linux/include/linux/page-flags.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2/*
   3 * Macros for manipulating and testing page->flags
   4 */
   5
   6#ifndef PAGE_FLAGS_H
   7#define PAGE_FLAGS_H
   8
   9#include <linux/types.h>
  10#include <linux/bug.h>
  11#include <linux/mmdebug.h>
  12#ifndef __GENERATING_BOUNDS_H
  13#include <linux/mm_types.h>
  14#include <generated/bounds.h>
  15#endif /* !__GENERATING_BOUNDS_H */
  16
  17/*
  18 * Various page->flags bits:
  19 *
  20 * PG_reserved is set for special pages. The "struct page" of such a page
  21 * should in general not be touched (e.g. set dirty) except by its owner.
  22 * Pages marked as PG_reserved include:
  23 * - Pages part of the kernel image (including vDSO) and similar (e.g. BIOS,
  24 *   initrd, HW tables)
  25 * - Pages reserved or allocated early during boot (before the page allocator
  26 *   was initialized). This includes (depending on the architecture) the
  27 *   initial vmemmap, initial page tables, crashkernel, elfcorehdr, and much
  28 *   much more. Once (if ever) freed, PG_reserved is cleared and they will
  29 *   be given to the page allocator.
  30 * - Pages falling into physical memory gaps - not IORESOURCE_SYSRAM. Trying
  31 *   to read/write these pages might end badly. Don't touch!
  32 * - The zero page(s)
  33 * - Pages not added to the page allocator when onlining a section because
  34 *   they were excluded via the online_page_callback() or because they are
  35 *   PG_hwpoison.
  36 * - Pages allocated in the context of kexec/kdump (loaded kernel image,
  37 *   control pages, vmcoreinfo)
  38 * - MMIO/DMA pages. Some architectures don't allow to ioremap pages that are
  39 *   not marked PG_reserved (as they might be in use by somebody else who does
  40 *   not respect the caching strategy).
  41 * - Pages part of an offline section (struct pages of offline sections should
  42 *   not be trusted as they will be initialized when first onlined).
  43 * - MCA pages on ia64
  44 * - Pages holding CPU notes for POWER Firmware Assisted Dump
  45 * - Device memory (e.g. PMEM, DAX, HMM)
  46 * Some PG_reserved pages will be excluded from the hibernation image.
  47 * PG_reserved does in general not hinder anybody from dumping or swapping
  48 * and is no longer required for remap_pfn_range(). ioremap might require it.
  49 * Consequently, PG_reserved for a page mapped into user space can indicate
  50 * the zero page, the vDSO, MMIO pages or device memory.
  51 *
  52 * The PG_private bitflag is set on pagecache pages if they contain filesystem
  53 * specific data (which is normally at page->private). It can be used by
  54 * private allocations for its own usage.
  55 *
  56 * During initiation of disk I/O, PG_locked is set. This bit is set before I/O
  57 * and cleared when writeback _starts_ or when read _completes_. PG_writeback
  58 * is set before writeback starts and cleared when it finishes.
  59 *
  60 * PG_locked also pins a page in pagecache, and blocks truncation of the file
  61 * while it is held.
  62 *
  63 * page_waitqueue(page) is a wait queue of all tasks waiting for the page
  64 * to become unlocked.
  65 *
  66 * PG_uptodate tells whether the page's contents is valid.  When a read
  67 * completes, the page becomes uptodate, unless a disk I/O error happened.
  68 *
  69 * PG_referenced, PG_reclaim are used for page reclaim for anonymous and
  70 * file-backed pagecache (see mm/vmscan.c).
  71 *
  72 * PG_error is set to indicate that an I/O error occurred on this page.
  73 *
  74 * PG_arch_1 is an architecture specific page state bit.  The generic code
  75 * guarantees that this bit is cleared for a page when it first is entered into
  76 * the page cache.
  77 *
  78 * PG_hwpoison indicates that a page got corrupted in hardware and contains
  79 * data with incorrect ECC bits that triggered a machine check. Accessing is
  80 * not safe since it may cause another machine check. Don't touch!
  81 */
  82
  83/*
  84 * Don't use the *_dontuse flags.  Use the macros.  Otherwise you'll break
  85 * locked- and dirty-page accounting.
  86 *
  87 * The page flags field is split into two parts, the main flags area
  88 * which extends from the low bits upwards, and the fields area which
  89 * extends from the high bits downwards.
  90 *
  91 *  | FIELD | ... | FLAGS |
  92 *  N-1           ^       0
  93 *               (NR_PAGEFLAGS)
  94 *
  95 * The fields area is reserved for fields mapping zone, node (for NUMA) and
  96 * SPARSEMEM section (for variants of SPARSEMEM that require section ids like
  97 * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP).
  98 */
  99enum pageflags {
 100        PG_locked,              /* Page is locked. Don't touch. */
 101        PG_referenced,
 102        PG_uptodate,
 103        PG_dirty,
 104        PG_lru,
 105        PG_active,
 106        PG_workingset,
 107        PG_waiters,             /* Page has waiters, check its waitqueue. Must be bit #7 and in the same byte as "PG_locked" */
 108        PG_error,
 109        PG_slab,
 110        PG_owner_priv_1,        /* Owner use. If pagecache, fs may use*/
 111        PG_arch_1,
 112        PG_reserved,
 113        PG_private,             /* If pagecache, has fs-private data */
 114        PG_private_2,           /* If pagecache, has fs aux data */
 115        PG_writeback,           /* Page is under writeback */
 116        PG_head,                /* A head page */
 117        PG_mappedtodisk,        /* Has blocks allocated on-disk */
 118        PG_reclaim,             /* To be reclaimed asap */
 119        PG_swapbacked,          /* Page is backed by RAM/swap */
 120        PG_unevictable,         /* Page is "unevictable"  */
 121#ifdef CONFIG_MMU
 122        PG_mlocked,             /* Page is vma mlocked */
 123#endif
 124#ifdef CONFIG_ARCH_USES_PG_UNCACHED
 125        PG_uncached,            /* Page has been mapped as uncached */
 126#endif
 127#ifdef CONFIG_MEMORY_FAILURE
 128        PG_hwpoison,            /* hardware poisoned page. Don't touch */
 129#endif
 130#if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT)
 131        PG_young,
 132        PG_idle,
 133#endif
 134        __NR_PAGEFLAGS,
 135
 136        /* Filesystems */
 137        PG_checked = PG_owner_priv_1,
 138
 139        /* SwapBacked */
 140        PG_swapcache = PG_owner_priv_1, /* Swap page: swp_entry_t in private */
 141
 142        /* Two page bits are conscripted by FS-Cache to maintain local caching
 143         * state.  These bits are set on pages belonging to the netfs's inodes
 144         * when those inodes are being locally cached.
 145         */
 146        PG_fscache = PG_private_2,      /* page backed by cache */
 147
 148        /* XEN */
 149        /* Pinned in Xen as a read-only pagetable page. */
 150        PG_pinned = PG_owner_priv_1,
 151        /* Pinned as part of domain save (see xen_mm_pin_all()). */
 152        PG_savepinned = PG_dirty,
 153        /* Has a grant mapping of another (foreign) domain's page. */
 154        PG_foreign = PG_owner_priv_1,
 155        /* Remapped by swiotlb-xen. */
 156        PG_xen_remapped = PG_owner_priv_1,
 157
 158        /* SLOB */
 159        PG_slob_free = PG_private,
 160
 161        /* Compound pages. Stored in first tail page's flags */
 162        PG_double_map = PG_private_2,
 163
 164        /* non-lru isolated movable page */
 165        PG_isolated = PG_reclaim,
 166};
 167
 168#ifndef __GENERATING_BOUNDS_H
 169
 170struct page;    /* forward declaration */
 171
 172static inline struct page *compound_head(struct page *page)
 173{
 174        unsigned long head = READ_ONCE(page->compound_head);
 175
 176        if (unlikely(head & 1))
 177                return (struct page *) (head - 1);
 178        return page;
 179}
 180
 181static __always_inline int PageTail(struct page *page)
 182{
 183        return READ_ONCE(page->compound_head) & 1;
 184}
 185
 186static __always_inline int PageCompound(struct page *page)
 187{
 188        return test_bit(PG_head, &page->flags) || PageTail(page);
 189}
 190
 191#define PAGE_POISON_PATTERN     -1l
 192static inline int PagePoisoned(const struct page *page)
 193{
 194        return page->flags == PAGE_POISON_PATTERN;
 195}
 196
 197#ifdef CONFIG_DEBUG_VM
 198void page_init_poison(struct page *page, size_t size);
 199#else
 200static inline void page_init_poison(struct page *page, size_t size)
 201{
 202}
 203#endif
 204
 205/*
 206 * Page flags policies wrt compound pages
 207 *
 208 * PF_POISONED_CHECK
 209 *     check if this struct page poisoned/uninitialized
 210 *
 211 * PF_ANY:
 212 *     the page flag is relevant for small, head and tail pages.
 213 *
 214 * PF_HEAD:
 215 *     for compound page all operations related to the page flag applied to
 216 *     head page.
 217 *
 218 * PF_ONLY_HEAD:
 219 *     for compound page, callers only ever operate on the head page.
 220 *
 221 * PF_NO_TAIL:
 222 *     modifications of the page flag must be done on small or head pages,
 223 *     checks can be done on tail pages too.
 224 *
 225 * PF_NO_COMPOUND:
 226 *     the page flag is not relevant for compound pages.
 227 */
 228#define PF_POISONED_CHECK(page) ({                                      \
 229                VM_BUG_ON_PGFLAGS(PagePoisoned(page), page);            \
 230                page; })
 231#define PF_ANY(page, enforce)   PF_POISONED_CHECK(page)
 232#define PF_HEAD(page, enforce)  PF_POISONED_CHECK(compound_head(page))
 233#define PF_ONLY_HEAD(page, enforce) ({                                  \
 234                VM_BUG_ON_PGFLAGS(PageTail(page), page);                \
 235                PF_POISONED_CHECK(page); })
 236#define PF_NO_TAIL(page, enforce) ({                                    \
 237                VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page);     \
 238                PF_POISONED_CHECK(compound_head(page)); })
 239#define PF_NO_COMPOUND(page, enforce) ({                                \
 240                VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page); \
 241                PF_POISONED_CHECK(page); })
 242
 243/*
 244 * Macros to create function definitions for page flags
 245 */
 246#define TESTPAGEFLAG(uname, lname, policy)                              \
 247static __always_inline int Page##uname(struct page *page)               \
 248        { return test_bit(PG_##lname, &policy(page, 0)->flags); }
 249
 250#define SETPAGEFLAG(uname, lname, policy)                               \
 251static __always_inline void SetPage##uname(struct page *page)           \
 252        { set_bit(PG_##lname, &policy(page, 1)->flags); }
 253
 254#define CLEARPAGEFLAG(uname, lname, policy)                             \
 255static __always_inline void ClearPage##uname(struct page *page)         \
 256        { clear_bit(PG_##lname, &policy(page, 1)->flags); }
 257
 258#define __SETPAGEFLAG(uname, lname, policy)                             \
 259static __always_inline void __SetPage##uname(struct page *page)         \
 260        { __set_bit(PG_##lname, &policy(page, 1)->flags); }
 261
 262#define __CLEARPAGEFLAG(uname, lname, policy)                           \
 263static __always_inline void __ClearPage##uname(struct page *page)       \
 264        { __clear_bit(PG_##lname, &policy(page, 1)->flags); }
 265
 266#define TESTSETFLAG(uname, lname, policy)                               \
 267static __always_inline int TestSetPage##uname(struct page *page)        \
 268        { return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); }
 269
 270#define TESTCLEARFLAG(uname, lname, policy)                             \
 271static __always_inline int TestClearPage##uname(struct page *page)      \
 272        { return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); }
 273
 274#define PAGEFLAG(uname, lname, policy)                                  \
 275        TESTPAGEFLAG(uname, lname, policy)                              \
 276        SETPAGEFLAG(uname, lname, policy)                               \
 277        CLEARPAGEFLAG(uname, lname, policy)
 278
 279#define __PAGEFLAG(uname, lname, policy)                                \
 280        TESTPAGEFLAG(uname, lname, policy)                              \
 281        __SETPAGEFLAG(uname, lname, policy)                             \
 282        __CLEARPAGEFLAG(uname, lname, policy)
 283
 284#define TESTSCFLAG(uname, lname, policy)                                \
 285        TESTSETFLAG(uname, lname, policy)                               \
 286        TESTCLEARFLAG(uname, lname, policy)
 287
 288#define TESTPAGEFLAG_FALSE(uname)                                       \
 289static inline int Page##uname(const struct page *page) { return 0; }
 290
 291#define SETPAGEFLAG_NOOP(uname)                                         \
 292static inline void SetPage##uname(struct page *page) {  }
 293
 294#define CLEARPAGEFLAG_NOOP(uname)                                       \
 295static inline void ClearPage##uname(struct page *page) {  }
 296
 297#define __CLEARPAGEFLAG_NOOP(uname)                                     \
 298static inline void __ClearPage##uname(struct page *page) {  }
 299
 300#define TESTSETFLAG_FALSE(uname)                                        \
 301static inline int TestSetPage##uname(struct page *page) { return 0; }
 302
 303#define TESTCLEARFLAG_FALSE(uname)                                      \
 304static inline int TestClearPage##uname(struct page *page) { return 0; }
 305
 306#define PAGEFLAG_FALSE(uname) TESTPAGEFLAG_FALSE(uname)                 \
 307        SETPAGEFLAG_NOOP(uname) CLEARPAGEFLAG_NOOP(uname)
 308
 309#define TESTSCFLAG_FALSE(uname)                                         \
 310        TESTSETFLAG_FALSE(uname) TESTCLEARFLAG_FALSE(uname)
 311
 312__PAGEFLAG(Locked, locked, PF_NO_TAIL)
 313PAGEFLAG(Waiters, waiters, PF_ONLY_HEAD) __CLEARPAGEFLAG(Waiters, waiters, PF_ONLY_HEAD)
 314PAGEFLAG(Error, error, PF_NO_COMPOUND) TESTCLEARFLAG(Error, error, PF_NO_COMPOUND)
 315PAGEFLAG(Referenced, referenced, PF_HEAD)
 316        TESTCLEARFLAG(Referenced, referenced, PF_HEAD)
 317        __SETPAGEFLAG(Referenced, referenced, PF_HEAD)
 318PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD)
 319        __CLEARPAGEFLAG(Dirty, dirty, PF_HEAD)
 320PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD)
 321PAGEFLAG(Active, active, PF_HEAD) __CLEARPAGEFLAG(Active, active, PF_HEAD)
 322        TESTCLEARFLAG(Active, active, PF_HEAD)
 323PAGEFLAG(Workingset, workingset, PF_HEAD)
 324        TESTCLEARFLAG(Workingset, workingset, PF_HEAD)
 325__PAGEFLAG(Slab, slab, PF_NO_TAIL)
 326__PAGEFLAG(SlobFree, slob_free, PF_NO_TAIL)
 327PAGEFLAG(Checked, checked, PF_NO_COMPOUND)         /* Used by some filesystems */
 328
 329/* Xen */
 330PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND)
 331        TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND)
 332PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND);
 333PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND);
 334PAGEFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND)
 335        TESTCLEARFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND)
 336
 337PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
 338        __CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
 339        __SETPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
 340PAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
 341        __CLEARPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
 342        __SETPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
 343
 344/*
 345 * Private page markings that may be used by the filesystem that owns the page
 346 * for its own purposes.
 347 * - PG_private and PG_private_2 cause releasepage() and co to be invoked
 348 */
 349PAGEFLAG(Private, private, PF_ANY) __SETPAGEFLAG(Private, private, PF_ANY)
 350        __CLEARPAGEFLAG(Private, private, PF_ANY)
 351PAGEFLAG(Private2, private_2, PF_ANY) TESTSCFLAG(Private2, private_2, PF_ANY)
 352PAGEFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
 353        TESTCLEARFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
 354
 355/*
 356 * Only test-and-set exist for PG_writeback.  The unconditional operators are
 357 * risky: they bypass page accounting.
 358 */
 359TESTPAGEFLAG(Writeback, writeback, PF_NO_TAIL)
 360        TESTSCFLAG(Writeback, writeback, PF_NO_TAIL)
 361PAGEFLAG(MappedToDisk, mappedtodisk, PF_NO_TAIL)
 362
 363/* PG_readahead is only used for reads; PG_reclaim is only for writes */
 364PAGEFLAG(Reclaim, reclaim, PF_NO_TAIL)
 365        TESTCLEARFLAG(Reclaim, reclaim, PF_NO_TAIL)
 366PAGEFLAG(Readahead, reclaim, PF_NO_COMPOUND)
 367        TESTCLEARFLAG(Readahead, reclaim, PF_NO_COMPOUND)
 368
 369#ifdef CONFIG_HIGHMEM
 370/*
 371 * Must use a macro here due to header dependency issues. page_zone() is not
 372 * available at this point.
 373 */
 374#define PageHighMem(__p) is_highmem_idx(page_zonenum(__p))
 375#else
 376PAGEFLAG_FALSE(HighMem)
 377#endif
 378
 379#ifdef CONFIG_SWAP
 380static __always_inline int PageSwapCache(struct page *page)
 381{
 382#ifdef CONFIG_THP_SWAP
 383        page = compound_head(page);
 384#endif
 385        return PageSwapBacked(page) && test_bit(PG_swapcache, &page->flags);
 386
 387}
 388SETPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL)
 389CLEARPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL)
 390#else
 391PAGEFLAG_FALSE(SwapCache)
 392#endif
 393
 394PAGEFLAG(Unevictable, unevictable, PF_HEAD)
 395        __CLEARPAGEFLAG(Unevictable, unevictable, PF_HEAD)
 396        TESTCLEARFLAG(Unevictable, unevictable, PF_HEAD)
 397
 398#ifdef CONFIG_MMU
 399PAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
 400        __CLEARPAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
 401        TESTSCFLAG(Mlocked, mlocked, PF_NO_TAIL)
 402#else
 403PAGEFLAG_FALSE(Mlocked) __CLEARPAGEFLAG_NOOP(Mlocked)
 404        TESTSCFLAG_FALSE(Mlocked)
 405#endif
 406
 407#ifdef CONFIG_ARCH_USES_PG_UNCACHED
 408PAGEFLAG(Uncached, uncached, PF_NO_COMPOUND)
 409#else
 410PAGEFLAG_FALSE(Uncached)
 411#endif
 412
 413#ifdef CONFIG_MEMORY_FAILURE
 414PAGEFLAG(HWPoison, hwpoison, PF_ANY)
 415TESTSCFLAG(HWPoison, hwpoison, PF_ANY)
 416#define __PG_HWPOISON (1UL << PG_hwpoison)
 417extern bool set_hwpoison_free_buddy_page(struct page *page);
 418#else
 419PAGEFLAG_FALSE(HWPoison)
 420static inline bool set_hwpoison_free_buddy_page(struct page *page)
 421{
 422        return 0;
 423}
 424#define __PG_HWPOISON 0
 425#endif
 426
 427#if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT)
 428TESTPAGEFLAG(Young, young, PF_ANY)
 429SETPAGEFLAG(Young, young, PF_ANY)
 430TESTCLEARFLAG(Young, young, PF_ANY)
 431PAGEFLAG(Idle, idle, PF_ANY)
 432#endif
 433
 434/*
 435 * On an anonymous page mapped into a user virtual memory area,
 436 * page->mapping points to its anon_vma, not to a struct address_space;
 437 * with the PAGE_MAPPING_ANON bit set to distinguish it.  See rmap.h.
 438 *
 439 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
 440 * the PAGE_MAPPING_MOVABLE bit may be set along with the PAGE_MAPPING_ANON
 441 * bit; and then page->mapping points, not to an anon_vma, but to a private
 442 * structure which KSM associates with that merged page.  See ksm.h.
 443 *
 444 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is used for non-lru movable
 445 * page and then page->mapping points a struct address_space.
 446 *
 447 * Please note that, confusingly, "page_mapping" refers to the inode
 448 * address_space which maps the page from disk; whereas "page_mapped"
 449 * refers to user virtual address space into which the page is mapped.
 450 */
 451#define PAGE_MAPPING_ANON       0x1
 452#define PAGE_MAPPING_MOVABLE    0x2
 453#define PAGE_MAPPING_KSM        (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
 454#define PAGE_MAPPING_FLAGS      (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
 455
 456static __always_inline int PageMappingFlags(struct page *page)
 457{
 458        return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) != 0;
 459}
 460
 461static __always_inline int PageAnon(struct page *page)
 462{
 463        page = compound_head(page);
 464        return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
 465}
 466
 467static __always_inline int __PageMovable(struct page *page)
 468{
 469        return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
 470                                PAGE_MAPPING_MOVABLE;
 471}
 472
 473#ifdef CONFIG_KSM
 474/*
 475 * A KSM page is one of those write-protected "shared pages" or "merged pages"
 476 * which KSM maps into multiple mms, wherever identical anonymous page content
 477 * is found in VM_MERGEABLE vmas.  It's a PageAnon page, pointing not to any
 478 * anon_vma, but to that page's node of the stable tree.
 479 */
 480static __always_inline int PageKsm(struct page *page)
 481{
 482        page = compound_head(page);
 483        return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
 484                                PAGE_MAPPING_KSM;
 485}
 486#else
 487TESTPAGEFLAG_FALSE(Ksm)
 488#endif
 489
 490u64 stable_page_flags(struct page *page);
 491
 492static inline int PageUptodate(struct page *page)
 493{
 494        int ret;
 495        page = compound_head(page);
 496        ret = test_bit(PG_uptodate, &(page)->flags);
 497        /*
 498         * Must ensure that the data we read out of the page is loaded
 499         * _after_ we've loaded page->flags to check for PageUptodate.
 500         * We can skip the barrier if the page is not uptodate, because
 501         * we wouldn't be reading anything from it.
 502         *
 503         * See SetPageUptodate() for the other side of the story.
 504         */
 505        if (ret)
 506                smp_rmb();
 507
 508        return ret;
 509}
 510
 511static __always_inline void __SetPageUptodate(struct page *page)
 512{
 513        VM_BUG_ON_PAGE(PageTail(page), page);
 514        smp_wmb();
 515        __set_bit(PG_uptodate, &page->flags);
 516}
 517
 518static __always_inline void SetPageUptodate(struct page *page)
 519{
 520        VM_BUG_ON_PAGE(PageTail(page), page);
 521        /*
 522         * Memory barrier must be issued before setting the PG_uptodate bit,
 523         * so that all previous stores issued in order to bring the page
 524         * uptodate are actually visible before PageUptodate becomes true.
 525         */
 526        smp_wmb();
 527        set_bit(PG_uptodate, &page->flags);
 528}
 529
 530CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL)
 531
 532int test_clear_page_writeback(struct page *page);
 533int __test_set_page_writeback(struct page *page, bool keep_write);
 534
 535#define test_set_page_writeback(page)                   \
 536        __test_set_page_writeback(page, false)
 537#define test_set_page_writeback_keepwrite(page) \
 538        __test_set_page_writeback(page, true)
 539
 540static inline void set_page_writeback(struct page *page)
 541{
 542        test_set_page_writeback(page);
 543}
 544
 545static inline void set_page_writeback_keepwrite(struct page *page)
 546{
 547        test_set_page_writeback_keepwrite(page);
 548}
 549
 550__PAGEFLAG(Head, head, PF_ANY) CLEARPAGEFLAG(Head, head, PF_ANY)
 551
 552static __always_inline void set_compound_head(struct page *page, struct page *head)
 553{
 554        WRITE_ONCE(page->compound_head, (unsigned long)head + 1);
 555}
 556
 557static __always_inline void clear_compound_head(struct page *page)
 558{
 559        WRITE_ONCE(page->compound_head, 0);
 560}
 561
 562#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 563static inline void ClearPageCompound(struct page *page)
 564{
 565        BUG_ON(!PageHead(page));
 566        ClearPageHead(page);
 567}
 568#endif
 569
 570#define PG_head_mask ((1UL << PG_head))
 571
 572#ifdef CONFIG_HUGETLB_PAGE
 573int PageHuge(struct page *page);
 574int PageHeadHuge(struct page *page);
 575bool page_huge_active(struct page *page);
 576#else
 577TESTPAGEFLAG_FALSE(Huge)
 578TESTPAGEFLAG_FALSE(HeadHuge)
 579
 580static inline bool page_huge_active(struct page *page)
 581{
 582        return 0;
 583}
 584#endif
 585
 586
 587#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 588/*
 589 * PageHuge() only returns true for hugetlbfs pages, but not for
 590 * normal or transparent huge pages.
 591 *
 592 * PageTransHuge() returns true for both transparent huge and
 593 * hugetlbfs pages, but not normal pages. PageTransHuge() can only be
 594 * called only in the core VM paths where hugetlbfs pages can't exist.
 595 */
 596static inline int PageTransHuge(struct page *page)
 597{
 598        VM_BUG_ON_PAGE(PageTail(page), page);
 599        return PageHead(page);
 600}
 601
 602/*
 603 * PageTransCompound returns true for both transparent huge pages
 604 * and hugetlbfs pages, so it should only be called when it's known
 605 * that hugetlbfs pages aren't involved.
 606 */
 607static inline int PageTransCompound(struct page *page)
 608{
 609        return PageCompound(page);
 610}
 611
 612/*
 613 * PageTransCompoundMap is the same as PageTransCompound, but it also
 614 * guarantees the primary MMU has the entire compound page mapped
 615 * through pmd_trans_huge, which in turn guarantees the secondary MMUs
 616 * can also map the entire compound page. This allows the secondary
 617 * MMUs to call get_user_pages() only once for each compound page and
 618 * to immediately map the entire compound page with a single secondary
 619 * MMU fault. If there will be a pmd split later, the secondary MMUs
 620 * will get an update through the MMU notifier invalidation through
 621 * split_huge_pmd().
 622 *
 623 * Unlike PageTransCompound, this is safe to be called only while
 624 * split_huge_pmd() cannot run from under us, like if protected by the
 625 * MMU notifier, otherwise it may result in page->_mapcount check false
 626 * positives.
 627 *
 628 * We have to treat page cache THP differently since every subpage of it
 629 * would get _mapcount inc'ed once it is PMD mapped.  But, it may be PTE
 630 * mapped in the current process so comparing subpage's _mapcount to
 631 * compound_mapcount to filter out PTE mapped case.
 632 */
 633static inline int PageTransCompoundMap(struct page *page)
 634{
 635        struct page *head;
 636
 637        if (!PageTransCompound(page))
 638                return 0;
 639
 640        if (PageAnon(page))
 641                return atomic_read(&page->_mapcount) < 0;
 642
 643        head = compound_head(page);
 644        /* File THP is PMD mapped and not PTE mapped */
 645        return atomic_read(&page->_mapcount) ==
 646               atomic_read(compound_mapcount_ptr(head));
 647}
 648
 649/*
 650 * PageTransTail returns true for both transparent huge pages
 651 * and hugetlbfs pages, so it should only be called when it's known
 652 * that hugetlbfs pages aren't involved.
 653 */
 654static inline int PageTransTail(struct page *page)
 655{
 656        return PageTail(page);
 657}
 658
 659/*
 660 * PageDoubleMap indicates that the compound page is mapped with PTEs as well
 661 * as PMDs.
 662 *
 663 * This is required for optimization of rmap operations for THP: we can postpone
 664 * per small page mapcount accounting (and its overhead from atomic operations)
 665 * until the first PMD split.
 666 *
 667 * For the page PageDoubleMap means ->_mapcount in all sub-pages is offset up
 668 * by one. This reference will go away with last compound_mapcount.
 669 *
 670 * See also __split_huge_pmd_locked() and page_remove_anon_compound_rmap().
 671 */
 672static inline int PageDoubleMap(struct page *page)
 673{
 674        return PageHead(page) && test_bit(PG_double_map, &page[1].flags);
 675}
 676
 677static inline void SetPageDoubleMap(struct page *page)
 678{
 679        VM_BUG_ON_PAGE(!PageHead(page), page);
 680        set_bit(PG_double_map, &page[1].flags);
 681}
 682
 683static inline void ClearPageDoubleMap(struct page *page)
 684{
 685        VM_BUG_ON_PAGE(!PageHead(page), page);
 686        clear_bit(PG_double_map, &page[1].flags);
 687}
 688static inline int TestSetPageDoubleMap(struct page *page)
 689{
 690        VM_BUG_ON_PAGE(!PageHead(page), page);
 691        return test_and_set_bit(PG_double_map, &page[1].flags);
 692}
 693
 694static inline int TestClearPageDoubleMap(struct page *page)
 695{
 696        VM_BUG_ON_PAGE(!PageHead(page), page);
 697        return test_and_clear_bit(PG_double_map, &page[1].flags);
 698}
 699
 700#else
 701TESTPAGEFLAG_FALSE(TransHuge)
 702TESTPAGEFLAG_FALSE(TransCompound)
 703TESTPAGEFLAG_FALSE(TransCompoundMap)
 704TESTPAGEFLAG_FALSE(TransTail)
 705PAGEFLAG_FALSE(DoubleMap)
 706        TESTSETFLAG_FALSE(DoubleMap)
 707        TESTCLEARFLAG_FALSE(DoubleMap)
 708#endif
 709
 710/*
 711 * For pages that are never mapped to userspace (and aren't PageSlab),
 712 * page_type may be used.  Because it is initialised to -1, we invert the
 713 * sense of the bit, so __SetPageFoo *clears* the bit used for PageFoo, and
 714 * __ClearPageFoo *sets* the bit used for PageFoo.  We reserve a few high and
 715 * low bits so that an underflow or overflow of page_mapcount() won't be
 716 * mistaken for a page type value.
 717 */
 718
 719#define PAGE_TYPE_BASE  0xf0000000
 720/* Reserve              0x0000007f to catch underflows of page_mapcount */
 721#define PAGE_MAPCOUNT_RESERVE   -128
 722#define PG_buddy        0x00000080
 723#define PG_offline      0x00000100
 724#define PG_kmemcg       0x00000200
 725#define PG_table        0x00000400
 726#define PG_guard        0x00000800
 727
 728#define PageType(page, flag)                                            \
 729        ((page->page_type & (PAGE_TYPE_BASE | flag)) == PAGE_TYPE_BASE)
 730
 731static inline int page_has_type(struct page *page)
 732{
 733        return (int)page->page_type < PAGE_MAPCOUNT_RESERVE;
 734}
 735
 736#define PAGE_TYPE_OPS(uname, lname)                                     \
 737static __always_inline int Page##uname(struct page *page)               \
 738{                                                                       \
 739        return PageType(page, PG_##lname);                              \
 740}                                                                       \
 741static __always_inline void __SetPage##uname(struct page *page)         \
 742{                                                                       \
 743        VM_BUG_ON_PAGE(!PageType(page, 0), page);                       \
 744        page->page_type &= ~PG_##lname;                                 \
 745}                                                                       \
 746static __always_inline void __ClearPage##uname(struct page *page)       \
 747{                                                                       \
 748        VM_BUG_ON_PAGE(!Page##uname(page), page);                       \
 749        page->page_type |= PG_##lname;                                  \
 750}
 751
 752/*
 753 * PageBuddy() indicates that the page is free and in the buddy system
 754 * (see mm/page_alloc.c).
 755 */
 756PAGE_TYPE_OPS(Buddy, buddy)
 757
 758/*
 759 * PageOffline() indicates that the page is logically offline although the
 760 * containing section is online. (e.g. inflated in a balloon driver or
 761 * not onlined when onlining the section).
 762 * The content of these pages is effectively stale. Such pages should not
 763 * be touched (read/write/dump/save) except by their owner.
 764 */
 765PAGE_TYPE_OPS(Offline, offline)
 766
 767/*
 768 * If kmemcg is enabled, the buddy allocator will set PageKmemcg() on
 769 * pages allocated with __GFP_ACCOUNT. It gets cleared on page free.
 770 */
 771PAGE_TYPE_OPS(Kmemcg, kmemcg)
 772
 773/*
 774 * Marks pages in use as page tables.
 775 */
 776PAGE_TYPE_OPS(Table, table)
 777
 778/*
 779 * Marks guardpages used with debug_pagealloc.
 780 */
 781PAGE_TYPE_OPS(Guard, guard)
 782
 783extern bool is_free_buddy_page(struct page *page);
 784
 785__PAGEFLAG(Isolated, isolated, PF_ANY);
 786
 787/*
 788 * If network-based swap is enabled, sl*b must keep track of whether pages
 789 * were allocated from pfmemalloc reserves.
 790 */
 791static inline int PageSlabPfmemalloc(struct page *page)
 792{
 793        VM_BUG_ON_PAGE(!PageSlab(page), page);
 794        return PageActive(page);
 795}
 796
 797static inline void SetPageSlabPfmemalloc(struct page *page)
 798{
 799        VM_BUG_ON_PAGE(!PageSlab(page), page);
 800        SetPageActive(page);
 801}
 802
 803static inline void __ClearPageSlabPfmemalloc(struct page *page)
 804{
 805        VM_BUG_ON_PAGE(!PageSlab(page), page);
 806        __ClearPageActive(page);
 807}
 808
 809static inline void ClearPageSlabPfmemalloc(struct page *page)
 810{
 811        VM_BUG_ON_PAGE(!PageSlab(page), page);
 812        ClearPageActive(page);
 813}
 814
 815#ifdef CONFIG_MMU
 816#define __PG_MLOCKED            (1UL << PG_mlocked)
 817#else
 818#define __PG_MLOCKED            0
 819#endif
 820
 821/*
 822 * Flags checked when a page is freed.  Pages being freed should not have
 823 * these flags set.  It they are, there is a problem.
 824 */
 825#define PAGE_FLAGS_CHECK_AT_FREE                                \
 826        (1UL << PG_lru          | 1UL << PG_locked      |       \
 827         1UL << PG_private      | 1UL << PG_private_2   |       \
 828         1UL << PG_writeback    | 1UL << PG_reserved    |       \
 829         1UL << PG_slab         | 1UL << PG_active      |       \
 830         1UL << PG_unevictable  | __PG_MLOCKED)
 831
 832/*
 833 * Flags checked when a page is prepped for return by the page allocator.
 834 * Pages being prepped should not have these flags set.  It they are set,
 835 * there has been a kernel bug or struct page corruption.
 836 *
 837 * __PG_HWPOISON is exceptional because it needs to be kept beyond page's
 838 * alloc-free cycle to prevent from reusing the page.
 839 */
 840#define PAGE_FLAGS_CHECK_AT_PREP        \
 841        (((1UL << NR_PAGEFLAGS) - 1) & ~__PG_HWPOISON)
 842
 843#define PAGE_FLAGS_PRIVATE                              \
 844        (1UL << PG_private | 1UL << PG_private_2)
 845/**
 846 * page_has_private - Determine if page has private stuff
 847 * @page: The page to be checked
 848 *
 849 * Determine if a page has private stuff, indicating that release routines
 850 * should be invoked upon it.
 851 */
 852static inline int page_has_private(struct page *page)
 853{
 854        return !!(page->flags & PAGE_FLAGS_PRIVATE);
 855}
 856
 857#undef PF_ANY
 858#undef PF_HEAD
 859#undef PF_ONLY_HEAD
 860#undef PF_NO_TAIL
 861#undef PF_NO_COMPOUND
 862#endif /* !__GENERATING_BOUNDS_H */
 863
 864#endif  /* PAGE_FLAGS_H */
 865