linux/kernel/cgroup/cgroup.c
<<
>>
Prefs
   1/*
   2 *  Generic process-grouping system.
   3 *
   4 *  Based originally on the cpuset system, extracted by Paul Menage
   5 *  Copyright (C) 2006 Google, Inc
   6 *
   7 *  Notifications support
   8 *  Copyright (C) 2009 Nokia Corporation
   9 *  Author: Kirill A. Shutemov
  10 *
  11 *  Copyright notices from the original cpuset code:
  12 *  --------------------------------------------------
  13 *  Copyright (C) 2003 BULL SA.
  14 *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
  15 *
  16 *  Portions derived from Patrick Mochel's sysfs code.
  17 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
  18 *
  19 *  2003-10-10 Written by Simon Derr.
  20 *  2003-10-22 Updates by Stephen Hemminger.
  21 *  2004 May-July Rework by Paul Jackson.
  22 *  ---------------------------------------------------
  23 *
  24 *  This file is subject to the terms and conditions of the GNU General Public
  25 *  License.  See the file COPYING in the main directory of the Linux
  26 *  distribution for more details.
  27 */
  28
  29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  30
  31#include "cgroup-internal.h"
  32
  33#include <linux/cred.h>
  34#include <linux/errno.h>
  35#include <linux/init_task.h>
  36#include <linux/kernel.h>
  37#include <linux/magic.h>
  38#include <linux/mutex.h>
  39#include <linux/mount.h>
  40#include <linux/pagemap.h>
  41#include <linux/proc_fs.h>
  42#include <linux/rcupdate.h>
  43#include <linux/sched.h>
  44#include <linux/sched/task.h>
  45#include <linux/slab.h>
  46#include <linux/spinlock.h>
  47#include <linux/percpu-rwsem.h>
  48#include <linux/string.h>
  49#include <linux/hashtable.h>
  50#include <linux/idr.h>
  51#include <linux/kthread.h>
  52#include <linux/atomic.h>
  53#include <linux/cpuset.h>
  54#include <linux/proc_ns.h>
  55#include <linux/nsproxy.h>
  56#include <linux/file.h>
  57#include <linux/fs_parser.h>
  58#include <linux/sched/cputime.h>
  59#include <linux/psi.h>
  60#include <net/sock.h>
  61
  62#define CREATE_TRACE_POINTS
  63#include <trace/events/cgroup.h>
  64
  65#define CGROUP_FILE_NAME_MAX            (MAX_CGROUP_TYPE_NAMELEN +      \
  66                                         MAX_CFTYPE_NAME + 2)
  67/* let's not notify more than 100 times per second */
  68#define CGROUP_FILE_NOTIFY_MIN_INTV     DIV_ROUND_UP(HZ, 100)
  69
  70/*
  71 * cgroup_mutex is the master lock.  Any modification to cgroup or its
  72 * hierarchy must be performed while holding it.
  73 *
  74 * css_set_lock protects task->cgroups pointer, the list of css_set
  75 * objects, and the chain of tasks off each css_set.
  76 *
  77 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
  78 * cgroup.h can use them for lockdep annotations.
  79 */
  80DEFINE_MUTEX(cgroup_mutex);
  81DEFINE_SPINLOCK(css_set_lock);
  82
  83#ifdef CONFIG_PROVE_RCU
  84EXPORT_SYMBOL_GPL(cgroup_mutex);
  85EXPORT_SYMBOL_GPL(css_set_lock);
  86#endif
  87
  88DEFINE_SPINLOCK(trace_cgroup_path_lock);
  89char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
  90bool cgroup_debug __read_mostly;
  91
  92/*
  93 * Protects cgroup_idr and css_idr so that IDs can be released without
  94 * grabbing cgroup_mutex.
  95 */
  96static DEFINE_SPINLOCK(cgroup_idr_lock);
  97
  98/*
  99 * Protects cgroup_file->kn for !self csses.  It synchronizes notifications
 100 * against file removal/re-creation across css hiding.
 101 */
 102static DEFINE_SPINLOCK(cgroup_file_kn_lock);
 103
 104DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem);
 105
 106#define cgroup_assert_mutex_or_rcu_locked()                             \
 107        RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&                       \
 108                           !lockdep_is_held(&cgroup_mutex),             \
 109                           "cgroup_mutex or RCU read lock required");
 110
 111/*
 112 * cgroup destruction makes heavy use of work items and there can be a lot
 113 * of concurrent destructions.  Use a separate workqueue so that cgroup
 114 * destruction work items don't end up filling up max_active of system_wq
 115 * which may lead to deadlock.
 116 */
 117static struct workqueue_struct *cgroup_destroy_wq;
 118
 119/* generate an array of cgroup subsystem pointers */
 120#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
 121struct cgroup_subsys *cgroup_subsys[] = {
 122#include <linux/cgroup_subsys.h>
 123};
 124#undef SUBSYS
 125
 126/* array of cgroup subsystem names */
 127#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
 128static const char *cgroup_subsys_name[] = {
 129#include <linux/cgroup_subsys.h>
 130};
 131#undef SUBSYS
 132
 133/* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
 134#define SUBSYS(_x)                                                              \
 135        DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key);                 \
 136        DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key);                  \
 137        EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key);                      \
 138        EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
 139#include <linux/cgroup_subsys.h>
 140#undef SUBSYS
 141
 142#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
 143static struct static_key_true *cgroup_subsys_enabled_key[] = {
 144#include <linux/cgroup_subsys.h>
 145};
 146#undef SUBSYS
 147
 148#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
 149static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
 150#include <linux/cgroup_subsys.h>
 151};
 152#undef SUBSYS
 153
 154static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
 155
 156/*
 157 * The default hierarchy, reserved for the subsystems that are otherwise
 158 * unattached - it never has more than a single cgroup, and all tasks are
 159 * part of that cgroup.
 160 */
 161struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
 162EXPORT_SYMBOL_GPL(cgrp_dfl_root);
 163
 164/*
 165 * The default hierarchy always exists but is hidden until mounted for the
 166 * first time.  This is for backward compatibility.
 167 */
 168static bool cgrp_dfl_visible;
 169
 170/* some controllers are not supported in the default hierarchy */
 171static u16 cgrp_dfl_inhibit_ss_mask;
 172
 173/* some controllers are implicitly enabled on the default hierarchy */
 174static u16 cgrp_dfl_implicit_ss_mask;
 175
 176/* some controllers can be threaded on the default hierarchy */
 177static u16 cgrp_dfl_threaded_ss_mask;
 178
 179/* The list of hierarchy roots */
 180LIST_HEAD(cgroup_roots);
 181static int cgroup_root_count;
 182
 183/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
 184static DEFINE_IDR(cgroup_hierarchy_idr);
 185
 186/*
 187 * Assign a monotonically increasing serial number to csses.  It guarantees
 188 * cgroups with bigger numbers are newer than those with smaller numbers.
 189 * Also, as csses are always appended to the parent's ->children list, it
 190 * guarantees that sibling csses are always sorted in the ascending serial
 191 * number order on the list.  Protected by cgroup_mutex.
 192 */
 193static u64 css_serial_nr_next = 1;
 194
 195/*
 196 * These bitmasks identify subsystems with specific features to avoid
 197 * having to do iterative checks repeatedly.
 198 */
 199static u16 have_fork_callback __read_mostly;
 200static u16 have_exit_callback __read_mostly;
 201static u16 have_release_callback __read_mostly;
 202static u16 have_canfork_callback __read_mostly;
 203
 204/* cgroup namespace for init task */
 205struct cgroup_namespace init_cgroup_ns = {
 206        .count          = REFCOUNT_INIT(2),
 207        .user_ns        = &init_user_ns,
 208        .ns.ops         = &cgroupns_operations,
 209        .ns.inum        = PROC_CGROUP_INIT_INO,
 210        .root_cset      = &init_css_set,
 211};
 212
 213static struct file_system_type cgroup2_fs_type;
 214static struct cftype cgroup_base_files[];
 215
 216static int cgroup_apply_control(struct cgroup *cgrp);
 217static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
 218static void css_task_iter_skip(struct css_task_iter *it,
 219                               struct task_struct *task);
 220static int cgroup_destroy_locked(struct cgroup *cgrp);
 221static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
 222                                              struct cgroup_subsys *ss);
 223static void css_release(struct percpu_ref *ref);
 224static void kill_css(struct cgroup_subsys_state *css);
 225static int cgroup_addrm_files(struct cgroup_subsys_state *css,
 226                              struct cgroup *cgrp, struct cftype cfts[],
 227                              bool is_add);
 228
 229/**
 230 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
 231 * @ssid: subsys ID of interest
 232 *
 233 * cgroup_subsys_enabled() can only be used with literal subsys names which
 234 * is fine for individual subsystems but unsuitable for cgroup core.  This
 235 * is slower static_key_enabled() based test indexed by @ssid.
 236 */
 237bool cgroup_ssid_enabled(int ssid)
 238{
 239        if (CGROUP_SUBSYS_COUNT == 0)
 240                return false;
 241
 242        return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
 243}
 244
 245/**
 246 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
 247 * @cgrp: the cgroup of interest
 248 *
 249 * The default hierarchy is the v2 interface of cgroup and this function
 250 * can be used to test whether a cgroup is on the default hierarchy for
 251 * cases where a subsystem should behave differnetly depending on the
 252 * interface version.
 253 *
 254 * The set of behaviors which change on the default hierarchy are still
 255 * being determined and the mount option is prefixed with __DEVEL__.
 256 *
 257 * List of changed behaviors:
 258 *
 259 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
 260 *   and "name" are disallowed.
 261 *
 262 * - When mounting an existing superblock, mount options should match.
 263 *
 264 * - Remount is disallowed.
 265 *
 266 * - rename(2) is disallowed.
 267 *
 268 * - "tasks" is removed.  Everything should be at process granularity.  Use
 269 *   "cgroup.procs" instead.
 270 *
 271 * - "cgroup.procs" is not sorted.  pids will be unique unless they got
 272 *   recycled inbetween reads.
 273 *
 274 * - "release_agent" and "notify_on_release" are removed.  Replacement
 275 *   notification mechanism will be implemented.
 276 *
 277 * - "cgroup.clone_children" is removed.
 278 *
 279 * - "cgroup.subtree_populated" is available.  Its value is 0 if the cgroup
 280 *   and its descendants contain no task; otherwise, 1.  The file also
 281 *   generates kernfs notification which can be monitored through poll and
 282 *   [di]notify when the value of the file changes.
 283 *
 284 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
 285 *   take masks of ancestors with non-empty cpus/mems, instead of being
 286 *   moved to an ancestor.
 287 *
 288 * - cpuset: a task can be moved into an empty cpuset, and again it takes
 289 *   masks of ancestors.
 290 *
 291 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
 292 *   is not created.
 293 *
 294 * - blkcg: blk-throttle becomes properly hierarchical.
 295 *
 296 * - debug: disallowed on the default hierarchy.
 297 */
 298bool cgroup_on_dfl(const struct cgroup *cgrp)
 299{
 300        return cgrp->root == &cgrp_dfl_root;
 301}
 302
 303/* IDR wrappers which synchronize using cgroup_idr_lock */
 304static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
 305                            gfp_t gfp_mask)
 306{
 307        int ret;
 308
 309        idr_preload(gfp_mask);
 310        spin_lock_bh(&cgroup_idr_lock);
 311        ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
 312        spin_unlock_bh(&cgroup_idr_lock);
 313        idr_preload_end();
 314        return ret;
 315}
 316
 317static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
 318{
 319        void *ret;
 320
 321        spin_lock_bh(&cgroup_idr_lock);
 322        ret = idr_replace(idr, ptr, id);
 323        spin_unlock_bh(&cgroup_idr_lock);
 324        return ret;
 325}
 326
 327static void cgroup_idr_remove(struct idr *idr, int id)
 328{
 329        spin_lock_bh(&cgroup_idr_lock);
 330        idr_remove(idr, id);
 331        spin_unlock_bh(&cgroup_idr_lock);
 332}
 333
 334static bool cgroup_has_tasks(struct cgroup *cgrp)
 335{
 336        return cgrp->nr_populated_csets;
 337}
 338
 339bool cgroup_is_threaded(struct cgroup *cgrp)
 340{
 341        return cgrp->dom_cgrp != cgrp;
 342}
 343
 344/* can @cgrp host both domain and threaded children? */
 345static bool cgroup_is_mixable(struct cgroup *cgrp)
 346{
 347        /*
 348         * Root isn't under domain level resource control exempting it from
 349         * the no-internal-process constraint, so it can serve as a thread
 350         * root and a parent of resource domains at the same time.
 351         */
 352        return !cgroup_parent(cgrp);
 353}
 354
 355/* can @cgrp become a thread root? should always be true for a thread root */
 356static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
 357{
 358        /* mixables don't care */
 359        if (cgroup_is_mixable(cgrp))
 360                return true;
 361
 362        /* domain roots can't be nested under threaded */
 363        if (cgroup_is_threaded(cgrp))
 364                return false;
 365
 366        /* can only have either domain or threaded children */
 367        if (cgrp->nr_populated_domain_children)
 368                return false;
 369
 370        /* and no domain controllers can be enabled */
 371        if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
 372                return false;
 373
 374        return true;
 375}
 376
 377/* is @cgrp root of a threaded subtree? */
 378bool cgroup_is_thread_root(struct cgroup *cgrp)
 379{
 380        /* thread root should be a domain */
 381        if (cgroup_is_threaded(cgrp))
 382                return false;
 383
 384        /* a domain w/ threaded children is a thread root */
 385        if (cgrp->nr_threaded_children)
 386                return true;
 387
 388        /*
 389         * A domain which has tasks and explicit threaded controllers
 390         * enabled is a thread root.
 391         */
 392        if (cgroup_has_tasks(cgrp) &&
 393            (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
 394                return true;
 395
 396        return false;
 397}
 398
 399/* a domain which isn't connected to the root w/o brekage can't be used */
 400static bool cgroup_is_valid_domain(struct cgroup *cgrp)
 401{
 402        /* the cgroup itself can be a thread root */
 403        if (cgroup_is_threaded(cgrp))
 404                return false;
 405
 406        /* but the ancestors can't be unless mixable */
 407        while ((cgrp = cgroup_parent(cgrp))) {
 408                if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
 409                        return false;
 410                if (cgroup_is_threaded(cgrp))
 411                        return false;
 412        }
 413
 414        return true;
 415}
 416
 417/* subsystems visibly enabled on a cgroup */
 418static u16 cgroup_control(struct cgroup *cgrp)
 419{
 420        struct cgroup *parent = cgroup_parent(cgrp);
 421        u16 root_ss_mask = cgrp->root->subsys_mask;
 422
 423        if (parent) {
 424                u16 ss_mask = parent->subtree_control;
 425
 426                /* threaded cgroups can only have threaded controllers */
 427                if (cgroup_is_threaded(cgrp))
 428                        ss_mask &= cgrp_dfl_threaded_ss_mask;
 429                return ss_mask;
 430        }
 431
 432        if (cgroup_on_dfl(cgrp))
 433                root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
 434                                  cgrp_dfl_implicit_ss_mask);
 435        return root_ss_mask;
 436}
 437
 438/* subsystems enabled on a cgroup */
 439static u16 cgroup_ss_mask(struct cgroup *cgrp)
 440{
 441        struct cgroup *parent = cgroup_parent(cgrp);
 442
 443        if (parent) {
 444                u16 ss_mask = parent->subtree_ss_mask;
 445
 446                /* threaded cgroups can only have threaded controllers */
 447                if (cgroup_is_threaded(cgrp))
 448                        ss_mask &= cgrp_dfl_threaded_ss_mask;
 449                return ss_mask;
 450        }
 451
 452        return cgrp->root->subsys_mask;
 453}
 454
 455/**
 456 * cgroup_css - obtain a cgroup's css for the specified subsystem
 457 * @cgrp: the cgroup of interest
 458 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
 459 *
 460 * Return @cgrp's css (cgroup_subsys_state) associated with @ss.  This
 461 * function must be called either under cgroup_mutex or rcu_read_lock() and
 462 * the caller is responsible for pinning the returned css if it wants to
 463 * keep accessing it outside the said locks.  This function may return
 464 * %NULL if @cgrp doesn't have @subsys_id enabled.
 465 */
 466static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
 467                                              struct cgroup_subsys *ss)
 468{
 469        if (ss)
 470                return rcu_dereference_check(cgrp->subsys[ss->id],
 471                                        lockdep_is_held(&cgroup_mutex));
 472        else
 473                return &cgrp->self;
 474}
 475
 476/**
 477 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
 478 * @cgrp: the cgroup of interest
 479 * @ss: the subsystem of interest
 480 *
 481 * Find and get @cgrp's css assocaited with @ss.  If the css doesn't exist
 482 * or is offline, %NULL is returned.
 483 */
 484static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
 485                                                     struct cgroup_subsys *ss)
 486{
 487        struct cgroup_subsys_state *css;
 488
 489        rcu_read_lock();
 490        css = cgroup_css(cgrp, ss);
 491        if (css && !css_tryget_online(css))
 492                css = NULL;
 493        rcu_read_unlock();
 494
 495        return css;
 496}
 497
 498/**
 499 * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
 500 * @cgrp: the cgroup of interest
 501 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
 502 *
 503 * Similar to cgroup_css() but returns the effective css, which is defined
 504 * as the matching css of the nearest ancestor including self which has @ss
 505 * enabled.  If @ss is associated with the hierarchy @cgrp is on, this
 506 * function is guaranteed to return non-NULL css.
 507 */
 508static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp,
 509                                                        struct cgroup_subsys *ss)
 510{
 511        lockdep_assert_held(&cgroup_mutex);
 512
 513        if (!ss)
 514                return &cgrp->self;
 515
 516        /*
 517         * This function is used while updating css associations and thus
 518         * can't test the csses directly.  Test ss_mask.
 519         */
 520        while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
 521                cgrp = cgroup_parent(cgrp);
 522                if (!cgrp)
 523                        return NULL;
 524        }
 525
 526        return cgroup_css(cgrp, ss);
 527}
 528
 529/**
 530 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
 531 * @cgrp: the cgroup of interest
 532 * @ss: the subsystem of interest
 533 *
 534 * Find and get the effective css of @cgrp for @ss.  The effective css is
 535 * defined as the matching css of the nearest ancestor including self which
 536 * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
 537 * the root css is returned, so this function always returns a valid css.
 538 *
 539 * The returned css is not guaranteed to be online, and therefore it is the
 540 * callers responsiblity to tryget a reference for it.
 541 */
 542struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
 543                                         struct cgroup_subsys *ss)
 544{
 545        struct cgroup_subsys_state *css;
 546
 547        do {
 548                css = cgroup_css(cgrp, ss);
 549
 550                if (css)
 551                        return css;
 552                cgrp = cgroup_parent(cgrp);
 553        } while (cgrp);
 554
 555        return init_css_set.subsys[ss->id];
 556}
 557
 558/**
 559 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
 560 * @cgrp: the cgroup of interest
 561 * @ss: the subsystem of interest
 562 *
 563 * Find and get the effective css of @cgrp for @ss.  The effective css is
 564 * defined as the matching css of the nearest ancestor including self which
 565 * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
 566 * the root css is returned, so this function always returns a valid css.
 567 * The returned css must be put using css_put().
 568 */
 569struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
 570                                             struct cgroup_subsys *ss)
 571{
 572        struct cgroup_subsys_state *css;
 573
 574        rcu_read_lock();
 575
 576        do {
 577                css = cgroup_css(cgrp, ss);
 578
 579                if (css && css_tryget_online(css))
 580                        goto out_unlock;
 581                cgrp = cgroup_parent(cgrp);
 582        } while (cgrp);
 583
 584        css = init_css_set.subsys[ss->id];
 585        css_get(css);
 586out_unlock:
 587        rcu_read_unlock();
 588        return css;
 589}
 590
 591static void cgroup_get_live(struct cgroup *cgrp)
 592{
 593        WARN_ON_ONCE(cgroup_is_dead(cgrp));
 594        css_get(&cgrp->self);
 595}
 596
 597/**
 598 * __cgroup_task_count - count the number of tasks in a cgroup. The caller
 599 * is responsible for taking the css_set_lock.
 600 * @cgrp: the cgroup in question
 601 */
 602int __cgroup_task_count(const struct cgroup *cgrp)
 603{
 604        int count = 0;
 605        struct cgrp_cset_link *link;
 606
 607        lockdep_assert_held(&css_set_lock);
 608
 609        list_for_each_entry(link, &cgrp->cset_links, cset_link)
 610                count += link->cset->nr_tasks;
 611
 612        return count;
 613}
 614
 615/**
 616 * cgroup_task_count - count the number of tasks in a cgroup.
 617 * @cgrp: the cgroup in question
 618 */
 619int cgroup_task_count(const struct cgroup *cgrp)
 620{
 621        int count;
 622
 623        spin_lock_irq(&css_set_lock);
 624        count = __cgroup_task_count(cgrp);
 625        spin_unlock_irq(&css_set_lock);
 626
 627        return count;
 628}
 629
 630struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
 631{
 632        struct cgroup *cgrp = of->kn->parent->priv;
 633        struct cftype *cft = of_cft(of);
 634
 635        /*
 636         * This is open and unprotected implementation of cgroup_css().
 637         * seq_css() is only called from a kernfs file operation which has
 638         * an active reference on the file.  Because all the subsystem
 639         * files are drained before a css is disassociated with a cgroup,
 640         * the matching css from the cgroup's subsys table is guaranteed to
 641         * be and stay valid until the enclosing operation is complete.
 642         */
 643        if (cft->ss)
 644                return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
 645        else
 646                return &cgrp->self;
 647}
 648EXPORT_SYMBOL_GPL(of_css);
 649
 650/**
 651 * for_each_css - iterate all css's of a cgroup
 652 * @css: the iteration cursor
 653 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
 654 * @cgrp: the target cgroup to iterate css's of
 655 *
 656 * Should be called under cgroup_[tree_]mutex.
 657 */
 658#define for_each_css(css, ssid, cgrp)                                   \
 659        for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)        \
 660                if (!((css) = rcu_dereference_check(                    \
 661                                (cgrp)->subsys[(ssid)],                 \
 662                                lockdep_is_held(&cgroup_mutex)))) { }   \
 663                else
 664
 665/**
 666 * for_each_e_css - iterate all effective css's of a cgroup
 667 * @css: the iteration cursor
 668 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
 669 * @cgrp: the target cgroup to iterate css's of
 670 *
 671 * Should be called under cgroup_[tree_]mutex.
 672 */
 673#define for_each_e_css(css, ssid, cgrp)                                     \
 674        for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)            \
 675                if (!((css) = cgroup_e_css_by_mask(cgrp,                    \
 676                                                   cgroup_subsys[(ssid)]))) \
 677                        ;                                                   \
 678                else
 679
 680/**
 681 * do_each_subsys_mask - filter for_each_subsys with a bitmask
 682 * @ss: the iteration cursor
 683 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
 684 * @ss_mask: the bitmask
 685 *
 686 * The block will only run for cases where the ssid-th bit (1 << ssid) of
 687 * @ss_mask is set.
 688 */
 689#define do_each_subsys_mask(ss, ssid, ss_mask) do {                     \
 690        unsigned long __ss_mask = (ss_mask);                            \
 691        if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \
 692                (ssid) = 0;                                             \
 693                break;                                                  \
 694        }                                                               \
 695        for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) {       \
 696                (ss) = cgroup_subsys[ssid];                             \
 697                {
 698
 699#define while_each_subsys_mask()                                        \
 700                }                                                       \
 701        }                                                               \
 702} while (false)
 703
 704/* iterate over child cgrps, lock should be held throughout iteration */
 705#define cgroup_for_each_live_child(child, cgrp)                         \
 706        list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
 707                if (({ lockdep_assert_held(&cgroup_mutex);              \
 708                       cgroup_is_dead(child); }))                       \
 709                        ;                                               \
 710                else
 711
 712/* walk live descendants in preorder */
 713#define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)          \
 714        css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL))  \
 715                if (({ lockdep_assert_held(&cgroup_mutex);              \
 716                       (dsct) = (d_css)->cgroup;                        \
 717                       cgroup_is_dead(dsct); }))                        \
 718                        ;                                               \
 719                else
 720
 721/* walk live descendants in postorder */
 722#define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp)         \
 723        css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
 724                if (({ lockdep_assert_held(&cgroup_mutex);              \
 725                       (dsct) = (d_css)->cgroup;                        \
 726                       cgroup_is_dead(dsct); }))                        \
 727                        ;                                               \
 728                else
 729
 730/*
 731 * The default css_set - used by init and its children prior to any
 732 * hierarchies being mounted. It contains a pointer to the root state
 733 * for each subsystem. Also used to anchor the list of css_sets. Not
 734 * reference-counted, to improve performance when child cgroups
 735 * haven't been created.
 736 */
 737struct css_set init_css_set = {
 738        .refcount               = REFCOUNT_INIT(1),
 739        .dom_cset               = &init_css_set,
 740        .tasks                  = LIST_HEAD_INIT(init_css_set.tasks),
 741        .mg_tasks               = LIST_HEAD_INIT(init_css_set.mg_tasks),
 742        .dying_tasks            = LIST_HEAD_INIT(init_css_set.dying_tasks),
 743        .task_iters             = LIST_HEAD_INIT(init_css_set.task_iters),
 744        .threaded_csets         = LIST_HEAD_INIT(init_css_set.threaded_csets),
 745        .cgrp_links             = LIST_HEAD_INIT(init_css_set.cgrp_links),
 746        .mg_preload_node        = LIST_HEAD_INIT(init_css_set.mg_preload_node),
 747        .mg_node                = LIST_HEAD_INIT(init_css_set.mg_node),
 748
 749        /*
 750         * The following field is re-initialized when this cset gets linked
 751         * in cgroup_init().  However, let's initialize the field
 752         * statically too so that the default cgroup can be accessed safely
 753         * early during boot.
 754         */
 755        .dfl_cgrp               = &cgrp_dfl_root.cgrp,
 756};
 757
 758static int css_set_count        = 1;    /* 1 for init_css_set */
 759
 760static bool css_set_threaded(struct css_set *cset)
 761{
 762        return cset->dom_cset != cset;
 763}
 764
 765/**
 766 * css_set_populated - does a css_set contain any tasks?
 767 * @cset: target css_set
 768 *
 769 * css_set_populated() should be the same as !!cset->nr_tasks at steady
 770 * state. However, css_set_populated() can be called while a task is being
 771 * added to or removed from the linked list before the nr_tasks is
 772 * properly updated. Hence, we can't just look at ->nr_tasks here.
 773 */
 774static bool css_set_populated(struct css_set *cset)
 775{
 776        lockdep_assert_held(&css_set_lock);
 777
 778        return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
 779}
 780
 781/**
 782 * cgroup_update_populated - update the populated count of a cgroup
 783 * @cgrp: the target cgroup
 784 * @populated: inc or dec populated count
 785 *
 786 * One of the css_sets associated with @cgrp is either getting its first
 787 * task or losing the last.  Update @cgrp->nr_populated_* accordingly.  The
 788 * count is propagated towards root so that a given cgroup's
 789 * nr_populated_children is zero iff none of its descendants contain any
 790 * tasks.
 791 *
 792 * @cgrp's interface file "cgroup.populated" is zero if both
 793 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
 794 * 1 otherwise.  When the sum changes from or to zero, userland is notified
 795 * that the content of the interface file has changed.  This can be used to
 796 * detect when @cgrp and its descendants become populated or empty.
 797 */
 798static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
 799{
 800        struct cgroup *child = NULL;
 801        int adj = populated ? 1 : -1;
 802
 803        lockdep_assert_held(&css_set_lock);
 804
 805        do {
 806                bool was_populated = cgroup_is_populated(cgrp);
 807
 808                if (!child) {
 809                        cgrp->nr_populated_csets += adj;
 810                } else {
 811                        if (cgroup_is_threaded(child))
 812                                cgrp->nr_populated_threaded_children += adj;
 813                        else
 814                                cgrp->nr_populated_domain_children += adj;
 815                }
 816
 817                if (was_populated == cgroup_is_populated(cgrp))
 818                        break;
 819
 820                cgroup1_check_for_release(cgrp);
 821                TRACE_CGROUP_PATH(notify_populated, cgrp,
 822                                  cgroup_is_populated(cgrp));
 823                cgroup_file_notify(&cgrp->events_file);
 824
 825                child = cgrp;
 826                cgrp = cgroup_parent(cgrp);
 827        } while (cgrp);
 828}
 829
 830/**
 831 * css_set_update_populated - update populated state of a css_set
 832 * @cset: target css_set
 833 * @populated: whether @cset is populated or depopulated
 834 *
 835 * @cset is either getting the first task or losing the last.  Update the
 836 * populated counters of all associated cgroups accordingly.
 837 */
 838static void css_set_update_populated(struct css_set *cset, bool populated)
 839{
 840        struct cgrp_cset_link *link;
 841
 842        lockdep_assert_held(&css_set_lock);
 843
 844        list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
 845                cgroup_update_populated(link->cgrp, populated);
 846}
 847
 848/*
 849 * @task is leaving, advance task iterators which are pointing to it so
 850 * that they can resume at the next position.  Advancing an iterator might
 851 * remove it from the list, use safe walk.  See css_task_iter_skip() for
 852 * details.
 853 */
 854static void css_set_skip_task_iters(struct css_set *cset,
 855                                    struct task_struct *task)
 856{
 857        struct css_task_iter *it, *pos;
 858
 859        list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node)
 860                css_task_iter_skip(it, task);
 861}
 862
 863/**
 864 * css_set_move_task - move a task from one css_set to another
 865 * @task: task being moved
 866 * @from_cset: css_set @task currently belongs to (may be NULL)
 867 * @to_cset: new css_set @task is being moved to (may be NULL)
 868 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
 869 *
 870 * Move @task from @from_cset to @to_cset.  If @task didn't belong to any
 871 * css_set, @from_cset can be NULL.  If @task is being disassociated
 872 * instead of moved, @to_cset can be NULL.
 873 *
 874 * This function automatically handles populated counter updates and
 875 * css_task_iter adjustments but the caller is responsible for managing
 876 * @from_cset and @to_cset's reference counts.
 877 */
 878static void css_set_move_task(struct task_struct *task,
 879                              struct css_set *from_cset, struct css_set *to_cset,
 880                              bool use_mg_tasks)
 881{
 882        lockdep_assert_held(&css_set_lock);
 883
 884        if (to_cset && !css_set_populated(to_cset))
 885                css_set_update_populated(to_cset, true);
 886
 887        if (from_cset) {
 888                WARN_ON_ONCE(list_empty(&task->cg_list));
 889
 890                css_set_skip_task_iters(from_cset, task);
 891                list_del_init(&task->cg_list);
 892                if (!css_set_populated(from_cset))
 893                        css_set_update_populated(from_cset, false);
 894        } else {
 895                WARN_ON_ONCE(!list_empty(&task->cg_list));
 896        }
 897
 898        if (to_cset) {
 899                /*
 900                 * We are synchronized through cgroup_threadgroup_rwsem
 901                 * against PF_EXITING setting such that we can't race
 902                 * against cgroup_exit()/cgroup_free() dropping the css_set.
 903                 */
 904                WARN_ON_ONCE(task->flags & PF_EXITING);
 905
 906                cgroup_move_task(task, to_cset);
 907                list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
 908                                                             &to_cset->tasks);
 909        }
 910}
 911
 912/*
 913 * hash table for cgroup groups. This improves the performance to find
 914 * an existing css_set. This hash doesn't (currently) take into
 915 * account cgroups in empty hierarchies.
 916 */
 917#define CSS_SET_HASH_BITS       7
 918static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
 919
 920static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
 921{
 922        unsigned long key = 0UL;
 923        struct cgroup_subsys *ss;
 924        int i;
 925
 926        for_each_subsys(ss, i)
 927                key += (unsigned long)css[i];
 928        key = (key >> 16) ^ key;
 929
 930        return key;
 931}
 932
 933void put_css_set_locked(struct css_set *cset)
 934{
 935        struct cgrp_cset_link *link, *tmp_link;
 936        struct cgroup_subsys *ss;
 937        int ssid;
 938
 939        lockdep_assert_held(&css_set_lock);
 940
 941        if (!refcount_dec_and_test(&cset->refcount))
 942                return;
 943
 944        WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
 945
 946        /* This css_set is dead. unlink it and release cgroup and css refs */
 947        for_each_subsys(ss, ssid) {
 948                list_del(&cset->e_cset_node[ssid]);
 949                css_put(cset->subsys[ssid]);
 950        }
 951        hash_del(&cset->hlist);
 952        css_set_count--;
 953
 954        list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
 955                list_del(&link->cset_link);
 956                list_del(&link->cgrp_link);
 957                if (cgroup_parent(link->cgrp))
 958                        cgroup_put(link->cgrp);
 959                kfree(link);
 960        }
 961
 962        if (css_set_threaded(cset)) {
 963                list_del(&cset->threaded_csets_node);
 964                put_css_set_locked(cset->dom_cset);
 965        }
 966
 967        kfree_rcu(cset, rcu_head);
 968}
 969
 970/**
 971 * compare_css_sets - helper function for find_existing_css_set().
 972 * @cset: candidate css_set being tested
 973 * @old_cset: existing css_set for a task
 974 * @new_cgrp: cgroup that's being entered by the task
 975 * @template: desired set of css pointers in css_set (pre-calculated)
 976 *
 977 * Returns true if "cset" matches "old_cset" except for the hierarchy
 978 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
 979 */
 980static bool compare_css_sets(struct css_set *cset,
 981                             struct css_set *old_cset,
 982                             struct cgroup *new_cgrp,
 983                             struct cgroup_subsys_state *template[])
 984{
 985        struct cgroup *new_dfl_cgrp;
 986        struct list_head *l1, *l2;
 987
 988        /*
 989         * On the default hierarchy, there can be csets which are
 990         * associated with the same set of cgroups but different csses.
 991         * Let's first ensure that csses match.
 992         */
 993        if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
 994                return false;
 995
 996
 997        /* @cset's domain should match the default cgroup's */
 998        if (cgroup_on_dfl(new_cgrp))
 999                new_dfl_cgrp = new_cgrp;
1000        else
1001                new_dfl_cgrp = old_cset->dfl_cgrp;
1002
1003        if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
1004                return false;
1005
1006        /*
1007         * Compare cgroup pointers in order to distinguish between
1008         * different cgroups in hierarchies.  As different cgroups may
1009         * share the same effective css, this comparison is always
1010         * necessary.
1011         */
1012        l1 = &cset->cgrp_links;
1013        l2 = &old_cset->cgrp_links;
1014        while (1) {
1015                struct cgrp_cset_link *link1, *link2;
1016                struct cgroup *cgrp1, *cgrp2;
1017
1018                l1 = l1->next;
1019                l2 = l2->next;
1020                /* See if we reached the end - both lists are equal length. */
1021                if (l1 == &cset->cgrp_links) {
1022                        BUG_ON(l2 != &old_cset->cgrp_links);
1023                        break;
1024                } else {
1025                        BUG_ON(l2 == &old_cset->cgrp_links);
1026                }
1027                /* Locate the cgroups associated with these links. */
1028                link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
1029                link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
1030                cgrp1 = link1->cgrp;
1031                cgrp2 = link2->cgrp;
1032                /* Hierarchies should be linked in the same order. */
1033                BUG_ON(cgrp1->root != cgrp2->root);
1034
1035                /*
1036                 * If this hierarchy is the hierarchy of the cgroup
1037                 * that's changing, then we need to check that this
1038                 * css_set points to the new cgroup; if it's any other
1039                 * hierarchy, then this css_set should point to the
1040                 * same cgroup as the old css_set.
1041                 */
1042                if (cgrp1->root == new_cgrp->root) {
1043                        if (cgrp1 != new_cgrp)
1044                                return false;
1045                } else {
1046                        if (cgrp1 != cgrp2)
1047                                return false;
1048                }
1049        }
1050        return true;
1051}
1052
1053/**
1054 * find_existing_css_set - init css array and find the matching css_set
1055 * @old_cset: the css_set that we're using before the cgroup transition
1056 * @cgrp: the cgroup that we're moving into
1057 * @template: out param for the new set of csses, should be clear on entry
1058 */
1059static struct css_set *find_existing_css_set(struct css_set *old_cset,
1060                                        struct cgroup *cgrp,
1061                                        struct cgroup_subsys_state *template[])
1062{
1063        struct cgroup_root *root = cgrp->root;
1064        struct cgroup_subsys *ss;
1065        struct css_set *cset;
1066        unsigned long key;
1067        int i;
1068
1069        /*
1070         * Build the set of subsystem state objects that we want to see in the
1071         * new css_set. while subsystems can change globally, the entries here
1072         * won't change, so no need for locking.
1073         */
1074        for_each_subsys(ss, i) {
1075                if (root->subsys_mask & (1UL << i)) {
1076                        /*
1077                         * @ss is in this hierarchy, so we want the
1078                         * effective css from @cgrp.
1079                         */
1080                        template[i] = cgroup_e_css_by_mask(cgrp, ss);
1081                } else {
1082                        /*
1083                         * @ss is not in this hierarchy, so we don't want
1084                         * to change the css.
1085                         */
1086                        template[i] = old_cset->subsys[i];
1087                }
1088        }
1089
1090        key = css_set_hash(template);
1091        hash_for_each_possible(css_set_table, cset, hlist, key) {
1092                if (!compare_css_sets(cset, old_cset, cgrp, template))
1093                        continue;
1094
1095                /* This css_set matches what we need */
1096                return cset;
1097        }
1098
1099        /* No existing cgroup group matched */
1100        return NULL;
1101}
1102
1103static void free_cgrp_cset_links(struct list_head *links_to_free)
1104{
1105        struct cgrp_cset_link *link, *tmp_link;
1106
1107        list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1108                list_del(&link->cset_link);
1109                kfree(link);
1110        }
1111}
1112
1113/**
1114 * allocate_cgrp_cset_links - allocate cgrp_cset_links
1115 * @count: the number of links to allocate
1116 * @tmp_links: list_head the allocated links are put on
1117 *
1118 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1119 * through ->cset_link.  Returns 0 on success or -errno.
1120 */
1121static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1122{
1123        struct cgrp_cset_link *link;
1124        int i;
1125
1126        INIT_LIST_HEAD(tmp_links);
1127
1128        for (i = 0; i < count; i++) {
1129                link = kzalloc(sizeof(*link), GFP_KERNEL);
1130                if (!link) {
1131                        free_cgrp_cset_links(tmp_links);
1132                        return -ENOMEM;
1133                }
1134                list_add(&link->cset_link, tmp_links);
1135        }
1136        return 0;
1137}
1138
1139/**
1140 * link_css_set - a helper function to link a css_set to a cgroup
1141 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1142 * @cset: the css_set to be linked
1143 * @cgrp: the destination cgroup
1144 */
1145static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1146                         struct cgroup *cgrp)
1147{
1148        struct cgrp_cset_link *link;
1149
1150        BUG_ON(list_empty(tmp_links));
1151
1152        if (cgroup_on_dfl(cgrp))
1153                cset->dfl_cgrp = cgrp;
1154
1155        link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1156        link->cset = cset;
1157        link->cgrp = cgrp;
1158
1159        /*
1160         * Always add links to the tail of the lists so that the lists are
1161         * in choronological order.
1162         */
1163        list_move_tail(&link->cset_link, &cgrp->cset_links);
1164        list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1165
1166        if (cgroup_parent(cgrp))
1167                cgroup_get_live(cgrp);
1168}
1169
1170/**
1171 * find_css_set - return a new css_set with one cgroup updated
1172 * @old_cset: the baseline css_set
1173 * @cgrp: the cgroup to be updated
1174 *
1175 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1176 * substituted into the appropriate hierarchy.
1177 */
1178static struct css_set *find_css_set(struct css_set *old_cset,
1179                                    struct cgroup *cgrp)
1180{
1181        struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1182        struct css_set *cset;
1183        struct list_head tmp_links;
1184        struct cgrp_cset_link *link;
1185        struct cgroup_subsys *ss;
1186        unsigned long key;
1187        int ssid;
1188
1189        lockdep_assert_held(&cgroup_mutex);
1190
1191        /* First see if we already have a cgroup group that matches
1192         * the desired set */
1193        spin_lock_irq(&css_set_lock);
1194        cset = find_existing_css_set(old_cset, cgrp, template);
1195        if (cset)
1196                get_css_set(cset);
1197        spin_unlock_irq(&css_set_lock);
1198
1199        if (cset)
1200                return cset;
1201
1202        cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1203        if (!cset)
1204                return NULL;
1205
1206        /* Allocate all the cgrp_cset_link objects that we'll need */
1207        if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1208                kfree(cset);
1209                return NULL;
1210        }
1211
1212        refcount_set(&cset->refcount, 1);
1213        cset->dom_cset = cset;
1214        INIT_LIST_HEAD(&cset->tasks);
1215        INIT_LIST_HEAD(&cset->mg_tasks);
1216        INIT_LIST_HEAD(&cset->dying_tasks);
1217        INIT_LIST_HEAD(&cset->task_iters);
1218        INIT_LIST_HEAD(&cset->threaded_csets);
1219        INIT_HLIST_NODE(&cset->hlist);
1220        INIT_LIST_HEAD(&cset->cgrp_links);
1221        INIT_LIST_HEAD(&cset->mg_preload_node);
1222        INIT_LIST_HEAD(&cset->mg_node);
1223
1224        /* Copy the set of subsystem state objects generated in
1225         * find_existing_css_set() */
1226        memcpy(cset->subsys, template, sizeof(cset->subsys));
1227
1228        spin_lock_irq(&css_set_lock);
1229        /* Add reference counts and links from the new css_set. */
1230        list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1231                struct cgroup *c = link->cgrp;
1232
1233                if (c->root == cgrp->root)
1234                        c = cgrp;
1235                link_css_set(&tmp_links, cset, c);
1236        }
1237
1238        BUG_ON(!list_empty(&tmp_links));
1239
1240        css_set_count++;
1241
1242        /* Add @cset to the hash table */
1243        key = css_set_hash(cset->subsys);
1244        hash_add(css_set_table, &cset->hlist, key);
1245
1246        for_each_subsys(ss, ssid) {
1247                struct cgroup_subsys_state *css = cset->subsys[ssid];
1248
1249                list_add_tail(&cset->e_cset_node[ssid],
1250                              &css->cgroup->e_csets[ssid]);
1251                css_get(css);
1252        }
1253
1254        spin_unlock_irq(&css_set_lock);
1255
1256        /*
1257         * If @cset should be threaded, look up the matching dom_cset and
1258         * link them up.  We first fully initialize @cset then look for the
1259         * dom_cset.  It's simpler this way and safe as @cset is guaranteed
1260         * to stay empty until we return.
1261         */
1262        if (cgroup_is_threaded(cset->dfl_cgrp)) {
1263                struct css_set *dcset;
1264
1265                dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1266                if (!dcset) {
1267                        put_css_set(cset);
1268                        return NULL;
1269                }
1270
1271                spin_lock_irq(&css_set_lock);
1272                cset->dom_cset = dcset;
1273                list_add_tail(&cset->threaded_csets_node,
1274                              &dcset->threaded_csets);
1275                spin_unlock_irq(&css_set_lock);
1276        }
1277
1278        return cset;
1279}
1280
1281struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1282{
1283        struct cgroup *root_cgrp = kf_root->kn->priv;
1284
1285        return root_cgrp->root;
1286}
1287
1288static int cgroup_init_root_id(struct cgroup_root *root)
1289{
1290        int id;
1291
1292        lockdep_assert_held(&cgroup_mutex);
1293
1294        id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1295        if (id < 0)
1296                return id;
1297
1298        root->hierarchy_id = id;
1299        return 0;
1300}
1301
1302static void cgroup_exit_root_id(struct cgroup_root *root)
1303{
1304        lockdep_assert_held(&cgroup_mutex);
1305
1306        idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1307}
1308
1309void cgroup_free_root(struct cgroup_root *root)
1310{
1311        kfree(root);
1312}
1313
1314static void cgroup_destroy_root(struct cgroup_root *root)
1315{
1316        struct cgroup *cgrp = &root->cgrp;
1317        struct cgrp_cset_link *link, *tmp_link;
1318
1319        trace_cgroup_destroy_root(root);
1320
1321        cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1322
1323        BUG_ON(atomic_read(&root->nr_cgrps));
1324        BUG_ON(!list_empty(&cgrp->self.children));
1325
1326        /* Rebind all subsystems back to the default hierarchy */
1327        WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1328
1329        /*
1330         * Release all the links from cset_links to this hierarchy's
1331         * root cgroup
1332         */
1333        spin_lock_irq(&css_set_lock);
1334
1335        list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1336                list_del(&link->cset_link);
1337                list_del(&link->cgrp_link);
1338                kfree(link);
1339        }
1340
1341        spin_unlock_irq(&css_set_lock);
1342
1343        if (!list_empty(&root->root_list)) {
1344                list_del(&root->root_list);
1345                cgroup_root_count--;
1346        }
1347
1348        cgroup_exit_root_id(root);
1349
1350        mutex_unlock(&cgroup_mutex);
1351
1352        kernfs_destroy_root(root->kf_root);
1353        cgroup_free_root(root);
1354}
1355
1356/*
1357 * look up cgroup associated with current task's cgroup namespace on the
1358 * specified hierarchy
1359 */
1360static struct cgroup *
1361current_cgns_cgroup_from_root(struct cgroup_root *root)
1362{
1363        struct cgroup *res = NULL;
1364        struct css_set *cset;
1365
1366        lockdep_assert_held(&css_set_lock);
1367
1368        rcu_read_lock();
1369
1370        cset = current->nsproxy->cgroup_ns->root_cset;
1371        if (cset == &init_css_set) {
1372                res = &root->cgrp;
1373        } else if (root == &cgrp_dfl_root) {
1374                res = cset->dfl_cgrp;
1375        } else {
1376                struct cgrp_cset_link *link;
1377
1378                list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1379                        struct cgroup *c = link->cgrp;
1380
1381                        if (c->root == root) {
1382                                res = c;
1383                                break;
1384                        }
1385                }
1386        }
1387        rcu_read_unlock();
1388
1389        BUG_ON(!res);
1390        return res;
1391}
1392
1393/* look up cgroup associated with given css_set on the specified hierarchy */
1394static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1395                                            struct cgroup_root *root)
1396{
1397        struct cgroup *res = NULL;
1398
1399        lockdep_assert_held(&cgroup_mutex);
1400        lockdep_assert_held(&css_set_lock);
1401
1402        if (cset == &init_css_set) {
1403                res = &root->cgrp;
1404        } else if (root == &cgrp_dfl_root) {
1405                res = cset->dfl_cgrp;
1406        } else {
1407                struct cgrp_cset_link *link;
1408
1409                list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1410                        struct cgroup *c = link->cgrp;
1411
1412                        if (c->root == root) {
1413                                res = c;
1414                                break;
1415                        }
1416                }
1417        }
1418
1419        BUG_ON(!res);
1420        return res;
1421}
1422
1423/*
1424 * Return the cgroup for "task" from the given hierarchy. Must be
1425 * called with cgroup_mutex and css_set_lock held.
1426 */
1427struct cgroup *task_cgroup_from_root(struct task_struct *task,
1428                                     struct cgroup_root *root)
1429{
1430        /*
1431         * No need to lock the task - since we hold css_set_lock the
1432         * task can't change groups.
1433         */
1434        return cset_cgroup_from_root(task_css_set(task), root);
1435}
1436
1437/*
1438 * A task must hold cgroup_mutex to modify cgroups.
1439 *
1440 * Any task can increment and decrement the count field without lock.
1441 * So in general, code holding cgroup_mutex can't rely on the count
1442 * field not changing.  However, if the count goes to zero, then only
1443 * cgroup_attach_task() can increment it again.  Because a count of zero
1444 * means that no tasks are currently attached, therefore there is no
1445 * way a task attached to that cgroup can fork (the other way to
1446 * increment the count).  So code holding cgroup_mutex can safely
1447 * assume that if the count is zero, it will stay zero. Similarly, if
1448 * a task holds cgroup_mutex on a cgroup with zero count, it
1449 * knows that the cgroup won't be removed, as cgroup_rmdir()
1450 * needs that mutex.
1451 *
1452 * A cgroup can only be deleted if both its 'count' of using tasks
1453 * is zero, and its list of 'children' cgroups is empty.  Since all
1454 * tasks in the system use _some_ cgroup, and since there is always at
1455 * least one task in the system (init, pid == 1), therefore, root cgroup
1456 * always has either children cgroups and/or using tasks.  So we don't
1457 * need a special hack to ensure that root cgroup cannot be deleted.
1458 *
1459 * P.S.  One more locking exception.  RCU is used to guard the
1460 * update of a tasks cgroup pointer by cgroup_attach_task()
1461 */
1462
1463static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1464
1465static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1466                              char *buf)
1467{
1468        struct cgroup_subsys *ss = cft->ss;
1469
1470        if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1471            !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
1472                const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : "";
1473
1474                snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s",
1475                         dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1476                         cft->name);
1477        } else {
1478                strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1479        }
1480        return buf;
1481}
1482
1483/**
1484 * cgroup_file_mode - deduce file mode of a control file
1485 * @cft: the control file in question
1486 *
1487 * S_IRUGO for read, S_IWUSR for write.
1488 */
1489static umode_t cgroup_file_mode(const struct cftype *cft)
1490{
1491        umode_t mode = 0;
1492
1493        if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1494                mode |= S_IRUGO;
1495
1496        if (cft->write_u64 || cft->write_s64 || cft->write) {
1497                if (cft->flags & CFTYPE_WORLD_WRITABLE)
1498                        mode |= S_IWUGO;
1499                else
1500                        mode |= S_IWUSR;
1501        }
1502
1503        return mode;
1504}
1505
1506/**
1507 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1508 * @subtree_control: the new subtree_control mask to consider
1509 * @this_ss_mask: available subsystems
1510 *
1511 * On the default hierarchy, a subsystem may request other subsystems to be
1512 * enabled together through its ->depends_on mask.  In such cases, more
1513 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1514 *
1515 * This function calculates which subsystems need to be enabled if
1516 * @subtree_control is to be applied while restricted to @this_ss_mask.
1517 */
1518static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1519{
1520        u16 cur_ss_mask = subtree_control;
1521        struct cgroup_subsys *ss;
1522        int ssid;
1523
1524        lockdep_assert_held(&cgroup_mutex);
1525
1526        cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1527
1528        while (true) {
1529                u16 new_ss_mask = cur_ss_mask;
1530
1531                do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1532                        new_ss_mask |= ss->depends_on;
1533                } while_each_subsys_mask();
1534
1535                /*
1536                 * Mask out subsystems which aren't available.  This can
1537                 * happen only if some depended-upon subsystems were bound
1538                 * to non-default hierarchies.
1539                 */
1540                new_ss_mask &= this_ss_mask;
1541
1542                if (new_ss_mask == cur_ss_mask)
1543                        break;
1544                cur_ss_mask = new_ss_mask;
1545        }
1546
1547        return cur_ss_mask;
1548}
1549
1550/**
1551 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1552 * @kn: the kernfs_node being serviced
1553 *
1554 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1555 * the method finishes if locking succeeded.  Note that once this function
1556 * returns the cgroup returned by cgroup_kn_lock_live() may become
1557 * inaccessible any time.  If the caller intends to continue to access the
1558 * cgroup, it should pin it before invoking this function.
1559 */
1560void cgroup_kn_unlock(struct kernfs_node *kn)
1561{
1562        struct cgroup *cgrp;
1563
1564        if (kernfs_type(kn) == KERNFS_DIR)
1565                cgrp = kn->priv;
1566        else
1567                cgrp = kn->parent->priv;
1568
1569        mutex_unlock(&cgroup_mutex);
1570
1571        kernfs_unbreak_active_protection(kn);
1572        cgroup_put(cgrp);
1573}
1574
1575/**
1576 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1577 * @kn: the kernfs_node being serviced
1578 * @drain_offline: perform offline draining on the cgroup
1579 *
1580 * This helper is to be used by a cgroup kernfs method currently servicing
1581 * @kn.  It breaks the active protection, performs cgroup locking and
1582 * verifies that the associated cgroup is alive.  Returns the cgroup if
1583 * alive; otherwise, %NULL.  A successful return should be undone by a
1584 * matching cgroup_kn_unlock() invocation.  If @drain_offline is %true, the
1585 * cgroup is drained of offlining csses before return.
1586 *
1587 * Any cgroup kernfs method implementation which requires locking the
1588 * associated cgroup should use this helper.  It avoids nesting cgroup
1589 * locking under kernfs active protection and allows all kernfs operations
1590 * including self-removal.
1591 */
1592struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1593{
1594        struct cgroup *cgrp;
1595
1596        if (kernfs_type(kn) == KERNFS_DIR)
1597                cgrp = kn->priv;
1598        else
1599                cgrp = kn->parent->priv;
1600
1601        /*
1602         * We're gonna grab cgroup_mutex which nests outside kernfs
1603         * active_ref.  cgroup liveliness check alone provides enough
1604         * protection against removal.  Ensure @cgrp stays accessible and
1605         * break the active_ref protection.
1606         */
1607        if (!cgroup_tryget(cgrp))
1608                return NULL;
1609        kernfs_break_active_protection(kn);
1610
1611        if (drain_offline)
1612                cgroup_lock_and_drain_offline(cgrp);
1613        else
1614                mutex_lock(&cgroup_mutex);
1615
1616        if (!cgroup_is_dead(cgrp))
1617                return cgrp;
1618
1619        cgroup_kn_unlock(kn);
1620        return NULL;
1621}
1622
1623static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1624{
1625        char name[CGROUP_FILE_NAME_MAX];
1626
1627        lockdep_assert_held(&cgroup_mutex);
1628
1629        if (cft->file_offset) {
1630                struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1631                struct cgroup_file *cfile = (void *)css + cft->file_offset;
1632
1633                spin_lock_irq(&cgroup_file_kn_lock);
1634                cfile->kn = NULL;
1635                spin_unlock_irq(&cgroup_file_kn_lock);
1636
1637                del_timer_sync(&cfile->notify_timer);
1638        }
1639
1640        kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1641}
1642
1643/**
1644 * css_clear_dir - remove subsys files in a cgroup directory
1645 * @css: taget css
1646 */
1647static void css_clear_dir(struct cgroup_subsys_state *css)
1648{
1649        struct cgroup *cgrp = css->cgroup;
1650        struct cftype *cfts;
1651
1652        if (!(css->flags & CSS_VISIBLE))
1653                return;
1654
1655        css->flags &= ~CSS_VISIBLE;
1656
1657        if (!css->ss) {
1658                if (cgroup_on_dfl(cgrp))
1659                        cfts = cgroup_base_files;
1660                else
1661                        cfts = cgroup1_base_files;
1662
1663                cgroup_addrm_files(css, cgrp, cfts, false);
1664        } else {
1665                list_for_each_entry(cfts, &css->ss->cfts, node)
1666                        cgroup_addrm_files(css, cgrp, cfts, false);
1667        }
1668}
1669
1670/**
1671 * css_populate_dir - create subsys files in a cgroup directory
1672 * @css: target css
1673 *
1674 * On failure, no file is added.
1675 */
1676static int css_populate_dir(struct cgroup_subsys_state *css)
1677{
1678        struct cgroup *cgrp = css->cgroup;
1679        struct cftype *cfts, *failed_cfts;
1680        int ret;
1681
1682        if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1683                return 0;
1684
1685        if (!css->ss) {
1686                if (cgroup_on_dfl(cgrp))
1687                        cfts = cgroup_base_files;
1688                else
1689                        cfts = cgroup1_base_files;
1690
1691                ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1692                if (ret < 0)
1693                        return ret;
1694        } else {
1695                list_for_each_entry(cfts, &css->ss->cfts, node) {
1696                        ret = cgroup_addrm_files(css, cgrp, cfts, true);
1697                        if (ret < 0) {
1698                                failed_cfts = cfts;
1699                                goto err;
1700                        }
1701                }
1702        }
1703
1704        css->flags |= CSS_VISIBLE;
1705
1706        return 0;
1707err:
1708        list_for_each_entry(cfts, &css->ss->cfts, node) {
1709                if (cfts == failed_cfts)
1710                        break;
1711                cgroup_addrm_files(css, cgrp, cfts, false);
1712        }
1713        return ret;
1714}
1715
1716int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1717{
1718        struct cgroup *dcgrp = &dst_root->cgrp;
1719        struct cgroup_subsys *ss;
1720        int ssid, i, ret;
1721
1722        lockdep_assert_held(&cgroup_mutex);
1723
1724        do_each_subsys_mask(ss, ssid, ss_mask) {
1725                /*
1726                 * If @ss has non-root csses attached to it, can't move.
1727                 * If @ss is an implicit controller, it is exempt from this
1728                 * rule and can be stolen.
1729                 */
1730                if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1731                    !ss->implicit_on_dfl)
1732                        return -EBUSY;
1733
1734                /* can't move between two non-dummy roots either */
1735                if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1736                        return -EBUSY;
1737        } while_each_subsys_mask();
1738
1739        do_each_subsys_mask(ss, ssid, ss_mask) {
1740                struct cgroup_root *src_root = ss->root;
1741                struct cgroup *scgrp = &src_root->cgrp;
1742                struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1743                struct css_set *cset;
1744
1745                WARN_ON(!css || cgroup_css(dcgrp, ss));
1746
1747                /* disable from the source */
1748                src_root->subsys_mask &= ~(1 << ssid);
1749                WARN_ON(cgroup_apply_control(scgrp));
1750                cgroup_finalize_control(scgrp, 0);
1751
1752                /* rebind */
1753                RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1754                rcu_assign_pointer(dcgrp->subsys[ssid], css);
1755                ss->root = dst_root;
1756                css->cgroup = dcgrp;
1757
1758                spin_lock_irq(&css_set_lock);
1759                hash_for_each(css_set_table, i, cset, hlist)
1760                        list_move_tail(&cset->e_cset_node[ss->id],
1761                                       &dcgrp->e_csets[ss->id]);
1762                spin_unlock_irq(&css_set_lock);
1763
1764                /* default hierarchy doesn't enable controllers by default */
1765                dst_root->subsys_mask |= 1 << ssid;
1766                if (dst_root == &cgrp_dfl_root) {
1767                        static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1768                } else {
1769                        dcgrp->subtree_control |= 1 << ssid;
1770                        static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1771                }
1772
1773                ret = cgroup_apply_control(dcgrp);
1774                if (ret)
1775                        pr_warn("partial failure to rebind %s controller (err=%d)\n",
1776                                ss->name, ret);
1777
1778                if (ss->bind)
1779                        ss->bind(css);
1780        } while_each_subsys_mask();
1781
1782        kernfs_activate(dcgrp->kn);
1783        return 0;
1784}
1785
1786int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1787                     struct kernfs_root *kf_root)
1788{
1789        int len = 0;
1790        char *buf = NULL;
1791        struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1792        struct cgroup *ns_cgroup;
1793
1794        buf = kmalloc(PATH_MAX, GFP_KERNEL);
1795        if (!buf)
1796                return -ENOMEM;
1797
1798        spin_lock_irq(&css_set_lock);
1799        ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1800        len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1801        spin_unlock_irq(&css_set_lock);
1802
1803        if (len >= PATH_MAX)
1804                len = -ERANGE;
1805        else if (len > 0) {
1806                seq_escape(sf, buf, " \t\n\\");
1807                len = 0;
1808        }
1809        kfree(buf);
1810        return len;
1811}
1812
1813enum cgroup2_param {
1814        Opt_nsdelegate,
1815        Opt_memory_localevents,
1816        nr__cgroup2_params
1817};
1818
1819static const struct fs_parameter_spec cgroup2_param_specs[] = {
1820        fsparam_flag("nsdelegate",              Opt_nsdelegate),
1821        fsparam_flag("memory_localevents",      Opt_memory_localevents),
1822        {}
1823};
1824
1825static const struct fs_parameter_description cgroup2_fs_parameters = {
1826        .name           = "cgroup2",
1827        .specs          = cgroup2_param_specs,
1828};
1829
1830static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param)
1831{
1832        struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1833        struct fs_parse_result result;
1834        int opt;
1835
1836        opt = fs_parse(fc, &cgroup2_fs_parameters, param, &result);
1837        if (opt < 0)
1838                return opt;
1839
1840        switch (opt) {
1841        case Opt_nsdelegate:
1842                ctx->flags |= CGRP_ROOT_NS_DELEGATE;
1843                return 0;
1844        case Opt_memory_localevents:
1845                ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1846                return 0;
1847        }
1848        return -EINVAL;
1849}
1850
1851static void apply_cgroup_root_flags(unsigned int root_flags)
1852{
1853        if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1854                if (root_flags & CGRP_ROOT_NS_DELEGATE)
1855                        cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1856                else
1857                        cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1858
1859                if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1860                        cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1861                else
1862                        cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1863        }
1864}
1865
1866static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1867{
1868        if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1869                seq_puts(seq, ",nsdelegate");
1870        if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1871                seq_puts(seq, ",memory_localevents");
1872        return 0;
1873}
1874
1875static int cgroup_reconfigure(struct fs_context *fc)
1876{
1877        struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1878
1879        apply_cgroup_root_flags(ctx->flags);
1880        return 0;
1881}
1882
1883static void init_cgroup_housekeeping(struct cgroup *cgrp)
1884{
1885        struct cgroup_subsys *ss;
1886        int ssid;
1887
1888        INIT_LIST_HEAD(&cgrp->self.sibling);
1889        INIT_LIST_HEAD(&cgrp->self.children);
1890        INIT_LIST_HEAD(&cgrp->cset_links);
1891        INIT_LIST_HEAD(&cgrp->pidlists);
1892        mutex_init(&cgrp->pidlist_mutex);
1893        cgrp->self.cgroup = cgrp;
1894        cgrp->self.flags |= CSS_ONLINE;
1895        cgrp->dom_cgrp = cgrp;
1896        cgrp->max_descendants = INT_MAX;
1897        cgrp->max_depth = INT_MAX;
1898        INIT_LIST_HEAD(&cgrp->rstat_css_list);
1899        prev_cputime_init(&cgrp->prev_cputime);
1900
1901        for_each_subsys(ss, ssid)
1902                INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1903
1904        init_waitqueue_head(&cgrp->offline_waitq);
1905        INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
1906}
1907
1908void init_cgroup_root(struct cgroup_fs_context *ctx)
1909{
1910        struct cgroup_root *root = ctx->root;
1911        struct cgroup *cgrp = &root->cgrp;
1912
1913        INIT_LIST_HEAD(&root->root_list);
1914        atomic_set(&root->nr_cgrps, 1);
1915        cgrp->root = root;
1916        init_cgroup_housekeeping(cgrp);
1917
1918        root->flags = ctx->flags;
1919        if (ctx->release_agent)
1920                strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX);
1921        if (ctx->name)
1922                strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN);
1923        if (ctx->cpuset_clone_children)
1924                set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1925}
1926
1927int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
1928{
1929        LIST_HEAD(tmp_links);
1930        struct cgroup *root_cgrp = &root->cgrp;
1931        struct kernfs_syscall_ops *kf_sops;
1932        struct css_set *cset;
1933        int i, ret;
1934
1935        lockdep_assert_held(&cgroup_mutex);
1936
1937        ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
1938                              0, GFP_KERNEL);
1939        if (ret)
1940                goto out;
1941
1942        /*
1943         * We're accessing css_set_count without locking css_set_lock here,
1944         * but that's OK - it can only be increased by someone holding
1945         * cgroup_lock, and that's us.  Later rebinding may disable
1946         * controllers on the default hierarchy and thus create new csets,
1947         * which can't be more than the existing ones.  Allocate 2x.
1948         */
1949        ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
1950        if (ret)
1951                goto cancel_ref;
1952
1953        ret = cgroup_init_root_id(root);
1954        if (ret)
1955                goto cancel_ref;
1956
1957        kf_sops = root == &cgrp_dfl_root ?
1958                &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
1959
1960        root->kf_root = kernfs_create_root(kf_sops,
1961                                           KERNFS_ROOT_CREATE_DEACTIVATED |
1962                                           KERNFS_ROOT_SUPPORT_EXPORTOP,
1963                                           root_cgrp);
1964        if (IS_ERR(root->kf_root)) {
1965                ret = PTR_ERR(root->kf_root);
1966                goto exit_root_id;
1967        }
1968        root_cgrp->kn = root->kf_root->kn;
1969        WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1);
1970        root_cgrp->ancestor_ids[0] = cgroup_id(root_cgrp);
1971
1972        ret = css_populate_dir(&root_cgrp->self);
1973        if (ret)
1974                goto destroy_root;
1975
1976        ret = rebind_subsystems(root, ss_mask);
1977        if (ret)
1978                goto destroy_root;
1979
1980        ret = cgroup_bpf_inherit(root_cgrp);
1981        WARN_ON_ONCE(ret);
1982
1983        trace_cgroup_setup_root(root);
1984
1985        /*
1986         * There must be no failure case after here, since rebinding takes
1987         * care of subsystems' refcounts, which are explicitly dropped in
1988         * the failure exit path.
1989         */
1990        list_add(&root->root_list, &cgroup_roots);
1991        cgroup_root_count++;
1992
1993        /*
1994         * Link the root cgroup in this hierarchy into all the css_set
1995         * objects.
1996         */
1997        spin_lock_irq(&css_set_lock);
1998        hash_for_each(css_set_table, i, cset, hlist) {
1999                link_css_set(&tmp_links, cset, root_cgrp);
2000                if (css_set_populated(cset))
2001                        cgroup_update_populated(root_cgrp, true);
2002        }
2003        spin_unlock_irq(&css_set_lock);
2004
2005        BUG_ON(!list_empty(&root_cgrp->self.children));
2006        BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2007
2008        kernfs_activate(root_cgrp->kn);
2009        ret = 0;
2010        goto out;
2011
2012destroy_root:
2013        kernfs_destroy_root(root->kf_root);
2014        root->kf_root = NULL;
2015exit_root_id:
2016        cgroup_exit_root_id(root);
2017cancel_ref:
2018        percpu_ref_exit(&root_cgrp->self.refcnt);
2019out:
2020        free_cgrp_cset_links(&tmp_links);
2021        return ret;
2022}
2023
2024int cgroup_do_get_tree(struct fs_context *fc)
2025{
2026        struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2027        int ret;
2028
2029        ctx->kfc.root = ctx->root->kf_root;
2030        if (fc->fs_type == &cgroup2_fs_type)
2031                ctx->kfc.magic = CGROUP2_SUPER_MAGIC;
2032        else
2033                ctx->kfc.magic = CGROUP_SUPER_MAGIC;
2034        ret = kernfs_get_tree(fc);
2035
2036        /*
2037         * In non-init cgroup namespace, instead of root cgroup's dentry,
2038         * we return the dentry corresponding to the cgroupns->root_cgrp.
2039         */
2040        if (!ret && ctx->ns != &init_cgroup_ns) {
2041                struct dentry *nsdentry;
2042                struct super_block *sb = fc->root->d_sb;
2043                struct cgroup *cgrp;
2044
2045                mutex_lock(&cgroup_mutex);
2046                spin_lock_irq(&css_set_lock);
2047
2048                cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root);
2049
2050                spin_unlock_irq(&css_set_lock);
2051                mutex_unlock(&cgroup_mutex);
2052
2053                nsdentry = kernfs_node_dentry(cgrp->kn, sb);
2054                dput(fc->root);
2055                if (IS_ERR(nsdentry)) {
2056                        deactivate_locked_super(sb);
2057                        ret = PTR_ERR(nsdentry);
2058                        nsdentry = NULL;
2059                }
2060                fc->root = nsdentry;
2061        }
2062
2063        if (!ctx->kfc.new_sb_created)
2064                cgroup_put(&ctx->root->cgrp);
2065
2066        return ret;
2067}
2068
2069/*
2070 * Destroy a cgroup filesystem context.
2071 */
2072static void cgroup_fs_context_free(struct fs_context *fc)
2073{
2074        struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2075
2076        kfree(ctx->name);
2077        kfree(ctx->release_agent);
2078        put_cgroup_ns(ctx->ns);
2079        kernfs_free_fs_context(fc);
2080        kfree(ctx);
2081}
2082
2083static int cgroup_get_tree(struct fs_context *fc)
2084{
2085        struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2086        int ret;
2087
2088        cgrp_dfl_visible = true;
2089        cgroup_get_live(&cgrp_dfl_root.cgrp);
2090        ctx->root = &cgrp_dfl_root;
2091
2092        ret = cgroup_do_get_tree(fc);
2093        if (!ret)
2094                apply_cgroup_root_flags(ctx->flags);
2095        return ret;
2096}
2097
2098static const struct fs_context_operations cgroup_fs_context_ops = {
2099        .free           = cgroup_fs_context_free,
2100        .parse_param    = cgroup2_parse_param,
2101        .get_tree       = cgroup_get_tree,
2102        .reconfigure    = cgroup_reconfigure,
2103};
2104
2105static const struct fs_context_operations cgroup1_fs_context_ops = {
2106        .free           = cgroup_fs_context_free,
2107        .parse_param    = cgroup1_parse_param,
2108        .get_tree       = cgroup1_get_tree,
2109        .reconfigure    = cgroup1_reconfigure,
2110};
2111
2112/*
2113 * Initialise the cgroup filesystem creation/reconfiguration context.  Notably,
2114 * we select the namespace we're going to use.
2115 */
2116static int cgroup_init_fs_context(struct fs_context *fc)
2117{
2118        struct cgroup_fs_context *ctx;
2119
2120        ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL);
2121        if (!ctx)
2122                return -ENOMEM;
2123
2124        ctx->ns = current->nsproxy->cgroup_ns;
2125        get_cgroup_ns(ctx->ns);
2126        fc->fs_private = &ctx->kfc;
2127        if (fc->fs_type == &cgroup2_fs_type)
2128                fc->ops = &cgroup_fs_context_ops;
2129        else
2130                fc->ops = &cgroup1_fs_context_ops;
2131        put_user_ns(fc->user_ns);
2132        fc->user_ns = get_user_ns(ctx->ns->user_ns);
2133        fc->global = true;
2134        return 0;
2135}
2136
2137static void cgroup_kill_sb(struct super_block *sb)
2138{
2139        struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2140        struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2141
2142        /*
2143         * If @root doesn't have any children, start killing it.
2144         * This prevents new mounts by disabling percpu_ref_tryget_live().
2145         * cgroup_mount() may wait for @root's release.
2146         *
2147         * And don't kill the default root.
2148         */
2149        if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root &&
2150            !percpu_ref_is_dying(&root->cgrp.self.refcnt))
2151                percpu_ref_kill(&root->cgrp.self.refcnt);
2152        cgroup_put(&root->cgrp);
2153        kernfs_kill_sb(sb);
2154}
2155
2156struct file_system_type cgroup_fs_type = {
2157        .name                   = "cgroup",
2158        .init_fs_context        = cgroup_init_fs_context,
2159        .parameters             = &cgroup1_fs_parameters,
2160        .kill_sb                = cgroup_kill_sb,
2161        .fs_flags               = FS_USERNS_MOUNT,
2162};
2163
2164static struct file_system_type cgroup2_fs_type = {
2165        .name                   = "cgroup2",
2166        .init_fs_context        = cgroup_init_fs_context,
2167        .parameters             = &cgroup2_fs_parameters,
2168        .kill_sb                = cgroup_kill_sb,
2169        .fs_flags               = FS_USERNS_MOUNT,
2170};
2171
2172#ifdef CONFIG_CPUSETS
2173static const struct fs_context_operations cpuset_fs_context_ops = {
2174        .get_tree       = cgroup1_get_tree,
2175        .free           = cgroup_fs_context_free,
2176};
2177
2178/*
2179 * This is ugly, but preserves the userspace API for existing cpuset
2180 * users. If someone tries to mount the "cpuset" filesystem, we
2181 * silently switch it to mount "cgroup" instead
2182 */
2183static int cpuset_init_fs_context(struct fs_context *fc)
2184{
2185        char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER);
2186        struct cgroup_fs_context *ctx;
2187        int err;
2188
2189        err = cgroup_init_fs_context(fc);
2190        if (err) {
2191                kfree(agent);
2192                return err;
2193        }
2194
2195        fc->ops = &cpuset_fs_context_ops;
2196
2197        ctx = cgroup_fc2context(fc);
2198        ctx->subsys_mask = 1 << cpuset_cgrp_id;
2199        ctx->flags |= CGRP_ROOT_NOPREFIX;
2200        ctx->release_agent = agent;
2201
2202        get_filesystem(&cgroup_fs_type);
2203        put_filesystem(fc->fs_type);
2204        fc->fs_type = &cgroup_fs_type;
2205
2206        return 0;
2207}
2208
2209static struct file_system_type cpuset_fs_type = {
2210        .name                   = "cpuset",
2211        .init_fs_context        = cpuset_init_fs_context,
2212        .fs_flags               = FS_USERNS_MOUNT,
2213};
2214#endif
2215
2216int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2217                          struct cgroup_namespace *ns)
2218{
2219        struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2220
2221        return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2222}
2223
2224int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2225                   struct cgroup_namespace *ns)
2226{
2227        int ret;
2228
2229        mutex_lock(&cgroup_mutex);
2230        spin_lock_irq(&css_set_lock);
2231
2232        ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2233
2234        spin_unlock_irq(&css_set_lock);
2235        mutex_unlock(&cgroup_mutex);
2236
2237        return ret;
2238}
2239EXPORT_SYMBOL_GPL(cgroup_path_ns);
2240
2241/**
2242 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2243 * @task: target task
2244 * @buf: the buffer to write the path into
2245 * @buflen: the length of the buffer
2246 *
2247 * Determine @task's cgroup on the first (the one with the lowest non-zero
2248 * hierarchy_id) cgroup hierarchy and copy its path into @buf.  This
2249 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2250 * cgroup controller callbacks.
2251 *
2252 * Return value is the same as kernfs_path().
2253 */
2254int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2255{
2256        struct cgroup_root *root;
2257        struct cgroup *cgrp;
2258        int hierarchy_id = 1;
2259        int ret;
2260
2261        mutex_lock(&cgroup_mutex);
2262        spin_lock_irq(&css_set_lock);
2263
2264        root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2265
2266        if (root) {
2267                cgrp = task_cgroup_from_root(task, root);
2268                ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2269        } else {
2270                /* if no hierarchy exists, everyone is in "/" */
2271                ret = strlcpy(buf, "/", buflen);
2272        }
2273
2274        spin_unlock_irq(&css_set_lock);
2275        mutex_unlock(&cgroup_mutex);
2276        return ret;
2277}
2278EXPORT_SYMBOL_GPL(task_cgroup_path);
2279
2280/**
2281 * cgroup_migrate_add_task - add a migration target task to a migration context
2282 * @task: target task
2283 * @mgctx: target migration context
2284 *
2285 * Add @task, which is a migration target, to @mgctx->tset.  This function
2286 * becomes noop if @task doesn't need to be migrated.  @task's css_set
2287 * should have been added as a migration source and @task->cg_list will be
2288 * moved from the css_set's tasks list to mg_tasks one.
2289 */
2290static void cgroup_migrate_add_task(struct task_struct *task,
2291                                    struct cgroup_mgctx *mgctx)
2292{
2293        struct css_set *cset;
2294
2295        lockdep_assert_held(&css_set_lock);
2296
2297        /* @task either already exited or can't exit until the end */
2298        if (task->flags & PF_EXITING)
2299                return;
2300
2301        /* cgroup_threadgroup_rwsem protects racing against forks */
2302        WARN_ON_ONCE(list_empty(&task->cg_list));
2303
2304        cset = task_css_set(task);
2305        if (!cset->mg_src_cgrp)
2306                return;
2307
2308        mgctx->tset.nr_tasks++;
2309
2310        list_move_tail(&task->cg_list, &cset->mg_tasks);
2311        if (list_empty(&cset->mg_node))
2312                list_add_tail(&cset->mg_node,
2313                              &mgctx->tset.src_csets);
2314        if (list_empty(&cset->mg_dst_cset->mg_node))
2315                list_add_tail(&cset->mg_dst_cset->mg_node,
2316                              &mgctx->tset.dst_csets);
2317}
2318
2319/**
2320 * cgroup_taskset_first - reset taskset and return the first task
2321 * @tset: taskset of interest
2322 * @dst_cssp: output variable for the destination css
2323 *
2324 * @tset iteration is initialized and the first task is returned.
2325 */
2326struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2327                                         struct cgroup_subsys_state **dst_cssp)
2328{
2329        tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2330        tset->cur_task = NULL;
2331
2332        return cgroup_taskset_next(tset, dst_cssp);
2333}
2334
2335/**
2336 * cgroup_taskset_next - iterate to the next task in taskset
2337 * @tset: taskset of interest
2338 * @dst_cssp: output variable for the destination css
2339 *
2340 * Return the next task in @tset.  Iteration must have been initialized
2341 * with cgroup_taskset_first().
2342 */
2343struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2344                                        struct cgroup_subsys_state **dst_cssp)
2345{
2346        struct css_set *cset = tset->cur_cset;
2347        struct task_struct *task = tset->cur_task;
2348
2349        while (&cset->mg_node != tset->csets) {
2350                if (!task)
2351                        task = list_first_entry(&cset->mg_tasks,
2352                                                struct task_struct, cg_list);
2353                else
2354                        task = list_next_entry(task, cg_list);
2355
2356                if (&task->cg_list != &cset->mg_tasks) {
2357                        tset->cur_cset = cset;
2358                        tset->cur_task = task;
2359
2360                        /*
2361                         * This function may be called both before and
2362                         * after cgroup_taskset_migrate().  The two cases
2363                         * can be distinguished by looking at whether @cset
2364                         * has its ->mg_dst_cset set.
2365                         */
2366                        if (cset->mg_dst_cset)
2367                                *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2368                        else
2369                                *dst_cssp = cset->subsys[tset->ssid];
2370
2371                        return task;
2372                }
2373
2374                cset = list_next_entry(cset, mg_node);
2375                task = NULL;
2376        }
2377
2378        return NULL;
2379}
2380
2381/**
2382 * cgroup_taskset_migrate - migrate a taskset
2383 * @mgctx: migration context
2384 *
2385 * Migrate tasks in @mgctx as setup by migration preparation functions.
2386 * This function fails iff one of the ->can_attach callbacks fails and
2387 * guarantees that either all or none of the tasks in @mgctx are migrated.
2388 * @mgctx is consumed regardless of success.
2389 */
2390static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2391{
2392        struct cgroup_taskset *tset = &mgctx->tset;
2393        struct cgroup_subsys *ss;
2394        struct task_struct *task, *tmp_task;
2395        struct css_set *cset, *tmp_cset;
2396        int ssid, failed_ssid, ret;
2397
2398        /* check that we can legitimately attach to the cgroup */
2399        if (tset->nr_tasks) {
2400                do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2401                        if (ss->can_attach) {
2402                                tset->ssid = ssid;
2403                                ret = ss->can_attach(tset);
2404                                if (ret) {
2405                                        failed_ssid = ssid;
2406                                        goto out_cancel_attach;
2407                                }
2408                        }
2409                } while_each_subsys_mask();
2410        }
2411
2412        /*
2413         * Now that we're guaranteed success, proceed to move all tasks to
2414         * the new cgroup.  There are no failure cases after here, so this
2415         * is the commit point.
2416         */
2417        spin_lock_irq(&css_set_lock);
2418        list_for_each_entry(cset, &tset->src_csets, mg_node) {
2419                list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2420                        struct css_set *from_cset = task_css_set(task);
2421                        struct css_set *to_cset = cset->mg_dst_cset;
2422
2423                        get_css_set(to_cset);
2424                        to_cset->nr_tasks++;
2425                        css_set_move_task(task, from_cset, to_cset, true);
2426                        from_cset->nr_tasks--;
2427                        /*
2428                         * If the source or destination cgroup is frozen,
2429                         * the task might require to change its state.
2430                         */
2431                        cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp,
2432                                                    to_cset->dfl_cgrp);
2433                        put_css_set_locked(from_cset);
2434
2435                }
2436        }
2437        spin_unlock_irq(&css_set_lock);
2438
2439        /*
2440         * Migration is committed, all target tasks are now on dst_csets.
2441         * Nothing is sensitive to fork() after this point.  Notify
2442         * controllers that migration is complete.
2443         */
2444        tset->csets = &tset->dst_csets;
2445
2446        if (tset->nr_tasks) {
2447                do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2448                        if (ss->attach) {
2449                                tset->ssid = ssid;
2450                                ss->attach(tset);
2451                        }
2452                } while_each_subsys_mask();
2453        }
2454
2455        ret = 0;
2456        goto out_release_tset;
2457
2458out_cancel_attach:
2459        if (tset->nr_tasks) {
2460                do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2461                        if (ssid == failed_ssid)
2462                                break;
2463                        if (ss->cancel_attach) {
2464                                tset->ssid = ssid;
2465                                ss->cancel_attach(tset);
2466                        }
2467                } while_each_subsys_mask();
2468        }
2469out_release_tset:
2470        spin_lock_irq(&css_set_lock);
2471        list_splice_init(&tset->dst_csets, &tset->src_csets);
2472        list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2473                list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2474                list_del_init(&cset->mg_node);
2475        }
2476        spin_unlock_irq(&css_set_lock);
2477
2478        /*
2479         * Re-initialize the cgroup_taskset structure in case it is reused
2480         * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2481         * iteration.
2482         */
2483        tset->nr_tasks = 0;
2484        tset->csets    = &tset->src_csets;
2485        return ret;
2486}
2487
2488/**
2489 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2490 * @dst_cgrp: destination cgroup to test
2491 *
2492 * On the default hierarchy, except for the mixable, (possible) thread root
2493 * and threaded cgroups, subtree_control must be zero for migration
2494 * destination cgroups with tasks so that child cgroups don't compete
2495 * against tasks.
2496 */
2497int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2498{
2499        /* v1 doesn't have any restriction */
2500        if (!cgroup_on_dfl(dst_cgrp))
2501                return 0;
2502
2503        /* verify @dst_cgrp can host resources */
2504        if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2505                return -EOPNOTSUPP;
2506
2507        /* mixables don't care */
2508        if (cgroup_is_mixable(dst_cgrp))
2509                return 0;
2510
2511        /*
2512         * If @dst_cgrp is already or can become a thread root or is
2513         * threaded, it doesn't matter.
2514         */
2515        if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2516                return 0;
2517
2518        /* apply no-internal-process constraint */
2519        if (dst_cgrp->subtree_control)
2520                return -EBUSY;
2521
2522        return 0;
2523}
2524
2525/**
2526 * cgroup_migrate_finish - cleanup after attach
2527 * @mgctx: migration context
2528 *
2529 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst().  See
2530 * those functions for details.
2531 */
2532void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2533{
2534        LIST_HEAD(preloaded);
2535        struct css_set *cset, *tmp_cset;
2536
2537        lockdep_assert_held(&cgroup_mutex);
2538
2539        spin_lock_irq(&css_set_lock);
2540
2541        list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded);
2542        list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded);
2543
2544        list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) {
2545                cset->mg_src_cgrp = NULL;
2546                cset->mg_dst_cgrp = NULL;
2547                cset->mg_dst_cset = NULL;
2548                list_del_init(&cset->mg_preload_node);
2549                put_css_set_locked(cset);
2550        }
2551
2552        spin_unlock_irq(&css_set_lock);
2553}
2554
2555/**
2556 * cgroup_migrate_add_src - add a migration source css_set
2557 * @src_cset: the source css_set to add
2558 * @dst_cgrp: the destination cgroup
2559 * @mgctx: migration context
2560 *
2561 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp.  Pin
2562 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2563 * up by cgroup_migrate_finish().
2564 *
2565 * This function may be called without holding cgroup_threadgroup_rwsem
2566 * even if the target is a process.  Threads may be created and destroyed
2567 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2568 * into play and the preloaded css_sets are guaranteed to cover all
2569 * migrations.
2570 */
2571void cgroup_migrate_add_src(struct css_set *src_cset,
2572                            struct cgroup *dst_cgrp,
2573                            struct cgroup_mgctx *mgctx)
2574{
2575        struct cgroup *src_cgrp;
2576
2577        lockdep_assert_held(&cgroup_mutex);
2578        lockdep_assert_held(&css_set_lock);
2579
2580        /*
2581         * If ->dead, @src_set is associated with one or more dead cgroups
2582         * and doesn't contain any migratable tasks.  Ignore it early so
2583         * that the rest of migration path doesn't get confused by it.
2584         */
2585        if (src_cset->dead)
2586                return;
2587
2588        src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2589
2590        if (!list_empty(&src_cset->mg_preload_node))
2591                return;
2592
2593        WARN_ON(src_cset->mg_src_cgrp);
2594        WARN_ON(src_cset->mg_dst_cgrp);
2595        WARN_ON(!list_empty(&src_cset->mg_tasks));
2596        WARN_ON(!list_empty(&src_cset->mg_node));
2597
2598        src_cset->mg_src_cgrp = src_cgrp;
2599        src_cset->mg_dst_cgrp = dst_cgrp;
2600        get_css_set(src_cset);
2601        list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets);
2602}
2603
2604/**
2605 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2606 * @mgctx: migration context
2607 *
2608 * Tasks are about to be moved and all the source css_sets have been
2609 * preloaded to @mgctx->preloaded_src_csets.  This function looks up and
2610 * pins all destination css_sets, links each to its source, and append them
2611 * to @mgctx->preloaded_dst_csets.
2612 *
2613 * This function must be called after cgroup_migrate_add_src() has been
2614 * called on each migration source css_set.  After migration is performed
2615 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2616 * @mgctx.
2617 */
2618int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2619{
2620        struct css_set *src_cset, *tmp_cset;
2621
2622        lockdep_assert_held(&cgroup_mutex);
2623
2624        /* look up the dst cset for each src cset and link it to src */
2625        list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2626                                 mg_preload_node) {
2627                struct css_set *dst_cset;
2628                struct cgroup_subsys *ss;
2629                int ssid;
2630
2631                dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2632                if (!dst_cset)
2633                        return -ENOMEM;
2634
2635                WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2636
2637                /*
2638                 * If src cset equals dst, it's noop.  Drop the src.
2639                 * cgroup_migrate() will skip the cset too.  Note that we
2640                 * can't handle src == dst as some nodes are used by both.
2641                 */
2642                if (src_cset == dst_cset) {
2643                        src_cset->mg_src_cgrp = NULL;
2644                        src_cset->mg_dst_cgrp = NULL;
2645                        list_del_init(&src_cset->mg_preload_node);
2646                        put_css_set(src_cset);
2647                        put_css_set(dst_cset);
2648                        continue;
2649                }
2650
2651                src_cset->mg_dst_cset = dst_cset;
2652
2653                if (list_empty(&dst_cset->mg_preload_node))
2654                        list_add_tail(&dst_cset->mg_preload_node,
2655                                      &mgctx->preloaded_dst_csets);
2656                else
2657                        put_css_set(dst_cset);
2658
2659                for_each_subsys(ss, ssid)
2660                        if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2661                                mgctx->ss_mask |= 1 << ssid;
2662        }
2663
2664        return 0;
2665}
2666
2667/**
2668 * cgroup_migrate - migrate a process or task to a cgroup
2669 * @leader: the leader of the process or the task to migrate
2670 * @threadgroup: whether @leader points to the whole process or a single task
2671 * @mgctx: migration context
2672 *
2673 * Migrate a process or task denoted by @leader.  If migrating a process,
2674 * the caller must be holding cgroup_threadgroup_rwsem.  The caller is also
2675 * responsible for invoking cgroup_migrate_add_src() and
2676 * cgroup_migrate_prepare_dst() on the targets before invoking this
2677 * function and following up with cgroup_migrate_finish().
2678 *
2679 * As long as a controller's ->can_attach() doesn't fail, this function is
2680 * guaranteed to succeed.  This means that, excluding ->can_attach()
2681 * failure, when migrating multiple targets, the success or failure can be
2682 * decided for all targets by invoking group_migrate_prepare_dst() before
2683 * actually starting migrating.
2684 */
2685int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2686                   struct cgroup_mgctx *mgctx)
2687{
2688        struct task_struct *task;
2689
2690        /*
2691         * Prevent freeing of tasks while we take a snapshot. Tasks that are
2692         * already PF_EXITING could be freed from underneath us unless we
2693         * take an rcu_read_lock.
2694         */
2695        spin_lock_irq(&css_set_lock);
2696        rcu_read_lock();
2697        task = leader;
2698        do {
2699                cgroup_migrate_add_task(task, mgctx);
2700                if (!threadgroup)
2701                        break;
2702        } while_each_thread(leader, task);
2703        rcu_read_unlock();
2704        spin_unlock_irq(&css_set_lock);
2705
2706        return cgroup_migrate_execute(mgctx);
2707}
2708
2709/**
2710 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2711 * @dst_cgrp: the cgroup to attach to
2712 * @leader: the task or the leader of the threadgroup to be attached
2713 * @threadgroup: attach the whole threadgroup?
2714 *
2715 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2716 */
2717int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2718                       bool threadgroup)
2719{
2720        DEFINE_CGROUP_MGCTX(mgctx);
2721        struct task_struct *task;
2722        int ret;
2723
2724        ret = cgroup_migrate_vet_dst(dst_cgrp);
2725        if (ret)
2726                return ret;
2727
2728        /* look up all src csets */
2729        spin_lock_irq(&css_set_lock);
2730        rcu_read_lock();
2731        task = leader;
2732        do {
2733                cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2734                if (!threadgroup)
2735                        break;
2736        } while_each_thread(leader, task);
2737        rcu_read_unlock();
2738        spin_unlock_irq(&css_set_lock);
2739
2740        /* prepare dst csets and commit */
2741        ret = cgroup_migrate_prepare_dst(&mgctx);
2742        if (!ret)
2743                ret = cgroup_migrate(leader, threadgroup, &mgctx);
2744
2745        cgroup_migrate_finish(&mgctx);
2746
2747        if (!ret)
2748                TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
2749
2750        return ret;
2751}
2752
2753struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup,
2754                                             bool *locked)
2755        __acquires(&cgroup_threadgroup_rwsem)
2756{
2757        struct task_struct *tsk;
2758        pid_t pid;
2759
2760        if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2761                return ERR_PTR(-EINVAL);
2762
2763        /*
2764         * If we migrate a single thread, we don't care about threadgroup
2765         * stability. If the thread is `current`, it won't exit(2) under our
2766         * hands or change PID through exec(2). We exclude
2767         * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write
2768         * callers by cgroup_mutex.
2769         * Therefore, we can skip the global lock.
2770         */
2771        lockdep_assert_held(&cgroup_mutex);
2772        if (pid || threadgroup) {
2773                percpu_down_write(&cgroup_threadgroup_rwsem);
2774                *locked = true;
2775        } else {
2776                *locked = false;
2777        }
2778
2779        rcu_read_lock();
2780        if (pid) {
2781                tsk = find_task_by_vpid(pid);
2782                if (!tsk) {
2783                        tsk = ERR_PTR(-ESRCH);
2784                        goto out_unlock_threadgroup;
2785                }
2786        } else {
2787                tsk = current;
2788        }
2789
2790        if (threadgroup)
2791                tsk = tsk->group_leader;
2792
2793        /*
2794         * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2795         * If userland migrates such a kthread to a non-root cgroup, it can
2796         * become trapped in a cpuset, or RT kthread may be born in a
2797         * cgroup with no rt_runtime allocated.  Just say no.
2798         */
2799        if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2800                tsk = ERR_PTR(-EINVAL);
2801                goto out_unlock_threadgroup;
2802        }
2803
2804        get_task_struct(tsk);
2805        goto out_unlock_rcu;
2806
2807out_unlock_threadgroup:
2808        if (*locked) {
2809                percpu_up_write(&cgroup_threadgroup_rwsem);
2810                *locked = false;
2811        }
2812out_unlock_rcu:
2813        rcu_read_unlock();
2814        return tsk;
2815}
2816
2817void cgroup_procs_write_finish(struct task_struct *task, bool locked)
2818        __releases(&cgroup_threadgroup_rwsem)
2819{
2820        struct cgroup_subsys *ss;
2821        int ssid;
2822
2823        /* release reference from cgroup_procs_write_start() */
2824        put_task_struct(task);
2825
2826        if (locked)
2827                percpu_up_write(&cgroup_threadgroup_rwsem);
2828        for_each_subsys(ss, ssid)
2829                if (ss->post_attach)
2830                        ss->post_attach();
2831}
2832
2833static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2834{
2835        struct cgroup_subsys *ss;
2836        bool printed = false;
2837        int ssid;
2838
2839        do_each_subsys_mask(ss, ssid, ss_mask) {
2840                if (printed)
2841                        seq_putc(seq, ' ');
2842                seq_puts(seq, ss->name);
2843                printed = true;
2844        } while_each_subsys_mask();
2845        if (printed)
2846                seq_putc(seq, '\n');
2847}
2848
2849/* show controllers which are enabled from the parent */
2850static int cgroup_controllers_show(struct seq_file *seq, void *v)
2851{
2852        struct cgroup *cgrp = seq_css(seq)->cgroup;
2853
2854        cgroup_print_ss_mask(seq, cgroup_control(cgrp));
2855        return 0;
2856}
2857
2858/* show controllers which are enabled for a given cgroup's children */
2859static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2860{
2861        struct cgroup *cgrp = seq_css(seq)->cgroup;
2862
2863        cgroup_print_ss_mask(seq, cgrp->subtree_control);
2864        return 0;
2865}
2866
2867/**
2868 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2869 * @cgrp: root of the subtree to update csses for
2870 *
2871 * @cgrp's control masks have changed and its subtree's css associations
2872 * need to be updated accordingly.  This function looks up all css_sets
2873 * which are attached to the subtree, creates the matching updated css_sets
2874 * and migrates the tasks to the new ones.
2875 */
2876static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2877{
2878        DEFINE_CGROUP_MGCTX(mgctx);
2879        struct cgroup_subsys_state *d_css;
2880        struct cgroup *dsct;
2881        struct css_set *src_cset;
2882        int ret;
2883
2884        lockdep_assert_held(&cgroup_mutex);
2885
2886        percpu_down_write(&cgroup_threadgroup_rwsem);
2887
2888        /* look up all csses currently attached to @cgrp's subtree */
2889        spin_lock_irq(&css_set_lock);
2890        cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2891                struct cgrp_cset_link *link;
2892
2893                list_for_each_entry(link, &dsct->cset_links, cset_link)
2894                        cgroup_migrate_add_src(link->cset, dsct, &mgctx);
2895        }
2896        spin_unlock_irq(&css_set_lock);
2897
2898        /* NULL dst indicates self on default hierarchy */
2899        ret = cgroup_migrate_prepare_dst(&mgctx);
2900        if (ret)
2901                goto out_finish;
2902
2903        spin_lock_irq(&css_set_lock);
2904        list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) {
2905                struct task_struct *task, *ntask;
2906
2907                /* all tasks in src_csets need to be migrated */
2908                list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2909                        cgroup_migrate_add_task(task, &mgctx);
2910        }
2911        spin_unlock_irq(&css_set_lock);
2912
2913        ret = cgroup_migrate_execute(&mgctx);
2914out_finish:
2915        cgroup_migrate_finish(&mgctx);
2916        percpu_up_write(&cgroup_threadgroup_rwsem);
2917        return ret;
2918}
2919
2920/**
2921 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
2922 * @cgrp: root of the target subtree
2923 *
2924 * Because css offlining is asynchronous, userland may try to re-enable a
2925 * controller while the previous css is still around.  This function grabs
2926 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
2927 */
2928void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
2929        __acquires(&cgroup_mutex)
2930{
2931        struct cgroup *dsct;
2932        struct cgroup_subsys_state *d_css;
2933        struct cgroup_subsys *ss;
2934        int ssid;
2935
2936restart:
2937        mutex_lock(&cgroup_mutex);
2938
2939        cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2940                for_each_subsys(ss, ssid) {
2941                        struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2942                        DEFINE_WAIT(wait);
2943
2944                        if (!css || !percpu_ref_is_dying(&css->refcnt))
2945                                continue;
2946
2947                        cgroup_get_live(dsct);
2948                        prepare_to_wait(&dsct->offline_waitq, &wait,
2949                                        TASK_UNINTERRUPTIBLE);
2950
2951                        mutex_unlock(&cgroup_mutex);
2952                        schedule();
2953                        finish_wait(&dsct->offline_waitq, &wait);
2954
2955                        cgroup_put(dsct);
2956                        goto restart;
2957                }
2958        }
2959}
2960
2961/**
2962 * cgroup_save_control - save control masks and dom_cgrp of a subtree
2963 * @cgrp: root of the target subtree
2964 *
2965 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
2966 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
2967 * itself.
2968 */
2969static void cgroup_save_control(struct cgroup *cgrp)
2970{
2971        struct cgroup *dsct;
2972        struct cgroup_subsys_state *d_css;
2973
2974        cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2975                dsct->old_subtree_control = dsct->subtree_control;
2976                dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
2977                dsct->old_dom_cgrp = dsct->dom_cgrp;
2978        }
2979}
2980
2981/**
2982 * cgroup_propagate_control - refresh control masks of a subtree
2983 * @cgrp: root of the target subtree
2984 *
2985 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
2986 * ->subtree_control and propagate controller availability through the
2987 * subtree so that descendants don't have unavailable controllers enabled.
2988 */
2989static void cgroup_propagate_control(struct cgroup *cgrp)
2990{
2991        struct cgroup *dsct;
2992        struct cgroup_subsys_state *d_css;
2993
2994        cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2995                dsct->subtree_control &= cgroup_control(dsct);
2996                dsct->subtree_ss_mask =
2997                        cgroup_calc_subtree_ss_mask(dsct->subtree_control,
2998                                                    cgroup_ss_mask(dsct));
2999        }
3000}
3001
3002/**
3003 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
3004 * @cgrp: root of the target subtree
3005 *
3006 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
3007 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3008 * itself.
3009 */
3010static void cgroup_restore_control(struct cgroup *cgrp)
3011{
3012        struct cgroup *dsct;
3013        struct cgroup_subsys_state *d_css;
3014
3015        cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3016                dsct->subtree_control = dsct->old_subtree_control;
3017                dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3018                dsct->dom_cgrp = dsct->old_dom_cgrp;
3019        }
3020}
3021
3022static bool css_visible(struct cgroup_subsys_state *css)
3023{
3024        struct cgroup_subsys *ss = css->ss;
3025        struct cgroup *cgrp = css->cgroup;
3026
3027        if (cgroup_control(cgrp) & (1 << ss->id))
3028                return true;
3029        if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3030                return false;
3031        return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3032}
3033
3034/**
3035 * cgroup_apply_control_enable - enable or show csses according to control
3036 * @cgrp: root of the target subtree
3037 *
3038 * Walk @cgrp's subtree and create new csses or make the existing ones
3039 * visible.  A css is created invisible if it's being implicitly enabled
3040 * through dependency.  An invisible css is made visible when the userland
3041 * explicitly enables it.
3042 *
3043 * Returns 0 on success, -errno on failure.  On failure, csses which have
3044 * been processed already aren't cleaned up.  The caller is responsible for
3045 * cleaning up with cgroup_apply_control_disable().
3046 */
3047static int cgroup_apply_control_enable(struct cgroup *cgrp)
3048{
3049        struct cgroup *dsct;
3050        struct cgroup_subsys_state *d_css;
3051        struct cgroup_subsys *ss;
3052        int ssid, ret;
3053
3054        cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3055                for_each_subsys(ss, ssid) {
3056                        struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3057
3058                        WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
3059
3060                        if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3061                                continue;
3062
3063                        if (!css) {
3064                                css = css_create(dsct, ss);
3065                                if (IS_ERR(css))
3066                                        return PTR_ERR(css);
3067                        }
3068
3069                        if (css_visible(css)) {
3070                                ret = css_populate_dir(css);
3071                                if (ret)
3072                                        return ret;
3073                        }
3074                }
3075        }
3076
3077        return 0;
3078}
3079
3080/**
3081 * cgroup_apply_control_disable - kill or hide csses according to control
3082 * @cgrp: root of the target subtree
3083 *
3084 * Walk @cgrp's subtree and kill and hide csses so that they match
3085 * cgroup_ss_mask() and cgroup_visible_mask().
3086 *
3087 * A css is hidden when the userland requests it to be disabled while other
3088 * subsystems are still depending on it.  The css must not actively control
3089 * resources and be in the vanilla state if it's made visible again later.
3090 * Controllers which may be depended upon should provide ->css_reset() for
3091 * this purpose.
3092 */
3093static void cgroup_apply_control_disable(struct cgroup *cgrp)
3094{
3095        struct cgroup *dsct;
3096        struct cgroup_subsys_state *d_css;
3097        struct cgroup_subsys *ss;
3098        int ssid;
3099
3100        cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3101                for_each_subsys(ss, ssid) {
3102                        struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3103
3104                        WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
3105
3106                        if (!css)
3107                                continue;
3108
3109                        if (css->parent &&
3110                            !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3111                                kill_css(css);
3112                        } else if (!css_visible(css)) {
3113                                css_clear_dir(css);
3114                                if (ss->css_reset)
3115                                        ss->css_reset(css);
3116                        }
3117                }
3118        }
3119}
3120
3121/**
3122 * cgroup_apply_control - apply control mask updates to the subtree
3123 * @cgrp: root of the target subtree
3124 *
3125 * subsystems can be enabled and disabled in a subtree using the following
3126 * steps.
3127 *
3128 * 1. Call cgroup_save_control() to stash the current state.
3129 * 2. Update ->subtree_control masks in the subtree as desired.
3130 * 3. Call cgroup_apply_control() to apply the changes.
3131 * 4. Optionally perform other related operations.
3132 * 5. Call cgroup_finalize_control() to finish up.
3133 *
3134 * This function implements step 3 and propagates the mask changes
3135 * throughout @cgrp's subtree, updates csses accordingly and perform
3136 * process migrations.
3137 */
3138static int cgroup_apply_control(struct cgroup *cgrp)
3139{
3140        int ret;
3141
3142        cgroup_propagate_control(cgrp);
3143
3144        ret = cgroup_apply_control_enable(cgrp);
3145        if (ret)
3146                return ret;
3147
3148        /*
3149         * At this point, cgroup_e_css_by_mask() results reflect the new csses
3150         * making the following cgroup_update_dfl_csses() properly update
3151         * css associations of all tasks in the subtree.
3152         */
3153        ret = cgroup_update_dfl_csses(cgrp);
3154        if (ret)
3155                return ret;
3156
3157        return 0;
3158}
3159
3160/**
3161 * cgroup_finalize_control - finalize control mask update
3162 * @cgrp: root of the target subtree
3163 * @ret: the result of the update
3164 *
3165 * Finalize control mask update.  See cgroup_apply_control() for more info.
3166 */
3167static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3168{
3169        if (ret) {
3170                cgroup_restore_control(cgrp);
3171                cgroup_propagate_control(cgrp);
3172        }
3173
3174        cgroup_apply_control_disable(cgrp);
3175}
3176
3177static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3178{
3179        u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3180
3181        /* if nothing is getting enabled, nothing to worry about */
3182        if (!enable)
3183                return 0;
3184
3185        /* can @cgrp host any resources? */
3186        if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3187                return -EOPNOTSUPP;
3188
3189        /* mixables don't care */
3190        if (cgroup_is_mixable(cgrp))
3191                return 0;
3192
3193        if (domain_enable) {
3194                /* can't enable domain controllers inside a thread subtree */
3195                if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3196                        return -EOPNOTSUPP;
3197        } else {
3198                /*
3199                 * Threaded controllers can handle internal competitions
3200                 * and are always allowed inside a (prospective) thread
3201                 * subtree.
3202                 */
3203                if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3204                        return 0;
3205        }
3206
3207        /*
3208         * Controllers can't be enabled for a cgroup with tasks to avoid
3209         * child cgroups competing against tasks.
3210         */
3211        if (cgroup_has_tasks(cgrp))
3212                return -EBUSY;
3213
3214        return 0;
3215}
3216
3217/* change the enabled child controllers for a cgroup in the default hierarchy */
3218static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3219                                            char *buf, size_t nbytes,
3220                                            loff_t off)
3221{
3222        u16 enable = 0, disable = 0;
3223        struct cgroup *cgrp, *child;
3224        struct cgroup_subsys *ss;
3225        char *tok;
3226        int ssid, ret;
3227
3228        /*
3229         * Parse input - space separated list of subsystem names prefixed
3230         * with either + or -.
3231         */
3232        buf = strstrip(buf);
3233        while ((tok = strsep(&buf, " "))) {
3234                if (tok[0] == '\0')
3235                        continue;
3236                do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3237                        if (!cgroup_ssid_enabled(ssid) ||
3238                            strcmp(tok + 1, ss->name))
3239                                continue;
3240
3241                        if (*tok == '+') {
3242                                enable |= 1 << ssid;
3243                                disable &= ~(1 << ssid);
3244                        } else if (*tok == '-') {
3245                                disable |= 1 << ssid;
3246                                enable &= ~(1 << ssid);
3247                        } else {
3248                                return -EINVAL;
3249                        }
3250                        break;
3251                } while_each_subsys_mask();
3252                if (ssid == CGROUP_SUBSYS_COUNT)
3253                        return -EINVAL;
3254        }
3255
3256        cgrp = cgroup_kn_lock_live(of->kn, true);
3257        if (!cgrp)
3258                return -ENODEV;
3259
3260        for_each_subsys(ss, ssid) {
3261                if (enable & (1 << ssid)) {
3262                        if (cgrp->subtree_control & (1 << ssid)) {
3263                                enable &= ~(1 << ssid);
3264                                continue;
3265                        }
3266
3267                        if (!(cgroup_control(cgrp) & (1 << ssid))) {
3268                                ret = -ENOENT;
3269                                goto out_unlock;
3270                        }
3271                } else if (disable & (1 << ssid)) {
3272                        if (!(cgrp->subtree_control & (1 << ssid))) {
3273                                disable &= ~(1 << ssid);
3274                                continue;
3275                        }
3276
3277                        /* a child has it enabled? */
3278                        cgroup_for_each_live_child(child, cgrp) {
3279                                if (child->subtree_control & (1 << ssid)) {
3280                                        ret = -EBUSY;
3281                                        goto out_unlock;
3282                                }
3283                        }
3284                }
3285        }
3286
3287        if (!enable && !disable) {
3288                ret = 0;
3289                goto out_unlock;
3290        }
3291
3292        ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3293        if (ret)
3294                goto out_unlock;
3295
3296        /* save and update control masks and prepare csses */
3297        cgroup_save_control(cgrp);
3298
3299        cgrp->subtree_control |= enable;
3300        cgrp->subtree_control &= ~disable;
3301
3302        ret = cgroup_apply_control(cgrp);
3303        cgroup_finalize_control(cgrp, ret);
3304        if (ret)
3305                goto out_unlock;
3306
3307        kernfs_activate(cgrp->kn);
3308out_unlock:
3309        cgroup_kn_unlock(of->kn);
3310        return ret ?: nbytes;
3311}
3312
3313/**
3314 * cgroup_enable_threaded - make @cgrp threaded
3315 * @cgrp: the target cgroup
3316 *
3317 * Called when "threaded" is written to the cgroup.type interface file and
3318 * tries to make @cgrp threaded and join the parent's resource domain.
3319 * This function is never called on the root cgroup as cgroup.type doesn't
3320 * exist on it.
3321 */
3322static int cgroup_enable_threaded(struct cgroup *cgrp)
3323{
3324        struct cgroup *parent = cgroup_parent(cgrp);
3325        struct cgroup *dom_cgrp = parent->dom_cgrp;
3326        struct cgroup *dsct;
3327        struct cgroup_subsys_state *d_css;
3328        int ret;
3329
3330        lockdep_assert_held(&cgroup_mutex);
3331
3332        /* noop if already threaded */
3333        if (cgroup_is_threaded(cgrp))
3334                return 0;
3335
3336        /*
3337         * If @cgroup is populated or has domain controllers enabled, it
3338         * can't be switched.  While the below cgroup_can_be_thread_root()
3339         * test can catch the same conditions, that's only when @parent is
3340         * not mixable, so let's check it explicitly.
3341         */
3342        if (cgroup_is_populated(cgrp) ||
3343            cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3344                return -EOPNOTSUPP;
3345
3346        /* we're joining the parent's domain, ensure its validity */
3347        if (!cgroup_is_valid_domain(dom_cgrp) ||
3348            !cgroup_can_be_thread_root(dom_cgrp))
3349                return -EOPNOTSUPP;
3350
3351        /*
3352         * The following shouldn't cause actual migrations and should
3353         * always succeed.
3354         */
3355        cgroup_save_control(cgrp);
3356
3357        cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3358                if (dsct == cgrp || cgroup_is_threaded(dsct))
3359                        dsct->dom_cgrp = dom_cgrp;
3360
3361        ret = cgroup_apply_control(cgrp);
3362        if (!ret)
3363                parent->nr_threaded_children++;
3364
3365        cgroup_finalize_control(cgrp, ret);
3366        return ret;
3367}
3368
3369static int cgroup_type_show(struct seq_file *seq, void *v)
3370{
3371        struct cgroup *cgrp = seq_css(seq)->cgroup;
3372
3373        if (cgroup_is_threaded(cgrp))
3374                seq_puts(seq, "threaded\n");
3375        else if (!cgroup_is_valid_domain(cgrp))
3376                seq_puts(seq, "domain invalid\n");
3377        else if (cgroup_is_thread_root(cgrp))
3378                seq_puts(seq, "domain threaded\n");
3379        else
3380                seq_puts(seq, "domain\n");
3381
3382        return 0;
3383}
3384
3385static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3386                                 size_t nbytes, loff_t off)
3387{
3388        struct cgroup *cgrp;
3389        int ret;
3390
3391        /* only switching to threaded mode is supported */
3392        if (strcmp(strstrip(buf), "threaded"))
3393                return -EINVAL;
3394
3395        cgrp = cgroup_kn_lock_live(of->kn, false);
3396        if (!cgrp)
3397                return -ENOENT;
3398
3399        /* threaded can only be enabled */
3400        ret = cgroup_enable_threaded(cgrp);
3401
3402        cgroup_kn_unlock(of->kn);
3403        return ret ?: nbytes;
3404}
3405
3406static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3407{
3408        struct cgroup *cgrp = seq_css(seq)->cgroup;
3409        int descendants = READ_ONCE(cgrp->max_descendants);
3410
3411        if (descendants == INT_MAX)
3412                seq_puts(seq, "max\n");
3413        else
3414                seq_printf(seq, "%d\n", descendants);
3415
3416        return 0;
3417}
3418
3419static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3420                                           char *buf, size_t nbytes, loff_t off)
3421{
3422        struct cgroup *cgrp;
3423        int descendants;
3424        ssize_t ret;
3425
3426        buf = strstrip(buf);
3427        if (!strcmp(buf, "max")) {
3428                descendants = INT_MAX;
3429        } else {
3430                ret = kstrtoint(buf, 0, &descendants);
3431                if (ret)
3432                        return ret;
3433        }
3434
3435        if (descendants < 0)
3436                return -ERANGE;
3437
3438        cgrp = cgroup_kn_lock_live(of->kn, false);
3439        if (!cgrp)
3440                return -ENOENT;
3441
3442        cgrp->max_descendants = descendants;
3443
3444        cgroup_kn_unlock(of->kn);
3445
3446        return nbytes;
3447}
3448
3449static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3450{
3451        struct cgroup *cgrp = seq_css(seq)->cgroup;
3452        int depth = READ_ONCE(cgrp->max_depth);
3453
3454        if (depth == INT_MAX)
3455                seq_puts(seq, "max\n");
3456        else
3457                seq_printf(seq, "%d\n", depth);
3458
3459        return 0;
3460}
3461
3462static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3463                                      char *buf, size_t nbytes, loff_t off)
3464{
3465        struct cgroup *cgrp;
3466        ssize_t ret;
3467        int depth;
3468
3469        buf = strstrip(buf);
3470        if (!strcmp(buf, "max")) {
3471                depth = INT_MAX;
3472        } else {
3473                ret = kstrtoint(buf, 0, &depth);
3474                if (ret)
3475                        return ret;
3476        }
3477
3478        if (depth < 0)
3479                return -ERANGE;
3480
3481        cgrp = cgroup_kn_lock_live(of->kn, false);
3482        if (!cgrp)
3483                return -ENOENT;
3484
3485        cgrp->max_depth = depth;
3486
3487        cgroup_kn_unlock(of->kn);
3488
3489        return nbytes;
3490}
3491
3492static int cgroup_events_show(struct seq_file *seq, void *v)
3493{
3494        struct cgroup *cgrp = seq_css(seq)->cgroup;
3495
3496        seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp));
3497        seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags));
3498
3499        return 0;
3500}
3501
3502static int cgroup_stat_show(struct seq_file *seq, void *v)
3503{
3504        struct cgroup *cgroup = seq_css(seq)->cgroup;
3505
3506        seq_printf(seq, "nr_descendants %d\n",
3507                   cgroup->nr_descendants);
3508        seq_printf(seq, "nr_dying_descendants %d\n",
3509                   cgroup->nr_dying_descendants);
3510
3511        return 0;
3512}
3513
3514static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq,
3515                                                 struct cgroup *cgrp, int ssid)
3516{
3517        struct cgroup_subsys *ss = cgroup_subsys[ssid];
3518        struct cgroup_subsys_state *css;
3519        int ret;
3520
3521        if (!ss->css_extra_stat_show)
3522                return 0;
3523
3524        css = cgroup_tryget_css(cgrp, ss);
3525        if (!css)
3526                return 0;
3527
3528        ret = ss->css_extra_stat_show(seq, css);
3529        css_put(css);
3530        return ret;
3531}
3532
3533static int cpu_stat_show(struct seq_file *seq, void *v)
3534{
3535        struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3536        int ret = 0;
3537
3538        cgroup_base_stat_cputime_show(seq);
3539#ifdef CONFIG_CGROUP_SCHED
3540        ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id);
3541#endif
3542        return ret;
3543}
3544
3545#ifdef CONFIG_PSI
3546static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
3547{
3548        struct cgroup *cgrp = seq_css(seq)->cgroup;
3549        struct psi_group *psi = cgroup_id(cgrp) == 1 ? &psi_system : &cgrp->psi;
3550
3551        return psi_show(seq, psi, PSI_IO);
3552}
3553static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
3554{
3555        struct cgroup *cgrp = seq_css(seq)->cgroup;
3556        struct psi_group *psi = cgroup_id(cgrp) == 1 ? &psi_system : &cgrp->psi;
3557
3558        return psi_show(seq, psi, PSI_MEM);
3559}
3560static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
3561{
3562        struct cgroup *cgrp = seq_css(seq)->cgroup;
3563        struct psi_group *psi = cgroup_id(cgrp) == 1 ? &psi_system : &cgrp->psi;
3564
3565        return psi_show(seq, psi, PSI_CPU);
3566}
3567
3568static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, char *buf,
3569                                          size_t nbytes, enum psi_res res)
3570{
3571        struct psi_trigger *new;
3572        struct cgroup *cgrp;
3573
3574        cgrp = cgroup_kn_lock_live(of->kn, false);
3575        if (!cgrp)
3576                return -ENODEV;
3577
3578        cgroup_get(cgrp);
3579        cgroup_kn_unlock(of->kn);
3580
3581        new = psi_trigger_create(&cgrp->psi, buf, nbytes, res);
3582        if (IS_ERR(new)) {
3583                cgroup_put(cgrp);
3584                return PTR_ERR(new);
3585        }
3586
3587        psi_trigger_replace(&of->priv, new);
3588
3589        cgroup_put(cgrp);
3590
3591        return nbytes;
3592}
3593
3594static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of,
3595                                          char *buf, size_t nbytes,
3596                                          loff_t off)
3597{
3598        return cgroup_pressure_write(of, buf, nbytes, PSI_IO);
3599}
3600
3601static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of,
3602                                          char *buf, size_t nbytes,
3603                                          loff_t off)
3604{
3605        return cgroup_pressure_write(of, buf, nbytes, PSI_MEM);
3606}
3607
3608static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of,
3609                                          char *buf, size_t nbytes,
3610                                          loff_t off)
3611{
3612        return cgroup_pressure_write(of, buf, nbytes, PSI_CPU);
3613}
3614
3615static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of,
3616                                          poll_table *pt)
3617{
3618        return psi_trigger_poll(&of->priv, of->file, pt);
3619}
3620
3621static void cgroup_pressure_release(struct kernfs_open_file *of)
3622{
3623        psi_trigger_replace(&of->priv, NULL);
3624}
3625#endif /* CONFIG_PSI */
3626
3627static int cgroup_freeze_show(struct seq_file *seq, void *v)
3628{
3629        struct cgroup *cgrp = seq_css(seq)->cgroup;
3630
3631        seq_printf(seq, "%d\n", cgrp->freezer.freeze);
3632
3633        return 0;
3634}
3635
3636static ssize_t cgroup_freeze_write(struct kernfs_open_file *of,
3637                                   char *buf, size_t nbytes, loff_t off)
3638{
3639        struct cgroup *cgrp;
3640        ssize_t ret;
3641        int freeze;
3642
3643        ret = kstrtoint(strstrip(buf), 0, &freeze);
3644        if (ret)
3645                return ret;
3646
3647        if (freeze < 0 || freeze > 1)
3648                return -ERANGE;
3649
3650        cgrp = cgroup_kn_lock_live(of->kn, false);
3651        if (!cgrp)
3652                return -ENOENT;
3653
3654        cgroup_freeze(cgrp, freeze);
3655
3656        cgroup_kn_unlock(of->kn);
3657
3658        return nbytes;
3659}
3660
3661static int cgroup_file_open(struct kernfs_open_file *of)
3662{
3663        struct cftype *cft = of->kn->priv;
3664
3665        if (cft->open)
3666                return cft->open(of);
3667        return 0;
3668}
3669
3670static void cgroup_file_release(struct kernfs_open_file *of)
3671{
3672        struct cftype *cft = of->kn->priv;
3673
3674        if (cft->release)
3675                cft->release(of);
3676}
3677
3678static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3679                                 size_t nbytes, loff_t off)
3680{
3681        struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
3682        struct cgroup *cgrp = of->kn->parent->priv;
3683        struct cftype *cft = of->kn->priv;
3684        struct cgroup_subsys_state *css;
3685        int ret;
3686
3687        /*
3688         * If namespaces are delegation boundaries, disallow writes to
3689         * files in an non-init namespace root from inside the namespace
3690         * except for the files explicitly marked delegatable -
3691         * cgroup.procs and cgroup.subtree_control.
3692         */
3693        if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
3694            !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
3695            ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp)
3696                return -EPERM;
3697
3698        if (cft->write)
3699                return cft->write(of, buf, nbytes, off);
3700
3701        /*
3702         * kernfs guarantees that a file isn't deleted with operations in
3703         * flight, which means that the matching css is and stays alive and
3704         * doesn't need to be pinned.  The RCU locking is not necessary
3705         * either.  It's just for the convenience of using cgroup_css().
3706         */
3707        rcu_read_lock();
3708        css = cgroup_css(cgrp, cft->ss);
3709        rcu_read_unlock();
3710
3711        if (cft->write_u64) {
3712                unsigned long long v;
3713                ret = kstrtoull(buf, 0, &v);
3714                if (!ret)
3715                        ret = cft->write_u64(css, cft, v);
3716        } else if (cft->write_s64) {
3717                long long v;
3718                ret = kstrtoll(buf, 0, &v);
3719                if (!ret)
3720                        ret = cft->write_s64(css, cft, v);
3721        } else {
3722                ret = -EINVAL;
3723        }
3724
3725        return ret ?: nbytes;
3726}
3727
3728static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt)
3729{
3730        struct cftype *cft = of->kn->priv;
3731
3732        if (cft->poll)
3733                return cft->poll(of, pt);
3734
3735        return kernfs_generic_poll(of, pt);
3736}
3737
3738static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3739{
3740        return seq_cft(seq)->seq_start(seq, ppos);
3741}
3742
3743static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3744{
3745        return seq_cft(seq)->seq_next(seq, v, ppos);
3746}
3747
3748static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3749{
3750        if (seq_cft(seq)->seq_stop)
3751                seq_cft(seq)->seq_stop(seq, v);
3752}
3753
3754static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3755{
3756        struct cftype *cft = seq_cft(m);
3757        struct cgroup_subsys_state *css = seq_css(m);
3758
3759        if (cft->seq_show)
3760                return cft->seq_show(m, arg);
3761
3762        if (cft->read_u64)
3763                seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3764        else if (cft->read_s64)
3765                seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3766        else
3767                return -EINVAL;
3768        return 0;
3769}
3770
3771static struct kernfs_ops cgroup_kf_single_ops = {
3772        .atomic_write_len       = PAGE_SIZE,
3773        .open                   = cgroup_file_open,
3774        .release                = cgroup_file_release,
3775        .write                  = cgroup_file_write,
3776        .poll                   = cgroup_file_poll,
3777        .seq_show               = cgroup_seqfile_show,
3778};
3779
3780static struct kernfs_ops cgroup_kf_ops = {
3781        .atomic_write_len       = PAGE_SIZE,
3782        .open                   = cgroup_file_open,
3783        .release                = cgroup_file_release,
3784        .write                  = cgroup_file_write,
3785        .poll                   = cgroup_file_poll,
3786        .seq_start              = cgroup_seqfile_start,
3787        .seq_next               = cgroup_seqfile_next,
3788        .seq_stop               = cgroup_seqfile_stop,
3789        .seq_show               = cgroup_seqfile_show,
3790};
3791
3792/* set uid and gid of cgroup dirs and files to that of the creator */
3793static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3794{
3795        struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3796                               .ia_uid = current_fsuid(),
3797                               .ia_gid = current_fsgid(), };
3798
3799        if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3800            gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3801                return 0;
3802
3803        return kernfs_setattr(kn, &iattr);
3804}
3805
3806static void cgroup_file_notify_timer(struct timer_list *timer)
3807{
3808        cgroup_file_notify(container_of(timer, struct cgroup_file,
3809                                        notify_timer));
3810}
3811
3812static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3813                           struct cftype *cft)
3814{
3815        char name[CGROUP_FILE_NAME_MAX];
3816        struct kernfs_node *kn;
3817        struct lock_class_key *key = NULL;
3818        int ret;
3819
3820#ifdef CONFIG_DEBUG_LOCK_ALLOC
3821        key = &cft->lockdep_key;
3822#endif
3823        kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3824                                  cgroup_file_mode(cft),
3825                                  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
3826                                  0, cft->kf_ops, cft,
3827                                  NULL, key);
3828        if (IS_ERR(kn))
3829                return PTR_ERR(kn);
3830
3831        ret = cgroup_kn_set_ugid(kn);
3832        if (ret) {
3833                kernfs_remove(kn);
3834                return ret;
3835        }
3836
3837        if (cft->file_offset) {
3838                struct cgroup_file *cfile = (void *)css + cft->file_offset;
3839
3840                timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
3841
3842                spin_lock_irq(&cgroup_file_kn_lock);
3843                cfile->kn = kn;
3844                spin_unlock_irq(&cgroup_file_kn_lock);
3845        }
3846
3847        return 0;
3848}
3849
3850/**
3851 * cgroup_addrm_files - add or remove files to a cgroup directory
3852 * @css: the target css
3853 * @cgrp: the target cgroup (usually css->cgroup)
3854 * @cfts: array of cftypes to be added
3855 * @is_add: whether to add or remove
3856 *
3857 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3858 * For removals, this function never fails.
3859 */
3860static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3861                              struct cgroup *cgrp, struct cftype cfts[],
3862                              bool is_add)
3863{
3864        struct cftype *cft, *cft_end = NULL;
3865        int ret = 0;
3866
3867        lockdep_assert_held(&cgroup_mutex);
3868
3869restart:
3870        for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3871                /* does cft->flags tell us to skip this file on @cgrp? */
3872                if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3873                        continue;
3874                if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3875                        continue;
3876                if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3877                        continue;
3878                if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3879                        continue;
3880                if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug)
3881                        continue;
3882                if (is_add) {
3883                        ret = cgroup_add_file(css, cgrp, cft);
3884                        if (ret) {
3885                                pr_warn("%s: failed to add %s, err=%d\n",
3886                                        __func__, cft->name, ret);
3887                                cft_end = cft;
3888                                is_add = false;
3889                                goto restart;
3890                        }
3891                } else {
3892                        cgroup_rm_file(cgrp, cft);
3893                }
3894        }
3895        return ret;
3896}
3897
3898static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3899{
3900        struct cgroup_subsys *ss = cfts[0].ss;
3901        struct cgroup *root = &ss->root->cgrp;
3902        struct cgroup_subsys_state *css;
3903        int ret = 0;
3904
3905        lockdep_assert_held(&cgroup_mutex);
3906
3907        /* add/rm files for all cgroups created before */
3908        css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3909                struct cgroup *cgrp = css->cgroup;
3910
3911                if (!(css->flags & CSS_VISIBLE))
3912                        continue;
3913
3914                ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
3915                if (ret)
3916                        break;
3917        }
3918
3919        if (is_add && !ret)
3920                kernfs_activate(root->kn);
3921        return ret;
3922}
3923
3924static void cgroup_exit_cftypes(struct cftype *cfts)
3925{
3926        struct cftype *cft;
3927
3928        for (cft = cfts; cft->name[0] != '\0'; cft++) {
3929                /* free copy for custom atomic_write_len, see init_cftypes() */
3930                if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3931                        kfree(cft->kf_ops);
3932                cft->kf_ops = NULL;
3933                cft->ss = NULL;
3934
3935                /* revert flags set by cgroup core while adding @cfts */
3936                cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3937        }
3938}
3939
3940static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3941{
3942        struct cftype *cft;
3943
3944        for (cft = cfts; cft->name[0] != '\0'; cft++) {
3945                struct kernfs_ops *kf_ops;
3946
3947                WARN_ON(cft->ss || cft->kf_ops);
3948
3949                if (cft->seq_start)
3950                        kf_ops = &cgroup_kf_ops;
3951                else
3952                        kf_ops = &cgroup_kf_single_ops;
3953
3954                /*
3955                 * Ugh... if @cft wants a custom max_write_len, we need to
3956                 * make a copy of kf_ops to set its atomic_write_len.
3957                 */
3958                if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3959                        kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3960                        if (!kf_ops) {
3961                                cgroup_exit_cftypes(cfts);
3962                                return -ENOMEM;
3963                        }
3964                        kf_ops->atomic_write_len = cft->max_write_len;
3965                }
3966
3967                cft->kf_ops = kf_ops;
3968                cft->ss = ss;
3969        }
3970
3971        return 0;
3972}
3973
3974static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3975{
3976        lockdep_assert_held(&cgroup_mutex);
3977
3978        if (!cfts || !cfts[0].ss)
3979                return -ENOENT;
3980
3981        list_del(&cfts->node);
3982        cgroup_apply_cftypes(cfts, false);
3983        cgroup_exit_cftypes(cfts);
3984        return 0;
3985}
3986
3987/**
3988 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3989 * @cfts: zero-length name terminated array of cftypes
3990 *
3991 * Unregister @cfts.  Files described by @cfts are removed from all
3992 * existing cgroups and all future cgroups won't have them either.  This
3993 * function can be called anytime whether @cfts' subsys is attached or not.
3994 *
3995 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3996 * registered.
3997 */
3998int cgroup_rm_cftypes(struct cftype *cfts)
3999{
4000        int ret;
4001
4002        mutex_lock(&cgroup_mutex);
4003        ret = cgroup_rm_cftypes_locked(cfts);
4004        mutex_unlock(&cgroup_mutex);
4005        return ret;
4006}
4007
4008/**
4009 * cgroup_add_cftypes - add an array of cftypes to a subsystem
4010 * @ss: target cgroup subsystem
4011 * @cfts: zero-length name terminated array of cftypes
4012 *
4013 * Register @cfts to @ss.  Files described by @cfts are created for all
4014 * existing cgroups to which @ss is attached and all future cgroups will
4015 * have them too.  This function can be called anytime whether @ss is
4016 * attached or not.
4017 *
4018 * Returns 0 on successful registration, -errno on failure.  Note that this
4019 * function currently returns 0 as long as @cfts registration is successful
4020 * even if some file creation attempts on existing cgroups fail.
4021 */
4022static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4023{
4024        int ret;
4025
4026        if (!cgroup_ssid_enabled(ss->id))
4027                return 0;
4028
4029        if (!cfts || cfts[0].name[0] == '\0')
4030                return 0;
4031
4032        ret = cgroup_init_cftypes(ss, cfts);
4033        if (ret)
4034                return ret;
4035
4036        mutex_lock(&cgroup_mutex);
4037
4038        list_add_tail(&cfts->node, &ss->cfts);
4039        ret = cgroup_apply_cftypes(cfts, true);
4040        if (ret)
4041                cgroup_rm_cftypes_locked(cfts);
4042
4043        mutex_unlock(&cgroup_mutex);
4044        return ret;
4045}
4046
4047/**
4048 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
4049 * @ss: target cgroup subsystem
4050 * @cfts: zero-length name terminated array of cftypes
4051 *
4052 * Similar to cgroup_add_cftypes() but the added files are only used for
4053 * the default hierarchy.
4054 */
4055int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4056{
4057        struct cftype *cft;
4058
4059        for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4060                cft->flags |= __CFTYPE_ONLY_ON_DFL;
4061        return cgroup_add_cftypes(ss, cfts);
4062}
4063
4064/**
4065 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
4066 * @ss: target cgroup subsystem
4067 * @cfts: zero-length name terminated array of cftypes
4068 *
4069 * Similar to cgroup_add_cftypes() but the added files are only used for
4070 * the legacy hierarchies.
4071 */
4072int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4073{
4074        struct cftype *cft;
4075
4076        for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4077                cft->flags |= __CFTYPE_NOT_ON_DFL;
4078        return cgroup_add_cftypes(ss, cfts);
4079}
4080
4081/**
4082 * cgroup_file_notify - generate a file modified event for a cgroup_file
4083 * @cfile: target cgroup_file
4084 *
4085 * @cfile must have been obtained by setting cftype->file_offset.
4086 */
4087void cgroup_file_notify(struct cgroup_file *cfile)
4088{
4089        unsigned long flags;
4090
4091        spin_lock_irqsave(&cgroup_file_kn_lock, flags);
4092        if (cfile->kn) {
4093                unsigned long last = cfile->notified_at;
4094                unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
4095
4096                if (time_in_range(jiffies, last, next)) {
4097                        timer_reduce(&cfile->notify_timer, next);
4098                } else {
4099                        kernfs_notify(cfile->kn);
4100                        cfile->notified_at = jiffies;
4101                }
4102        }
4103        spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
4104}
4105
4106/**
4107 * css_next_child - find the next child of a given css
4108 * @pos: the current position (%NULL to initiate traversal)
4109 * @parent: css whose children to walk
4110 *
4111 * This function returns the next child of @parent and should be called
4112 * under either cgroup_mutex or RCU read lock.  The only requirement is
4113 * that @parent and @pos are accessible.  The next sibling is guaranteed to
4114 * be returned regardless of their states.
4115 *
4116 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4117 * css which finished ->css_online() is guaranteed to be visible in the
4118 * future iterations and will stay visible until the last reference is put.
4119 * A css which hasn't finished ->css_online() or already finished
4120 * ->css_offline() may show up during traversal.  It's each subsystem's
4121 * responsibility to synchronize against on/offlining.
4122 */
4123struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
4124                                           struct cgroup_subsys_state *parent)
4125{
4126        struct cgroup_subsys_state *next;
4127
4128        cgroup_assert_mutex_or_rcu_locked();
4129
4130        /*
4131         * @pos could already have been unlinked from the sibling list.
4132         * Once a cgroup is removed, its ->sibling.next is no longer
4133         * updated when its next sibling changes.  CSS_RELEASED is set when
4134         * @pos is taken off list, at which time its next pointer is valid,
4135         * and, as releases are serialized, the one pointed to by the next
4136         * pointer is guaranteed to not have started release yet.  This
4137         * implies that if we observe !CSS_RELEASED on @pos in this RCU
4138         * critical section, the one pointed to by its next pointer is
4139         * guaranteed to not have finished its RCU grace period even if we
4140         * have dropped rcu_read_lock() inbetween iterations.
4141         *
4142         * If @pos has CSS_RELEASED set, its next pointer can't be
4143         * dereferenced; however, as each css is given a monotonically
4144         * increasing unique serial number and always appended to the
4145         * sibling list, the next one can be found by walking the parent's
4146         * children until the first css with higher serial number than
4147         * @pos's.  While this path can be slower, it happens iff iteration
4148         * races against release and the race window is very small.
4149         */
4150        if (!pos) {
4151                next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
4152        } else if (likely(!(pos->flags & CSS_RELEASED))) {
4153                next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
4154        } else {
4155                list_for_each_entry_rcu(next, &parent->children, sibling)
4156                        if (next->serial_nr > pos->serial_nr)
4157                                break;
4158        }
4159
4160        /*
4161         * @next, if not pointing to the head, can be dereferenced and is
4162         * the next sibling.
4163         */
4164        if (&next->sibling != &parent->children)
4165                return next;
4166        return NULL;
4167}
4168
4169/**
4170 * css_next_descendant_pre - find the next descendant for pre-order walk
4171 * @pos: the current position (%NULL to initiate traversal)
4172 * @root: css whose descendants to walk
4173 *
4174 * To be used by css_for_each_descendant_pre().  Find the next descendant
4175 * to visit for pre-order traversal of @root's descendants.  @root is
4176 * included in the iteration and the first node to be visited.
4177 *
4178 * While this function requires cgroup_mutex or RCU read locking, it
4179 * doesn't require the whole traversal to be contained in a single critical
4180 * section.  This function will return the correct next descendant as long
4181 * as both @pos and @root are accessible and @pos is a descendant of @root.
4182 *
4183 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4184 * css which finished ->css_online() is guaranteed to be visible in the
4185 * future iterations and will stay visible until the last reference is put.
4186 * A css which hasn't finished ->css_online() or already finished
4187 * ->css_offline() may show up during traversal.  It's each subsystem's
4188 * responsibility to synchronize against on/offlining.
4189 */
4190struct cgroup_subsys_state *
4191css_next_descendant_pre(struct cgroup_subsys_state *pos,
4192                        struct cgroup_subsys_state *root)
4193{
4194        struct cgroup_subsys_state *next;
4195
4196        cgroup_assert_mutex_or_rcu_locked();
4197
4198        /* if first iteration, visit @root */
4199        if (!pos)
4200                return root;
4201
4202        /* visit the first child if exists */
4203        next = css_next_child(NULL, pos);
4204        if (next)
4205                return next;
4206
4207        /* no child, visit my or the closest ancestor's next sibling */
4208        while (pos != root) {
4209                next = css_next_child(pos, pos->parent);
4210                if (next)
4211                        return next;
4212                pos = pos->parent;
4213        }
4214
4215        return NULL;
4216}
4217EXPORT_SYMBOL_GPL(css_next_descendant_pre);
4218
4219/**
4220 * css_rightmost_descendant - return the rightmost descendant of a css
4221 * @pos: css of interest
4222 *
4223 * Return the rightmost descendant of @pos.  If there's no descendant, @pos
4224 * is returned.  This can be used during pre-order traversal to skip
4225 * subtree of @pos.
4226 *
4227 * While this function requires cgroup_mutex or RCU read locking, it
4228 * doesn't require the whole traversal to be contained in a single critical
4229 * section.  This function will return the correct rightmost descendant as
4230 * long as @pos is accessible.
4231 */
4232struct cgroup_subsys_state *
4233css_rightmost_descendant(struct cgroup_subsys_state *pos)
4234{
4235        struct cgroup_subsys_state *last, *tmp;
4236
4237        cgroup_assert_mutex_or_rcu_locked();
4238
4239        do {
4240                last = pos;
4241                /* ->prev isn't RCU safe, walk ->next till the end */
4242                pos = NULL;
4243                css_for_each_child(tmp, last)
4244                        pos = tmp;
4245        } while (pos);
4246
4247        return last;
4248}
4249
4250static struct cgroup_subsys_state *
4251css_leftmost_descendant(struct cgroup_subsys_state *pos)
4252{
4253        struct cgroup_subsys_state *last;
4254
4255        do {
4256                last = pos;
4257                pos = css_next_child(NULL, pos);
4258        } while (pos);
4259
4260        return last;
4261}
4262
4263/**
4264 * css_next_descendant_post - find the next descendant for post-order walk
4265 * @pos: the current position (%NULL to initiate traversal)
4266 * @root: css whose descendants to walk
4267 *
4268 * To be used by css_for_each_descendant_post().  Find the next descendant
4269 * to visit for post-order traversal of @root's descendants.  @root is
4270 * included in the iteration and the last node to be visited.
4271 *
4272 * While this function requires cgroup_mutex or RCU read locking, it
4273 * doesn't require the whole traversal to be contained in a single critical
4274 * section.  This function will return the correct next descendant as long
4275 * as both @pos and @cgroup are accessible and @pos is a descendant of
4276 * @cgroup.
4277 *
4278 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4279 * css which finished ->css_online() is guaranteed to be visible in the
4280 * future iterations and will stay visible until the last reference is put.
4281 * A css which hasn't finished ->css_online() or already finished
4282 * ->css_offline() may show up during traversal.  It's each subsystem's
4283 * responsibility to synchronize against on/offlining.
4284 */
4285struct cgroup_subsys_state *
4286css_next_descendant_post(struct cgroup_subsys_state *pos,
4287                         struct cgroup_subsys_state *root)
4288{
4289        struct cgroup_subsys_state *next;
4290
4291        cgroup_assert_mutex_or_rcu_locked();
4292
4293        /* if first iteration, visit leftmost descendant which may be @root */
4294        if (!pos)
4295                return css_leftmost_descendant(root);
4296
4297        /* if we visited @root, we're done */
4298        if (pos == root)
4299                return NULL;
4300
4301        /* if there's an unvisited sibling, visit its leftmost descendant */
4302        next = css_next_child(pos, pos->parent);
4303        if (next)
4304                return css_leftmost_descendant(next);
4305
4306        /* no sibling left, visit parent */
4307        return pos->parent;
4308}
4309
4310/**
4311 * css_has_online_children - does a css have online children
4312 * @css: the target css
4313 *
4314 * Returns %true if @css has any online children; otherwise, %false.  This
4315 * function can be called from any context but the caller is responsible
4316 * for synchronizing against on/offlining as necessary.
4317 */
4318bool css_has_online_children(struct cgroup_subsys_state *css)
4319{
4320        struct cgroup_subsys_state *child;
4321        bool ret = false;
4322
4323        rcu_read_lock();
4324        css_for_each_child(child, css) {
4325                if (child->flags & CSS_ONLINE) {
4326                        ret = true;
4327                        break;
4328                }
4329        }
4330        rcu_read_unlock();
4331        return ret;
4332}
4333
4334static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4335{
4336        struct list_head *l;
4337        struct cgrp_cset_link *link;
4338        struct css_set *cset;
4339
4340        lockdep_assert_held(&css_set_lock);
4341
4342        /* find the next threaded cset */
4343        if (it->tcset_pos) {
4344                l = it->tcset_pos->next;
4345
4346                if (l != it->tcset_head) {
4347                        it->tcset_pos = l;
4348                        return container_of(l, struct css_set,
4349                                            threaded_csets_node);
4350                }
4351
4352                it->tcset_pos = NULL;
4353        }
4354
4355        /* find the next cset */
4356        l = it->cset_pos;
4357        l = l->next;
4358        if (l == it->cset_head) {
4359                it->cset_pos = NULL;
4360                return NULL;
4361        }
4362
4363        if (it->ss) {
4364                cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4365        } else {
4366                link = list_entry(l, struct cgrp_cset_link, cset_link);
4367                cset = link->cset;
4368        }
4369
4370        it->cset_pos = l;
4371
4372        /* initialize threaded css_set walking */
4373        if (it->flags & CSS_TASK_ITER_THREADED) {
4374                if (it->cur_dcset)
4375                        put_css_set_locked(it->cur_dcset);
4376                it->cur_dcset = cset;
4377                get_css_set(cset);
4378
4379                it->tcset_head = &cset->threaded_csets;
4380                it->tcset_pos = &cset->threaded_csets;
4381        }
4382
4383        return cset;
4384}
4385
4386/**
4387 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
4388 * @it: the iterator to advance
4389 *
4390 * Advance @it to the next css_set to walk.
4391 */
4392static void css_task_iter_advance_css_set(struct css_task_iter *it)
4393{
4394        struct css_set *cset;
4395
4396        lockdep_assert_held(&css_set_lock);
4397
4398        /* Advance to the next non-empty css_set */
4399        do {
4400                cset = css_task_iter_next_css_set(it);
4401                if (!cset) {
4402                        it->task_pos = NULL;
4403                        return;
4404                }
4405        } while (!css_set_populated(cset) && list_empty(&cset->dying_tasks));
4406
4407        if (!list_empty(&cset->tasks))
4408                it->task_pos = cset->tasks.next;
4409        else if (!list_empty(&cset->mg_tasks))
4410                it->task_pos = cset->mg_tasks.next;
4411        else
4412                it->task_pos = cset->dying_tasks.next;
4413
4414        it->tasks_head = &cset->tasks;
4415        it->mg_tasks_head = &cset->mg_tasks;
4416        it->dying_tasks_head = &cset->dying_tasks;
4417
4418        /*
4419         * We don't keep css_sets locked across iteration steps and thus
4420         * need to take steps to ensure that iteration can be resumed after
4421         * the lock is re-acquired.  Iteration is performed at two levels -
4422         * css_sets and tasks in them.
4423         *
4424         * Once created, a css_set never leaves its cgroup lists, so a
4425         * pinned css_set is guaranteed to stay put and we can resume
4426         * iteration afterwards.
4427         *
4428         * Tasks may leave @cset across iteration steps.  This is resolved
4429         * by registering each iterator with the css_set currently being
4430         * walked and making css_set_move_task() advance iterators whose
4431         * next task is leaving.
4432         */
4433        if (it->cur_cset) {
4434                list_del(&it->iters_node);
4435                put_css_set_locked(it->cur_cset);
4436        }
4437        get_css_set(cset);
4438        it->cur_cset = cset;
4439        list_add(&it->iters_node, &cset->task_iters);
4440}
4441
4442static void css_task_iter_skip(struct css_task_iter *it,
4443                               struct task_struct *task)
4444{
4445        lockdep_assert_held(&css_set_lock);
4446
4447        if (it->task_pos == &task->cg_list) {
4448                it->task_pos = it->task_pos->next;
4449                it->flags |= CSS_TASK_ITER_SKIPPED;
4450        }
4451}
4452
4453static void css_task_iter_advance(struct css_task_iter *it)
4454{
4455        struct task_struct *task;
4456
4457        lockdep_assert_held(&css_set_lock);
4458repeat:
4459        if (it->task_pos) {
4460                /*
4461                 * Advance iterator to find next entry.  cset->tasks is
4462                 * consumed first and then ->mg_tasks.  After ->mg_tasks,
4463                 * we move onto the next cset.
4464                 */
4465                if (it->flags & CSS_TASK_ITER_SKIPPED)
4466                        it->flags &= ~CSS_TASK_ITER_SKIPPED;
4467                else
4468                        it->task_pos = it->task_pos->next;
4469
4470                if (it->task_pos == it->tasks_head)
4471                        it->task_pos = it->mg_tasks_head->next;
4472                if (it->task_pos == it->mg_tasks_head)
4473                        it->task_pos = it->dying_tasks_head->next;
4474                if (it->task_pos == it->dying_tasks_head)
4475                        css_task_iter_advance_css_set(it);
4476        } else {
4477                /* called from start, proceed to the first cset */
4478                css_task_iter_advance_css_set(it);
4479        }
4480
4481        if (!it->task_pos)
4482                return;
4483
4484        task = list_entry(it->task_pos, struct task_struct, cg_list);
4485
4486        if (it->flags & CSS_TASK_ITER_PROCS) {
4487                /* if PROCS, skip over tasks which aren't group leaders */
4488                if (!thread_group_leader(task))
4489                        goto repeat;
4490
4491                /* and dying leaders w/o live member threads */
4492                if (!atomic_read(&task->signal->live))
4493                        goto repeat;
4494        } else {
4495                /* skip all dying ones */
4496                if (task->flags & PF_EXITING)
4497                        goto repeat;
4498        }
4499}
4500
4501/**
4502 * css_task_iter_start - initiate task iteration
4503 * @css: the css to walk tasks of
4504 * @flags: CSS_TASK_ITER_* flags
4505 * @it: the task iterator to use
4506 *
4507 * Initiate iteration through the tasks of @css.  The caller can call
4508 * css_task_iter_next() to walk through the tasks until the function
4509 * returns NULL.  On completion of iteration, css_task_iter_end() must be
4510 * called.
4511 */
4512void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4513                         struct css_task_iter *it)
4514{
4515        memset(it, 0, sizeof(*it));
4516
4517        spin_lock_irq(&css_set_lock);
4518
4519        it->ss = css->ss;
4520        it->flags = flags;
4521
4522        if (it->ss)
4523                it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4524        else
4525                it->cset_pos = &css->cgroup->cset_links;
4526
4527        it->cset_head = it->cset_pos;
4528
4529        css_task_iter_advance(it);
4530
4531        spin_unlock_irq(&css_set_lock);
4532}
4533
4534/**
4535 * css_task_iter_next - return the next task for the iterator
4536 * @it: the task iterator being iterated
4537 *
4538 * The "next" function for task iteration.  @it should have been
4539 * initialized via css_task_iter_start().  Returns NULL when the iteration
4540 * reaches the end.
4541 */
4542struct task_struct *css_task_iter_next(struct css_task_iter *it)
4543{
4544        if (it->cur_task) {
4545                put_task_struct(it->cur_task);
4546                it->cur_task = NULL;
4547        }
4548
4549        spin_lock_irq(&css_set_lock);
4550
4551        /* @it may be half-advanced by skips, finish advancing */
4552        if (it->flags & CSS_TASK_ITER_SKIPPED)
4553                css_task_iter_advance(it);
4554
4555        if (it->task_pos) {
4556                it->cur_task = list_entry(it->task_pos, struct task_struct,
4557                                          cg_list);
4558                get_task_struct(it->cur_task);
4559                css_task_iter_advance(it);
4560        }
4561
4562        spin_unlock_irq(&css_set_lock);
4563
4564        return it->cur_task;
4565}
4566
4567/**
4568 * css_task_iter_end - finish task iteration
4569 * @it: the task iterator to finish
4570 *
4571 * Finish task iteration started by css_task_iter_start().
4572 */
4573void css_task_iter_end(struct css_task_iter *it)
4574{
4575        if (it->cur_cset) {
4576                spin_lock_irq(&css_set_lock);
4577                list_del(&it->iters_node);
4578                put_css_set_locked(it->cur_cset);
4579                spin_unlock_irq(&css_set_lock);
4580        }
4581
4582        if (it->cur_dcset)
4583                put_css_set(it->cur_dcset);
4584
4585        if (it->cur_task)
4586                put_task_struct(it->cur_task);
4587}
4588
4589static void cgroup_procs_release(struct kernfs_open_file *of)
4590{
4591        if (of->priv) {
4592                css_task_iter_end(of->priv);
4593                kfree(of->priv);
4594        }
4595}
4596
4597static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
4598{
4599        struct kernfs_open_file *of = s->private;
4600        struct css_task_iter *it = of->priv;
4601
4602        return css_task_iter_next(it);
4603}
4604
4605static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
4606                                  unsigned int iter_flags)
4607{
4608        struct kernfs_open_file *of = s->private;
4609        struct cgroup *cgrp = seq_css(s)->cgroup;
4610        struct css_task_iter *it = of->priv;
4611
4612        /*
4613         * When a seq_file is seeked, it's always traversed sequentially
4614         * from position 0, so we can simply keep iterating on !0 *pos.
4615         */
4616        if (!it) {
4617                if (WARN_ON_ONCE((*pos)++))
4618                        return ERR_PTR(-EINVAL);
4619
4620                it = kzalloc(sizeof(*it), GFP_KERNEL);
4621                if (!it)
4622                        return ERR_PTR(-ENOMEM);
4623                of->priv = it;
4624                css_task_iter_start(&cgrp->self, iter_flags, it);
4625        } else if (!(*pos)++) {
4626                css_task_iter_end(it);
4627                css_task_iter_start(&cgrp->self, iter_flags, it);
4628        }
4629
4630        return cgroup_procs_next(s, NULL, NULL);
4631}
4632
4633static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
4634{
4635        struct cgroup *cgrp = seq_css(s)->cgroup;
4636
4637        /*
4638         * All processes of a threaded subtree belong to the domain cgroup
4639         * of the subtree.  Only threads can be distributed across the
4640         * subtree.  Reject reads on cgroup.procs in the subtree proper.
4641         * They're always empty anyway.
4642         */
4643        if (cgroup_is_threaded(cgrp))
4644                return ERR_PTR(-EOPNOTSUPP);
4645
4646        return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
4647                                            CSS_TASK_ITER_THREADED);
4648}
4649
4650static int cgroup_procs_show(struct seq_file *s, void *v)
4651{
4652        seq_printf(s, "%d\n", task_pid_vnr(v));
4653        return 0;
4654}
4655
4656static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
4657                                         struct cgroup *dst_cgrp,
4658                                         struct super_block *sb)
4659{
4660        struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
4661        struct cgroup *com_cgrp = src_cgrp;
4662        struct inode *inode;
4663        int ret;
4664
4665        lockdep_assert_held(&cgroup_mutex);
4666
4667        /* find the common ancestor */
4668        while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
4669                com_cgrp = cgroup_parent(com_cgrp);
4670
4671        /* %current should be authorized to migrate to the common ancestor */
4672        inode = kernfs_get_inode(sb, com_cgrp->procs_file.kn);
4673        if (!inode)
4674                return -ENOMEM;
4675
4676        ret = inode_permission(inode, MAY_WRITE);
4677        iput(inode);
4678        if (ret)
4679                return ret;
4680
4681        /*
4682         * If namespaces are delegation boundaries, %current must be able
4683         * to see both source and destination cgroups from its namespace.
4684         */
4685        if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
4686            (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
4687             !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
4688                return -ENOENT;
4689
4690        return 0;
4691}
4692
4693static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
4694                                  char *buf, size_t nbytes, loff_t off)
4695{
4696        struct cgroup *src_cgrp, *dst_cgrp;
4697        struct task_struct *task;
4698        ssize_t ret;
4699        bool locked;
4700
4701        dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4702        if (!dst_cgrp)
4703                return -ENODEV;
4704
4705        task = cgroup_procs_write_start(buf, true, &locked);
4706        ret = PTR_ERR_OR_ZERO(task);
4707        if (ret)
4708                goto out_unlock;
4709
4710        /* find the source cgroup */
4711        spin_lock_irq(&css_set_lock);
4712        src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4713        spin_unlock_irq(&css_set_lock);
4714
4715        ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp,
4716                                            of->file->f_path.dentry->d_sb);
4717        if (ret)
4718                goto out_finish;
4719
4720        ret = cgroup_attach_task(dst_cgrp, task, true);
4721
4722out_finish:
4723        cgroup_procs_write_finish(task, locked);
4724out_unlock:
4725        cgroup_kn_unlock(of->kn);
4726
4727        return ret ?: nbytes;
4728}
4729
4730static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
4731{
4732        return __cgroup_procs_start(s, pos, 0);
4733}
4734
4735static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
4736                                    char *buf, size_t nbytes, loff_t off)
4737{
4738        struct cgroup *src_cgrp, *dst_cgrp;
4739        struct task_struct *task;
4740        ssize_t ret;
4741        bool locked;
4742
4743        buf = strstrip(buf);
4744
4745        dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4746        if (!dst_cgrp)
4747                return -ENODEV;
4748
4749        task = cgroup_procs_write_start(buf, false, &locked);
4750        ret = PTR_ERR_OR_ZERO(task);
4751        if (ret)
4752                goto out_unlock;
4753
4754        /* find the source cgroup */
4755        spin_lock_irq(&css_set_lock);
4756        src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4757        spin_unlock_irq(&css_set_lock);
4758
4759        /* thread migrations follow the cgroup.procs delegation rule */
4760        ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp,
4761                                            of->file->f_path.dentry->d_sb);
4762        if (ret)
4763                goto out_finish;
4764
4765        /* and must be contained in the same domain */
4766        ret = -EOPNOTSUPP;
4767        if (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp)
4768                goto out_finish;
4769
4770        ret = cgroup_attach_task(dst_cgrp, task, false);
4771
4772out_finish:
4773        cgroup_procs_write_finish(task, locked);
4774out_unlock:
4775        cgroup_kn_unlock(of->kn);
4776
4777        return ret ?: nbytes;
4778}
4779
4780/* cgroup core interface files for the default hierarchy */
4781static struct cftype cgroup_base_files[] = {
4782        {
4783                .name = "cgroup.type",
4784                .flags = CFTYPE_NOT_ON_ROOT,
4785                .seq_show = cgroup_type_show,
4786                .write = cgroup_type_write,
4787        },
4788        {
4789                .name = "cgroup.procs",
4790                .flags = CFTYPE_NS_DELEGATABLE,
4791                .file_offset = offsetof(struct cgroup, procs_file),
4792                .release = cgroup_procs_release,
4793                .seq_start = cgroup_procs_start,
4794                .seq_next = cgroup_procs_next,
4795                .seq_show = cgroup_procs_show,
4796                .write = cgroup_procs_write,
4797        },
4798        {
4799                .name = "cgroup.threads",
4800                .flags = CFTYPE_NS_DELEGATABLE,
4801                .release = cgroup_procs_release,
4802                .seq_start = cgroup_threads_start,
4803                .seq_next = cgroup_procs_next,
4804                .seq_show = cgroup_procs_show,
4805                .write = cgroup_threads_write,
4806        },
4807        {
4808                .name = "cgroup.controllers",
4809                .seq_show = cgroup_controllers_show,
4810        },
4811        {
4812                .name = "cgroup.subtree_control",
4813                .flags = CFTYPE_NS_DELEGATABLE,
4814                .seq_show = cgroup_subtree_control_show,
4815                .write = cgroup_subtree_control_write,
4816        },
4817        {
4818                .name = "cgroup.events",
4819                .flags = CFTYPE_NOT_ON_ROOT,
4820                .file_offset = offsetof(struct cgroup, events_file),
4821                .seq_show = cgroup_events_show,
4822        },
4823        {
4824                .name = "cgroup.max.descendants",
4825                .seq_show = cgroup_max_descendants_show,
4826                .write = cgroup_max_descendants_write,
4827        },
4828        {
4829                .name = "cgroup.max.depth",
4830                .seq_show = cgroup_max_depth_show,
4831                .write = cgroup_max_depth_write,
4832        },
4833        {
4834                .name = "cgroup.stat",
4835                .seq_show = cgroup_stat_show,
4836        },
4837        {
4838                .name = "cgroup.freeze",
4839                .flags = CFTYPE_NOT_ON_ROOT,
4840                .seq_show = cgroup_freeze_show,
4841                .write = cgroup_freeze_write,
4842        },
4843        {
4844                .name = "cpu.stat",
4845                .flags = CFTYPE_NOT_ON_ROOT,
4846                .seq_show = cpu_stat_show,
4847        },
4848#ifdef CONFIG_PSI
4849        {
4850                .name = "io.pressure",
4851                .seq_show = cgroup_io_pressure_show,
4852                .write = cgroup_io_pressure_write,
4853                .poll = cgroup_pressure_poll,
4854                .release = cgroup_pressure_release,
4855        },
4856        {
4857                .name = "memory.pressure",
4858                .seq_show = cgroup_memory_pressure_show,
4859                .write = cgroup_memory_pressure_write,
4860                .poll = cgroup_pressure_poll,
4861                .release = cgroup_pressure_release,
4862        },
4863        {
4864                .name = "cpu.pressure",
4865                .seq_show = cgroup_cpu_pressure_show,
4866                .write = cgroup_cpu_pressure_write,
4867                .poll = cgroup_pressure_poll,
4868                .release = cgroup_pressure_release,
4869        },
4870#endif /* CONFIG_PSI */
4871        { }     /* terminate */
4872};
4873
4874/*
4875 * css destruction is four-stage process.
4876 *
4877 * 1. Destruction starts.  Killing of the percpu_ref is initiated.
4878 *    Implemented in kill_css().
4879 *
4880 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4881 *    and thus css_tryget_online() is guaranteed to fail, the css can be
4882 *    offlined by invoking offline_css().  After offlining, the base ref is
4883 *    put.  Implemented in css_killed_work_fn().
4884 *
4885 * 3. When the percpu_ref reaches zero, the only possible remaining
4886 *    accessors are inside RCU read sections.  css_release() schedules the
4887 *    RCU callback.
4888 *
4889 * 4. After the grace period, the css can be freed.  Implemented in
4890 *    css_free_work_fn().
4891 *
4892 * It is actually hairier because both step 2 and 4 require process context
4893 * and thus involve punting to css->destroy_work adding two additional
4894 * steps to the already complex sequence.
4895 */
4896static void css_free_rwork_fn(struct work_struct *work)
4897{
4898        struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
4899                                struct cgroup_subsys_state, destroy_rwork);
4900        struct cgroup_subsys *ss = css->ss;
4901        struct cgroup *cgrp = css->cgroup;
4902
4903        percpu_ref_exit(&css->refcnt);
4904
4905        if (ss) {
4906                /* css free path */
4907                struct cgroup_subsys_state *parent = css->parent;
4908                int id = css->id;
4909
4910                ss->css_free(css);
4911                cgroup_idr_remove(&ss->css_idr, id);
4912                cgroup_put(cgrp);
4913
4914                if (parent)
4915                        css_put(parent);
4916        } else {
4917                /* cgroup free path */
4918                atomic_dec(&cgrp->root->nr_cgrps);
4919                cgroup1_pidlist_destroy_all(cgrp);
4920                cancel_work_sync(&cgrp->release_agent_work);
4921
4922                if (cgroup_parent(cgrp)) {
4923                        /*
4924                         * We get a ref to the parent, and put the ref when
4925                         * this cgroup is being freed, so it's guaranteed
4926                         * that the parent won't be destroyed before its
4927                         * children.
4928                         */
4929                        cgroup_put(cgroup_parent(cgrp));
4930                        kernfs_put(cgrp->kn);
4931                        psi_cgroup_free(cgrp);
4932                        if (cgroup_on_dfl(cgrp))
4933                                cgroup_rstat_exit(cgrp);
4934                        kfree(cgrp);
4935                } else {
4936                        /*
4937                         * This is root cgroup's refcnt reaching zero,
4938                         * which indicates that the root should be
4939                         * released.
4940                         */
4941                        cgroup_destroy_root(cgrp->root);
4942                }
4943        }
4944}
4945
4946static void css_release_work_fn(struct work_struct *work)
4947{
4948        struct cgroup_subsys_state *css =
4949                container_of(work, struct cgroup_subsys_state, destroy_work);
4950        struct cgroup_subsys *ss = css->ss;
4951        struct cgroup *cgrp = css->cgroup;
4952
4953        mutex_lock(&cgroup_mutex);
4954
4955        css->flags |= CSS_RELEASED;
4956        list_del_rcu(&css->sibling);
4957
4958        if (ss) {
4959                /* css release path */
4960                if (!list_empty(&css->rstat_css_node)) {
4961                        cgroup_rstat_flush(cgrp);
4962                        list_del_rcu(&css->rstat_css_node);
4963                }
4964
4965                cgroup_idr_replace(&ss->css_idr, NULL, css->id);
4966                if (ss->css_released)
4967                        ss->css_released(css);
4968        } else {
4969                struct cgroup *tcgrp;
4970
4971                /* cgroup release path */
4972                TRACE_CGROUP_PATH(release, cgrp);
4973
4974                if (cgroup_on_dfl(cgrp))
4975                        cgroup_rstat_flush(cgrp);
4976
4977                spin_lock_irq(&css_set_lock);
4978                for (tcgrp = cgroup_parent(cgrp); tcgrp;
4979                     tcgrp = cgroup_parent(tcgrp))
4980                        tcgrp->nr_dying_descendants--;
4981                spin_unlock_irq(&css_set_lock);
4982
4983                /*
4984                 * There are two control paths which try to determine
4985                 * cgroup from dentry without going through kernfs -
4986                 * cgroupstats_build() and css_tryget_online_from_dir().
4987                 * Those are supported by RCU protecting clearing of
4988                 * cgrp->kn->priv backpointer.
4989                 */
4990                if (cgrp->kn)
4991                        RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
4992                                         NULL);
4993        }
4994
4995        mutex_unlock(&cgroup_mutex);
4996
4997        INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
4998        queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
4999}
5000
5001static void css_release(struct percpu_ref *ref)
5002{
5003        struct cgroup_subsys_state *css =
5004                container_of(ref, struct cgroup_subsys_state, refcnt);
5005
5006        INIT_WORK(&css->destroy_work, css_release_work_fn);
5007        queue_work(cgroup_destroy_wq, &css->destroy_work);
5008}
5009
5010static void init_and_link_css(struct cgroup_subsys_state *css,
5011                              struct cgroup_subsys *ss, struct cgroup *cgrp)
5012{
5013        lockdep_assert_held(&cgroup_mutex);
5014
5015        cgroup_get_live(cgrp);
5016
5017        memset(css, 0, sizeof(*css));
5018        css->cgroup = cgrp;
5019        css->ss = ss;
5020        css->id = -1;
5021        INIT_LIST_HEAD(&css->sibling);
5022        INIT_LIST_HEAD(&css->children);
5023        INIT_LIST_HEAD(&css->rstat_css_node);
5024        css->serial_nr = css_serial_nr_next++;
5025        atomic_set(&css->online_cnt, 0);
5026
5027        if (cgroup_parent(cgrp)) {
5028                css->parent = cgroup_css(cgroup_parent(cgrp), ss);
5029                css_get(css->parent);
5030        }
5031
5032        if (cgroup_on_dfl(cgrp) && ss->css_rstat_flush)
5033                list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list);
5034
5035        BUG_ON(cgroup_css(cgrp, ss));
5036}
5037
5038/* invoke ->css_online() on a new CSS and mark it online if successful */
5039static int online_css(struct cgroup_subsys_state *css)
5040{
5041        struct cgroup_subsys *ss = css->ss;
5042        int ret = 0;
5043
5044        lockdep_assert_held(&cgroup_mutex);
5045
5046        if (ss->css_online)
5047                ret = ss->css_online(css);
5048        if (!ret) {
5049                css->flags |= CSS_ONLINE;
5050                rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
5051
5052                atomic_inc(&css->online_cnt);
5053                if (css->parent)
5054                        atomic_inc(&css->parent->online_cnt);
5055        }
5056        return ret;
5057}
5058
5059/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
5060static void offline_css(struct cgroup_subsys_state *css)
5061{
5062        struct cgroup_subsys *ss = css->ss;
5063
5064        lockdep_assert_held(&cgroup_mutex);
5065
5066        if (!(css->flags & CSS_ONLINE))
5067                return;
5068
5069        if (ss->css_offline)
5070                ss->css_offline(css);
5071
5072        css->flags &= ~CSS_ONLINE;
5073        RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
5074
5075        wake_up_all(&css->cgroup->offline_waitq);
5076}
5077
5078/**
5079 * css_create - create a cgroup_subsys_state
5080 * @cgrp: the cgroup new css will be associated with
5081 * @ss: the subsys of new css
5082 *
5083 * Create a new css associated with @cgrp - @ss pair.  On success, the new
5084 * css is online and installed in @cgrp.  This function doesn't create the
5085 * interface files.  Returns 0 on success, -errno on failure.
5086 */
5087static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5088                                              struct cgroup_subsys *ss)
5089{
5090        struct cgroup *parent = cgroup_parent(cgrp);
5091        struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
5092        struct cgroup_subsys_state *css;
5093        int err;
5094
5095        lockdep_assert_held(&cgroup_mutex);
5096
5097        css = ss->css_alloc(parent_css);
5098        if (!css)
5099                css = ERR_PTR(-ENOMEM);
5100        if (IS_ERR(css))
5101                return css;
5102
5103        init_and_link_css(css, ss, cgrp);
5104
5105        err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
5106        if (err)
5107                goto err_free_css;
5108
5109        err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
5110        if (err < 0)
5111                goto err_free_css;
5112        css->id = err;
5113
5114        /* @css is ready to be brought online now, make it visible */
5115        list_add_tail_rcu(&css->sibling, &parent_css->children);
5116        cgroup_idr_replace(&ss->css_idr, css, css->id);
5117
5118        err = online_css(css);
5119        if (err)
5120                goto err_list_del;
5121
5122        if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
5123            cgroup_parent(parent)) {
5124                pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
5125                        current->comm, current->pid, ss->name);
5126                if (!strcmp(ss->name, "memory"))
5127                        pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
5128                ss->warned_broken_hierarchy = true;
5129        }
5130
5131        return css;
5132
5133err_list_del:
5134        list_del_rcu(&css->sibling);
5135err_free_css:
5136        list_del_rcu(&css->rstat_css_node);
5137        INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5138        queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5139        return ERR_PTR(err);
5140}
5141
5142/*
5143 * The returned cgroup is fully initialized including its control mask, but
5144 * it isn't associated with its kernfs_node and doesn't have the control
5145 * mask applied.
5146 */
5147static struct cgroup *cgroup_create(struct cgroup *parent, const char *name,
5148                                    umode_t mode)
5149{
5150        struct cgroup_root *root = parent->root;
5151        struct cgroup *cgrp, *tcgrp;
5152        struct kernfs_node *kn;
5153        int level = parent->level + 1;
5154        int ret;
5155
5156        /* allocate the cgroup and its ID, 0 is reserved for the root */
5157        cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)),
5158                       GFP_KERNEL);
5159        if (!cgrp)
5160                return ERR_PTR(-ENOMEM);
5161
5162        ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
5163        if (ret)
5164                goto out_free_cgrp;
5165
5166        if (cgroup_on_dfl(parent)) {
5167                ret = cgroup_rstat_init(cgrp);
5168                if (ret)
5169                        goto out_cancel_ref;
5170        }
5171
5172        /* create the directory */
5173        kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5174        if (IS_ERR(kn)) {
5175                ret = PTR_ERR(kn);
5176                goto out_stat_exit;
5177        }
5178        cgrp->kn = kn;
5179
5180        init_cgroup_housekeeping(cgrp);
5181
5182        cgrp->self.parent = &parent->self;
5183        cgrp->root = root;
5184        cgrp->level = level;
5185
5186        ret = psi_cgroup_alloc(cgrp);
5187        if (ret)
5188                goto out_kernfs_remove;
5189
5190        ret = cgroup_bpf_inherit(cgrp);
5191        if (ret)
5192                goto out_psi_free;
5193
5194        /*
5195         * New cgroup inherits effective freeze counter, and
5196         * if the parent has to be frozen, the child has too.
5197         */
5198        cgrp->freezer.e_freeze = parent->freezer.e_freeze;
5199        if (cgrp->freezer.e_freeze) {
5200                /*
5201                 * Set the CGRP_FREEZE flag, so when a process will be
5202                 * attached to the child cgroup, it will become frozen.
5203                 * At this point the new cgroup is unpopulated, so we can
5204                 * consider it frozen immediately.
5205                 */
5206                set_bit(CGRP_FREEZE, &cgrp->flags);
5207                set_bit(CGRP_FROZEN, &cgrp->flags);
5208        }
5209
5210        spin_lock_irq(&css_set_lock);
5211        for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5212                cgrp->ancestor_ids[tcgrp->level] = cgroup_id(tcgrp);
5213
5214                if (tcgrp != cgrp) {
5215                        tcgrp->nr_descendants++;
5216
5217                        /*
5218                         * If the new cgroup is frozen, all ancestor cgroups
5219                         * get a new frozen descendant, but their state can't
5220                         * change because of this.
5221                         */
5222                        if (cgrp->freezer.e_freeze)
5223                                tcgrp->freezer.nr_frozen_descendants++;
5224                }
5225        }
5226        spin_unlock_irq(&css_set_lock);
5227
5228        if (notify_on_release(parent))
5229                set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5230
5231        if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5232                set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
5233
5234        cgrp->self.serial_nr = css_serial_nr_next++;
5235
5236        /* allocation complete, commit to creation */
5237        list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5238        atomic_inc(&root->nr_cgrps);
5239        cgroup_get_live(parent);
5240
5241        /*
5242         * On the default hierarchy, a child doesn't automatically inherit
5243         * subtree_control from the parent.  Each is configured manually.
5244         */
5245        if (!cgroup_on_dfl(cgrp))
5246                cgrp->subtree_control = cgroup_control(cgrp);
5247
5248        cgroup_propagate_control(cgrp);
5249
5250        return cgrp;
5251
5252out_psi_free:
5253        psi_cgroup_free(cgrp);
5254out_kernfs_remove:
5255        kernfs_remove(cgrp->kn);
5256out_stat_exit:
5257        if (cgroup_on_dfl(parent))
5258                cgroup_rstat_exit(cgrp);
5259out_cancel_ref:
5260        percpu_ref_exit(&cgrp->self.refcnt);
5261out_free_cgrp:
5262        kfree(cgrp);
5263        return ERR_PTR(ret);
5264}
5265
5266static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
5267{
5268        struct cgroup *cgroup;
5269        int ret = false;
5270        int level = 1;
5271
5272        lockdep_assert_held(&cgroup_mutex);
5273
5274        for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
5275                if (cgroup->nr_descendants >= cgroup->max_descendants)
5276                        goto fail;
5277
5278                if (level > cgroup->max_depth)
5279                        goto fail;
5280
5281                level++;
5282        }
5283
5284        ret = true;
5285fail:
5286        return ret;
5287}
5288
5289int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
5290{
5291        struct cgroup *parent, *cgrp;
5292        int ret;
5293
5294        /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5295        if (strchr(name, '\n'))
5296                return -EINVAL;
5297
5298        parent = cgroup_kn_lock_live(parent_kn, false);
5299        if (!parent)
5300                return -ENODEV;
5301
5302        if (!cgroup_check_hierarchy_limits(parent)) {
5303                ret = -EAGAIN;
5304                goto out_unlock;
5305        }
5306
5307        cgrp = cgroup_create(parent, name, mode);
5308        if (IS_ERR(cgrp)) {
5309                ret = PTR_ERR(cgrp);
5310                goto out_unlock;
5311        }
5312
5313        /*
5314         * This extra ref will be put in cgroup_free_fn() and guarantees
5315         * that @cgrp->kn is always accessible.
5316         */
5317        kernfs_get(cgrp->kn);
5318
5319        ret = cgroup_kn_set_ugid(cgrp->kn);
5320        if (ret)
5321                goto out_destroy;
5322
5323        ret = css_populate_dir(&cgrp->self);
5324        if (ret)
5325                goto out_destroy;
5326
5327        ret = cgroup_apply_control_enable(cgrp);
5328        if (ret)
5329                goto out_destroy;
5330
5331        TRACE_CGROUP_PATH(mkdir, cgrp);
5332
5333        /* let's create and online css's */
5334        kernfs_activate(cgrp->kn);
5335
5336        ret = 0;
5337        goto out_unlock;
5338
5339out_destroy:
5340        cgroup_destroy_locked(cgrp);
5341out_unlock:
5342        cgroup_kn_unlock(parent_kn);
5343        return ret;
5344}
5345
5346/*
5347 * This is called when the refcnt of a css is confirmed to be killed.
5348 * css_tryget_online() is now guaranteed to fail.  Tell the subsystem to
5349 * initate destruction and put the css ref from kill_css().
5350 */
5351static void css_killed_work_fn(struct work_struct *work)
5352{
5353        struct cgroup_subsys_state *css =
5354                container_of(work, struct cgroup_subsys_state, destroy_work);
5355
5356        mutex_lock(&cgroup_mutex);
5357
5358        do {
5359                offline_css(css);
5360                css_put(css);
5361                /* @css can't go away while we're holding cgroup_mutex */
5362                css = css->parent;
5363        } while (css && atomic_dec_and_test(&css->online_cnt));
5364
5365        mutex_unlock(&cgroup_mutex);
5366}
5367
5368/* css kill confirmation processing requires process context, bounce */
5369static void css_killed_ref_fn(struct percpu_ref *ref)
5370{
5371        struct cgroup_subsys_state *css =
5372                container_of(ref, struct cgroup_subsys_state, refcnt);
5373
5374        if (atomic_dec_and_test(&css->online_cnt)) {
5375                INIT_WORK(&css->destroy_work, css_killed_work_fn);
5376                queue_work(cgroup_destroy_wq, &css->destroy_work);
5377        }
5378}
5379
5380/**
5381 * kill_css - destroy a css
5382 * @css: css to destroy
5383 *
5384 * This function initiates destruction of @css by removing cgroup interface
5385 * files and putting its base reference.  ->css_offline() will be invoked
5386 * asynchronously once css_tryget_online() is guaranteed to fail and when
5387 * the reference count reaches zero, @css will be released.
5388 */
5389static void kill_css(struct cgroup_subsys_state *css)
5390{
5391        lockdep_assert_held(&cgroup_mutex);
5392
5393        if (css->flags & CSS_DYING)
5394                return;
5395
5396        css->flags |= CSS_DYING;
5397
5398        /*
5399         * This must happen before css is disassociated with its cgroup.
5400         * See seq_css() for details.
5401         */
5402        css_clear_dir(css);
5403
5404        /*
5405         * Killing would put the base ref, but we need to keep it alive
5406         * until after ->css_offline().
5407         */
5408        css_get(css);
5409
5410        /*
5411         * cgroup core guarantees that, by the time ->css_offline() is
5412         * invoked, no new css reference will be given out via
5413         * css_tryget_online().  We can't simply call percpu_ref_kill() and
5414         * proceed to offlining css's because percpu_ref_kill() doesn't
5415         * guarantee that the ref is seen as killed on all CPUs on return.
5416         *
5417         * Use percpu_ref_kill_and_confirm() to get notifications as each
5418         * css is confirmed to be seen as killed on all CPUs.
5419         */
5420        percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5421}
5422
5423/**
5424 * cgroup_destroy_locked - the first stage of cgroup destruction
5425 * @cgrp: cgroup to be destroyed
5426 *
5427 * css's make use of percpu refcnts whose killing latency shouldn't be
5428 * exposed to userland and are RCU protected.  Also, cgroup core needs to
5429 * guarantee that css_tryget_online() won't succeed by the time
5430 * ->css_offline() is invoked.  To satisfy all the requirements,
5431 * destruction is implemented in the following two steps.
5432 *
5433 * s1. Verify @cgrp can be destroyed and mark it dying.  Remove all
5434 *     userland visible parts and start killing the percpu refcnts of
5435 *     css's.  Set up so that the next stage will be kicked off once all
5436 *     the percpu refcnts are confirmed to be killed.
5437 *
5438 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5439 *     rest of destruction.  Once all cgroup references are gone, the
5440 *     cgroup is RCU-freed.
5441 *
5442 * This function implements s1.  After this step, @cgrp is gone as far as
5443 * the userland is concerned and a new cgroup with the same name may be
5444 * created.  As cgroup doesn't care about the names internally, this
5445 * doesn't cause any problem.
5446 */
5447static int cgroup_destroy_locked(struct cgroup *cgrp)
5448        __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5449{
5450        struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5451        struct cgroup_subsys_state *css;
5452        struct cgrp_cset_link *link;
5453        int ssid;
5454
5455        lockdep_assert_held(&cgroup_mutex);
5456
5457        /*
5458         * Only migration can raise populated from zero and we're already
5459         * holding cgroup_mutex.
5460         */
5461        if (cgroup_is_populated(cgrp))
5462                return -EBUSY;
5463
5464        /*
5465         * Make sure there's no live children.  We can't test emptiness of
5466         * ->self.children as dead children linger on it while being
5467         * drained; otherwise, "rmdir parent/child parent" may fail.
5468         */
5469        if (css_has_online_children(&cgrp->self))
5470                return -EBUSY;
5471
5472        /*
5473         * Mark @cgrp and the associated csets dead.  The former prevents
5474         * further task migration and child creation by disabling
5475         * cgroup_lock_live_group().  The latter makes the csets ignored by
5476         * the migration path.
5477         */
5478        cgrp->self.flags &= ~CSS_ONLINE;
5479
5480        spin_lock_irq(&css_set_lock);
5481        list_for_each_entry(link, &cgrp->cset_links, cset_link)
5482                link->cset->dead = true;
5483        spin_unlock_irq(&css_set_lock);
5484
5485        /* initiate massacre of all css's */
5486        for_each_css(css, ssid, cgrp)
5487                kill_css(css);
5488
5489        /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
5490        css_clear_dir(&cgrp->self);
5491        kernfs_remove(cgrp->kn);
5492
5493        if (parent && cgroup_is_threaded(cgrp))
5494                parent->nr_threaded_children--;
5495
5496        spin_lock_irq(&css_set_lock);
5497        for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5498                tcgrp->nr_descendants--;
5499                tcgrp->nr_dying_descendants++;
5500                /*
5501                 * If the dying cgroup is frozen, decrease frozen descendants
5502                 * counters of ancestor cgroups.
5503                 */
5504                if (test_bit(CGRP_FROZEN, &cgrp->flags))
5505                        tcgrp->freezer.nr_frozen_descendants--;
5506        }
5507        spin_unlock_irq(&css_set_lock);
5508
5509        cgroup1_check_for_release(parent);
5510
5511        cgroup_bpf_offline(cgrp);
5512
5513        /* put the base reference */
5514        percpu_ref_kill(&cgrp->self.refcnt);
5515
5516        return 0;
5517};
5518
5519int cgroup_rmdir(struct kernfs_node *kn)
5520{
5521        struct cgroup *cgrp;
5522        int ret = 0;
5523
5524        cgrp = cgroup_kn_lock_live(kn, false);
5525        if (!cgrp)
5526                return 0;
5527
5528        ret = cgroup_destroy_locked(cgrp);
5529        if (!ret)
5530                TRACE_CGROUP_PATH(rmdir, cgrp);
5531
5532        cgroup_kn_unlock(kn);
5533        return ret;
5534}
5535
5536static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5537        .show_options           = cgroup_show_options,
5538        .mkdir                  = cgroup_mkdir,
5539        .rmdir                  = cgroup_rmdir,
5540        .show_path              = cgroup_show_path,
5541};
5542
5543static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5544{
5545        struct cgroup_subsys_state *css;
5546
5547        pr_debug("Initializing cgroup subsys %s\n", ss->name);
5548
5549        mutex_lock(&cgroup_mutex);
5550
5551        idr_init(&ss->css_idr);
5552        INIT_LIST_HEAD(&ss->cfts);
5553
5554        /* Create the root cgroup state for this subsystem */
5555        ss->root = &cgrp_dfl_root;
5556        css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5557        /* We don't handle early failures gracefully */
5558        BUG_ON(IS_ERR(css));
5559        init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5560
5561        /*
5562         * Root csses are never destroyed and we can't initialize
5563         * percpu_ref during early init.  Disable refcnting.
5564         */
5565        css->flags |= CSS_NO_REF;
5566
5567        if (early) {
5568                /* allocation can't be done safely during early init */
5569                css->id = 1;
5570        } else {
5571                css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5572                BUG_ON(css->id < 0);
5573        }
5574
5575        /* Update the init_css_set to contain a subsys
5576         * pointer to this state - since the subsystem is
5577         * newly registered, all tasks and hence the
5578         * init_css_set is in the subsystem's root cgroup. */
5579        init_css_set.subsys[ss->id] = css;
5580
5581        have_fork_callback |= (bool)ss->fork << ss->id;
5582        have_exit_callback |= (bool)ss->exit << ss->id;
5583        have_release_callback |= (bool)ss->release << ss->id;
5584        have_canfork_callback |= (bool)ss->can_fork << ss->id;
5585
5586        /* At system boot, before all subsystems have been
5587         * registered, no tasks have been forked, so we don't
5588         * need to invoke fork callbacks here. */
5589        BUG_ON(!list_empty(&init_task.tasks));
5590
5591        BUG_ON(online_css(css));
5592
5593        mutex_unlock(&cgroup_mutex);
5594}
5595
5596/**
5597 * cgroup_init_early - cgroup initialization at system boot
5598 *
5599 * Initialize cgroups at system boot, and initialize any
5600 * subsystems that request early init.
5601 */
5602int __init cgroup_init_early(void)
5603{
5604        static struct cgroup_fs_context __initdata ctx;
5605        struct cgroup_subsys *ss;
5606        int i;
5607
5608        ctx.root = &cgrp_dfl_root;
5609        init_cgroup_root(&ctx);
5610        cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5611
5612        RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5613
5614        for_each_subsys(ss, i) {
5615                WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5616                     "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5617                     i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5618                     ss->id, ss->name);
5619                WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5620                     "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5621
5622                ss->id = i;
5623                ss->name = cgroup_subsys_name[i];
5624                if (!ss->legacy_name)
5625                        ss->legacy_name = cgroup_subsys_name[i];
5626
5627                if (ss->early_init)
5628                        cgroup_init_subsys(ss, true);
5629        }
5630        return 0;
5631}
5632
5633static u16 cgroup_disable_mask __initdata;
5634
5635/**
5636 * cgroup_init - cgroup initialization
5637 *
5638 * Register cgroup filesystem and /proc file, and initialize
5639 * any subsystems that didn't request early init.
5640 */
5641int __init cgroup_init(void)
5642{
5643        struct cgroup_subsys *ss;
5644        int ssid;
5645
5646        BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5647        BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
5648        BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
5649
5650        cgroup_rstat_boot();
5651
5652        /*
5653         * The latency of the synchronize_rcu() is too high for cgroups,
5654         * avoid it at the cost of forcing all readers into the slow path.
5655         */
5656        rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
5657
5658        get_user_ns(init_cgroup_ns.user_ns);
5659
5660        mutex_lock(&cgroup_mutex);
5661
5662        /*
5663         * Add init_css_set to the hash table so that dfl_root can link to
5664         * it during init.
5665         */
5666        hash_add(css_set_table, &init_css_set.hlist,
5667                 css_set_hash(init_css_set.subsys));
5668
5669        BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5670
5671        mutex_unlock(&cgroup_mutex);
5672
5673        for_each_subsys(ss, ssid) {
5674                if (ss->early_init) {
5675                        struct cgroup_subsys_state *css =
5676                                init_css_set.subsys[ss->id];
5677
5678                        css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5679                                                   GFP_KERNEL);
5680                        BUG_ON(css->id < 0);
5681                } else {
5682                        cgroup_init_subsys(ss, false);
5683                }
5684
5685                list_add_tail(&init_css_set.e_cset_node[ssid],
5686                              &cgrp_dfl_root.cgrp.e_csets[ssid]);
5687
5688                /*
5689                 * Setting dfl_root subsys_mask needs to consider the
5690                 * disabled flag and cftype registration needs kmalloc,
5691                 * both of which aren't available during early_init.
5692                 */
5693                if (cgroup_disable_mask & (1 << ssid)) {
5694                        static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5695                        printk(KERN_INFO "Disabling %s control group subsystem\n",
5696                               ss->name);
5697                        continue;
5698                }
5699
5700                if (cgroup1_ssid_disabled(ssid))
5701                        printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5702                               ss->name);
5703
5704                cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5705
5706                /* implicit controllers must be threaded too */
5707                WARN_ON(ss->implicit_on_dfl && !ss->threaded);
5708
5709                if (ss->implicit_on_dfl)
5710                        cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5711                else if (!ss->dfl_cftypes)
5712                        cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5713
5714                if (ss->threaded)
5715                        cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
5716
5717                if (ss->dfl_cftypes == ss->legacy_cftypes) {
5718                        WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5719                } else {
5720                        WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5721                        WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5722                }
5723
5724                if (ss->bind)
5725                        ss->bind(init_css_set.subsys[ssid]);
5726
5727                mutex_lock(&cgroup_mutex);
5728                css_populate_dir(init_css_set.subsys[ssid]);
5729                mutex_unlock(&cgroup_mutex);
5730        }
5731
5732        /* init_css_set.subsys[] has been updated, re-hash */
5733        hash_del(&init_css_set.hlist);
5734        hash_add(css_set_table, &init_css_set.hlist,
5735                 css_set_hash(init_css_set.subsys));
5736
5737        WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5738        WARN_ON(register_filesystem(&cgroup_fs_type));
5739        WARN_ON(register_filesystem(&cgroup2_fs_type));
5740        WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
5741#ifdef CONFIG_CPUSETS
5742        WARN_ON(register_filesystem(&cpuset_fs_type));
5743#endif
5744
5745        return 0;
5746}
5747
5748static int __init cgroup_wq_init(void)
5749{
5750        /*
5751         * There isn't much point in executing destruction path in
5752         * parallel.  Good chunk is serialized with cgroup_mutex anyway.
5753         * Use 1 for @max_active.
5754         *
5755         * We would prefer to do this in cgroup_init() above, but that
5756         * is called before init_workqueues(): so leave this until after.
5757         */
5758        cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5759        BUG_ON(!cgroup_destroy_wq);
5760        return 0;
5761}
5762core_initcall(cgroup_wq_init);
5763
5764void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen)
5765{
5766        struct kernfs_node *kn;
5767
5768        kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
5769        if (!kn)
5770                return;
5771        kernfs_path(kn, buf, buflen);
5772        kernfs_put(kn);
5773}
5774
5775/*
5776 * proc_cgroup_show()
5777 *  - Print task's cgroup paths into seq_file, one line for each hierarchy
5778 *  - Used for /proc/<pid>/cgroup.
5779 */
5780int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5781                     struct pid *pid, struct task_struct *tsk)
5782{
5783        char *buf;
5784        int retval;
5785        struct cgroup_root *root;
5786
5787        retval = -ENOMEM;
5788        buf = kmalloc(PATH_MAX, GFP_KERNEL);
5789        if (!buf)
5790                goto out;
5791
5792        mutex_lock(&cgroup_mutex);
5793        spin_lock_irq(&css_set_lock);
5794
5795        for_each_root(root) {
5796                struct cgroup_subsys *ss;
5797                struct cgroup *cgrp;
5798                int ssid, count = 0;
5799
5800                if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
5801                        continue;
5802
5803                seq_printf(m, "%d:", root->hierarchy_id);
5804                if (root != &cgrp_dfl_root)
5805                        for_each_subsys(ss, ssid)
5806                                if (root->subsys_mask & (1 << ssid))
5807                                        seq_printf(m, "%s%s", count++ ? "," : "",
5808                                                   ss->legacy_name);
5809                if (strlen(root->name))
5810                        seq_printf(m, "%sname=%s", count ? "," : "",
5811                                   root->name);
5812                seq_putc(m, ':');
5813
5814                cgrp = task_cgroup_from_root(tsk, root);
5815
5816                /*
5817                 * On traditional hierarchies, all zombie tasks show up as
5818                 * belonging to the root cgroup.  On the default hierarchy,
5819                 * while a zombie doesn't show up in "cgroup.procs" and
5820                 * thus can't be migrated, its /proc/PID/cgroup keeps
5821                 * reporting the cgroup it belonged to before exiting.  If
5822                 * the cgroup is removed before the zombie is reaped,
5823                 * " (deleted)" is appended to the cgroup path.
5824                 */
5825                if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5826                        retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
5827                                                current->nsproxy->cgroup_ns);
5828                        if (retval >= PATH_MAX)
5829                                retval = -ENAMETOOLONG;
5830                        if (retval < 0)
5831                                goto out_unlock;
5832
5833                        seq_puts(m, buf);
5834                } else {
5835                        seq_puts(m, "/");
5836                }
5837
5838                if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5839                        seq_puts(m, " (deleted)\n");
5840                else
5841                        seq_putc(m, '\n');
5842        }
5843
5844        retval = 0;
5845out_unlock:
5846        spin_unlock_irq(&css_set_lock);
5847        mutex_unlock(&cgroup_mutex);
5848        kfree(buf);
5849out:
5850        return retval;
5851}
5852
5853/**
5854 * cgroup_fork - initialize cgroup related fields during copy_process()
5855 * @child: pointer to task_struct of forking parent process.
5856 *
5857 * A task is associated with the init_css_set until cgroup_post_fork()
5858 * attaches it to the parent's css_set.  Empty cg_list indicates that
5859 * @child isn't holding reference to its css_set.
5860 */
5861void cgroup_fork(struct task_struct *child)
5862{
5863        RCU_INIT_POINTER(child->cgroups, &init_css_set);
5864        INIT_LIST_HEAD(&child->cg_list);
5865}
5866
5867/**
5868 * cgroup_can_fork - called on a new task before the process is exposed
5869 * @child: the task in question.
5870 *
5871 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5872 * returns an error, the fork aborts with that error code. This allows for
5873 * a cgroup subsystem to conditionally allow or deny new forks.
5874 */
5875int cgroup_can_fork(struct task_struct *child)
5876{
5877        struct cgroup_subsys *ss;
5878        int i, j, ret;
5879
5880        do_each_subsys_mask(ss, i, have_canfork_callback) {
5881                ret = ss->can_fork(child);
5882                if (ret)
5883                        goto out_revert;
5884        } while_each_subsys_mask();
5885
5886        return 0;
5887
5888out_revert:
5889        for_each_subsys(ss, j) {
5890                if (j >= i)
5891                        break;
5892                if (ss->cancel_fork)
5893                        ss->cancel_fork(child);
5894        }
5895
5896        return ret;
5897}
5898
5899/**
5900 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5901 * @child: the task in question
5902 *
5903 * This calls the cancel_fork() callbacks if a fork failed *after*
5904 * cgroup_can_fork() succeded.
5905 */
5906void cgroup_cancel_fork(struct task_struct *child)
5907{
5908        struct cgroup_subsys *ss;
5909        int i;
5910
5911        for_each_subsys(ss, i)
5912                if (ss->cancel_fork)
5913                        ss->cancel_fork(child);
5914}
5915
5916/**
5917 * cgroup_post_fork - called on a new task after adding it to the task list
5918 * @child: the task in question
5919 *
5920 * Adds the task to the list running through its css_set if necessary and
5921 * call the subsystem fork() callbacks.  Has to be after the task is
5922 * visible on the task list in case we race with the first call to
5923 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5924 * list.
5925 */
5926void cgroup_post_fork(struct task_struct *child)
5927{
5928        struct cgroup_subsys *ss;
5929        struct css_set *cset;
5930        int i;
5931
5932        spin_lock_irq(&css_set_lock);
5933
5934        WARN_ON_ONCE(!list_empty(&child->cg_list));
5935        cset = task_css_set(current); /* current is @child's parent */
5936        get_css_set(cset);
5937        cset->nr_tasks++;
5938        css_set_move_task(child, NULL, cset, false);
5939
5940        /*
5941         * If the cgroup has to be frozen, the new task has too.  Let's set
5942         * the JOBCTL_TRAP_FREEZE jobctl bit to get the task into the
5943         * frozen state.
5944         */
5945        if (unlikely(cgroup_task_freeze(child))) {
5946                spin_lock(&child->sighand->siglock);
5947                WARN_ON_ONCE(child->frozen);
5948                child->jobctl |= JOBCTL_TRAP_FREEZE;
5949                spin_unlock(&child->sighand->siglock);
5950
5951                /*
5952                 * Calling cgroup_update_frozen() isn't required here,
5953                 * because it will be called anyway a bit later from
5954                 * do_freezer_trap(). So we avoid cgroup's transient switch
5955                 * from the frozen state and back.
5956                 */
5957        }
5958
5959        spin_unlock_irq(&css_set_lock);
5960
5961        /*
5962         * Call ss->fork().  This must happen after @child is linked on
5963         * css_set; otherwise, @child might change state between ->fork()
5964         * and addition to css_set.
5965         */
5966        do_each_subsys_mask(ss, i, have_fork_callback) {
5967                ss->fork(child);
5968        } while_each_subsys_mask();
5969}
5970
5971/**
5972 * cgroup_exit - detach cgroup from exiting task
5973 * @tsk: pointer to task_struct of exiting process
5974 *
5975 * Description: Detach cgroup from @tsk.
5976 *
5977 */
5978void cgroup_exit(struct task_struct *tsk)
5979{
5980        struct cgroup_subsys *ss;
5981        struct css_set *cset;
5982        int i;
5983
5984        spin_lock_irq(&css_set_lock);
5985
5986        WARN_ON_ONCE(list_empty(&tsk->cg_list));
5987        cset = task_css_set(tsk);
5988        css_set_move_task(tsk, cset, NULL, false);
5989        list_add_tail(&tsk->cg_list, &cset->dying_tasks);
5990        cset->nr_tasks--;
5991
5992        WARN_ON_ONCE(cgroup_task_frozen(tsk));
5993        if (unlikely(cgroup_task_freeze(tsk)))
5994                cgroup_update_frozen(task_dfl_cgroup(tsk));
5995
5996        spin_unlock_irq(&css_set_lock);
5997
5998        /* see cgroup_post_fork() for details */
5999        do_each_subsys_mask(ss, i, have_exit_callback) {
6000                ss->exit(tsk);
6001        } while_each_subsys_mask();
6002}
6003
6004void cgroup_release(struct task_struct *task)
6005{
6006        struct cgroup_subsys *ss;
6007        int ssid;
6008
6009        do_each_subsys_mask(ss, ssid, have_release_callback) {
6010                ss->release(task);
6011        } while_each_subsys_mask();
6012
6013        spin_lock_irq(&css_set_lock);
6014        css_set_skip_task_iters(task_css_set(task), task);
6015        list_del_init(&task->cg_list);
6016        spin_unlock_irq(&css_set_lock);
6017}
6018
6019void cgroup_free(struct task_struct *task)
6020{
6021        struct css_set *cset = task_css_set(task);
6022        put_css_set(cset);
6023}
6024
6025static int __init cgroup_disable(char *str)
6026{
6027        struct cgroup_subsys *ss;
6028        char *token;
6029        int i;
6030
6031        while ((token = strsep(&str, ",")) != NULL) {
6032                if (!*token)
6033                        continue;
6034
6035                for_each_subsys(ss, i) {
6036                        if (strcmp(token, ss->name) &&
6037                            strcmp(token, ss->legacy_name))
6038                                continue;
6039                        cgroup_disable_mask |= 1 << i;
6040                }
6041        }
6042        return 1;
6043}
6044__setup("cgroup_disable=", cgroup_disable);
6045
6046void __init __weak enable_debug_cgroup(void) { }
6047
6048static int __init enable_cgroup_debug(char *str)
6049{
6050        cgroup_debug = true;
6051        enable_debug_cgroup();
6052        return 1;
6053}
6054__setup("cgroup_debug", enable_cgroup_debug);
6055
6056/**
6057 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6058 * @dentry: directory dentry of interest
6059 * @ss: subsystem of interest
6060 *
6061 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6062 * to get the corresponding css and return it.  If such css doesn't exist
6063 * or can't be pinned, an ERR_PTR value is returned.
6064 */
6065struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6066                                                       struct cgroup_subsys *ss)
6067{
6068        struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
6069        struct file_system_type *s_type = dentry->d_sb->s_type;
6070        struct cgroup_subsys_state *css = NULL;
6071        struct cgroup *cgrp;
6072
6073        /* is @dentry a cgroup dir? */
6074        if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6075            !kn || kernfs_type(kn) != KERNFS_DIR)
6076                return ERR_PTR(-EBADF);
6077
6078        rcu_read_lock();
6079
6080        /*
6081         * This path doesn't originate from kernfs and @kn could already
6082         * have been or be removed at any point.  @kn->priv is RCU
6083         * protected for this access.  See css_release_work_fn() for details.
6084         */
6085        cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6086        if (cgrp)
6087                css = cgroup_css(cgrp, ss);
6088
6089        if (!css || !css_tryget_online(css))
6090                css = ERR_PTR(-ENOENT);
6091
6092        rcu_read_unlock();
6093        return css;
6094}
6095
6096/**
6097 * css_from_id - lookup css by id
6098 * @id: the cgroup id
6099 * @ss: cgroup subsys to be looked into
6100 *
6101 * Returns the css if there's valid one with @id, otherwise returns NULL.
6102 * Should be called under rcu_read_lock().
6103 */
6104struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6105{
6106        WARN_ON_ONCE(!rcu_read_lock_held());
6107        return idr_find(&ss->css_idr, id);
6108}
6109
6110/**
6111 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6112 * @path: path on the default hierarchy
6113 *
6114 * Find the cgroup at @path on the default hierarchy, increment its
6115 * reference count and return it.  Returns pointer to the found cgroup on
6116 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
6117 * if @path points to a non-directory.
6118 */
6119struct cgroup *cgroup_get_from_path(const char *path)
6120{
6121        struct kernfs_node *kn;
6122        struct cgroup *cgrp;
6123
6124        mutex_lock(&cgroup_mutex);
6125
6126        kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
6127        if (kn) {
6128                if (kernfs_type(kn) == KERNFS_DIR) {
6129                        cgrp = kn->priv;
6130                        cgroup_get_live(cgrp);
6131                } else {
6132                        cgrp = ERR_PTR(-ENOTDIR);
6133                }
6134                kernfs_put(kn);
6135        } else {
6136                cgrp = ERR_PTR(-ENOENT);
6137        }
6138
6139        mutex_unlock(&cgroup_mutex);
6140        return cgrp;
6141}
6142EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6143
6144/**
6145 * cgroup_get_from_fd - get a cgroup pointer from a fd
6146 * @fd: fd obtained by open(cgroup2_dir)
6147 *
6148 * Find the cgroup from a fd which should be obtained
6149 * by opening a cgroup directory.  Returns a pointer to the
6150 * cgroup on success. ERR_PTR is returned if the cgroup
6151 * cannot be found.
6152 */
6153struct cgroup *cgroup_get_from_fd(int fd)
6154{
6155        struct cgroup_subsys_state *css;
6156        struct cgroup *cgrp;
6157        struct file *f;
6158
6159        f = fget_raw(fd);
6160        if (!f)
6161                return ERR_PTR(-EBADF);
6162
6163        css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
6164        fput(f);
6165        if (IS_ERR(css))
6166                return ERR_CAST(css);
6167
6168        cgrp = css->cgroup;
6169        if (!cgroup_on_dfl(cgrp)) {
6170                cgroup_put(cgrp);
6171                return ERR_PTR(-EBADF);
6172        }
6173
6174        return cgrp;
6175}
6176EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
6177
6178static u64 power_of_ten(int power)
6179{
6180        u64 v = 1;
6181        while (power--)
6182                v *= 10;
6183        return v;
6184}
6185
6186/**
6187 * cgroup_parse_float - parse a floating number
6188 * @input: input string
6189 * @dec_shift: number of decimal digits to shift
6190 * @v: output
6191 *
6192 * Parse a decimal floating point number in @input and store the result in
6193 * @v with decimal point right shifted @dec_shift times.  For example, if
6194 * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345.
6195 * Returns 0 on success, -errno otherwise.
6196 *
6197 * There's nothing cgroup specific about this function except that it's
6198 * currently the only user.
6199 */
6200int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v)
6201{
6202        s64 whole, frac = 0;
6203        int fstart = 0, fend = 0, flen;
6204
6205        if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend))
6206                return -EINVAL;
6207        if (frac < 0)
6208                return -EINVAL;
6209
6210        flen = fend > fstart ? fend - fstart : 0;
6211        if (flen < dec_shift)
6212                frac *= power_of_ten(dec_shift - flen);
6213        else
6214                frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift));
6215
6216        *v = whole * power_of_ten(dec_shift) + frac;
6217        return 0;
6218}
6219
6220/*
6221 * sock->sk_cgrp_data handling.  For more info, see sock_cgroup_data
6222 * definition in cgroup-defs.h.
6223 */
6224#ifdef CONFIG_SOCK_CGROUP_DATA
6225
6226#if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
6227
6228DEFINE_SPINLOCK(cgroup_sk_update_lock);
6229static bool cgroup_sk_alloc_disabled __read_mostly;
6230
6231void cgroup_sk_alloc_disable(void)
6232{
6233        if (cgroup_sk_alloc_disabled)
6234                return;
6235        pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
6236        cgroup_sk_alloc_disabled = true;
6237}
6238
6239#else
6240
6241#define cgroup_sk_alloc_disabled        false
6242
6243#endif
6244
6245void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6246{
6247        if (cgroup_sk_alloc_disabled)
6248                return;
6249
6250        /* Socket clone path */
6251        if (skcd->val) {
6252                /*
6253                 * We might be cloning a socket which is left in an empty
6254                 * cgroup and the cgroup might have already been rmdir'd.
6255                 * Don't use cgroup_get_live().
6256                 */
6257                cgroup_get(sock_cgroup_ptr(skcd));
6258                cgroup_bpf_get(sock_cgroup_ptr(skcd));
6259                return;
6260        }
6261
6262        rcu_read_lock();
6263
6264        while (true) {
6265                struct css_set *cset;
6266
6267                cset = task_css_set(current);
6268                if (likely(cgroup_tryget(cset->dfl_cgrp))) {
6269                        skcd->val = (unsigned long)cset->dfl_cgrp;
6270                        cgroup_bpf_get(cset->dfl_cgrp);
6271                        break;
6272                }
6273                cpu_relax();
6274        }
6275
6276        rcu_read_unlock();
6277}
6278
6279void cgroup_sk_free(struct sock_cgroup_data *skcd)
6280{
6281        struct cgroup *cgrp = sock_cgroup_ptr(skcd);
6282
6283        cgroup_bpf_put(cgrp);
6284        cgroup_put(cgrp);
6285}
6286
6287#endif  /* CONFIG_SOCK_CGROUP_DATA */
6288
6289#ifdef CONFIG_CGROUP_BPF
6290int cgroup_bpf_attach(struct cgroup *cgrp, struct bpf_prog *prog,
6291                      enum bpf_attach_type type, u32 flags)
6292{
6293        int ret;
6294
6295        mutex_lock(&cgroup_mutex);
6296        ret = __cgroup_bpf_attach(cgrp, prog, type, flags);
6297        mutex_unlock(&cgroup_mutex);
6298        return ret;
6299}
6300int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
6301                      enum bpf_attach_type type, u32 flags)
6302{
6303        int ret;
6304
6305        mutex_lock(&cgroup_mutex);
6306        ret = __cgroup_bpf_detach(cgrp, prog, type);
6307        mutex_unlock(&cgroup_mutex);
6308        return ret;
6309}
6310int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
6311                     union bpf_attr __user *uattr)
6312{
6313        int ret;
6314
6315        mutex_lock(&cgroup_mutex);
6316        ret = __cgroup_bpf_query(cgrp, attr, uattr);
6317        mutex_unlock(&cgroup_mutex);
6318        return ret;
6319}
6320#endif /* CONFIG_CGROUP_BPF */
6321
6322#ifdef CONFIG_SYSFS
6323static ssize_t show_delegatable_files(struct cftype *files, char *buf,
6324                                      ssize_t size, const char *prefix)
6325{
6326        struct cftype *cft;
6327        ssize_t ret = 0;
6328
6329        for (cft = files; cft && cft->name[0] != '\0'; cft++) {
6330                if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
6331                        continue;
6332
6333                if (prefix)
6334                        ret += snprintf(buf + ret, size - ret, "%s.", prefix);
6335
6336                ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
6337
6338                if (WARN_ON(ret >= size))
6339                        break;
6340        }
6341
6342        return ret;
6343}
6344
6345static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
6346                              char *buf)
6347{
6348        struct cgroup_subsys *ss;
6349        int ssid;
6350        ssize_t ret = 0;
6351
6352        ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret,
6353                                     NULL);
6354
6355        for_each_subsys(ss, ssid)
6356                ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
6357                                              PAGE_SIZE - ret,
6358                                              cgroup_subsys_name[ssid]);
6359
6360        return ret;
6361}
6362static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
6363
6364static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
6365                             char *buf)
6366{
6367        return snprintf(buf, PAGE_SIZE, "nsdelegate\nmemory_localevents\n");
6368}
6369static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
6370
6371static struct attribute *cgroup_sysfs_attrs[] = {
6372        &cgroup_delegate_attr.attr,
6373        &cgroup_features_attr.attr,
6374        NULL,
6375};
6376
6377static const struct attribute_group cgroup_sysfs_attr_group = {
6378        .attrs = cgroup_sysfs_attrs,
6379        .name = "cgroup",
6380};
6381
6382static int __init cgroup_sysfs_init(void)
6383{
6384        return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
6385}
6386subsys_initcall(cgroup_sysfs_init);
6387
6388#endif /* CONFIG_SYSFS */
6389