linux/include/linux/sched.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _LINUX_SCHED_H
   3#define _LINUX_SCHED_H
   4
   5/*
   6 * Define 'struct task_struct' and provide the main scheduler
   7 * APIs (schedule(), wakeup variants, etc.)
   8 */
   9
  10#include <uapi/linux/sched.h>
  11
  12#include <asm/current.h>
  13
  14#include <linux/pid.h>
  15#include <linux/sem.h>
  16#include <linux/shm.h>
  17#include <linux/kcov.h>
  18#include <linux/mutex.h>
  19#include <linux/plist.h>
  20#include <linux/hrtimer.h>
  21#include <linux/seccomp.h>
  22#include <linux/nodemask.h>
  23#include <linux/rcupdate.h>
  24#include <linux/refcount.h>
  25#include <linux/resource.h>
  26#include <linux/latencytop.h>
  27#include <linux/sched/prio.h>
  28#include <linux/sched/types.h>
  29#include <linux/signal_types.h>
  30#include <linux/mm_types_task.h>
  31#include <linux/task_io_accounting.h>
  32#include <linux/posix-timers.h>
  33#include <linux/rseq.h>
  34
  35/* task_struct member predeclarations (sorted alphabetically): */
  36struct audit_context;
  37struct backing_dev_info;
  38struct bio_list;
  39struct blk_plug;
  40struct capture_control;
  41struct cfs_rq;
  42struct fs_struct;
  43struct futex_pi_state;
  44struct io_context;
  45struct mempolicy;
  46struct nameidata;
  47struct nsproxy;
  48struct perf_event_context;
  49struct pid_namespace;
  50struct pipe_inode_info;
  51struct rcu_node;
  52struct reclaim_state;
  53struct robust_list_head;
  54struct root_domain;
  55struct rq;
  56struct sched_attr;
  57struct sched_param;
  58struct seq_file;
  59struct sighand_struct;
  60struct signal_struct;
  61struct task_delay_info;
  62struct task_group;
  63
  64/*
  65 * Task state bitmask. NOTE! These bits are also
  66 * encoded in fs/proc/array.c: get_task_state().
  67 *
  68 * We have two separate sets of flags: task->state
  69 * is about runnability, while task->exit_state are
  70 * about the task exiting. Confusing, but this way
  71 * modifying one set can't modify the other one by
  72 * mistake.
  73 */
  74
  75/* Used in tsk->state: */
  76#define TASK_RUNNING                    0x0000
  77#define TASK_INTERRUPTIBLE              0x0001
  78#define TASK_UNINTERRUPTIBLE            0x0002
  79#define __TASK_STOPPED                  0x0004
  80#define __TASK_TRACED                   0x0008
  81/* Used in tsk->exit_state: */
  82#define EXIT_DEAD                       0x0010
  83#define EXIT_ZOMBIE                     0x0020
  84#define EXIT_TRACE                      (EXIT_ZOMBIE | EXIT_DEAD)
  85/* Used in tsk->state again: */
  86#define TASK_PARKED                     0x0040
  87#define TASK_DEAD                       0x0080
  88#define TASK_WAKEKILL                   0x0100
  89#define TASK_WAKING                     0x0200
  90#define TASK_NOLOAD                     0x0400
  91#define TASK_NEW                        0x0800
  92#define TASK_STATE_MAX                  0x1000
  93
  94/* Convenience macros for the sake of set_current_state: */
  95#define TASK_KILLABLE                   (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
  96#define TASK_STOPPED                    (TASK_WAKEKILL | __TASK_STOPPED)
  97#define TASK_TRACED                     (TASK_WAKEKILL | __TASK_TRACED)
  98
  99#define TASK_IDLE                       (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
 100
 101/* Convenience macros for the sake of wake_up(): */
 102#define TASK_NORMAL                     (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
 103
 104/* get_task_state(): */
 105#define TASK_REPORT                     (TASK_RUNNING | TASK_INTERRUPTIBLE | \
 106                                         TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
 107                                         __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
 108                                         TASK_PARKED)
 109
 110#define task_is_traced(task)            ((task->state & __TASK_TRACED) != 0)
 111
 112#define task_is_stopped(task)           ((task->state & __TASK_STOPPED) != 0)
 113
 114#define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
 115
 116#define task_contributes_to_load(task)  ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
 117                                         (task->flags & PF_FROZEN) == 0 && \
 118                                         (task->state & TASK_NOLOAD) == 0)
 119
 120#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
 121
 122/*
 123 * Special states are those that do not use the normal wait-loop pattern. See
 124 * the comment with set_special_state().
 125 */
 126#define is_special_task_state(state)                            \
 127        ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
 128
 129#define __set_current_state(state_value)                        \
 130        do {                                                    \
 131                WARN_ON_ONCE(is_special_task_state(state_value));\
 132                current->task_state_change = _THIS_IP_;         \
 133                current->state = (state_value);                 \
 134        } while (0)
 135
 136#define set_current_state(state_value)                          \
 137        do {                                                    \
 138                WARN_ON_ONCE(is_special_task_state(state_value));\
 139                current->task_state_change = _THIS_IP_;         \
 140                smp_store_mb(current->state, (state_value));    \
 141        } while (0)
 142
 143#define set_special_state(state_value)                                  \
 144        do {                                                            \
 145                unsigned long flags; /* may shadow */                   \
 146                WARN_ON_ONCE(!is_special_task_state(state_value));      \
 147                raw_spin_lock_irqsave(&current->pi_lock, flags);        \
 148                current->task_state_change = _THIS_IP_;                 \
 149                current->state = (state_value);                         \
 150                raw_spin_unlock_irqrestore(&current->pi_lock, flags);   \
 151        } while (0)
 152#else
 153/*
 154 * set_current_state() includes a barrier so that the write of current->state
 155 * is correctly serialised wrt the caller's subsequent test of whether to
 156 * actually sleep:
 157 *
 158 *   for (;;) {
 159 *      set_current_state(TASK_UNINTERRUPTIBLE);
 160 *      if (!need_sleep)
 161 *              break;
 162 *
 163 *      schedule();
 164 *   }
 165 *   __set_current_state(TASK_RUNNING);
 166 *
 167 * If the caller does not need such serialisation (because, for instance, the
 168 * condition test and condition change and wakeup are under the same lock) then
 169 * use __set_current_state().
 170 *
 171 * The above is typically ordered against the wakeup, which does:
 172 *
 173 *   need_sleep = false;
 174 *   wake_up_state(p, TASK_UNINTERRUPTIBLE);
 175 *
 176 * where wake_up_state() executes a full memory barrier before accessing the
 177 * task state.
 178 *
 179 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
 180 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
 181 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
 182 *
 183 * However, with slightly different timing the wakeup TASK_RUNNING store can
 184 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
 185 * a problem either because that will result in one extra go around the loop
 186 * and our @cond test will save the day.
 187 *
 188 * Also see the comments of try_to_wake_up().
 189 */
 190#define __set_current_state(state_value)                                \
 191        current->state = (state_value)
 192
 193#define set_current_state(state_value)                                  \
 194        smp_store_mb(current->state, (state_value))
 195
 196/*
 197 * set_special_state() should be used for those states when the blocking task
 198 * can not use the regular condition based wait-loop. In that case we must
 199 * serialize against wakeups such that any possible in-flight TASK_RUNNING stores
 200 * will not collide with our state change.
 201 */
 202#define set_special_state(state_value)                                  \
 203        do {                                                            \
 204                unsigned long flags; /* may shadow */                   \
 205                raw_spin_lock_irqsave(&current->pi_lock, flags);        \
 206                current->state = (state_value);                         \
 207                raw_spin_unlock_irqrestore(&current->pi_lock, flags);   \
 208        } while (0)
 209
 210#endif
 211
 212/* Task command name length: */
 213#define TASK_COMM_LEN                   16
 214
 215extern void scheduler_tick(void);
 216
 217#define MAX_SCHEDULE_TIMEOUT            LONG_MAX
 218
 219extern long schedule_timeout(long timeout);
 220extern long schedule_timeout_interruptible(long timeout);
 221extern long schedule_timeout_killable(long timeout);
 222extern long schedule_timeout_uninterruptible(long timeout);
 223extern long schedule_timeout_idle(long timeout);
 224asmlinkage void schedule(void);
 225extern void schedule_preempt_disabled(void);
 226asmlinkage void preempt_schedule_irq(void);
 227
 228extern int __must_check io_schedule_prepare(void);
 229extern void io_schedule_finish(int token);
 230extern long io_schedule_timeout(long timeout);
 231extern void io_schedule(void);
 232
 233/**
 234 * struct prev_cputime - snapshot of system and user cputime
 235 * @utime: time spent in user mode
 236 * @stime: time spent in system mode
 237 * @lock: protects the above two fields
 238 *
 239 * Stores previous user/system time values such that we can guarantee
 240 * monotonicity.
 241 */
 242struct prev_cputime {
 243#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
 244        u64                             utime;
 245        u64                             stime;
 246        raw_spinlock_t                  lock;
 247#endif
 248};
 249
 250enum vtime_state {
 251        /* Task is sleeping or running in a CPU with VTIME inactive: */
 252        VTIME_INACTIVE = 0,
 253        /* Task is idle */
 254        VTIME_IDLE,
 255        /* Task runs in kernelspace in a CPU with VTIME active: */
 256        VTIME_SYS,
 257        /* Task runs in userspace in a CPU with VTIME active: */
 258        VTIME_USER,
 259        /* Task runs as guests in a CPU with VTIME active: */
 260        VTIME_GUEST,
 261};
 262
 263struct vtime {
 264        seqcount_t              seqcount;
 265        unsigned long long      starttime;
 266        enum vtime_state        state;
 267        unsigned int            cpu;
 268        u64                     utime;
 269        u64                     stime;
 270        u64                     gtime;
 271};
 272
 273/*
 274 * Utilization clamp constraints.
 275 * @UCLAMP_MIN: Minimum utilization
 276 * @UCLAMP_MAX: Maximum utilization
 277 * @UCLAMP_CNT: Utilization clamp constraints count
 278 */
 279enum uclamp_id {
 280        UCLAMP_MIN = 0,
 281        UCLAMP_MAX,
 282        UCLAMP_CNT
 283};
 284
 285#ifdef CONFIG_SMP
 286extern struct root_domain def_root_domain;
 287extern struct mutex sched_domains_mutex;
 288#endif
 289
 290struct sched_info {
 291#ifdef CONFIG_SCHED_INFO
 292        /* Cumulative counters: */
 293
 294        /* # of times we have run on this CPU: */
 295        unsigned long                   pcount;
 296
 297        /* Time spent waiting on a runqueue: */
 298        unsigned long long              run_delay;
 299
 300        /* Timestamps: */
 301
 302        /* When did we last run on a CPU? */
 303        unsigned long long              last_arrival;
 304
 305        /* When were we last queued to run? */
 306        unsigned long long              last_queued;
 307
 308#endif /* CONFIG_SCHED_INFO */
 309};
 310
 311/*
 312 * Integer metrics need fixed point arithmetic, e.g., sched/fair
 313 * has a few: load, load_avg, util_avg, freq, and capacity.
 314 *
 315 * We define a basic fixed point arithmetic range, and then formalize
 316 * all these metrics based on that basic range.
 317 */
 318# define SCHED_FIXEDPOINT_SHIFT         10
 319# define SCHED_FIXEDPOINT_SCALE         (1L << SCHED_FIXEDPOINT_SHIFT)
 320
 321/* Increase resolution of cpu_capacity calculations */
 322# define SCHED_CAPACITY_SHIFT           SCHED_FIXEDPOINT_SHIFT
 323# define SCHED_CAPACITY_SCALE           (1L << SCHED_CAPACITY_SHIFT)
 324
 325struct load_weight {
 326        unsigned long                   weight;
 327        u32                             inv_weight;
 328};
 329
 330/**
 331 * struct util_est - Estimation utilization of FAIR tasks
 332 * @enqueued: instantaneous estimated utilization of a task/cpu
 333 * @ewma:     the Exponential Weighted Moving Average (EWMA)
 334 *            utilization of a task
 335 *
 336 * Support data structure to track an Exponential Weighted Moving Average
 337 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
 338 * average each time a task completes an activation. Sample's weight is chosen
 339 * so that the EWMA will be relatively insensitive to transient changes to the
 340 * task's workload.
 341 *
 342 * The enqueued attribute has a slightly different meaning for tasks and cpus:
 343 * - task:   the task's util_avg at last task dequeue time
 344 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
 345 * Thus, the util_est.enqueued of a task represents the contribution on the
 346 * estimated utilization of the CPU where that task is currently enqueued.
 347 *
 348 * Only for tasks we track a moving average of the past instantaneous
 349 * estimated utilization. This allows to absorb sporadic drops in utilization
 350 * of an otherwise almost periodic task.
 351 */
 352struct util_est {
 353        unsigned int                    enqueued;
 354        unsigned int                    ewma;
 355#define UTIL_EST_WEIGHT_SHIFT           2
 356} __attribute__((__aligned__(sizeof(u64))));
 357
 358/*
 359 * The load_avg/util_avg accumulates an infinite geometric series
 360 * (see __update_load_avg() in kernel/sched/fair.c).
 361 *
 362 * [load_avg definition]
 363 *
 364 *   load_avg = runnable% * scale_load_down(load)
 365 *
 366 * where runnable% is the time ratio that a sched_entity is runnable.
 367 * For cfs_rq, it is the aggregated load_avg of all runnable and
 368 * blocked sched_entities.
 369 *
 370 * [util_avg definition]
 371 *
 372 *   util_avg = running% * SCHED_CAPACITY_SCALE
 373 *
 374 * where running% is the time ratio that a sched_entity is running on
 375 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
 376 * and blocked sched_entities.
 377 *
 378 * load_avg and util_avg don't direcly factor frequency scaling and CPU
 379 * capacity scaling. The scaling is done through the rq_clock_pelt that
 380 * is used for computing those signals (see update_rq_clock_pelt())
 381 *
 382 * N.B., the above ratios (runnable% and running%) themselves are in the
 383 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
 384 * to as large a range as necessary. This is for example reflected by
 385 * util_avg's SCHED_CAPACITY_SCALE.
 386 *
 387 * [Overflow issue]
 388 *
 389 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
 390 * with the highest load (=88761), always runnable on a single cfs_rq,
 391 * and should not overflow as the number already hits PID_MAX_LIMIT.
 392 *
 393 * For all other cases (including 32-bit kernels), struct load_weight's
 394 * weight will overflow first before we do, because:
 395 *
 396 *    Max(load_avg) <= Max(load.weight)
 397 *
 398 * Then it is the load_weight's responsibility to consider overflow
 399 * issues.
 400 */
 401struct sched_avg {
 402        u64                             last_update_time;
 403        u64                             load_sum;
 404        u64                             runnable_load_sum;
 405        u32                             util_sum;
 406        u32                             period_contrib;
 407        unsigned long                   load_avg;
 408        unsigned long                   runnable_load_avg;
 409        unsigned long                   util_avg;
 410        struct util_est                 util_est;
 411} ____cacheline_aligned;
 412
 413struct sched_statistics {
 414#ifdef CONFIG_SCHEDSTATS
 415        u64                             wait_start;
 416        u64                             wait_max;
 417        u64                             wait_count;
 418        u64                             wait_sum;
 419        u64                             iowait_count;
 420        u64                             iowait_sum;
 421
 422        u64                             sleep_start;
 423        u64                             sleep_max;
 424        s64                             sum_sleep_runtime;
 425
 426        u64                             block_start;
 427        u64                             block_max;
 428        u64                             exec_max;
 429        u64                             slice_max;
 430
 431        u64                             nr_migrations_cold;
 432        u64                             nr_failed_migrations_affine;
 433        u64                             nr_failed_migrations_running;
 434        u64                             nr_failed_migrations_hot;
 435        u64                             nr_forced_migrations;
 436
 437        u64                             nr_wakeups;
 438        u64                             nr_wakeups_sync;
 439        u64                             nr_wakeups_migrate;
 440        u64                             nr_wakeups_local;
 441        u64                             nr_wakeups_remote;
 442        u64                             nr_wakeups_affine;
 443        u64                             nr_wakeups_affine_attempts;
 444        u64                             nr_wakeups_passive;
 445        u64                             nr_wakeups_idle;
 446#endif
 447};
 448
 449struct sched_entity {
 450        /* For load-balancing: */
 451        struct load_weight              load;
 452        unsigned long                   runnable_weight;
 453        struct rb_node                  run_node;
 454        struct list_head                group_node;
 455        unsigned int                    on_rq;
 456
 457        u64                             exec_start;
 458        u64                             sum_exec_runtime;
 459        u64                             vruntime;
 460        u64                             prev_sum_exec_runtime;
 461
 462        u64                             nr_migrations;
 463
 464        struct sched_statistics         statistics;
 465
 466#ifdef CONFIG_FAIR_GROUP_SCHED
 467        int                             depth;
 468        struct sched_entity             *parent;
 469        /* rq on which this entity is (to be) queued: */
 470        struct cfs_rq                   *cfs_rq;
 471        /* rq "owned" by this entity/group: */
 472        struct cfs_rq                   *my_q;
 473#endif
 474
 475#ifdef CONFIG_SMP
 476        /*
 477         * Per entity load average tracking.
 478         *
 479         * Put into separate cache line so it does not
 480         * collide with read-mostly values above.
 481         */
 482        struct sched_avg                avg;
 483#endif
 484};
 485
 486struct sched_rt_entity {
 487        struct list_head                run_list;
 488        unsigned long                   timeout;
 489        unsigned long                   watchdog_stamp;
 490        unsigned int                    time_slice;
 491        unsigned short                  on_rq;
 492        unsigned short                  on_list;
 493
 494        struct sched_rt_entity          *back;
 495#ifdef CONFIG_RT_GROUP_SCHED
 496        struct sched_rt_entity          *parent;
 497        /* rq on which this entity is (to be) queued: */
 498        struct rt_rq                    *rt_rq;
 499        /* rq "owned" by this entity/group: */
 500        struct rt_rq                    *my_q;
 501#endif
 502} __randomize_layout;
 503
 504struct sched_dl_entity {
 505        struct rb_node                  rb_node;
 506
 507        /*
 508         * Original scheduling parameters. Copied here from sched_attr
 509         * during sched_setattr(), they will remain the same until
 510         * the next sched_setattr().
 511         */
 512        u64                             dl_runtime;     /* Maximum runtime for each instance    */
 513        u64                             dl_deadline;    /* Relative deadline of each instance   */
 514        u64                             dl_period;      /* Separation of two instances (period) */
 515        u64                             dl_bw;          /* dl_runtime / dl_period               */
 516        u64                             dl_density;     /* dl_runtime / dl_deadline             */
 517
 518        /*
 519         * Actual scheduling parameters. Initialized with the values above,
 520         * they are continuously updated during task execution. Note that
 521         * the remaining runtime could be < 0 in case we are in overrun.
 522         */
 523        s64                             runtime;        /* Remaining runtime for this instance  */
 524        u64                             deadline;       /* Absolute deadline for this instance  */
 525        unsigned int                    flags;          /* Specifying the scheduler behaviour   */
 526
 527        /*
 528         * Some bool flags:
 529         *
 530         * @dl_throttled tells if we exhausted the runtime. If so, the
 531         * task has to wait for a replenishment to be performed at the
 532         * next firing of dl_timer.
 533         *
 534         * @dl_boosted tells if we are boosted due to DI. If so we are
 535         * outside bandwidth enforcement mechanism (but only until we
 536         * exit the critical section);
 537         *
 538         * @dl_yielded tells if task gave up the CPU before consuming
 539         * all its available runtime during the last job.
 540         *
 541         * @dl_non_contending tells if the task is inactive while still
 542         * contributing to the active utilization. In other words, it
 543         * indicates if the inactive timer has been armed and its handler
 544         * has not been executed yet. This flag is useful to avoid race
 545         * conditions between the inactive timer handler and the wakeup
 546         * code.
 547         *
 548         * @dl_overrun tells if the task asked to be informed about runtime
 549         * overruns.
 550         */
 551        unsigned int                    dl_throttled      : 1;
 552        unsigned int                    dl_boosted        : 1;
 553        unsigned int                    dl_yielded        : 1;
 554        unsigned int                    dl_non_contending : 1;
 555        unsigned int                    dl_overrun        : 1;
 556
 557        /*
 558         * Bandwidth enforcement timer. Each -deadline task has its
 559         * own bandwidth to be enforced, thus we need one timer per task.
 560         */
 561        struct hrtimer                  dl_timer;
 562
 563        /*
 564         * Inactive timer, responsible for decreasing the active utilization
 565         * at the "0-lag time". When a -deadline task blocks, it contributes
 566         * to GRUB's active utilization until the "0-lag time", hence a
 567         * timer is needed to decrease the active utilization at the correct
 568         * time.
 569         */
 570        struct hrtimer inactive_timer;
 571};
 572
 573#ifdef CONFIG_UCLAMP_TASK
 574/* Number of utilization clamp buckets (shorter alias) */
 575#define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
 576
 577/*
 578 * Utilization clamp for a scheduling entity
 579 * @value:              clamp value "assigned" to a se
 580 * @bucket_id:          bucket index corresponding to the "assigned" value
 581 * @active:             the se is currently refcounted in a rq's bucket
 582 * @user_defined:       the requested clamp value comes from user-space
 583 *
 584 * The bucket_id is the index of the clamp bucket matching the clamp value
 585 * which is pre-computed and stored to avoid expensive integer divisions from
 586 * the fast path.
 587 *
 588 * The active bit is set whenever a task has got an "effective" value assigned,
 589 * which can be different from the clamp value "requested" from user-space.
 590 * This allows to know a task is refcounted in the rq's bucket corresponding
 591 * to the "effective" bucket_id.
 592 *
 593 * The user_defined bit is set whenever a task has got a task-specific clamp
 594 * value requested from userspace, i.e. the system defaults apply to this task
 595 * just as a restriction. This allows to relax default clamps when a less
 596 * restrictive task-specific value has been requested, thus allowing to
 597 * implement a "nice" semantic. For example, a task running with a 20%
 598 * default boost can still drop its own boosting to 0%.
 599 */
 600struct uclamp_se {
 601        unsigned int value              : bits_per(SCHED_CAPACITY_SCALE);
 602        unsigned int bucket_id          : bits_per(UCLAMP_BUCKETS);
 603        unsigned int active             : 1;
 604        unsigned int user_defined       : 1;
 605};
 606#endif /* CONFIG_UCLAMP_TASK */
 607
 608union rcu_special {
 609        struct {
 610                u8                      blocked;
 611                u8                      need_qs;
 612                u8                      exp_hint; /* Hint for performance. */
 613                u8                      deferred_qs;
 614        } b; /* Bits. */
 615        u32 s; /* Set of bits. */
 616};
 617
 618enum perf_event_task_context {
 619        perf_invalid_context = -1,
 620        perf_hw_context = 0,
 621        perf_sw_context,
 622        perf_nr_task_contexts,
 623};
 624
 625struct wake_q_node {
 626        struct wake_q_node *next;
 627};
 628
 629struct task_struct {
 630#ifdef CONFIG_THREAD_INFO_IN_TASK
 631        /*
 632         * For reasons of header soup (see current_thread_info()), this
 633         * must be the first element of task_struct.
 634         */
 635        struct thread_info              thread_info;
 636#endif
 637        /* -1 unrunnable, 0 runnable, >0 stopped: */
 638        volatile long                   state;
 639
 640        /*
 641         * This begins the randomizable portion of task_struct. Only
 642         * scheduling-critical items should be added above here.
 643         */
 644        randomized_struct_fields_start
 645
 646        void                            *stack;
 647        refcount_t                      usage;
 648        /* Per task flags (PF_*), defined further below: */
 649        unsigned int                    flags;
 650        unsigned int                    ptrace;
 651
 652#ifdef CONFIG_SMP
 653        struct llist_node               wake_entry;
 654        int                             on_cpu;
 655#ifdef CONFIG_THREAD_INFO_IN_TASK
 656        /* Current CPU: */
 657        unsigned int                    cpu;
 658#endif
 659        unsigned int                    wakee_flips;
 660        unsigned long                   wakee_flip_decay_ts;
 661        struct task_struct              *last_wakee;
 662
 663        /*
 664         * recent_used_cpu is initially set as the last CPU used by a task
 665         * that wakes affine another task. Waker/wakee relationships can
 666         * push tasks around a CPU where each wakeup moves to the next one.
 667         * Tracking a recently used CPU allows a quick search for a recently
 668         * used CPU that may be idle.
 669         */
 670        int                             recent_used_cpu;
 671        int                             wake_cpu;
 672#endif
 673        int                             on_rq;
 674
 675        int                             prio;
 676        int                             static_prio;
 677        int                             normal_prio;
 678        unsigned int                    rt_priority;
 679
 680        const struct sched_class        *sched_class;
 681        struct sched_entity             se;
 682        struct sched_rt_entity          rt;
 683#ifdef CONFIG_CGROUP_SCHED
 684        struct task_group               *sched_task_group;
 685#endif
 686        struct sched_dl_entity          dl;
 687
 688#ifdef CONFIG_UCLAMP_TASK
 689        /* Clamp values requested for a scheduling entity */
 690        struct uclamp_se                uclamp_req[UCLAMP_CNT];
 691        /* Effective clamp values used for a scheduling entity */
 692        struct uclamp_se                uclamp[UCLAMP_CNT];
 693#endif
 694
 695#ifdef CONFIG_PREEMPT_NOTIFIERS
 696        /* List of struct preempt_notifier: */
 697        struct hlist_head               preempt_notifiers;
 698#endif
 699
 700#ifdef CONFIG_BLK_DEV_IO_TRACE
 701        unsigned int                    btrace_seq;
 702#endif
 703
 704        unsigned int                    policy;
 705        int                             nr_cpus_allowed;
 706        const cpumask_t                 *cpus_ptr;
 707        cpumask_t                       cpus_mask;
 708
 709#ifdef CONFIG_PREEMPT_RCU
 710        int                             rcu_read_lock_nesting;
 711        union rcu_special               rcu_read_unlock_special;
 712        struct list_head                rcu_node_entry;
 713        struct rcu_node                 *rcu_blocked_node;
 714#endif /* #ifdef CONFIG_PREEMPT_RCU */
 715
 716#ifdef CONFIG_TASKS_RCU
 717        unsigned long                   rcu_tasks_nvcsw;
 718        u8                              rcu_tasks_holdout;
 719        u8                              rcu_tasks_idx;
 720        int                             rcu_tasks_idle_cpu;
 721        struct list_head                rcu_tasks_holdout_list;
 722#endif /* #ifdef CONFIG_TASKS_RCU */
 723
 724        struct sched_info               sched_info;
 725
 726        struct list_head                tasks;
 727#ifdef CONFIG_SMP
 728        struct plist_node               pushable_tasks;
 729        struct rb_node                  pushable_dl_tasks;
 730#endif
 731
 732        struct mm_struct                *mm;
 733        struct mm_struct                *active_mm;
 734
 735        /* Per-thread vma caching: */
 736        struct vmacache                 vmacache;
 737
 738#ifdef SPLIT_RSS_COUNTING
 739        struct task_rss_stat            rss_stat;
 740#endif
 741        int                             exit_state;
 742        int                             exit_code;
 743        int                             exit_signal;
 744        /* The signal sent when the parent dies: */
 745        int                             pdeath_signal;
 746        /* JOBCTL_*, siglock protected: */
 747        unsigned long                   jobctl;
 748
 749        /* Used for emulating ABI behavior of previous Linux versions: */
 750        unsigned int                    personality;
 751
 752        /* Scheduler bits, serialized by scheduler locks: */
 753        unsigned                        sched_reset_on_fork:1;
 754        unsigned                        sched_contributes_to_load:1;
 755        unsigned                        sched_migrated:1;
 756        unsigned                        sched_remote_wakeup:1;
 757#ifdef CONFIG_PSI
 758        unsigned                        sched_psi_wake_requeue:1;
 759#endif
 760
 761        /* Force alignment to the next boundary: */
 762        unsigned                        :0;
 763
 764        /* Unserialized, strictly 'current' */
 765
 766        /* Bit to tell LSMs we're in execve(): */
 767        unsigned                        in_execve:1;
 768        unsigned                        in_iowait:1;
 769#ifndef TIF_RESTORE_SIGMASK
 770        unsigned                        restore_sigmask:1;
 771#endif
 772#ifdef CONFIG_MEMCG
 773        unsigned                        in_user_fault:1;
 774#endif
 775#ifdef CONFIG_COMPAT_BRK
 776        unsigned                        brk_randomized:1;
 777#endif
 778#ifdef CONFIG_CGROUPS
 779        /* disallow userland-initiated cgroup migration */
 780        unsigned                        no_cgroup_migration:1;
 781        /* task is frozen/stopped (used by the cgroup freezer) */
 782        unsigned                        frozen:1;
 783#endif
 784#ifdef CONFIG_BLK_CGROUP
 785        /* to be used once the psi infrastructure lands upstream. */
 786        unsigned                        use_memdelay:1;
 787#endif
 788
 789        unsigned long                   atomic_flags; /* Flags requiring atomic access. */
 790
 791        struct restart_block            restart_block;
 792
 793        pid_t                           pid;
 794        pid_t                           tgid;
 795
 796#ifdef CONFIG_STACKPROTECTOR
 797        /* Canary value for the -fstack-protector GCC feature: */
 798        unsigned long                   stack_canary;
 799#endif
 800        /*
 801         * Pointers to the (original) parent process, youngest child, younger sibling,
 802         * older sibling, respectively.  (p->father can be replaced with
 803         * p->real_parent->pid)
 804         */
 805
 806        /* Real parent process: */
 807        struct task_struct __rcu        *real_parent;
 808
 809        /* Recipient of SIGCHLD, wait4() reports: */
 810        struct task_struct __rcu        *parent;
 811
 812        /*
 813         * Children/sibling form the list of natural children:
 814         */
 815        struct list_head                children;
 816        struct list_head                sibling;
 817        struct task_struct              *group_leader;
 818
 819        /*
 820         * 'ptraced' is the list of tasks this task is using ptrace() on.
 821         *
 822         * This includes both natural children and PTRACE_ATTACH targets.
 823         * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
 824         */
 825        struct list_head                ptraced;
 826        struct list_head                ptrace_entry;
 827
 828        /* PID/PID hash table linkage. */
 829        struct pid                      *thread_pid;
 830        struct hlist_node               pid_links[PIDTYPE_MAX];
 831        struct list_head                thread_group;
 832        struct list_head                thread_node;
 833
 834        struct completion               *vfork_done;
 835
 836        /* CLONE_CHILD_SETTID: */
 837        int __user                      *set_child_tid;
 838
 839        /* CLONE_CHILD_CLEARTID: */
 840        int __user                      *clear_child_tid;
 841
 842        u64                             utime;
 843        u64                             stime;
 844#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
 845        u64                             utimescaled;
 846        u64                             stimescaled;
 847#endif
 848        u64                             gtime;
 849        struct prev_cputime             prev_cputime;
 850#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
 851        struct vtime                    vtime;
 852#endif
 853
 854#ifdef CONFIG_NO_HZ_FULL
 855        atomic_t                        tick_dep_mask;
 856#endif
 857        /* Context switch counts: */
 858        unsigned long                   nvcsw;
 859        unsigned long                   nivcsw;
 860
 861        /* Monotonic time in nsecs: */
 862        u64                             start_time;
 863
 864        /* Boot based time in nsecs: */
 865        u64                             start_boottime;
 866
 867        /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
 868        unsigned long                   min_flt;
 869        unsigned long                   maj_flt;
 870
 871        /* Empty if CONFIG_POSIX_CPUTIMERS=n */
 872        struct posix_cputimers          posix_cputimers;
 873
 874        /* Process credentials: */
 875
 876        /* Tracer's credentials at attach: */
 877        const struct cred __rcu         *ptracer_cred;
 878
 879        /* Objective and real subjective task credentials (COW): */
 880        const struct cred __rcu         *real_cred;
 881
 882        /* Effective (overridable) subjective task credentials (COW): */
 883        const struct cred __rcu         *cred;
 884
 885#ifdef CONFIG_KEYS
 886        /* Cached requested key. */
 887        struct key                      *cached_requested_key;
 888#endif
 889
 890        /*
 891         * executable name, excluding path.
 892         *
 893         * - normally initialized setup_new_exec()
 894         * - access it with [gs]et_task_comm()
 895         * - lock it with task_lock()
 896         */
 897        char                            comm[TASK_COMM_LEN];
 898
 899        struct nameidata                *nameidata;
 900
 901#ifdef CONFIG_SYSVIPC
 902        struct sysv_sem                 sysvsem;
 903        struct sysv_shm                 sysvshm;
 904#endif
 905#ifdef CONFIG_DETECT_HUNG_TASK
 906        unsigned long                   last_switch_count;
 907        unsigned long                   last_switch_time;
 908#endif
 909        /* Filesystem information: */
 910        struct fs_struct                *fs;
 911
 912        /* Open file information: */
 913        struct files_struct             *files;
 914
 915        /* Namespaces: */
 916        struct nsproxy                  *nsproxy;
 917
 918        /* Signal handlers: */
 919        struct signal_struct            *signal;
 920        struct sighand_struct           *sighand;
 921        sigset_t                        blocked;
 922        sigset_t                        real_blocked;
 923        /* Restored if set_restore_sigmask() was used: */
 924        sigset_t                        saved_sigmask;
 925        struct sigpending               pending;
 926        unsigned long                   sas_ss_sp;
 927        size_t                          sas_ss_size;
 928        unsigned int                    sas_ss_flags;
 929
 930        struct callback_head            *task_works;
 931
 932#ifdef CONFIG_AUDIT
 933#ifdef CONFIG_AUDITSYSCALL
 934        struct audit_context            *audit_context;
 935#endif
 936        kuid_t                          loginuid;
 937        unsigned int                    sessionid;
 938#endif
 939        struct seccomp                  seccomp;
 940
 941        /* Thread group tracking: */
 942        u32                             parent_exec_id;
 943        u32                             self_exec_id;
 944
 945        /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
 946        spinlock_t                      alloc_lock;
 947
 948        /* Protection of the PI data structures: */
 949        raw_spinlock_t                  pi_lock;
 950
 951        struct wake_q_node              wake_q;
 952
 953#ifdef CONFIG_RT_MUTEXES
 954        /* PI waiters blocked on a rt_mutex held by this task: */
 955        struct rb_root_cached           pi_waiters;
 956        /* Updated under owner's pi_lock and rq lock */
 957        struct task_struct              *pi_top_task;
 958        /* Deadlock detection and priority inheritance handling: */
 959        struct rt_mutex_waiter          *pi_blocked_on;
 960#endif
 961
 962#ifdef CONFIG_DEBUG_MUTEXES
 963        /* Mutex deadlock detection: */
 964        struct mutex_waiter             *blocked_on;
 965#endif
 966
 967#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
 968        int                             non_block_count;
 969#endif
 970
 971#ifdef CONFIG_TRACE_IRQFLAGS
 972        unsigned int                    irq_events;
 973        unsigned long                   hardirq_enable_ip;
 974        unsigned long                   hardirq_disable_ip;
 975        unsigned int                    hardirq_enable_event;
 976        unsigned int                    hardirq_disable_event;
 977        int                             hardirqs_enabled;
 978        int                             hardirq_context;
 979        unsigned long                   softirq_disable_ip;
 980        unsigned long                   softirq_enable_ip;
 981        unsigned int                    softirq_disable_event;
 982        unsigned int                    softirq_enable_event;
 983        int                             softirqs_enabled;
 984        int                             softirq_context;
 985#endif
 986
 987#ifdef CONFIG_LOCKDEP
 988# define MAX_LOCK_DEPTH                 48UL
 989        u64                             curr_chain_key;
 990        int                             lockdep_depth;
 991        unsigned int                    lockdep_recursion;
 992        struct held_lock                held_locks[MAX_LOCK_DEPTH];
 993#endif
 994
 995#ifdef CONFIG_UBSAN
 996        unsigned int                    in_ubsan;
 997#endif
 998
 999        /* Journalling filesystem info: */
1000        void                            *journal_info;
1001
1002        /* Stacked block device info: */
1003        struct bio_list                 *bio_list;
1004
1005#ifdef CONFIG_BLOCK
1006        /* Stack plugging: */
1007        struct blk_plug                 *plug;
1008#endif
1009
1010        /* VM state: */
1011        struct reclaim_state            *reclaim_state;
1012
1013        struct backing_dev_info         *backing_dev_info;
1014
1015        struct io_context               *io_context;
1016
1017#ifdef CONFIG_COMPACTION
1018        struct capture_control          *capture_control;
1019#endif
1020        /* Ptrace state: */
1021        unsigned long                   ptrace_message;
1022        kernel_siginfo_t                *last_siginfo;
1023
1024        struct task_io_accounting       ioac;
1025#ifdef CONFIG_PSI
1026        /* Pressure stall state */
1027        unsigned int                    psi_flags;
1028#endif
1029#ifdef CONFIG_TASK_XACCT
1030        /* Accumulated RSS usage: */
1031        u64                             acct_rss_mem1;
1032        /* Accumulated virtual memory usage: */
1033        u64                             acct_vm_mem1;
1034        /* stime + utime since last update: */
1035        u64                             acct_timexpd;
1036#endif
1037#ifdef CONFIG_CPUSETS
1038        /* Protected by ->alloc_lock: */
1039        nodemask_t                      mems_allowed;
1040        /* Seqence number to catch updates: */
1041        seqcount_t                      mems_allowed_seq;
1042        int                             cpuset_mem_spread_rotor;
1043        int                             cpuset_slab_spread_rotor;
1044#endif
1045#ifdef CONFIG_CGROUPS
1046        /* Control Group info protected by css_set_lock: */
1047        struct css_set __rcu            *cgroups;
1048        /* cg_list protected by css_set_lock and tsk->alloc_lock: */
1049        struct list_head                cg_list;
1050#endif
1051#ifdef CONFIG_X86_CPU_RESCTRL
1052        u32                             closid;
1053        u32                             rmid;
1054#endif
1055#ifdef CONFIG_FUTEX
1056        struct robust_list_head __user  *robust_list;
1057#ifdef CONFIG_COMPAT
1058        struct compat_robust_list_head __user *compat_robust_list;
1059#endif
1060        struct list_head                pi_state_list;
1061        struct futex_pi_state           *pi_state_cache;
1062        struct mutex                    futex_exit_mutex;
1063        unsigned int                    futex_state;
1064#endif
1065#ifdef CONFIG_PERF_EVENTS
1066        struct perf_event_context       *perf_event_ctxp[perf_nr_task_contexts];
1067        struct mutex                    perf_event_mutex;
1068        struct list_head                perf_event_list;
1069#endif
1070#ifdef CONFIG_DEBUG_PREEMPT
1071        unsigned long                   preempt_disable_ip;
1072#endif
1073#ifdef CONFIG_NUMA
1074        /* Protected by alloc_lock: */
1075        struct mempolicy                *mempolicy;
1076        short                           il_prev;
1077        short                           pref_node_fork;
1078#endif
1079#ifdef CONFIG_NUMA_BALANCING
1080        int                             numa_scan_seq;
1081        unsigned int                    numa_scan_period;
1082        unsigned int                    numa_scan_period_max;
1083        int                             numa_preferred_nid;
1084        unsigned long                   numa_migrate_retry;
1085        /* Migration stamp: */
1086        u64                             node_stamp;
1087        u64                             last_task_numa_placement;
1088        u64                             last_sum_exec_runtime;
1089        struct callback_head            numa_work;
1090
1091        /*
1092         * This pointer is only modified for current in syscall and
1093         * pagefault context (and for tasks being destroyed), so it can be read
1094         * from any of the following contexts:
1095         *  - RCU read-side critical section
1096         *  - current->numa_group from everywhere
1097         *  - task's runqueue locked, task not running
1098         */
1099        struct numa_group __rcu         *numa_group;
1100
1101        /*
1102         * numa_faults is an array split into four regions:
1103         * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1104         * in this precise order.
1105         *
1106         * faults_memory: Exponential decaying average of faults on a per-node
1107         * basis. Scheduling placement decisions are made based on these
1108         * counts. The values remain static for the duration of a PTE scan.
1109         * faults_cpu: Track the nodes the process was running on when a NUMA
1110         * hinting fault was incurred.
1111         * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1112         * during the current scan window. When the scan completes, the counts
1113         * in faults_memory and faults_cpu decay and these values are copied.
1114         */
1115        unsigned long                   *numa_faults;
1116        unsigned long                   total_numa_faults;
1117
1118        /*
1119         * numa_faults_locality tracks if faults recorded during the last
1120         * scan window were remote/local or failed to migrate. The task scan
1121         * period is adapted based on the locality of the faults with different
1122         * weights depending on whether they were shared or private faults
1123         */
1124        unsigned long                   numa_faults_locality[3];
1125
1126        unsigned long                   numa_pages_migrated;
1127#endif /* CONFIG_NUMA_BALANCING */
1128
1129#ifdef CONFIG_RSEQ
1130        struct rseq __user *rseq;
1131        u32 rseq_sig;
1132        /*
1133         * RmW on rseq_event_mask must be performed atomically
1134         * with respect to preemption.
1135         */
1136        unsigned long rseq_event_mask;
1137#endif
1138
1139        struct tlbflush_unmap_batch     tlb_ubc;
1140
1141        union {
1142                refcount_t              rcu_users;
1143                struct rcu_head         rcu;
1144        };
1145
1146        /* Cache last used pipe for splice(): */
1147        struct pipe_inode_info          *splice_pipe;
1148
1149        struct page_frag                task_frag;
1150
1151#ifdef CONFIG_TASK_DELAY_ACCT
1152        struct task_delay_info          *delays;
1153#endif
1154
1155#ifdef CONFIG_FAULT_INJECTION
1156        int                             make_it_fail;
1157        unsigned int                    fail_nth;
1158#endif
1159        /*
1160         * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1161         * balance_dirty_pages() for a dirty throttling pause:
1162         */
1163        int                             nr_dirtied;
1164        int                             nr_dirtied_pause;
1165        /* Start of a write-and-pause period: */
1166        unsigned long                   dirty_paused_when;
1167
1168#ifdef CONFIG_LATENCYTOP
1169        int                             latency_record_count;
1170        struct latency_record           latency_record[LT_SAVECOUNT];
1171#endif
1172        /*
1173         * Time slack values; these are used to round up poll() and
1174         * select() etc timeout values. These are in nanoseconds.
1175         */
1176        u64                             timer_slack_ns;
1177        u64                             default_timer_slack_ns;
1178
1179#ifdef CONFIG_KASAN
1180        unsigned int                    kasan_depth;
1181#endif
1182
1183#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1184        /* Index of current stored address in ret_stack: */
1185        int                             curr_ret_stack;
1186        int                             curr_ret_depth;
1187
1188        /* Stack of return addresses for return function tracing: */
1189        struct ftrace_ret_stack         *ret_stack;
1190
1191        /* Timestamp for last schedule: */
1192        unsigned long long              ftrace_timestamp;
1193
1194        /*
1195         * Number of functions that haven't been traced
1196         * because of depth overrun:
1197         */
1198        atomic_t                        trace_overrun;
1199
1200        /* Pause tracing: */
1201        atomic_t                        tracing_graph_pause;
1202#endif
1203
1204#ifdef CONFIG_TRACING
1205        /* State flags for use by tracers: */
1206        unsigned long                   trace;
1207
1208        /* Bitmask and counter of trace recursion: */
1209        unsigned long                   trace_recursion;
1210#endif /* CONFIG_TRACING */
1211
1212#ifdef CONFIG_KCOV
1213        /* See kernel/kcov.c for more details. */
1214
1215        /* Coverage collection mode enabled for this task (0 if disabled): */
1216        unsigned int                    kcov_mode;
1217
1218        /* Size of the kcov_area: */
1219        unsigned int                    kcov_size;
1220
1221        /* Buffer for coverage collection: */
1222        void                            *kcov_area;
1223
1224        /* KCOV descriptor wired with this task or NULL: */
1225        struct kcov                     *kcov;
1226
1227        /* KCOV common handle for remote coverage collection: */
1228        u64                             kcov_handle;
1229
1230        /* KCOV sequence number: */
1231        int                             kcov_sequence;
1232#endif
1233
1234#ifdef CONFIG_MEMCG
1235        struct mem_cgroup               *memcg_in_oom;
1236        gfp_t                           memcg_oom_gfp_mask;
1237        int                             memcg_oom_order;
1238
1239        /* Number of pages to reclaim on returning to userland: */
1240        unsigned int                    memcg_nr_pages_over_high;
1241
1242        /* Used by memcontrol for targeted memcg charge: */
1243        struct mem_cgroup               *active_memcg;
1244#endif
1245
1246#ifdef CONFIG_BLK_CGROUP
1247        struct request_queue            *throttle_queue;
1248#endif
1249
1250#ifdef CONFIG_UPROBES
1251        struct uprobe_task              *utask;
1252#endif
1253#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1254        unsigned int                    sequential_io;
1255        unsigned int                    sequential_io_avg;
1256#endif
1257#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1258        unsigned long                   task_state_change;
1259#endif
1260        int                             pagefault_disabled;
1261#ifdef CONFIG_MMU
1262        struct task_struct              *oom_reaper_list;
1263#endif
1264#ifdef CONFIG_VMAP_STACK
1265        struct vm_struct                *stack_vm_area;
1266#endif
1267#ifdef CONFIG_THREAD_INFO_IN_TASK
1268        /* A live task holds one reference: */
1269        refcount_t                      stack_refcount;
1270#endif
1271#ifdef CONFIG_LIVEPATCH
1272        int patch_state;
1273#endif
1274#ifdef CONFIG_SECURITY
1275        /* Used by LSM modules for access restriction: */
1276        void                            *security;
1277#endif
1278
1279#ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1280        unsigned long                   lowest_stack;
1281        unsigned long                   prev_lowest_stack;
1282#endif
1283
1284        /*
1285         * New fields for task_struct should be added above here, so that
1286         * they are included in the randomized portion of task_struct.
1287         */
1288        randomized_struct_fields_end
1289
1290        /* CPU-specific state of this task: */
1291        struct thread_struct            thread;
1292
1293        /*
1294         * WARNING: on x86, 'thread_struct' contains a variable-sized
1295         * structure.  It *MUST* be at the end of 'task_struct'.
1296         *
1297         * Do not put anything below here!
1298         */
1299};
1300
1301static inline struct pid *task_pid(struct task_struct *task)
1302{
1303        return task->thread_pid;
1304}
1305
1306/*
1307 * the helpers to get the task's different pids as they are seen
1308 * from various namespaces
1309 *
1310 * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1311 * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1312 *                     current.
1313 * task_xid_nr_ns()  : id seen from the ns specified;
1314 *
1315 * see also pid_nr() etc in include/linux/pid.h
1316 */
1317pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1318
1319static inline pid_t task_pid_nr(struct task_struct *tsk)
1320{
1321        return tsk->pid;
1322}
1323
1324static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1325{
1326        return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1327}
1328
1329static inline pid_t task_pid_vnr(struct task_struct *tsk)
1330{
1331        return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1332}
1333
1334
1335static inline pid_t task_tgid_nr(struct task_struct *tsk)
1336{
1337        return tsk->tgid;
1338}
1339
1340/**
1341 * pid_alive - check that a task structure is not stale
1342 * @p: Task structure to be checked.
1343 *
1344 * Test if a process is not yet dead (at most zombie state)
1345 * If pid_alive fails, then pointers within the task structure
1346 * can be stale and must not be dereferenced.
1347 *
1348 * Return: 1 if the process is alive. 0 otherwise.
1349 */
1350static inline int pid_alive(const struct task_struct *p)
1351{
1352        return p->thread_pid != NULL;
1353}
1354
1355static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1356{
1357        return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1358}
1359
1360static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1361{
1362        return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1363}
1364
1365
1366static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1367{
1368        return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1369}
1370
1371static inline pid_t task_session_vnr(struct task_struct *tsk)
1372{
1373        return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1374}
1375
1376static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1377{
1378        return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1379}
1380
1381static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1382{
1383        return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1384}
1385
1386static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1387{
1388        pid_t pid = 0;
1389
1390        rcu_read_lock();
1391        if (pid_alive(tsk))
1392                pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1393        rcu_read_unlock();
1394
1395        return pid;
1396}
1397
1398static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1399{
1400        return task_ppid_nr_ns(tsk, &init_pid_ns);
1401}
1402
1403/* Obsolete, do not use: */
1404static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1405{
1406        return task_pgrp_nr_ns(tsk, &init_pid_ns);
1407}
1408
1409#define TASK_REPORT_IDLE        (TASK_REPORT + 1)
1410#define TASK_REPORT_MAX         (TASK_REPORT_IDLE << 1)
1411
1412static inline unsigned int task_state_index(struct task_struct *tsk)
1413{
1414        unsigned int tsk_state = READ_ONCE(tsk->state);
1415        unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
1416
1417        BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1418
1419        if (tsk_state == TASK_IDLE)
1420                state = TASK_REPORT_IDLE;
1421
1422        return fls(state);
1423}
1424
1425static inline char task_index_to_char(unsigned int state)
1426{
1427        static const char state_char[] = "RSDTtXZPI";
1428
1429        BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1430
1431        return state_char[state];
1432}
1433
1434static inline char task_state_to_char(struct task_struct *tsk)
1435{
1436        return task_index_to_char(task_state_index(tsk));
1437}
1438
1439/**
1440 * is_global_init - check if a task structure is init. Since init
1441 * is free to have sub-threads we need to check tgid.
1442 * @tsk: Task structure to be checked.
1443 *
1444 * Check if a task structure is the first user space task the kernel created.
1445 *
1446 * Return: 1 if the task structure is init. 0 otherwise.
1447 */
1448static inline int is_global_init(struct task_struct *tsk)
1449{
1450        return task_tgid_nr(tsk) == 1;
1451}
1452
1453extern struct pid *cad_pid;
1454
1455/*
1456 * Per process flags
1457 */
1458#define PF_IDLE                 0x00000002      /* I am an IDLE thread */
1459#define PF_EXITING              0x00000004      /* Getting shut down */
1460#define PF_VCPU                 0x00000010      /* I'm a virtual CPU */
1461#define PF_WQ_WORKER            0x00000020      /* I'm a workqueue worker */
1462#define PF_FORKNOEXEC           0x00000040      /* Forked but didn't exec */
1463#define PF_MCE_PROCESS          0x00000080      /* Process policy on mce errors */
1464#define PF_SUPERPRIV            0x00000100      /* Used super-user privileges */
1465#define PF_DUMPCORE             0x00000200      /* Dumped core */
1466#define PF_SIGNALED             0x00000400      /* Killed by a signal */
1467#define PF_MEMALLOC             0x00000800      /* Allocating memory */
1468#define PF_NPROC_EXCEEDED       0x00001000      /* set_user() noticed that RLIMIT_NPROC was exceeded */
1469#define PF_USED_MATH            0x00002000      /* If unset the fpu must be initialized before use */
1470#define PF_USED_ASYNC           0x00004000      /* Used async_schedule*(), used by module init */
1471#define PF_NOFREEZE             0x00008000      /* This thread should not be frozen */
1472#define PF_FROZEN               0x00010000      /* Frozen for system suspend */
1473#define PF_KSWAPD               0x00020000      /* I am kswapd */
1474#define PF_MEMALLOC_NOFS        0x00040000      /* All allocation requests will inherit GFP_NOFS */
1475#define PF_MEMALLOC_NOIO        0x00080000      /* All allocation requests will inherit GFP_NOIO */
1476#define PF_LESS_THROTTLE        0x00100000      /* Throttle me less: I clean memory */
1477#define PF_KTHREAD              0x00200000      /* I am a kernel thread */
1478#define PF_RANDOMIZE            0x00400000      /* Randomize virtual address space */
1479#define PF_SWAPWRITE            0x00800000      /* Allowed to write to swap */
1480#define PF_MEMSTALL             0x01000000      /* Stalled due to lack of memory */
1481#define PF_UMH                  0x02000000      /* I'm an Usermodehelper process */
1482#define PF_NO_SETAFFINITY       0x04000000      /* Userland is not allowed to meddle with cpus_mask */
1483#define PF_MCE_EARLY            0x08000000      /* Early kill for mce process policy */
1484#define PF_MEMALLOC_NOCMA       0x10000000      /* All allocation request will have _GFP_MOVABLE cleared */
1485#define PF_IO_WORKER            0x20000000      /* Task is an IO worker */
1486#define PF_FREEZER_SKIP         0x40000000      /* Freezer should not count it as freezable */
1487#define PF_SUSPEND_TASK         0x80000000      /* This thread called freeze_processes() and should not be frozen */
1488
1489/*
1490 * Only the _current_ task can read/write to tsk->flags, but other
1491 * tasks can access tsk->flags in readonly mode for example
1492 * with tsk_used_math (like during threaded core dumping).
1493 * There is however an exception to this rule during ptrace
1494 * or during fork: the ptracer task is allowed to write to the
1495 * child->flags of its traced child (same goes for fork, the parent
1496 * can write to the child->flags), because we're guaranteed the
1497 * child is not running and in turn not changing child->flags
1498 * at the same time the parent does it.
1499 */
1500#define clear_stopped_child_used_math(child)    do { (child)->flags &= ~PF_USED_MATH; } while (0)
1501#define set_stopped_child_used_math(child)      do { (child)->flags |= PF_USED_MATH; } while (0)
1502#define clear_used_math()                       clear_stopped_child_used_math(current)
1503#define set_used_math()                         set_stopped_child_used_math(current)
1504
1505#define conditional_stopped_child_used_math(condition, child) \
1506        do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1507
1508#define conditional_used_math(condition)        conditional_stopped_child_used_math(condition, current)
1509
1510#define copy_to_stopped_child_used_math(child) \
1511        do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1512
1513/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1514#define tsk_used_math(p)                        ((p)->flags & PF_USED_MATH)
1515#define used_math()                             tsk_used_math(current)
1516
1517static inline bool is_percpu_thread(void)
1518{
1519#ifdef CONFIG_SMP
1520        return (current->flags & PF_NO_SETAFFINITY) &&
1521                (current->nr_cpus_allowed  == 1);
1522#else
1523        return true;
1524#endif
1525}
1526
1527/* Per-process atomic flags. */
1528#define PFA_NO_NEW_PRIVS                0       /* May not gain new privileges. */
1529#define PFA_SPREAD_PAGE                 1       /* Spread page cache over cpuset */
1530#define PFA_SPREAD_SLAB                 2       /* Spread some slab caches over cpuset */
1531#define PFA_SPEC_SSB_DISABLE            3       /* Speculative Store Bypass disabled */
1532#define PFA_SPEC_SSB_FORCE_DISABLE      4       /* Speculative Store Bypass force disabled*/
1533#define PFA_SPEC_IB_DISABLE             5       /* Indirect branch speculation restricted */
1534#define PFA_SPEC_IB_FORCE_DISABLE       6       /* Indirect branch speculation permanently restricted */
1535#define PFA_SPEC_SSB_NOEXEC             7       /* Speculative Store Bypass clear on execve() */
1536
1537#define TASK_PFA_TEST(name, func)                                       \
1538        static inline bool task_##func(struct task_struct *p)           \
1539        { return test_bit(PFA_##name, &p->atomic_flags); }
1540
1541#define TASK_PFA_SET(name, func)                                        \
1542        static inline void task_set_##func(struct task_struct *p)       \
1543        { set_bit(PFA_##name, &p->atomic_flags); }
1544
1545#define TASK_PFA_CLEAR(name, func)                                      \
1546        static inline void task_clear_##func(struct task_struct *p)     \
1547        { clear_bit(PFA_##name, &p->atomic_flags); }
1548
1549TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1550TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1551
1552TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1553TASK_PFA_SET(SPREAD_PAGE, spread_page)
1554TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1555
1556TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1557TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1558TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1559
1560TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1561TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1562TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1563
1564TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1565TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1566TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1567
1568TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1569TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1570
1571TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1572TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1573TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1574
1575TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1576TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1577
1578static inline void
1579current_restore_flags(unsigned long orig_flags, unsigned long flags)
1580{
1581        current->flags &= ~flags;
1582        current->flags |= orig_flags & flags;
1583}
1584
1585extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1586extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1587#ifdef CONFIG_SMP
1588extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1589extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1590#else
1591static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1592{
1593}
1594static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1595{
1596        if (!cpumask_test_cpu(0, new_mask))
1597                return -EINVAL;
1598        return 0;
1599}
1600#endif
1601
1602extern int yield_to(struct task_struct *p, bool preempt);
1603extern void set_user_nice(struct task_struct *p, long nice);
1604extern int task_prio(const struct task_struct *p);
1605
1606/**
1607 * task_nice - return the nice value of a given task.
1608 * @p: the task in question.
1609 *
1610 * Return: The nice value [ -20 ... 0 ... 19 ].
1611 */
1612static inline int task_nice(const struct task_struct *p)
1613{
1614        return PRIO_TO_NICE((p)->static_prio);
1615}
1616
1617extern int can_nice(const struct task_struct *p, const int nice);
1618extern int task_curr(const struct task_struct *p);
1619extern int idle_cpu(int cpu);
1620extern int available_idle_cpu(int cpu);
1621extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1622extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1623extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1624extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1625extern struct task_struct *idle_task(int cpu);
1626
1627/**
1628 * is_idle_task - is the specified task an idle task?
1629 * @p: the task in question.
1630 *
1631 * Return: 1 if @p is an idle task. 0 otherwise.
1632 */
1633static inline bool is_idle_task(const struct task_struct *p)
1634{
1635        return !!(p->flags & PF_IDLE);
1636}
1637
1638extern struct task_struct *curr_task(int cpu);
1639extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1640
1641void yield(void);
1642
1643union thread_union {
1644#ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1645        struct task_struct task;
1646#endif
1647#ifndef CONFIG_THREAD_INFO_IN_TASK
1648        struct thread_info thread_info;
1649#endif
1650        unsigned long stack[THREAD_SIZE/sizeof(long)];
1651};
1652
1653#ifndef CONFIG_THREAD_INFO_IN_TASK
1654extern struct thread_info init_thread_info;
1655#endif
1656
1657extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1658
1659#ifdef CONFIG_THREAD_INFO_IN_TASK
1660static inline struct thread_info *task_thread_info(struct task_struct *task)
1661{
1662        return &task->thread_info;
1663}
1664#elif !defined(__HAVE_THREAD_FUNCTIONS)
1665# define task_thread_info(task) ((struct thread_info *)(task)->stack)
1666#endif
1667
1668/*
1669 * find a task by one of its numerical ids
1670 *
1671 * find_task_by_pid_ns():
1672 *      finds a task by its pid in the specified namespace
1673 * find_task_by_vpid():
1674 *      finds a task by its virtual pid
1675 *
1676 * see also find_vpid() etc in include/linux/pid.h
1677 */
1678
1679extern struct task_struct *find_task_by_vpid(pid_t nr);
1680extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1681
1682/*
1683 * find a task by its virtual pid and get the task struct
1684 */
1685extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1686
1687extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1688extern int wake_up_process(struct task_struct *tsk);
1689extern void wake_up_new_task(struct task_struct *tsk);
1690
1691#ifdef CONFIG_SMP
1692extern void kick_process(struct task_struct *tsk);
1693#else
1694static inline void kick_process(struct task_struct *tsk) { }
1695#endif
1696
1697extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1698
1699static inline void set_task_comm(struct task_struct *tsk, const char *from)
1700{
1701        __set_task_comm(tsk, from, false);
1702}
1703
1704extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1705#define get_task_comm(buf, tsk) ({                      \
1706        BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN);     \
1707        __get_task_comm(buf, sizeof(buf), tsk);         \
1708})
1709
1710#ifdef CONFIG_SMP
1711void scheduler_ipi(void);
1712extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1713#else
1714static inline void scheduler_ipi(void) { }
1715static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1716{
1717        return 1;
1718}
1719#endif
1720
1721/*
1722 * Set thread flags in other task's structures.
1723 * See asm/thread_info.h for TIF_xxxx flags available:
1724 */
1725static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1726{
1727        set_ti_thread_flag(task_thread_info(tsk), flag);
1728}
1729
1730static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1731{
1732        clear_ti_thread_flag(task_thread_info(tsk), flag);
1733}
1734
1735static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1736                                          bool value)
1737{
1738        update_ti_thread_flag(task_thread_info(tsk), flag, value);
1739}
1740
1741static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1742{
1743        return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1744}
1745
1746static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1747{
1748        return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1749}
1750
1751static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1752{
1753        return test_ti_thread_flag(task_thread_info(tsk), flag);
1754}
1755
1756static inline void set_tsk_need_resched(struct task_struct *tsk)
1757{
1758        set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1759}
1760
1761static inline void clear_tsk_need_resched(struct task_struct *tsk)
1762{
1763        clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1764}
1765
1766static inline int test_tsk_need_resched(struct task_struct *tsk)
1767{
1768        return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1769}
1770
1771/*
1772 * cond_resched() and cond_resched_lock(): latency reduction via
1773 * explicit rescheduling in places that are safe. The return
1774 * value indicates whether a reschedule was done in fact.
1775 * cond_resched_lock() will drop the spinlock before scheduling,
1776 */
1777#ifndef CONFIG_PREEMPTION
1778extern int _cond_resched(void);
1779#else
1780static inline int _cond_resched(void) { return 0; }
1781#endif
1782
1783#define cond_resched() ({                       \
1784        ___might_sleep(__FILE__, __LINE__, 0);  \
1785        _cond_resched();                        \
1786})
1787
1788extern int __cond_resched_lock(spinlock_t *lock);
1789
1790#define cond_resched_lock(lock) ({                              \
1791        ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
1792        __cond_resched_lock(lock);                              \
1793})
1794
1795static inline void cond_resched_rcu(void)
1796{
1797#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1798        rcu_read_unlock();
1799        cond_resched();
1800        rcu_read_lock();
1801#endif
1802}
1803
1804/*
1805 * Does a critical section need to be broken due to another
1806 * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
1807 * but a general need for low latency)
1808 */
1809static inline int spin_needbreak(spinlock_t *lock)
1810{
1811#ifdef CONFIG_PREEMPTION
1812        return spin_is_contended(lock);
1813#else
1814        return 0;
1815#endif
1816}
1817
1818static __always_inline bool need_resched(void)
1819{
1820        return unlikely(tif_need_resched());
1821}
1822
1823/*
1824 * Wrappers for p->thread_info->cpu access. No-op on UP.
1825 */
1826#ifdef CONFIG_SMP
1827
1828static inline unsigned int task_cpu(const struct task_struct *p)
1829{
1830#ifdef CONFIG_THREAD_INFO_IN_TASK
1831        return READ_ONCE(p->cpu);
1832#else
1833        return READ_ONCE(task_thread_info(p)->cpu);
1834#endif
1835}
1836
1837extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1838
1839#else
1840
1841static inline unsigned int task_cpu(const struct task_struct *p)
1842{
1843        return 0;
1844}
1845
1846static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1847{
1848}
1849
1850#endif /* CONFIG_SMP */
1851
1852/*
1853 * In order to reduce various lock holder preemption latencies provide an
1854 * interface to see if a vCPU is currently running or not.
1855 *
1856 * This allows us to terminate optimistic spin loops and block, analogous to
1857 * the native optimistic spin heuristic of testing if the lock owner task is
1858 * running or not.
1859 */
1860#ifndef vcpu_is_preempted
1861static inline bool vcpu_is_preempted(int cpu)
1862{
1863        return false;
1864}
1865#endif
1866
1867extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
1868extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
1869
1870#ifndef TASK_SIZE_OF
1871#define TASK_SIZE_OF(tsk)       TASK_SIZE
1872#endif
1873
1874#ifdef CONFIG_RSEQ
1875
1876/*
1877 * Map the event mask on the user-space ABI enum rseq_cs_flags
1878 * for direct mask checks.
1879 */
1880enum rseq_event_mask_bits {
1881        RSEQ_EVENT_PREEMPT_BIT  = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
1882        RSEQ_EVENT_SIGNAL_BIT   = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
1883        RSEQ_EVENT_MIGRATE_BIT  = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
1884};
1885
1886enum rseq_event_mask {
1887        RSEQ_EVENT_PREEMPT      = (1U << RSEQ_EVENT_PREEMPT_BIT),
1888        RSEQ_EVENT_SIGNAL       = (1U << RSEQ_EVENT_SIGNAL_BIT),
1889        RSEQ_EVENT_MIGRATE      = (1U << RSEQ_EVENT_MIGRATE_BIT),
1890};
1891
1892static inline void rseq_set_notify_resume(struct task_struct *t)
1893{
1894        if (t->rseq)
1895                set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1896}
1897
1898void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
1899
1900static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1901                                             struct pt_regs *regs)
1902{
1903        if (current->rseq)
1904                __rseq_handle_notify_resume(ksig, regs);
1905}
1906
1907static inline void rseq_signal_deliver(struct ksignal *ksig,
1908                                       struct pt_regs *regs)
1909{
1910        preempt_disable();
1911        __set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
1912        preempt_enable();
1913        rseq_handle_notify_resume(ksig, regs);
1914}
1915
1916/* rseq_preempt() requires preemption to be disabled. */
1917static inline void rseq_preempt(struct task_struct *t)
1918{
1919        __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
1920        rseq_set_notify_resume(t);
1921}
1922
1923/* rseq_migrate() requires preemption to be disabled. */
1924static inline void rseq_migrate(struct task_struct *t)
1925{
1926        __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
1927        rseq_set_notify_resume(t);
1928}
1929
1930/*
1931 * If parent process has a registered restartable sequences area, the
1932 * child inherits. Unregister rseq for a clone with CLONE_VM set.
1933 */
1934static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
1935{
1936        if (clone_flags & CLONE_VM) {
1937                t->rseq = NULL;
1938                t->rseq_sig = 0;
1939                t->rseq_event_mask = 0;
1940        } else {
1941                t->rseq = current->rseq;
1942                t->rseq_sig = current->rseq_sig;
1943                t->rseq_event_mask = current->rseq_event_mask;
1944        }
1945}
1946
1947static inline void rseq_execve(struct task_struct *t)
1948{
1949        t->rseq = NULL;
1950        t->rseq_sig = 0;
1951        t->rseq_event_mask = 0;
1952}
1953
1954#else
1955
1956static inline void rseq_set_notify_resume(struct task_struct *t)
1957{
1958}
1959static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1960                                             struct pt_regs *regs)
1961{
1962}
1963static inline void rseq_signal_deliver(struct ksignal *ksig,
1964                                       struct pt_regs *regs)
1965{
1966}
1967static inline void rseq_preempt(struct task_struct *t)
1968{
1969}
1970static inline void rseq_migrate(struct task_struct *t)
1971{
1972}
1973static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
1974{
1975}
1976static inline void rseq_execve(struct task_struct *t)
1977{
1978}
1979
1980#endif
1981
1982void __exit_umh(struct task_struct *tsk);
1983
1984static inline void exit_umh(struct task_struct *tsk)
1985{
1986        if (unlikely(tsk->flags & PF_UMH))
1987                __exit_umh(tsk);
1988}
1989
1990#ifdef CONFIG_DEBUG_RSEQ
1991
1992void rseq_syscall(struct pt_regs *regs);
1993
1994#else
1995
1996static inline void rseq_syscall(struct pt_regs *regs)
1997{
1998}
1999
2000#endif
2001
2002const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq);
2003char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len);
2004int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq);
2005
2006const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq);
2007const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq);
2008const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq);
2009
2010int sched_trace_rq_cpu(struct rq *rq);
2011
2012const struct cpumask *sched_trace_rd_span(struct root_domain *rd);
2013
2014#endif
2015