linux/include/linux/edac.h
<<
>>
Prefs
   1/*
   2 * Generic EDAC defs
   3 *
   4 * Author: Dave Jiang <djiang@mvista.com>
   5 *
   6 * 2006-2008 (c) MontaVista Software, Inc. This file is licensed under
   7 * the terms of the GNU General Public License version 2. This program
   8 * is licensed "as is" without any warranty of any kind, whether express
   9 * or implied.
  10 *
  11 */
  12#ifndef _LINUX_EDAC_H_
  13#define _LINUX_EDAC_H_
  14
  15#include <linux/atomic.h>
  16#include <linux/device.h>
  17#include <linux/completion.h>
  18#include <linux/workqueue.h>
  19#include <linux/debugfs.h>
  20#include <linux/numa.h>
  21
  22#define EDAC_DEVICE_NAME_LEN    31
  23
  24struct device;
  25
  26#define EDAC_OPSTATE_INVAL      -1
  27#define EDAC_OPSTATE_POLL       0
  28#define EDAC_OPSTATE_NMI        1
  29#define EDAC_OPSTATE_INT        2
  30
  31extern int edac_op_state;
  32
  33struct bus_type *edac_get_sysfs_subsys(void);
  34int edac_get_report_status(void);
  35void edac_set_report_status(int new);
  36
  37enum {
  38        EDAC_REPORTING_ENABLED,
  39        EDAC_REPORTING_DISABLED,
  40        EDAC_REPORTING_FORCE
  41};
  42
  43static inline void opstate_init(void)
  44{
  45        switch (edac_op_state) {
  46        case EDAC_OPSTATE_POLL:
  47        case EDAC_OPSTATE_NMI:
  48                break;
  49        default:
  50                edac_op_state = EDAC_OPSTATE_POLL;
  51        }
  52        return;
  53}
  54
  55/* Max length of a DIMM label*/
  56#define EDAC_MC_LABEL_LEN       31
  57
  58/* Maximum size of the location string */
  59#define LOCATION_SIZE 256
  60
  61/* Defines the maximum number of labels that can be reported */
  62#define EDAC_MAX_LABELS         8
  63
  64/* String used to join two or more labels */
  65#define OTHER_LABEL " or "
  66
  67/**
  68 * enum dev_type - describe the type of memory DRAM chips used at the stick
  69 * @DEV_UNKNOWN:        Can't be determined, or MC doesn't support detect it
  70 * @DEV_X1:             1 bit for data
  71 * @DEV_X2:             2 bits for data
  72 * @DEV_X4:             4 bits for data
  73 * @DEV_X8:             8 bits for data
  74 * @DEV_X16:            16 bits for data
  75 * @DEV_X32:            32 bits for data
  76 * @DEV_X64:            64 bits for data
  77 *
  78 * Typical values are x4 and x8.
  79 */
  80enum dev_type {
  81        DEV_UNKNOWN = 0,
  82        DEV_X1,
  83        DEV_X2,
  84        DEV_X4,
  85        DEV_X8,
  86        DEV_X16,
  87        DEV_X32,                /* Do these parts exist? */
  88        DEV_X64                 /* Do these parts exist? */
  89};
  90
  91#define DEV_FLAG_UNKNOWN        BIT(DEV_UNKNOWN)
  92#define DEV_FLAG_X1             BIT(DEV_X1)
  93#define DEV_FLAG_X2             BIT(DEV_X2)
  94#define DEV_FLAG_X4             BIT(DEV_X4)
  95#define DEV_FLAG_X8             BIT(DEV_X8)
  96#define DEV_FLAG_X16            BIT(DEV_X16)
  97#define DEV_FLAG_X32            BIT(DEV_X32)
  98#define DEV_FLAG_X64            BIT(DEV_X64)
  99
 100/**
 101 * enum hw_event_mc_err_type - type of the detected error
 102 *
 103 * @HW_EVENT_ERR_CORRECTED:     Corrected Error - Indicates that an ECC
 104 *                              corrected error was detected
 105 * @HW_EVENT_ERR_UNCORRECTED:   Uncorrected Error - Indicates an error that
 106 *                              can't be corrected by ECC, but it is not
 107 *                              fatal (maybe it is on an unused memory area,
 108 *                              or the memory controller could recover from
 109 *                              it for example, by re-trying the operation).
 110 * @HW_EVENT_ERR_DEFERRED:      Deferred Error - Indicates an uncorrectable
 111 *                              error whose handling is not urgent. This could
 112 *                              be due to hardware data poisoning where the
 113 *                              system can continue operation until the poisoned
 114 *                              data is consumed. Preemptive measures may also
 115 *                              be taken, e.g. offlining pages, etc.
 116 * @HW_EVENT_ERR_FATAL:         Fatal Error - Uncorrected error that could not
 117 *                              be recovered.
 118 * @HW_EVENT_ERR_INFO:          Informational - The CPER spec defines a forth
 119 *                              type of error: informational logs.
 120 */
 121enum hw_event_mc_err_type {
 122        HW_EVENT_ERR_CORRECTED,
 123        HW_EVENT_ERR_UNCORRECTED,
 124        HW_EVENT_ERR_DEFERRED,
 125        HW_EVENT_ERR_FATAL,
 126        HW_EVENT_ERR_INFO,
 127};
 128
 129static inline char *mc_event_error_type(const unsigned int err_type)
 130{
 131        switch (err_type) {
 132        case HW_EVENT_ERR_CORRECTED:
 133                return "Corrected";
 134        case HW_EVENT_ERR_UNCORRECTED:
 135                return "Uncorrected";
 136        case HW_EVENT_ERR_DEFERRED:
 137                return "Deferred";
 138        case HW_EVENT_ERR_FATAL:
 139                return "Fatal";
 140        default:
 141        case HW_EVENT_ERR_INFO:
 142                return "Info";
 143        }
 144}
 145
 146/**
 147 * enum mem_type - memory types. For a more detailed reference, please see
 148 *                      http://en.wikipedia.org/wiki/DRAM
 149 *
 150 * @MEM_EMPTY:          Empty csrow
 151 * @MEM_RESERVED:       Reserved csrow type
 152 * @MEM_UNKNOWN:        Unknown csrow type
 153 * @MEM_FPM:            FPM - Fast Page Mode, used on systems up to 1995.
 154 * @MEM_EDO:            EDO - Extended data out, used on systems up to 1998.
 155 * @MEM_BEDO:           BEDO - Burst Extended data out, an EDO variant.
 156 * @MEM_SDR:            SDR - Single data rate SDRAM
 157 *                      http://en.wikipedia.org/wiki/Synchronous_dynamic_random-access_memory
 158 *                      They use 3 pins for chip select: Pins 0 and 2 are
 159 *                      for rank 0; pins 1 and 3 are for rank 1, if the memory
 160 *                      is dual-rank.
 161 * @MEM_RDR:            Registered SDR SDRAM
 162 * @MEM_DDR:            Double data rate SDRAM
 163 *                      http://en.wikipedia.org/wiki/DDR_SDRAM
 164 * @MEM_RDDR:           Registered Double data rate SDRAM
 165 *                      This is a variant of the DDR memories.
 166 *                      A registered memory has a buffer inside it, hiding
 167 *                      part of the memory details to the memory controller.
 168 * @MEM_RMBS:           Rambus DRAM, used on a few Pentium III/IV controllers.
 169 * @MEM_DDR2:           DDR2 RAM, as described at JEDEC JESD79-2F.
 170 *                      Those memories are labeled as "PC2-" instead of "PC" to
 171 *                      differentiate from DDR.
 172 * @MEM_FB_DDR2:        Fully-Buffered DDR2, as described at JEDEC Std No. 205
 173 *                      and JESD206.
 174 *                      Those memories are accessed per DIMM slot, and not by
 175 *                      a chip select signal.
 176 * @MEM_RDDR2:          Registered DDR2 RAM
 177 *                      This is a variant of the DDR2 memories.
 178 * @MEM_XDR:            Rambus XDR
 179 *                      It is an evolution of the original RAMBUS memories,
 180 *                      created to compete with DDR2. Weren't used on any
 181 *                      x86 arch, but cell_edac PPC memory controller uses it.
 182 * @MEM_DDR3:           DDR3 RAM
 183 * @MEM_RDDR3:          Registered DDR3 RAM
 184 *                      This is a variant of the DDR3 memories.
 185 * @MEM_LRDDR3:         Load-Reduced DDR3 memory.
 186 * @MEM_DDR4:           Unbuffered DDR4 RAM
 187 * @MEM_RDDR4:          Registered DDR4 RAM
 188 *                      This is a variant of the DDR4 memories.
 189 * @MEM_LRDDR4:         Load-Reduced DDR4 memory.
 190 * @MEM_NVDIMM:         Non-volatile RAM
 191 */
 192enum mem_type {
 193        MEM_EMPTY = 0,
 194        MEM_RESERVED,
 195        MEM_UNKNOWN,
 196        MEM_FPM,
 197        MEM_EDO,
 198        MEM_BEDO,
 199        MEM_SDR,
 200        MEM_RDR,
 201        MEM_DDR,
 202        MEM_RDDR,
 203        MEM_RMBS,
 204        MEM_DDR2,
 205        MEM_FB_DDR2,
 206        MEM_RDDR2,
 207        MEM_XDR,
 208        MEM_DDR3,
 209        MEM_RDDR3,
 210        MEM_LRDDR3,
 211        MEM_DDR4,
 212        MEM_RDDR4,
 213        MEM_LRDDR4,
 214        MEM_NVDIMM,
 215};
 216
 217#define MEM_FLAG_EMPTY          BIT(MEM_EMPTY)
 218#define MEM_FLAG_RESERVED       BIT(MEM_RESERVED)
 219#define MEM_FLAG_UNKNOWN        BIT(MEM_UNKNOWN)
 220#define MEM_FLAG_FPM            BIT(MEM_FPM)
 221#define MEM_FLAG_EDO            BIT(MEM_EDO)
 222#define MEM_FLAG_BEDO           BIT(MEM_BEDO)
 223#define MEM_FLAG_SDR            BIT(MEM_SDR)
 224#define MEM_FLAG_RDR            BIT(MEM_RDR)
 225#define MEM_FLAG_DDR            BIT(MEM_DDR)
 226#define MEM_FLAG_RDDR           BIT(MEM_RDDR)
 227#define MEM_FLAG_RMBS           BIT(MEM_RMBS)
 228#define MEM_FLAG_DDR2           BIT(MEM_DDR2)
 229#define MEM_FLAG_FB_DDR2        BIT(MEM_FB_DDR2)
 230#define MEM_FLAG_RDDR2          BIT(MEM_RDDR2)
 231#define MEM_FLAG_XDR            BIT(MEM_XDR)
 232#define MEM_FLAG_DDR3           BIT(MEM_DDR3)
 233#define MEM_FLAG_RDDR3          BIT(MEM_RDDR3)
 234#define MEM_FLAG_DDR4           BIT(MEM_DDR4)
 235#define MEM_FLAG_RDDR4          BIT(MEM_RDDR4)
 236#define MEM_FLAG_LRDDR4         BIT(MEM_LRDDR4)
 237#define MEM_FLAG_NVDIMM         BIT(MEM_NVDIMM)
 238
 239/**
 240 * enum edac-type - Error Detection and Correction capabilities and mode
 241 * @EDAC_UNKNOWN:       Unknown if ECC is available
 242 * @EDAC_NONE:          Doesn't support ECC
 243 * @EDAC_RESERVED:      Reserved ECC type
 244 * @EDAC_PARITY:        Detects parity errors
 245 * @EDAC_EC:            Error Checking - no correction
 246 * @EDAC_SECDED:        Single bit error correction, Double detection
 247 * @EDAC_S2ECD2ED:      Chipkill x2 devices - do these exist?
 248 * @EDAC_S4ECD4ED:      Chipkill x4 devices
 249 * @EDAC_S8ECD8ED:      Chipkill x8 devices
 250 * @EDAC_S16ECD16ED:    Chipkill x16 devices
 251 */
 252enum edac_type {
 253        EDAC_UNKNOWN =  0,
 254        EDAC_NONE,
 255        EDAC_RESERVED,
 256        EDAC_PARITY,
 257        EDAC_EC,
 258        EDAC_SECDED,
 259        EDAC_S2ECD2ED,
 260        EDAC_S4ECD4ED,
 261        EDAC_S8ECD8ED,
 262        EDAC_S16ECD16ED,
 263};
 264
 265#define EDAC_FLAG_UNKNOWN       BIT(EDAC_UNKNOWN)
 266#define EDAC_FLAG_NONE          BIT(EDAC_NONE)
 267#define EDAC_FLAG_PARITY        BIT(EDAC_PARITY)
 268#define EDAC_FLAG_EC            BIT(EDAC_EC)
 269#define EDAC_FLAG_SECDED        BIT(EDAC_SECDED)
 270#define EDAC_FLAG_S2ECD2ED      BIT(EDAC_S2ECD2ED)
 271#define EDAC_FLAG_S4ECD4ED      BIT(EDAC_S4ECD4ED)
 272#define EDAC_FLAG_S8ECD8ED      BIT(EDAC_S8ECD8ED)
 273#define EDAC_FLAG_S16ECD16ED    BIT(EDAC_S16ECD16ED)
 274
 275/**
 276 * enum scrub_type - scrubbing capabilities
 277 * @SCRUB_UNKNOWN:              Unknown if scrubber is available
 278 * @SCRUB_NONE:                 No scrubber
 279 * @SCRUB_SW_PROG:              SW progressive (sequential) scrubbing
 280 * @SCRUB_SW_SRC:               Software scrub only errors
 281 * @SCRUB_SW_PROG_SRC:          Progressive software scrub from an error
 282 * @SCRUB_SW_TUNABLE:           Software scrub frequency is tunable
 283 * @SCRUB_HW_PROG:              HW progressive (sequential) scrubbing
 284 * @SCRUB_HW_SRC:               Hardware scrub only errors
 285 * @SCRUB_HW_PROG_SRC:          Progressive hardware scrub from an error
 286 * @SCRUB_HW_TUNABLE:           Hardware scrub frequency is tunable
 287 */
 288enum scrub_type {
 289        SCRUB_UNKNOWN = 0,
 290        SCRUB_NONE,
 291        SCRUB_SW_PROG,
 292        SCRUB_SW_SRC,
 293        SCRUB_SW_PROG_SRC,
 294        SCRUB_SW_TUNABLE,
 295        SCRUB_HW_PROG,
 296        SCRUB_HW_SRC,
 297        SCRUB_HW_PROG_SRC,
 298        SCRUB_HW_TUNABLE
 299};
 300
 301#define SCRUB_FLAG_SW_PROG      BIT(SCRUB_SW_PROG)
 302#define SCRUB_FLAG_SW_SRC       BIT(SCRUB_SW_SRC)
 303#define SCRUB_FLAG_SW_PROG_SRC  BIT(SCRUB_SW_PROG_SRC)
 304#define SCRUB_FLAG_SW_TUN       BIT(SCRUB_SW_SCRUB_TUNABLE)
 305#define SCRUB_FLAG_HW_PROG      BIT(SCRUB_HW_PROG)
 306#define SCRUB_FLAG_HW_SRC       BIT(SCRUB_HW_SRC)
 307#define SCRUB_FLAG_HW_PROG_SRC  BIT(SCRUB_HW_PROG_SRC)
 308#define SCRUB_FLAG_HW_TUN       BIT(SCRUB_HW_TUNABLE)
 309
 310/* FIXME - should have notify capabilities: NMI, LOG, PROC, etc */
 311
 312/* EDAC internal operation states */
 313#define OP_ALLOC                0x100
 314#define OP_RUNNING_POLL         0x201
 315#define OP_RUNNING_INTERRUPT    0x202
 316#define OP_RUNNING_POLL_INTR    0x203
 317#define OP_OFFLINE              0x300
 318
 319/**
 320 * enum edac_mc_layer - memory controller hierarchy layer
 321 *
 322 * @EDAC_MC_LAYER_BRANCH:       memory layer is named "branch"
 323 * @EDAC_MC_LAYER_CHANNEL:      memory layer is named "channel"
 324 * @EDAC_MC_LAYER_SLOT:         memory layer is named "slot"
 325 * @EDAC_MC_LAYER_CHIP_SELECT:  memory layer is named "chip select"
 326 * @EDAC_MC_LAYER_ALL_MEM:      memory layout is unknown. All memory is mapped
 327 *                              as a single memory area. This is used when
 328 *                              retrieving errors from a firmware driven driver.
 329 *
 330 * This enum is used by the drivers to tell edac_mc_sysfs what name should
 331 * be used when describing a memory stick location.
 332 */
 333enum edac_mc_layer_type {
 334        EDAC_MC_LAYER_BRANCH,
 335        EDAC_MC_LAYER_CHANNEL,
 336        EDAC_MC_LAYER_SLOT,
 337        EDAC_MC_LAYER_CHIP_SELECT,
 338        EDAC_MC_LAYER_ALL_MEM,
 339};
 340
 341/**
 342 * struct edac_mc_layer - describes the memory controller hierarchy
 343 * @type:               layer type
 344 * @size:               number of components per layer. For example,
 345 *                      if the channel layer has two channels, size = 2
 346 * @is_virt_csrow:      This layer is part of the "csrow" when old API
 347 *                      compatibility mode is enabled. Otherwise, it is
 348 *                      a channel
 349 */
 350struct edac_mc_layer {
 351        enum edac_mc_layer_type type;
 352        unsigned                size;
 353        bool                    is_virt_csrow;
 354};
 355
 356/*
 357 * Maximum number of layers used by the memory controller to uniquely
 358 * identify a single memory stick.
 359 * NOTE: Changing this constant requires not only to change the constant
 360 * below, but also to change the existing code at the core, as there are
 361 * some code there that are optimized for 3 layers.
 362 */
 363#define EDAC_MAX_LAYERS         3
 364
 365struct dimm_info {
 366        struct device dev;
 367
 368        char label[EDAC_MC_LABEL_LEN + 1];      /* DIMM label on motherboard */
 369
 370        /* Memory location data */
 371        unsigned int location[EDAC_MAX_LAYERS];
 372
 373        struct mem_ctl_info *mci;       /* the parent */
 374        unsigned int idx;               /* index within the parent dimm array */
 375
 376        u32 grain;              /* granularity of reported error in bytes */
 377        enum dev_type dtype;    /* memory device type */
 378        enum mem_type mtype;    /* memory dimm type */
 379        enum edac_type edac_mode;       /* EDAC mode for this dimm */
 380
 381        u32 nr_pages;                   /* number of pages on this dimm */
 382
 383        unsigned int csrow, cschannel;  /* Points to the old API data */
 384
 385        u16 smbios_handle;              /* Handle for SMBIOS type 17 */
 386};
 387
 388/**
 389 * struct rank_info - contains the information for one DIMM rank
 390 *
 391 * @chan_idx:   channel number where the rank is (typically, 0 or 1)
 392 * @ce_count:   number of correctable errors for this rank
 393 * @csrow:      A pointer to the chip select row structure (the parent
 394 *              structure). The location of the rank is given by
 395 *              the (csrow->csrow_idx, chan_idx) vector.
 396 * @dimm:       A pointer to the DIMM structure, where the DIMM label
 397 *              information is stored.
 398 *
 399 * FIXME: Currently, the EDAC core model will assume one DIMM per rank.
 400 *        This is a bad assumption, but it makes this patch easier. Later
 401 *        patches in this series will fix this issue.
 402 */
 403struct rank_info {
 404        int chan_idx;
 405        struct csrow_info *csrow;
 406        struct dimm_info *dimm;
 407
 408        u32 ce_count;           /* Correctable Errors for this csrow */
 409};
 410
 411struct csrow_info {
 412        struct device dev;
 413
 414        /* Used only by edac_mc_find_csrow_by_page() */
 415        unsigned long first_page;       /* first page number in csrow */
 416        unsigned long last_page;        /* last page number in csrow */
 417        unsigned long page_mask;        /* used for interleaving -
 418                                         * 0UL for non intlv */
 419
 420        int csrow_idx;                  /* the chip-select row */
 421
 422        u32 ue_count;           /* Uncorrectable Errors for this csrow */
 423        u32 ce_count;           /* Correctable Errors for this csrow */
 424
 425        struct mem_ctl_info *mci;       /* the parent */
 426
 427        /* channel information for this csrow */
 428        u32 nr_channels;
 429        struct rank_info **channels;
 430};
 431
 432/*
 433 * struct errcount_attribute - used to store the several error counts
 434 */
 435struct errcount_attribute_data {
 436        int n_layers;
 437        int pos[EDAC_MAX_LAYERS];
 438        int layer0, layer1, layer2;
 439};
 440
 441/**
 442 * struct edac_raw_error_desc - Raw error report structure
 443 * @grain:                      minimum granularity for an error report, in bytes
 444 * @error_count:                number of errors of the same type
 445 * @top_layer:                  top layer of the error (layer[0])
 446 * @mid_layer:                  middle layer of the error (layer[1])
 447 * @low_layer:                  low layer of the error (layer[2])
 448 * @page_frame_number:          page where the error happened
 449 * @offset_in_page:             page offset
 450 * @syndrome:                   syndrome of the error (or 0 if unknown or if
 451 *                              the syndrome is not applicable)
 452 * @msg:                        error message
 453 * @location:                   location of the error
 454 * @label:                      label of the affected DIMM(s)
 455 * @other_detail:               other driver-specific detail about the error
 456 * @enable_per_layer_report:    if false, the error affects all layers
 457 *                              (typically, a memory controller error)
 458 */
 459struct edac_raw_error_desc {
 460        char location[LOCATION_SIZE];
 461        char label[(EDAC_MC_LABEL_LEN + 1 + sizeof(OTHER_LABEL)) * EDAC_MAX_LABELS];
 462        long grain;
 463
 464        u16 error_count;
 465        int top_layer;
 466        int mid_layer;
 467        int low_layer;
 468        unsigned long page_frame_number;
 469        unsigned long offset_in_page;
 470        unsigned long syndrome;
 471        const char *msg;
 472        const char *other_detail;
 473        bool enable_per_layer_report;
 474};
 475
 476/* MEMORY controller information structure
 477 */
 478struct mem_ctl_info {
 479        struct device                   dev;
 480        struct bus_type                 *bus;
 481
 482        struct list_head link;  /* for global list of mem_ctl_info structs */
 483
 484        struct module *owner;   /* Module owner of this control struct */
 485
 486        unsigned long mtype_cap;        /* memory types supported by mc */
 487        unsigned long edac_ctl_cap;     /* Mem controller EDAC capabilities */
 488        unsigned long edac_cap; /* configuration capabilities - this is
 489                                 * closely related to edac_ctl_cap.  The
 490                                 * difference is that the controller may be
 491                                 * capable of s4ecd4ed which would be listed
 492                                 * in edac_ctl_cap, but if channels aren't
 493                                 * capable of s4ecd4ed then the edac_cap would
 494                                 * not have that capability.
 495                                 */
 496        unsigned long scrub_cap;        /* chipset scrub capabilities */
 497        enum scrub_type scrub_mode;     /* current scrub mode */
 498
 499        /* Translates sdram memory scrub rate given in bytes/sec to the
 500           internal representation and configures whatever else needs
 501           to be configured.
 502         */
 503        int (*set_sdram_scrub_rate) (struct mem_ctl_info * mci, u32 bw);
 504
 505        /* Get the current sdram memory scrub rate from the internal
 506           representation and converts it to the closest matching
 507           bandwidth in bytes/sec.
 508         */
 509        int (*get_sdram_scrub_rate) (struct mem_ctl_info * mci);
 510
 511
 512        /* pointer to edac checking routine */
 513        void (*edac_check) (struct mem_ctl_info * mci);
 514
 515        /*
 516         * Remaps memory pages: controller pages to physical pages.
 517         * For most MC's, this will be NULL.
 518         */
 519        /* FIXME - why not send the phys page to begin with? */
 520        unsigned long (*ctl_page_to_phys) (struct mem_ctl_info * mci,
 521                                           unsigned long page);
 522        int mc_idx;
 523        struct csrow_info **csrows;
 524        unsigned int nr_csrows, num_cschannel;
 525
 526        /*
 527         * Memory Controller hierarchy
 528         *
 529         * There are basically two types of memory controller: the ones that
 530         * sees memory sticks ("dimms"), and the ones that sees memory ranks.
 531         * All old memory controllers enumerate memories per rank, but most
 532         * of the recent drivers enumerate memories per DIMM, instead.
 533         * When the memory controller is per rank, csbased is true.
 534         */
 535        unsigned int n_layers;
 536        struct edac_mc_layer *layers;
 537        bool csbased;
 538
 539        /*
 540         * DIMM info. Will eventually remove the entire csrows_info some day
 541         */
 542        unsigned int tot_dimms;
 543        struct dimm_info **dimms;
 544
 545        /*
 546         * FIXME - what about controllers on other busses? - IDs must be
 547         * unique.  dev pointer should be sufficiently unique, but
 548         * BUS:SLOT.FUNC numbers may not be unique.
 549         */
 550        struct device *pdev;
 551        const char *mod_name;
 552        const char *ctl_name;
 553        const char *dev_name;
 554        void *pvt_info;
 555        unsigned long start_time;       /* mci load start time (in jiffies) */
 556
 557        /*
 558         * drivers shouldn't access those fields directly, as the core
 559         * already handles that.
 560         */
 561        u32 ce_noinfo_count, ue_noinfo_count;
 562        u32 ue_mc, ce_mc;
 563        u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
 564
 565        struct completion complete;
 566
 567        /* Additional top controller level attributes, but specified
 568         * by the low level driver.
 569         *
 570         * Set by the low level driver to provide attributes at the
 571         * controller level.
 572         * An array of structures, NULL terminated
 573         *
 574         * If attributes are desired, then set to array of attributes
 575         * If no attributes are desired, leave NULL
 576         */
 577        const struct mcidev_sysfs_attribute *mc_driver_sysfs_attributes;
 578
 579        /* work struct for this MC */
 580        struct delayed_work work;
 581
 582        /*
 583         * Used to report an error - by being at the global struct
 584         * makes the memory allocated by the EDAC core
 585         */
 586        struct edac_raw_error_desc error_desc;
 587
 588        /* the internal state of this controller instance */
 589        int op_state;
 590
 591        struct dentry *debugfs;
 592        u8 fake_inject_layer[EDAC_MAX_LAYERS];
 593        bool fake_inject_ue;
 594        u16 fake_inject_count;
 595};
 596
 597#define mci_for_each_dimm(mci, dimm)                            \
 598        for ((dimm) = (mci)->dimms[0];                          \
 599             (dimm);                                            \
 600             (dimm) = (dimm)->idx + 1 < (mci)->tot_dimms        \
 601                     ? (mci)->dimms[(dimm)->idx + 1]            \
 602                     : NULL)
 603
 604/**
 605 * edac_get_dimm_by_index - Get DIMM info at @index from a memory
 606 *                          controller
 607 *
 608 * @mci:        MC descriptor struct mem_ctl_info
 609 * @index:      index in the memory controller's DIMM array
 610 *
 611 * Returns a struct dimm_info * or NULL on failure.
 612 */
 613static inline struct dimm_info *
 614edac_get_dimm_by_index(struct mem_ctl_info *mci, int index)
 615{
 616        if (index < 0 || index >= mci->tot_dimms)
 617                return NULL;
 618
 619        if (WARN_ON_ONCE(mci->dimms[index]->idx != index))
 620                return NULL;
 621
 622        return mci->dimms[index];
 623}
 624
 625/**
 626 * edac_get_dimm - Get DIMM info from a memory controller given by
 627 *                 [layer0,layer1,layer2] position
 628 *
 629 * @mci:        MC descriptor struct mem_ctl_info
 630 * @layer0:     layer0 position
 631 * @layer1:     layer1 position. Unused if n_layers < 2
 632 * @layer2:     layer2 position. Unused if n_layers < 3
 633 *
 634 * For 1 layer, this function returns "dimms[layer0]";
 635 *
 636 * For 2 layers, this function is similar to allocating a two-dimensional
 637 * array and returning "dimms[layer0][layer1]";
 638 *
 639 * For 3 layers, this function is similar to allocating a tri-dimensional
 640 * array and returning "dimms[layer0][layer1][layer2]";
 641 */
 642static inline struct dimm_info *edac_get_dimm(struct mem_ctl_info *mci,
 643        int layer0, int layer1, int layer2)
 644{
 645        int index;
 646
 647        if (layer0 < 0
 648            || (mci->n_layers > 1 && layer1 < 0)
 649            || (mci->n_layers > 2 && layer2 < 0))
 650                return NULL;
 651
 652        index = layer0;
 653
 654        if (mci->n_layers > 1)
 655                index = index * mci->layers[1].size + layer1;
 656
 657        if (mci->n_layers > 2)
 658                index = index * mci->layers[2].size + layer2;
 659
 660        return edac_get_dimm_by_index(mci, index);
 661}
 662#endif /* _LINUX_EDAC_H_ */
 663