linux/kernel/cgroup/cgroup-v1.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2#include "cgroup-internal.h"
   3
   4#include <linux/ctype.h>
   5#include <linux/kmod.h>
   6#include <linux/sort.h>
   7#include <linux/delay.h>
   8#include <linux/mm.h>
   9#include <linux/sched/signal.h>
  10#include <linux/sched/task.h>
  11#include <linux/magic.h>
  12#include <linux/slab.h>
  13#include <linux/vmalloc.h>
  14#include <linux/delayacct.h>
  15#include <linux/pid_namespace.h>
  16#include <linux/cgroupstats.h>
  17#include <linux/fs_parser.h>
  18
  19#include <trace/events/cgroup.h>
  20
  21#define cg_invalf(fc, fmt, ...) invalf(fc, fmt, ## __VA_ARGS__)
  22
  23/*
  24 * pidlists linger the following amount before being destroyed.  The goal
  25 * is avoiding frequent destruction in the middle of consecutive read calls
  26 * Expiring in the middle is a performance problem not a correctness one.
  27 * 1 sec should be enough.
  28 */
  29#define CGROUP_PIDLIST_DESTROY_DELAY    HZ
  30
  31/* Controllers blocked by the commandline in v1 */
  32static u16 cgroup_no_v1_mask;
  33
  34/* disable named v1 mounts */
  35static bool cgroup_no_v1_named;
  36
  37/*
  38 * pidlist destructions need to be flushed on cgroup destruction.  Use a
  39 * separate workqueue as flush domain.
  40 */
  41static struct workqueue_struct *cgroup_pidlist_destroy_wq;
  42
  43/*
  44 * Protects cgroup_subsys->release_agent_path.  Modifying it also requires
  45 * cgroup_mutex.  Reading requires either cgroup_mutex or this spinlock.
  46 */
  47static DEFINE_SPINLOCK(release_agent_path_lock);
  48
  49bool cgroup1_ssid_disabled(int ssid)
  50{
  51        return cgroup_no_v1_mask & (1 << ssid);
  52}
  53
  54/**
  55 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
  56 * @from: attach to all cgroups of a given task
  57 * @tsk: the task to be attached
  58 */
  59int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
  60{
  61        struct cgroup_root *root;
  62        int retval = 0;
  63
  64        mutex_lock(&cgroup_mutex);
  65        percpu_down_write(&cgroup_threadgroup_rwsem);
  66        for_each_root(root) {
  67                struct cgroup *from_cgrp;
  68
  69                if (root == &cgrp_dfl_root)
  70                        continue;
  71
  72                spin_lock_irq(&css_set_lock);
  73                from_cgrp = task_cgroup_from_root(from, root);
  74                spin_unlock_irq(&css_set_lock);
  75
  76                retval = cgroup_attach_task(from_cgrp, tsk, false);
  77                if (retval)
  78                        break;
  79        }
  80        percpu_up_write(&cgroup_threadgroup_rwsem);
  81        mutex_unlock(&cgroup_mutex);
  82
  83        return retval;
  84}
  85EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
  86
  87/**
  88 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
  89 * @to: cgroup to which the tasks will be moved
  90 * @from: cgroup in which the tasks currently reside
  91 *
  92 * Locking rules between cgroup_post_fork() and the migration path
  93 * guarantee that, if a task is forking while being migrated, the new child
  94 * is guaranteed to be either visible in the source cgroup after the
  95 * parent's migration is complete or put into the target cgroup.  No task
  96 * can slip out of migration through forking.
  97 */
  98int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
  99{
 100        DEFINE_CGROUP_MGCTX(mgctx);
 101        struct cgrp_cset_link *link;
 102        struct css_task_iter it;
 103        struct task_struct *task;
 104        int ret;
 105
 106        if (cgroup_on_dfl(to))
 107                return -EINVAL;
 108
 109        ret = cgroup_migrate_vet_dst(to);
 110        if (ret)
 111                return ret;
 112
 113        mutex_lock(&cgroup_mutex);
 114
 115        percpu_down_write(&cgroup_threadgroup_rwsem);
 116
 117        /* all tasks in @from are being moved, all csets are source */
 118        spin_lock_irq(&css_set_lock);
 119        list_for_each_entry(link, &from->cset_links, cset_link)
 120                cgroup_migrate_add_src(link->cset, to, &mgctx);
 121        spin_unlock_irq(&css_set_lock);
 122
 123        ret = cgroup_migrate_prepare_dst(&mgctx);
 124        if (ret)
 125                goto out_err;
 126
 127        /*
 128         * Migrate tasks one-by-one until @from is empty.  This fails iff
 129         * ->can_attach() fails.
 130         */
 131        do {
 132                css_task_iter_start(&from->self, 0, &it);
 133
 134                do {
 135                        task = css_task_iter_next(&it);
 136                } while (task && (task->flags & PF_EXITING));
 137
 138                if (task)
 139                        get_task_struct(task);
 140                css_task_iter_end(&it);
 141
 142                if (task) {
 143                        ret = cgroup_migrate(task, false, &mgctx);
 144                        if (!ret)
 145                                TRACE_CGROUP_PATH(transfer_tasks, to, task, false);
 146                        put_task_struct(task);
 147                }
 148        } while (task && !ret);
 149out_err:
 150        cgroup_migrate_finish(&mgctx);
 151        percpu_up_write(&cgroup_threadgroup_rwsem);
 152        mutex_unlock(&cgroup_mutex);
 153        return ret;
 154}
 155
 156/*
 157 * Stuff for reading the 'tasks'/'procs' files.
 158 *
 159 * Reading this file can return large amounts of data if a cgroup has
 160 * *lots* of attached tasks. So it may need several calls to read(),
 161 * but we cannot guarantee that the information we produce is correct
 162 * unless we produce it entirely atomically.
 163 *
 164 */
 165
 166/* which pidlist file are we talking about? */
 167enum cgroup_filetype {
 168        CGROUP_FILE_PROCS,
 169        CGROUP_FILE_TASKS,
 170};
 171
 172/*
 173 * A pidlist is a list of pids that virtually represents the contents of one
 174 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
 175 * a pair (one each for procs, tasks) for each pid namespace that's relevant
 176 * to the cgroup.
 177 */
 178struct cgroup_pidlist {
 179        /*
 180         * used to find which pidlist is wanted. doesn't change as long as
 181         * this particular list stays in the list.
 182        */
 183        struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
 184        /* array of xids */
 185        pid_t *list;
 186        /* how many elements the above list has */
 187        int length;
 188        /* each of these stored in a list by its cgroup */
 189        struct list_head links;
 190        /* pointer to the cgroup we belong to, for list removal purposes */
 191        struct cgroup *owner;
 192        /* for delayed destruction */
 193        struct delayed_work destroy_dwork;
 194};
 195
 196/*
 197 * Used to destroy all pidlists lingering waiting for destroy timer.  None
 198 * should be left afterwards.
 199 */
 200void cgroup1_pidlist_destroy_all(struct cgroup *cgrp)
 201{
 202        struct cgroup_pidlist *l, *tmp_l;
 203
 204        mutex_lock(&cgrp->pidlist_mutex);
 205        list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
 206                mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
 207        mutex_unlock(&cgrp->pidlist_mutex);
 208
 209        flush_workqueue(cgroup_pidlist_destroy_wq);
 210        BUG_ON(!list_empty(&cgrp->pidlists));
 211}
 212
 213static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
 214{
 215        struct delayed_work *dwork = to_delayed_work(work);
 216        struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
 217                                                destroy_dwork);
 218        struct cgroup_pidlist *tofree = NULL;
 219
 220        mutex_lock(&l->owner->pidlist_mutex);
 221
 222        /*
 223         * Destroy iff we didn't get queued again.  The state won't change
 224         * as destroy_dwork can only be queued while locked.
 225         */
 226        if (!delayed_work_pending(dwork)) {
 227                list_del(&l->links);
 228                kvfree(l->list);
 229                put_pid_ns(l->key.ns);
 230                tofree = l;
 231        }
 232
 233        mutex_unlock(&l->owner->pidlist_mutex);
 234        kfree(tofree);
 235}
 236
 237/*
 238 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
 239 * Returns the number of unique elements.
 240 */
 241static int pidlist_uniq(pid_t *list, int length)
 242{
 243        int src, dest = 1;
 244
 245        /*
 246         * we presume the 0th element is unique, so i starts at 1. trivial
 247         * edge cases first; no work needs to be done for either
 248         */
 249        if (length == 0 || length == 1)
 250                return length;
 251        /* src and dest walk down the list; dest counts unique elements */
 252        for (src = 1; src < length; src++) {
 253                /* find next unique element */
 254                while (list[src] == list[src-1]) {
 255                        src++;
 256                        if (src == length)
 257                                goto after;
 258                }
 259                /* dest always points to where the next unique element goes */
 260                list[dest] = list[src];
 261                dest++;
 262        }
 263after:
 264        return dest;
 265}
 266
 267/*
 268 * The two pid files - task and cgroup.procs - guaranteed that the result
 269 * is sorted, which forced this whole pidlist fiasco.  As pid order is
 270 * different per namespace, each namespace needs differently sorted list,
 271 * making it impossible to use, for example, single rbtree of member tasks
 272 * sorted by task pointer.  As pidlists can be fairly large, allocating one
 273 * per open file is dangerous, so cgroup had to implement shared pool of
 274 * pidlists keyed by cgroup and namespace.
 275 */
 276static int cmppid(const void *a, const void *b)
 277{
 278        return *(pid_t *)a - *(pid_t *)b;
 279}
 280
 281static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
 282                                                  enum cgroup_filetype type)
 283{
 284        struct cgroup_pidlist *l;
 285        /* don't need task_nsproxy() if we're looking at ourself */
 286        struct pid_namespace *ns = task_active_pid_ns(current);
 287
 288        lockdep_assert_held(&cgrp->pidlist_mutex);
 289
 290        list_for_each_entry(l, &cgrp->pidlists, links)
 291                if (l->key.type == type && l->key.ns == ns)
 292                        return l;
 293        return NULL;
 294}
 295
 296/*
 297 * find the appropriate pidlist for our purpose (given procs vs tasks)
 298 * returns with the lock on that pidlist already held, and takes care
 299 * of the use count, or returns NULL with no locks held if we're out of
 300 * memory.
 301 */
 302static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
 303                                                enum cgroup_filetype type)
 304{
 305        struct cgroup_pidlist *l;
 306
 307        lockdep_assert_held(&cgrp->pidlist_mutex);
 308
 309        l = cgroup_pidlist_find(cgrp, type);
 310        if (l)
 311                return l;
 312
 313        /* entry not found; create a new one */
 314        l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
 315        if (!l)
 316                return l;
 317
 318        INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
 319        l->key.type = type;
 320        /* don't need task_nsproxy() if we're looking at ourself */
 321        l->key.ns = get_pid_ns(task_active_pid_ns(current));
 322        l->owner = cgrp;
 323        list_add(&l->links, &cgrp->pidlists);
 324        return l;
 325}
 326
 327/*
 328 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
 329 */
 330static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
 331                              struct cgroup_pidlist **lp)
 332{
 333        pid_t *array;
 334        int length;
 335        int pid, n = 0; /* used for populating the array */
 336        struct css_task_iter it;
 337        struct task_struct *tsk;
 338        struct cgroup_pidlist *l;
 339
 340        lockdep_assert_held(&cgrp->pidlist_mutex);
 341
 342        /*
 343         * If cgroup gets more users after we read count, we won't have
 344         * enough space - tough.  This race is indistinguishable to the
 345         * caller from the case that the additional cgroup users didn't
 346         * show up until sometime later on.
 347         */
 348        length = cgroup_task_count(cgrp);
 349        array = kvmalloc_array(length, sizeof(pid_t), GFP_KERNEL);
 350        if (!array)
 351                return -ENOMEM;
 352        /* now, populate the array */
 353        css_task_iter_start(&cgrp->self, 0, &it);
 354        while ((tsk = css_task_iter_next(&it))) {
 355                if (unlikely(n == length))
 356                        break;
 357                /* get tgid or pid for procs or tasks file respectively */
 358                if (type == CGROUP_FILE_PROCS)
 359                        pid = task_tgid_vnr(tsk);
 360                else
 361                        pid = task_pid_vnr(tsk);
 362                if (pid > 0) /* make sure to only use valid results */
 363                        array[n++] = pid;
 364        }
 365        css_task_iter_end(&it);
 366        length = n;
 367        /* now sort & (if procs) strip out duplicates */
 368        sort(array, length, sizeof(pid_t), cmppid, NULL);
 369        if (type == CGROUP_FILE_PROCS)
 370                length = pidlist_uniq(array, length);
 371
 372        l = cgroup_pidlist_find_create(cgrp, type);
 373        if (!l) {
 374                kvfree(array);
 375                return -ENOMEM;
 376        }
 377
 378        /* store array, freeing old if necessary */
 379        kvfree(l->list);
 380        l->list = array;
 381        l->length = length;
 382        *lp = l;
 383        return 0;
 384}
 385
 386/*
 387 * seq_file methods for the tasks/procs files. The seq_file position is the
 388 * next pid to display; the seq_file iterator is a pointer to the pid
 389 * in the cgroup->l->list array.
 390 */
 391
 392static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
 393{
 394        /*
 395         * Initially we receive a position value that corresponds to
 396         * one more than the last pid shown (or 0 on the first call or
 397         * after a seek to the start). Use a binary-search to find the
 398         * next pid to display, if any
 399         */
 400        struct kernfs_open_file *of = s->private;
 401        struct cgroup *cgrp = seq_css(s)->cgroup;
 402        struct cgroup_pidlist *l;
 403        enum cgroup_filetype type = seq_cft(s)->private;
 404        int index = 0, pid = *pos;
 405        int *iter, ret;
 406
 407        mutex_lock(&cgrp->pidlist_mutex);
 408
 409        /*
 410         * !NULL @of->priv indicates that this isn't the first start()
 411         * after open.  If the matching pidlist is around, we can use that.
 412         * Look for it.  Note that @of->priv can't be used directly.  It
 413         * could already have been destroyed.
 414         */
 415        if (of->priv)
 416                of->priv = cgroup_pidlist_find(cgrp, type);
 417
 418        /*
 419         * Either this is the first start() after open or the matching
 420         * pidlist has been destroyed inbetween.  Create a new one.
 421         */
 422        if (!of->priv) {
 423                ret = pidlist_array_load(cgrp, type,
 424                                         (struct cgroup_pidlist **)&of->priv);
 425                if (ret)
 426                        return ERR_PTR(ret);
 427        }
 428        l = of->priv;
 429
 430        if (pid) {
 431                int end = l->length;
 432
 433                while (index < end) {
 434                        int mid = (index + end) / 2;
 435                        if (l->list[mid] == pid) {
 436                                index = mid;
 437                                break;
 438                        } else if (l->list[mid] <= pid)
 439                                index = mid + 1;
 440                        else
 441                                end = mid;
 442                }
 443        }
 444        /* If we're off the end of the array, we're done */
 445        if (index >= l->length)
 446                return NULL;
 447        /* Update the abstract position to be the actual pid that we found */
 448        iter = l->list + index;
 449        *pos = *iter;
 450        return iter;
 451}
 452
 453static void cgroup_pidlist_stop(struct seq_file *s, void *v)
 454{
 455        struct kernfs_open_file *of = s->private;
 456        struct cgroup_pidlist *l = of->priv;
 457
 458        if (l)
 459                mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
 460                                 CGROUP_PIDLIST_DESTROY_DELAY);
 461        mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
 462}
 463
 464static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
 465{
 466        struct kernfs_open_file *of = s->private;
 467        struct cgroup_pidlist *l = of->priv;
 468        pid_t *p = v;
 469        pid_t *end = l->list + l->length;
 470        /*
 471         * Advance to the next pid in the array. If this goes off the
 472         * end, we're done
 473         */
 474        p++;
 475        if (p >= end) {
 476                return NULL;
 477        } else {
 478                *pos = *p;
 479                return p;
 480        }
 481}
 482
 483static int cgroup_pidlist_show(struct seq_file *s, void *v)
 484{
 485        seq_printf(s, "%d\n", *(int *)v);
 486
 487        return 0;
 488}
 489
 490static ssize_t __cgroup1_procs_write(struct kernfs_open_file *of,
 491                                     char *buf, size_t nbytes, loff_t off,
 492                                     bool threadgroup)
 493{
 494        struct cgroup *cgrp;
 495        struct task_struct *task;
 496        const struct cred *cred, *tcred;
 497        ssize_t ret;
 498        bool locked;
 499
 500        cgrp = cgroup_kn_lock_live(of->kn, false);
 501        if (!cgrp)
 502                return -ENODEV;
 503
 504        task = cgroup_procs_write_start(buf, threadgroup, &locked);
 505        ret = PTR_ERR_OR_ZERO(task);
 506        if (ret)
 507                goto out_unlock;
 508
 509        /*
 510         * Even if we're attaching all tasks in the thread group, we only
 511         * need to check permissions on one of them.
 512         */
 513        cred = current_cred();
 514        tcred = get_task_cred(task);
 515        if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
 516            !uid_eq(cred->euid, tcred->uid) &&
 517            !uid_eq(cred->euid, tcred->suid))
 518                ret = -EACCES;
 519        put_cred(tcred);
 520        if (ret)
 521                goto out_finish;
 522
 523        ret = cgroup_attach_task(cgrp, task, threadgroup);
 524
 525out_finish:
 526        cgroup_procs_write_finish(task, locked);
 527out_unlock:
 528        cgroup_kn_unlock(of->kn);
 529
 530        return ret ?: nbytes;
 531}
 532
 533static ssize_t cgroup1_procs_write(struct kernfs_open_file *of,
 534                                   char *buf, size_t nbytes, loff_t off)
 535{
 536        return __cgroup1_procs_write(of, buf, nbytes, off, true);
 537}
 538
 539static ssize_t cgroup1_tasks_write(struct kernfs_open_file *of,
 540                                   char *buf, size_t nbytes, loff_t off)
 541{
 542        return __cgroup1_procs_write(of, buf, nbytes, off, false);
 543}
 544
 545static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
 546                                          char *buf, size_t nbytes, loff_t off)
 547{
 548        struct cgroup *cgrp;
 549
 550        BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
 551
 552        cgrp = cgroup_kn_lock_live(of->kn, false);
 553        if (!cgrp)
 554                return -ENODEV;
 555        spin_lock(&release_agent_path_lock);
 556        strlcpy(cgrp->root->release_agent_path, strstrip(buf),
 557                sizeof(cgrp->root->release_agent_path));
 558        spin_unlock(&release_agent_path_lock);
 559        cgroup_kn_unlock(of->kn);
 560        return nbytes;
 561}
 562
 563static int cgroup_release_agent_show(struct seq_file *seq, void *v)
 564{
 565        struct cgroup *cgrp = seq_css(seq)->cgroup;
 566
 567        spin_lock(&release_agent_path_lock);
 568        seq_puts(seq, cgrp->root->release_agent_path);
 569        spin_unlock(&release_agent_path_lock);
 570        seq_putc(seq, '\n');
 571        return 0;
 572}
 573
 574static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
 575{
 576        seq_puts(seq, "0\n");
 577        return 0;
 578}
 579
 580static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
 581                                         struct cftype *cft)
 582{
 583        return notify_on_release(css->cgroup);
 584}
 585
 586static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
 587                                          struct cftype *cft, u64 val)
 588{
 589        if (val)
 590                set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
 591        else
 592                clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
 593        return 0;
 594}
 595
 596static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
 597                                      struct cftype *cft)
 598{
 599        return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
 600}
 601
 602static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
 603                                       struct cftype *cft, u64 val)
 604{
 605        if (val)
 606                set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
 607        else
 608                clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
 609        return 0;
 610}
 611
 612/* cgroup core interface files for the legacy hierarchies */
 613struct cftype cgroup1_base_files[] = {
 614        {
 615                .name = "cgroup.procs",
 616                .seq_start = cgroup_pidlist_start,
 617                .seq_next = cgroup_pidlist_next,
 618                .seq_stop = cgroup_pidlist_stop,
 619                .seq_show = cgroup_pidlist_show,
 620                .private = CGROUP_FILE_PROCS,
 621                .write = cgroup1_procs_write,
 622        },
 623        {
 624                .name = "cgroup.clone_children",
 625                .read_u64 = cgroup_clone_children_read,
 626                .write_u64 = cgroup_clone_children_write,
 627        },
 628        {
 629                .name = "cgroup.sane_behavior",
 630                .flags = CFTYPE_ONLY_ON_ROOT,
 631                .seq_show = cgroup_sane_behavior_show,
 632        },
 633        {
 634                .name = "tasks",
 635                .seq_start = cgroup_pidlist_start,
 636                .seq_next = cgroup_pidlist_next,
 637                .seq_stop = cgroup_pidlist_stop,
 638                .seq_show = cgroup_pidlist_show,
 639                .private = CGROUP_FILE_TASKS,
 640                .write = cgroup1_tasks_write,
 641        },
 642        {
 643                .name = "notify_on_release",
 644                .read_u64 = cgroup_read_notify_on_release,
 645                .write_u64 = cgroup_write_notify_on_release,
 646        },
 647        {
 648                .name = "release_agent",
 649                .flags = CFTYPE_ONLY_ON_ROOT,
 650                .seq_show = cgroup_release_agent_show,
 651                .write = cgroup_release_agent_write,
 652                .max_write_len = PATH_MAX - 1,
 653        },
 654        { }     /* terminate */
 655};
 656
 657/* Display information about each subsystem and each hierarchy */
 658int proc_cgroupstats_show(struct seq_file *m, void *v)
 659{
 660        struct cgroup_subsys *ss;
 661        int i;
 662
 663        seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
 664        /*
 665         * ideally we don't want subsystems moving around while we do this.
 666         * cgroup_mutex is also necessary to guarantee an atomic snapshot of
 667         * subsys/hierarchy state.
 668         */
 669        mutex_lock(&cgroup_mutex);
 670
 671        for_each_subsys(ss, i)
 672                seq_printf(m, "%s\t%d\t%d\t%d\n",
 673                           ss->legacy_name, ss->root->hierarchy_id,
 674                           atomic_read(&ss->root->nr_cgrps),
 675                           cgroup_ssid_enabled(i));
 676
 677        mutex_unlock(&cgroup_mutex);
 678        return 0;
 679}
 680
 681/**
 682 * cgroupstats_build - build and fill cgroupstats
 683 * @stats: cgroupstats to fill information into
 684 * @dentry: A dentry entry belonging to the cgroup for which stats have
 685 * been requested.
 686 *
 687 * Build and fill cgroupstats so that taskstats can export it to user
 688 * space.
 689 */
 690int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
 691{
 692        struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
 693        struct cgroup *cgrp;
 694        struct css_task_iter it;
 695        struct task_struct *tsk;
 696
 697        /* it should be kernfs_node belonging to cgroupfs and is a directory */
 698        if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
 699            kernfs_type(kn) != KERNFS_DIR)
 700                return -EINVAL;
 701
 702        mutex_lock(&cgroup_mutex);
 703
 704        /*
 705         * We aren't being called from kernfs and there's no guarantee on
 706         * @kn->priv's validity.  For this and css_tryget_online_from_dir(),
 707         * @kn->priv is RCU safe.  Let's do the RCU dancing.
 708         */
 709        rcu_read_lock();
 710        cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
 711        if (!cgrp || cgroup_is_dead(cgrp)) {
 712                rcu_read_unlock();
 713                mutex_unlock(&cgroup_mutex);
 714                return -ENOENT;
 715        }
 716        rcu_read_unlock();
 717
 718        css_task_iter_start(&cgrp->self, 0, &it);
 719        while ((tsk = css_task_iter_next(&it))) {
 720                switch (tsk->state) {
 721                case TASK_RUNNING:
 722                        stats->nr_running++;
 723                        break;
 724                case TASK_INTERRUPTIBLE:
 725                        stats->nr_sleeping++;
 726                        break;
 727                case TASK_UNINTERRUPTIBLE:
 728                        stats->nr_uninterruptible++;
 729                        break;
 730                case TASK_STOPPED:
 731                        stats->nr_stopped++;
 732                        break;
 733                default:
 734                        if (delayacct_is_task_waiting_on_io(tsk))
 735                                stats->nr_io_wait++;
 736                        break;
 737                }
 738        }
 739        css_task_iter_end(&it);
 740
 741        mutex_unlock(&cgroup_mutex);
 742        return 0;
 743}
 744
 745void cgroup1_check_for_release(struct cgroup *cgrp)
 746{
 747        if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
 748            !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
 749                schedule_work(&cgrp->release_agent_work);
 750}
 751
 752/*
 753 * Notify userspace when a cgroup is released, by running the
 754 * configured release agent with the name of the cgroup (path
 755 * relative to the root of cgroup file system) as the argument.
 756 *
 757 * Most likely, this user command will try to rmdir this cgroup.
 758 *
 759 * This races with the possibility that some other task will be
 760 * attached to this cgroup before it is removed, or that some other
 761 * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
 762 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
 763 * unused, and this cgroup will be reprieved from its death sentence,
 764 * to continue to serve a useful existence.  Next time it's released,
 765 * we will get notified again, if it still has 'notify_on_release' set.
 766 *
 767 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
 768 * means only wait until the task is successfully execve()'d.  The
 769 * separate release agent task is forked by call_usermodehelper(),
 770 * then control in this thread returns here, without waiting for the
 771 * release agent task.  We don't bother to wait because the caller of
 772 * this routine has no use for the exit status of the release agent
 773 * task, so no sense holding our caller up for that.
 774 */
 775void cgroup1_release_agent(struct work_struct *work)
 776{
 777        struct cgroup *cgrp =
 778                container_of(work, struct cgroup, release_agent_work);
 779        char *pathbuf = NULL, *agentbuf = NULL;
 780        char *argv[3], *envp[3];
 781        int ret;
 782
 783        mutex_lock(&cgroup_mutex);
 784
 785        pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
 786        agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
 787        if (!pathbuf || !agentbuf)
 788                goto out;
 789
 790        spin_lock_irq(&css_set_lock);
 791        ret = cgroup_path_ns_locked(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns);
 792        spin_unlock_irq(&css_set_lock);
 793        if (ret < 0 || ret >= PATH_MAX)
 794                goto out;
 795
 796        argv[0] = agentbuf;
 797        argv[1] = pathbuf;
 798        argv[2] = NULL;
 799
 800        /* minimal command environment */
 801        envp[0] = "HOME=/";
 802        envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
 803        envp[2] = NULL;
 804
 805        mutex_unlock(&cgroup_mutex);
 806        call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
 807        goto out_free;
 808out:
 809        mutex_unlock(&cgroup_mutex);
 810out_free:
 811        kfree(agentbuf);
 812        kfree(pathbuf);
 813}
 814
 815/*
 816 * cgroup_rename - Only allow simple rename of directories in place.
 817 */
 818static int cgroup1_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
 819                          const char *new_name_str)
 820{
 821        struct cgroup *cgrp = kn->priv;
 822        int ret;
 823
 824        if (kernfs_type(kn) != KERNFS_DIR)
 825                return -ENOTDIR;
 826        if (kn->parent != new_parent)
 827                return -EIO;
 828
 829        /*
 830         * We're gonna grab cgroup_mutex which nests outside kernfs
 831         * active_ref.  kernfs_rename() doesn't require active_ref
 832         * protection.  Break them before grabbing cgroup_mutex.
 833         */
 834        kernfs_break_active_protection(new_parent);
 835        kernfs_break_active_protection(kn);
 836
 837        mutex_lock(&cgroup_mutex);
 838
 839        ret = kernfs_rename(kn, new_parent, new_name_str);
 840        if (!ret)
 841                TRACE_CGROUP_PATH(rename, cgrp);
 842
 843        mutex_unlock(&cgroup_mutex);
 844
 845        kernfs_unbreak_active_protection(kn);
 846        kernfs_unbreak_active_protection(new_parent);
 847        return ret;
 848}
 849
 850static int cgroup1_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
 851{
 852        struct cgroup_root *root = cgroup_root_from_kf(kf_root);
 853        struct cgroup_subsys *ss;
 854        int ssid;
 855
 856        for_each_subsys(ss, ssid)
 857                if (root->subsys_mask & (1 << ssid))
 858                        seq_show_option(seq, ss->legacy_name, NULL);
 859        if (root->flags & CGRP_ROOT_NOPREFIX)
 860                seq_puts(seq, ",noprefix");
 861        if (root->flags & CGRP_ROOT_XATTR)
 862                seq_puts(seq, ",xattr");
 863        if (root->flags & CGRP_ROOT_CPUSET_V2_MODE)
 864                seq_puts(seq, ",cpuset_v2_mode");
 865
 866        spin_lock(&release_agent_path_lock);
 867        if (strlen(root->release_agent_path))
 868                seq_show_option(seq, "release_agent",
 869                                root->release_agent_path);
 870        spin_unlock(&release_agent_path_lock);
 871
 872        if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
 873                seq_puts(seq, ",clone_children");
 874        if (strlen(root->name))
 875                seq_show_option(seq, "name", root->name);
 876        return 0;
 877}
 878
 879enum cgroup1_param {
 880        Opt_all,
 881        Opt_clone_children,
 882        Opt_cpuset_v2_mode,
 883        Opt_name,
 884        Opt_none,
 885        Opt_noprefix,
 886        Opt_release_agent,
 887        Opt_xattr,
 888};
 889
 890static const struct fs_parameter_spec cgroup1_param_specs[] = {
 891        fsparam_flag  ("all",           Opt_all),
 892        fsparam_flag  ("clone_children", Opt_clone_children),
 893        fsparam_flag  ("cpuset_v2_mode", Opt_cpuset_v2_mode),
 894        fsparam_string("name",          Opt_name),
 895        fsparam_flag  ("none",          Opt_none),
 896        fsparam_flag  ("noprefix",      Opt_noprefix),
 897        fsparam_string("release_agent", Opt_release_agent),
 898        fsparam_flag  ("xattr",         Opt_xattr),
 899        {}
 900};
 901
 902const struct fs_parameter_description cgroup1_fs_parameters = {
 903        .name           = "cgroup1",
 904        .specs          = cgroup1_param_specs,
 905};
 906
 907int cgroup1_parse_param(struct fs_context *fc, struct fs_parameter *param)
 908{
 909        struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
 910        struct cgroup_subsys *ss;
 911        struct fs_parse_result result;
 912        int opt, i;
 913
 914        opt = fs_parse(fc, &cgroup1_fs_parameters, param, &result);
 915        if (opt == -ENOPARAM) {
 916                if (strcmp(param->key, "source") == 0) {
 917                        fc->source = param->string;
 918                        param->string = NULL;
 919                        return 0;
 920                }
 921                for_each_subsys(ss, i) {
 922                        if (strcmp(param->key, ss->legacy_name))
 923                                continue;
 924                        ctx->subsys_mask |= (1 << i);
 925                        return 0;
 926                }
 927                return cg_invalf(fc, "cgroup1: Unknown subsys name '%s'", param->key);
 928        }
 929        if (opt < 0)
 930                return opt;
 931
 932        switch (opt) {
 933        case Opt_none:
 934                /* Explicitly have no subsystems */
 935                ctx->none = true;
 936                break;
 937        case Opt_all:
 938                ctx->all_ss = true;
 939                break;
 940        case Opt_noprefix:
 941                ctx->flags |= CGRP_ROOT_NOPREFIX;
 942                break;
 943        case Opt_clone_children:
 944                ctx->cpuset_clone_children = true;
 945                break;
 946        case Opt_cpuset_v2_mode:
 947                ctx->flags |= CGRP_ROOT_CPUSET_V2_MODE;
 948                break;
 949        case Opt_xattr:
 950                ctx->flags |= CGRP_ROOT_XATTR;
 951                break;
 952        case Opt_release_agent:
 953                /* Specifying two release agents is forbidden */
 954                if (ctx->release_agent)
 955                        return cg_invalf(fc, "cgroup1: release_agent respecified");
 956                ctx->release_agent = param->string;
 957                param->string = NULL;
 958                break;
 959        case Opt_name:
 960                /* blocked by boot param? */
 961                if (cgroup_no_v1_named)
 962                        return -ENOENT;
 963                /* Can't specify an empty name */
 964                if (!param->size)
 965                        return cg_invalf(fc, "cgroup1: Empty name");
 966                if (param->size > MAX_CGROUP_ROOT_NAMELEN - 1)
 967                        return cg_invalf(fc, "cgroup1: Name too long");
 968                /* Must match [\w.-]+ */
 969                for (i = 0; i < param->size; i++) {
 970                        char c = param->string[i];
 971                        if (isalnum(c))
 972                                continue;
 973                        if ((c == '.') || (c == '-') || (c == '_'))
 974                                continue;
 975                        return cg_invalf(fc, "cgroup1: Invalid name");
 976                }
 977                /* Specifying two names is forbidden */
 978                if (ctx->name)
 979                        return cg_invalf(fc, "cgroup1: name respecified");
 980                ctx->name = param->string;
 981                param->string = NULL;
 982                break;
 983        }
 984        return 0;
 985}
 986
 987static int check_cgroupfs_options(struct fs_context *fc)
 988{
 989        struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
 990        u16 mask = U16_MAX;
 991        u16 enabled = 0;
 992        struct cgroup_subsys *ss;
 993        int i;
 994
 995#ifdef CONFIG_CPUSETS
 996        mask = ~((u16)1 << cpuset_cgrp_id);
 997#endif
 998        for_each_subsys(ss, i)
 999                if (cgroup_ssid_enabled(i) && !cgroup1_ssid_disabled(i))
1000                        enabled |= 1 << i;
1001
1002        ctx->subsys_mask &= enabled;
1003
1004        /*
1005         * In absense of 'none', 'name=' or subsystem name options,
1006         * let's default to 'all'.
1007         */
1008        if (!ctx->subsys_mask && !ctx->none && !ctx->name)
1009                ctx->all_ss = true;
1010
1011        if (ctx->all_ss) {
1012                /* Mutually exclusive option 'all' + subsystem name */
1013                if (ctx->subsys_mask)
1014                        return cg_invalf(fc, "cgroup1: subsys name conflicts with all");
1015                /* 'all' => select all the subsystems */
1016                ctx->subsys_mask = enabled;
1017        }
1018
1019        /*
1020         * We either have to specify by name or by subsystems. (So all
1021         * empty hierarchies must have a name).
1022         */
1023        if (!ctx->subsys_mask && !ctx->name)
1024                return cg_invalf(fc, "cgroup1: Need name or subsystem set");
1025
1026        /*
1027         * Option noprefix was introduced just for backward compatibility
1028         * with the old cpuset, so we allow noprefix only if mounting just
1029         * the cpuset subsystem.
1030         */
1031        if ((ctx->flags & CGRP_ROOT_NOPREFIX) && (ctx->subsys_mask & mask))
1032                return cg_invalf(fc, "cgroup1: noprefix used incorrectly");
1033
1034        /* Can't specify "none" and some subsystems */
1035        if (ctx->subsys_mask && ctx->none)
1036                return cg_invalf(fc, "cgroup1: none used incorrectly");
1037
1038        return 0;
1039}
1040
1041int cgroup1_reconfigure(struct fs_context *fc)
1042{
1043        struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1044        struct kernfs_root *kf_root = kernfs_root_from_sb(fc->root->d_sb);
1045        struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1046        int ret = 0;
1047        u16 added_mask, removed_mask;
1048
1049        cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1050
1051        /* See what subsystems are wanted */
1052        ret = check_cgroupfs_options(fc);
1053        if (ret)
1054                goto out_unlock;
1055
1056        if (ctx->subsys_mask != root->subsys_mask || ctx->release_agent)
1057                pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1058                        task_tgid_nr(current), current->comm);
1059
1060        added_mask = ctx->subsys_mask & ~root->subsys_mask;
1061        removed_mask = root->subsys_mask & ~ctx->subsys_mask;
1062
1063        /* Don't allow flags or name to change at remount */
1064        if ((ctx->flags ^ root->flags) ||
1065            (ctx->name && strcmp(ctx->name, root->name))) {
1066                cg_invalf(fc, "option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"",
1067                       ctx->flags, ctx->name ?: "", root->flags, root->name);
1068                ret = -EINVAL;
1069                goto out_unlock;
1070        }
1071
1072        /* remounting is not allowed for populated hierarchies */
1073        if (!list_empty(&root->cgrp.self.children)) {
1074                ret = -EBUSY;
1075                goto out_unlock;
1076        }
1077
1078        ret = rebind_subsystems(root, added_mask);
1079        if (ret)
1080                goto out_unlock;
1081
1082        WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask));
1083
1084        if (ctx->release_agent) {
1085                spin_lock(&release_agent_path_lock);
1086                strcpy(root->release_agent_path, ctx->release_agent);
1087                spin_unlock(&release_agent_path_lock);
1088        }
1089
1090        trace_cgroup_remount(root);
1091
1092 out_unlock:
1093        mutex_unlock(&cgroup_mutex);
1094        return ret;
1095}
1096
1097struct kernfs_syscall_ops cgroup1_kf_syscall_ops = {
1098        .rename                 = cgroup1_rename,
1099        .show_options           = cgroup1_show_options,
1100        .mkdir                  = cgroup_mkdir,
1101        .rmdir                  = cgroup_rmdir,
1102        .show_path              = cgroup_show_path,
1103};
1104
1105/*
1106 * The guts of cgroup1 mount - find or create cgroup_root to use.
1107 * Called with cgroup_mutex held; returns 0 on success, -E... on
1108 * error and positive - in case when the candidate is busy dying.
1109 * On success it stashes a reference to cgroup_root into given
1110 * cgroup_fs_context; that reference is *NOT* counting towards the
1111 * cgroup_root refcount.
1112 */
1113static int cgroup1_root_to_use(struct fs_context *fc)
1114{
1115        struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1116        struct cgroup_root *root;
1117        struct cgroup_subsys *ss;
1118        int i, ret;
1119
1120        /* First find the desired set of subsystems */
1121        ret = check_cgroupfs_options(fc);
1122        if (ret)
1123                return ret;
1124
1125        /*
1126         * Destruction of cgroup root is asynchronous, so subsystems may
1127         * still be dying after the previous unmount.  Let's drain the
1128         * dying subsystems.  We just need to ensure that the ones
1129         * unmounted previously finish dying and don't care about new ones
1130         * starting.  Testing ref liveliness is good enough.
1131         */
1132        for_each_subsys(ss, i) {
1133                if (!(ctx->subsys_mask & (1 << i)) ||
1134                    ss->root == &cgrp_dfl_root)
1135                        continue;
1136
1137                if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt))
1138                        return 1;       /* restart */
1139                cgroup_put(&ss->root->cgrp);
1140        }
1141
1142        for_each_root(root) {
1143                bool name_match = false;
1144
1145                if (root == &cgrp_dfl_root)
1146                        continue;
1147
1148                /*
1149                 * If we asked for a name then it must match.  Also, if
1150                 * name matches but sybsys_mask doesn't, we should fail.
1151                 * Remember whether name matched.
1152                 */
1153                if (ctx->name) {
1154                        if (strcmp(ctx->name, root->name))
1155                                continue;
1156                        name_match = true;
1157                }
1158
1159                /*
1160                 * If we asked for subsystems (or explicitly for no
1161                 * subsystems) then they must match.
1162                 */
1163                if ((ctx->subsys_mask || ctx->none) &&
1164                    (ctx->subsys_mask != root->subsys_mask)) {
1165                        if (!name_match)
1166                                continue;
1167                        return -EBUSY;
1168                }
1169
1170                if (root->flags ^ ctx->flags)
1171                        pr_warn("new mount options do not match the existing superblock, will be ignored\n");
1172
1173                ctx->root = root;
1174                return 0;
1175        }
1176
1177        /*
1178         * No such thing, create a new one.  name= matching without subsys
1179         * specification is allowed for already existing hierarchies but we
1180         * can't create new one without subsys specification.
1181         */
1182        if (!ctx->subsys_mask && !ctx->none)
1183                return cg_invalf(fc, "cgroup1: No subsys list or none specified");
1184
1185        /* Hierarchies may only be created in the initial cgroup namespace. */
1186        if (ctx->ns != &init_cgroup_ns)
1187                return -EPERM;
1188
1189        root = kzalloc(sizeof(*root), GFP_KERNEL);
1190        if (!root)
1191                return -ENOMEM;
1192
1193        ctx->root = root;
1194        init_cgroup_root(ctx);
1195
1196        ret = cgroup_setup_root(root, ctx->subsys_mask);
1197        if (ret)
1198                cgroup_free_root(root);
1199        return ret;
1200}
1201
1202int cgroup1_get_tree(struct fs_context *fc)
1203{
1204        struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1205        int ret;
1206
1207        /* Check if the caller has permission to mount. */
1208        if (!ns_capable(ctx->ns->user_ns, CAP_SYS_ADMIN))
1209                return -EPERM;
1210
1211        cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1212
1213        ret = cgroup1_root_to_use(fc);
1214        if (!ret && !percpu_ref_tryget_live(&ctx->root->cgrp.self.refcnt))
1215                ret = 1;        /* restart */
1216
1217        mutex_unlock(&cgroup_mutex);
1218
1219        if (!ret)
1220                ret = cgroup_do_get_tree(fc);
1221
1222        if (!ret && percpu_ref_is_dying(&ctx->root->cgrp.self.refcnt)) {
1223                struct super_block *sb = fc->root->d_sb;
1224                dput(fc->root);
1225                deactivate_locked_super(sb);
1226                ret = 1;
1227        }
1228
1229        if (unlikely(ret > 0)) {
1230                msleep(10);
1231                return restart_syscall();
1232        }
1233        return ret;
1234}
1235
1236static int __init cgroup1_wq_init(void)
1237{
1238        /*
1239         * Used to destroy pidlists and separate to serve as flush domain.
1240         * Cap @max_active to 1 too.
1241         */
1242        cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
1243                                                    0, 1);
1244        BUG_ON(!cgroup_pidlist_destroy_wq);
1245        return 0;
1246}
1247core_initcall(cgroup1_wq_init);
1248
1249static int __init cgroup_no_v1(char *str)
1250{
1251        struct cgroup_subsys *ss;
1252        char *token;
1253        int i;
1254
1255        while ((token = strsep(&str, ",")) != NULL) {
1256                if (!*token)
1257                        continue;
1258
1259                if (!strcmp(token, "all")) {
1260                        cgroup_no_v1_mask = U16_MAX;
1261                        continue;
1262                }
1263
1264                if (!strcmp(token, "named")) {
1265                        cgroup_no_v1_named = true;
1266                        continue;
1267                }
1268
1269                for_each_subsys(ss, i) {
1270                        if (strcmp(token, ss->name) &&
1271                            strcmp(token, ss->legacy_name))
1272                                continue;
1273
1274                        cgroup_no_v1_mask |= 1 << i;
1275                }
1276        }
1277        return 1;
1278}
1279__setup("cgroup_no_v1=", cgroup_no_v1);
1280