linux/fs/xfs/xfs_file.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   4 * All Rights Reserved.
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
  12#include "xfs_mount.h"
  13#include "xfs_inode.h"
  14#include "xfs_trans.h"
  15#include "xfs_inode_item.h"
  16#include "xfs_bmap.h"
  17#include "xfs_bmap_util.h"
  18#include "xfs_dir2.h"
  19#include "xfs_dir2_priv.h"
  20#include "xfs_ioctl.h"
  21#include "xfs_trace.h"
  22#include "xfs_log.h"
  23#include "xfs_icache.h"
  24#include "xfs_pnfs.h"
  25#include "xfs_iomap.h"
  26#include "xfs_reflink.h"
  27
  28#include <linux/falloc.h>
  29#include <linux/backing-dev.h>
  30#include <linux/mman.h>
  31#include <linux/fadvise.h>
  32
  33static const struct vm_operations_struct xfs_file_vm_ops;
  34
  35int
  36xfs_update_prealloc_flags(
  37        struct xfs_inode        *ip,
  38        enum xfs_prealloc_flags flags)
  39{
  40        struct xfs_trans        *tp;
  41        int                     error;
  42
  43        error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
  44                        0, 0, 0, &tp);
  45        if (error)
  46                return error;
  47
  48        xfs_ilock(ip, XFS_ILOCK_EXCL);
  49        xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
  50
  51        if (!(flags & XFS_PREALLOC_INVISIBLE)) {
  52                VFS_I(ip)->i_mode &= ~S_ISUID;
  53                if (VFS_I(ip)->i_mode & S_IXGRP)
  54                        VFS_I(ip)->i_mode &= ~S_ISGID;
  55                xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
  56        }
  57
  58        if (flags & XFS_PREALLOC_SET)
  59                ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
  60        if (flags & XFS_PREALLOC_CLEAR)
  61                ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
  62
  63        xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  64        if (flags & XFS_PREALLOC_SYNC)
  65                xfs_trans_set_sync(tp);
  66        return xfs_trans_commit(tp);
  67}
  68
  69/*
  70 * Fsync operations on directories are much simpler than on regular files,
  71 * as there is no file data to flush, and thus also no need for explicit
  72 * cache flush operations, and there are no non-transaction metadata updates
  73 * on directories either.
  74 */
  75STATIC int
  76xfs_dir_fsync(
  77        struct file             *file,
  78        loff_t                  start,
  79        loff_t                  end,
  80        int                     datasync)
  81{
  82        struct xfs_inode        *ip = XFS_I(file->f_mapping->host);
  83        struct xfs_mount        *mp = ip->i_mount;
  84        xfs_lsn_t               lsn = 0;
  85
  86        trace_xfs_dir_fsync(ip);
  87
  88        xfs_ilock(ip, XFS_ILOCK_SHARED);
  89        if (xfs_ipincount(ip))
  90                lsn = ip->i_itemp->ili_last_lsn;
  91        xfs_iunlock(ip, XFS_ILOCK_SHARED);
  92
  93        if (!lsn)
  94                return 0;
  95        return xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
  96}
  97
  98STATIC int
  99xfs_file_fsync(
 100        struct file             *file,
 101        loff_t                  start,
 102        loff_t                  end,
 103        int                     datasync)
 104{
 105        struct inode            *inode = file->f_mapping->host;
 106        struct xfs_inode        *ip = XFS_I(inode);
 107        struct xfs_mount        *mp = ip->i_mount;
 108        int                     error = 0;
 109        int                     log_flushed = 0;
 110        xfs_lsn_t               lsn = 0;
 111
 112        trace_xfs_file_fsync(ip);
 113
 114        error = file_write_and_wait_range(file, start, end);
 115        if (error)
 116                return error;
 117
 118        if (XFS_FORCED_SHUTDOWN(mp))
 119                return -EIO;
 120
 121        xfs_iflags_clear(ip, XFS_ITRUNCATED);
 122
 123        /*
 124         * If we have an RT and/or log subvolume we need to make sure to flush
 125         * the write cache the device used for file data first.  This is to
 126         * ensure newly written file data make it to disk before logging the new
 127         * inode size in case of an extending write.
 128         */
 129        if (XFS_IS_REALTIME_INODE(ip))
 130                xfs_blkdev_issue_flush(mp->m_rtdev_targp);
 131        else if (mp->m_logdev_targp != mp->m_ddev_targp)
 132                xfs_blkdev_issue_flush(mp->m_ddev_targp);
 133
 134        /*
 135         * All metadata updates are logged, which means that we just have to
 136         * flush the log up to the latest LSN that touched the inode. If we have
 137         * concurrent fsync/fdatasync() calls, we need them to all block on the
 138         * log force before we clear the ili_fsync_fields field. This ensures
 139         * that we don't get a racing sync operation that does not wait for the
 140         * metadata to hit the journal before returning. If we race with
 141         * clearing the ili_fsync_fields, then all that will happen is the log
 142         * force will do nothing as the lsn will already be on disk. We can't
 143         * race with setting ili_fsync_fields because that is done under
 144         * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
 145         * until after the ili_fsync_fields is cleared.
 146         */
 147        xfs_ilock(ip, XFS_ILOCK_SHARED);
 148        if (xfs_ipincount(ip)) {
 149                if (!datasync ||
 150                    (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
 151                        lsn = ip->i_itemp->ili_last_lsn;
 152        }
 153
 154        if (lsn) {
 155                error = xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
 156                ip->i_itemp->ili_fsync_fields = 0;
 157        }
 158        xfs_iunlock(ip, XFS_ILOCK_SHARED);
 159
 160        /*
 161         * If we only have a single device, and the log force about was
 162         * a no-op we might have to flush the data device cache here.
 163         * This can only happen for fdatasync/O_DSYNC if we were overwriting
 164         * an already allocated file and thus do not have any metadata to
 165         * commit.
 166         */
 167        if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
 168            mp->m_logdev_targp == mp->m_ddev_targp)
 169                xfs_blkdev_issue_flush(mp->m_ddev_targp);
 170
 171        return error;
 172}
 173
 174STATIC ssize_t
 175xfs_file_dio_aio_read(
 176        struct kiocb            *iocb,
 177        struct iov_iter         *to)
 178{
 179        struct xfs_inode        *ip = XFS_I(file_inode(iocb->ki_filp));
 180        size_t                  count = iov_iter_count(to);
 181        ssize_t                 ret;
 182
 183        trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
 184
 185        if (!count)
 186                return 0; /* skip atime */
 187
 188        file_accessed(iocb->ki_filp);
 189
 190        xfs_ilock(ip, XFS_IOLOCK_SHARED);
 191        ret = iomap_dio_rw(iocb, to, &xfs_read_iomap_ops, NULL,
 192                        is_sync_kiocb(iocb));
 193        xfs_iunlock(ip, XFS_IOLOCK_SHARED);
 194
 195        return ret;
 196}
 197
 198static noinline ssize_t
 199xfs_file_dax_read(
 200        struct kiocb            *iocb,
 201        struct iov_iter         *to)
 202{
 203        struct xfs_inode        *ip = XFS_I(iocb->ki_filp->f_mapping->host);
 204        size_t                  count = iov_iter_count(to);
 205        ssize_t                 ret = 0;
 206
 207        trace_xfs_file_dax_read(ip, count, iocb->ki_pos);
 208
 209        if (!count)
 210                return 0; /* skip atime */
 211
 212        if (iocb->ki_flags & IOCB_NOWAIT) {
 213                if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
 214                        return -EAGAIN;
 215        } else {
 216                xfs_ilock(ip, XFS_IOLOCK_SHARED);
 217        }
 218
 219        ret = dax_iomap_rw(iocb, to, &xfs_read_iomap_ops);
 220        xfs_iunlock(ip, XFS_IOLOCK_SHARED);
 221
 222        file_accessed(iocb->ki_filp);
 223        return ret;
 224}
 225
 226STATIC ssize_t
 227xfs_file_buffered_aio_read(
 228        struct kiocb            *iocb,
 229        struct iov_iter         *to)
 230{
 231        struct xfs_inode        *ip = XFS_I(file_inode(iocb->ki_filp));
 232        ssize_t                 ret;
 233
 234        trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
 235
 236        if (iocb->ki_flags & IOCB_NOWAIT) {
 237                if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
 238                        return -EAGAIN;
 239        } else {
 240                xfs_ilock(ip, XFS_IOLOCK_SHARED);
 241        }
 242        ret = generic_file_read_iter(iocb, to);
 243        xfs_iunlock(ip, XFS_IOLOCK_SHARED);
 244
 245        return ret;
 246}
 247
 248STATIC ssize_t
 249xfs_file_read_iter(
 250        struct kiocb            *iocb,
 251        struct iov_iter         *to)
 252{
 253        struct inode            *inode = file_inode(iocb->ki_filp);
 254        struct xfs_mount        *mp = XFS_I(inode)->i_mount;
 255        ssize_t                 ret = 0;
 256
 257        XFS_STATS_INC(mp, xs_read_calls);
 258
 259        if (XFS_FORCED_SHUTDOWN(mp))
 260                return -EIO;
 261
 262        if (IS_DAX(inode))
 263                ret = xfs_file_dax_read(iocb, to);
 264        else if (iocb->ki_flags & IOCB_DIRECT)
 265                ret = xfs_file_dio_aio_read(iocb, to);
 266        else
 267                ret = xfs_file_buffered_aio_read(iocb, to);
 268
 269        if (ret > 0)
 270                XFS_STATS_ADD(mp, xs_read_bytes, ret);
 271        return ret;
 272}
 273
 274/*
 275 * Common pre-write limit and setup checks.
 276 *
 277 * Called with the iolocked held either shared and exclusive according to
 278 * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
 279 * if called for a direct write beyond i_size.
 280 */
 281STATIC ssize_t
 282xfs_file_aio_write_checks(
 283        struct kiocb            *iocb,
 284        struct iov_iter         *from,
 285        int                     *iolock)
 286{
 287        struct file             *file = iocb->ki_filp;
 288        struct inode            *inode = file->f_mapping->host;
 289        struct xfs_inode        *ip = XFS_I(inode);
 290        ssize_t                 error = 0;
 291        size_t                  count = iov_iter_count(from);
 292        bool                    drained_dio = false;
 293        loff_t                  isize;
 294
 295restart:
 296        error = generic_write_checks(iocb, from);
 297        if (error <= 0)
 298                return error;
 299
 300        error = xfs_break_layouts(inode, iolock, BREAK_WRITE);
 301        if (error)
 302                return error;
 303
 304        /*
 305         * For changing security info in file_remove_privs() we need i_rwsem
 306         * exclusively.
 307         */
 308        if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
 309                xfs_iunlock(ip, *iolock);
 310                *iolock = XFS_IOLOCK_EXCL;
 311                xfs_ilock(ip, *iolock);
 312                goto restart;
 313        }
 314        /*
 315         * If the offset is beyond the size of the file, we need to zero any
 316         * blocks that fall between the existing EOF and the start of this
 317         * write.  If zeroing is needed and we are currently holding the
 318         * iolock shared, we need to update it to exclusive which implies
 319         * having to redo all checks before.
 320         *
 321         * We need to serialise against EOF updates that occur in IO
 322         * completions here. We want to make sure that nobody is changing the
 323         * size while we do this check until we have placed an IO barrier (i.e.
 324         * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
 325         * The spinlock effectively forms a memory barrier once we have the
 326         * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
 327         * and hence be able to correctly determine if we need to run zeroing.
 328         */
 329        spin_lock(&ip->i_flags_lock);
 330        isize = i_size_read(inode);
 331        if (iocb->ki_pos > isize) {
 332                spin_unlock(&ip->i_flags_lock);
 333                if (!drained_dio) {
 334                        if (*iolock == XFS_IOLOCK_SHARED) {
 335                                xfs_iunlock(ip, *iolock);
 336                                *iolock = XFS_IOLOCK_EXCL;
 337                                xfs_ilock(ip, *iolock);
 338                                iov_iter_reexpand(from, count);
 339                        }
 340                        /*
 341                         * We now have an IO submission barrier in place, but
 342                         * AIO can do EOF updates during IO completion and hence
 343                         * we now need to wait for all of them to drain. Non-AIO
 344                         * DIO will have drained before we are given the
 345                         * XFS_IOLOCK_EXCL, and so for most cases this wait is a
 346                         * no-op.
 347                         */
 348                        inode_dio_wait(inode);
 349                        drained_dio = true;
 350                        goto restart;
 351                }
 352        
 353                trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize);
 354                error = iomap_zero_range(inode, isize, iocb->ki_pos - isize,
 355                                NULL, &xfs_buffered_write_iomap_ops);
 356                if (error)
 357                        return error;
 358        } else
 359                spin_unlock(&ip->i_flags_lock);
 360
 361        /*
 362         * Updating the timestamps will grab the ilock again from
 363         * xfs_fs_dirty_inode, so we have to call it after dropping the
 364         * lock above.  Eventually we should look into a way to avoid
 365         * the pointless lock roundtrip.
 366         */
 367        return file_modified(file);
 368}
 369
 370static int
 371xfs_dio_write_end_io(
 372        struct kiocb            *iocb,
 373        ssize_t                 size,
 374        int                     error,
 375        unsigned                flags)
 376{
 377        struct inode            *inode = file_inode(iocb->ki_filp);
 378        struct xfs_inode        *ip = XFS_I(inode);
 379        loff_t                  offset = iocb->ki_pos;
 380        unsigned int            nofs_flag;
 381
 382        trace_xfs_end_io_direct_write(ip, offset, size);
 383
 384        if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 385                return -EIO;
 386
 387        if (error)
 388                return error;
 389        if (!size)
 390                return 0;
 391
 392        /*
 393         * Capture amount written on completion as we can't reliably account
 394         * for it on submission.
 395         */
 396        XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size);
 397
 398        /*
 399         * We can allocate memory here while doing writeback on behalf of
 400         * memory reclaim.  To avoid memory allocation deadlocks set the
 401         * task-wide nofs context for the following operations.
 402         */
 403        nofs_flag = memalloc_nofs_save();
 404
 405        if (flags & IOMAP_DIO_COW) {
 406                error = xfs_reflink_end_cow(ip, offset, size);
 407                if (error)
 408                        goto out;
 409        }
 410
 411        /*
 412         * Unwritten conversion updates the in-core isize after extent
 413         * conversion but before updating the on-disk size. Updating isize any
 414         * earlier allows a racing dio read to find unwritten extents before
 415         * they are converted.
 416         */
 417        if (flags & IOMAP_DIO_UNWRITTEN) {
 418                error = xfs_iomap_write_unwritten(ip, offset, size, true);
 419                goto out;
 420        }
 421
 422        /*
 423         * We need to update the in-core inode size here so that we don't end up
 424         * with the on-disk inode size being outside the in-core inode size. We
 425         * have no other method of updating EOF for AIO, so always do it here
 426         * if necessary.
 427         *
 428         * We need to lock the test/set EOF update as we can be racing with
 429         * other IO completions here to update the EOF. Failing to serialise
 430         * here can result in EOF moving backwards and Bad Things Happen when
 431         * that occurs.
 432         */
 433        spin_lock(&ip->i_flags_lock);
 434        if (offset + size > i_size_read(inode)) {
 435                i_size_write(inode, offset + size);
 436                spin_unlock(&ip->i_flags_lock);
 437                error = xfs_setfilesize(ip, offset, size);
 438        } else {
 439                spin_unlock(&ip->i_flags_lock);
 440        }
 441
 442out:
 443        memalloc_nofs_restore(nofs_flag);
 444        return error;
 445}
 446
 447static const struct iomap_dio_ops xfs_dio_write_ops = {
 448        .end_io         = xfs_dio_write_end_io,
 449};
 450
 451/*
 452 * xfs_file_dio_aio_write - handle direct IO writes
 453 *
 454 * Lock the inode appropriately to prepare for and issue a direct IO write.
 455 * By separating it from the buffered write path we remove all the tricky to
 456 * follow locking changes and looping.
 457 *
 458 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
 459 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
 460 * pages are flushed out.
 461 *
 462 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
 463 * allowing them to be done in parallel with reads and other direct IO writes.
 464 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
 465 * needs to do sub-block zeroing and that requires serialisation against other
 466 * direct IOs to the same block. In this case we need to serialise the
 467 * submission of the unaligned IOs so that we don't get racing block zeroing in
 468 * the dio layer.  To avoid the problem with aio, we also need to wait for
 469 * outstanding IOs to complete so that unwritten extent conversion is completed
 470 * before we try to map the overlapping block. This is currently implemented by
 471 * hitting it with a big hammer (i.e. inode_dio_wait()).
 472 *
 473 * Returns with locks held indicated by @iolock and errors indicated by
 474 * negative return values.
 475 */
 476STATIC ssize_t
 477xfs_file_dio_aio_write(
 478        struct kiocb            *iocb,
 479        struct iov_iter         *from)
 480{
 481        struct file             *file = iocb->ki_filp;
 482        struct address_space    *mapping = file->f_mapping;
 483        struct inode            *inode = mapping->host;
 484        struct xfs_inode        *ip = XFS_I(inode);
 485        struct xfs_mount        *mp = ip->i_mount;
 486        ssize_t                 ret = 0;
 487        int                     unaligned_io = 0;
 488        int                     iolock;
 489        size_t                  count = iov_iter_count(from);
 490        struct xfs_buftarg      *target = xfs_inode_buftarg(ip);
 491
 492        /* DIO must be aligned to device logical sector size */
 493        if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
 494                return -EINVAL;
 495
 496        /*
 497         * Don't take the exclusive iolock here unless the I/O is unaligned to
 498         * the file system block size.  We don't need to consider the EOF
 499         * extension case here because xfs_file_aio_write_checks() will relock
 500         * the inode as necessary for EOF zeroing cases and fill out the new
 501         * inode size as appropriate.
 502         */
 503        if ((iocb->ki_pos & mp->m_blockmask) ||
 504            ((iocb->ki_pos + count) & mp->m_blockmask)) {
 505                unaligned_io = 1;
 506
 507                /*
 508                 * We can't properly handle unaligned direct I/O to reflink
 509                 * files yet, as we can't unshare a partial block.
 510                 */
 511                if (xfs_is_cow_inode(ip)) {
 512                        trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count);
 513                        return -EREMCHG;
 514                }
 515                iolock = XFS_IOLOCK_EXCL;
 516        } else {
 517                iolock = XFS_IOLOCK_SHARED;
 518        }
 519
 520        if (iocb->ki_flags & IOCB_NOWAIT) {
 521                /* unaligned dio always waits, bail */
 522                if (unaligned_io)
 523                        return -EAGAIN;
 524                if (!xfs_ilock_nowait(ip, iolock))
 525                        return -EAGAIN;
 526        } else {
 527                xfs_ilock(ip, iolock);
 528        }
 529
 530        ret = xfs_file_aio_write_checks(iocb, from, &iolock);
 531        if (ret)
 532                goto out;
 533        count = iov_iter_count(from);
 534
 535        /*
 536         * If we are doing unaligned IO, we can't allow any other overlapping IO
 537         * in-flight at the same time or we risk data corruption. Wait for all
 538         * other IO to drain before we submit. If the IO is aligned, demote the
 539         * iolock if we had to take the exclusive lock in
 540         * xfs_file_aio_write_checks() for other reasons.
 541         */
 542        if (unaligned_io) {
 543                inode_dio_wait(inode);
 544        } else if (iolock == XFS_IOLOCK_EXCL) {
 545                xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
 546                iolock = XFS_IOLOCK_SHARED;
 547        }
 548
 549        trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
 550        /*
 551         * If unaligned, this is the only IO in-flight. Wait on it before we
 552         * release the iolock to prevent subsequent overlapping IO.
 553         */
 554        ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops,
 555                           &xfs_dio_write_ops,
 556                           is_sync_kiocb(iocb) || unaligned_io);
 557out:
 558        xfs_iunlock(ip, iolock);
 559
 560        /*
 561         * No fallback to buffered IO on errors for XFS, direct IO will either
 562         * complete fully or fail.
 563         */
 564        ASSERT(ret < 0 || ret == count);
 565        return ret;
 566}
 567
 568static noinline ssize_t
 569xfs_file_dax_write(
 570        struct kiocb            *iocb,
 571        struct iov_iter         *from)
 572{
 573        struct inode            *inode = iocb->ki_filp->f_mapping->host;
 574        struct xfs_inode        *ip = XFS_I(inode);
 575        int                     iolock = XFS_IOLOCK_EXCL;
 576        ssize_t                 ret, error = 0;
 577        size_t                  count;
 578        loff_t                  pos;
 579
 580        if (iocb->ki_flags & IOCB_NOWAIT) {
 581                if (!xfs_ilock_nowait(ip, iolock))
 582                        return -EAGAIN;
 583        } else {
 584                xfs_ilock(ip, iolock);
 585        }
 586
 587        ret = xfs_file_aio_write_checks(iocb, from, &iolock);
 588        if (ret)
 589                goto out;
 590
 591        pos = iocb->ki_pos;
 592        count = iov_iter_count(from);
 593
 594        trace_xfs_file_dax_write(ip, count, pos);
 595        ret = dax_iomap_rw(iocb, from, &xfs_direct_write_iomap_ops);
 596        if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
 597                i_size_write(inode, iocb->ki_pos);
 598                error = xfs_setfilesize(ip, pos, ret);
 599        }
 600out:
 601        xfs_iunlock(ip, iolock);
 602        if (error)
 603                return error;
 604
 605        if (ret > 0) {
 606                XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
 607
 608                /* Handle various SYNC-type writes */
 609                ret = generic_write_sync(iocb, ret);
 610        }
 611        return ret;
 612}
 613
 614STATIC ssize_t
 615xfs_file_buffered_aio_write(
 616        struct kiocb            *iocb,
 617        struct iov_iter         *from)
 618{
 619        struct file             *file = iocb->ki_filp;
 620        struct address_space    *mapping = file->f_mapping;
 621        struct inode            *inode = mapping->host;
 622        struct xfs_inode        *ip = XFS_I(inode);
 623        ssize_t                 ret;
 624        int                     enospc = 0;
 625        int                     iolock;
 626
 627        if (iocb->ki_flags & IOCB_NOWAIT)
 628                return -EOPNOTSUPP;
 629
 630write_retry:
 631        iolock = XFS_IOLOCK_EXCL;
 632        xfs_ilock(ip, iolock);
 633
 634        ret = xfs_file_aio_write_checks(iocb, from, &iolock);
 635        if (ret)
 636                goto out;
 637
 638        /* We can write back this queue in page reclaim */
 639        current->backing_dev_info = inode_to_bdi(inode);
 640
 641        trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
 642        ret = iomap_file_buffered_write(iocb, from,
 643                        &xfs_buffered_write_iomap_ops);
 644        if (likely(ret >= 0))
 645                iocb->ki_pos += ret;
 646
 647        /*
 648         * If we hit a space limit, try to free up some lingering preallocated
 649         * space before returning an error. In the case of ENOSPC, first try to
 650         * write back all dirty inodes to free up some of the excess reserved
 651         * metadata space. This reduces the chances that the eofblocks scan
 652         * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
 653         * also behaves as a filter to prevent too many eofblocks scans from
 654         * running at the same time.
 655         */
 656        if (ret == -EDQUOT && !enospc) {
 657                xfs_iunlock(ip, iolock);
 658                enospc = xfs_inode_free_quota_eofblocks(ip);
 659                if (enospc)
 660                        goto write_retry;
 661                enospc = xfs_inode_free_quota_cowblocks(ip);
 662                if (enospc)
 663                        goto write_retry;
 664                iolock = 0;
 665        } else if (ret == -ENOSPC && !enospc) {
 666                struct xfs_eofblocks eofb = {0};
 667
 668                enospc = 1;
 669                xfs_flush_inodes(ip->i_mount);
 670
 671                xfs_iunlock(ip, iolock);
 672                eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
 673                xfs_icache_free_eofblocks(ip->i_mount, &eofb);
 674                xfs_icache_free_cowblocks(ip->i_mount, &eofb);
 675                goto write_retry;
 676        }
 677
 678        current->backing_dev_info = NULL;
 679out:
 680        if (iolock)
 681                xfs_iunlock(ip, iolock);
 682
 683        if (ret > 0) {
 684                XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
 685                /* Handle various SYNC-type writes */
 686                ret = generic_write_sync(iocb, ret);
 687        }
 688        return ret;
 689}
 690
 691STATIC ssize_t
 692xfs_file_write_iter(
 693        struct kiocb            *iocb,
 694        struct iov_iter         *from)
 695{
 696        struct file             *file = iocb->ki_filp;
 697        struct address_space    *mapping = file->f_mapping;
 698        struct inode            *inode = mapping->host;
 699        struct xfs_inode        *ip = XFS_I(inode);
 700        ssize_t                 ret;
 701        size_t                  ocount = iov_iter_count(from);
 702
 703        XFS_STATS_INC(ip->i_mount, xs_write_calls);
 704
 705        if (ocount == 0)
 706                return 0;
 707
 708        if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 709                return -EIO;
 710
 711        if (IS_DAX(inode))
 712                return xfs_file_dax_write(iocb, from);
 713
 714        if (iocb->ki_flags & IOCB_DIRECT) {
 715                /*
 716                 * Allow a directio write to fall back to a buffered
 717                 * write *only* in the case that we're doing a reflink
 718                 * CoW.  In all other directio scenarios we do not
 719                 * allow an operation to fall back to buffered mode.
 720                 */
 721                ret = xfs_file_dio_aio_write(iocb, from);
 722                if (ret != -EREMCHG)
 723                        return ret;
 724        }
 725
 726        return xfs_file_buffered_aio_write(iocb, from);
 727}
 728
 729static void
 730xfs_wait_dax_page(
 731        struct inode            *inode)
 732{
 733        struct xfs_inode        *ip = XFS_I(inode);
 734
 735        xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
 736        schedule();
 737        xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
 738}
 739
 740static int
 741xfs_break_dax_layouts(
 742        struct inode            *inode,
 743        bool                    *retry)
 744{
 745        struct page             *page;
 746
 747        ASSERT(xfs_isilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL));
 748
 749        page = dax_layout_busy_page(inode->i_mapping);
 750        if (!page)
 751                return 0;
 752
 753        *retry = true;
 754        return ___wait_var_event(&page->_refcount,
 755                        atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE,
 756                        0, 0, xfs_wait_dax_page(inode));
 757}
 758
 759int
 760xfs_break_layouts(
 761        struct inode            *inode,
 762        uint                    *iolock,
 763        enum layout_break_reason reason)
 764{
 765        bool                    retry;
 766        int                     error;
 767
 768        ASSERT(xfs_isilocked(XFS_I(inode), XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL));
 769
 770        do {
 771                retry = false;
 772                switch (reason) {
 773                case BREAK_UNMAP:
 774                        error = xfs_break_dax_layouts(inode, &retry);
 775                        if (error || retry)
 776                                break;
 777                        /* fall through */
 778                case BREAK_WRITE:
 779                        error = xfs_break_leased_layouts(inode, iolock, &retry);
 780                        break;
 781                default:
 782                        WARN_ON_ONCE(1);
 783                        error = -EINVAL;
 784                }
 785        } while (error == 0 && retry);
 786
 787        return error;
 788}
 789
 790#define XFS_FALLOC_FL_SUPPORTED                                         \
 791                (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |           \
 792                 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |      \
 793                 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
 794
 795STATIC long
 796xfs_file_fallocate(
 797        struct file             *file,
 798        int                     mode,
 799        loff_t                  offset,
 800        loff_t                  len)
 801{
 802        struct inode            *inode = file_inode(file);
 803        struct xfs_inode        *ip = XFS_I(inode);
 804        long                    error;
 805        enum xfs_prealloc_flags flags = 0;
 806        uint                    iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
 807        loff_t                  new_size = 0;
 808        bool                    do_file_insert = false;
 809
 810        if (!S_ISREG(inode->i_mode))
 811                return -EINVAL;
 812        if (mode & ~XFS_FALLOC_FL_SUPPORTED)
 813                return -EOPNOTSUPP;
 814
 815        xfs_ilock(ip, iolock);
 816        error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP);
 817        if (error)
 818                goto out_unlock;
 819
 820        /*
 821         * Must wait for all AIO to complete before we continue as AIO can
 822         * change the file size on completion without holding any locks we
 823         * currently hold. We must do this first because AIO can update both
 824         * the on disk and in memory inode sizes, and the operations that follow
 825         * require the in-memory size to be fully up-to-date.
 826         */
 827        inode_dio_wait(inode);
 828
 829        /*
 830         * Now AIO and DIO has drained we flush and (if necessary) invalidate
 831         * the cached range over the first operation we are about to run.
 832         *
 833         * We care about zero and collapse here because they both run a hole
 834         * punch over the range first. Because that can zero data, and the range
 835         * of invalidation for the shift operations is much larger, we still do
 836         * the required flush for collapse in xfs_prepare_shift().
 837         *
 838         * Insert has the same range requirements as collapse, and we extend the
 839         * file first which can zero data. Hence insert has the same
 840         * flush/invalidate requirements as collapse and so they are both
 841         * handled at the right time by xfs_prepare_shift().
 842         */
 843        if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE |
 844                    FALLOC_FL_COLLAPSE_RANGE)) {
 845                error = xfs_flush_unmap_range(ip, offset, len);
 846                if (error)
 847                        goto out_unlock;
 848        }
 849
 850        if (mode & FALLOC_FL_PUNCH_HOLE) {
 851                error = xfs_free_file_space(ip, offset, len);
 852                if (error)
 853                        goto out_unlock;
 854        } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
 855                unsigned int blksize_mask = i_blocksize(inode) - 1;
 856
 857                if (offset & blksize_mask || len & blksize_mask) {
 858                        error = -EINVAL;
 859                        goto out_unlock;
 860                }
 861
 862                /*
 863                 * There is no need to overlap collapse range with EOF,
 864                 * in which case it is effectively a truncate operation
 865                 */
 866                if (offset + len >= i_size_read(inode)) {
 867                        error = -EINVAL;
 868                        goto out_unlock;
 869                }
 870
 871                new_size = i_size_read(inode) - len;
 872
 873                error = xfs_collapse_file_space(ip, offset, len);
 874                if (error)
 875                        goto out_unlock;
 876        } else if (mode & FALLOC_FL_INSERT_RANGE) {
 877                unsigned int    blksize_mask = i_blocksize(inode) - 1;
 878                loff_t          isize = i_size_read(inode);
 879
 880                if (offset & blksize_mask || len & blksize_mask) {
 881                        error = -EINVAL;
 882                        goto out_unlock;
 883                }
 884
 885                /*
 886                 * New inode size must not exceed ->s_maxbytes, accounting for
 887                 * possible signed overflow.
 888                 */
 889                if (inode->i_sb->s_maxbytes - isize < len) {
 890                        error = -EFBIG;
 891                        goto out_unlock;
 892                }
 893                new_size = isize + len;
 894
 895                /* Offset should be less than i_size */
 896                if (offset >= isize) {
 897                        error = -EINVAL;
 898                        goto out_unlock;
 899                }
 900                do_file_insert = true;
 901        } else {
 902                flags |= XFS_PREALLOC_SET;
 903
 904                if (!(mode & FALLOC_FL_KEEP_SIZE) &&
 905                    offset + len > i_size_read(inode)) {
 906                        new_size = offset + len;
 907                        error = inode_newsize_ok(inode, new_size);
 908                        if (error)
 909                                goto out_unlock;
 910                }
 911
 912                if (mode & FALLOC_FL_ZERO_RANGE) {
 913                        /*
 914                         * Punch a hole and prealloc the range.  We use a hole
 915                         * punch rather than unwritten extent conversion for two
 916                         * reasons:
 917                         *
 918                         *   1.) Hole punch handles partial block zeroing for us.
 919                         *   2.) If prealloc returns ENOSPC, the file range is
 920                         *       still zero-valued by virtue of the hole punch.
 921                         */
 922                        unsigned int blksize = i_blocksize(inode);
 923
 924                        trace_xfs_zero_file_space(ip);
 925
 926                        error = xfs_free_file_space(ip, offset, len);
 927                        if (error)
 928                                goto out_unlock;
 929
 930                        len = round_up(offset + len, blksize) -
 931                              round_down(offset, blksize);
 932                        offset = round_down(offset, blksize);
 933                } else if (mode & FALLOC_FL_UNSHARE_RANGE) {
 934                        error = xfs_reflink_unshare(ip, offset, len);
 935                        if (error)
 936                                goto out_unlock;
 937                } else {
 938                        /*
 939                         * If always_cow mode we can't use preallocations and
 940                         * thus should not create them.
 941                         */
 942                        if (xfs_is_always_cow_inode(ip)) {
 943                                error = -EOPNOTSUPP;
 944                                goto out_unlock;
 945                        }
 946                }
 947
 948                if (!xfs_is_always_cow_inode(ip)) {
 949                        error = xfs_alloc_file_space(ip, offset, len,
 950                                                     XFS_BMAPI_PREALLOC);
 951                        if (error)
 952                                goto out_unlock;
 953                }
 954        }
 955
 956        if (file->f_flags & O_DSYNC)
 957                flags |= XFS_PREALLOC_SYNC;
 958
 959        error = xfs_update_prealloc_flags(ip, flags);
 960        if (error)
 961                goto out_unlock;
 962
 963        /* Change file size if needed */
 964        if (new_size) {
 965                struct iattr iattr;
 966
 967                iattr.ia_valid = ATTR_SIZE;
 968                iattr.ia_size = new_size;
 969                error = xfs_vn_setattr_size(file_dentry(file), &iattr);
 970                if (error)
 971                        goto out_unlock;
 972        }
 973
 974        /*
 975         * Perform hole insertion now that the file size has been
 976         * updated so that if we crash during the operation we don't
 977         * leave shifted extents past EOF and hence losing access to
 978         * the data that is contained within them.
 979         */
 980        if (do_file_insert)
 981                error = xfs_insert_file_space(ip, offset, len);
 982
 983out_unlock:
 984        xfs_iunlock(ip, iolock);
 985        return error;
 986}
 987
 988STATIC int
 989xfs_file_fadvise(
 990        struct file     *file,
 991        loff_t          start,
 992        loff_t          end,
 993        int             advice)
 994{
 995        struct xfs_inode *ip = XFS_I(file_inode(file));
 996        int ret;
 997        int lockflags = 0;
 998
 999        /*
1000         * Operations creating pages in page cache need protection from hole
1001         * punching and similar ops
1002         */
1003        if (advice == POSIX_FADV_WILLNEED) {
1004                lockflags = XFS_IOLOCK_SHARED;
1005                xfs_ilock(ip, lockflags);
1006        }
1007        ret = generic_fadvise(file, start, end, advice);
1008        if (lockflags)
1009                xfs_iunlock(ip, lockflags);
1010        return ret;
1011}
1012
1013STATIC loff_t
1014xfs_file_remap_range(
1015        struct file             *file_in,
1016        loff_t                  pos_in,
1017        struct file             *file_out,
1018        loff_t                  pos_out,
1019        loff_t                  len,
1020        unsigned int            remap_flags)
1021{
1022        struct inode            *inode_in = file_inode(file_in);
1023        struct xfs_inode        *src = XFS_I(inode_in);
1024        struct inode            *inode_out = file_inode(file_out);
1025        struct xfs_inode        *dest = XFS_I(inode_out);
1026        struct xfs_mount        *mp = src->i_mount;
1027        loff_t                  remapped = 0;
1028        xfs_extlen_t            cowextsize;
1029        int                     ret;
1030
1031        if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
1032                return -EINVAL;
1033
1034        if (!xfs_sb_version_hasreflink(&mp->m_sb))
1035                return -EOPNOTSUPP;
1036
1037        if (XFS_FORCED_SHUTDOWN(mp))
1038                return -EIO;
1039
1040        /* Prepare and then clone file data. */
1041        ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out,
1042                        &len, remap_flags);
1043        if (ret < 0 || len == 0)
1044                return ret;
1045
1046        trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out);
1047
1048        ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, len,
1049                        &remapped);
1050        if (ret)
1051                goto out_unlock;
1052
1053        /*
1054         * Carry the cowextsize hint from src to dest if we're sharing the
1055         * entire source file to the entire destination file, the source file
1056         * has a cowextsize hint, and the destination file does not.
1057         */
1058        cowextsize = 0;
1059        if (pos_in == 0 && len == i_size_read(inode_in) &&
1060            (src->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) &&
1061            pos_out == 0 && len >= i_size_read(inode_out) &&
1062            !(dest->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE))
1063                cowextsize = src->i_d.di_cowextsize;
1064
1065        ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize,
1066                        remap_flags);
1067
1068out_unlock:
1069        xfs_reflink_remap_unlock(file_in, file_out);
1070        if (ret)
1071                trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_);
1072        return remapped > 0 ? remapped : ret;
1073}
1074
1075STATIC int
1076xfs_file_open(
1077        struct inode    *inode,
1078        struct file     *file)
1079{
1080        if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1081                return -EFBIG;
1082        if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
1083                return -EIO;
1084        file->f_mode |= FMODE_NOWAIT;
1085        return 0;
1086}
1087
1088STATIC int
1089xfs_dir_open(
1090        struct inode    *inode,
1091        struct file     *file)
1092{
1093        struct xfs_inode *ip = XFS_I(inode);
1094        int             mode;
1095        int             error;
1096
1097        error = xfs_file_open(inode, file);
1098        if (error)
1099                return error;
1100
1101        /*
1102         * If there are any blocks, read-ahead block 0 as we're almost
1103         * certain to have the next operation be a read there.
1104         */
1105        mode = xfs_ilock_data_map_shared(ip);
1106        if (ip->i_d.di_nextents > 0)
1107                error = xfs_dir3_data_readahead(ip, 0, 0);
1108        xfs_iunlock(ip, mode);
1109        return error;
1110}
1111
1112STATIC int
1113xfs_file_release(
1114        struct inode    *inode,
1115        struct file     *filp)
1116{
1117        return xfs_release(XFS_I(inode));
1118}
1119
1120STATIC int
1121xfs_file_readdir(
1122        struct file     *file,
1123        struct dir_context *ctx)
1124{
1125        struct inode    *inode = file_inode(file);
1126        xfs_inode_t     *ip = XFS_I(inode);
1127        size_t          bufsize;
1128
1129        /*
1130         * The Linux API doesn't pass down the total size of the buffer
1131         * we read into down to the filesystem.  With the filldir concept
1132         * it's not needed for correct information, but the XFS dir2 leaf
1133         * code wants an estimate of the buffer size to calculate it's
1134         * readahead window and size the buffers used for mapping to
1135         * physical blocks.
1136         *
1137         * Try to give it an estimate that's good enough, maybe at some
1138         * point we can change the ->readdir prototype to include the
1139         * buffer size.  For now we use the current glibc buffer size.
1140         */
1141        bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_d.di_size);
1142
1143        return xfs_readdir(NULL, ip, ctx, bufsize);
1144}
1145
1146STATIC loff_t
1147xfs_file_llseek(
1148        struct file     *file,
1149        loff_t          offset,
1150        int             whence)
1151{
1152        struct inode            *inode = file->f_mapping->host;
1153
1154        if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount))
1155                return -EIO;
1156
1157        switch (whence) {
1158        default:
1159                return generic_file_llseek(file, offset, whence);
1160        case SEEK_HOLE:
1161                offset = iomap_seek_hole(inode, offset, &xfs_seek_iomap_ops);
1162                break;
1163        case SEEK_DATA:
1164                offset = iomap_seek_data(inode, offset, &xfs_seek_iomap_ops);
1165                break;
1166        }
1167
1168        if (offset < 0)
1169                return offset;
1170        return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1171}
1172
1173/*
1174 * Locking for serialisation of IO during page faults. This results in a lock
1175 * ordering of:
1176 *
1177 * mmap_sem (MM)
1178 *   sb_start_pagefault(vfs, freeze)
1179 *     i_mmaplock (XFS - truncate serialisation)
1180 *       page_lock (MM)
1181 *         i_lock (XFS - extent map serialisation)
1182 */
1183static vm_fault_t
1184__xfs_filemap_fault(
1185        struct vm_fault         *vmf,
1186        enum page_entry_size    pe_size,
1187        bool                    write_fault)
1188{
1189        struct inode            *inode = file_inode(vmf->vma->vm_file);
1190        struct xfs_inode        *ip = XFS_I(inode);
1191        vm_fault_t              ret;
1192
1193        trace_xfs_filemap_fault(ip, pe_size, write_fault);
1194
1195        if (write_fault) {
1196                sb_start_pagefault(inode->i_sb);
1197                file_update_time(vmf->vma->vm_file);
1198        }
1199
1200        xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1201        if (IS_DAX(inode)) {
1202                pfn_t pfn;
1203
1204                ret = dax_iomap_fault(vmf, pe_size, &pfn, NULL,
1205                                (write_fault && !vmf->cow_page) ?
1206                                 &xfs_direct_write_iomap_ops :
1207                                 &xfs_read_iomap_ops);
1208                if (ret & VM_FAULT_NEEDDSYNC)
1209                        ret = dax_finish_sync_fault(vmf, pe_size, pfn);
1210        } else {
1211                if (write_fault)
1212                        ret = iomap_page_mkwrite(vmf,
1213                                        &xfs_buffered_write_iomap_ops);
1214                else
1215                        ret = filemap_fault(vmf);
1216        }
1217        xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1218
1219        if (write_fault)
1220                sb_end_pagefault(inode->i_sb);
1221        return ret;
1222}
1223
1224static vm_fault_t
1225xfs_filemap_fault(
1226        struct vm_fault         *vmf)
1227{
1228        /* DAX can shortcut the normal fault path on write faults! */
1229        return __xfs_filemap_fault(vmf, PE_SIZE_PTE,
1230                        IS_DAX(file_inode(vmf->vma->vm_file)) &&
1231                        (vmf->flags & FAULT_FLAG_WRITE));
1232}
1233
1234static vm_fault_t
1235xfs_filemap_huge_fault(
1236        struct vm_fault         *vmf,
1237        enum page_entry_size    pe_size)
1238{
1239        if (!IS_DAX(file_inode(vmf->vma->vm_file)))
1240                return VM_FAULT_FALLBACK;
1241
1242        /* DAX can shortcut the normal fault path on write faults! */
1243        return __xfs_filemap_fault(vmf, pe_size,
1244                        (vmf->flags & FAULT_FLAG_WRITE));
1245}
1246
1247static vm_fault_t
1248xfs_filemap_page_mkwrite(
1249        struct vm_fault         *vmf)
1250{
1251        return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1252}
1253
1254/*
1255 * pfn_mkwrite was originally intended to ensure we capture time stamp updates
1256 * on write faults. In reality, it needs to serialise against truncate and
1257 * prepare memory for writing so handle is as standard write fault.
1258 */
1259static vm_fault_t
1260xfs_filemap_pfn_mkwrite(
1261        struct vm_fault         *vmf)
1262{
1263
1264        return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1265}
1266
1267static const struct vm_operations_struct xfs_file_vm_ops = {
1268        .fault          = xfs_filemap_fault,
1269        .huge_fault     = xfs_filemap_huge_fault,
1270        .map_pages      = filemap_map_pages,
1271        .page_mkwrite   = xfs_filemap_page_mkwrite,
1272        .pfn_mkwrite    = xfs_filemap_pfn_mkwrite,
1273};
1274
1275STATIC int
1276xfs_file_mmap(
1277        struct file             *file,
1278        struct vm_area_struct   *vma)
1279{
1280        struct inode            *inode = file_inode(file);
1281        struct xfs_buftarg      *target = xfs_inode_buftarg(XFS_I(inode));
1282
1283        /*
1284         * We don't support synchronous mappings for non-DAX files and
1285         * for DAX files if underneath dax_device is not synchronous.
1286         */
1287        if (!daxdev_mapping_supported(vma, target->bt_daxdev))
1288                return -EOPNOTSUPP;
1289
1290        file_accessed(file);
1291        vma->vm_ops = &xfs_file_vm_ops;
1292        if (IS_DAX(inode))
1293                vma->vm_flags |= VM_HUGEPAGE;
1294        return 0;
1295}
1296
1297const struct file_operations xfs_file_operations = {
1298        .llseek         = xfs_file_llseek,
1299        .read_iter      = xfs_file_read_iter,
1300        .write_iter     = xfs_file_write_iter,
1301        .splice_read    = generic_file_splice_read,
1302        .splice_write   = iter_file_splice_write,
1303        .iopoll         = iomap_dio_iopoll,
1304        .unlocked_ioctl = xfs_file_ioctl,
1305#ifdef CONFIG_COMPAT
1306        .compat_ioctl   = xfs_file_compat_ioctl,
1307#endif
1308        .mmap           = xfs_file_mmap,
1309        .mmap_supported_flags = MAP_SYNC,
1310        .open           = xfs_file_open,
1311        .release        = xfs_file_release,
1312        .fsync          = xfs_file_fsync,
1313        .get_unmapped_area = thp_get_unmapped_area,
1314        .fallocate      = xfs_file_fallocate,
1315        .fadvise        = xfs_file_fadvise,
1316        .remap_file_range = xfs_file_remap_range,
1317};
1318
1319const struct file_operations xfs_dir_file_operations = {
1320        .open           = xfs_dir_open,
1321        .read           = generic_read_dir,
1322        .iterate_shared = xfs_file_readdir,
1323        .llseek         = generic_file_llseek,
1324        .unlocked_ioctl = xfs_file_ioctl,
1325#ifdef CONFIG_COMPAT
1326        .compat_ioctl   = xfs_file_compat_ioctl,
1327#endif
1328        .fsync          = xfs_dir_fsync,
1329};
1330