linux/kernel/debug/kdb/kdb_main.c
<<
>>
Prefs
   1/*
   2 * Kernel Debugger Architecture Independent Main Code
   3 *
   4 * This file is subject to the terms and conditions of the GNU General Public
   5 * License.  See the file "COPYING" in the main directory of this archive
   6 * for more details.
   7 *
   8 * Copyright (C) 1999-2004 Silicon Graphics, Inc.  All Rights Reserved.
   9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
  10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
  11 * Copyright (c) 2009 Wind River Systems, Inc.  All Rights Reserved.
  12 */
  13
  14#include <linux/ctype.h>
  15#include <linux/types.h>
  16#include <linux/string.h>
  17#include <linux/kernel.h>
  18#include <linux/kmsg_dump.h>
  19#include <linux/reboot.h>
  20#include <linux/sched.h>
  21#include <linux/sched/loadavg.h>
  22#include <linux/sched/stat.h>
  23#include <linux/sched/debug.h>
  24#include <linux/sysrq.h>
  25#include <linux/smp.h>
  26#include <linux/utsname.h>
  27#include <linux/vmalloc.h>
  28#include <linux/atomic.h>
  29#include <linux/module.h>
  30#include <linux/moduleparam.h>
  31#include <linux/mm.h>
  32#include <linux/init.h>
  33#include <linux/kallsyms.h>
  34#include <linux/kgdb.h>
  35#include <linux/kdb.h>
  36#include <linux/notifier.h>
  37#include <linux/interrupt.h>
  38#include <linux/delay.h>
  39#include <linux/nmi.h>
  40#include <linux/time.h>
  41#include <linux/ptrace.h>
  42#include <linux/sysctl.h>
  43#include <linux/cpu.h>
  44#include <linux/kdebug.h>
  45#include <linux/proc_fs.h>
  46#include <linux/uaccess.h>
  47#include <linux/slab.h>
  48#include "kdb_private.h"
  49
  50#undef  MODULE_PARAM_PREFIX
  51#define MODULE_PARAM_PREFIX "kdb."
  52
  53static int kdb_cmd_enabled = CONFIG_KDB_DEFAULT_ENABLE;
  54module_param_named(cmd_enable, kdb_cmd_enabled, int, 0600);
  55
  56char kdb_grep_string[KDB_GREP_STRLEN];
  57int kdb_grepping_flag;
  58EXPORT_SYMBOL(kdb_grepping_flag);
  59int kdb_grep_leading;
  60int kdb_grep_trailing;
  61
  62/*
  63 * Kernel debugger state flags
  64 */
  65int kdb_flags;
  66
  67/*
  68 * kdb_lock protects updates to kdb_initial_cpu.  Used to
  69 * single thread processors through the kernel debugger.
  70 */
  71int kdb_initial_cpu = -1;       /* cpu number that owns kdb */
  72int kdb_nextline = 1;
  73int kdb_state;                  /* General KDB state */
  74
  75struct task_struct *kdb_current_task;
  76EXPORT_SYMBOL(kdb_current_task);
  77struct pt_regs *kdb_current_regs;
  78
  79const char *kdb_diemsg;
  80static int kdb_go_count;
  81#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
  82static unsigned int kdb_continue_catastrophic =
  83        CONFIG_KDB_CONTINUE_CATASTROPHIC;
  84#else
  85static unsigned int kdb_continue_catastrophic;
  86#endif
  87
  88/* kdb_commands describes the available commands. */
  89static kdbtab_t *kdb_commands;
  90#define KDB_BASE_CMD_MAX 50
  91static int kdb_max_commands = KDB_BASE_CMD_MAX;
  92static kdbtab_t kdb_base_commands[KDB_BASE_CMD_MAX];
  93#define for_each_kdbcmd(cmd, num)                                       \
  94        for ((cmd) = kdb_base_commands, (num) = 0;                      \
  95             num < kdb_max_commands;                                    \
  96             num++, num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++)
  97
  98typedef struct _kdbmsg {
  99        int     km_diag;        /* kdb diagnostic */
 100        char    *km_msg;        /* Corresponding message text */
 101} kdbmsg_t;
 102
 103#define KDBMSG(msgnum, text) \
 104        { KDB_##msgnum, text }
 105
 106static kdbmsg_t kdbmsgs[] = {
 107        KDBMSG(NOTFOUND, "Command Not Found"),
 108        KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
 109        KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
 110               "8 is only allowed on 64 bit systems"),
 111        KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
 112        KDBMSG(NOTENV, "Cannot find environment variable"),
 113        KDBMSG(NOENVVALUE, "Environment variable should have value"),
 114        KDBMSG(NOTIMP, "Command not implemented"),
 115        KDBMSG(ENVFULL, "Environment full"),
 116        KDBMSG(ENVBUFFULL, "Environment buffer full"),
 117        KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
 118#ifdef CONFIG_CPU_XSCALE
 119        KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
 120#else
 121        KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
 122#endif
 123        KDBMSG(DUPBPT, "Duplicate breakpoint address"),
 124        KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
 125        KDBMSG(BADMODE, "Invalid IDMODE"),
 126        KDBMSG(BADINT, "Illegal numeric value"),
 127        KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
 128        KDBMSG(BADREG, "Invalid register name"),
 129        KDBMSG(BADCPUNUM, "Invalid cpu number"),
 130        KDBMSG(BADLENGTH, "Invalid length field"),
 131        KDBMSG(NOBP, "No Breakpoint exists"),
 132        KDBMSG(BADADDR, "Invalid address"),
 133        KDBMSG(NOPERM, "Permission denied"),
 134};
 135#undef KDBMSG
 136
 137static const int __nkdb_err = ARRAY_SIZE(kdbmsgs);
 138
 139
 140/*
 141 * Initial environment.   This is all kept static and local to
 142 * this file.   We don't want to rely on the memory allocation
 143 * mechanisms in the kernel, so we use a very limited allocate-only
 144 * heap for new and altered environment variables.  The entire
 145 * environment is limited to a fixed number of entries (add more
 146 * to __env[] if required) and a fixed amount of heap (add more to
 147 * KDB_ENVBUFSIZE if required).
 148 */
 149
 150static char *__env[] = {
 151#if defined(CONFIG_SMP)
 152 "PROMPT=[%d]kdb> ",
 153#else
 154 "PROMPT=kdb> ",
 155#endif
 156 "MOREPROMPT=more> ",
 157 "RADIX=16",
 158 "MDCOUNT=8",                   /* lines of md output */
 159 KDB_PLATFORM_ENV,
 160 "DTABCOUNT=30",
 161 "NOSECT=1",
 162 (char *)0,
 163 (char *)0,
 164 (char *)0,
 165 (char *)0,
 166 (char *)0,
 167 (char *)0,
 168 (char *)0,
 169 (char *)0,
 170 (char *)0,
 171 (char *)0,
 172 (char *)0,
 173 (char *)0,
 174 (char *)0,
 175 (char *)0,
 176 (char *)0,
 177 (char *)0,
 178 (char *)0,
 179 (char *)0,
 180 (char *)0,
 181 (char *)0,
 182 (char *)0,
 183 (char *)0,
 184 (char *)0,
 185 (char *)0,
 186};
 187
 188static const int __nenv = ARRAY_SIZE(__env);
 189
 190struct task_struct *kdb_curr_task(int cpu)
 191{
 192        struct task_struct *p = curr_task(cpu);
 193#ifdef  _TIF_MCA_INIT
 194        if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
 195                p = krp->p;
 196#endif
 197        return p;
 198}
 199
 200/*
 201 * Check whether the flags of the current command and the permissions
 202 * of the kdb console has allow a command to be run.
 203 */
 204static inline bool kdb_check_flags(kdb_cmdflags_t flags, int permissions,
 205                                   bool no_args)
 206{
 207        /* permissions comes from userspace so needs massaging slightly */
 208        permissions &= KDB_ENABLE_MASK;
 209        permissions |= KDB_ENABLE_ALWAYS_SAFE;
 210
 211        /* some commands change group when launched with no arguments */
 212        if (no_args)
 213                permissions |= permissions << KDB_ENABLE_NO_ARGS_SHIFT;
 214
 215        flags |= KDB_ENABLE_ALL;
 216
 217        return permissions & flags;
 218}
 219
 220/*
 221 * kdbgetenv - This function will return the character string value of
 222 *      an environment variable.
 223 * Parameters:
 224 *      match   A character string representing an environment variable.
 225 * Returns:
 226 *      NULL    No environment variable matches 'match'
 227 *      char*   Pointer to string value of environment variable.
 228 */
 229char *kdbgetenv(const char *match)
 230{
 231        char **ep = __env;
 232        int matchlen = strlen(match);
 233        int i;
 234
 235        for (i = 0; i < __nenv; i++) {
 236                char *e = *ep++;
 237
 238                if (!e)
 239                        continue;
 240
 241                if ((strncmp(match, e, matchlen) == 0)
 242                 && ((e[matchlen] == '\0')
 243                   || (e[matchlen] == '='))) {
 244                        char *cp = strchr(e, '=');
 245                        return cp ? ++cp : "";
 246                }
 247        }
 248        return NULL;
 249}
 250
 251/*
 252 * kdballocenv - This function is used to allocate bytes for
 253 *      environment entries.
 254 * Parameters:
 255 *      match   A character string representing a numeric value
 256 * Outputs:
 257 *      *value  the unsigned long representation of the env variable 'match'
 258 * Returns:
 259 *      Zero on success, a kdb diagnostic on failure.
 260 * Remarks:
 261 *      We use a static environment buffer (envbuffer) to hold the values
 262 *      of dynamically generated environment variables (see kdb_set).  Buffer
 263 *      space once allocated is never free'd, so over time, the amount of space
 264 *      (currently 512 bytes) will be exhausted if env variables are changed
 265 *      frequently.
 266 */
 267static char *kdballocenv(size_t bytes)
 268{
 269#define KDB_ENVBUFSIZE  512
 270        static char envbuffer[KDB_ENVBUFSIZE];
 271        static int envbufsize;
 272        char *ep = NULL;
 273
 274        if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
 275                ep = &envbuffer[envbufsize];
 276                envbufsize += bytes;
 277        }
 278        return ep;
 279}
 280
 281/*
 282 * kdbgetulenv - This function will return the value of an unsigned
 283 *      long-valued environment variable.
 284 * Parameters:
 285 *      match   A character string representing a numeric value
 286 * Outputs:
 287 *      *value  the unsigned long represntation of the env variable 'match'
 288 * Returns:
 289 *      Zero on success, a kdb diagnostic on failure.
 290 */
 291static int kdbgetulenv(const char *match, unsigned long *value)
 292{
 293        char *ep;
 294
 295        ep = kdbgetenv(match);
 296        if (!ep)
 297                return KDB_NOTENV;
 298        if (strlen(ep) == 0)
 299                return KDB_NOENVVALUE;
 300
 301        *value = simple_strtoul(ep, NULL, 0);
 302
 303        return 0;
 304}
 305
 306/*
 307 * kdbgetintenv - This function will return the value of an
 308 *      integer-valued environment variable.
 309 * Parameters:
 310 *      match   A character string representing an integer-valued env variable
 311 * Outputs:
 312 *      *value  the integer representation of the environment variable 'match'
 313 * Returns:
 314 *      Zero on success, a kdb diagnostic on failure.
 315 */
 316int kdbgetintenv(const char *match, int *value)
 317{
 318        unsigned long val;
 319        int diag;
 320
 321        diag = kdbgetulenv(match, &val);
 322        if (!diag)
 323                *value = (int) val;
 324        return diag;
 325}
 326
 327/*
 328 * kdbgetularg - This function will convert a numeric string into an
 329 *      unsigned long value.
 330 * Parameters:
 331 *      arg     A character string representing a numeric value
 332 * Outputs:
 333 *      *value  the unsigned long represntation of arg.
 334 * Returns:
 335 *      Zero on success, a kdb diagnostic on failure.
 336 */
 337int kdbgetularg(const char *arg, unsigned long *value)
 338{
 339        char *endp;
 340        unsigned long val;
 341
 342        val = simple_strtoul(arg, &endp, 0);
 343
 344        if (endp == arg) {
 345                /*
 346                 * Also try base 16, for us folks too lazy to type the
 347                 * leading 0x...
 348                 */
 349                val = simple_strtoul(arg, &endp, 16);
 350                if (endp == arg)
 351                        return KDB_BADINT;
 352        }
 353
 354        *value = val;
 355
 356        return 0;
 357}
 358
 359int kdbgetu64arg(const char *arg, u64 *value)
 360{
 361        char *endp;
 362        u64 val;
 363
 364        val = simple_strtoull(arg, &endp, 0);
 365
 366        if (endp == arg) {
 367
 368                val = simple_strtoull(arg, &endp, 16);
 369                if (endp == arg)
 370                        return KDB_BADINT;
 371        }
 372
 373        *value = val;
 374
 375        return 0;
 376}
 377
 378/*
 379 * kdb_set - This function implements the 'set' command.  Alter an
 380 *      existing environment variable or create a new one.
 381 */
 382int kdb_set(int argc, const char **argv)
 383{
 384        int i;
 385        char *ep;
 386        size_t varlen, vallen;
 387
 388        /*
 389         * we can be invoked two ways:
 390         *   set var=value    argv[1]="var", argv[2]="value"
 391         *   set var = value  argv[1]="var", argv[2]="=", argv[3]="value"
 392         * - if the latter, shift 'em down.
 393         */
 394        if (argc == 3) {
 395                argv[2] = argv[3];
 396                argc--;
 397        }
 398
 399        if (argc != 2)
 400                return KDB_ARGCOUNT;
 401
 402        /*
 403         * Check for internal variables
 404         */
 405        if (strcmp(argv[1], "KDBDEBUG") == 0) {
 406                unsigned int debugflags;
 407                char *cp;
 408
 409                debugflags = simple_strtoul(argv[2], &cp, 0);
 410                if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
 411                        kdb_printf("kdb: illegal debug flags '%s'\n",
 412                                    argv[2]);
 413                        return 0;
 414                }
 415                kdb_flags = (kdb_flags &
 416                             ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT))
 417                        | (debugflags << KDB_DEBUG_FLAG_SHIFT);
 418
 419                return 0;
 420        }
 421
 422        /*
 423         * Tokenizer squashed the '=' sign.  argv[1] is variable
 424         * name, argv[2] = value.
 425         */
 426        varlen = strlen(argv[1]);
 427        vallen = strlen(argv[2]);
 428        ep = kdballocenv(varlen + vallen + 2);
 429        if (ep == (char *)0)
 430                return KDB_ENVBUFFULL;
 431
 432        sprintf(ep, "%s=%s", argv[1], argv[2]);
 433
 434        ep[varlen+vallen+1] = '\0';
 435
 436        for (i = 0; i < __nenv; i++) {
 437                if (__env[i]
 438                 && ((strncmp(__env[i], argv[1], varlen) == 0)
 439                   && ((__env[i][varlen] == '\0')
 440                    || (__env[i][varlen] == '=')))) {
 441                        __env[i] = ep;
 442                        return 0;
 443                }
 444        }
 445
 446        /*
 447         * Wasn't existing variable.  Fit into slot.
 448         */
 449        for (i = 0; i < __nenv-1; i++) {
 450                if (__env[i] == (char *)0) {
 451                        __env[i] = ep;
 452                        return 0;
 453                }
 454        }
 455
 456        return KDB_ENVFULL;
 457}
 458
 459static int kdb_check_regs(void)
 460{
 461        if (!kdb_current_regs) {
 462                kdb_printf("No current kdb registers."
 463                           "  You may need to select another task\n");
 464                return KDB_BADREG;
 465        }
 466        return 0;
 467}
 468
 469/*
 470 * kdbgetaddrarg - This function is responsible for parsing an
 471 *      address-expression and returning the value of the expression,
 472 *      symbol name, and offset to the caller.
 473 *
 474 *      The argument may consist of a numeric value (decimal or
 475 *      hexidecimal), a symbol name, a register name (preceded by the
 476 *      percent sign), an environment variable with a numeric value
 477 *      (preceded by a dollar sign) or a simple arithmetic expression
 478 *      consisting of a symbol name, +/-, and a numeric constant value
 479 *      (offset).
 480 * Parameters:
 481 *      argc    - count of arguments in argv
 482 *      argv    - argument vector
 483 *      *nextarg - index to next unparsed argument in argv[]
 484 *      regs    - Register state at time of KDB entry
 485 * Outputs:
 486 *      *value  - receives the value of the address-expression
 487 *      *offset - receives the offset specified, if any
 488 *      *name   - receives the symbol name, if any
 489 *      *nextarg - index to next unparsed argument in argv[]
 490 * Returns:
 491 *      zero is returned on success, a kdb diagnostic code is
 492 *      returned on error.
 493 */
 494int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
 495                  unsigned long *value,  long *offset,
 496                  char **name)
 497{
 498        unsigned long addr;
 499        unsigned long off = 0;
 500        int positive;
 501        int diag;
 502        int found = 0;
 503        char *symname;
 504        char symbol = '\0';
 505        char *cp;
 506        kdb_symtab_t symtab;
 507
 508        /*
 509         * If the enable flags prohibit both arbitrary memory access
 510         * and flow control then there are no reasonable grounds to
 511         * provide symbol lookup.
 512         */
 513        if (!kdb_check_flags(KDB_ENABLE_MEM_READ | KDB_ENABLE_FLOW_CTRL,
 514                             kdb_cmd_enabled, false))
 515                return KDB_NOPERM;
 516
 517        /*
 518         * Process arguments which follow the following syntax:
 519         *
 520         *  symbol | numeric-address [+/- numeric-offset]
 521         *  %register
 522         *  $environment-variable
 523         */
 524
 525        if (*nextarg > argc)
 526                return KDB_ARGCOUNT;
 527
 528        symname = (char *)argv[*nextarg];
 529
 530        /*
 531         * If there is no whitespace between the symbol
 532         * or address and the '+' or '-' symbols, we
 533         * remember the character and replace it with a
 534         * null so the symbol/value can be properly parsed
 535         */
 536        cp = strpbrk(symname, "+-");
 537        if (cp != NULL) {
 538                symbol = *cp;
 539                *cp++ = '\0';
 540        }
 541
 542        if (symname[0] == '$') {
 543                diag = kdbgetulenv(&symname[1], &addr);
 544                if (diag)
 545                        return diag;
 546        } else if (symname[0] == '%') {
 547                diag = kdb_check_regs();
 548                if (diag)
 549                        return diag;
 550                /* Implement register values with % at a later time as it is
 551                 * arch optional.
 552                 */
 553                return KDB_NOTIMP;
 554        } else {
 555                found = kdbgetsymval(symname, &symtab);
 556                if (found) {
 557                        addr = symtab.sym_start;
 558                } else {
 559                        diag = kdbgetularg(argv[*nextarg], &addr);
 560                        if (diag)
 561                                return diag;
 562                }
 563        }
 564
 565        if (!found)
 566                found = kdbnearsym(addr, &symtab);
 567
 568        (*nextarg)++;
 569
 570        if (name)
 571                *name = symname;
 572        if (value)
 573                *value = addr;
 574        if (offset && name && *name)
 575                *offset = addr - symtab.sym_start;
 576
 577        if ((*nextarg > argc)
 578         && (symbol == '\0'))
 579                return 0;
 580
 581        /*
 582         * check for +/- and offset
 583         */
 584
 585        if (symbol == '\0') {
 586                if ((argv[*nextarg][0] != '+')
 587                 && (argv[*nextarg][0] != '-')) {
 588                        /*
 589                         * Not our argument.  Return.
 590                         */
 591                        return 0;
 592                } else {
 593                        positive = (argv[*nextarg][0] == '+');
 594                        (*nextarg)++;
 595                }
 596        } else
 597                positive = (symbol == '+');
 598
 599        /*
 600         * Now there must be an offset!
 601         */
 602        if ((*nextarg > argc)
 603         && (symbol == '\0')) {
 604                return KDB_INVADDRFMT;
 605        }
 606
 607        if (!symbol) {
 608                cp = (char *)argv[*nextarg];
 609                (*nextarg)++;
 610        }
 611
 612        diag = kdbgetularg(cp, &off);
 613        if (diag)
 614                return diag;
 615
 616        if (!positive)
 617                off = -off;
 618
 619        if (offset)
 620                *offset += off;
 621
 622        if (value)
 623                *value += off;
 624
 625        return 0;
 626}
 627
 628static void kdb_cmderror(int diag)
 629{
 630        int i;
 631
 632        if (diag >= 0) {
 633                kdb_printf("no error detected (diagnostic is %d)\n", diag);
 634                return;
 635        }
 636
 637        for (i = 0; i < __nkdb_err; i++) {
 638                if (kdbmsgs[i].km_diag == diag) {
 639                        kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
 640                        return;
 641                }
 642        }
 643
 644        kdb_printf("Unknown diag %d\n", -diag);
 645}
 646
 647/*
 648 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
 649 *      command which defines one command as a set of other commands,
 650 *      terminated by endefcmd.  kdb_defcmd processes the initial
 651 *      'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
 652 *      the following commands until 'endefcmd'.
 653 * Inputs:
 654 *      argc    argument count
 655 *      argv    argument vector
 656 * Returns:
 657 *      zero for success, a kdb diagnostic if error
 658 */
 659struct defcmd_set {
 660        int count;
 661        bool usable;
 662        char *name;
 663        char *usage;
 664        char *help;
 665        char **command;
 666};
 667static struct defcmd_set *defcmd_set;
 668static int defcmd_set_count;
 669static bool defcmd_in_progress;
 670
 671/* Forward references */
 672static int kdb_exec_defcmd(int argc, const char **argv);
 673
 674static int kdb_defcmd2(const char *cmdstr, const char *argv0)
 675{
 676        struct defcmd_set *s = defcmd_set + defcmd_set_count - 1;
 677        char **save_command = s->command;
 678        if (strcmp(argv0, "endefcmd") == 0) {
 679                defcmd_in_progress = false;
 680                if (!s->count)
 681                        s->usable = false;
 682                if (s->usable)
 683                        /* macros are always safe because when executed each
 684                         * internal command re-enters kdb_parse() and is
 685                         * safety checked individually.
 686                         */
 687                        kdb_register_flags(s->name, kdb_exec_defcmd, s->usage,
 688                                           s->help, 0,
 689                                           KDB_ENABLE_ALWAYS_SAFE);
 690                return 0;
 691        }
 692        if (!s->usable)
 693                return KDB_NOTIMP;
 694        s->command = kcalloc(s->count + 1, sizeof(*(s->command)), GFP_KDB);
 695        if (!s->command) {
 696                kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
 697                           cmdstr);
 698                s->usable = false;
 699                return KDB_NOTIMP;
 700        }
 701        memcpy(s->command, save_command, s->count * sizeof(*(s->command)));
 702        s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB);
 703        kfree(save_command);
 704        return 0;
 705}
 706
 707static int kdb_defcmd(int argc, const char **argv)
 708{
 709        struct defcmd_set *save_defcmd_set = defcmd_set, *s;
 710        if (defcmd_in_progress) {
 711                kdb_printf("kdb: nested defcmd detected, assuming missing "
 712                           "endefcmd\n");
 713                kdb_defcmd2("endefcmd", "endefcmd");
 714        }
 715        if (argc == 0) {
 716                int i;
 717                for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) {
 718                        kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name,
 719                                   s->usage, s->help);
 720                        for (i = 0; i < s->count; ++i)
 721                                kdb_printf("%s", s->command[i]);
 722                        kdb_printf("endefcmd\n");
 723                }
 724                return 0;
 725        }
 726        if (argc != 3)
 727                return KDB_ARGCOUNT;
 728        if (in_dbg_master()) {
 729                kdb_printf("Command only available during kdb_init()\n");
 730                return KDB_NOTIMP;
 731        }
 732        defcmd_set = kmalloc_array(defcmd_set_count + 1, sizeof(*defcmd_set),
 733                                   GFP_KDB);
 734        if (!defcmd_set)
 735                goto fail_defcmd;
 736        memcpy(defcmd_set, save_defcmd_set,
 737               defcmd_set_count * sizeof(*defcmd_set));
 738        s = defcmd_set + defcmd_set_count;
 739        memset(s, 0, sizeof(*s));
 740        s->usable = true;
 741        s->name = kdb_strdup(argv[1], GFP_KDB);
 742        if (!s->name)
 743                goto fail_name;
 744        s->usage = kdb_strdup(argv[2], GFP_KDB);
 745        if (!s->usage)
 746                goto fail_usage;
 747        s->help = kdb_strdup(argv[3], GFP_KDB);
 748        if (!s->help)
 749                goto fail_help;
 750        if (s->usage[0] == '"') {
 751                strcpy(s->usage, argv[2]+1);
 752                s->usage[strlen(s->usage)-1] = '\0';
 753        }
 754        if (s->help[0] == '"') {
 755                strcpy(s->help, argv[3]+1);
 756                s->help[strlen(s->help)-1] = '\0';
 757        }
 758        ++defcmd_set_count;
 759        defcmd_in_progress = true;
 760        kfree(save_defcmd_set);
 761        return 0;
 762fail_help:
 763        kfree(s->usage);
 764fail_usage:
 765        kfree(s->name);
 766fail_name:
 767        kfree(defcmd_set);
 768fail_defcmd:
 769        kdb_printf("Could not allocate new defcmd_set entry for %s\n", argv[1]);
 770        defcmd_set = save_defcmd_set;
 771        return KDB_NOTIMP;
 772}
 773
 774/*
 775 * kdb_exec_defcmd - Execute the set of commands associated with this
 776 *      defcmd name.
 777 * Inputs:
 778 *      argc    argument count
 779 *      argv    argument vector
 780 * Returns:
 781 *      zero for success, a kdb diagnostic if error
 782 */
 783static int kdb_exec_defcmd(int argc, const char **argv)
 784{
 785        int i, ret;
 786        struct defcmd_set *s;
 787        if (argc != 0)
 788                return KDB_ARGCOUNT;
 789        for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) {
 790                if (strcmp(s->name, argv[0]) == 0)
 791                        break;
 792        }
 793        if (i == defcmd_set_count) {
 794                kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
 795                           argv[0]);
 796                return KDB_NOTIMP;
 797        }
 798        for (i = 0; i < s->count; ++i) {
 799                /* Recursive use of kdb_parse, do not use argv after
 800                 * this point */
 801                argv = NULL;
 802                kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]);
 803                ret = kdb_parse(s->command[i]);
 804                if (ret)
 805                        return ret;
 806        }
 807        return 0;
 808}
 809
 810/* Command history */
 811#define KDB_CMD_HISTORY_COUNT   32
 812#define CMD_BUFLEN              200     /* kdb_printf: max printline
 813                                         * size == 256 */
 814static unsigned int cmd_head, cmd_tail;
 815static unsigned int cmdptr;
 816static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
 817static char cmd_cur[CMD_BUFLEN];
 818
 819/*
 820 * The "str" argument may point to something like  | grep xyz
 821 */
 822static void parse_grep(const char *str)
 823{
 824        int     len;
 825        char    *cp = (char *)str, *cp2;
 826
 827        /* sanity check: we should have been called with the \ first */
 828        if (*cp != '|')
 829                return;
 830        cp++;
 831        while (isspace(*cp))
 832                cp++;
 833        if (!str_has_prefix(cp, "grep ")) {
 834                kdb_printf("invalid 'pipe', see grephelp\n");
 835                return;
 836        }
 837        cp += 5;
 838        while (isspace(*cp))
 839                cp++;
 840        cp2 = strchr(cp, '\n');
 841        if (cp2)
 842                *cp2 = '\0'; /* remove the trailing newline */
 843        len = strlen(cp);
 844        if (len == 0) {
 845                kdb_printf("invalid 'pipe', see grephelp\n");
 846                return;
 847        }
 848        /* now cp points to a nonzero length search string */
 849        if (*cp == '"') {
 850                /* allow it be "x y z" by removing the "'s - there must
 851                   be two of them */
 852                cp++;
 853                cp2 = strchr(cp, '"');
 854                if (!cp2) {
 855                        kdb_printf("invalid quoted string, see grephelp\n");
 856                        return;
 857                }
 858                *cp2 = '\0'; /* end the string where the 2nd " was */
 859        }
 860        kdb_grep_leading = 0;
 861        if (*cp == '^') {
 862                kdb_grep_leading = 1;
 863                cp++;
 864        }
 865        len = strlen(cp);
 866        kdb_grep_trailing = 0;
 867        if (*(cp+len-1) == '$') {
 868                kdb_grep_trailing = 1;
 869                *(cp+len-1) = '\0';
 870        }
 871        len = strlen(cp);
 872        if (!len)
 873                return;
 874        if (len >= KDB_GREP_STRLEN) {
 875                kdb_printf("search string too long\n");
 876                return;
 877        }
 878        strcpy(kdb_grep_string, cp);
 879        kdb_grepping_flag++;
 880        return;
 881}
 882
 883/*
 884 * kdb_parse - Parse the command line, search the command table for a
 885 *      matching command and invoke the command function.  This
 886 *      function may be called recursively, if it is, the second call
 887 *      will overwrite argv and cbuf.  It is the caller's
 888 *      responsibility to save their argv if they recursively call
 889 *      kdb_parse().
 890 * Parameters:
 891 *      cmdstr  The input command line to be parsed.
 892 *      regs    The registers at the time kdb was entered.
 893 * Returns:
 894 *      Zero for success, a kdb diagnostic if failure.
 895 * Remarks:
 896 *      Limited to 20 tokens.
 897 *
 898 *      Real rudimentary tokenization. Basically only whitespace
 899 *      is considered a token delimeter (but special consideration
 900 *      is taken of the '=' sign as used by the 'set' command).
 901 *
 902 *      The algorithm used to tokenize the input string relies on
 903 *      there being at least one whitespace (or otherwise useless)
 904 *      character between tokens as the character immediately following
 905 *      the token is altered in-place to a null-byte to terminate the
 906 *      token string.
 907 */
 908
 909#define MAXARGC 20
 910
 911int kdb_parse(const char *cmdstr)
 912{
 913        static char *argv[MAXARGC];
 914        static int argc;
 915        static char cbuf[CMD_BUFLEN+2];
 916        char *cp;
 917        char *cpp, quoted;
 918        kdbtab_t *tp;
 919        int i, escaped, ignore_errors = 0, check_grep = 0;
 920
 921        /*
 922         * First tokenize the command string.
 923         */
 924        cp = (char *)cmdstr;
 925
 926        if (KDB_FLAG(CMD_INTERRUPT)) {
 927                /* Previous command was interrupted, newline must not
 928                 * repeat the command */
 929                KDB_FLAG_CLEAR(CMD_INTERRUPT);
 930                KDB_STATE_SET(PAGER);
 931                argc = 0;       /* no repeat */
 932        }
 933
 934        if (*cp != '\n' && *cp != '\0') {
 935                argc = 0;
 936                cpp = cbuf;
 937                while (*cp) {
 938                        /* skip whitespace */
 939                        while (isspace(*cp))
 940                                cp++;
 941                        if ((*cp == '\0') || (*cp == '\n') ||
 942                            (*cp == '#' && !defcmd_in_progress))
 943                                break;
 944                        /* special case: check for | grep pattern */
 945                        if (*cp == '|') {
 946                                check_grep++;
 947                                break;
 948                        }
 949                        if (cpp >= cbuf + CMD_BUFLEN) {
 950                                kdb_printf("kdb_parse: command buffer "
 951                                           "overflow, command ignored\n%s\n",
 952                                           cmdstr);
 953                                return KDB_NOTFOUND;
 954                        }
 955                        if (argc >= MAXARGC - 1) {
 956                                kdb_printf("kdb_parse: too many arguments, "
 957                                           "command ignored\n%s\n", cmdstr);
 958                                return KDB_NOTFOUND;
 959                        }
 960                        argv[argc++] = cpp;
 961                        escaped = 0;
 962                        quoted = '\0';
 963                        /* Copy to next unquoted and unescaped
 964                         * whitespace or '=' */
 965                        while (*cp && *cp != '\n' &&
 966                               (escaped || quoted || !isspace(*cp))) {
 967                                if (cpp >= cbuf + CMD_BUFLEN)
 968                                        break;
 969                                if (escaped) {
 970                                        escaped = 0;
 971                                        *cpp++ = *cp++;
 972                                        continue;
 973                                }
 974                                if (*cp == '\\') {
 975                                        escaped = 1;
 976                                        ++cp;
 977                                        continue;
 978                                }
 979                                if (*cp == quoted)
 980                                        quoted = '\0';
 981                                else if (*cp == '\'' || *cp == '"')
 982                                        quoted = *cp;
 983                                *cpp = *cp++;
 984                                if (*cpp == '=' && !quoted)
 985                                        break;
 986                                ++cpp;
 987                        }
 988                        *cpp++ = '\0';  /* Squash a ws or '=' character */
 989                }
 990        }
 991        if (!argc)
 992                return 0;
 993        if (check_grep)
 994                parse_grep(cp);
 995        if (defcmd_in_progress) {
 996                int result = kdb_defcmd2(cmdstr, argv[0]);
 997                if (!defcmd_in_progress) {
 998                        argc = 0;       /* avoid repeat on endefcmd */
 999                        *(argv[0]) = '\0';
1000                }
1001                return result;
1002        }
1003        if (argv[0][0] == '-' && argv[0][1] &&
1004            (argv[0][1] < '0' || argv[0][1] > '9')) {
1005                ignore_errors = 1;
1006                ++argv[0];
1007        }
1008
1009        for_each_kdbcmd(tp, i) {
1010                if (tp->cmd_name) {
1011                        /*
1012                         * If this command is allowed to be abbreviated,
1013                         * check to see if this is it.
1014                         */
1015
1016                        if (tp->cmd_minlen
1017                         && (strlen(argv[0]) <= tp->cmd_minlen)) {
1018                                if (strncmp(argv[0],
1019                                            tp->cmd_name,
1020                                            tp->cmd_minlen) == 0) {
1021                                        break;
1022                                }
1023                        }
1024
1025                        if (strcmp(argv[0], tp->cmd_name) == 0)
1026                                break;
1027                }
1028        }
1029
1030        /*
1031         * If we don't find a command by this name, see if the first
1032         * few characters of this match any of the known commands.
1033         * e.g., md1c20 should match md.
1034         */
1035        if (i == kdb_max_commands) {
1036                for_each_kdbcmd(tp, i) {
1037                        if (tp->cmd_name) {
1038                                if (strncmp(argv[0],
1039                                            tp->cmd_name,
1040                                            strlen(tp->cmd_name)) == 0) {
1041                                        break;
1042                                }
1043                        }
1044                }
1045        }
1046
1047        if (i < kdb_max_commands) {
1048                int result;
1049
1050                if (!kdb_check_flags(tp->cmd_flags, kdb_cmd_enabled, argc <= 1))
1051                        return KDB_NOPERM;
1052
1053                KDB_STATE_SET(CMD);
1054                result = (*tp->cmd_func)(argc-1, (const char **)argv);
1055                if (result && ignore_errors && result > KDB_CMD_GO)
1056                        result = 0;
1057                KDB_STATE_CLEAR(CMD);
1058
1059                if (tp->cmd_flags & KDB_REPEAT_WITH_ARGS)
1060                        return result;
1061
1062                argc = tp->cmd_flags & KDB_REPEAT_NO_ARGS ? 1 : 0;
1063                if (argv[argc])
1064                        *(argv[argc]) = '\0';
1065                return result;
1066        }
1067
1068        /*
1069         * If the input with which we were presented does not
1070         * map to an existing command, attempt to parse it as an
1071         * address argument and display the result.   Useful for
1072         * obtaining the address of a variable, or the nearest symbol
1073         * to an address contained in a register.
1074         */
1075        {
1076                unsigned long value;
1077                char *name = NULL;
1078                long offset;
1079                int nextarg = 0;
1080
1081                if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1082                                  &value, &offset, &name)) {
1083                        return KDB_NOTFOUND;
1084                }
1085
1086                kdb_printf("%s = ", argv[0]);
1087                kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1088                kdb_printf("\n");
1089                return 0;
1090        }
1091}
1092
1093
1094static int handle_ctrl_cmd(char *cmd)
1095{
1096#define CTRL_P  16
1097#define CTRL_N  14
1098
1099        /* initial situation */
1100        if (cmd_head == cmd_tail)
1101                return 0;
1102        switch (*cmd) {
1103        case CTRL_P:
1104                if (cmdptr != cmd_tail)
1105                        cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT;
1106                strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1107                return 1;
1108        case CTRL_N:
1109                if (cmdptr != cmd_head)
1110                        cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1111                strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1112                return 1;
1113        }
1114        return 0;
1115}
1116
1117/*
1118 * kdb_reboot - This function implements the 'reboot' command.  Reboot
1119 *      the system immediately, or loop for ever on failure.
1120 */
1121static int kdb_reboot(int argc, const char **argv)
1122{
1123        emergency_restart();
1124        kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1125        while (1)
1126                cpu_relax();
1127        /* NOTREACHED */
1128        return 0;
1129}
1130
1131static void kdb_dumpregs(struct pt_regs *regs)
1132{
1133        int old_lvl = console_loglevel;
1134        console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
1135        kdb_trap_printk++;
1136        show_regs(regs);
1137        kdb_trap_printk--;
1138        kdb_printf("\n");
1139        console_loglevel = old_lvl;
1140}
1141
1142void kdb_set_current_task(struct task_struct *p)
1143{
1144        kdb_current_task = p;
1145
1146        if (kdb_task_has_cpu(p)) {
1147                kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1148                return;
1149        }
1150        kdb_current_regs = NULL;
1151}
1152
1153static void drop_newline(char *buf)
1154{
1155        size_t len = strlen(buf);
1156
1157        if (len == 0)
1158                return;
1159        if (*(buf + len - 1) == '\n')
1160                *(buf + len - 1) = '\0';
1161}
1162
1163/*
1164 * kdb_local - The main code for kdb.  This routine is invoked on a
1165 *      specific processor, it is not global.  The main kdb() routine
1166 *      ensures that only one processor at a time is in this routine.
1167 *      This code is called with the real reason code on the first
1168 *      entry to a kdb session, thereafter it is called with reason
1169 *      SWITCH, even if the user goes back to the original cpu.
1170 * Inputs:
1171 *      reason          The reason KDB was invoked
1172 *      error           The hardware-defined error code
1173 *      regs            The exception frame at time of fault/breakpoint.
1174 *      db_result       Result code from the break or debug point.
1175 * Returns:
1176 *      0       KDB was invoked for an event which it wasn't responsible
1177 *      1       KDB handled the event for which it was invoked.
1178 *      KDB_CMD_GO      User typed 'go'.
1179 *      KDB_CMD_CPU     User switched to another cpu.
1180 *      KDB_CMD_SS      Single step.
1181 */
1182static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1183                     kdb_dbtrap_t db_result)
1184{
1185        char *cmdbuf;
1186        int diag;
1187        struct task_struct *kdb_current =
1188                kdb_curr_task(raw_smp_processor_id());
1189
1190        KDB_DEBUG_STATE("kdb_local 1", reason);
1191        kdb_go_count = 0;
1192        if (reason == KDB_REASON_DEBUG) {
1193                /* special case below */
1194        } else {
1195                kdb_printf("\nEntering kdb (current=0x%px, pid %d) ",
1196                           kdb_current, kdb_current ? kdb_current->pid : 0);
1197#if defined(CONFIG_SMP)
1198                kdb_printf("on processor %d ", raw_smp_processor_id());
1199#endif
1200        }
1201
1202        switch (reason) {
1203        case KDB_REASON_DEBUG:
1204        {
1205                /*
1206                 * If re-entering kdb after a single step
1207                 * command, don't print the message.
1208                 */
1209                switch (db_result) {
1210                case KDB_DB_BPT:
1211                        kdb_printf("\nEntering kdb (0x%px, pid %d) ",
1212                                   kdb_current, kdb_current->pid);
1213#if defined(CONFIG_SMP)
1214                        kdb_printf("on processor %d ", raw_smp_processor_id());
1215#endif
1216                        kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1217                                   instruction_pointer(regs));
1218                        break;
1219                case KDB_DB_SS:
1220                        break;
1221                case KDB_DB_SSBPT:
1222                        KDB_DEBUG_STATE("kdb_local 4", reason);
1223                        return 1;       /* kdba_db_trap did the work */
1224                default:
1225                        kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1226                                   db_result);
1227                        break;
1228                }
1229
1230        }
1231                break;
1232        case KDB_REASON_ENTER:
1233                if (KDB_STATE(KEYBOARD))
1234                        kdb_printf("due to Keyboard Entry\n");
1235                else
1236                        kdb_printf("due to KDB_ENTER()\n");
1237                break;
1238        case KDB_REASON_KEYBOARD:
1239                KDB_STATE_SET(KEYBOARD);
1240                kdb_printf("due to Keyboard Entry\n");
1241                break;
1242        case KDB_REASON_ENTER_SLAVE:
1243                /* drop through, slaves only get released via cpu switch */
1244        case KDB_REASON_SWITCH:
1245                kdb_printf("due to cpu switch\n");
1246                break;
1247        case KDB_REASON_OOPS:
1248                kdb_printf("Oops: %s\n", kdb_diemsg);
1249                kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1250                           instruction_pointer(regs));
1251                kdb_dumpregs(regs);
1252                break;
1253        case KDB_REASON_SYSTEM_NMI:
1254                kdb_printf("due to System NonMaskable Interrupt\n");
1255                break;
1256        case KDB_REASON_NMI:
1257                kdb_printf("due to NonMaskable Interrupt @ "
1258                           kdb_machreg_fmt "\n",
1259                           instruction_pointer(regs));
1260                break;
1261        case KDB_REASON_SSTEP:
1262        case KDB_REASON_BREAK:
1263                kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1264                           reason == KDB_REASON_BREAK ?
1265                           "Breakpoint" : "SS trap", instruction_pointer(regs));
1266                /*
1267                 * Determine if this breakpoint is one that we
1268                 * are interested in.
1269                 */
1270                if (db_result != KDB_DB_BPT) {
1271                        kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1272                                   db_result);
1273                        KDB_DEBUG_STATE("kdb_local 6", reason);
1274                        return 0;       /* Not for us, dismiss it */
1275                }
1276                break;
1277        case KDB_REASON_RECURSE:
1278                kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1279                           instruction_pointer(regs));
1280                break;
1281        default:
1282                kdb_printf("kdb: unexpected reason code: %d\n", reason);
1283                KDB_DEBUG_STATE("kdb_local 8", reason);
1284                return 0;       /* Not for us, dismiss it */
1285        }
1286
1287        while (1) {
1288                /*
1289                 * Initialize pager context.
1290                 */
1291                kdb_nextline = 1;
1292                KDB_STATE_CLEAR(SUPPRESS);
1293                kdb_grepping_flag = 0;
1294                /* ensure the old search does not leak into '/' commands */
1295                kdb_grep_string[0] = '\0';
1296
1297                cmdbuf = cmd_cur;
1298                *cmdbuf = '\0';
1299                *(cmd_hist[cmd_head]) = '\0';
1300
1301do_full_getstr:
1302#if defined(CONFIG_SMP)
1303                snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1304                         raw_smp_processor_id());
1305#else
1306                snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"));
1307#endif
1308                if (defcmd_in_progress)
1309                        strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1310
1311                /*
1312                 * Fetch command from keyboard
1313                 */
1314                cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1315                if (*cmdbuf != '\n') {
1316                        if (*cmdbuf < 32) {
1317                                if (cmdptr == cmd_head) {
1318                                        strncpy(cmd_hist[cmd_head], cmd_cur,
1319                                                CMD_BUFLEN);
1320                                        *(cmd_hist[cmd_head] +
1321                                          strlen(cmd_hist[cmd_head])-1) = '\0';
1322                                }
1323                                if (!handle_ctrl_cmd(cmdbuf))
1324                                        *(cmd_cur+strlen(cmd_cur)-1) = '\0';
1325                                cmdbuf = cmd_cur;
1326                                goto do_full_getstr;
1327                        } else {
1328                                strncpy(cmd_hist[cmd_head], cmd_cur,
1329                                        CMD_BUFLEN);
1330                        }
1331
1332                        cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1333                        if (cmd_head == cmd_tail)
1334                                cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1335                }
1336
1337                cmdptr = cmd_head;
1338                diag = kdb_parse(cmdbuf);
1339                if (diag == KDB_NOTFOUND) {
1340                        drop_newline(cmdbuf);
1341                        kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1342                        diag = 0;
1343                }
1344                if (diag == KDB_CMD_GO
1345                 || diag == KDB_CMD_CPU
1346                 || diag == KDB_CMD_SS
1347                 || diag == KDB_CMD_KGDB)
1348                        break;
1349
1350                if (diag)
1351                        kdb_cmderror(diag);
1352        }
1353        KDB_DEBUG_STATE("kdb_local 9", diag);
1354        return diag;
1355}
1356
1357
1358/*
1359 * kdb_print_state - Print the state data for the current processor
1360 *      for debugging.
1361 * Inputs:
1362 *      text            Identifies the debug point
1363 *      value           Any integer value to be printed, e.g. reason code.
1364 */
1365void kdb_print_state(const char *text, int value)
1366{
1367        kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1368                   text, raw_smp_processor_id(), value, kdb_initial_cpu,
1369                   kdb_state);
1370}
1371
1372/*
1373 * kdb_main_loop - After initial setup and assignment of the
1374 *      controlling cpu, all cpus are in this loop.  One cpu is in
1375 *      control and will issue the kdb prompt, the others will spin
1376 *      until 'go' or cpu switch.
1377 *
1378 *      To get a consistent view of the kernel stacks for all
1379 *      processes, this routine is invoked from the main kdb code via
1380 *      an architecture specific routine.  kdba_main_loop is
1381 *      responsible for making the kernel stacks consistent for all
1382 *      processes, there should be no difference between a blocked
1383 *      process and a running process as far as kdb is concerned.
1384 * Inputs:
1385 *      reason          The reason KDB was invoked
1386 *      error           The hardware-defined error code
1387 *      reason2         kdb's current reason code.
1388 *                      Initially error but can change
1389 *                      according to kdb state.
1390 *      db_result       Result code from break or debug point.
1391 *      regs            The exception frame at time of fault/breakpoint.
1392 *                      should always be valid.
1393 * Returns:
1394 *      0       KDB was invoked for an event which it wasn't responsible
1395 *      1       KDB handled the event for which it was invoked.
1396 */
1397int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1398              kdb_dbtrap_t db_result, struct pt_regs *regs)
1399{
1400        int result = 1;
1401        /* Stay in kdb() until 'go', 'ss[b]' or an error */
1402        while (1) {
1403                /*
1404                 * All processors except the one that is in control
1405                 * will spin here.
1406                 */
1407                KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1408                while (KDB_STATE(HOLD_CPU)) {
1409                        /* state KDB is turned off by kdb_cpu to see if the
1410                         * other cpus are still live, each cpu in this loop
1411                         * turns it back on.
1412                         */
1413                        if (!KDB_STATE(KDB))
1414                                KDB_STATE_SET(KDB);
1415                }
1416
1417                KDB_STATE_CLEAR(SUPPRESS);
1418                KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1419                if (KDB_STATE(LEAVING))
1420                        break;  /* Another cpu said 'go' */
1421                /* Still using kdb, this processor is in control */
1422                result = kdb_local(reason2, error, regs, db_result);
1423                KDB_DEBUG_STATE("kdb_main_loop 3", result);
1424
1425                if (result == KDB_CMD_CPU)
1426                        break;
1427
1428                if (result == KDB_CMD_SS) {
1429                        KDB_STATE_SET(DOING_SS);
1430                        break;
1431                }
1432
1433                if (result == KDB_CMD_KGDB) {
1434                        if (!KDB_STATE(DOING_KGDB))
1435                                kdb_printf("Entering please attach debugger "
1436                                           "or use $D#44+ or $3#33\n");
1437                        break;
1438                }
1439                if (result && result != 1 && result != KDB_CMD_GO)
1440                        kdb_printf("\nUnexpected kdb_local return code %d\n",
1441                                   result);
1442                KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1443                break;
1444        }
1445        if (KDB_STATE(DOING_SS))
1446                KDB_STATE_CLEAR(SSBPT);
1447
1448        /* Clean up any keyboard devices before leaving */
1449        kdb_kbd_cleanup_state();
1450
1451        return result;
1452}
1453
1454/*
1455 * kdb_mdr - This function implements the guts of the 'mdr', memory
1456 * read command.
1457 *      mdr  <addr arg>,<byte count>
1458 * Inputs:
1459 *      addr    Start address
1460 *      count   Number of bytes
1461 * Returns:
1462 *      Always 0.  Any errors are detected and printed by kdb_getarea.
1463 */
1464static int kdb_mdr(unsigned long addr, unsigned int count)
1465{
1466        unsigned char c;
1467        while (count--) {
1468                if (kdb_getarea(c, addr))
1469                        return 0;
1470                kdb_printf("%02x", c);
1471                addr++;
1472        }
1473        kdb_printf("\n");
1474        return 0;
1475}
1476
1477/*
1478 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1479 *      'md8' 'mdr' and 'mds' commands.
1480 *
1481 *      md|mds  [<addr arg> [<line count> [<radix>]]]
1482 *      mdWcN   [<addr arg> [<line count> [<radix>]]]
1483 *              where W = is the width (1, 2, 4 or 8) and N is the count.
1484 *              for eg., md1c20 reads 20 bytes, 1 at a time.
1485 *      mdr  <addr arg>,<byte count>
1486 */
1487static void kdb_md_line(const char *fmtstr, unsigned long addr,
1488                        int symbolic, int nosect, int bytesperword,
1489                        int num, int repeat, int phys)
1490{
1491        /* print just one line of data */
1492        kdb_symtab_t symtab;
1493        char cbuf[32];
1494        char *c = cbuf;
1495        int i;
1496        int j;
1497        unsigned long word;
1498
1499        memset(cbuf, '\0', sizeof(cbuf));
1500        if (phys)
1501                kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1502        else
1503                kdb_printf(kdb_machreg_fmt0 " ", addr);
1504
1505        for (i = 0; i < num && repeat--; i++) {
1506                if (phys) {
1507                        if (kdb_getphysword(&word, addr, bytesperword))
1508                                break;
1509                } else if (kdb_getword(&word, addr, bytesperword))
1510                        break;
1511                kdb_printf(fmtstr, word);
1512                if (symbolic)
1513                        kdbnearsym(word, &symtab);
1514                else
1515                        memset(&symtab, 0, sizeof(symtab));
1516                if (symtab.sym_name) {
1517                        kdb_symbol_print(word, &symtab, 0);
1518                        if (!nosect) {
1519                                kdb_printf("\n");
1520                                kdb_printf("                       %s %s "
1521                                           kdb_machreg_fmt " "
1522                                           kdb_machreg_fmt " "
1523                                           kdb_machreg_fmt, symtab.mod_name,
1524                                           symtab.sec_name, symtab.sec_start,
1525                                           symtab.sym_start, symtab.sym_end);
1526                        }
1527                        addr += bytesperword;
1528                } else {
1529                        union {
1530                                u64 word;
1531                                unsigned char c[8];
1532                        } wc;
1533                        unsigned char *cp;
1534#ifdef  __BIG_ENDIAN
1535                        cp = wc.c + 8 - bytesperword;
1536#else
1537                        cp = wc.c;
1538#endif
1539                        wc.word = word;
1540#define printable_char(c) \
1541        ({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1542                        for (j = 0; j < bytesperword; j++)
1543                                *c++ = printable_char(*cp++);
1544                        addr += bytesperword;
1545#undef printable_char
1546                }
1547        }
1548        kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1549                   " ", cbuf);
1550}
1551
1552static int kdb_md(int argc, const char **argv)
1553{
1554        static unsigned long last_addr;
1555        static int last_radix, last_bytesperword, last_repeat;
1556        int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1557        int nosect = 0;
1558        char fmtchar, fmtstr[64];
1559        unsigned long addr;
1560        unsigned long word;
1561        long offset = 0;
1562        int symbolic = 0;
1563        int valid = 0;
1564        int phys = 0;
1565        int raw = 0;
1566
1567        kdbgetintenv("MDCOUNT", &mdcount);
1568        kdbgetintenv("RADIX", &radix);
1569        kdbgetintenv("BYTESPERWORD", &bytesperword);
1570
1571        /* Assume 'md <addr>' and start with environment values */
1572        repeat = mdcount * 16 / bytesperword;
1573
1574        if (strcmp(argv[0], "mdr") == 0) {
1575                if (argc == 2 || (argc == 0 && last_addr != 0))
1576                        valid = raw = 1;
1577                else
1578                        return KDB_ARGCOUNT;
1579        } else if (isdigit(argv[0][2])) {
1580                bytesperword = (int)(argv[0][2] - '0');
1581                if (bytesperword == 0) {
1582                        bytesperword = last_bytesperword;
1583                        if (bytesperword == 0)
1584                                bytesperword = 4;
1585                }
1586                last_bytesperword = bytesperword;
1587                repeat = mdcount * 16 / bytesperword;
1588                if (!argv[0][3])
1589                        valid = 1;
1590                else if (argv[0][3] == 'c' && argv[0][4]) {
1591                        char *p;
1592                        repeat = simple_strtoul(argv[0] + 4, &p, 10);
1593                        mdcount = ((repeat * bytesperword) + 15) / 16;
1594                        valid = !*p;
1595                }
1596                last_repeat = repeat;
1597        } else if (strcmp(argv[0], "md") == 0)
1598                valid = 1;
1599        else if (strcmp(argv[0], "mds") == 0)
1600                valid = 1;
1601        else if (strcmp(argv[0], "mdp") == 0) {
1602                phys = valid = 1;
1603        }
1604        if (!valid)
1605                return KDB_NOTFOUND;
1606
1607        if (argc == 0) {
1608                if (last_addr == 0)
1609                        return KDB_ARGCOUNT;
1610                addr = last_addr;
1611                radix = last_radix;
1612                bytesperword = last_bytesperword;
1613                repeat = last_repeat;
1614                if (raw)
1615                        mdcount = repeat;
1616                else
1617                        mdcount = ((repeat * bytesperword) + 15) / 16;
1618        }
1619
1620        if (argc) {
1621                unsigned long val;
1622                int diag, nextarg = 1;
1623                diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1624                                     &offset, NULL);
1625                if (diag)
1626                        return diag;
1627                if (argc > nextarg+2)
1628                        return KDB_ARGCOUNT;
1629
1630                if (argc >= nextarg) {
1631                        diag = kdbgetularg(argv[nextarg], &val);
1632                        if (!diag) {
1633                                mdcount = (int) val;
1634                                if (raw)
1635                                        repeat = mdcount;
1636                                else
1637                                        repeat = mdcount * 16 / bytesperword;
1638                        }
1639                }
1640                if (argc >= nextarg+1) {
1641                        diag = kdbgetularg(argv[nextarg+1], &val);
1642                        if (!diag)
1643                                radix = (int) val;
1644                }
1645        }
1646
1647        if (strcmp(argv[0], "mdr") == 0) {
1648                int ret;
1649                last_addr = addr;
1650                ret = kdb_mdr(addr, mdcount);
1651                last_addr += mdcount;
1652                last_repeat = mdcount;
1653                last_bytesperword = bytesperword; // to make REPEAT happy
1654                return ret;
1655        }
1656
1657        switch (radix) {
1658        case 10:
1659                fmtchar = 'd';
1660                break;
1661        case 16:
1662                fmtchar = 'x';
1663                break;
1664        case 8:
1665                fmtchar = 'o';
1666                break;
1667        default:
1668                return KDB_BADRADIX;
1669        }
1670
1671        last_radix = radix;
1672
1673        if (bytesperword > KDB_WORD_SIZE)
1674                return KDB_BADWIDTH;
1675
1676        switch (bytesperword) {
1677        case 8:
1678                sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1679                break;
1680        case 4:
1681                sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1682                break;
1683        case 2:
1684                sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1685                break;
1686        case 1:
1687                sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1688                break;
1689        default:
1690                return KDB_BADWIDTH;
1691        }
1692
1693        last_repeat = repeat;
1694        last_bytesperword = bytesperword;
1695
1696        if (strcmp(argv[0], "mds") == 0) {
1697                symbolic = 1;
1698                /* Do not save these changes as last_*, they are temporary mds
1699                 * overrides.
1700                 */
1701                bytesperword = KDB_WORD_SIZE;
1702                repeat = mdcount;
1703                kdbgetintenv("NOSECT", &nosect);
1704        }
1705
1706        /* Round address down modulo BYTESPERWORD */
1707
1708        addr &= ~(bytesperword-1);
1709
1710        while (repeat > 0) {
1711                unsigned long a;
1712                int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1713
1714                if (KDB_FLAG(CMD_INTERRUPT))
1715                        return 0;
1716                for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1717                        if (phys) {
1718                                if (kdb_getphysword(&word, a, bytesperword)
1719                                                || word)
1720                                        break;
1721                        } else if (kdb_getword(&word, a, bytesperword) || word)
1722                                break;
1723                }
1724                n = min(num, repeat);
1725                kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1726                            num, repeat, phys);
1727                addr += bytesperword * n;
1728                repeat -= n;
1729                z = (z + num - 1) / num;
1730                if (z > 2) {
1731                        int s = num * (z-2);
1732                        kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1733                                   " zero suppressed\n",
1734                                addr, addr + bytesperword * s - 1);
1735                        addr += bytesperword * s;
1736                        repeat -= s;
1737                }
1738        }
1739        last_addr = addr;
1740
1741        return 0;
1742}
1743
1744/*
1745 * kdb_mm - This function implements the 'mm' command.
1746 *      mm address-expression new-value
1747 * Remarks:
1748 *      mm works on machine words, mmW works on bytes.
1749 */
1750static int kdb_mm(int argc, const char **argv)
1751{
1752        int diag;
1753        unsigned long addr;
1754        long offset = 0;
1755        unsigned long contents;
1756        int nextarg;
1757        int width;
1758
1759        if (argv[0][2] && !isdigit(argv[0][2]))
1760                return KDB_NOTFOUND;
1761
1762        if (argc < 2)
1763                return KDB_ARGCOUNT;
1764
1765        nextarg = 1;
1766        diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1767        if (diag)
1768                return diag;
1769
1770        if (nextarg > argc)
1771                return KDB_ARGCOUNT;
1772        diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1773        if (diag)
1774                return diag;
1775
1776        if (nextarg != argc + 1)
1777                return KDB_ARGCOUNT;
1778
1779        width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1780        diag = kdb_putword(addr, contents, width);
1781        if (diag)
1782                return diag;
1783
1784        kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1785
1786        return 0;
1787}
1788
1789/*
1790 * kdb_go - This function implements the 'go' command.
1791 *      go [address-expression]
1792 */
1793static int kdb_go(int argc, const char **argv)
1794{
1795        unsigned long addr;
1796        int diag;
1797        int nextarg;
1798        long offset;
1799
1800        if (raw_smp_processor_id() != kdb_initial_cpu) {
1801                kdb_printf("go must execute on the entry cpu, "
1802                           "please use \"cpu %d\" and then execute go\n",
1803                           kdb_initial_cpu);
1804                return KDB_BADCPUNUM;
1805        }
1806        if (argc == 1) {
1807                nextarg = 1;
1808                diag = kdbgetaddrarg(argc, argv, &nextarg,
1809                                     &addr, &offset, NULL);
1810                if (diag)
1811                        return diag;
1812        } else if (argc) {
1813                return KDB_ARGCOUNT;
1814        }
1815
1816        diag = KDB_CMD_GO;
1817        if (KDB_FLAG(CATASTROPHIC)) {
1818                kdb_printf("Catastrophic error detected\n");
1819                kdb_printf("kdb_continue_catastrophic=%d, ",
1820                        kdb_continue_catastrophic);
1821                if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1822                        kdb_printf("type go a second time if you really want "
1823                                   "to continue\n");
1824                        return 0;
1825                }
1826                if (kdb_continue_catastrophic == 2) {
1827                        kdb_printf("forcing reboot\n");
1828                        kdb_reboot(0, NULL);
1829                }
1830                kdb_printf("attempting to continue\n");
1831        }
1832        return diag;
1833}
1834
1835/*
1836 * kdb_rd - This function implements the 'rd' command.
1837 */
1838static int kdb_rd(int argc, const char **argv)
1839{
1840        int len = kdb_check_regs();
1841#if DBG_MAX_REG_NUM > 0
1842        int i;
1843        char *rname;
1844        int rsize;
1845        u64 reg64;
1846        u32 reg32;
1847        u16 reg16;
1848        u8 reg8;
1849
1850        if (len)
1851                return len;
1852
1853        for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1854                rsize = dbg_reg_def[i].size * 2;
1855                if (rsize > 16)
1856                        rsize = 2;
1857                if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1858                        len = 0;
1859                        kdb_printf("\n");
1860                }
1861                if (len)
1862                        len += kdb_printf("  ");
1863                switch(dbg_reg_def[i].size * 8) {
1864                case 8:
1865                        rname = dbg_get_reg(i, &reg8, kdb_current_regs);
1866                        if (!rname)
1867                                break;
1868                        len += kdb_printf("%s: %02x", rname, reg8);
1869                        break;
1870                case 16:
1871                        rname = dbg_get_reg(i, &reg16, kdb_current_regs);
1872                        if (!rname)
1873                                break;
1874                        len += kdb_printf("%s: %04x", rname, reg16);
1875                        break;
1876                case 32:
1877                        rname = dbg_get_reg(i, &reg32, kdb_current_regs);
1878                        if (!rname)
1879                                break;
1880                        len += kdb_printf("%s: %08x", rname, reg32);
1881                        break;
1882                case 64:
1883                        rname = dbg_get_reg(i, &reg64, kdb_current_regs);
1884                        if (!rname)
1885                                break;
1886                        len += kdb_printf("%s: %016llx", rname, reg64);
1887                        break;
1888                default:
1889                        len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1890                }
1891        }
1892        kdb_printf("\n");
1893#else
1894        if (len)
1895                return len;
1896
1897        kdb_dumpregs(kdb_current_regs);
1898#endif
1899        return 0;
1900}
1901
1902/*
1903 * kdb_rm - This function implements the 'rm' (register modify)  command.
1904 *      rm register-name new-contents
1905 * Remarks:
1906 *      Allows register modification with the same restrictions as gdb
1907 */
1908static int kdb_rm(int argc, const char **argv)
1909{
1910#if DBG_MAX_REG_NUM > 0
1911        int diag;
1912        const char *rname;
1913        int i;
1914        u64 reg64;
1915        u32 reg32;
1916        u16 reg16;
1917        u8 reg8;
1918
1919        if (argc != 2)
1920                return KDB_ARGCOUNT;
1921        /*
1922         * Allow presence or absence of leading '%' symbol.
1923         */
1924        rname = argv[1];
1925        if (*rname == '%')
1926                rname++;
1927
1928        diag = kdbgetu64arg(argv[2], &reg64);
1929        if (diag)
1930                return diag;
1931
1932        diag = kdb_check_regs();
1933        if (diag)
1934                return diag;
1935
1936        diag = KDB_BADREG;
1937        for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1938                if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1939                        diag = 0;
1940                        break;
1941                }
1942        }
1943        if (!diag) {
1944                switch(dbg_reg_def[i].size * 8) {
1945                case 8:
1946                        reg8 = reg64;
1947                        dbg_set_reg(i, &reg8, kdb_current_regs);
1948                        break;
1949                case 16:
1950                        reg16 = reg64;
1951                        dbg_set_reg(i, &reg16, kdb_current_regs);
1952                        break;
1953                case 32:
1954                        reg32 = reg64;
1955                        dbg_set_reg(i, &reg32, kdb_current_regs);
1956                        break;
1957                case 64:
1958                        dbg_set_reg(i, &reg64, kdb_current_regs);
1959                        break;
1960                }
1961        }
1962        return diag;
1963#else
1964        kdb_printf("ERROR: Register set currently not implemented\n");
1965    return 0;
1966#endif
1967}
1968
1969#if defined(CONFIG_MAGIC_SYSRQ)
1970/*
1971 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1972 *      which interfaces to the soi-disant MAGIC SYSRQ functionality.
1973 *              sr <magic-sysrq-code>
1974 */
1975static int kdb_sr(int argc, const char **argv)
1976{
1977        bool check_mask =
1978            !kdb_check_flags(KDB_ENABLE_ALL, kdb_cmd_enabled, false);
1979
1980        if (argc != 1)
1981                return KDB_ARGCOUNT;
1982
1983        kdb_trap_printk++;
1984        __handle_sysrq(*argv[1], check_mask);
1985        kdb_trap_printk--;
1986
1987        return 0;
1988}
1989#endif  /* CONFIG_MAGIC_SYSRQ */
1990
1991/*
1992 * kdb_ef - This function implements the 'regs' (display exception
1993 *      frame) command.  This command takes an address and expects to
1994 *      find an exception frame at that address, formats and prints
1995 *      it.
1996 *              regs address-expression
1997 * Remarks:
1998 *      Not done yet.
1999 */
2000static int kdb_ef(int argc, const char **argv)
2001{
2002        int diag;
2003        unsigned long addr;
2004        long offset;
2005        int nextarg;
2006
2007        if (argc != 1)
2008                return KDB_ARGCOUNT;
2009
2010        nextarg = 1;
2011        diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
2012        if (diag)
2013                return diag;
2014        show_regs((struct pt_regs *)addr);
2015        return 0;
2016}
2017
2018#if defined(CONFIG_MODULES)
2019/*
2020 * kdb_lsmod - This function implements the 'lsmod' command.  Lists
2021 *      currently loaded kernel modules.
2022 *      Mostly taken from userland lsmod.
2023 */
2024static int kdb_lsmod(int argc, const char **argv)
2025{
2026        struct module *mod;
2027
2028        if (argc != 0)
2029                return KDB_ARGCOUNT;
2030
2031        kdb_printf("Module                  Size  modstruct     Used by\n");
2032        list_for_each_entry(mod, kdb_modules, list) {
2033                if (mod->state == MODULE_STATE_UNFORMED)
2034                        continue;
2035
2036                kdb_printf("%-20s%8u  0x%px ", mod->name,
2037                           mod->core_layout.size, (void *)mod);
2038#ifdef CONFIG_MODULE_UNLOAD
2039                kdb_printf("%4d ", module_refcount(mod));
2040#endif
2041                if (mod->state == MODULE_STATE_GOING)
2042                        kdb_printf(" (Unloading)");
2043                else if (mod->state == MODULE_STATE_COMING)
2044                        kdb_printf(" (Loading)");
2045                else
2046                        kdb_printf(" (Live)");
2047                kdb_printf(" 0x%px", mod->core_layout.base);
2048
2049#ifdef CONFIG_MODULE_UNLOAD
2050                {
2051                        struct module_use *use;
2052                        kdb_printf(" [ ");
2053                        list_for_each_entry(use, &mod->source_list,
2054                                            source_list)
2055                                kdb_printf("%s ", use->target->name);
2056                        kdb_printf("]\n");
2057                }
2058#endif
2059        }
2060
2061        return 0;
2062}
2063
2064#endif  /* CONFIG_MODULES */
2065
2066/*
2067 * kdb_env - This function implements the 'env' command.  Display the
2068 *      current environment variables.
2069 */
2070
2071static int kdb_env(int argc, const char **argv)
2072{
2073        int i;
2074
2075        for (i = 0; i < __nenv; i++) {
2076                if (__env[i])
2077                        kdb_printf("%s\n", __env[i]);
2078        }
2079
2080        if (KDB_DEBUG(MASK))
2081                kdb_printf("KDBFLAGS=0x%x\n", kdb_flags);
2082
2083        return 0;
2084}
2085
2086#ifdef CONFIG_PRINTK
2087/*
2088 * kdb_dmesg - This function implements the 'dmesg' command to display
2089 *      the contents of the syslog buffer.
2090 *              dmesg [lines] [adjust]
2091 */
2092static int kdb_dmesg(int argc, const char **argv)
2093{
2094        int diag;
2095        int logging;
2096        int lines = 0;
2097        int adjust = 0;
2098        int n = 0;
2099        int skip = 0;
2100        struct kmsg_dumper dumper = { .active = 1 };
2101        size_t len;
2102        char buf[201];
2103
2104        if (argc > 2)
2105                return KDB_ARGCOUNT;
2106        if (argc) {
2107                char *cp;
2108                lines = simple_strtol(argv[1], &cp, 0);
2109                if (*cp)
2110                        lines = 0;
2111                if (argc > 1) {
2112                        adjust = simple_strtoul(argv[2], &cp, 0);
2113                        if (*cp || adjust < 0)
2114                                adjust = 0;
2115                }
2116        }
2117
2118        /* disable LOGGING if set */
2119        diag = kdbgetintenv("LOGGING", &logging);
2120        if (!diag && logging) {
2121                const char *setargs[] = { "set", "LOGGING", "0" };
2122                kdb_set(2, setargs);
2123        }
2124
2125        kmsg_dump_rewind_nolock(&dumper);
2126        while (kmsg_dump_get_line_nolock(&dumper, 1, NULL, 0, NULL))
2127                n++;
2128
2129        if (lines < 0) {
2130                if (adjust >= n)
2131                        kdb_printf("buffer only contains %d lines, nothing "
2132                                   "printed\n", n);
2133                else if (adjust - lines >= n)
2134                        kdb_printf("buffer only contains %d lines, last %d "
2135                                   "lines printed\n", n, n - adjust);
2136                skip = adjust;
2137                lines = abs(lines);
2138        } else if (lines > 0) {
2139                skip = n - lines - adjust;
2140                lines = abs(lines);
2141                if (adjust >= n) {
2142                        kdb_printf("buffer only contains %d lines, "
2143                                   "nothing printed\n", n);
2144                        skip = n;
2145                } else if (skip < 0) {
2146                        lines += skip;
2147                        skip = 0;
2148                        kdb_printf("buffer only contains %d lines, first "
2149                                   "%d lines printed\n", n, lines);
2150                }
2151        } else {
2152                lines = n;
2153        }
2154
2155        if (skip >= n || skip < 0)
2156                return 0;
2157
2158        kmsg_dump_rewind_nolock(&dumper);
2159        while (kmsg_dump_get_line_nolock(&dumper, 1, buf, sizeof(buf), &len)) {
2160                if (skip) {
2161                        skip--;
2162                        continue;
2163                }
2164                if (!lines--)
2165                        break;
2166                if (KDB_FLAG(CMD_INTERRUPT))
2167                        return 0;
2168
2169                kdb_printf("%.*s\n", (int)len - 1, buf);
2170        }
2171
2172        return 0;
2173}
2174#endif /* CONFIG_PRINTK */
2175
2176/* Make sure we balance enable/disable calls, must disable first. */
2177static atomic_t kdb_nmi_disabled;
2178
2179static int kdb_disable_nmi(int argc, const char *argv[])
2180{
2181        if (atomic_read(&kdb_nmi_disabled))
2182                return 0;
2183        atomic_set(&kdb_nmi_disabled, 1);
2184        arch_kgdb_ops.enable_nmi(0);
2185        return 0;
2186}
2187
2188static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp)
2189{
2190        if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0))
2191                return -EINVAL;
2192        arch_kgdb_ops.enable_nmi(1);
2193        return 0;
2194}
2195
2196static const struct kernel_param_ops kdb_param_ops_enable_nmi = {
2197        .set = kdb_param_enable_nmi,
2198};
2199module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600);
2200
2201/*
2202 * kdb_cpu - This function implements the 'cpu' command.
2203 *      cpu     [<cpunum>]
2204 * Returns:
2205 *      KDB_CMD_CPU for success, a kdb diagnostic if error
2206 */
2207static void kdb_cpu_status(void)
2208{
2209        int i, start_cpu, first_print = 1;
2210        char state, prev_state = '?';
2211
2212        kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2213        kdb_printf("Available cpus: ");
2214        for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2215                if (!cpu_online(i)) {
2216                        state = 'F';    /* cpu is offline */
2217                } else if (!kgdb_info[i].enter_kgdb) {
2218                        state = 'D';    /* cpu is online but unresponsive */
2219                } else {
2220                        state = ' ';    /* cpu is responding to kdb */
2221                        if (kdb_task_state_char(KDB_TSK(i)) == 'I')
2222                                state = 'I';    /* idle task */
2223                }
2224                if (state != prev_state) {
2225                        if (prev_state != '?') {
2226                                if (!first_print)
2227                                        kdb_printf(", ");
2228                                first_print = 0;
2229                                kdb_printf("%d", start_cpu);
2230                                if (start_cpu < i-1)
2231                                        kdb_printf("-%d", i-1);
2232                                if (prev_state != ' ')
2233                                        kdb_printf("(%c)", prev_state);
2234                        }
2235                        prev_state = state;
2236                        start_cpu = i;
2237                }
2238        }
2239        /* print the trailing cpus, ignoring them if they are all offline */
2240        if (prev_state != 'F') {
2241                if (!first_print)
2242                        kdb_printf(", ");
2243                kdb_printf("%d", start_cpu);
2244                if (start_cpu < i-1)
2245                        kdb_printf("-%d", i-1);
2246                if (prev_state != ' ')
2247                        kdb_printf("(%c)", prev_state);
2248        }
2249        kdb_printf("\n");
2250}
2251
2252static int kdb_cpu(int argc, const char **argv)
2253{
2254        unsigned long cpunum;
2255        int diag;
2256
2257        if (argc == 0) {
2258                kdb_cpu_status();
2259                return 0;
2260        }
2261
2262        if (argc != 1)
2263                return KDB_ARGCOUNT;
2264
2265        diag = kdbgetularg(argv[1], &cpunum);
2266        if (diag)
2267                return diag;
2268
2269        /*
2270         * Validate cpunum
2271         */
2272        if ((cpunum >= CONFIG_NR_CPUS) || !kgdb_info[cpunum].enter_kgdb)
2273                return KDB_BADCPUNUM;
2274
2275        dbg_switch_cpu = cpunum;
2276
2277        /*
2278         * Switch to other cpu
2279         */
2280        return KDB_CMD_CPU;
2281}
2282
2283/* The user may not realize that ps/bta with no parameters does not print idle
2284 * or sleeping system daemon processes, so tell them how many were suppressed.
2285 */
2286void kdb_ps_suppressed(void)
2287{
2288        int idle = 0, daemon = 0;
2289        unsigned long mask_I = kdb_task_state_string("I"),
2290                      mask_M = kdb_task_state_string("M");
2291        unsigned long cpu;
2292        const struct task_struct *p, *g;
2293        for_each_online_cpu(cpu) {
2294                p = kdb_curr_task(cpu);
2295                if (kdb_task_state(p, mask_I))
2296                        ++idle;
2297        }
2298        kdb_do_each_thread(g, p) {
2299                if (kdb_task_state(p, mask_M))
2300                        ++daemon;
2301        } kdb_while_each_thread(g, p);
2302        if (idle || daemon) {
2303                if (idle)
2304                        kdb_printf("%d idle process%s (state I)%s\n",
2305                                   idle, idle == 1 ? "" : "es",
2306                                   daemon ? " and " : "");
2307                if (daemon)
2308                        kdb_printf("%d sleeping system daemon (state M) "
2309                                   "process%s", daemon,
2310                                   daemon == 1 ? "" : "es");
2311                kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2312        }
2313}
2314
2315/*
2316 * kdb_ps - This function implements the 'ps' command which shows a
2317 *      list of the active processes.
2318 *              ps [DRSTCZEUIMA]   All processes, optionally filtered by state
2319 */
2320void kdb_ps1(const struct task_struct *p)
2321{
2322        int cpu;
2323        unsigned long tmp;
2324
2325        if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long)))
2326                return;
2327
2328        cpu = kdb_process_cpu(p);
2329        kdb_printf("0x%px %8d %8d  %d %4d   %c  0x%px %c%s\n",
2330                   (void *)p, p->pid, p->parent->pid,
2331                   kdb_task_has_cpu(p), kdb_process_cpu(p),
2332                   kdb_task_state_char(p),
2333                   (void *)(&p->thread),
2334                   p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2335                   p->comm);
2336        if (kdb_task_has_cpu(p)) {
2337                if (!KDB_TSK(cpu)) {
2338                        kdb_printf("  Error: no saved data for this cpu\n");
2339                } else {
2340                        if (KDB_TSK(cpu) != p)
2341                                kdb_printf("  Error: does not match running "
2342                                   "process table (0x%px)\n", KDB_TSK(cpu));
2343                }
2344        }
2345}
2346
2347static int kdb_ps(int argc, const char **argv)
2348{
2349        struct task_struct *g, *p;
2350        unsigned long mask, cpu;
2351
2352        if (argc == 0)
2353                kdb_ps_suppressed();
2354        kdb_printf("%-*s      Pid   Parent [*] cpu State %-*s Command\n",
2355                (int)(2*sizeof(void *))+2, "Task Addr",
2356                (int)(2*sizeof(void *))+2, "Thread");
2357        mask = kdb_task_state_string(argc ? argv[1] : NULL);
2358        /* Run the active tasks first */
2359        for_each_online_cpu(cpu) {
2360                if (KDB_FLAG(CMD_INTERRUPT))
2361                        return 0;
2362                p = kdb_curr_task(cpu);
2363                if (kdb_task_state(p, mask))
2364                        kdb_ps1(p);
2365        }
2366        kdb_printf("\n");
2367        /* Now the real tasks */
2368        kdb_do_each_thread(g, p) {
2369                if (KDB_FLAG(CMD_INTERRUPT))
2370                        return 0;
2371                if (kdb_task_state(p, mask))
2372                        kdb_ps1(p);
2373        } kdb_while_each_thread(g, p);
2374
2375        return 0;
2376}
2377
2378/*
2379 * kdb_pid - This function implements the 'pid' command which switches
2380 *      the currently active process.
2381 *              pid [<pid> | R]
2382 */
2383static int kdb_pid(int argc, const char **argv)
2384{
2385        struct task_struct *p;
2386        unsigned long val;
2387        int diag;
2388
2389        if (argc > 1)
2390                return KDB_ARGCOUNT;
2391
2392        if (argc) {
2393                if (strcmp(argv[1], "R") == 0) {
2394                        p = KDB_TSK(kdb_initial_cpu);
2395                } else {
2396                        diag = kdbgetularg(argv[1], &val);
2397                        if (diag)
2398                                return KDB_BADINT;
2399
2400                        p = find_task_by_pid_ns((pid_t)val,     &init_pid_ns);
2401                        if (!p) {
2402                                kdb_printf("No task with pid=%d\n", (pid_t)val);
2403                                return 0;
2404                        }
2405                }
2406                kdb_set_current_task(p);
2407        }
2408        kdb_printf("KDB current process is %s(pid=%d)\n",
2409                   kdb_current_task->comm,
2410                   kdb_current_task->pid);
2411
2412        return 0;
2413}
2414
2415static int kdb_kgdb(int argc, const char **argv)
2416{
2417        return KDB_CMD_KGDB;
2418}
2419
2420/*
2421 * kdb_help - This function implements the 'help' and '?' commands.
2422 */
2423static int kdb_help(int argc, const char **argv)
2424{
2425        kdbtab_t *kt;
2426        int i;
2427
2428        kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2429        kdb_printf("-----------------------------"
2430                   "-----------------------------\n");
2431        for_each_kdbcmd(kt, i) {
2432                char *space = "";
2433                if (KDB_FLAG(CMD_INTERRUPT))
2434                        return 0;
2435                if (!kt->cmd_name)
2436                        continue;
2437                if (!kdb_check_flags(kt->cmd_flags, kdb_cmd_enabled, true))
2438                        continue;
2439                if (strlen(kt->cmd_usage) > 20)
2440                        space = "\n                                    ";
2441                kdb_printf("%-15.15s %-20s%s%s\n", kt->cmd_name,
2442                           kt->cmd_usage, space, kt->cmd_help);
2443        }
2444        return 0;
2445}
2446
2447/*
2448 * kdb_kill - This function implements the 'kill' commands.
2449 */
2450static int kdb_kill(int argc, const char **argv)
2451{
2452        long sig, pid;
2453        char *endp;
2454        struct task_struct *p;
2455
2456        if (argc != 2)
2457                return KDB_ARGCOUNT;
2458
2459        sig = simple_strtol(argv[1], &endp, 0);
2460        if (*endp)
2461                return KDB_BADINT;
2462        if ((sig >= 0) || !valid_signal(-sig)) {
2463                kdb_printf("Invalid signal parameter.<-signal>\n");
2464                return 0;
2465        }
2466        sig = -sig;
2467
2468        pid = simple_strtol(argv[2], &endp, 0);
2469        if (*endp)
2470                return KDB_BADINT;
2471        if (pid <= 0) {
2472                kdb_printf("Process ID must be large than 0.\n");
2473                return 0;
2474        }
2475
2476        /* Find the process. */
2477        p = find_task_by_pid_ns(pid, &init_pid_ns);
2478        if (!p) {
2479                kdb_printf("The specified process isn't found.\n");
2480                return 0;
2481        }
2482        p = p->group_leader;
2483        kdb_send_sig(p, sig);
2484        return 0;
2485}
2486
2487/*
2488 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2489 * I cannot call that code directly from kdb, it has an unconditional
2490 * cli()/sti() and calls routines that take locks which can stop the debugger.
2491 */
2492static void kdb_sysinfo(struct sysinfo *val)
2493{
2494        u64 uptime = ktime_get_mono_fast_ns();
2495
2496        memset(val, 0, sizeof(*val));
2497        val->uptime = div_u64(uptime, NSEC_PER_SEC);
2498        val->loads[0] = avenrun[0];
2499        val->loads[1] = avenrun[1];
2500        val->loads[2] = avenrun[2];
2501        val->procs = nr_threads-1;
2502        si_meminfo(val);
2503
2504        return;
2505}
2506
2507/*
2508 * kdb_summary - This function implements the 'summary' command.
2509 */
2510static int kdb_summary(int argc, const char **argv)
2511{
2512        time64_t now;
2513        struct tm tm;
2514        struct sysinfo val;
2515
2516        if (argc)
2517                return KDB_ARGCOUNT;
2518
2519        kdb_printf("sysname    %s\n", init_uts_ns.name.sysname);
2520        kdb_printf("release    %s\n", init_uts_ns.name.release);
2521        kdb_printf("version    %s\n", init_uts_ns.name.version);
2522        kdb_printf("machine    %s\n", init_uts_ns.name.machine);
2523        kdb_printf("nodename   %s\n", init_uts_ns.name.nodename);
2524        kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2525
2526        now = __ktime_get_real_seconds();
2527        time64_to_tm(now, 0, &tm);
2528        kdb_printf("date       %04ld-%02d-%02d %02d:%02d:%02d "
2529                   "tz_minuteswest %d\n",
2530                1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday,
2531                tm.tm_hour, tm.tm_min, tm.tm_sec,
2532                sys_tz.tz_minuteswest);
2533
2534        kdb_sysinfo(&val);
2535        kdb_printf("uptime     ");
2536        if (val.uptime > (24*60*60)) {
2537                int days = val.uptime / (24*60*60);
2538                val.uptime %= (24*60*60);
2539                kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2540        }
2541        kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2542
2543        kdb_printf("load avg   %ld.%02ld %ld.%02ld %ld.%02ld\n",
2544                LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2545                LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2546                LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2547
2548        /* Display in kilobytes */
2549#define K(x) ((x) << (PAGE_SHIFT - 10))
2550        kdb_printf("\nMemTotal:       %8lu kB\nMemFree:        %8lu kB\n"
2551                   "Buffers:        %8lu kB\n",
2552                   K(val.totalram), K(val.freeram), K(val.bufferram));
2553        return 0;
2554}
2555
2556/*
2557 * kdb_per_cpu - This function implements the 'per_cpu' command.
2558 */
2559static int kdb_per_cpu(int argc, const char **argv)
2560{
2561        char fmtstr[64];
2562        int cpu, diag, nextarg = 1;
2563        unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2564
2565        if (argc < 1 || argc > 3)
2566                return KDB_ARGCOUNT;
2567
2568        diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2569        if (diag)
2570                return diag;
2571
2572        if (argc >= 2) {
2573                diag = kdbgetularg(argv[2], &bytesperword);
2574                if (diag)
2575                        return diag;
2576        }
2577        if (!bytesperword)
2578                bytesperword = KDB_WORD_SIZE;
2579        else if (bytesperword > KDB_WORD_SIZE)
2580                return KDB_BADWIDTH;
2581        sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2582        if (argc >= 3) {
2583                diag = kdbgetularg(argv[3], &whichcpu);
2584                if (diag)
2585                        return diag;
2586                if (whichcpu >= nr_cpu_ids || !cpu_online(whichcpu)) {
2587                        kdb_printf("cpu %ld is not online\n", whichcpu);
2588                        return KDB_BADCPUNUM;
2589                }
2590        }
2591
2592        /* Most architectures use __per_cpu_offset[cpu], some use
2593         * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2594         */
2595#ifdef  __per_cpu_offset
2596#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2597#else
2598#ifdef  CONFIG_SMP
2599#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2600#else
2601#define KDB_PCU(cpu) 0
2602#endif
2603#endif
2604        for_each_online_cpu(cpu) {
2605                if (KDB_FLAG(CMD_INTERRUPT))
2606                        return 0;
2607
2608                if (whichcpu != ~0UL && whichcpu != cpu)
2609                        continue;
2610                addr = symaddr + KDB_PCU(cpu);
2611                diag = kdb_getword(&val, addr, bytesperword);
2612                if (diag) {
2613                        kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2614                                   "read, diag=%d\n", cpu, addr, diag);
2615                        continue;
2616                }
2617                kdb_printf("%5d ", cpu);
2618                kdb_md_line(fmtstr, addr,
2619                        bytesperword == KDB_WORD_SIZE,
2620                        1, bytesperword, 1, 1, 0);
2621        }
2622#undef KDB_PCU
2623        return 0;
2624}
2625
2626/*
2627 * display help for the use of cmd | grep pattern
2628 */
2629static int kdb_grep_help(int argc, const char **argv)
2630{
2631        kdb_printf("Usage of  cmd args | grep pattern:\n");
2632        kdb_printf("  Any command's output may be filtered through an ");
2633        kdb_printf("emulated 'pipe'.\n");
2634        kdb_printf("  'grep' is just a key word.\n");
2635        kdb_printf("  The pattern may include a very limited set of "
2636                   "metacharacters:\n");
2637        kdb_printf("   pattern or ^pattern or pattern$ or ^pattern$\n");
2638        kdb_printf("  And if there are spaces in the pattern, you may "
2639                   "quote it:\n");
2640        kdb_printf("   \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2641                   " or \"^pat tern$\"\n");
2642        return 0;
2643}
2644
2645/*
2646 * kdb_register_flags - This function is used to register a kernel
2647 *      debugger command.
2648 * Inputs:
2649 *      cmd     Command name
2650 *      func    Function to execute the command
2651 *      usage   A simple usage string showing arguments
2652 *      help    A simple help string describing command
2653 *      repeat  Does the command auto repeat on enter?
2654 * Returns:
2655 *      zero for success, one if a duplicate command.
2656 */
2657#define kdb_command_extend 50   /* arbitrary */
2658int kdb_register_flags(char *cmd,
2659                       kdb_func_t func,
2660                       char *usage,
2661                       char *help,
2662                       short minlen,
2663                       kdb_cmdflags_t flags)
2664{
2665        int i;
2666        kdbtab_t *kp;
2667
2668        /*
2669         *  Brute force method to determine duplicates
2670         */
2671        for_each_kdbcmd(kp, i) {
2672                if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2673                        kdb_printf("Duplicate kdb command registered: "
2674                                "%s, func %px help %s\n", cmd, func, help);
2675                        return 1;
2676                }
2677        }
2678
2679        /*
2680         * Insert command into first available location in table
2681         */
2682        for_each_kdbcmd(kp, i) {
2683                if (kp->cmd_name == NULL)
2684                        break;
2685        }
2686
2687        if (i >= kdb_max_commands) {
2688                kdbtab_t *new = kmalloc_array(kdb_max_commands -
2689                                                KDB_BASE_CMD_MAX +
2690                                                kdb_command_extend,
2691                                              sizeof(*new),
2692                                              GFP_KDB);
2693                if (!new) {
2694                        kdb_printf("Could not allocate new kdb_command "
2695                                   "table\n");
2696                        return 1;
2697                }
2698                if (kdb_commands) {
2699                        memcpy(new, kdb_commands,
2700                          (kdb_max_commands - KDB_BASE_CMD_MAX) * sizeof(*new));
2701                        kfree(kdb_commands);
2702                }
2703                memset(new + kdb_max_commands - KDB_BASE_CMD_MAX, 0,
2704                       kdb_command_extend * sizeof(*new));
2705                kdb_commands = new;
2706                kp = kdb_commands + kdb_max_commands - KDB_BASE_CMD_MAX;
2707                kdb_max_commands += kdb_command_extend;
2708        }
2709
2710        kp->cmd_name   = cmd;
2711        kp->cmd_func   = func;
2712        kp->cmd_usage  = usage;
2713        kp->cmd_help   = help;
2714        kp->cmd_minlen = minlen;
2715        kp->cmd_flags  = flags;
2716
2717        return 0;
2718}
2719EXPORT_SYMBOL_GPL(kdb_register_flags);
2720
2721
2722/*
2723 * kdb_register - Compatibility register function for commands that do
2724 *      not need to specify a repeat state.  Equivalent to
2725 *      kdb_register_flags with flags set to 0.
2726 * Inputs:
2727 *      cmd     Command name
2728 *      func    Function to execute the command
2729 *      usage   A simple usage string showing arguments
2730 *      help    A simple help string describing command
2731 * Returns:
2732 *      zero for success, one if a duplicate command.
2733 */
2734int kdb_register(char *cmd,
2735             kdb_func_t func,
2736             char *usage,
2737             char *help,
2738             short minlen)
2739{
2740        return kdb_register_flags(cmd, func, usage, help, minlen, 0);
2741}
2742EXPORT_SYMBOL_GPL(kdb_register);
2743
2744/*
2745 * kdb_unregister - This function is used to unregister a kernel
2746 *      debugger command.  It is generally called when a module which
2747 *      implements kdb commands is unloaded.
2748 * Inputs:
2749 *      cmd     Command name
2750 * Returns:
2751 *      zero for success, one command not registered.
2752 */
2753int kdb_unregister(char *cmd)
2754{
2755        int i;
2756        kdbtab_t *kp;
2757
2758        /*
2759         *  find the command.
2760         */
2761        for_each_kdbcmd(kp, i) {
2762                if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2763                        kp->cmd_name = NULL;
2764                        return 0;
2765                }
2766        }
2767
2768        /* Couldn't find it.  */
2769        return 1;
2770}
2771EXPORT_SYMBOL_GPL(kdb_unregister);
2772
2773/* Initialize the kdb command table. */
2774static void __init kdb_inittab(void)
2775{
2776        int i;
2777        kdbtab_t *kp;
2778
2779        for_each_kdbcmd(kp, i)
2780                kp->cmd_name = NULL;
2781
2782        kdb_register_flags("md", kdb_md, "<vaddr>",
2783          "Display Memory Contents, also mdWcN, e.g. md8c1", 1,
2784          KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2785        kdb_register_flags("mdr", kdb_md, "<vaddr> <bytes>",
2786          "Display Raw Memory", 0,
2787          KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2788        kdb_register_flags("mdp", kdb_md, "<paddr> <bytes>",
2789          "Display Physical Memory", 0,
2790          KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2791        kdb_register_flags("mds", kdb_md, "<vaddr>",
2792          "Display Memory Symbolically", 0,
2793          KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2794        kdb_register_flags("mm", kdb_mm, "<vaddr> <contents>",
2795          "Modify Memory Contents", 0,
2796          KDB_ENABLE_MEM_WRITE | KDB_REPEAT_NO_ARGS);
2797        kdb_register_flags("go", kdb_go, "[<vaddr>]",
2798          "Continue Execution", 1,
2799          KDB_ENABLE_REG_WRITE | KDB_ENABLE_ALWAYS_SAFE_NO_ARGS);
2800        kdb_register_flags("rd", kdb_rd, "",
2801          "Display Registers", 0,
2802          KDB_ENABLE_REG_READ);
2803        kdb_register_flags("rm", kdb_rm, "<reg> <contents>",
2804          "Modify Registers", 0,
2805          KDB_ENABLE_REG_WRITE);
2806        kdb_register_flags("ef", kdb_ef, "<vaddr>",
2807          "Display exception frame", 0,
2808          KDB_ENABLE_MEM_READ);
2809        kdb_register_flags("bt", kdb_bt, "[<vaddr>]",
2810          "Stack traceback", 1,
2811          KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS);
2812        kdb_register_flags("btp", kdb_bt, "<pid>",
2813          "Display stack for process <pid>", 0,
2814          KDB_ENABLE_INSPECT);
2815        kdb_register_flags("bta", kdb_bt, "[D|R|S|T|C|Z|E|U|I|M|A]",
2816          "Backtrace all processes matching state flag", 0,
2817          KDB_ENABLE_INSPECT);
2818        kdb_register_flags("btc", kdb_bt, "",
2819          "Backtrace current process on each cpu", 0,
2820          KDB_ENABLE_INSPECT);
2821        kdb_register_flags("btt", kdb_bt, "<vaddr>",
2822          "Backtrace process given its struct task address", 0,
2823          KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS);
2824        kdb_register_flags("env", kdb_env, "",
2825          "Show environment variables", 0,
2826          KDB_ENABLE_ALWAYS_SAFE);
2827        kdb_register_flags("set", kdb_set, "",
2828          "Set environment variables", 0,
2829          KDB_ENABLE_ALWAYS_SAFE);
2830        kdb_register_flags("help", kdb_help, "",
2831          "Display Help Message", 1,
2832          KDB_ENABLE_ALWAYS_SAFE);
2833        kdb_register_flags("?", kdb_help, "",
2834          "Display Help Message", 0,
2835          KDB_ENABLE_ALWAYS_SAFE);
2836        kdb_register_flags("cpu", kdb_cpu, "<cpunum>",
2837          "Switch to new cpu", 0,
2838          KDB_ENABLE_ALWAYS_SAFE_NO_ARGS);
2839        kdb_register_flags("kgdb", kdb_kgdb, "",
2840          "Enter kgdb mode", 0, 0);
2841        kdb_register_flags("ps", kdb_ps, "[<flags>|A]",
2842          "Display active task list", 0,
2843          KDB_ENABLE_INSPECT);
2844        kdb_register_flags("pid", kdb_pid, "<pidnum>",
2845          "Switch to another task", 0,
2846          KDB_ENABLE_INSPECT);
2847        kdb_register_flags("reboot", kdb_reboot, "",
2848          "Reboot the machine immediately", 0,
2849          KDB_ENABLE_REBOOT);
2850#if defined(CONFIG_MODULES)
2851        kdb_register_flags("lsmod", kdb_lsmod, "",
2852          "List loaded kernel modules", 0,
2853          KDB_ENABLE_INSPECT);
2854#endif
2855#if defined(CONFIG_MAGIC_SYSRQ)
2856        kdb_register_flags("sr", kdb_sr, "<key>",
2857          "Magic SysRq key", 0,
2858          KDB_ENABLE_ALWAYS_SAFE);
2859#endif
2860#if defined(CONFIG_PRINTK)
2861        kdb_register_flags("dmesg", kdb_dmesg, "[lines]",
2862          "Display syslog buffer", 0,
2863          KDB_ENABLE_ALWAYS_SAFE);
2864#endif
2865        if (arch_kgdb_ops.enable_nmi) {
2866                kdb_register_flags("disable_nmi", kdb_disable_nmi, "",
2867                  "Disable NMI entry to KDB", 0,
2868                  KDB_ENABLE_ALWAYS_SAFE);
2869        }
2870        kdb_register_flags("defcmd", kdb_defcmd, "name \"usage\" \"help\"",
2871          "Define a set of commands, down to endefcmd", 0,
2872          KDB_ENABLE_ALWAYS_SAFE);
2873        kdb_register_flags("kill", kdb_kill, "<-signal> <pid>",
2874          "Send a signal to a process", 0,
2875          KDB_ENABLE_SIGNAL);
2876        kdb_register_flags("summary", kdb_summary, "",
2877          "Summarize the system", 4,
2878          KDB_ENABLE_ALWAYS_SAFE);
2879        kdb_register_flags("per_cpu", kdb_per_cpu, "<sym> [<bytes>] [<cpu>]",
2880          "Display per_cpu variables", 3,
2881          KDB_ENABLE_MEM_READ);
2882        kdb_register_flags("grephelp", kdb_grep_help, "",
2883          "Display help on | grep", 0,
2884          KDB_ENABLE_ALWAYS_SAFE);
2885}
2886
2887/* Execute any commands defined in kdb_cmds.  */
2888static void __init kdb_cmd_init(void)
2889{
2890        int i, diag;
2891        for (i = 0; kdb_cmds[i]; ++i) {
2892                diag = kdb_parse(kdb_cmds[i]);
2893                if (diag)
2894                        kdb_printf("kdb command %s failed, kdb diag %d\n",
2895                                kdb_cmds[i], diag);
2896        }
2897        if (defcmd_in_progress) {
2898                kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2899                kdb_parse("endefcmd");
2900        }
2901}
2902
2903/* Initialize kdb_printf, breakpoint tables and kdb state */
2904void __init kdb_init(int lvl)
2905{
2906        static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2907        int i;
2908
2909        if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2910                return;
2911        for (i = kdb_init_lvl; i < lvl; i++) {
2912                switch (i) {
2913                case KDB_NOT_INITIALIZED:
2914                        kdb_inittab();          /* Initialize Command Table */
2915                        kdb_initbptab();        /* Initialize Breakpoints */
2916                        break;
2917                case KDB_INIT_EARLY:
2918                        kdb_cmd_init();         /* Build kdb_cmds tables */
2919                        break;
2920                }
2921        }
2922        kdb_init_lvl = lvl;
2923}
2924