;
1668                }
1669                if (retval != -ENOEXEC || !bprm->file) {
1670                        read_unlock(&binfmt_lock);
1671                        return retval;
1672                }
1673        }
1674        read_unlock(&binfmt_lock);
1675
1676        if (need_retry) {
1677                if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1678                    printable(bprm->buf[2]) && printable(bprm->buf[3]))
1679                        return retval;
1680                if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1681                        return retval;
1682                need_retry = false;
1683                goto retry;
1684        }
1685
1686        return retval;
1687}
1688EXPORT_SYMBOL(search_binary_handler);
1689
1690static int exec_binprm(struct linux_binprm *bprm)
1691{
1692        pid_t old_pid, old_vpid;
1693        int ret;
1694
1695        /* Need to fetch pid before load_binary changes it */
1696        old_pid = current->pid;
1697        rcu_read_lock();
1698        old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1699        rcu_read_unlock();
1700
1701        ret = search_binary_handler(bprm);
1702        if (ret >= 0) {
1703                audit_bprm(bprm);
1704                trace_sched_process_exec(current, old_pid, bprm);
1705                ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1706                proc_exec_connector(current);
1707        }
1708
1709        return ret;
1710}
1711
1712/*
1713 * sys_execve() executes a new program.
1714 */
1715static int __do_execve_file(int fd, struct filename *filename,
1716                            struct user_arg_ptr argv,
1717                            struct user_arg_ptr envp,
1718                            int flags, struct file *file)
1719{
1720        char *pathbuf = NULL;
1721        struct linux_binprm *bprm;
1722        struct files_struct *displaced;
1723        int retval;
1724
1725        if (IS_ERR(filename))
1726                return PTR_ERR(filename);
1727
1728        /*
1729         * We move the actual failure in case of RLIMIT_NPROC excess from
1730         * set*uid() to execve() because too many poorly written programs
1731         * don't check setuid() return code.  Here we additionally recheck
1732         * whether NPROC limit is still exceeded.
1733         */
1734        if ((current->flags & PF_NPROC_EXCEEDED) &&
1735            atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1736                retval = -EAGAIN;
1737                goto out_ret;
1738        }
1739
1740        /* We're below the limit (still or again), so we don't want to make
1741         * further execve() calls fail. */
1742        current->flags &= ~PF_NPROC_EXCEEDED;
1743
1744        retval = unshare_files(&displaced);
1745        if (retval)
1746                goto out_ret;
1747
1748        retval = -ENOMEM;
1749        bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1750        if (!bprm)
1751                goto out_files;
1752
1753        retval = prepare_bprm_creds(bprm);
1754        if (retval)
1755                goto out_free;
1756
1757        check_unsafe_exec(bprm);
1758        current->in_execve = 1;
1759
1760        if (!file)
1761                file = do_open_execat(fd, filename, flags);
1762        retval = PTR_ERR(file);
1763        if (IS_ERR(file))
1764                goto out_unmark;
1765
1766        sched_exec();
1767
1768        bprm->file = file;
1769        if (!filename) {
1770                bprm->filename = "none";
1771        } else if (fd == AT_FDCWD || filename->name[0] == '/') {
1772                bprm->filename = filename->name;
1773        } else {
1774                if (filename->name[0] == '\0')
1775                        pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1776                else
1777                        pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1778                                            fd, filename->name);
1779                if (!pathbuf) {
1780                        retval = -ENOMEM;
1781                        goto out_unmark;
1782                }
1783                /*
1784                 * Record that a name derived from an O_CLOEXEC fd will be
1785                 * inaccessible after exec. Relies on having exclusive access to
1786                 * current->files (due to unshare_files above).
1787                 */
1788                if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1789                        bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1790                bprm->filename = pathbuf;
1791        }
1792        bprm->interp = bprm->filename;
1793
1794        retval = bprm_mm_init(bprm);
1795        if (retval)
1796                goto out_unmark;
1797
1798        retval = prepare_arg_pages(bprm, argv, envp);
1799        if (retval < 0)
1800                goto out;
1801
1802        retval = prepare_binprm(bprm);
1803        if (retval < 0)
1804                goto out;
1805
1806        retval = copy_strings_kernel(1, &bprm->filename, bprm);
1807        if (retval < 0)
1808                goto out;
1809
1810        bprm->exec = bprm->p;
1811        retval = copy_strings(bprm->envc, envp, bprm);
1812        if (retval < 0)
1813                goto out;
1814
1815        retval = copy_strings(bprm->argc, argv, bprm);
1816        if (retval < 0)
1817                goto out;
1818
1819        would_dump(bprm, bprm->file);
1820
1821        retval = exec_binprm(bprm);
1822        if (retval < 0)
1823                goto out;
1824
1825        /* execve succeeded */
1826        current->fs->in_exec = 0;
1827        current->in_execve = 0;
1828        rseq_execve(current);
1829        acct_update_integrals(current);
1830        task_numa_free(current, false);
1831        free_bprm(bprm);
1832        kfree(pathbuf);
1833        if (filename)
1834                putname(filename);
1835        if (displaced)
1836                put_files_struct(displaced);
1837        return retval;
1838
1839out:
1840        if (bprm->mm) {
1841                acct_arg_size(bprm, 0);
1842                mmput(bprm->mm);
1843        }
1844
1845out_unmark:
1846        current->fs->in_exec = 0;
1847        current->in_execve = 0;
1848
1849out_free:
1850        free_bprm(bprm);
1851        kfree(pathbuf);
1852
1853out_files:
1854        if (displaced)
1855                reset_files_struct(displaced);
1856out_ret:
1857        if (filename)
1858                putname(filename);
1859        return retval;
1860}
1861
1862static int do_execveat_common(int fd, struct filename *filename,
1863                              struct user_arg_ptr argv,
1864                              struct user_arg_ptr envp,
1865                              int flags)
1866{
1867        return __do_execve_file(fd, filename, argv, envp, flags, NULL);
1868}
1869
1870int do_execve_file(struct file *file, void *__argv, void *__envp)
1871{
1872        struct user_arg_ptr argv = { .ptr.native = __argv };
1873        struct user_arg_ptr envp = { .ptr.native = __envp };
1874
1875        return __do_execve_file(AT_FDCWD, NULL, argv, envp, 0, file);
1876}
1877
1878int do_execve(struct filename *filename,
1879        const char __user *const __user *__argv,
1880        const char __user *const __user *__envp)
1881{
1882        struct user_arg_ptr argv = { .ptr.native = __argv };
1883        struct user_arg_ptr envp = { .ptr.native = __envp };
1884        return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1885}
1886
1887int do_execveat(int fd, struct filename *filename,
1888                const char __user *const __user *__argv,
1889                const char __user *const __user *__envp,
1890                int flags)
1891{
1892        struct user_arg_ptr argv = { .ptr.native = __argv };
1893        struct user_arg_ptr envp = { .ptr.native = __envp };
1894
1895        return do_execveat_common(fd, filename, argv, envp, flags);
1896}
1897
1898#ifdef CONFIG_COMPAT
1899static int compat_do_execve(struct filename *filename,
1900        const compat_uptr_t __user *__argv,
1901        const compat_uptr_t __user *__envp)
1902{
1903        struct user_arg_ptr argv = {
1904                .is_compat = true,
1905                .ptr.compat = __argv,
1906        };
1907        struct user_arg_ptr envp = {
1908                .is_compat = true,
1909                .ptr.compat = __envp,
1910        };
1911        return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1912}
1913
1914static int compat_do_execveat(int fd, struct filename *filename,
1915                              const compat_uptr_t __user *__argv,
1916                              const compat_uptr_t __user *__envp,
1917                              int flags)
1918{
1919        struct user_arg_ptr argv = {
1920                .is_compat = true,
1921                .ptr.compat = __argv,
1922        };
1923        struct user_arg_ptr envp = {
1924                .is_compat = true,
1925                .ptr.compat = __envp,
1926        };
1927        return do_execveat_common(fd, filename, argv, envp, flags);
1928}
1929#endif
1930
1931void set_binfmt(struct linux_binfmt *new)
1932{
1933        struct mm_struct *mm = current->mm;
1934
1935        if (mm->binfmt)
1936                module_put(mm->binfmt->module);
1937
1938        mm->binfmt = new;
1939        if (new)
1940                __module_get(new->module);
1941}
1942EXPORT_SYMBOL(set_binfmt);
1943
1944/*
1945 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1946 */
1947void set_dumpable(struct mm_struct *mm, int value)
1948{
1949        if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1950                return;
1951
1952        set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
1953}
1954
1955SYSCALL_DEFINE3(execve,
1956                const char __user *, filename,
1957                const char __user *const __user *, argv,
1958                const char __user *const __user *, envp)
1959{
1960        return do_execve(getname(filename), argv, envp);
1961}
1962
1963SYSCALL_DEFINE5(execveat,
1964                int, fd, const char __user *, filename,
1965                const char __user *const __user *, argv,
1966                const char __user *const __user *, envp,
1967                int, flags)
1968{
1969        int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1970
1971        return do_execveat(fd,
1972                           getname_flags(filename, lookup_flags, NULL),
1973                           argv, envp, flags);
1974}
1975
1976#ifdef CONFIG_COMPAT
1977COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1978        const compat_uptr_t __user *, argv,
1979        const compat_uptr_t __user *, envp)
1980{
1981        return compat_do_execve(getname(filename), argv, envp);
1982}
1983
1984COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
1985                       const char __user *, filename,
1986                       const compat_uptr_t __user *, argv,
1987                       const compat_uptr_t __user *, envp,
1988                       int,  flags)
1989{
1990        int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1991
1992        return compat_do_execveat(fd,
1993                                  getname_flags(filename, lookup_flags, NULL),
1994                                  argv, envp, flags);
1995}
1996#endif
1997