linux/fs/xfs/libxfs/xfs_ialloc.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
   4 * All Rights Reserved.
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
  12#include "xfs_bit.h"
  13#include "xfs_sb.h"
  14#include "xfs_mount.h"
  15#include "xfs_inode.h"
  16#include "xfs_btree.h"
  17#include "xfs_ialloc.h"
  18#include "xfs_ialloc_btree.h"
  19#include "xfs_alloc.h"
  20#include "xfs_errortag.h"
  21#include "xfs_error.h"
  22#include "xfs_bmap.h"
  23#include "xfs_trans.h"
  24#include "xfs_buf_item.h"
  25#include "xfs_icreate_item.h"
  26#include "xfs_icache.h"
  27#include "xfs_trace.h"
  28#include "xfs_log.h"
  29#include "xfs_rmap.h"
  30
  31/*
  32 * Lookup a record by ino in the btree given by cur.
  33 */
  34int                                     /* error */
  35xfs_inobt_lookup(
  36        struct xfs_btree_cur    *cur,   /* btree cursor */
  37        xfs_agino_t             ino,    /* starting inode of chunk */
  38        xfs_lookup_t            dir,    /* <=, >=, == */
  39        int                     *stat)  /* success/failure */
  40{
  41        cur->bc_rec.i.ir_startino = ino;
  42        cur->bc_rec.i.ir_holemask = 0;
  43        cur->bc_rec.i.ir_count = 0;
  44        cur->bc_rec.i.ir_freecount = 0;
  45        cur->bc_rec.i.ir_free = 0;
  46        return xfs_btree_lookup(cur, dir, stat);
  47}
  48
  49/*
  50 * Update the record referred to by cur to the value given.
  51 * This either works (return 0) or gets an EFSCORRUPTED error.
  52 */
  53STATIC int                              /* error */
  54xfs_inobt_update(
  55        struct xfs_btree_cur    *cur,   /* btree cursor */
  56        xfs_inobt_rec_incore_t  *irec)  /* btree record */
  57{
  58        union xfs_btree_rec     rec;
  59
  60        rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
  61        if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
  62                rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask);
  63                rec.inobt.ir_u.sp.ir_count = irec->ir_count;
  64                rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount;
  65        } else {
  66                /* ir_holemask/ir_count not supported on-disk */
  67                rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount);
  68        }
  69        rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
  70        return xfs_btree_update(cur, &rec);
  71}
  72
  73/* Convert on-disk btree record to incore inobt record. */
  74void
  75xfs_inobt_btrec_to_irec(
  76        struct xfs_mount                *mp,
  77        union xfs_btree_rec             *rec,
  78        struct xfs_inobt_rec_incore     *irec)
  79{
  80        irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
  81        if (xfs_sb_version_hassparseinodes(&mp->m_sb)) {
  82                irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask);
  83                irec->ir_count = rec->inobt.ir_u.sp.ir_count;
  84                irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount;
  85        } else {
  86                /*
  87                 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
  88                 * values for full inode chunks.
  89                 */
  90                irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL;
  91                irec->ir_count = XFS_INODES_PER_CHUNK;
  92                irec->ir_freecount =
  93                                be32_to_cpu(rec->inobt.ir_u.f.ir_freecount);
  94        }
  95        irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
  96}
  97
  98/*
  99 * Get the data from the pointed-to record.
 100 */
 101int
 102xfs_inobt_get_rec(
 103        struct xfs_btree_cur            *cur,
 104        struct xfs_inobt_rec_incore     *irec,
 105        int                             *stat)
 106{
 107        struct xfs_mount                *mp = cur->bc_mp;
 108        xfs_agnumber_t                  agno = cur->bc_private.a.agno;
 109        union xfs_btree_rec             *rec;
 110        int                             error;
 111        uint64_t                        realfree;
 112
 113        error = xfs_btree_get_rec(cur, &rec, stat);
 114        if (error || *stat == 0)
 115                return error;
 116
 117        xfs_inobt_btrec_to_irec(mp, rec, irec);
 118
 119        if (!xfs_verify_agino(mp, agno, irec->ir_startino))
 120                goto out_bad_rec;
 121        if (irec->ir_count < XFS_INODES_PER_HOLEMASK_BIT ||
 122            irec->ir_count > XFS_INODES_PER_CHUNK)
 123                goto out_bad_rec;
 124        if (irec->ir_freecount > XFS_INODES_PER_CHUNK)
 125                goto out_bad_rec;
 126
 127        /* if there are no holes, return the first available offset */
 128        if (!xfs_inobt_issparse(irec->ir_holemask))
 129                realfree = irec->ir_free;
 130        else
 131                realfree = irec->ir_free & xfs_inobt_irec_to_allocmask(irec);
 132        if (hweight64(realfree) != irec->ir_freecount)
 133                goto out_bad_rec;
 134
 135        return 0;
 136
 137out_bad_rec:
 138        xfs_warn(mp,
 139                "%s Inode BTree record corruption in AG %d detected!",
 140                cur->bc_btnum == XFS_BTNUM_INO ? "Used" : "Free", agno);
 141        xfs_warn(mp,
 142"start inode 0x%x, count 0x%x, free 0x%x freemask 0x%llx, holemask 0x%x",
 143                irec->ir_startino, irec->ir_count, irec->ir_freecount,
 144                irec->ir_free, irec->ir_holemask);
 145        return -EFSCORRUPTED;
 146}
 147
 148/*
 149 * Insert a single inobt record. Cursor must already point to desired location.
 150 */
 151int
 152xfs_inobt_insert_rec(
 153        struct xfs_btree_cur    *cur,
 154        uint16_t                holemask,
 155        uint8_t                 count,
 156        int32_t                 freecount,
 157        xfs_inofree_t           free,
 158        int                     *stat)
 159{
 160        cur->bc_rec.i.ir_holemask = holemask;
 161        cur->bc_rec.i.ir_count = count;
 162        cur->bc_rec.i.ir_freecount = freecount;
 163        cur->bc_rec.i.ir_free = free;
 164        return xfs_btree_insert(cur, stat);
 165}
 166
 167/*
 168 * Insert records describing a newly allocated inode chunk into the inobt.
 169 */
 170STATIC int
 171xfs_inobt_insert(
 172        struct xfs_mount        *mp,
 173        struct xfs_trans        *tp,
 174        struct xfs_buf          *agbp,
 175        xfs_agino_t             newino,
 176        xfs_agino_t             newlen,
 177        xfs_btnum_t             btnum)
 178{
 179        struct xfs_btree_cur    *cur;
 180        struct xfs_agi          *agi = XFS_BUF_TO_AGI(agbp);
 181        xfs_agnumber_t          agno = be32_to_cpu(agi->agi_seqno);
 182        xfs_agino_t             thisino;
 183        int                     i;
 184        int                     error;
 185
 186        cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
 187
 188        for (thisino = newino;
 189             thisino < newino + newlen;
 190             thisino += XFS_INODES_PER_CHUNK) {
 191                error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
 192                if (error) {
 193                        xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
 194                        return error;
 195                }
 196                ASSERT(i == 0);
 197
 198                error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL,
 199                                             XFS_INODES_PER_CHUNK,
 200                                             XFS_INODES_PER_CHUNK,
 201                                             XFS_INOBT_ALL_FREE, &i);
 202                if (error) {
 203                        xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
 204                        return error;
 205                }
 206                ASSERT(i == 1);
 207        }
 208
 209        xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
 210
 211        return 0;
 212}
 213
 214/*
 215 * Verify that the number of free inodes in the AGI is correct.
 216 */
 217#ifdef DEBUG
 218STATIC int
 219xfs_check_agi_freecount(
 220        struct xfs_btree_cur    *cur,
 221        struct xfs_agi          *agi)
 222{
 223        if (cur->bc_nlevels == 1) {
 224                xfs_inobt_rec_incore_t rec;
 225                int             freecount = 0;
 226                int             error;
 227                int             i;
 228
 229                error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
 230                if (error)
 231                        return error;
 232
 233                do {
 234                        error = xfs_inobt_get_rec(cur, &rec, &i);
 235                        if (error)
 236                                return error;
 237
 238                        if (i) {
 239                                freecount += rec.ir_freecount;
 240                                error = xfs_btree_increment(cur, 0, &i);
 241                                if (error)
 242                                        return error;
 243                        }
 244                } while (i == 1);
 245
 246                if (!XFS_FORCED_SHUTDOWN(cur->bc_mp))
 247                        ASSERT(freecount == be32_to_cpu(agi->agi_freecount));
 248        }
 249        return 0;
 250}
 251#else
 252#define xfs_check_agi_freecount(cur, agi)       0
 253#endif
 254
 255/*
 256 * Initialise a new set of inodes. When called without a transaction context
 257 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
 258 * than logging them (which in a transaction context puts them into the AIL
 259 * for writeback rather than the xfsbufd queue).
 260 */
 261int
 262xfs_ialloc_inode_init(
 263        struct xfs_mount        *mp,
 264        struct xfs_trans        *tp,
 265        struct list_head        *buffer_list,
 266        int                     icount,
 267        xfs_agnumber_t          agno,
 268        xfs_agblock_t           agbno,
 269        xfs_agblock_t           length,
 270        unsigned int            gen)
 271{
 272        struct xfs_buf          *fbuf;
 273        struct xfs_dinode       *free;
 274        int                     nbufs;
 275        int                     version;
 276        int                     i, j;
 277        xfs_daddr_t             d;
 278        xfs_ino_t               ino = 0;
 279
 280        /*
 281         * Loop over the new block(s), filling in the inodes.  For small block
 282         * sizes, manipulate the inodes in buffers  which are multiples of the
 283         * blocks size.
 284         */
 285        nbufs = length / M_IGEO(mp)->blocks_per_cluster;
 286
 287        /*
 288         * Figure out what version number to use in the inodes we create.  If
 289         * the superblock version has caught up to the one that supports the new
 290         * inode format, then use the new inode version.  Otherwise use the old
 291         * version so that old kernels will continue to be able to use the file
 292         * system.
 293         *
 294         * For v3 inodes, we also need to write the inode number into the inode,
 295         * so calculate the first inode number of the chunk here as
 296         * XFS_AGB_TO_AGINO() only works within a filesystem block, not
 297         * across multiple filesystem blocks (such as a cluster) and so cannot
 298         * be used in the cluster buffer loop below.
 299         *
 300         * Further, because we are writing the inode directly into the buffer
 301         * and calculating a CRC on the entire inode, we have ot log the entire
 302         * inode so that the entire range the CRC covers is present in the log.
 303         * That means for v3 inode we log the entire buffer rather than just the
 304         * inode cores.
 305         */
 306        if (xfs_sb_version_hascrc(&mp->m_sb)) {
 307                version = 3;
 308                ino = XFS_AGINO_TO_INO(mp, agno, XFS_AGB_TO_AGINO(mp, agbno));
 309
 310                /*
 311                 * log the initialisation that is about to take place as an
 312                 * logical operation. This means the transaction does not
 313                 * need to log the physical changes to the inode buffers as log
 314                 * recovery will know what initialisation is actually needed.
 315                 * Hence we only need to log the buffers as "ordered" buffers so
 316                 * they track in the AIL as if they were physically logged.
 317                 */
 318                if (tp)
 319                        xfs_icreate_log(tp, agno, agbno, icount,
 320                                        mp->m_sb.sb_inodesize, length, gen);
 321        } else
 322                version = 2;
 323
 324        for (j = 0; j < nbufs; j++) {
 325                /*
 326                 * Get the block.
 327                 */
 328                d = XFS_AGB_TO_DADDR(mp, agno, agbno +
 329                                (j * M_IGEO(mp)->blocks_per_cluster));
 330                fbuf = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
 331                                         mp->m_bsize *
 332                                         M_IGEO(mp)->blocks_per_cluster,
 333                                         XBF_UNMAPPED);
 334                if (!fbuf)
 335                        return -ENOMEM;
 336
 337                /* Initialize the inode buffers and log them appropriately. */
 338                fbuf->b_ops = &xfs_inode_buf_ops;
 339                xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
 340                for (i = 0; i < M_IGEO(mp)->inodes_per_cluster; i++) {
 341                        int     ioffset = i << mp->m_sb.sb_inodelog;
 342                        uint    isize = xfs_dinode_size(version);
 343
 344                        free = xfs_make_iptr(mp, fbuf, i);
 345                        free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
 346                        free->di_version = version;
 347                        free->di_gen = cpu_to_be32(gen);
 348                        free->di_next_unlinked = cpu_to_be32(NULLAGINO);
 349
 350                        if (version == 3) {
 351                                free->di_ino = cpu_to_be64(ino);
 352                                ino++;
 353                                uuid_copy(&free->di_uuid,
 354                                          &mp->m_sb.sb_meta_uuid);
 355                                xfs_dinode_calc_crc(mp, free);
 356                        } else if (tp) {
 357                                /* just log the inode core */
 358                                xfs_trans_log_buf(tp, fbuf, ioffset,
 359                                                  ioffset + isize - 1);
 360                        }
 361                }
 362
 363                if (tp) {
 364                        /*
 365                         * Mark the buffer as an inode allocation buffer so it
 366                         * sticks in AIL at the point of this allocation
 367                         * transaction. This ensures the they are on disk before
 368                         * the tail of the log can be moved past this
 369                         * transaction (i.e. by preventing relogging from moving
 370                         * it forward in the log).
 371                         */
 372                        xfs_trans_inode_alloc_buf(tp, fbuf);
 373                        if (version == 3) {
 374                                /*
 375                                 * Mark the buffer as ordered so that they are
 376                                 * not physically logged in the transaction but
 377                                 * still tracked in the AIL as part of the
 378                                 * transaction and pin the log appropriately.
 379                                 */
 380                                xfs_trans_ordered_buf(tp, fbuf);
 381                        }
 382                } else {
 383                        fbuf->b_flags |= XBF_DONE;
 384                        xfs_buf_delwri_queue(fbuf, buffer_list);
 385                        xfs_buf_relse(fbuf);
 386                }
 387        }
 388        return 0;
 389}
 390
 391/*
 392 * Align startino and allocmask for a recently allocated sparse chunk such that
 393 * they are fit for insertion (or merge) into the on-disk inode btrees.
 394 *
 395 * Background:
 396 *
 397 * When enabled, sparse inode support increases the inode alignment from cluster
 398 * size to inode chunk size. This means that the minimum range between two
 399 * non-adjacent inode records in the inobt is large enough for a full inode
 400 * record. This allows for cluster sized, cluster aligned block allocation
 401 * without need to worry about whether the resulting inode record overlaps with
 402 * another record in the tree. Without this basic rule, we would have to deal
 403 * with the consequences of overlap by potentially undoing recent allocations in
 404 * the inode allocation codepath.
 405 *
 406 * Because of this alignment rule (which is enforced on mount), there are two
 407 * inobt possibilities for newly allocated sparse chunks. One is that the
 408 * aligned inode record for the chunk covers a range of inodes not already
 409 * covered in the inobt (i.e., it is safe to insert a new sparse record). The
 410 * other is that a record already exists at the aligned startino that considers
 411 * the newly allocated range as sparse. In the latter case, record content is
 412 * merged in hope that sparse inode chunks fill to full chunks over time.
 413 */
 414STATIC void
 415xfs_align_sparse_ino(
 416        struct xfs_mount                *mp,
 417        xfs_agino_t                     *startino,
 418        uint16_t                        *allocmask)
 419{
 420        xfs_agblock_t                   agbno;
 421        xfs_agblock_t                   mod;
 422        int                             offset;
 423
 424        agbno = XFS_AGINO_TO_AGBNO(mp, *startino);
 425        mod = agbno % mp->m_sb.sb_inoalignmt;
 426        if (!mod)
 427                return;
 428
 429        /* calculate the inode offset and align startino */
 430        offset = XFS_AGB_TO_AGINO(mp, mod);
 431        *startino -= offset;
 432
 433        /*
 434         * Since startino has been aligned down, left shift allocmask such that
 435         * it continues to represent the same physical inodes relative to the
 436         * new startino.
 437         */
 438        *allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT;
 439}
 440
 441/*
 442 * Determine whether the source inode record can merge into the target. Both
 443 * records must be sparse, the inode ranges must match and there must be no
 444 * allocation overlap between the records.
 445 */
 446STATIC bool
 447__xfs_inobt_can_merge(
 448        struct xfs_inobt_rec_incore     *trec,  /* tgt record */
 449        struct xfs_inobt_rec_incore     *srec)  /* src record */
 450{
 451        uint64_t                        talloc;
 452        uint64_t                        salloc;
 453
 454        /* records must cover the same inode range */
 455        if (trec->ir_startino != srec->ir_startino)
 456                return false;
 457
 458        /* both records must be sparse */
 459        if (!xfs_inobt_issparse(trec->ir_holemask) ||
 460            !xfs_inobt_issparse(srec->ir_holemask))
 461                return false;
 462
 463        /* both records must track some inodes */
 464        if (!trec->ir_count || !srec->ir_count)
 465                return false;
 466
 467        /* can't exceed capacity of a full record */
 468        if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK)
 469                return false;
 470
 471        /* verify there is no allocation overlap */
 472        talloc = xfs_inobt_irec_to_allocmask(trec);
 473        salloc = xfs_inobt_irec_to_allocmask(srec);
 474        if (talloc & salloc)
 475                return false;
 476
 477        return true;
 478}
 479
 480/*
 481 * Merge the source inode record into the target. The caller must call
 482 * __xfs_inobt_can_merge() to ensure the merge is valid.
 483 */
 484STATIC void
 485__xfs_inobt_rec_merge(
 486        struct xfs_inobt_rec_incore     *trec,  /* target */
 487        struct xfs_inobt_rec_incore     *srec)  /* src */
 488{
 489        ASSERT(trec->ir_startino == srec->ir_startino);
 490
 491        /* combine the counts */
 492        trec->ir_count += srec->ir_count;
 493        trec->ir_freecount += srec->ir_freecount;
 494
 495        /*
 496         * Merge the holemask and free mask. For both fields, 0 bits refer to
 497         * allocated inodes. We combine the allocated ranges with bitwise AND.
 498         */
 499        trec->ir_holemask &= srec->ir_holemask;
 500        trec->ir_free &= srec->ir_free;
 501}
 502
 503/*
 504 * Insert a new sparse inode chunk into the associated inode btree. The inode
 505 * record for the sparse chunk is pre-aligned to a startino that should match
 506 * any pre-existing sparse inode record in the tree. This allows sparse chunks
 507 * to fill over time.
 508 *
 509 * This function supports two modes of handling preexisting records depending on
 510 * the merge flag. If merge is true, the provided record is merged with the
 511 * existing record and updated in place. The merged record is returned in nrec.
 512 * If merge is false, an existing record is replaced with the provided record.
 513 * If no preexisting record exists, the provided record is always inserted.
 514 *
 515 * It is considered corruption if a merge is requested and not possible. Given
 516 * the sparse inode alignment constraints, this should never happen.
 517 */
 518STATIC int
 519xfs_inobt_insert_sprec(
 520        struct xfs_mount                *mp,
 521        struct xfs_trans                *tp,
 522        struct xfs_buf                  *agbp,
 523        int                             btnum,
 524        struct xfs_inobt_rec_incore     *nrec,  /* in/out: new/merged rec. */
 525        bool                            merge)  /* merge or replace */
 526{
 527        struct xfs_btree_cur            *cur;
 528        struct xfs_agi                  *agi = XFS_BUF_TO_AGI(agbp);
 529        xfs_agnumber_t                  agno = be32_to_cpu(agi->agi_seqno);
 530        int                             error;
 531        int                             i;
 532        struct xfs_inobt_rec_incore     rec;
 533
 534        cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
 535
 536        /* the new record is pre-aligned so we know where to look */
 537        error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
 538        if (error)
 539                goto error;
 540        /* if nothing there, insert a new record and return */
 541        if (i == 0) {
 542                error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
 543                                             nrec->ir_count, nrec->ir_freecount,
 544                                             nrec->ir_free, &i);
 545                if (error)
 546                        goto error;
 547                if (XFS_IS_CORRUPT(mp, i != 1)) {
 548                        error = -EFSCORRUPTED;
 549                        goto error;
 550                }
 551
 552                goto out;
 553        }
 554
 555        /*
 556         * A record exists at this startino. Merge or replace the record
 557         * depending on what we've been asked to do.
 558         */
 559        if (merge) {
 560                error = xfs_inobt_get_rec(cur, &rec, &i);
 561                if (error)
 562                        goto error;
 563                if (XFS_IS_CORRUPT(mp, i != 1)) {
 564                        error = -EFSCORRUPTED;
 565                        goto error;
 566                }
 567                if (XFS_IS_CORRUPT(mp, rec.ir_startino != nrec->ir_startino)) {
 568                        error = -EFSCORRUPTED;
 569                        goto error;
 570                }
 571
 572                /*
 573                 * This should never fail. If we have coexisting records that
 574                 * cannot merge, something is seriously wrong.
 575                 */
 576                if (XFS_IS_CORRUPT(mp, !__xfs_inobt_can_merge(nrec, &rec))) {
 577                        error = -EFSCORRUPTED;
 578                        goto error;
 579                }
 580
 581                trace_xfs_irec_merge_pre(mp, agno, rec.ir_startino,
 582                                         rec.ir_holemask, nrec->ir_startino,
 583                                         nrec->ir_holemask);
 584
 585                /* merge to nrec to output the updated record */
 586                __xfs_inobt_rec_merge(nrec, &rec);
 587
 588                trace_xfs_irec_merge_post(mp, agno, nrec->ir_startino,
 589                                          nrec->ir_holemask);
 590
 591                error = xfs_inobt_rec_check_count(mp, nrec);
 592                if (error)
 593                        goto error;
 594        }
 595
 596        error = xfs_inobt_update(cur, nrec);
 597        if (error)
 598                goto error;
 599
 600out:
 601        xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
 602        return 0;
 603error:
 604        xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
 605        return error;
 606}
 607
 608/*
 609 * Allocate new inodes in the allocation group specified by agbp.
 610 * Return 0 for success, else error code.
 611 */
 612STATIC int
 613xfs_ialloc_ag_alloc(
 614        struct xfs_trans        *tp,
 615        struct xfs_buf          *agbp,
 616        int                     *alloc)
 617{
 618        struct xfs_agi          *agi;
 619        struct xfs_alloc_arg    args;
 620        xfs_agnumber_t          agno;
 621        int                     error;
 622        xfs_agino_t             newino;         /* new first inode's number */
 623        xfs_agino_t             newlen;         /* new number of inodes */
 624        int                     isaligned = 0;  /* inode allocation at stripe */
 625                                                /* unit boundary */
 626        /* init. to full chunk */
 627        uint16_t                allocmask = (uint16_t) -1;
 628        struct xfs_inobt_rec_incore rec;
 629        struct xfs_perag        *pag;
 630        struct xfs_ino_geometry *igeo = M_IGEO(tp->t_mountp);
 631        int                     do_sparse = 0;
 632
 633        memset(&args, 0, sizeof(args));
 634        args.tp = tp;
 635        args.mp = tp->t_mountp;
 636        args.fsbno = NULLFSBLOCK;
 637        args.oinfo = XFS_RMAP_OINFO_INODES;
 638
 639#ifdef DEBUG
 640        /* randomly do sparse inode allocations */
 641        if (xfs_sb_version_hassparseinodes(&tp->t_mountp->m_sb) &&
 642            igeo->ialloc_min_blks < igeo->ialloc_blks)
 643                do_sparse = prandom_u32() & 1;
 644#endif
 645
 646        /*
 647         * Locking will ensure that we don't have two callers in here
 648         * at one time.
 649         */
 650        newlen = igeo->ialloc_inos;
 651        if (igeo->maxicount &&
 652            percpu_counter_read_positive(&args.mp->m_icount) + newlen >
 653                                                        igeo->maxicount)
 654                return -ENOSPC;
 655        args.minlen = args.maxlen = igeo->ialloc_blks;
 656        /*
 657         * First try to allocate inodes contiguous with the last-allocated
 658         * chunk of inodes.  If the filesystem is striped, this will fill
 659         * an entire stripe unit with inodes.
 660         */
 661        agi = XFS_BUF_TO_AGI(agbp);
 662        newino = be32_to_cpu(agi->agi_newino);
 663        agno = be32_to_cpu(agi->agi_seqno);
 664        args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
 665                     igeo->ialloc_blks;
 666        if (do_sparse)
 667                goto sparse_alloc;
 668        if (likely(newino != NULLAGINO &&
 669                  (args.agbno < be32_to_cpu(agi->agi_length)))) {
 670                args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
 671                args.type = XFS_ALLOCTYPE_THIS_BNO;
 672                args.prod = 1;
 673
 674                /*
 675                 * We need to take into account alignment here to ensure that
 676                 * we don't modify the free list if we fail to have an exact
 677                 * block. If we don't have an exact match, and every oher
 678                 * attempt allocation attempt fails, we'll end up cancelling
 679                 * a dirty transaction and shutting down.
 680                 *
 681                 * For an exact allocation, alignment must be 1,
 682                 * however we need to take cluster alignment into account when
 683                 * fixing up the freelist. Use the minalignslop field to
 684                 * indicate that extra blocks might be required for alignment,
 685                 * but not to use them in the actual exact allocation.
 686                 */
 687                args.alignment = 1;
 688                args.minalignslop = igeo->cluster_align - 1;
 689
 690                /* Allow space for the inode btree to split. */
 691                args.minleft = igeo->inobt_maxlevels - 1;
 692                if ((error = xfs_alloc_vextent(&args)))
 693                        return error;
 694
 695                /*
 696                 * This request might have dirtied the transaction if the AG can
 697                 * satisfy the request, but the exact block was not available.
 698                 * If the allocation did fail, subsequent requests will relax
 699                 * the exact agbno requirement and increase the alignment
 700                 * instead. It is critical that the total size of the request
 701                 * (len + alignment + slop) does not increase from this point
 702                 * on, so reset minalignslop to ensure it is not included in
 703                 * subsequent requests.
 704                 */
 705                args.minalignslop = 0;
 706        }
 707
 708        if (unlikely(args.fsbno == NULLFSBLOCK)) {
 709                /*
 710                 * Set the alignment for the allocation.
 711                 * If stripe alignment is turned on then align at stripe unit
 712                 * boundary.
 713                 * If the cluster size is smaller than a filesystem block
 714                 * then we're doing I/O for inodes in filesystem block size
 715                 * pieces, so don't need alignment anyway.
 716                 */
 717                isaligned = 0;
 718                if (igeo->ialloc_align) {
 719                        ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN));
 720                        args.alignment = args.mp->m_dalign;
 721                        isaligned = 1;
 722                } else
 723                        args.alignment = igeo->cluster_align;
 724                /*
 725                 * Need to figure out where to allocate the inode blocks.
 726                 * Ideally they should be spaced out through the a.g.
 727                 * For now, just allocate blocks up front.
 728                 */
 729                args.agbno = be32_to_cpu(agi->agi_root);
 730                args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
 731                /*
 732                 * Allocate a fixed-size extent of inodes.
 733                 */
 734                args.type = XFS_ALLOCTYPE_NEAR_BNO;
 735                args.prod = 1;
 736                /*
 737                 * Allow space for the inode btree to split.
 738                 */
 739                args.minleft = igeo->inobt_maxlevels - 1;
 740                if ((error = xfs_alloc_vextent(&args)))
 741                        return error;
 742        }
 743
 744        /*
 745         * If stripe alignment is turned on, then try again with cluster
 746         * alignment.
 747         */
 748        if (isaligned && args.fsbno == NULLFSBLOCK) {
 749                args.type = XFS_ALLOCTYPE_NEAR_BNO;
 750                args.agbno = be32_to_cpu(agi->agi_root);
 751                args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
 752                args.alignment = igeo->cluster_align;
 753                if ((error = xfs_alloc_vextent(&args)))
 754                        return error;
 755        }
 756
 757        /*
 758         * Finally, try a sparse allocation if the filesystem supports it and
 759         * the sparse allocation length is smaller than a full chunk.
 760         */
 761        if (xfs_sb_version_hassparseinodes(&args.mp->m_sb) &&
 762            igeo->ialloc_min_blks < igeo->ialloc_blks &&
 763            args.fsbno == NULLFSBLOCK) {
 764sparse_alloc:
 765                args.type = XFS_ALLOCTYPE_NEAR_BNO;
 766                args.agbno = be32_to_cpu(agi->agi_root);
 767                args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
 768                args.alignment = args.mp->m_sb.sb_spino_align;
 769                args.prod = 1;
 770
 771                args.minlen = igeo->ialloc_min_blks;
 772                args.maxlen = args.minlen;
 773
 774                /*
 775                 * The inode record will be aligned to full chunk size. We must
 776                 * prevent sparse allocation from AG boundaries that result in
 777                 * invalid inode records, such as records that start at agbno 0
 778                 * or extend beyond the AG.
 779                 *
 780                 * Set min agbno to the first aligned, non-zero agbno and max to
 781                 * the last aligned agbno that is at least one full chunk from
 782                 * the end of the AG.
 783                 */
 784                args.min_agbno = args.mp->m_sb.sb_inoalignmt;
 785                args.max_agbno = round_down(args.mp->m_sb.sb_agblocks,
 786                                            args.mp->m_sb.sb_inoalignmt) -
 787                                 igeo->ialloc_blks;
 788
 789                error = xfs_alloc_vextent(&args);
 790                if (error)
 791                        return error;
 792
 793                newlen = XFS_AGB_TO_AGINO(args.mp, args.len);
 794                ASSERT(newlen <= XFS_INODES_PER_CHUNK);
 795                allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1;
 796        }
 797
 798        if (args.fsbno == NULLFSBLOCK) {
 799                *alloc = 0;
 800                return 0;
 801        }
 802        ASSERT(args.len == args.minlen);
 803
 804        /*
 805         * Stamp and write the inode buffers.
 806         *
 807         * Seed the new inode cluster with a random generation number. This
 808         * prevents short-term reuse of generation numbers if a chunk is
 809         * freed and then immediately reallocated. We use random numbers
 810         * rather than a linear progression to prevent the next generation
 811         * number from being easily guessable.
 812         */
 813        error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, agno,
 814                        args.agbno, args.len, prandom_u32());
 815
 816        if (error)
 817                return error;
 818        /*
 819         * Convert the results.
 820         */
 821        newino = XFS_AGB_TO_AGINO(args.mp, args.agbno);
 822
 823        if (xfs_inobt_issparse(~allocmask)) {
 824                /*
 825                 * We've allocated a sparse chunk. Align the startino and mask.
 826                 */
 827                xfs_align_sparse_ino(args.mp, &newino, &allocmask);
 828
 829                rec.ir_startino = newino;
 830                rec.ir_holemask = ~allocmask;
 831                rec.ir_count = newlen;
 832                rec.ir_freecount = newlen;
 833                rec.ir_free = XFS_INOBT_ALL_FREE;
 834
 835                /*
 836                 * Insert the sparse record into the inobt and allow for a merge
 837                 * if necessary. If a merge does occur, rec is updated to the
 838                 * merged record.
 839                 */
 840                error = xfs_inobt_insert_sprec(args.mp, tp, agbp, XFS_BTNUM_INO,
 841                                               &rec, true);
 842                if (error == -EFSCORRUPTED) {
 843                        xfs_alert(args.mp,
 844        "invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
 845                                  XFS_AGINO_TO_INO(args.mp, agno,
 846                                                   rec.ir_startino),
 847                                  rec.ir_holemask, rec.ir_count);
 848                        xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE);
 849                }
 850                if (error)
 851                        return error;
 852
 853                /*
 854                 * We can't merge the part we've just allocated as for the inobt
 855                 * due to finobt semantics. The original record may or may not
 856                 * exist independent of whether physical inodes exist in this
 857                 * sparse chunk.
 858                 *
 859                 * We must update the finobt record based on the inobt record.
 860                 * rec contains the fully merged and up to date inobt record
 861                 * from the previous call. Set merge false to replace any
 862                 * existing record with this one.
 863                 */
 864                if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
 865                        error = xfs_inobt_insert_sprec(args.mp, tp, agbp,
 866                                                       XFS_BTNUM_FINO, &rec,
 867                                                       false);
 868                        if (error)
 869                                return error;
 870                }
 871        } else {
 872                /* full chunk - insert new records to both btrees */
 873                error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen,
 874                                         XFS_BTNUM_INO);
 875                if (error)
 876                        return error;
 877
 878                if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
 879                        error = xfs_inobt_insert(args.mp, tp, agbp, newino,
 880                                                 newlen, XFS_BTNUM_FINO);
 881                        if (error)
 882                                return error;
 883                }
 884        }
 885
 886        /*
 887         * Update AGI counts and newino.
 888         */
 889        be32_add_cpu(&agi->agi_count, newlen);
 890        be32_add_cpu(&agi->agi_freecount, newlen);
 891        pag = xfs_perag_get(args.mp, agno);
 892        pag->pagi_freecount += newlen;
 893        pag->pagi_count += newlen;
 894        xfs_perag_put(pag);
 895        agi->agi_newino = cpu_to_be32(newino);
 896
 897        /*
 898         * Log allocation group header fields
 899         */
 900        xfs_ialloc_log_agi(tp, agbp,
 901                XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
 902        /*
 903         * Modify/log superblock values for inode count and inode free count.
 904         */
 905        xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
 906        xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
 907        *alloc = 1;
 908        return 0;
 909}
 910
 911STATIC xfs_agnumber_t
 912xfs_ialloc_next_ag(
 913        xfs_mount_t     *mp)
 914{
 915        xfs_agnumber_t  agno;
 916
 917        spin_lock(&mp->m_agirotor_lock);
 918        agno = mp->m_agirotor;
 919        if (++mp->m_agirotor >= mp->m_maxagi)
 920                mp->m_agirotor = 0;
 921        spin_unlock(&mp->m_agirotor_lock);
 922
 923        return agno;
 924}
 925
 926/*
 927 * Select an allocation group to look for a free inode in, based on the parent
 928 * inode and the mode.  Return the allocation group buffer.
 929 */
 930STATIC xfs_agnumber_t
 931xfs_ialloc_ag_select(
 932        xfs_trans_t     *tp,            /* transaction pointer */
 933        xfs_ino_t       parent,         /* parent directory inode number */
 934        umode_t         mode)           /* bits set to indicate file type */
 935{
 936        xfs_agnumber_t  agcount;        /* number of ag's in the filesystem */
 937        xfs_agnumber_t  agno;           /* current ag number */
 938        int             flags;          /* alloc buffer locking flags */
 939        xfs_extlen_t    ineed;          /* blocks needed for inode allocation */
 940        xfs_extlen_t    longest = 0;    /* longest extent available */
 941        xfs_mount_t     *mp;            /* mount point structure */
 942        int             needspace;      /* file mode implies space allocated */
 943        xfs_perag_t     *pag;           /* per allocation group data */
 944        xfs_agnumber_t  pagno;          /* parent (starting) ag number */
 945        int             error;
 946
 947        /*
 948         * Files of these types need at least one block if length > 0
 949         * (and they won't fit in the inode, but that's hard to figure out).
 950         */
 951        needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
 952        mp = tp->t_mountp;
 953        agcount = mp->m_maxagi;
 954        if (S_ISDIR(mode))
 955                pagno = xfs_ialloc_next_ag(mp);
 956        else {
 957                pagno = XFS_INO_TO_AGNO(mp, parent);
 958                if (pagno >= agcount)
 959                        pagno = 0;
 960        }
 961
 962        ASSERT(pagno < agcount);
 963
 964        /*
 965         * Loop through allocation groups, looking for one with a little
 966         * free space in it.  Note we don't look for free inodes, exactly.
 967         * Instead, we include whether there is a need to allocate inodes
 968         * to mean that blocks must be allocated for them,
 969         * if none are currently free.
 970         */
 971        agno = pagno;
 972        flags = XFS_ALLOC_FLAG_TRYLOCK;
 973        for (;;) {
 974                pag = xfs_perag_get(mp, agno);
 975                if (!pag->pagi_inodeok) {
 976                        xfs_ialloc_next_ag(mp);
 977                        goto nextag;
 978                }
 979
 980                if (!pag->pagi_init) {
 981                        error = xfs_ialloc_pagi_init(mp, tp, agno);
 982                        if (error)
 983                                goto nextag;
 984                }
 985
 986                if (pag->pagi_freecount) {
 987                        xfs_perag_put(pag);
 988                        return agno;
 989                }
 990
 991                if (!pag->pagf_init) {
 992                        error = xfs_alloc_pagf_init(mp, tp, agno, flags);
 993                        if (error)
 994                                goto nextag;
 995                }
 996
 997                /*
 998                 * Check that there is enough free space for the file plus a
 999                 * chunk of inodes if we need to allocate some. If this is the
1000                 * first pass across the AGs, take into account the potential
1001                 * space needed for alignment of inode chunks when checking the
1002                 * longest contiguous free space in the AG - this prevents us
1003                 * from getting ENOSPC because we have free space larger than
1004                 * ialloc_blks but alignment constraints prevent us from using
1005                 * it.
1006                 *
1007                 * If we can't find an AG with space for full alignment slack to
1008                 * be taken into account, we must be near ENOSPC in all AGs.
1009                 * Hence we don't include alignment for the second pass and so
1010                 * if we fail allocation due to alignment issues then it is most
1011                 * likely a real ENOSPC condition.
1012                 */
1013                ineed = M_IGEO(mp)->ialloc_min_blks;
1014                if (flags && ineed > 1)
1015                        ineed += M_IGEO(mp)->cluster_align;
1016                longest = pag->pagf_longest;
1017                if (!longest)
1018                        longest = pag->pagf_flcount > 0;
1019
1020                if (pag->pagf_freeblks >= needspace + ineed &&
1021                    longest >= ineed) {
1022                        xfs_perag_put(pag);
1023                        return agno;
1024                }
1025nextag:
1026                xfs_perag_put(pag);
1027                /*
1028                 * No point in iterating over the rest, if we're shutting
1029                 * down.
1030                 */
1031                if (XFS_FORCED_SHUTDOWN(mp))
1032                        return NULLAGNUMBER;
1033                agno++;
1034                if (agno >= agcount)
1035                        agno = 0;
1036                if (agno == pagno) {
1037                        if (flags == 0)
1038                                return NULLAGNUMBER;
1039                        flags = 0;
1040                }
1041        }
1042}
1043
1044/*
1045 * Try to retrieve the next record to the left/right from the current one.
1046 */
1047STATIC int
1048xfs_ialloc_next_rec(
1049        struct xfs_btree_cur    *cur,
1050        xfs_inobt_rec_incore_t  *rec,
1051        int                     *done,
1052        int                     left)
1053{
1054        int                     error;
1055        int                     i;
1056
1057        if (left)
1058                error = xfs_btree_decrement(cur, 0, &i);
1059        else
1060                error = xfs_btree_increment(cur, 0, &i);
1061
1062        if (error)
1063                return error;
1064        *done = !i;
1065        if (i) {
1066                error = xfs_inobt_get_rec(cur, rec, &i);
1067                if (error)
1068                        return error;
1069                if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1070                        return -EFSCORRUPTED;
1071        }
1072
1073        return 0;
1074}
1075
1076STATIC int
1077xfs_ialloc_get_rec(
1078        struct xfs_btree_cur    *cur,
1079        xfs_agino_t             agino,
1080        xfs_inobt_rec_incore_t  *rec,
1081        int                     *done)
1082{
1083        int                     error;
1084        int                     i;
1085
1086        error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
1087        if (error)
1088                return error;
1089        *done = !i;
1090        if (i) {
1091                error = xfs_inobt_get_rec(cur, rec, &i);
1092                if (error)
1093                        return error;
1094                if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1095                        return -EFSCORRUPTED;
1096        }
1097
1098        return 0;
1099}
1100
1101/*
1102 * Return the offset of the first free inode in the record. If the inode chunk
1103 * is sparsely allocated, we convert the record holemask to inode granularity
1104 * and mask off the unallocated regions from the inode free mask.
1105 */
1106STATIC int
1107xfs_inobt_first_free_inode(
1108        struct xfs_inobt_rec_incore     *rec)
1109{
1110        xfs_inofree_t                   realfree;
1111
1112        /* if there are no holes, return the first available offset */
1113        if (!xfs_inobt_issparse(rec->ir_holemask))
1114                return xfs_lowbit64(rec->ir_free);
1115
1116        realfree = xfs_inobt_irec_to_allocmask(rec);
1117        realfree &= rec->ir_free;
1118
1119        return xfs_lowbit64(realfree);
1120}
1121
1122/*
1123 * Allocate an inode using the inobt-only algorithm.
1124 */
1125STATIC int
1126xfs_dialloc_ag_inobt(
1127        struct xfs_trans        *tp,
1128        struct xfs_buf          *agbp,
1129        xfs_ino_t               parent,
1130        xfs_ino_t               *inop)
1131{
1132        struct xfs_mount        *mp = tp->t_mountp;
1133        struct xfs_agi          *agi = XFS_BUF_TO_AGI(agbp);
1134        xfs_agnumber_t          agno = be32_to_cpu(agi->agi_seqno);
1135        xfs_agnumber_t          pagno = XFS_INO_TO_AGNO(mp, parent);
1136        xfs_agino_t             pagino = XFS_INO_TO_AGINO(mp, parent);
1137        struct xfs_perag        *pag;
1138        struct xfs_btree_cur    *cur, *tcur;
1139        struct xfs_inobt_rec_incore rec, trec;
1140        xfs_ino_t               ino;
1141        int                     error;
1142        int                     offset;
1143        int                     i, j;
1144        int                     searchdistance = 10;
1145
1146        pag = xfs_perag_get(mp, agno);
1147
1148        ASSERT(pag->pagi_init);
1149        ASSERT(pag->pagi_inodeok);
1150        ASSERT(pag->pagi_freecount > 0);
1151
1152 restart_pagno:
1153        cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1154        /*
1155         * If pagino is 0 (this is the root inode allocation) use newino.
1156         * This must work because we've just allocated some.
1157         */
1158        if (!pagino)
1159                pagino = be32_to_cpu(agi->agi_newino);
1160
1161        error = xfs_check_agi_freecount(cur, agi);
1162        if (error)
1163                goto error0;
1164
1165        /*
1166         * If in the same AG as the parent, try to get near the parent.
1167         */
1168        if (pagno == agno) {
1169                int             doneleft;       /* done, to the left */
1170                int             doneright;      /* done, to the right */
1171
1172                error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
1173                if (error)
1174                        goto error0;
1175                if (XFS_IS_CORRUPT(mp, i != 1)) {
1176                        error = -EFSCORRUPTED;
1177                        goto error0;
1178                }
1179
1180                error = xfs_inobt_get_rec(cur, &rec, &j);
1181                if (error)
1182                        goto error0;
1183                if (XFS_IS_CORRUPT(mp, j != 1)) {
1184                        error = -EFSCORRUPTED;
1185                        goto error0;
1186                }
1187
1188                if (rec.ir_freecount > 0) {
1189                        /*
1190                         * Found a free inode in the same chunk
1191                         * as the parent, done.
1192                         */
1193                        goto alloc_inode;
1194                }
1195
1196
1197                /*
1198                 * In the same AG as parent, but parent's chunk is full.
1199                 */
1200
1201                /* duplicate the cursor, search left & right simultaneously */
1202                error = xfs_btree_dup_cursor(cur, &tcur);
1203                if (error)
1204                        goto error0;
1205
1206                /*
1207                 * Skip to last blocks looked up if same parent inode.
1208                 */
1209                if (pagino != NULLAGINO &&
1210                    pag->pagl_pagino == pagino &&
1211                    pag->pagl_leftrec != NULLAGINO &&
1212                    pag->pagl_rightrec != NULLAGINO) {
1213                        error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
1214                                                   &trec, &doneleft);
1215                        if (error)
1216                                goto error1;
1217
1218                        error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
1219                                                   &rec, &doneright);
1220                        if (error)
1221                                goto error1;
1222                } else {
1223                        /* search left with tcur, back up 1 record */
1224                        error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
1225                        if (error)
1226                                goto error1;
1227
1228                        /* search right with cur, go forward 1 record. */
1229                        error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
1230                        if (error)
1231                                goto error1;
1232                }
1233
1234                /*
1235                 * Loop until we find an inode chunk with a free inode.
1236                 */
1237                while (--searchdistance > 0 && (!doneleft || !doneright)) {
1238                        int     useleft;  /* using left inode chunk this time */
1239
1240                        /* figure out the closer block if both are valid. */
1241                        if (!doneleft && !doneright) {
1242                                useleft = pagino -
1243                                 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
1244                                  rec.ir_startino - pagino;
1245                        } else {
1246                                useleft = !doneleft;
1247                        }
1248
1249                        /* free inodes to the left? */
1250                        if (useleft && trec.ir_freecount) {
1251                                xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1252                                cur = tcur;
1253
1254                                pag->pagl_leftrec = trec.ir_startino;
1255                                pag->pagl_rightrec = rec.ir_startino;
1256                                pag->pagl_pagino = pagino;
1257                                rec = trec;
1258                                goto alloc_inode;
1259                        }
1260
1261                        /* free inodes to the right? */
1262                        if (!useleft && rec.ir_freecount) {
1263                                xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1264
1265                                pag->pagl_leftrec = trec.ir_startino;
1266                                pag->pagl_rightrec = rec.ir_startino;
1267                                pag->pagl_pagino = pagino;
1268                                goto alloc_inode;
1269                        }
1270
1271                        /* get next record to check */
1272                        if (useleft) {
1273                                error = xfs_ialloc_next_rec(tcur, &trec,
1274                                                                 &doneleft, 1);
1275                        } else {
1276                                error = xfs_ialloc_next_rec(cur, &rec,
1277                                                                 &doneright, 0);
1278                        }
1279                        if (error)
1280                                goto error1;
1281                }
1282
1283                if (searchdistance <= 0) {
1284                        /*
1285                         * Not in range - save last search
1286                         * location and allocate a new inode
1287                         */
1288                        xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1289                        pag->pagl_leftrec = trec.ir_startino;
1290                        pag->pagl_rightrec = rec.ir_startino;
1291                        pag->pagl_pagino = pagino;
1292
1293                } else {
1294                        /*
1295                         * We've reached the end of the btree. because
1296                         * we are only searching a small chunk of the
1297                         * btree each search, there is obviously free
1298                         * inodes closer to the parent inode than we
1299                         * are now. restart the search again.
1300                         */
1301                        pag->pagl_pagino = NULLAGINO;
1302                        pag->pagl_leftrec = NULLAGINO;
1303                        pag->pagl_rightrec = NULLAGINO;
1304                        xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1305                        xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1306                        goto restart_pagno;
1307                }
1308        }
1309
1310        /*
1311         * In a different AG from the parent.
1312         * See if the most recently allocated block has any free.
1313         */
1314        if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1315                error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1316                                         XFS_LOOKUP_EQ, &i);
1317                if (error)
1318                        goto error0;
1319
1320                if (i == 1) {
1321                        error = xfs_inobt_get_rec(cur, &rec, &j);
1322                        if (error)
1323                                goto error0;
1324
1325                        if (j == 1 && rec.ir_freecount > 0) {
1326                                /*
1327                                 * The last chunk allocated in the group
1328                                 * still has a free inode.
1329                                 */
1330                                goto alloc_inode;
1331                        }
1332                }
1333        }
1334
1335        /*
1336         * None left in the last group, search the whole AG
1337         */
1338        error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1339        if (error)
1340                goto error0;
1341        if (XFS_IS_CORRUPT(mp, i != 1)) {
1342                error = -EFSCORRUPTED;
1343                goto error0;
1344        }
1345
1346        for (;;) {
1347                error = xfs_inobt_get_rec(cur, &rec, &i);
1348                if (error)
1349                        goto error0;
1350                if (XFS_IS_CORRUPT(mp, i != 1)) {
1351                        error = -EFSCORRUPTED;
1352                        goto error0;
1353                }
1354                if (rec.ir_freecount > 0)
1355                        break;
1356                error = xfs_btree_increment(cur, 0, &i);
1357                if (error)
1358                        goto error0;
1359                if (XFS_IS_CORRUPT(mp, i != 1)) {
1360                        error = -EFSCORRUPTED;
1361                        goto error0;
1362                }
1363        }
1364
1365alloc_inode:
1366        offset = xfs_inobt_first_free_inode(&rec);
1367        ASSERT(offset >= 0);
1368        ASSERT(offset < XFS_INODES_PER_CHUNK);
1369        ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1370                                   XFS_INODES_PER_CHUNK) == 0);
1371        ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1372        rec.ir_free &= ~XFS_INOBT_MASK(offset);
1373        rec.ir_freecount--;
1374        error = xfs_inobt_update(cur, &rec);
1375        if (error)
1376                goto error0;
1377        be32_add_cpu(&agi->agi_freecount, -1);
1378        xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1379        pag->pagi_freecount--;
1380
1381        error = xfs_check_agi_freecount(cur, agi);
1382        if (error)
1383                goto error0;
1384
1385        xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1386        xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1387        xfs_perag_put(pag);
1388        *inop = ino;
1389        return 0;
1390error1:
1391        xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
1392error0:
1393        xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1394        xfs_perag_put(pag);
1395        return error;
1396}
1397
1398/*
1399 * Use the free inode btree to allocate an inode based on distance from the
1400 * parent. Note that the provided cursor may be deleted and replaced.
1401 */
1402STATIC int
1403xfs_dialloc_ag_finobt_near(
1404        xfs_agino_t                     pagino,
1405        struct xfs_btree_cur            **ocur,
1406        struct xfs_inobt_rec_incore     *rec)
1407{
1408        struct xfs_btree_cur            *lcur = *ocur;  /* left search cursor */
1409        struct xfs_btree_cur            *rcur;  /* right search cursor */
1410        struct xfs_inobt_rec_incore     rrec;
1411        int                             error;
1412        int                             i, j;
1413
1414        error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
1415        if (error)
1416                return error;
1417
1418        if (i == 1) {
1419                error = xfs_inobt_get_rec(lcur, rec, &i);
1420                if (error)
1421                        return error;
1422                if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1))
1423                        return -EFSCORRUPTED;
1424
1425                /*
1426                 * See if we've landed in the parent inode record. The finobt
1427                 * only tracks chunks with at least one free inode, so record
1428                 * existence is enough.
1429                 */
1430                if (pagino >= rec->ir_startino &&
1431                    pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
1432                        return 0;
1433        }
1434
1435        error = xfs_btree_dup_cursor(lcur, &rcur);
1436        if (error)
1437                return error;
1438
1439        error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
1440        if (error)
1441                goto error_rcur;
1442        if (j == 1) {
1443                error = xfs_inobt_get_rec(rcur, &rrec, &j);
1444                if (error)
1445                        goto error_rcur;
1446                if (XFS_IS_CORRUPT(lcur->bc_mp, j != 1)) {
1447                        error = -EFSCORRUPTED;
1448                        goto error_rcur;
1449                }
1450        }
1451
1452        if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1 && j != 1)) {
1453                error = -EFSCORRUPTED;
1454                goto error_rcur;
1455        }
1456        if (i == 1 && j == 1) {
1457                /*
1458                 * Both the left and right records are valid. Choose the closer
1459                 * inode chunk to the target.
1460                 */
1461                if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
1462                    (rrec.ir_startino - pagino)) {
1463                        *rec = rrec;
1464                        xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1465                        *ocur = rcur;
1466                } else {
1467                        xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1468                }
1469        } else if (j == 1) {
1470                /* only the right record is valid */
1471                *rec = rrec;
1472                xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1473                *ocur = rcur;
1474        } else if (i == 1) {
1475                /* only the left record is valid */
1476                xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1477        }
1478
1479        return 0;
1480
1481error_rcur:
1482        xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
1483        return error;
1484}
1485
1486/*
1487 * Use the free inode btree to find a free inode based on a newino hint. If
1488 * the hint is NULL, find the first free inode in the AG.
1489 */
1490STATIC int
1491xfs_dialloc_ag_finobt_newino(
1492        struct xfs_agi                  *agi,
1493        struct xfs_btree_cur            *cur,
1494        struct xfs_inobt_rec_incore     *rec)
1495{
1496        int error;
1497        int i;
1498
1499        if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1500                error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1501                                         XFS_LOOKUP_EQ, &i);
1502                if (error)
1503                        return error;
1504                if (i == 1) {
1505                        error = xfs_inobt_get_rec(cur, rec, &i);
1506                        if (error)
1507                                return error;
1508                        if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1509                                return -EFSCORRUPTED;
1510                        return 0;
1511                }
1512        }
1513
1514        /*
1515         * Find the first inode available in the AG.
1516         */
1517        error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1518        if (error)
1519                return error;
1520        if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1521                return -EFSCORRUPTED;
1522
1523        error = xfs_inobt_get_rec(cur, rec, &i);
1524        if (error)
1525                return error;
1526        if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1527                return -EFSCORRUPTED;
1528
1529        return 0;
1530}
1531
1532/*
1533 * Update the inobt based on a modification made to the finobt. Also ensure that
1534 * the records from both trees are equivalent post-modification.
1535 */
1536STATIC int
1537xfs_dialloc_ag_update_inobt(
1538        struct xfs_btree_cur            *cur,   /* inobt cursor */
1539        struct xfs_inobt_rec_incore     *frec,  /* finobt record */
1540        int                             offset) /* inode offset */
1541{
1542        struct xfs_inobt_rec_incore     rec;
1543        int                             error;
1544        int                             i;
1545
1546        error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
1547        if (error)
1548                return error;
1549        if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1550                return -EFSCORRUPTED;
1551
1552        error = xfs_inobt_get_rec(cur, &rec, &i);
1553        if (error)
1554                return error;
1555        if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1556                return -EFSCORRUPTED;
1557        ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
1558                                   XFS_INODES_PER_CHUNK) == 0);
1559
1560        rec.ir_free &= ~XFS_INOBT_MASK(offset);
1561        rec.ir_freecount--;
1562
1563        if (XFS_IS_CORRUPT(cur->bc_mp,
1564                           rec.ir_free != frec->ir_free ||
1565                           rec.ir_freecount != frec->ir_freecount))
1566                return -EFSCORRUPTED;
1567
1568        return xfs_inobt_update(cur, &rec);
1569}
1570
1571/*
1572 * Allocate an inode using the free inode btree, if available. Otherwise, fall
1573 * back to the inobt search algorithm.
1574 *
1575 * The caller selected an AG for us, and made sure that free inodes are
1576 * available.
1577 */
1578STATIC int
1579xfs_dialloc_ag(
1580        struct xfs_trans        *tp,
1581        struct xfs_buf          *agbp,
1582        xfs_ino_t               parent,
1583        xfs_ino_t               *inop)
1584{
1585        struct xfs_mount                *mp = tp->t_mountp;
1586        struct xfs_agi                  *agi = XFS_BUF_TO_AGI(agbp);
1587        xfs_agnumber_t                  agno = be32_to_cpu(agi->agi_seqno);
1588        xfs_agnumber_t                  pagno = XFS_INO_TO_AGNO(mp, parent);
1589        xfs_agino_t                     pagino = XFS_INO_TO_AGINO(mp, parent);
1590        struct xfs_perag                *pag;
1591        struct xfs_btree_cur            *cur;   /* finobt cursor */
1592        struct xfs_btree_cur            *icur;  /* inobt cursor */
1593        struct xfs_inobt_rec_incore     rec;
1594        xfs_ino_t                       ino;
1595        int                             error;
1596        int                             offset;
1597        int                             i;
1598
1599        if (!xfs_sb_version_hasfinobt(&mp->m_sb))
1600                return xfs_dialloc_ag_inobt(tp, agbp, parent, inop);
1601
1602        pag = xfs_perag_get(mp, agno);
1603
1604        /*
1605         * If pagino is 0 (this is the root inode allocation) use newino.
1606         * This must work because we've just allocated some.
1607         */
1608        if (!pagino)
1609                pagino = be32_to_cpu(agi->agi_newino);
1610
1611        cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
1612
1613        error = xfs_check_agi_freecount(cur, agi);
1614        if (error)
1615                goto error_cur;
1616
1617        /*
1618         * The search algorithm depends on whether we're in the same AG as the
1619         * parent. If so, find the closest available inode to the parent. If
1620         * not, consider the agi hint or find the first free inode in the AG.
1621         */
1622        if (agno == pagno)
1623                error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
1624        else
1625                error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
1626        if (error)
1627                goto error_cur;
1628
1629        offset = xfs_inobt_first_free_inode(&rec);
1630        ASSERT(offset >= 0);
1631        ASSERT(offset < XFS_INODES_PER_CHUNK);
1632        ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1633                                   XFS_INODES_PER_CHUNK) == 0);
1634        ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1635
1636        /*
1637         * Modify or remove the finobt record.
1638         */
1639        rec.ir_free &= ~XFS_INOBT_MASK(offset);
1640        rec.ir_freecount--;
1641        if (rec.ir_freecount)
1642                error = xfs_inobt_update(cur, &rec);
1643        else
1644                error = xfs_btree_delete(cur, &i);
1645        if (error)
1646                goto error_cur;
1647
1648        /*
1649         * The finobt has now been updated appropriately. We haven't updated the
1650         * agi and superblock yet, so we can create an inobt cursor and validate
1651         * the original freecount. If all is well, make the equivalent update to
1652         * the inobt using the finobt record and offset information.
1653         */
1654        icur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1655
1656        error = xfs_check_agi_freecount(icur, agi);
1657        if (error)
1658                goto error_icur;
1659
1660        error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
1661        if (error)
1662                goto error_icur;
1663
1664        /*
1665         * Both trees have now been updated. We must update the perag and
1666         * superblock before we can check the freecount for each btree.
1667         */
1668        be32_add_cpu(&agi->agi_freecount, -1);
1669        xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1670        pag->pagi_freecount--;
1671
1672        xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1673
1674        error = xfs_check_agi_freecount(icur, agi);
1675        if (error)
1676                goto error_icur;
1677        error = xfs_check_agi_freecount(cur, agi);
1678        if (error)
1679                goto error_icur;
1680
1681        xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
1682        xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1683        xfs_perag_put(pag);
1684        *inop = ino;
1685        return 0;
1686
1687error_icur:
1688        xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
1689error_cur:
1690        xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1691        xfs_perag_put(pag);
1692        return error;
1693}
1694
1695/*
1696 * Allocate an inode on disk.
1697 *
1698 * Mode is used to tell whether the new inode will need space, and whether it
1699 * is a directory.
1700 *
1701 * This function is designed to be called twice if it has to do an allocation
1702 * to make more free inodes.  On the first call, *IO_agbp should be set to NULL.
1703 * If an inode is available without having to performn an allocation, an inode
1704 * number is returned.  In this case, *IO_agbp is set to NULL.  If an allocation
1705 * needs to be done, xfs_dialloc returns the current AGI buffer in *IO_agbp.
1706 * The caller should then commit the current transaction, allocate a
1707 * new transaction, and call xfs_dialloc() again, passing in the previous value
1708 * of *IO_agbp.  IO_agbp should be held across the transactions. Since the AGI
1709 * buffer is locked across the two calls, the second call is guaranteed to have
1710 * a free inode available.
1711 *
1712 * Once we successfully pick an inode its number is returned and the on-disk
1713 * data structures are updated.  The inode itself is not read in, since doing so
1714 * would break ordering constraints with xfs_reclaim.
1715 */
1716int
1717xfs_dialloc(
1718        struct xfs_trans        *tp,
1719        xfs_ino_t               parent,
1720        umode_t                 mode,
1721        struct xfs_buf          **IO_agbp,
1722        xfs_ino_t               *inop)
1723{
1724        struct xfs_mount        *mp = tp->t_mountp;
1725        struct xfs_buf          *agbp;
1726        xfs_agnumber_t          agno;
1727        int                     error;
1728        int                     ialloced;
1729        int                     noroom = 0;
1730        xfs_agnumber_t          start_agno;
1731        struct xfs_perag        *pag;
1732        struct xfs_ino_geometry *igeo = M_IGEO(mp);
1733        int                     okalloc = 1;
1734
1735        if (*IO_agbp) {
1736                /*
1737                 * If the caller passes in a pointer to the AGI buffer,
1738                 * continue where we left off before.  In this case, we
1739                 * know that the allocation group has free inodes.
1740                 */
1741                agbp = *IO_agbp;
1742                goto out_alloc;
1743        }
1744
1745        /*
1746         * We do not have an agbp, so select an initial allocation
1747         * group for inode allocation.
1748         */
1749        start_agno = xfs_ialloc_ag_select(tp, parent, mode);
1750        if (start_agno == NULLAGNUMBER) {
1751                *inop = NULLFSINO;
1752                return 0;
1753        }
1754
1755        /*
1756         * If we have already hit the ceiling of inode blocks then clear
1757         * okalloc so we scan all available agi structures for a free
1758         * inode.
1759         *
1760         * Read rough value of mp->m_icount by percpu_counter_read_positive,
1761         * which will sacrifice the preciseness but improve the performance.
1762         */
1763        if (igeo->maxicount &&
1764            percpu_counter_read_positive(&mp->m_icount) + igeo->ialloc_inos
1765                                                        > igeo->maxicount) {
1766                noroom = 1;
1767                okalloc = 0;
1768        }
1769
1770        /*
1771         * Loop until we find an allocation group that either has free inodes
1772         * or in which we can allocate some inodes.  Iterate through the
1773         * allocation groups upward, wrapping at the end.
1774         */
1775        agno = start_agno;
1776        for (;;) {
1777                pag = xfs_perag_get(mp, agno);
1778                if (!pag->pagi_inodeok) {
1779                        xfs_ialloc_next_ag(mp);
1780                        goto nextag;
1781                }
1782
1783                if (!pag->pagi_init) {
1784                        error = xfs_ialloc_pagi_init(mp, tp, agno);
1785                        if (error)
1786                                goto out_error;
1787                }
1788
1789                /*
1790                 * Do a first racy fast path check if this AG is usable.
1791                 */
1792                if (!pag->pagi_freecount && !okalloc)
1793                        goto nextag;
1794
1795                /*
1796                 * Then read in the AGI buffer and recheck with the AGI buffer
1797                 * lock held.
1798                 */
1799                error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
1800                if (error)
1801                        goto out_error;
1802
1803                if (pag->pagi_freecount) {
1804                        xfs_perag_put(pag);
1805                        goto out_alloc;
1806                }
1807
1808                if (!okalloc)
1809                        goto nextag_relse_buffer;
1810
1811
1812                error = xfs_ialloc_ag_alloc(tp, agbp, &ialloced);
1813                if (error) {
1814                        xfs_trans_brelse(tp, agbp);
1815
1816                        if (error != -ENOSPC)
1817                                goto out_error;
1818
1819                        xfs_perag_put(pag);
1820                        *inop = NULLFSINO;
1821                        return 0;
1822                }
1823
1824                if (ialloced) {
1825                        /*
1826                         * We successfully allocated some inodes, return
1827                         * the current context to the caller so that it
1828                         * can commit the current transaction and call
1829                         * us again where we left off.
1830                         */
1831                        ASSERT(pag->pagi_freecount > 0);
1832                        xfs_perag_put(pag);
1833
1834                        *IO_agbp = agbp;
1835                        *inop = NULLFSINO;
1836                        return 0;
1837                }
1838
1839nextag_relse_buffer:
1840                xfs_trans_brelse(tp, agbp);
1841nextag:
1842                xfs_perag_put(pag);
1843                if (++agno == mp->m_sb.sb_agcount)
1844                        agno = 0;
1845                if (agno == start_agno) {
1846                        *inop = NULLFSINO;
1847                        return noroom ? -ENOSPC : 0;
1848                }
1849        }
1850
1851out_alloc:
1852        *IO_agbp = NULL;
1853        return xfs_dialloc_ag(tp, agbp, parent, inop);
1854out_error:
1855        xfs_perag_put(pag);
1856        return error;
1857}
1858
1859/*
1860 * Free the blocks of an inode chunk. We must consider that the inode chunk
1861 * might be sparse and only free the regions that are allocated as part of the
1862 * chunk.
1863 */
1864STATIC void
1865xfs_difree_inode_chunk(
1866        struct xfs_trans                *tp,
1867        xfs_agnumber_t                  agno,
1868        struct xfs_inobt_rec_incore     *rec)
1869{
1870        struct xfs_mount                *mp = tp->t_mountp;
1871        xfs_agblock_t                   sagbno = XFS_AGINO_TO_AGBNO(mp,
1872                                                        rec->ir_startino);
1873        int                             startidx, endidx;
1874        int                             nextbit;
1875        xfs_agblock_t                   agbno;
1876        int                             contigblk;
1877        DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS);
1878
1879        if (!xfs_inobt_issparse(rec->ir_holemask)) {
1880                /* not sparse, calculate extent info directly */
1881                xfs_bmap_add_free(tp, XFS_AGB_TO_FSB(mp, agno, sagbno),
1882                                  M_IGEO(mp)->ialloc_blks,
1883                                  &XFS_RMAP_OINFO_INODES);
1884                return;
1885        }
1886
1887        /* holemask is only 16-bits (fits in an unsigned long) */
1888        ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0]));
1889        holemask[0] = rec->ir_holemask;
1890
1891        /*
1892         * Find contiguous ranges of zeroes (i.e., allocated regions) in the
1893         * holemask and convert the start/end index of each range to an extent.
1894         * We start with the start and end index both pointing at the first 0 in
1895         * the mask.
1896         */
1897        startidx = endidx = find_first_zero_bit(holemask,
1898                                                XFS_INOBT_HOLEMASK_BITS);
1899        nextbit = startidx + 1;
1900        while (startidx < XFS_INOBT_HOLEMASK_BITS) {
1901                nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS,
1902                                             nextbit);
1903                /*
1904                 * If the next zero bit is contiguous, update the end index of
1905                 * the current range and continue.
1906                 */
1907                if (nextbit != XFS_INOBT_HOLEMASK_BITS &&
1908                    nextbit == endidx + 1) {
1909                        endidx = nextbit;
1910                        goto next;
1911                }
1912
1913                /*
1914                 * nextbit is not contiguous with the current end index. Convert
1915                 * the current start/end to an extent and add it to the free
1916                 * list.
1917                 */
1918                agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) /
1919                                  mp->m_sb.sb_inopblock;
1920                contigblk = ((endidx - startidx + 1) *
1921                             XFS_INODES_PER_HOLEMASK_BIT) /
1922                            mp->m_sb.sb_inopblock;
1923
1924                ASSERT(agbno % mp->m_sb.sb_spino_align == 0);
1925                ASSERT(contigblk % mp->m_sb.sb_spino_align == 0);
1926                xfs_bmap_add_free(tp, XFS_AGB_TO_FSB(mp, agno, agbno),
1927                                  contigblk, &XFS_RMAP_OINFO_INODES);
1928
1929                /* reset range to current bit and carry on... */
1930                startidx = endidx = nextbit;
1931
1932next:
1933                nextbit++;
1934        }
1935}
1936
1937STATIC int
1938xfs_difree_inobt(
1939        struct xfs_mount                *mp,
1940        struct xfs_trans                *tp,
1941        struct xfs_buf                  *agbp,
1942        xfs_agino_t                     agino,
1943        struct xfs_icluster             *xic,
1944        struct xfs_inobt_rec_incore     *orec)
1945{
1946        struct xfs_agi                  *agi = XFS_BUF_TO_AGI(agbp);
1947        xfs_agnumber_t                  agno = be32_to_cpu(agi->agi_seqno);
1948        struct xfs_perag                *pag;
1949        struct xfs_btree_cur            *cur;
1950        struct xfs_inobt_rec_incore     rec;
1951        int                             ilen;
1952        int                             error;
1953        int                             i;
1954        int                             off;
1955
1956        ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
1957        ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
1958
1959        /*
1960         * Initialize the cursor.
1961         */
1962        cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1963
1964        error = xfs_check_agi_freecount(cur, agi);
1965        if (error)
1966                goto error0;
1967
1968        /*
1969         * Look for the entry describing this inode.
1970         */
1971        if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
1972                xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
1973                        __func__, error);
1974                goto error0;
1975        }
1976        if (XFS_IS_CORRUPT(mp, i != 1)) {
1977                error = -EFSCORRUPTED;
1978                goto error0;
1979        }
1980        error = xfs_inobt_get_rec(cur, &rec, &i);
1981        if (error) {
1982                xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
1983                        __func__, error);
1984                goto error0;
1985        }
1986        if (XFS_IS_CORRUPT(mp, i != 1)) {
1987                error = -EFSCORRUPTED;
1988                goto error0;
1989        }
1990        /*
1991         * Get the offset in the inode chunk.
1992         */
1993        off = agino - rec.ir_startino;
1994        ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
1995        ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
1996        /*
1997         * Mark the inode free & increment the count.
1998         */
1999        rec.ir_free |= XFS_INOBT_MASK(off);
2000        rec.ir_freecount++;
2001
2002        /*
2003         * When an inode chunk is free, it becomes eligible for removal. Don't
2004         * remove the chunk if the block size is large enough for multiple inode
2005         * chunks (that might not be free).
2006         */
2007        if (!(mp->m_flags & XFS_MOUNT_IKEEP) &&
2008            rec.ir_free == XFS_INOBT_ALL_FREE &&
2009            mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
2010                xic->deleted = true;
2011                xic->first_ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino);
2012                xic->alloc = xfs_inobt_irec_to_allocmask(&rec);
2013
2014                /*
2015                 * Remove the inode cluster from the AGI B+Tree, adjust the
2016                 * AGI and Superblock inode counts, and mark the disk space
2017                 * to be freed when the transaction is committed.
2018                 */
2019                ilen = rec.ir_freecount;
2020                be32_add_cpu(&agi->agi_count, -ilen);
2021                be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
2022                xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
2023                pag = xfs_perag_get(mp, agno);
2024                pag->pagi_freecount -= ilen - 1;
2025                pag->pagi_count -= ilen;
2026                xfs_perag_put(pag);
2027                xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
2028                xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
2029
2030                if ((error = xfs_btree_delete(cur, &i))) {
2031                        xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
2032                                __func__, error);
2033                        goto error0;
2034                }
2035
2036                xfs_difree_inode_chunk(tp, agno, &rec);
2037        } else {
2038                xic->deleted = false;
2039
2040                error = xfs_inobt_update(cur, &rec);
2041                if (error) {
2042                        xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
2043                                __func__, error);
2044                        goto error0;
2045                }
2046
2047                /* 
2048                 * Change the inode free counts and log the ag/sb changes.
2049                 */
2050                be32_add_cpu(&agi->agi_freecount, 1);
2051                xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
2052                pag = xfs_perag_get(mp, agno);
2053                pag->pagi_freecount++;
2054                xfs_perag_put(pag);
2055                xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
2056        }
2057
2058        error = xfs_check_agi_freecount(cur, agi);
2059        if (error)
2060                goto error0;
2061
2062        *orec = rec;
2063        xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2064        return 0;
2065
2066error0:
2067        xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2068        return error;
2069}
2070
2071/*
2072 * Free an inode in the free inode btree.
2073 */
2074STATIC int
2075xfs_difree_finobt(
2076        struct xfs_mount                *mp,
2077        struct xfs_trans                *tp,
2078        struct xfs_buf                  *agbp,
2079        xfs_agino_t                     agino,
2080        struct xfs_inobt_rec_incore     *ibtrec) /* inobt record */
2081{
2082        struct xfs_agi                  *agi = XFS_BUF_TO_AGI(agbp);
2083        xfs_agnumber_t                  agno = be32_to_cpu(agi->agi_seqno);
2084        struct xfs_btree_cur            *cur;
2085        struct xfs_inobt_rec_incore     rec;
2086        int                             offset = agino - ibtrec->ir_startino;
2087        int                             error;
2088        int                             i;
2089
2090        cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
2091
2092        error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
2093        if (error)
2094                goto error;
2095        if (i == 0) {
2096                /*
2097                 * If the record does not exist in the finobt, we must have just
2098                 * freed an inode in a previously fully allocated chunk. If not,
2099                 * something is out of sync.
2100                 */
2101                if (XFS_IS_CORRUPT(mp, ibtrec->ir_freecount != 1)) {
2102                        error = -EFSCORRUPTED;
2103                        goto error;
2104                }
2105
2106                error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask,
2107                                             ibtrec->ir_count,
2108                                             ibtrec->ir_freecount,
2109                                             ibtrec->ir_free, &i);
2110                if (error)
2111                        goto error;
2112                ASSERT(i == 1);
2113
2114                goto out;
2115        }
2116
2117        /*
2118         * Read and update the existing record. We could just copy the ibtrec
2119         * across here, but that would defeat the purpose of having redundant
2120         * metadata. By making the modifications independently, we can catch
2121         * corruptions that we wouldn't see if we just copied from one record
2122         * to another.
2123         */
2124        error = xfs_inobt_get_rec(cur, &rec, &i);
2125        if (error)
2126                goto error;
2127        if (XFS_IS_CORRUPT(mp, i != 1)) {
2128                error = -EFSCORRUPTED;
2129                goto error;
2130        }
2131
2132        rec.ir_free |= XFS_INOBT_MASK(offset);
2133        rec.ir_freecount++;
2134
2135        if (XFS_IS_CORRUPT(mp,
2136                           rec.ir_free != ibtrec->ir_free ||
2137                           rec.ir_freecount != ibtrec->ir_freecount)) {
2138                error = -EFSCORRUPTED;
2139                goto error;
2140        }
2141
2142        /*
2143         * The content of inobt records should always match between the inobt
2144         * and finobt. The lifecycle of records in the finobt is different from
2145         * the inobt in that the finobt only tracks records with at least one
2146         * free inode. Hence, if all of the inodes are free and we aren't
2147         * keeping inode chunks permanently on disk, remove the record.
2148         * Otherwise, update the record with the new information.
2149         *
2150         * Note that we currently can't free chunks when the block size is large
2151         * enough for multiple chunks. Leave the finobt record to remain in sync
2152         * with the inobt.
2153         */
2154        if (rec.ir_free == XFS_INOBT_ALL_FREE &&
2155            mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK &&
2156            !(mp->m_flags & XFS_MOUNT_IKEEP)) {
2157                error = xfs_btree_delete(cur, &i);
2158                if (error)
2159                        goto error;
2160                ASSERT(i == 1);
2161        } else {
2162                error = xfs_inobt_update(cur, &rec);
2163                if (error)
2164                        goto error;
2165        }
2166
2167out:
2168        error = xfs_check_agi_freecount(cur, agi);
2169        if (error)
2170                goto error;
2171
2172        xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2173        return 0;
2174
2175error:
2176        xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2177        return error;
2178}
2179
2180/*
2181 * Free disk inode.  Carefully avoids touching the incore inode, all
2182 * manipulations incore are the caller's responsibility.
2183 * The on-disk inode is not changed by this operation, only the
2184 * btree (free inode mask) is changed.
2185 */
2186int
2187xfs_difree(
2188        struct xfs_trans        *tp,            /* transaction pointer */
2189        xfs_ino_t               inode,          /* inode to be freed */
2190        struct xfs_icluster     *xic)   /* cluster info if deleted */
2191{
2192        /* REFERENCED */
2193        xfs_agblock_t           agbno;  /* block number containing inode */
2194        struct xfs_buf          *agbp;  /* buffer for allocation group header */
2195        xfs_agino_t             agino;  /* allocation group inode number */
2196        xfs_agnumber_t          agno;   /* allocation group number */
2197        int                     error;  /* error return value */
2198        struct xfs_mount        *mp;    /* mount structure for filesystem */
2199        struct xfs_inobt_rec_incore rec;/* btree record */
2200
2201        mp = tp->t_mountp;
2202
2203        /*
2204         * Break up inode number into its components.
2205         */
2206        agno = XFS_INO_TO_AGNO(mp, inode);
2207        if (agno >= mp->m_sb.sb_agcount)  {
2208                xfs_warn(mp, "%s: agno >= mp->m_sb.sb_agcount (%d >= %d).",
2209                        __func__, agno, mp->m_sb.sb_agcount);
2210                ASSERT(0);
2211                return -EINVAL;
2212        }
2213        agino = XFS_INO_TO_AGINO(mp, inode);
2214        if (inode != XFS_AGINO_TO_INO(mp, agno, agino))  {
2215                xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
2216                        __func__, (unsigned long long)inode,
2217                        (unsigned long long)XFS_AGINO_TO_INO(mp, agno, agino));
2218                ASSERT(0);
2219                return -EINVAL;
2220        }
2221        agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2222        if (agbno >= mp->m_sb.sb_agblocks)  {
2223                xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
2224                        __func__, agbno, mp->m_sb.sb_agblocks);
2225                ASSERT(0);
2226                return -EINVAL;
2227        }
2228        /*
2229         * Get the allocation group header.
2230         */
2231        error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2232        if (error) {
2233                xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
2234                        __func__, error);
2235                return error;
2236        }
2237
2238        /*
2239         * Fix up the inode allocation btree.
2240         */
2241        error = xfs_difree_inobt(mp, tp, agbp, agino, xic, &rec);
2242        if (error)
2243                goto error0;
2244
2245        /*
2246         * Fix up the free inode btree.
2247         */
2248        if (xfs_sb_version_hasfinobt(&mp->m_sb)) {
2249                error = xfs_difree_finobt(mp, tp, agbp, agino, &rec);
2250                if (error)
2251                        goto error0;
2252        }
2253
2254        return 0;
2255
2256error0:
2257        return error;
2258}
2259
2260STATIC int
2261xfs_imap_lookup(
2262        struct xfs_mount        *mp,
2263        struct xfs_trans        *tp,
2264        xfs_agnumber_t          agno,
2265        xfs_agino_t             agino,
2266        xfs_agblock_t           agbno,
2267        xfs_agblock_t           *chunk_agbno,
2268        xfs_agblock_t           *offset_agbno,
2269        int                     flags)
2270{
2271        struct xfs_inobt_rec_incore rec;
2272        struct xfs_btree_cur    *cur;
2273        struct xfs_buf          *agbp;
2274        int                     error;
2275        int                     i;
2276
2277        error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2278        if (error) {
2279                xfs_alert(mp,
2280                        "%s: xfs_ialloc_read_agi() returned error %d, agno %d",
2281                        __func__, error, agno);
2282                return error;
2283        }
2284
2285        /*
2286         * Lookup the inode record for the given agino. If the record cannot be
2287         * found, then it's an invalid inode number and we should abort. Once
2288         * we have a record, we need to ensure it contains the inode number
2289         * we are looking up.
2290         */
2291        cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
2292        error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
2293        if (!error) {
2294                if (i)
2295                        error = xfs_inobt_get_rec(cur, &rec, &i);
2296                if (!error && i == 0)
2297                        error = -EINVAL;
2298        }
2299
2300        xfs_trans_brelse(tp, agbp);
2301        xfs_btree_del_cursor(cur, error);
2302        if (error)
2303                return error;
2304
2305        /* check that the returned record contains the required inode */
2306        if (rec.ir_startino > agino ||
2307            rec.ir_startino + M_IGEO(mp)->ialloc_inos <= agino)
2308                return -EINVAL;
2309
2310        /* for untrusted inodes check it is allocated first */
2311        if ((flags & XFS_IGET_UNTRUSTED) &&
2312            (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
2313                return -EINVAL;
2314
2315        *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
2316        *offset_agbno = agbno - *chunk_agbno;
2317        return 0;
2318}
2319
2320/*
2321 * Return the location of the inode in imap, for mapping it into a buffer.
2322 */
2323int
2324xfs_imap(
2325        xfs_mount_t      *mp,   /* file system mount structure */
2326        xfs_trans_t      *tp,   /* transaction pointer */
2327        xfs_ino_t       ino,    /* inode to locate */
2328        struct xfs_imap *imap,  /* location map structure */
2329        uint            flags)  /* flags for inode btree lookup */
2330{
2331        xfs_agblock_t   agbno;  /* block number of inode in the alloc group */
2332        xfs_agino_t     agino;  /* inode number within alloc group */
2333        xfs_agnumber_t  agno;   /* allocation group number */
2334        xfs_agblock_t   chunk_agbno;    /* first block in inode chunk */
2335        xfs_agblock_t   cluster_agbno;  /* first block in inode cluster */
2336        int             error;  /* error code */
2337        int             offset; /* index of inode in its buffer */
2338        xfs_agblock_t   offset_agbno;   /* blks from chunk start to inode */
2339
2340        ASSERT(ino != NULLFSINO);
2341
2342        /*
2343         * Split up the inode number into its parts.
2344         */
2345        agno = XFS_INO_TO_AGNO(mp, ino);
2346        agino = XFS_INO_TO_AGINO(mp, ino);
2347        agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2348        if (agno >= mp->m_sb.sb_agcount || agbno >= mp->m_sb.sb_agblocks ||
2349            ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2350#ifdef DEBUG
2351                /*
2352                 * Don't output diagnostic information for untrusted inodes
2353                 * as they can be invalid without implying corruption.
2354                 */
2355                if (flags & XFS_IGET_UNTRUSTED)
2356                        return -EINVAL;
2357                if (agno >= mp->m_sb.sb_agcount) {
2358                        xfs_alert(mp,
2359                                "%s: agno (%d) >= mp->m_sb.sb_agcount (%d)",
2360                                __func__, agno, mp->m_sb.sb_agcount);
2361                }
2362                if (agbno >= mp->m_sb.sb_agblocks) {
2363                        xfs_alert(mp,
2364                "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
2365                                __func__, (unsigned long long)agbno,
2366                                (unsigned long)mp->m_sb.sb_agblocks);
2367                }
2368                if (ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2369                        xfs_alert(mp,
2370                "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
2371                                __func__, ino,
2372                                XFS_AGINO_TO_INO(mp, agno, agino));
2373                }
2374                xfs_stack_trace();
2375#endif /* DEBUG */
2376                return -EINVAL;
2377        }
2378
2379        /*
2380         * For bulkstat and handle lookups, we have an untrusted inode number
2381         * that we have to verify is valid. We cannot do this just by reading
2382         * the inode buffer as it may have been unlinked and removed leaving
2383         * inodes in stale state on disk. Hence we have to do a btree lookup
2384         * in all cases where an untrusted inode number is passed.
2385         */
2386        if (flags & XFS_IGET_UNTRUSTED) {
2387                error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2388                                        &chunk_agbno, &offset_agbno, flags);
2389                if (error)
2390                        return error;
2391                goto out_map;
2392        }
2393
2394        /*
2395         * If the inode cluster size is the same as the blocksize or
2396         * smaller we get to the buffer by simple arithmetics.
2397         */
2398        if (M_IGEO(mp)->blocks_per_cluster == 1) {
2399                offset = XFS_INO_TO_OFFSET(mp, ino);
2400                ASSERT(offset < mp->m_sb.sb_inopblock);
2401
2402                imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, agbno);
2403                imap->im_len = XFS_FSB_TO_BB(mp, 1);
2404                imap->im_boffset = (unsigned short)(offset <<
2405                                                        mp->m_sb.sb_inodelog);
2406                return 0;
2407        }
2408
2409        /*
2410         * If the inode chunks are aligned then use simple maths to
2411         * find the location. Otherwise we have to do a btree
2412         * lookup to find the location.
2413         */
2414        if (M_IGEO(mp)->inoalign_mask) {
2415                offset_agbno = agbno & M_IGEO(mp)->inoalign_mask;
2416                chunk_agbno = agbno - offset_agbno;
2417        } else {
2418                error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2419                                        &chunk_agbno, &offset_agbno, flags);
2420                if (error)
2421                        return error;
2422        }
2423
2424out_map:
2425        ASSERT(agbno >= chunk_agbno);
2426        cluster_agbno = chunk_agbno +
2427                ((offset_agbno / M_IGEO(mp)->blocks_per_cluster) *
2428                 M_IGEO(mp)->blocks_per_cluster);
2429        offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
2430                XFS_INO_TO_OFFSET(mp, ino);
2431
2432        imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, cluster_agbno);
2433        imap->im_len = XFS_FSB_TO_BB(mp, M_IGEO(mp)->blocks_per_cluster);
2434        imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog);
2435
2436        /*
2437         * If the inode number maps to a block outside the bounds
2438         * of the file system then return NULL rather than calling
2439         * read_buf and panicing when we get an error from the
2440         * driver.
2441         */
2442        if ((imap->im_blkno + imap->im_len) >
2443            XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
2444                xfs_alert(mp,
2445        "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
2446                        __func__, (unsigned long long) imap->im_blkno,
2447                        (unsigned long long) imap->im_len,
2448                        XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2449                return -EINVAL;
2450        }
2451        return 0;
2452}
2453
2454/*
2455 * Log specified fields for the ag hdr (inode section). The growth of the agi
2456 * structure over time requires that we interpret the buffer as two logical
2457 * regions delineated by the end of the unlinked list. This is due to the size
2458 * of the hash table and its location in the middle of the agi.
2459 *
2460 * For example, a request to log a field before agi_unlinked and a field after
2461 * agi_unlinked could cause us to log the entire hash table and use an excessive
2462 * amount of log space. To avoid this behavior, log the region up through
2463 * agi_unlinked in one call and the region after agi_unlinked through the end of
2464 * the structure in another.
2465 */
2466void
2467xfs_ialloc_log_agi(
2468        xfs_trans_t     *tp,            /* transaction pointer */
2469        xfs_buf_t       *bp,            /* allocation group header buffer */
2470        int             fields)         /* bitmask of fields to log */
2471{
2472        int                     first;          /* first byte number */
2473        int                     last;           /* last byte number */
2474        static const short      offsets[] = {   /* field starting offsets */
2475                                        /* keep in sync with bit definitions */
2476                offsetof(xfs_agi_t, agi_magicnum),
2477                offsetof(xfs_agi_t, agi_versionnum),
2478                offsetof(xfs_agi_t, agi_seqno),
2479                offsetof(xfs_agi_t, agi_length),
2480                offsetof(xfs_agi_t, agi_count),
2481                offsetof(xfs_agi_t, agi_root),
2482                offsetof(xfs_agi_t, agi_level),
2483                offsetof(xfs_agi_t, agi_freecount),
2484                offsetof(xfs_agi_t, agi_newino),
2485                offsetof(xfs_agi_t, agi_dirino),
2486                offsetof(xfs_agi_t, agi_unlinked),
2487                offsetof(xfs_agi_t, agi_free_root),
2488                offsetof(xfs_agi_t, agi_free_level),
2489                sizeof(xfs_agi_t)
2490        };
2491#ifdef DEBUG
2492        xfs_agi_t               *agi;   /* allocation group header */
2493
2494        agi = XFS_BUF_TO_AGI(bp);
2495        ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2496#endif
2497
2498        /*
2499         * Compute byte offsets for the first and last fields in the first
2500         * region and log the agi buffer. This only logs up through
2501         * agi_unlinked.
2502         */
2503        if (fields & XFS_AGI_ALL_BITS_R1) {
2504                xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
2505                                  &first, &last);
2506                xfs_trans_log_buf(tp, bp, first, last);
2507        }
2508
2509        /*
2510         * Mask off the bits in the first region and calculate the first and
2511         * last field offsets for any bits in the second region.
2512         */
2513        fields &= ~XFS_AGI_ALL_BITS_R1;
2514        if (fields) {
2515                xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
2516                                  &first, &last);
2517                xfs_trans_log_buf(tp, bp, first, last);
2518        }
2519}
2520
2521static xfs_failaddr_t
2522xfs_agi_verify(
2523        struct xfs_buf  *bp)
2524{
2525        struct xfs_mount *mp = bp->b_mount;
2526        struct xfs_agi  *agi = XFS_BUF_TO_AGI(bp);
2527        int             i;
2528
2529        if (xfs_sb_version_hascrc(&mp->m_sb)) {
2530                if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid))
2531                        return __this_address;
2532                if (!xfs_log_check_lsn(mp,
2533                                be64_to_cpu(XFS_BUF_TO_AGI(bp)->agi_lsn)))
2534                        return __this_address;
2535        }
2536
2537        /*
2538         * Validate the magic number of the agi block.
2539         */
2540        if (!xfs_verify_magic(bp, agi->agi_magicnum))
2541                return __this_address;
2542        if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
2543                return __this_address;
2544
2545        if (be32_to_cpu(agi->agi_level) < 1 ||
2546            be32_to_cpu(agi->agi_level) > XFS_BTREE_MAXLEVELS)
2547                return __this_address;
2548
2549        if (xfs_sb_version_hasfinobt(&mp->m_sb) &&
2550            (be32_to_cpu(agi->agi_free_level) < 1 ||
2551             be32_to_cpu(agi->agi_free_level) > XFS_BTREE_MAXLEVELS))
2552                return __this_address;
2553
2554        /*
2555         * during growfs operations, the perag is not fully initialised,
2556         * so we can't use it for any useful checking. growfs ensures we can't
2557         * use it by using uncached buffers that don't have the perag attached
2558         * so we can detect and avoid this problem.
2559         */
2560        if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno)
2561                return __this_address;
2562
2563        for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) {
2564                if (agi->agi_unlinked[i] == cpu_to_be32(NULLAGINO))
2565                        continue;
2566                if (!xfs_verify_ino(mp, be32_to_cpu(agi->agi_unlinked[i])))
2567                        return __this_address;
2568        }
2569
2570        return NULL;
2571}
2572
2573static void
2574xfs_agi_read_verify(
2575        struct xfs_buf  *bp)
2576{
2577        struct xfs_mount *mp = bp->b_mount;
2578        xfs_failaddr_t  fa;
2579
2580        if (xfs_sb_version_hascrc(&mp->m_sb) &&
2581            !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
2582                xfs_verifier_error(bp, -EFSBADCRC, __this_address);
2583        else {
2584                fa = xfs_agi_verify(bp);
2585                if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_IALLOC_READ_AGI))
2586                        xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2587        }
2588}
2589
2590static void
2591xfs_agi_write_verify(
2592        struct xfs_buf  *bp)
2593{
2594        struct xfs_mount        *mp = bp->b_mount;
2595        struct xfs_buf_log_item *bip = bp->b_log_item;
2596        xfs_failaddr_t          fa;
2597
2598        fa = xfs_agi_verify(bp);
2599        if (fa) {
2600                xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2601                return;
2602        }
2603
2604        if (!xfs_sb_version_hascrc(&mp->m_sb))
2605                return;
2606
2607        if (bip)
2608                XFS_BUF_TO_AGI(bp)->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
2609        xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
2610}
2611
2612const struct xfs_buf_ops xfs_agi_buf_ops = {
2613        .name = "xfs_agi",
2614        .magic = { cpu_to_be32(XFS_AGI_MAGIC), cpu_to_be32(XFS_AGI_MAGIC) },
2615        .verify_read = xfs_agi_read_verify,
2616        .verify_write = xfs_agi_write_verify,
2617        .verify_struct = xfs_agi_verify,
2618};
2619
2620/*
2621 * Read in the allocation group header (inode allocation section)
2622 */
2623int
2624xfs_read_agi(
2625        struct xfs_mount        *mp,    /* file system mount structure */
2626        struct xfs_trans        *tp,    /* transaction pointer */
2627        xfs_agnumber_t          agno,   /* allocation group number */
2628        struct xfs_buf          **bpp)  /* allocation group hdr buf */
2629{
2630        int                     error;
2631
2632        trace_xfs_read_agi(mp, agno);
2633
2634        ASSERT(agno != NULLAGNUMBER);
2635        error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
2636                        XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
2637                        XFS_FSS_TO_BB(mp, 1), 0, bpp, &xfs_agi_buf_ops);
2638        if (error)
2639                return error;
2640        if (tp)
2641                xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_AGI_BUF);
2642
2643        xfs_buf_set_ref(*bpp, XFS_AGI_REF);
2644        return 0;
2645}
2646
2647int
2648xfs_ialloc_read_agi(
2649        struct xfs_mount        *mp,    /* file system mount structure */
2650        struct xfs_trans        *tp,    /* transaction pointer */
2651        xfs_agnumber_t          agno,   /* allocation group number */
2652        struct xfs_buf          **bpp)  /* allocation group hdr buf */
2653{
2654        struct xfs_agi          *agi;   /* allocation group header */
2655        struct xfs_perag        *pag;   /* per allocation group data */
2656        int                     error;
2657
2658        trace_xfs_ialloc_read_agi(mp, agno);
2659
2660        error = xfs_read_agi(mp, tp, agno, bpp);
2661        if (error)
2662                return error;
2663
2664        agi = XFS_BUF_TO_AGI(*bpp);
2665        pag = xfs_perag_get(mp, agno);
2666        if (!pag->pagi_init) {
2667                pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
2668                pag->pagi_count = be32_to_cpu(agi->agi_count);
2669                pag->pagi_init = 1;
2670        }
2671
2672        /*
2673         * It's possible for these to be out of sync if
2674         * we are in the middle of a forced shutdown.
2675         */
2676        ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
2677                XFS_FORCED_SHUTDOWN(mp));
2678        xfs_perag_put(pag);
2679        return 0;
2680}
2681
2682/*
2683 * Read in the agi to initialise the per-ag data in the mount structure
2684 */
2685int
2686xfs_ialloc_pagi_init(
2687        xfs_mount_t     *mp,            /* file system mount structure */
2688        xfs_trans_t     *tp,            /* transaction pointer */
2689        xfs_agnumber_t  agno)           /* allocation group number */
2690{
2691        xfs_buf_t       *bp = NULL;
2692        int             error;
2693
2694        error = xfs_ialloc_read_agi(mp, tp, agno, &bp);
2695        if (error)
2696                return error;
2697        if (bp)
2698                xfs_trans_brelse(tp, bp);
2699        return 0;
2700}
2701
2702/* Is there an inode record covering a given range of inode numbers? */
2703int
2704xfs_ialloc_has_inode_record(
2705        struct xfs_btree_cur    *cur,
2706        xfs_agino_t             low,
2707        xfs_agino_t             high,
2708        bool                    *exists)
2709{
2710        struct xfs_inobt_rec_incore     irec;
2711        xfs_agino_t             agino;
2712        uint16_t                holemask;
2713        int                     has_record;
2714        int                     i;
2715        int                     error;
2716
2717        *exists = false;
2718        error = xfs_inobt_lookup(cur, low, XFS_LOOKUP_LE, &has_record);
2719        while (error == 0 && has_record) {
2720                error = xfs_inobt_get_rec(cur, &irec, &has_record);
2721                if (error || irec.ir_startino > high)
2722                        break;
2723
2724                agino = irec.ir_startino;
2725                holemask = irec.ir_holemask;
2726                for (i = 0; i < XFS_INOBT_HOLEMASK_BITS; holemask >>= 1,
2727                                i++, agino += XFS_INODES_PER_HOLEMASK_BIT) {
2728                        if (holemask & 1)
2729                                continue;
2730                        if (agino + XFS_INODES_PER_HOLEMASK_BIT > low &&
2731                                        agino <= high) {
2732                                *exists = true;
2733                                return 0;
2734                        }
2735                }
2736
2737                error = xfs_btree_increment(cur, 0, &has_record);
2738        }
2739        return error;
2740}
2741
2742/* Is there an inode record covering a given extent? */
2743int
2744xfs_ialloc_has_inodes_at_extent(
2745        struct xfs_btree_cur    *cur,
2746        xfs_agblock_t           bno,
2747        xfs_extlen_t            len,
2748        bool                    *exists)
2749{
2750        xfs_agino_t             low;
2751        xfs_agino_t             high;
2752
2753        low = XFS_AGB_TO_AGINO(cur->bc_mp, bno);
2754        high = XFS_AGB_TO_AGINO(cur->bc_mp, bno + len) - 1;
2755
2756        return xfs_ialloc_has_inode_record(cur, low, high, exists);
2757}
2758
2759struct xfs_ialloc_count_inodes {
2760        xfs_agino_t                     count;
2761        xfs_agino_t                     freecount;
2762};
2763
2764/* Record inode counts across all inobt records. */
2765STATIC int
2766xfs_ialloc_count_inodes_rec(
2767        struct xfs_btree_cur            *cur,
2768        union xfs_btree_rec             *rec,
2769        void                            *priv)
2770{
2771        struct xfs_inobt_rec_incore     irec;
2772        struct xfs_ialloc_count_inodes  *ci = priv;
2773
2774        xfs_inobt_btrec_to_irec(cur->bc_mp, rec, &irec);
2775        ci->count += irec.ir_count;
2776        ci->freecount += irec.ir_freecount;
2777
2778        return 0;
2779}
2780
2781/* Count allocated and free inodes under an inobt. */
2782int
2783xfs_ialloc_count_inodes(
2784        struct xfs_btree_cur            *cur,
2785        xfs_agino_t                     *count,
2786        xfs_agino_t                     *freecount)
2787{
2788        struct xfs_ialloc_count_inodes  ci = {0};
2789        int                             error;
2790
2791        ASSERT(cur->bc_btnum == XFS_BTNUM_INO);
2792        error = xfs_btree_query_all(cur, xfs_ialloc_count_inodes_rec, &ci);
2793        if (error)
2794                return error;
2795
2796        *count = ci.count;
2797        *freecount = ci.freecount;
2798        return 0;
2799}
2800
2801/*
2802 * Initialize inode-related geometry information.
2803 *
2804 * Compute the inode btree min and max levels and set maxicount.
2805 *
2806 * Set the inode cluster size.  This may still be overridden by the file
2807 * system block size if it is larger than the chosen cluster size.
2808 *
2809 * For v5 filesystems, scale the cluster size with the inode size to keep a
2810 * constant ratio of inode per cluster buffer, but only if mkfs has set the
2811 * inode alignment value appropriately for larger cluster sizes.
2812 *
2813 * Then compute the inode cluster alignment information.
2814 */
2815void
2816xfs_ialloc_setup_geometry(
2817        struct xfs_mount        *mp)
2818{
2819        struct xfs_sb           *sbp = &mp->m_sb;
2820        struct xfs_ino_geometry *igeo = M_IGEO(mp);
2821        uint64_t                icount;
2822        uint                    inodes;
2823
2824        /* Compute inode btree geometry. */
2825        igeo->agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
2826        igeo->inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1);
2827        igeo->inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0);
2828        igeo->inobt_mnr[0] = igeo->inobt_mxr[0] / 2;
2829        igeo->inobt_mnr[1] = igeo->inobt_mxr[1] / 2;
2830
2831        igeo->ialloc_inos = max_t(uint16_t, XFS_INODES_PER_CHUNK,
2832                        sbp->sb_inopblock);
2833        igeo->ialloc_blks = igeo->ialloc_inos >> sbp->sb_inopblog;
2834
2835        if (sbp->sb_spino_align)
2836                igeo->ialloc_min_blks = sbp->sb_spino_align;
2837        else
2838                igeo->ialloc_min_blks = igeo->ialloc_blks;
2839
2840        /* Compute and fill in value of m_ino_geo.inobt_maxlevels. */
2841        inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG;
2842        igeo->inobt_maxlevels = xfs_btree_compute_maxlevels(igeo->inobt_mnr,
2843                        inodes);
2844
2845        /*
2846         * Set the maximum inode count for this filesystem, being careful not
2847         * to use obviously garbage sb_inopblog/sb_inopblock values.  Regular
2848         * users should never get here due to failing sb verification, but
2849         * certain users (xfs_db) need to be usable even with corrupt metadata.
2850         */
2851        if (sbp->sb_imax_pct && igeo->ialloc_blks) {
2852                /*
2853                 * Make sure the maximum inode count is a multiple
2854                 * of the units we allocate inodes in.
2855                 */
2856                icount = sbp->sb_dblocks * sbp->sb_imax_pct;
2857                do_div(icount, 100);
2858                do_div(icount, igeo->ialloc_blks);
2859                igeo->maxicount = XFS_FSB_TO_INO(mp,
2860                                icount * igeo->ialloc_blks);
2861        } else {
2862                igeo->maxicount = 0;
2863        }
2864
2865        /*
2866         * Compute the desired size of an inode cluster buffer size, which
2867         * starts at 8K and (on v5 filesystems) scales up with larger inode
2868         * sizes.
2869         *
2870         * Preserve the desired inode cluster size because the sparse inodes
2871         * feature uses that desired size (not the actual size) to compute the
2872         * sparse inode alignment.  The mount code validates this value, so we
2873         * cannot change the behavior.
2874         */
2875        igeo->inode_cluster_size_raw = XFS_INODE_BIG_CLUSTER_SIZE;
2876        if (xfs_sb_version_hascrc(&mp->m_sb)) {
2877                int     new_size = igeo->inode_cluster_size_raw;
2878
2879                new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
2880                if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
2881                        igeo->inode_cluster_size_raw = new_size;
2882        }
2883
2884        /* Calculate inode cluster ratios. */
2885        if (igeo->inode_cluster_size_raw > mp->m_sb.sb_blocksize)
2886                igeo->blocks_per_cluster = XFS_B_TO_FSBT(mp,
2887                                igeo->inode_cluster_size_raw);
2888        else
2889                igeo->blocks_per_cluster = 1;
2890        igeo->inode_cluster_size = XFS_FSB_TO_B(mp, igeo->blocks_per_cluster);
2891        igeo->inodes_per_cluster = XFS_FSB_TO_INO(mp, igeo->blocks_per_cluster);
2892
2893        /* Calculate inode cluster alignment. */
2894        if (xfs_sb_version_hasalign(&mp->m_sb) &&
2895            mp->m_sb.sb_inoalignmt >= igeo->blocks_per_cluster)
2896                igeo->cluster_align = mp->m_sb.sb_inoalignmt;
2897        else
2898                igeo->cluster_align = 1;
2899        igeo->inoalign_mask = igeo->cluster_align - 1;
2900        igeo->cluster_align_inodes = XFS_FSB_TO_INO(mp, igeo->cluster_align);
2901
2902        /*
2903         * If we are using stripe alignment, check whether
2904         * the stripe unit is a multiple of the inode alignment
2905         */
2906        if (mp->m_dalign && igeo->inoalign_mask &&
2907            !(mp->m_dalign & igeo->inoalign_mask))
2908                igeo->ialloc_align = mp->m_dalign;
2909        else
2910                igeo->ialloc_align = 0;
2911}
2912
2913/* Compute the location of the root directory inode that is laid out by mkfs. */
2914xfs_ino_t
2915xfs_ialloc_calc_rootino(
2916        struct xfs_mount        *mp,
2917        int                     sunit)
2918{
2919        struct xfs_ino_geometry *igeo = M_IGEO(mp);
2920        xfs_agblock_t           first_bno;
2921
2922        /*
2923         * Pre-calculate the geometry of AG 0.  We know what it looks like
2924         * because libxfs knows how to create allocation groups now.
2925         *
2926         * first_bno is the first block in which mkfs could possibly have
2927         * allocated the root directory inode, once we factor in the metadata
2928         * that mkfs formats before it.  Namely, the four AG headers...
2929         */
2930        first_bno = howmany(4 * mp->m_sb.sb_sectsize, mp->m_sb.sb_blocksize);
2931
2932        /* ...the two free space btree roots... */
2933        first_bno += 2;
2934
2935        /* ...the inode btree root... */
2936        first_bno += 1;
2937
2938        /* ...the initial AGFL... */
2939        first_bno += xfs_alloc_min_freelist(mp, NULL);
2940
2941        /* ...the free inode btree root... */
2942        if (xfs_sb_version_hasfinobt(&mp->m_sb))
2943                first_bno++;
2944
2945        /* ...the reverse mapping btree root... */
2946        if (xfs_sb_version_hasrmapbt(&mp->m_sb))
2947                first_bno++;
2948
2949        /* ...the reference count btree... */
2950        if (xfs_sb_version_hasreflink(&mp->m_sb))
2951                first_bno++;
2952
2953        /*
2954         * ...and the log, if it is allocated in the first allocation group.
2955         *
2956         * This can happen with filesystems that only have a single
2957         * allocation group, or very odd geometries created by old mkfs
2958         * versions on very small filesystems.
2959         */
2960        if (mp->m_sb.sb_logstart &&
2961            XFS_FSB_TO_AGNO(mp, mp->m_sb.sb_logstart) == 0)
2962                 first_bno += mp->m_sb.sb_logblocks;
2963
2964        /*
2965         * Now round first_bno up to whatever allocation alignment is given
2966         * by the filesystem or was passed in.
2967         */
2968        if (xfs_sb_version_hasdalign(&mp->m_sb) && igeo->ialloc_align > 0)
2969                first_bno = roundup(first_bno, sunit);
2970        else if (xfs_sb_version_hasalign(&mp->m_sb) &&
2971                        mp->m_sb.sb_inoalignmt > 1)
2972                first_bno = roundup(first_bno, mp->m_sb.sb_inoalignmt);
2973
2974        return XFS_AGINO_TO_INO(mp, 0, XFS_AGB_TO_AGINO(mp, first_bno));
2975}
2976