linux/kernel/events/uprobes.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * User-space Probes (UProbes)
   4 *
   5 * Copyright (C) IBM Corporation, 2008-2012
   6 * Authors:
   7 *      Srikar Dronamraju
   8 *      Jim Keniston
   9 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
  10 */
  11
  12#include <linux/kernel.h>
  13#include <linux/highmem.h>
  14#include <linux/pagemap.h>      /* read_mapping_page */
  15#include <linux/slab.h>
  16#include <linux/sched.h>
  17#include <linux/sched/mm.h>
  18#include <linux/sched/coredump.h>
  19#include <linux/export.h>
  20#include <linux/rmap.h>         /* anon_vma_prepare */
  21#include <linux/mmu_notifier.h> /* set_pte_at_notify */
  22#include <linux/swap.h>         /* try_to_free_swap */
  23#include <linux/ptrace.h>       /* user_enable_single_step */
  24#include <linux/kdebug.h>       /* notifier mechanism */
  25#include "../../mm/internal.h"  /* munlock_vma_page */
  26#include <linux/percpu-rwsem.h>
  27#include <linux/task_work.h>
  28#include <linux/shmem_fs.h>
  29#include <linux/khugepaged.h>
  30
  31#include <linux/uprobes.h>
  32
  33#define UINSNS_PER_PAGE                 (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
  34#define MAX_UPROBE_XOL_SLOTS            UINSNS_PER_PAGE
  35
  36static struct rb_root uprobes_tree = RB_ROOT;
  37/*
  38 * allows us to skip the uprobe_mmap if there are no uprobe events active
  39 * at this time.  Probably a fine grained per inode count is better?
  40 */
  41#define no_uprobe_events()      RB_EMPTY_ROOT(&uprobes_tree)
  42
  43static DEFINE_SPINLOCK(uprobes_treelock);       /* serialize rbtree access */
  44
  45#define UPROBES_HASH_SZ 13
  46/* serialize uprobe->pending_list */
  47static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
  48#define uprobes_mmap_hash(v)    (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
  49
  50DEFINE_STATIC_PERCPU_RWSEM(dup_mmap_sem);
  51
  52/* Have a copy of original instruction */
  53#define UPROBE_COPY_INSN        0
  54
  55struct uprobe {
  56        struct rb_node          rb_node;        /* node in the rb tree */
  57        refcount_t              ref;
  58        struct rw_semaphore     register_rwsem;
  59        struct rw_semaphore     consumer_rwsem;
  60        struct list_head        pending_list;
  61        struct uprobe_consumer  *consumers;
  62        struct inode            *inode;         /* Also hold a ref to inode */
  63        loff_t                  offset;
  64        loff_t                  ref_ctr_offset;
  65        unsigned long           flags;
  66
  67        /*
  68         * The generic code assumes that it has two members of unknown type
  69         * owned by the arch-specific code:
  70         *
  71         *      insn -  copy_insn() saves the original instruction here for
  72         *              arch_uprobe_analyze_insn().
  73         *
  74         *      ixol -  potentially modified instruction to execute out of
  75         *              line, copied to xol_area by xol_get_insn_slot().
  76         */
  77        struct arch_uprobe      arch;
  78};
  79
  80struct delayed_uprobe {
  81        struct list_head list;
  82        struct uprobe *uprobe;
  83        struct mm_struct *mm;
  84};
  85
  86static DEFINE_MUTEX(delayed_uprobe_lock);
  87static LIST_HEAD(delayed_uprobe_list);
  88
  89/*
  90 * Execute out of line area: anonymous executable mapping installed
  91 * by the probed task to execute the copy of the original instruction
  92 * mangled by set_swbp().
  93 *
  94 * On a breakpoint hit, thread contests for a slot.  It frees the
  95 * slot after singlestep. Currently a fixed number of slots are
  96 * allocated.
  97 */
  98struct xol_area {
  99        wait_queue_head_t               wq;             /* if all slots are busy */
 100        atomic_t                        slot_count;     /* number of in-use slots */
 101        unsigned long                   *bitmap;        /* 0 = free slot */
 102
 103        struct vm_special_mapping       xol_mapping;
 104        struct page                     *pages[2];
 105        /*
 106         * We keep the vma's vm_start rather than a pointer to the vma
 107         * itself.  The probed process or a naughty kernel module could make
 108         * the vma go away, and we must handle that reasonably gracefully.
 109         */
 110        unsigned long                   vaddr;          /* Page(s) of instruction slots */
 111};
 112
 113/*
 114 * valid_vma: Verify if the specified vma is an executable vma
 115 * Relax restrictions while unregistering: vm_flags might have
 116 * changed after breakpoint was inserted.
 117 *      - is_register: indicates if we are in register context.
 118 *      - Return 1 if the specified virtual address is in an
 119 *        executable vma.
 120 */
 121static bool valid_vma(struct vm_area_struct *vma, bool is_register)
 122{
 123        vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
 124
 125        if (is_register)
 126                flags |= VM_WRITE;
 127
 128        return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
 129}
 130
 131static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
 132{
 133        return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
 134}
 135
 136static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
 137{
 138        return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
 139}
 140
 141/**
 142 * __replace_page - replace page in vma by new page.
 143 * based on replace_page in mm/ksm.c
 144 *
 145 * @vma:      vma that holds the pte pointing to page
 146 * @addr:     address the old @page is mapped at
 147 * @old_page: the page we are replacing by new_page
 148 * @new_page: the modified page we replace page by
 149 *
 150 * If @new_page is NULL, only unmap @old_page.
 151 *
 152 * Returns 0 on success, negative error code otherwise.
 153 */
 154static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
 155                                struct page *old_page, struct page *new_page)
 156{
 157        struct mm_struct *mm = vma->vm_mm;
 158        struct page_vma_mapped_walk pvmw = {
 159                .page = compound_head(old_page),
 160                .vma = vma,
 161                .address = addr,
 162        };
 163        int err;
 164        struct mmu_notifier_range range;
 165        struct mem_cgroup *memcg;
 166
 167        mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr,
 168                                addr + PAGE_SIZE);
 169
 170        if (new_page) {
 171                err = mem_cgroup_try_charge(new_page, vma->vm_mm, GFP_KERNEL,
 172                                            &memcg, false);
 173                if (err)
 174                        return err;
 175        }
 176
 177        /* For try_to_free_swap() and munlock_vma_page() below */
 178        lock_page(old_page);
 179
 180        mmu_notifier_invalidate_range_start(&range);
 181        err = -EAGAIN;
 182        if (!page_vma_mapped_walk(&pvmw)) {
 183                if (new_page)
 184                        mem_cgroup_cancel_charge(new_page, memcg, false);
 185                goto unlock;
 186        }
 187        VM_BUG_ON_PAGE(addr != pvmw.address, old_page);
 188
 189        if (new_page) {
 190                get_page(new_page);
 191                page_add_new_anon_rmap(new_page, vma, addr, false);
 192                mem_cgroup_commit_charge(new_page, memcg, false, false);
 193                lru_cache_add_active_or_unevictable(new_page, vma);
 194        } else
 195                /* no new page, just dec_mm_counter for old_page */
 196                dec_mm_counter(mm, MM_ANONPAGES);
 197
 198        if (!PageAnon(old_page)) {
 199                dec_mm_counter(mm, mm_counter_file(old_page));
 200                inc_mm_counter(mm, MM_ANONPAGES);
 201        }
 202
 203        flush_cache_page(vma, addr, pte_pfn(*pvmw.pte));
 204        ptep_clear_flush_notify(vma, addr, pvmw.pte);
 205        if (new_page)
 206                set_pte_at_notify(mm, addr, pvmw.pte,
 207                                  mk_pte(new_page, vma->vm_page_prot));
 208
 209        page_remove_rmap(old_page, false);
 210        if (!page_mapped(old_page))
 211                try_to_free_swap(old_page);
 212        page_vma_mapped_walk_done(&pvmw);
 213
 214        if (vma->vm_flags & VM_LOCKED)
 215                munlock_vma_page(old_page);
 216        put_page(old_page);
 217
 218        err = 0;
 219 unlock:
 220        mmu_notifier_invalidate_range_end(&range);
 221        unlock_page(old_page);
 222        return err;
 223}
 224
 225/**
 226 * is_swbp_insn - check if instruction is breakpoint instruction.
 227 * @insn: instruction to be checked.
 228 * Default implementation of is_swbp_insn
 229 * Returns true if @insn is a breakpoint instruction.
 230 */
 231bool __weak is_swbp_insn(uprobe_opcode_t *insn)
 232{
 233        return *insn == UPROBE_SWBP_INSN;
 234}
 235
 236/**
 237 * is_trap_insn - check if instruction is breakpoint instruction.
 238 * @insn: instruction to be checked.
 239 * Default implementation of is_trap_insn
 240 * Returns true if @insn is a breakpoint instruction.
 241 *
 242 * This function is needed for the case where an architecture has multiple
 243 * trap instructions (like powerpc).
 244 */
 245bool __weak is_trap_insn(uprobe_opcode_t *insn)
 246{
 247        return is_swbp_insn(insn);
 248}
 249
 250static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
 251{
 252        void *kaddr = kmap_atomic(page);
 253        memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
 254        kunmap_atomic(kaddr);
 255}
 256
 257static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
 258{
 259        void *kaddr = kmap_atomic(page);
 260        memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
 261        kunmap_atomic(kaddr);
 262}
 263
 264static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
 265{
 266        uprobe_opcode_t old_opcode;
 267        bool is_swbp;
 268
 269        /*
 270         * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
 271         * We do not check if it is any other 'trap variant' which could
 272         * be conditional trap instruction such as the one powerpc supports.
 273         *
 274         * The logic is that we do not care if the underlying instruction
 275         * is a trap variant; uprobes always wins over any other (gdb)
 276         * breakpoint.
 277         */
 278        copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
 279        is_swbp = is_swbp_insn(&old_opcode);
 280
 281        if (is_swbp_insn(new_opcode)) {
 282                if (is_swbp)            /* register: already installed? */
 283                        return 0;
 284        } else {
 285                if (!is_swbp)           /* unregister: was it changed by us? */
 286                        return 0;
 287        }
 288
 289        return 1;
 290}
 291
 292static struct delayed_uprobe *
 293delayed_uprobe_check(struct uprobe *uprobe, struct mm_struct *mm)
 294{
 295        struct delayed_uprobe *du;
 296
 297        list_for_each_entry(du, &delayed_uprobe_list, list)
 298                if (du->uprobe == uprobe && du->mm == mm)
 299                        return du;
 300        return NULL;
 301}
 302
 303static int delayed_uprobe_add(struct uprobe *uprobe, struct mm_struct *mm)
 304{
 305        struct delayed_uprobe *du;
 306
 307        if (delayed_uprobe_check(uprobe, mm))
 308                return 0;
 309
 310        du  = kzalloc(sizeof(*du), GFP_KERNEL);
 311        if (!du)
 312                return -ENOMEM;
 313
 314        du->uprobe = uprobe;
 315        du->mm = mm;
 316        list_add(&du->list, &delayed_uprobe_list);
 317        return 0;
 318}
 319
 320static void delayed_uprobe_delete(struct delayed_uprobe *du)
 321{
 322        if (WARN_ON(!du))
 323                return;
 324        list_del(&du->list);
 325        kfree(du);
 326}
 327
 328static void delayed_uprobe_remove(struct uprobe *uprobe, struct mm_struct *mm)
 329{
 330        struct list_head *pos, *q;
 331        struct delayed_uprobe *du;
 332
 333        if (!uprobe && !mm)
 334                return;
 335
 336        list_for_each_safe(pos, q, &delayed_uprobe_list) {
 337                du = list_entry(pos, struct delayed_uprobe, list);
 338
 339                if (uprobe && du->uprobe != uprobe)
 340                        continue;
 341                if (mm && du->mm != mm)
 342                        continue;
 343
 344                delayed_uprobe_delete(du);
 345        }
 346}
 347
 348static bool valid_ref_ctr_vma(struct uprobe *uprobe,
 349                              struct vm_area_struct *vma)
 350{
 351        unsigned long vaddr = offset_to_vaddr(vma, uprobe->ref_ctr_offset);
 352
 353        return uprobe->ref_ctr_offset &&
 354                vma->vm_file &&
 355                file_inode(vma->vm_file) == uprobe->inode &&
 356                (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
 357                vma->vm_start <= vaddr &&
 358                vma->vm_end > vaddr;
 359}
 360
 361static struct vm_area_struct *
 362find_ref_ctr_vma(struct uprobe *uprobe, struct mm_struct *mm)
 363{
 364        struct vm_area_struct *tmp;
 365
 366        for (tmp = mm->mmap; tmp; tmp = tmp->vm_next)
 367                if (valid_ref_ctr_vma(uprobe, tmp))
 368                        return tmp;
 369
 370        return NULL;
 371}
 372
 373static int
 374__update_ref_ctr(struct mm_struct *mm, unsigned long vaddr, short d)
 375{
 376        void *kaddr;
 377        struct page *page;
 378        struct vm_area_struct *vma;
 379        int ret;
 380        short *ptr;
 381
 382        if (!vaddr || !d)
 383                return -EINVAL;
 384
 385        ret = get_user_pages_remote(NULL, mm, vaddr, 1,
 386                        FOLL_WRITE, &page, &vma, NULL);
 387        if (unlikely(ret <= 0)) {
 388                /*
 389                 * We are asking for 1 page. If get_user_pages_remote() fails,
 390                 * it may return 0, in that case we have to return error.
 391                 */
 392                return ret == 0 ? -EBUSY : ret;
 393        }
 394
 395        kaddr = kmap_atomic(page);
 396        ptr = kaddr + (vaddr & ~PAGE_MASK);
 397
 398        if (unlikely(*ptr + d < 0)) {
 399                pr_warn("ref_ctr going negative. vaddr: 0x%lx, "
 400                        "curr val: %d, delta: %d\n", vaddr, *ptr, d);
 401                ret = -EINVAL;
 402                goto out;
 403        }
 404
 405        *ptr += d;
 406        ret = 0;
 407out:
 408        kunmap_atomic(kaddr);
 409        put_page(page);
 410        return ret;
 411}
 412
 413static void update_ref_ctr_warn(struct uprobe *uprobe,
 414                                struct mm_struct *mm, short d)
 415{
 416        pr_warn("ref_ctr %s failed for inode: 0x%lx offset: "
 417                "0x%llx ref_ctr_offset: 0x%llx of mm: 0x%pK\n",
 418                d > 0 ? "increment" : "decrement", uprobe->inode->i_ino,
 419                (unsigned long long) uprobe->offset,
 420                (unsigned long long) uprobe->ref_ctr_offset, mm);
 421}
 422
 423static int update_ref_ctr(struct uprobe *uprobe, struct mm_struct *mm,
 424                          short d)
 425{
 426        struct vm_area_struct *rc_vma;
 427        unsigned long rc_vaddr;
 428        int ret = 0;
 429
 430        rc_vma = find_ref_ctr_vma(uprobe, mm);
 431
 432        if (rc_vma) {
 433                rc_vaddr = offset_to_vaddr(rc_vma, uprobe->ref_ctr_offset);
 434                ret = __update_ref_ctr(mm, rc_vaddr, d);
 435                if (ret)
 436                        update_ref_ctr_warn(uprobe, mm, d);
 437
 438                if (d > 0)
 439                        return ret;
 440        }
 441
 442        mutex_lock(&delayed_uprobe_lock);
 443        if (d > 0)
 444                ret = delayed_uprobe_add(uprobe, mm);
 445        else
 446                delayed_uprobe_remove(uprobe, mm);
 447        mutex_unlock(&delayed_uprobe_lock);
 448
 449        return ret;
 450}
 451
 452/*
 453 * NOTE:
 454 * Expect the breakpoint instruction to be the smallest size instruction for
 455 * the architecture. If an arch has variable length instruction and the
 456 * breakpoint instruction is not of the smallest length instruction
 457 * supported by that architecture then we need to modify is_trap_at_addr and
 458 * uprobe_write_opcode accordingly. This would never be a problem for archs
 459 * that have fixed length instructions.
 460 *
 461 * uprobe_write_opcode - write the opcode at a given virtual address.
 462 * @mm: the probed process address space.
 463 * @vaddr: the virtual address to store the opcode.
 464 * @opcode: opcode to be written at @vaddr.
 465 *
 466 * Called with mm->mmap_sem held for write.
 467 * Return 0 (success) or a negative errno.
 468 */
 469int uprobe_write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
 470                        unsigned long vaddr, uprobe_opcode_t opcode)
 471{
 472        struct uprobe *uprobe;
 473        struct page *old_page, *new_page;
 474        struct vm_area_struct *vma;
 475        int ret, is_register, ref_ctr_updated = 0;
 476        bool orig_page_huge = false;
 477        unsigned int gup_flags = FOLL_FORCE;
 478
 479        is_register = is_swbp_insn(&opcode);
 480        uprobe = container_of(auprobe, struct uprobe, arch);
 481
 482retry:
 483        if (is_register)
 484                gup_flags |= FOLL_SPLIT_PMD;
 485        /* Read the page with vaddr into memory */
 486        ret = get_user_pages_remote(NULL, mm, vaddr, 1, gup_flags,
 487                                    &old_page, &vma, NULL);
 488        if (ret <= 0)
 489                return ret;
 490
 491        ret = verify_opcode(old_page, vaddr, &opcode);
 492        if (ret <= 0)
 493                goto put_old;
 494
 495        if (WARN(!is_register && PageCompound(old_page),
 496                 "uprobe unregister should never work on compound page\n")) {
 497                ret = -EINVAL;
 498                goto put_old;
 499        }
 500
 501        /* We are going to replace instruction, update ref_ctr. */
 502        if (!ref_ctr_updated && uprobe->ref_ctr_offset) {
 503                ret = update_ref_ctr(uprobe, mm, is_register ? 1 : -1);
 504                if (ret)
 505                        goto put_old;
 506
 507                ref_ctr_updated = 1;
 508        }
 509
 510        ret = 0;
 511        if (!is_register && !PageAnon(old_page))
 512                goto put_old;
 513
 514        ret = anon_vma_prepare(vma);
 515        if (ret)
 516                goto put_old;
 517
 518        ret = -ENOMEM;
 519        new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
 520        if (!new_page)
 521                goto put_old;
 522
 523        __SetPageUptodate(new_page);
 524        copy_highpage(new_page, old_page);
 525        copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
 526
 527        if (!is_register) {
 528                struct page *orig_page;
 529                pgoff_t index;
 530
 531                VM_BUG_ON_PAGE(!PageAnon(old_page), old_page);
 532
 533                index = vaddr_to_offset(vma, vaddr & PAGE_MASK) >> PAGE_SHIFT;
 534                orig_page = find_get_page(vma->vm_file->f_inode->i_mapping,
 535                                          index);
 536
 537                if (orig_page) {
 538                        if (PageUptodate(orig_page) &&
 539                            pages_identical(new_page, orig_page)) {
 540                                /* let go new_page */
 541                                put_page(new_page);
 542                                new_page = NULL;
 543
 544                                if (PageCompound(orig_page))
 545                                        orig_page_huge = true;
 546                        }
 547                        put_page(orig_page);
 548                }
 549        }
 550
 551        ret = __replace_page(vma, vaddr, old_page, new_page);
 552        if (new_page)
 553                put_page(new_page);
 554put_old:
 555        put_page(old_page);
 556
 557        if (unlikely(ret == -EAGAIN))
 558                goto retry;
 559
 560        /* Revert back reference counter if instruction update failed. */
 561        if (ret && is_register && ref_ctr_updated)
 562                update_ref_ctr(uprobe, mm, -1);
 563
 564        /* try collapse pmd for compound page */
 565        if (!ret && orig_page_huge)
 566                collapse_pte_mapped_thp(mm, vaddr);
 567
 568        return ret;
 569}
 570
 571/**
 572 * set_swbp - store breakpoint at a given address.
 573 * @auprobe: arch specific probepoint information.
 574 * @mm: the probed process address space.
 575 * @vaddr: the virtual address to insert the opcode.
 576 *
 577 * For mm @mm, store the breakpoint instruction at @vaddr.
 578 * Return 0 (success) or a negative errno.
 579 */
 580int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
 581{
 582        return uprobe_write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
 583}
 584
 585/**
 586 * set_orig_insn - Restore the original instruction.
 587 * @mm: the probed process address space.
 588 * @auprobe: arch specific probepoint information.
 589 * @vaddr: the virtual address to insert the opcode.
 590 *
 591 * For mm @mm, restore the original opcode (opcode) at @vaddr.
 592 * Return 0 (success) or a negative errno.
 593 */
 594int __weak
 595set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
 596{
 597        return uprobe_write_opcode(auprobe, mm, vaddr,
 598                        *(uprobe_opcode_t *)&auprobe->insn);
 599}
 600
 601static struct uprobe *get_uprobe(struct uprobe *uprobe)
 602{
 603        refcount_inc(&uprobe->ref);
 604        return uprobe;
 605}
 606
 607static void put_uprobe(struct uprobe *uprobe)
 608{
 609        if (refcount_dec_and_test(&uprobe->ref)) {
 610                /*
 611                 * If application munmap(exec_vma) before uprobe_unregister()
 612                 * gets called, we don't get a chance to remove uprobe from
 613                 * delayed_uprobe_list from remove_breakpoint(). Do it here.
 614                 */
 615                mutex_lock(&delayed_uprobe_lock);
 616                delayed_uprobe_remove(uprobe, NULL);
 617                mutex_unlock(&delayed_uprobe_lock);
 618                kfree(uprobe);
 619        }
 620}
 621
 622static int match_uprobe(struct uprobe *l, struct uprobe *r)
 623{
 624        if (l->inode < r->inode)
 625                return -1;
 626
 627        if (l->inode > r->inode)
 628                return 1;
 629
 630        if (l->offset < r->offset)
 631                return -1;
 632
 633        if (l->offset > r->offset)
 634                return 1;
 635
 636        return 0;
 637}
 638
 639static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
 640{
 641        struct uprobe u = { .inode = inode, .offset = offset };
 642        struct rb_node *n = uprobes_tree.rb_node;
 643        struct uprobe *uprobe;
 644        int match;
 645
 646        while (n) {
 647                uprobe = rb_entry(n, struct uprobe, rb_node);
 648                match = match_uprobe(&u, uprobe);
 649                if (!match)
 650                        return get_uprobe(uprobe);
 651
 652                if (match < 0)
 653                        n = n->rb_left;
 654                else
 655                        n = n->rb_right;
 656        }
 657        return NULL;
 658}
 659
 660/*
 661 * Find a uprobe corresponding to a given inode:offset
 662 * Acquires uprobes_treelock
 663 */
 664static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
 665{
 666        struct uprobe *uprobe;
 667
 668        spin_lock(&uprobes_treelock);
 669        uprobe = __find_uprobe(inode, offset);
 670        spin_unlock(&uprobes_treelock);
 671
 672        return uprobe;
 673}
 674
 675static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
 676{
 677        struct rb_node **p = &uprobes_tree.rb_node;
 678        struct rb_node *parent = NULL;
 679        struct uprobe *u;
 680        int match;
 681
 682        while (*p) {
 683                parent = *p;
 684                u = rb_entry(parent, struct uprobe, rb_node);
 685                match = match_uprobe(uprobe, u);
 686                if (!match)
 687                        return get_uprobe(u);
 688
 689                if (match < 0)
 690                        p = &parent->rb_left;
 691                else
 692                        p = &parent->rb_right;
 693
 694        }
 695
 696        u = NULL;
 697        rb_link_node(&uprobe->rb_node, parent, p);
 698        rb_insert_color(&uprobe->rb_node, &uprobes_tree);
 699        /* get access + creation ref */
 700        refcount_set(&uprobe->ref, 2);
 701
 702        return u;
 703}
 704
 705/*
 706 * Acquire uprobes_treelock.
 707 * Matching uprobe already exists in rbtree;
 708 *      increment (access refcount) and return the matching uprobe.
 709 *
 710 * No matching uprobe; insert the uprobe in rb_tree;
 711 *      get a double refcount (access + creation) and return NULL.
 712 */
 713static struct uprobe *insert_uprobe(struct uprobe *uprobe)
 714{
 715        struct uprobe *u;
 716
 717        spin_lock(&uprobes_treelock);
 718        u = __insert_uprobe(uprobe);
 719        spin_unlock(&uprobes_treelock);
 720
 721        return u;
 722}
 723
 724static void
 725ref_ctr_mismatch_warn(struct uprobe *cur_uprobe, struct uprobe *uprobe)
 726{
 727        pr_warn("ref_ctr_offset mismatch. inode: 0x%lx offset: 0x%llx "
 728                "ref_ctr_offset(old): 0x%llx ref_ctr_offset(new): 0x%llx\n",
 729                uprobe->inode->i_ino, (unsigned long long) uprobe->offset,
 730                (unsigned long long) cur_uprobe->ref_ctr_offset,
 731                (unsigned long long) uprobe->ref_ctr_offset);
 732}
 733
 734static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset,
 735                                   loff_t ref_ctr_offset)
 736{
 737        struct uprobe *uprobe, *cur_uprobe;
 738
 739        uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
 740        if (!uprobe)
 741                return NULL;
 742
 743        uprobe->inode = inode;
 744        uprobe->offset = offset;
 745        uprobe->ref_ctr_offset = ref_ctr_offset;
 746        init_rwsem(&uprobe->register_rwsem);
 747        init_rwsem(&uprobe->consumer_rwsem);
 748
 749        /* add to uprobes_tree, sorted on inode:offset */
 750        cur_uprobe = insert_uprobe(uprobe);
 751        /* a uprobe exists for this inode:offset combination */
 752        if (cur_uprobe) {
 753                if (cur_uprobe->ref_ctr_offset != uprobe->ref_ctr_offset) {
 754                        ref_ctr_mismatch_warn(cur_uprobe, uprobe);
 755                        put_uprobe(cur_uprobe);
 756                        kfree(uprobe);
 757                        return ERR_PTR(-EINVAL);
 758                }
 759                kfree(uprobe);
 760                uprobe = cur_uprobe;
 761        }
 762
 763        return uprobe;
 764}
 765
 766static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
 767{
 768        down_write(&uprobe->consumer_rwsem);
 769        uc->next = uprobe->consumers;
 770        uprobe->consumers = uc;
 771        up_write(&uprobe->consumer_rwsem);
 772}
 773
 774/*
 775 * For uprobe @uprobe, delete the consumer @uc.
 776 * Return true if the @uc is deleted successfully
 777 * or return false.
 778 */
 779static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
 780{
 781        struct uprobe_consumer **con;
 782        bool ret = false;
 783
 784        down_write(&uprobe->consumer_rwsem);
 785        for (con = &uprobe->consumers; *con; con = &(*con)->next) {
 786                if (*con == uc) {
 787                        *con = uc->next;
 788                        ret = true;
 789                        break;
 790                }
 791        }
 792        up_write(&uprobe->consumer_rwsem);
 793
 794        return ret;
 795}
 796
 797static int __copy_insn(struct address_space *mapping, struct file *filp,
 798                        void *insn, int nbytes, loff_t offset)
 799{
 800        struct page *page;
 801        /*
 802         * Ensure that the page that has the original instruction is populated
 803         * and in page-cache. If ->readpage == NULL it must be shmem_mapping(),
 804         * see uprobe_register().
 805         */
 806        if (mapping->a_ops->readpage)
 807                page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp);
 808        else
 809                page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
 810        if (IS_ERR(page))
 811                return PTR_ERR(page);
 812
 813        copy_from_page(page, offset, insn, nbytes);
 814        put_page(page);
 815
 816        return 0;
 817}
 818
 819static int copy_insn(struct uprobe *uprobe, struct file *filp)
 820{
 821        struct address_space *mapping = uprobe->inode->i_mapping;
 822        loff_t offs = uprobe->offset;
 823        void *insn = &uprobe->arch.insn;
 824        int size = sizeof(uprobe->arch.insn);
 825        int len, err = -EIO;
 826
 827        /* Copy only available bytes, -EIO if nothing was read */
 828        do {
 829                if (offs >= i_size_read(uprobe->inode))
 830                        break;
 831
 832                len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
 833                err = __copy_insn(mapping, filp, insn, len, offs);
 834                if (err)
 835                        break;
 836
 837                insn += len;
 838                offs += len;
 839                size -= len;
 840        } while (size);
 841
 842        return err;
 843}
 844
 845static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
 846                                struct mm_struct *mm, unsigned long vaddr)
 847{
 848        int ret = 0;
 849
 850        if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
 851                return ret;
 852
 853        /* TODO: move this into _register, until then we abuse this sem. */
 854        down_write(&uprobe->consumer_rwsem);
 855        if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
 856                goto out;
 857
 858        ret = copy_insn(uprobe, file);
 859        if (ret)
 860                goto out;
 861
 862        ret = -ENOTSUPP;
 863        if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
 864                goto out;
 865
 866        ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
 867        if (ret)
 868                goto out;
 869
 870        /* uprobe_write_opcode() assumes we don't cross page boundary */
 871        BUG_ON((uprobe->offset & ~PAGE_MASK) +
 872                        UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
 873
 874        smp_wmb(); /* pairs with the smp_rmb() in handle_swbp() */
 875        set_bit(UPROBE_COPY_INSN, &uprobe->flags);
 876
 877 out:
 878        up_write(&uprobe->consumer_rwsem);
 879
 880        return ret;
 881}
 882
 883static inline bool consumer_filter(struct uprobe_consumer *uc,
 884                                   enum uprobe_filter_ctx ctx, struct mm_struct *mm)
 885{
 886        return !uc->filter || uc->filter(uc, ctx, mm);
 887}
 888
 889static bool filter_chain(struct uprobe *uprobe,
 890                         enum uprobe_filter_ctx ctx, struct mm_struct *mm)
 891{
 892        struct uprobe_consumer *uc;
 893        bool ret = false;
 894
 895        down_read(&uprobe->consumer_rwsem);
 896        for (uc = uprobe->consumers; uc; uc = uc->next) {
 897                ret = consumer_filter(uc, ctx, mm);
 898                if (ret)
 899                        break;
 900        }
 901        up_read(&uprobe->consumer_rwsem);
 902
 903        return ret;
 904}
 905
 906static int
 907install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
 908                        struct vm_area_struct *vma, unsigned long vaddr)
 909{
 910        bool first_uprobe;
 911        int ret;
 912
 913        ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
 914        if (ret)
 915                return ret;
 916
 917        /*
 918         * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
 919         * the task can hit this breakpoint right after __replace_page().
 920         */
 921        first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
 922        if (first_uprobe)
 923                set_bit(MMF_HAS_UPROBES, &mm->flags);
 924
 925        ret = set_swbp(&uprobe->arch, mm, vaddr);
 926        if (!ret)
 927                clear_bit(MMF_RECALC_UPROBES, &mm->flags);
 928        else if (first_uprobe)
 929                clear_bit(MMF_HAS_UPROBES, &mm->flags);
 930
 931        return ret;
 932}
 933
 934static int
 935remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
 936{
 937        set_bit(MMF_RECALC_UPROBES, &mm->flags);
 938        return set_orig_insn(&uprobe->arch, mm, vaddr);
 939}
 940
 941static inline bool uprobe_is_active(struct uprobe *uprobe)
 942{
 943        return !RB_EMPTY_NODE(&uprobe->rb_node);
 944}
 945/*
 946 * There could be threads that have already hit the breakpoint. They
 947 * will recheck the current insn and restart if find_uprobe() fails.
 948 * See find_active_uprobe().
 949 */
 950static void delete_uprobe(struct uprobe *uprobe)
 951{
 952        if (WARN_ON(!uprobe_is_active(uprobe)))
 953                return;
 954
 955        spin_lock(&uprobes_treelock);
 956        rb_erase(&uprobe->rb_node, &uprobes_tree);
 957        spin_unlock(&uprobes_treelock);
 958        RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
 959        put_uprobe(uprobe);
 960}
 961
 962struct map_info {
 963        struct map_info *next;
 964        struct mm_struct *mm;
 965        unsigned long vaddr;
 966};
 967
 968static inline struct map_info *free_map_info(struct map_info *info)
 969{
 970        struct map_info *next = info->next;
 971        kfree(info);
 972        return next;
 973}
 974
 975static struct map_info *
 976build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
 977{
 978        unsigned long pgoff = offset >> PAGE_SHIFT;
 979        struct vm_area_struct *vma;
 980        struct map_info *curr = NULL;
 981        struct map_info *prev = NULL;
 982        struct map_info *info;
 983        int more = 0;
 984
 985 again:
 986        i_mmap_lock_read(mapping);
 987        vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
 988                if (!valid_vma(vma, is_register))
 989                        continue;
 990
 991                if (!prev && !more) {
 992                        /*
 993                         * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
 994                         * reclaim. This is optimistic, no harm done if it fails.
 995                         */
 996                        prev = kmalloc(sizeof(struct map_info),
 997                                        GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
 998                        if (prev)
 999                                prev->next = NULL;
1000                }
1001                if (!prev) {
1002                        more++;
1003                        continue;
1004                }
1005
1006                if (!mmget_not_zero(vma->vm_mm))
1007                        continue;
1008
1009                info = prev;
1010                prev = prev->next;
1011                info->next = curr;
1012                curr = info;
1013
1014                info->mm = vma->vm_mm;
1015                info->vaddr = offset_to_vaddr(vma, offset);
1016        }
1017        i_mmap_unlock_read(mapping);
1018
1019        if (!more)
1020                goto out;
1021
1022        prev = curr;
1023        while (curr) {
1024                mmput(curr->mm);
1025                curr = curr->next;
1026        }
1027
1028        do {
1029                info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
1030                if (!info) {
1031                        curr = ERR_PTR(-ENOMEM);
1032                        goto out;
1033                }
1034                info->next = prev;
1035                prev = info;
1036        } while (--more);
1037
1038        goto again;
1039 out:
1040        while (prev)
1041                prev = free_map_info(prev);
1042        return curr;
1043}
1044
1045static int
1046register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
1047{
1048        bool is_register = !!new;
1049        struct map_info *info;
1050        int err = 0;
1051
1052        percpu_down_write(&dup_mmap_sem);
1053        info = build_map_info(uprobe->inode->i_mapping,
1054                                        uprobe->offset, is_register);
1055        if (IS_ERR(info)) {
1056                err = PTR_ERR(info);
1057                goto out;
1058        }
1059
1060        while (info) {
1061                struct mm_struct *mm = info->mm;
1062                struct vm_area_struct *vma;
1063
1064                if (err && is_register)
1065                        goto free;
1066
1067                down_write(&mm->mmap_sem);
1068                vma = find_vma(mm, info->vaddr);
1069                if (!vma || !valid_vma(vma, is_register) ||
1070                    file_inode(vma->vm_file) != uprobe->inode)
1071                        goto unlock;
1072
1073                if (vma->vm_start > info->vaddr ||
1074                    vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
1075                        goto unlock;
1076
1077                if (is_register) {
1078                        /* consult only the "caller", new consumer. */
1079                        if (consumer_filter(new,
1080                                        UPROBE_FILTER_REGISTER, mm))
1081                                err = install_breakpoint(uprobe, mm, vma, info->vaddr);
1082                } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
1083                        if (!filter_chain(uprobe,
1084                                        UPROBE_FILTER_UNREGISTER, mm))
1085                                err |= remove_breakpoint(uprobe, mm, info->vaddr);
1086                }
1087
1088 unlock:
1089                up_write(&mm->mmap_sem);
1090 free:
1091                mmput(mm);
1092                info = free_map_info(info);
1093        }
1094 out:
1095        percpu_up_write(&dup_mmap_sem);
1096        return err;
1097}
1098
1099static void
1100__uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
1101{
1102        int err;
1103
1104        if (WARN_ON(!consumer_del(uprobe, uc)))
1105                return;
1106
1107        err = register_for_each_vma(uprobe, NULL);
1108        /* TODO : cant unregister? schedule a worker thread */
1109        if (!uprobe->consumers && !err)
1110                delete_uprobe(uprobe);
1111}
1112
1113/*
1114 * uprobe_unregister - unregister an already registered probe.
1115 * @inode: the file in which the probe has to be removed.
1116 * @offset: offset from the start of the file.
1117 * @uc: identify which probe if multiple probes are colocated.
1118 */
1119void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
1120{
1121        struct uprobe *uprobe;
1122
1123        uprobe = find_uprobe(inode, offset);
1124        if (WARN_ON(!uprobe))
1125                return;
1126
1127        down_write(&uprobe->register_rwsem);
1128        __uprobe_unregister(uprobe, uc);
1129        up_write(&uprobe->register_rwsem);
1130        put_uprobe(uprobe);
1131}
1132EXPORT_SYMBOL_GPL(uprobe_unregister);
1133
1134/*
1135 * __uprobe_register - register a probe
1136 * @inode: the file in which the probe has to be placed.
1137 * @offset: offset from the start of the file.
1138 * @uc: information on howto handle the probe..
1139 *
1140 * Apart from the access refcount, __uprobe_register() takes a creation
1141 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
1142 * inserted into the rbtree (i.e first consumer for a @inode:@offset
1143 * tuple).  Creation refcount stops uprobe_unregister from freeing the
1144 * @uprobe even before the register operation is complete. Creation
1145 * refcount is released when the last @uc for the @uprobe
1146 * unregisters. Caller of __uprobe_register() is required to keep @inode
1147 * (and the containing mount) referenced.
1148 *
1149 * Return errno if it cannot successully install probes
1150 * else return 0 (success)
1151 */
1152static int __uprobe_register(struct inode *inode, loff_t offset,
1153                             loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1154{
1155        struct uprobe *uprobe;
1156        int ret;
1157
1158        /* Uprobe must have at least one set consumer */
1159        if (!uc->handler && !uc->ret_handler)
1160                return -EINVAL;
1161
1162        /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
1163        if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping))
1164                return -EIO;
1165        /* Racy, just to catch the obvious mistakes */
1166        if (offset > i_size_read(inode))
1167                return -EINVAL;
1168
1169 retry:
1170        uprobe = alloc_uprobe(inode, offset, ref_ctr_offset);
1171        if (!uprobe)
1172                return -ENOMEM;
1173        if (IS_ERR(uprobe))
1174                return PTR_ERR(uprobe);
1175
1176        /*
1177         * We can race with uprobe_unregister()->delete_uprobe().
1178         * Check uprobe_is_active() and retry if it is false.
1179         */
1180        down_write(&uprobe->register_rwsem);
1181        ret = -EAGAIN;
1182        if (likely(uprobe_is_active(uprobe))) {
1183                consumer_add(uprobe, uc);
1184                ret = register_for_each_vma(uprobe, uc);
1185                if (ret)
1186                        __uprobe_unregister(uprobe, uc);
1187        }
1188        up_write(&uprobe->register_rwsem);
1189        put_uprobe(uprobe);
1190
1191        if (unlikely(ret == -EAGAIN))
1192                goto retry;
1193        return ret;
1194}
1195
1196int uprobe_register(struct inode *inode, loff_t offset,
1197                    struct uprobe_consumer *uc)
1198{
1199        return __uprobe_register(inode, offset, 0, uc);
1200}
1201EXPORT_SYMBOL_GPL(uprobe_register);
1202
1203int uprobe_register_refctr(struct inode *inode, loff_t offset,
1204                           loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1205{
1206        return __uprobe_register(inode, offset, ref_ctr_offset, uc);
1207}
1208EXPORT_SYMBOL_GPL(uprobe_register_refctr);
1209
1210/*
1211 * uprobe_apply - unregister an already registered probe.
1212 * @inode: the file in which the probe has to be removed.
1213 * @offset: offset from the start of the file.
1214 * @uc: consumer which wants to add more or remove some breakpoints
1215 * @add: add or remove the breakpoints
1216 */
1217int uprobe_apply(struct inode *inode, loff_t offset,
1218                        struct uprobe_consumer *uc, bool add)
1219{
1220        struct uprobe *uprobe;
1221        struct uprobe_consumer *con;
1222        int ret = -ENOENT;
1223
1224        uprobe = find_uprobe(inode, offset);
1225        if (WARN_ON(!uprobe))
1226                return ret;
1227
1228        down_write(&uprobe->register_rwsem);
1229        for (con = uprobe->consumers; con && con != uc ; con = con->next)
1230                ;
1231        if (con)
1232                ret = register_for_each_vma(uprobe, add ? uc : NULL);
1233        up_write(&uprobe->register_rwsem);
1234        put_uprobe(uprobe);
1235
1236        return ret;
1237}
1238
1239static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
1240{
1241        struct vm_area_struct *vma;
1242        int err = 0;
1243
1244        down_read(&mm->mmap_sem);
1245        for (vma = mm->mmap; vma; vma = vma->vm_next) {
1246                unsigned long vaddr;
1247                loff_t offset;
1248
1249                if (!valid_vma(vma, false) ||
1250                    file_inode(vma->vm_file) != uprobe->inode)
1251                        continue;
1252
1253                offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
1254                if (uprobe->offset <  offset ||
1255                    uprobe->offset >= offset + vma->vm_end - vma->vm_start)
1256                        continue;
1257
1258                vaddr = offset_to_vaddr(vma, uprobe->offset);
1259                err |= remove_breakpoint(uprobe, mm, vaddr);
1260        }
1261        up_read(&mm->mmap_sem);
1262
1263        return err;
1264}
1265
1266static struct rb_node *
1267find_node_in_range(struct inode *inode, loff_t min, loff_t max)
1268{
1269        struct rb_node *n = uprobes_tree.rb_node;
1270
1271        while (n) {
1272                struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
1273
1274                if (inode < u->inode) {
1275                        n = n->rb_left;
1276                } else if (inode > u->inode) {
1277                        n = n->rb_right;
1278                } else {
1279                        if (max < u->offset)
1280                                n = n->rb_left;
1281                        else if (min > u->offset)
1282                                n = n->rb_right;
1283                        else
1284                                break;
1285                }
1286        }
1287
1288        return n;
1289}
1290
1291/*
1292 * For a given range in vma, build a list of probes that need to be inserted.
1293 */
1294static void build_probe_list(struct inode *inode,
1295                                struct vm_area_struct *vma,
1296                                unsigned long start, unsigned long end,
1297                                struct list_head *head)
1298{
1299        loff_t min, max;
1300        struct rb_node *n, *t;
1301        struct uprobe *u;
1302
1303        INIT_LIST_HEAD(head);
1304        min = vaddr_to_offset(vma, start);
1305        max = min + (end - start) - 1;
1306
1307        spin_lock(&uprobes_treelock);
1308        n = find_node_in_range(inode, min, max);
1309        if (n) {
1310                for (t = n; t; t = rb_prev(t)) {
1311                        u = rb_entry(t, struct uprobe, rb_node);
1312                        if (u->inode != inode || u->offset < min)
1313                                break;
1314                        list_add(&u->pending_list, head);
1315                        get_uprobe(u);
1316                }
1317                for (t = n; (t = rb_next(t)); ) {
1318                        u = rb_entry(t, struct uprobe, rb_node);
1319                        if (u->inode != inode || u->offset > max)
1320                                break;
1321                        list_add(&u->pending_list, head);
1322                        get_uprobe(u);
1323                }
1324        }
1325        spin_unlock(&uprobes_treelock);
1326}
1327
1328/* @vma contains reference counter, not the probed instruction. */
1329static int delayed_ref_ctr_inc(struct vm_area_struct *vma)
1330{
1331        struct list_head *pos, *q;
1332        struct delayed_uprobe *du;
1333        unsigned long vaddr;
1334        int ret = 0, err = 0;
1335
1336        mutex_lock(&delayed_uprobe_lock);
1337        list_for_each_safe(pos, q, &delayed_uprobe_list) {
1338                du = list_entry(pos, struct delayed_uprobe, list);
1339
1340                if (du->mm != vma->vm_mm ||
1341                    !valid_ref_ctr_vma(du->uprobe, vma))
1342                        continue;
1343
1344                vaddr = offset_to_vaddr(vma, du->uprobe->ref_ctr_offset);
1345                ret = __update_ref_ctr(vma->vm_mm, vaddr, 1);
1346                if (ret) {
1347                        update_ref_ctr_warn(du->uprobe, vma->vm_mm, 1);
1348                        if (!err)
1349                                err = ret;
1350                }
1351                delayed_uprobe_delete(du);
1352        }
1353        mutex_unlock(&delayed_uprobe_lock);
1354        return err;
1355}
1356
1357/*
1358 * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
1359 *
1360 * Currently we ignore all errors and always return 0, the callers
1361 * can't handle the failure anyway.
1362 */
1363int uprobe_mmap(struct vm_area_struct *vma)
1364{
1365        struct list_head tmp_list;
1366        struct uprobe *uprobe, *u;
1367        struct inode *inode;
1368
1369        if (no_uprobe_events())
1370                return 0;
1371
1372        if (vma->vm_file &&
1373            (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
1374            test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags))
1375                delayed_ref_ctr_inc(vma);
1376
1377        if (!valid_vma(vma, true))
1378                return 0;
1379
1380        inode = file_inode(vma->vm_file);
1381        if (!inode)
1382                return 0;
1383
1384        mutex_lock(uprobes_mmap_hash(inode));
1385        build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1386        /*
1387         * We can race with uprobe_unregister(), this uprobe can be already
1388         * removed. But in this case filter_chain() must return false, all
1389         * consumers have gone away.
1390         */
1391        list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1392                if (!fatal_signal_pending(current) &&
1393                    filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1394                        unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1395                        install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1396                }
1397                put_uprobe(uprobe);
1398        }
1399        mutex_unlock(uprobes_mmap_hash(inode));
1400
1401        return 0;
1402}
1403
1404static bool
1405vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1406{
1407        loff_t min, max;
1408        struct inode *inode;
1409        struct rb_node *n;
1410
1411        inode = file_inode(vma->vm_file);
1412
1413        min = vaddr_to_offset(vma, start);
1414        max = min + (end - start) - 1;
1415
1416        spin_lock(&uprobes_treelock);
1417        n = find_node_in_range(inode, min, max);
1418        spin_unlock(&uprobes_treelock);
1419
1420        return !!n;
1421}
1422
1423/*
1424 * Called in context of a munmap of a vma.
1425 */
1426void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1427{
1428        if (no_uprobe_events() || !valid_vma(vma, false))
1429                return;
1430
1431        if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1432                return;
1433
1434        if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1435             test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1436                return;
1437
1438        if (vma_has_uprobes(vma, start, end))
1439                set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1440}
1441
1442/* Slot allocation for XOL */
1443static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1444{
1445        struct vm_area_struct *vma;
1446        int ret;
1447
1448        if (down_write_killable(&mm->mmap_sem))
1449                return -EINTR;
1450
1451        if (mm->uprobes_state.xol_area) {
1452                ret = -EALREADY;
1453                goto fail;
1454        }
1455
1456        if (!area->vaddr) {
1457                /* Try to map as high as possible, this is only a hint. */
1458                area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1459                                                PAGE_SIZE, 0, 0);
1460                if (IS_ERR_VALUE(area->vaddr)) {
1461                        ret = area->vaddr;
1462                        goto fail;
1463                }
1464        }
1465
1466        vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1467                                VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO,
1468                                &area->xol_mapping);
1469        if (IS_ERR(vma)) {
1470                ret = PTR_ERR(vma);
1471                goto fail;
1472        }
1473
1474        ret = 0;
1475        /* pairs with get_xol_area() */
1476        smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */
1477 fail:
1478        up_write(&mm->mmap_sem);
1479
1480        return ret;
1481}
1482
1483static struct xol_area *__create_xol_area(unsigned long vaddr)
1484{
1485        struct mm_struct *mm = current->mm;
1486        uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1487        struct xol_area *area;
1488
1489        area = kmalloc(sizeof(*area), GFP_KERNEL);
1490        if (unlikely(!area))
1491                goto out;
1492
1493        area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long),
1494                               GFP_KERNEL);
1495        if (!area->bitmap)
1496                goto free_area;
1497
1498        area->xol_mapping.name = "[uprobes]";
1499        area->xol_mapping.fault = NULL;
1500        area->xol_mapping.pages = area->pages;
1501        area->pages[0] = alloc_page(GFP_HIGHUSER);
1502        if (!area->pages[0])
1503                goto free_bitmap;
1504        area->pages[1] = NULL;
1505
1506        area->vaddr = vaddr;
1507        init_waitqueue_head(&area->wq);
1508        /* Reserve the 1st slot for get_trampoline_vaddr() */
1509        set_bit(0, area->bitmap);
1510        atomic_set(&area->slot_count, 1);
1511        arch_uprobe_copy_ixol(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE);
1512
1513        if (!xol_add_vma(mm, area))
1514                return area;
1515
1516        __free_page(area->pages[0]);
1517 free_bitmap:
1518        kfree(area->bitmap);
1519 free_area:
1520        kfree(area);
1521 out:
1522        return NULL;
1523}
1524
1525/*
1526 * get_xol_area - Allocate process's xol_area if necessary.
1527 * This area will be used for storing instructions for execution out of line.
1528 *
1529 * Returns the allocated area or NULL.
1530 */
1531static struct xol_area *get_xol_area(void)
1532{
1533        struct mm_struct *mm = current->mm;
1534        struct xol_area *area;
1535
1536        if (!mm->uprobes_state.xol_area)
1537                __create_xol_area(0);
1538
1539        /* Pairs with xol_add_vma() smp_store_release() */
1540        area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */
1541        return area;
1542}
1543
1544/*
1545 * uprobe_clear_state - Free the area allocated for slots.
1546 */
1547void uprobe_clear_state(struct mm_struct *mm)
1548{
1549        struct xol_area *area = mm->uprobes_state.xol_area;
1550
1551        mutex_lock(&delayed_uprobe_lock);
1552        delayed_uprobe_remove(NULL, mm);
1553        mutex_unlock(&delayed_uprobe_lock);
1554
1555        if (!area)
1556                return;
1557
1558        put_page(area->pages[0]);
1559        kfree(area->bitmap);
1560        kfree(area);
1561}
1562
1563void uprobe_start_dup_mmap(void)
1564{
1565        percpu_down_read(&dup_mmap_sem);
1566}
1567
1568void uprobe_end_dup_mmap(void)
1569{
1570        percpu_up_read(&dup_mmap_sem);
1571}
1572
1573void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1574{
1575        if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1576                set_bit(MMF_HAS_UPROBES, &newmm->flags);
1577                /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1578                set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1579        }
1580}
1581
1582/*
1583 *  - search for a free slot.
1584 */
1585static unsigned long xol_take_insn_slot(struct xol_area *area)
1586{
1587        unsigned long slot_addr;
1588        int slot_nr;
1589
1590        do {
1591                slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1592                if (slot_nr < UINSNS_PER_PAGE) {
1593                        if (!test_and_set_bit(slot_nr, area->bitmap))
1594                                break;
1595
1596                        slot_nr = UINSNS_PER_PAGE;
1597                        continue;
1598                }
1599                wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1600        } while (slot_nr >= UINSNS_PER_PAGE);
1601
1602        slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1603        atomic_inc(&area->slot_count);
1604
1605        return slot_addr;
1606}
1607
1608/*
1609 * xol_get_insn_slot - allocate a slot for xol.
1610 * Returns the allocated slot address or 0.
1611 */
1612static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1613{
1614        struct xol_area *area;
1615        unsigned long xol_vaddr;
1616
1617        area = get_xol_area();
1618        if (!area)
1619                return 0;
1620
1621        xol_vaddr = xol_take_insn_slot(area);
1622        if (unlikely(!xol_vaddr))
1623                return 0;
1624
1625        arch_uprobe_copy_ixol(area->pages[0], xol_vaddr,
1626                              &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1627
1628        return xol_vaddr;
1629}
1630
1631/*
1632 * xol_free_insn_slot - If slot was earlier allocated by
1633 * @xol_get_insn_slot(), make the slot available for
1634 * subsequent requests.
1635 */
1636static void xol_free_insn_slot(struct task_struct *tsk)
1637{
1638        struct xol_area *area;
1639        unsigned long vma_end;
1640        unsigned long slot_addr;
1641
1642        if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1643                return;
1644
1645        slot_addr = tsk->utask->xol_vaddr;
1646        if (unlikely(!slot_addr))
1647                return;
1648
1649        area = tsk->mm->uprobes_state.xol_area;
1650        vma_end = area->vaddr + PAGE_SIZE;
1651        if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1652                unsigned long offset;
1653                int slot_nr;
1654
1655                offset = slot_addr - area->vaddr;
1656                slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1657                if (slot_nr >= UINSNS_PER_PAGE)
1658                        return;
1659
1660                clear_bit(slot_nr, area->bitmap);
1661                atomic_dec(&area->slot_count);
1662                smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1663                if (waitqueue_active(&area->wq))
1664                        wake_up(&area->wq);
1665
1666                tsk->utask->xol_vaddr = 0;
1667        }
1668}
1669
1670void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1671                                  void *src, unsigned long len)
1672{
1673        /* Initialize the slot */
1674        copy_to_page(page, vaddr, src, len);
1675
1676        /*
1677         * We probably need flush_icache_user_range() but it needs vma.
1678         * This should work on most of architectures by default. If
1679         * architecture needs to do something different it can define
1680         * its own version of the function.
1681         */
1682        flush_dcache_page(page);
1683}
1684
1685/**
1686 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1687 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1688 * instruction.
1689 * Return the address of the breakpoint instruction.
1690 */
1691unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1692{
1693        return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1694}
1695
1696unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1697{
1698        struct uprobe_task *utask = current->utask;
1699
1700        if (unlikely(utask && utask->active_uprobe))
1701                return utask->vaddr;
1702
1703        return instruction_pointer(regs);
1704}
1705
1706static struct return_instance *free_ret_instance(struct return_instance *ri)
1707{
1708        struct return_instance *next = ri->next;
1709        put_uprobe(ri->uprobe);
1710        kfree(ri);
1711        return next;
1712}
1713
1714/*
1715 * Called with no locks held.
1716 * Called in context of an exiting or an exec-ing thread.
1717 */
1718void uprobe_free_utask(struct task_struct *t)
1719{
1720        struct uprobe_task *utask = t->utask;
1721        struct return_instance *ri;
1722
1723        if (!utask)
1724                return;
1725
1726        if (utask->active_uprobe)
1727                put_uprobe(utask->active_uprobe);
1728
1729        ri = utask->return_instances;
1730        while (ri)
1731                ri = free_ret_instance(ri);
1732
1733        xol_free_insn_slot(t);
1734        kfree(utask);
1735        t->utask = NULL;
1736}
1737
1738/*
1739 * Allocate a uprobe_task object for the task if if necessary.
1740 * Called when the thread hits a breakpoint.
1741 *
1742 * Returns:
1743 * - pointer to new uprobe_task on success
1744 * - NULL otherwise
1745 */
1746static struct uprobe_task *get_utask(void)
1747{
1748        if (!current->utask)
1749                current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1750        return current->utask;
1751}
1752
1753static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1754{
1755        struct uprobe_task *n_utask;
1756        struct return_instance **p, *o, *n;
1757
1758        n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1759        if (!n_utask)
1760                return -ENOMEM;
1761        t->utask = n_utask;
1762
1763        p = &n_utask->return_instances;
1764        for (o = o_utask->return_instances; o; o = o->next) {
1765                n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1766                if (!n)
1767                        return -ENOMEM;
1768
1769                *n = *o;
1770                get_uprobe(n->uprobe);
1771                n->next = NULL;
1772
1773                *p = n;
1774                p = &n->next;
1775                n_utask->depth++;
1776        }
1777
1778        return 0;
1779}
1780
1781static void uprobe_warn(struct task_struct *t, const char *msg)
1782{
1783        pr_warn("uprobe: %s:%d failed to %s\n",
1784                        current->comm, current->pid, msg);
1785}
1786
1787static void dup_xol_work(struct callback_head *work)
1788{
1789        if (current->flags & PF_EXITING)
1790                return;
1791
1792        if (!__create_xol_area(current->utask->dup_xol_addr) &&
1793                        !fatal_signal_pending(current))
1794                uprobe_warn(current, "dup xol area");
1795}
1796
1797/*
1798 * Called in context of a new clone/fork from copy_process.
1799 */
1800void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1801{
1802        struct uprobe_task *utask = current->utask;
1803        struct mm_struct *mm = current->mm;
1804        struct xol_area *area;
1805
1806        t->utask = NULL;
1807
1808        if (!utask || !utask->return_instances)
1809                return;
1810
1811        if (mm == t->mm && !(flags & CLONE_VFORK))
1812                return;
1813
1814        if (dup_utask(t, utask))
1815                return uprobe_warn(t, "dup ret instances");
1816
1817        /* The task can fork() after dup_xol_work() fails */
1818        area = mm->uprobes_state.xol_area;
1819        if (!area)
1820                return uprobe_warn(t, "dup xol area");
1821
1822        if (mm == t->mm)
1823                return;
1824
1825        t->utask->dup_xol_addr = area->vaddr;
1826        init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1827        task_work_add(t, &t->utask->dup_xol_work, true);
1828}
1829
1830/*
1831 * Current area->vaddr notion assume the trampoline address is always
1832 * equal area->vaddr.
1833 *
1834 * Returns -1 in case the xol_area is not allocated.
1835 */
1836static unsigned long get_trampoline_vaddr(void)
1837{
1838        struct xol_area *area;
1839        unsigned long trampoline_vaddr = -1;
1840
1841        /* Pairs with xol_add_vma() smp_store_release() */
1842        area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */
1843        if (area)
1844                trampoline_vaddr = area->vaddr;
1845
1846        return trampoline_vaddr;
1847}
1848
1849static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
1850                                        struct pt_regs *regs)
1851{
1852        struct return_instance *ri = utask->return_instances;
1853        enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
1854
1855        while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
1856                ri = free_ret_instance(ri);
1857                utask->depth--;
1858        }
1859        utask->return_instances = ri;
1860}
1861
1862static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1863{
1864        struct return_instance *ri;
1865        struct uprobe_task *utask;
1866        unsigned long orig_ret_vaddr, trampoline_vaddr;
1867        bool chained;
1868
1869        if (!get_xol_area())
1870                return;
1871
1872        utask = get_utask();
1873        if (!utask)
1874                return;
1875
1876        if (utask->depth >= MAX_URETPROBE_DEPTH) {
1877                printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1878                                " nestedness limit pid/tgid=%d/%d\n",
1879                                current->pid, current->tgid);
1880                return;
1881        }
1882
1883        ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1884        if (!ri)
1885                return;
1886
1887        trampoline_vaddr = get_trampoline_vaddr();
1888        orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1889        if (orig_ret_vaddr == -1)
1890                goto fail;
1891
1892        /* drop the entries invalidated by longjmp() */
1893        chained = (orig_ret_vaddr == trampoline_vaddr);
1894        cleanup_return_instances(utask, chained, regs);
1895
1896        /*
1897         * We don't want to keep trampoline address in stack, rather keep the
1898         * original return address of first caller thru all the consequent
1899         * instances. This also makes breakpoint unwrapping easier.
1900         */
1901        if (chained) {
1902                if (!utask->return_instances) {
1903                        /*
1904                         * This situation is not possible. Likely we have an
1905                         * attack from user-space.
1906                         */
1907                        uprobe_warn(current, "handle tail call");
1908                        goto fail;
1909                }
1910                orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1911        }
1912
1913        ri->uprobe = get_uprobe(uprobe);
1914        ri->func = instruction_pointer(regs);
1915        ri->stack = user_stack_pointer(regs);
1916        ri->orig_ret_vaddr = orig_ret_vaddr;
1917        ri->chained = chained;
1918
1919        utask->depth++;
1920        ri->next = utask->return_instances;
1921        utask->return_instances = ri;
1922
1923        return;
1924 fail:
1925        kfree(ri);
1926}
1927
1928/* Prepare to single-step probed instruction out of line. */
1929static int
1930pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1931{
1932        struct uprobe_task *utask;
1933        unsigned long xol_vaddr;
1934        int err;
1935
1936        utask = get_utask();
1937        if (!utask)
1938                return -ENOMEM;
1939
1940        xol_vaddr = xol_get_insn_slot(uprobe);
1941        if (!xol_vaddr)
1942                return -ENOMEM;
1943
1944        utask->xol_vaddr = xol_vaddr;
1945        utask->vaddr = bp_vaddr;
1946
1947        err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1948        if (unlikely(err)) {
1949                xol_free_insn_slot(current);
1950                return err;
1951        }
1952
1953        utask->active_uprobe = uprobe;
1954        utask->state = UTASK_SSTEP;
1955        return 0;
1956}
1957
1958/*
1959 * If we are singlestepping, then ensure this thread is not connected to
1960 * non-fatal signals until completion of singlestep.  When xol insn itself
1961 * triggers the signal,  restart the original insn even if the task is
1962 * already SIGKILL'ed (since coredump should report the correct ip).  This
1963 * is even more important if the task has a handler for SIGSEGV/etc, The
1964 * _same_ instruction should be repeated again after return from the signal
1965 * handler, and SSTEP can never finish in this case.
1966 */
1967bool uprobe_deny_signal(void)
1968{
1969        struct task_struct *t = current;
1970        struct uprobe_task *utask = t->utask;
1971
1972        if (likely(!utask || !utask->active_uprobe))
1973                return false;
1974
1975        WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1976
1977        if (signal_pending(t)) {
1978                spin_lock_irq(&t->sighand->siglock);
1979                clear_tsk_thread_flag(t, TIF_SIGPENDING);
1980                spin_unlock_irq(&t->sighand->siglock);
1981
1982                if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1983                        utask->state = UTASK_SSTEP_TRAPPED;
1984                        set_tsk_thread_flag(t, TIF_UPROBE);
1985                }
1986        }
1987
1988        return true;
1989}
1990
1991static void mmf_recalc_uprobes(struct mm_struct *mm)
1992{
1993        struct vm_area_struct *vma;
1994
1995        for (vma = mm->mmap; vma; vma = vma->vm_next) {
1996                if (!valid_vma(vma, false))
1997                        continue;
1998                /*
1999                 * This is not strictly accurate, we can race with
2000                 * uprobe_unregister() and see the already removed
2001                 * uprobe if delete_uprobe() was not yet called.
2002                 * Or this uprobe can be filtered out.
2003                 */
2004                if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
2005                        return;
2006        }
2007
2008        clear_bit(MMF_HAS_UPROBES, &mm->flags);
2009}
2010
2011static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
2012{
2013        struct page *page;
2014        uprobe_opcode_t opcode;
2015        int result;
2016
2017        pagefault_disable();
2018        result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr);
2019        pagefault_enable();
2020
2021        if (likely(result == 0))
2022                goto out;
2023
2024        /*
2025         * The NULL 'tsk' here ensures that any faults that occur here
2026         * will not be accounted to the task.  'mm' *is* current->mm,
2027         * but we treat this as a 'remote' access since it is
2028         * essentially a kernel access to the memory.
2029         */
2030        result = get_user_pages_remote(NULL, mm, vaddr, 1, FOLL_FORCE, &page,
2031                        NULL, NULL);
2032        if (result < 0)
2033                return result;
2034
2035        copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
2036        put_page(page);
2037 out:
2038        /* This needs to return true for any variant of the trap insn */
2039        return is_trap_insn(&opcode);
2040}
2041
2042static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
2043{
2044        struct mm_struct *mm = current->mm;
2045        struct uprobe *uprobe = NULL;
2046        struct vm_area_struct *vma;
2047
2048        down_read(&mm->mmap_sem);
2049        vma = find_vma(mm, bp_vaddr);
2050        if (vma && vma->vm_start <= bp_vaddr) {
2051                if (valid_vma(vma, false)) {
2052                        struct inode *inode = file_inode(vma->vm_file);
2053                        loff_t offset = vaddr_to_offset(vma, bp_vaddr);
2054
2055                        uprobe = find_uprobe(inode, offset);
2056                }
2057
2058                if (!uprobe)
2059                        *is_swbp = is_trap_at_addr(mm, bp_vaddr);
2060        } else {
2061                *is_swbp = -EFAULT;
2062        }
2063
2064        if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
2065                mmf_recalc_uprobes(mm);
2066        up_read(&mm->mmap_sem);
2067
2068        return uprobe;
2069}
2070
2071static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
2072{
2073        struct uprobe_consumer *uc;
2074        int remove = UPROBE_HANDLER_REMOVE;
2075        bool need_prep = false; /* prepare return uprobe, when needed */
2076
2077        down_read(&uprobe->register_rwsem);
2078        for (uc = uprobe->consumers; uc; uc = uc->next) {
2079                int rc = 0;
2080
2081                if (uc->handler) {
2082                        rc = uc->handler(uc, regs);
2083                        WARN(rc & ~UPROBE_HANDLER_MASK,
2084                                "bad rc=0x%x from %ps()\n", rc, uc->handler);
2085                }
2086
2087                if (uc->ret_handler)
2088                        need_prep = true;
2089
2090                remove &= rc;
2091        }
2092
2093        if (need_prep && !remove)
2094                prepare_uretprobe(uprobe, regs); /* put bp at return */
2095
2096        if (remove && uprobe->consumers) {
2097                WARN_ON(!uprobe_is_active(uprobe));
2098                unapply_uprobe(uprobe, current->mm);
2099        }
2100        up_read(&uprobe->register_rwsem);
2101}
2102
2103static void
2104handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
2105{
2106        struct uprobe *uprobe = ri->uprobe;
2107        struct uprobe_consumer *uc;
2108
2109        down_read(&uprobe->register_rwsem);
2110        for (uc = uprobe->consumers; uc; uc = uc->next) {
2111                if (uc->ret_handler)
2112                        uc->ret_handler(uc, ri->func, regs);
2113        }
2114        up_read(&uprobe->register_rwsem);
2115}
2116
2117static struct return_instance *find_next_ret_chain(struct return_instance *ri)
2118{
2119        bool chained;
2120
2121        do {
2122                chained = ri->chained;
2123                ri = ri->next;  /* can't be NULL if chained */
2124        } while (chained);
2125
2126        return ri;
2127}
2128
2129static void handle_trampoline(struct pt_regs *regs)
2130{
2131        struct uprobe_task *utask;
2132        struct return_instance *ri, *next;
2133        bool valid;
2134
2135        utask = current->utask;
2136        if (!utask)
2137                goto sigill;
2138
2139        ri = utask->return_instances;
2140        if (!ri)
2141                goto sigill;
2142
2143        do {
2144                /*
2145                 * We should throw out the frames invalidated by longjmp().
2146                 * If this chain is valid, then the next one should be alive
2147                 * or NULL; the latter case means that nobody but ri->func
2148                 * could hit this trampoline on return. TODO: sigaltstack().
2149                 */
2150                next = find_next_ret_chain(ri);
2151                valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs);
2152
2153                instruction_pointer_set(regs, ri->orig_ret_vaddr);
2154                do {
2155                        if (valid)
2156                                handle_uretprobe_chain(ri, regs);
2157                        ri = free_ret_instance(ri);
2158                        utask->depth--;
2159                } while (ri != next);
2160        } while (!valid);
2161
2162        utask->return_instances = ri;
2163        return;
2164
2165 sigill:
2166        uprobe_warn(current, "handle uretprobe, sending SIGILL.");
2167        force_sig(SIGILL);
2168
2169}
2170
2171bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
2172{
2173        return false;
2174}
2175
2176bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
2177                                        struct pt_regs *regs)
2178{
2179        return true;
2180}
2181
2182/*
2183 * Run handler and ask thread to singlestep.
2184 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
2185 */
2186static void handle_swbp(struct pt_regs *regs)
2187{
2188        struct uprobe *uprobe;
2189        unsigned long bp_vaddr;
2190        int uninitialized_var(is_swbp);
2191
2192        bp_vaddr = uprobe_get_swbp_addr(regs);
2193        if (bp_vaddr == get_trampoline_vaddr())
2194                return handle_trampoline(regs);
2195
2196        uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
2197        if (!uprobe) {
2198                if (is_swbp > 0) {
2199                        /* No matching uprobe; signal SIGTRAP. */
2200                        send_sig(SIGTRAP, current, 0);
2201                } else {
2202                        /*
2203                         * Either we raced with uprobe_unregister() or we can't
2204                         * access this memory. The latter is only possible if
2205                         * another thread plays with our ->mm. In both cases
2206                         * we can simply restart. If this vma was unmapped we
2207                         * can pretend this insn was not executed yet and get
2208                         * the (correct) SIGSEGV after restart.
2209                         */
2210                        instruction_pointer_set(regs, bp_vaddr);
2211                }
2212                return;
2213        }
2214
2215        /* change it in advance for ->handler() and restart */
2216        instruction_pointer_set(regs, bp_vaddr);
2217
2218        /*
2219         * TODO: move copy_insn/etc into _register and remove this hack.
2220         * After we hit the bp, _unregister + _register can install the
2221         * new and not-yet-analyzed uprobe at the same address, restart.
2222         */
2223        if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
2224                goto out;
2225
2226        /*
2227         * Pairs with the smp_wmb() in prepare_uprobe().
2228         *
2229         * Guarantees that if we see the UPROBE_COPY_INSN bit set, then
2230         * we must also see the stores to &uprobe->arch performed by the
2231         * prepare_uprobe() call.
2232         */
2233        smp_rmb();
2234
2235        /* Tracing handlers use ->utask to communicate with fetch methods */
2236        if (!get_utask())
2237                goto out;
2238
2239        if (arch_uprobe_ignore(&uprobe->arch, regs))
2240                goto out;
2241
2242        handler_chain(uprobe, regs);
2243
2244        if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
2245                goto out;
2246
2247        if (!pre_ssout(uprobe, regs, bp_vaddr))
2248                return;
2249
2250        /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
2251out:
2252        put_uprobe(uprobe);
2253}
2254
2255/*
2256 * Perform required fix-ups and disable singlestep.
2257 * Allow pending signals to take effect.
2258 */
2259static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
2260{
2261        struct uprobe *uprobe;
2262        int err = 0;
2263
2264        uprobe = utask->active_uprobe;
2265        if (utask->state == UTASK_SSTEP_ACK)
2266                err = arch_uprobe_post_xol(&uprobe->arch, regs);
2267        else if (utask->state == UTASK_SSTEP_TRAPPED)
2268                arch_uprobe_abort_xol(&uprobe->arch, regs);
2269        else
2270                WARN_ON_ONCE(1);
2271
2272        put_uprobe(uprobe);
2273        utask->active_uprobe = NULL;
2274        utask->state = UTASK_RUNNING;
2275        xol_free_insn_slot(current);
2276
2277        spin_lock_irq(&current->sighand->siglock);
2278        recalc_sigpending(); /* see uprobe_deny_signal() */
2279        spin_unlock_irq(&current->sighand->siglock);
2280
2281        if (unlikely(err)) {
2282                uprobe_warn(current, "execute the probed insn, sending SIGILL.");
2283                force_sig(SIGILL);
2284        }
2285}
2286
2287/*
2288 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
2289 * allows the thread to return from interrupt. After that handle_swbp()
2290 * sets utask->active_uprobe.
2291 *
2292 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
2293 * and allows the thread to return from interrupt.
2294 *
2295 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
2296 * uprobe_notify_resume().
2297 */
2298void uprobe_notify_resume(struct pt_regs *regs)
2299{
2300        struct uprobe_task *utask;
2301
2302        clear_thread_flag(TIF_UPROBE);
2303
2304        utask = current->utask;
2305        if (utask && utask->active_uprobe)
2306                handle_singlestep(utask, regs);
2307        else
2308                handle_swbp(regs);
2309}
2310
2311/*
2312 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
2313 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
2314 */
2315int uprobe_pre_sstep_notifier(struct pt_regs *regs)
2316{
2317        if (!current->mm)
2318                return 0;
2319
2320        if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
2321            (!current->utask || !current->utask->return_instances))
2322                return 0;
2323
2324        set_thread_flag(TIF_UPROBE);
2325        return 1;
2326}
2327
2328/*
2329 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
2330 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
2331 */
2332int uprobe_post_sstep_notifier(struct pt_regs *regs)
2333{
2334        struct uprobe_task *utask = current->utask;
2335
2336        if (!current->mm || !utask || !utask->active_uprobe)
2337                /* task is currently not uprobed */
2338                return 0;
2339
2340        utask->state = UTASK_SSTEP_ACK;
2341        set_thread_flag(TIF_UPROBE);
2342        return 1;
2343}
2344
2345static struct notifier_block uprobe_exception_nb = {
2346        .notifier_call          = arch_uprobe_exception_notify,
2347        .priority               = INT_MAX-1,    /* notified after kprobes, kgdb */
2348};
2349
2350void __init uprobes_init(void)
2351{
2352        int i;
2353
2354        for (i = 0; i < UPROBES_HASH_SZ; i++)
2355                mutex_init(&uprobes_mmap_mutex[i]);
2356
2357        BUG_ON(register_die_notifier(&uprobe_exception_nb));
2358}
2359