linux/kernel/futex.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  Fast Userspace Mutexes (which I call "Futexes!").
   4 *  (C) Rusty Russell, IBM 2002
   5 *
   6 *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
   7 *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
   8 *
   9 *  Removed page pinning, fix privately mapped COW pages and other cleanups
  10 *  (C) Copyright 2003, 2004 Jamie Lokier
  11 *
  12 *  Robust futex support started by Ingo Molnar
  13 *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
  14 *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
  15 *
  16 *  PI-futex support started by Ingo Molnar and Thomas Gleixner
  17 *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  18 *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
  19 *
  20 *  PRIVATE futexes by Eric Dumazet
  21 *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
  22 *
  23 *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
  24 *  Copyright (C) IBM Corporation, 2009
  25 *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
  26 *
  27 *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
  28 *  enough at me, Linus for the original (flawed) idea, Matthew
  29 *  Kirkwood for proof-of-concept implementation.
  30 *
  31 *  "The futexes are also cursed."
  32 *  "But they come in a choice of three flavours!"
  33 */
  34#include <linux/compat.h>
  35#include <linux/slab.h>
  36#include <linux/poll.h>
  37#include <linux/fs.h>
  38#include <linux/file.h>
  39#include <linux/jhash.h>
  40#include <linux/init.h>
  41#include <linux/futex.h>
  42#include <linux/mount.h>
  43#include <linux/pagemap.h>
  44#include <linux/syscalls.h>
  45#include <linux/signal.h>
  46#include <linux/export.h>
  47#include <linux/magic.h>
  48#include <linux/pid.h>
  49#include <linux/nsproxy.h>
  50#include <linux/ptrace.h>
  51#include <linux/sched/rt.h>
  52#include <linux/sched/wake_q.h>
  53#include <linux/sched/mm.h>
  54#include <linux/hugetlb.h>
  55#include <linux/freezer.h>
  56#include <linux/memblock.h>
  57#include <linux/fault-inject.h>
  58#include <linux/refcount.h>
  59
  60#include <asm/futex.h>
  61
  62#include "locking/rtmutex_common.h"
  63
  64/*
  65 * READ this before attempting to hack on futexes!
  66 *
  67 * Basic futex operation and ordering guarantees
  68 * =============================================
  69 *
  70 * The waiter reads the futex value in user space and calls
  71 * futex_wait(). This function computes the hash bucket and acquires
  72 * the hash bucket lock. After that it reads the futex user space value
  73 * again and verifies that the data has not changed. If it has not changed
  74 * it enqueues itself into the hash bucket, releases the hash bucket lock
  75 * and schedules.
  76 *
  77 * The waker side modifies the user space value of the futex and calls
  78 * futex_wake(). This function computes the hash bucket and acquires the
  79 * hash bucket lock. Then it looks for waiters on that futex in the hash
  80 * bucket and wakes them.
  81 *
  82 * In futex wake up scenarios where no tasks are blocked on a futex, taking
  83 * the hb spinlock can be avoided and simply return. In order for this
  84 * optimization to work, ordering guarantees must exist so that the waiter
  85 * being added to the list is acknowledged when the list is concurrently being
  86 * checked by the waker, avoiding scenarios like the following:
  87 *
  88 * CPU 0                               CPU 1
  89 * val = *futex;
  90 * sys_futex(WAIT, futex, val);
  91 *   futex_wait(futex, val);
  92 *   uval = *futex;
  93 *                                     *futex = newval;
  94 *                                     sys_futex(WAKE, futex);
  95 *                                       futex_wake(futex);
  96 *                                       if (queue_empty())
  97 *                                         return;
  98 *   if (uval == val)
  99 *      lock(hash_bucket(futex));
 100 *      queue();
 101 *     unlock(hash_bucket(futex));
 102 *     schedule();
 103 *
 104 * This would cause the waiter on CPU 0 to wait forever because it
 105 * missed the transition of the user space value from val to newval
 106 * and the waker did not find the waiter in the hash bucket queue.
 107 *
 108 * The correct serialization ensures that a waiter either observes
 109 * the changed user space value before blocking or is woken by a
 110 * concurrent waker:
 111 *
 112 * CPU 0                                 CPU 1
 113 * val = *futex;
 114 * sys_futex(WAIT, futex, val);
 115 *   futex_wait(futex, val);
 116 *
 117 *   waiters++; (a)
 118 *   smp_mb(); (A) <-- paired with -.
 119 *                                  |
 120 *   lock(hash_bucket(futex));      |
 121 *                                  |
 122 *   uval = *futex;                 |
 123 *                                  |        *futex = newval;
 124 *                                  |        sys_futex(WAKE, futex);
 125 *                                  |          futex_wake(futex);
 126 *                                  |
 127 *                                  `--------> smp_mb(); (B)
 128 *   if (uval == val)
 129 *     queue();
 130 *     unlock(hash_bucket(futex));
 131 *     schedule();                         if (waiters)
 132 *                                           lock(hash_bucket(futex));
 133 *   else                                    wake_waiters(futex);
 134 *     waiters--; (b)                        unlock(hash_bucket(futex));
 135 *
 136 * Where (A) orders the waiters increment and the futex value read through
 137 * atomic operations (see hb_waiters_inc) and where (B) orders the write
 138 * to futex and the waiters read -- this is done by the barriers for both
 139 * shared and private futexes in get_futex_key_refs().
 140 *
 141 * This yields the following case (where X:=waiters, Y:=futex):
 142 *
 143 *      X = Y = 0
 144 *
 145 *      w[X]=1          w[Y]=1
 146 *      MB              MB
 147 *      r[Y]=y          r[X]=x
 148 *
 149 * Which guarantees that x==0 && y==0 is impossible; which translates back into
 150 * the guarantee that we cannot both miss the futex variable change and the
 151 * enqueue.
 152 *
 153 * Note that a new waiter is accounted for in (a) even when it is possible that
 154 * the wait call can return error, in which case we backtrack from it in (b).
 155 * Refer to the comment in queue_lock().
 156 *
 157 * Similarly, in order to account for waiters being requeued on another
 158 * address we always increment the waiters for the destination bucket before
 159 * acquiring the lock. It then decrements them again  after releasing it -
 160 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
 161 * will do the additional required waiter count housekeeping. This is done for
 162 * double_lock_hb() and double_unlock_hb(), respectively.
 163 */
 164
 165#ifdef CONFIG_HAVE_FUTEX_CMPXCHG
 166#define futex_cmpxchg_enabled 1
 167#else
 168static int  __read_mostly futex_cmpxchg_enabled;
 169#endif
 170
 171/*
 172 * Futex flags used to encode options to functions and preserve them across
 173 * restarts.
 174 */
 175#ifdef CONFIG_MMU
 176# define FLAGS_SHARED           0x01
 177#else
 178/*
 179 * NOMMU does not have per process address space. Let the compiler optimize
 180 * code away.
 181 */
 182# define FLAGS_SHARED           0x00
 183#endif
 184#define FLAGS_CLOCKRT           0x02
 185#define FLAGS_HAS_TIMEOUT       0x04
 186
 187/*
 188 * Priority Inheritance state:
 189 */
 190struct futex_pi_state {
 191        /*
 192         * list of 'owned' pi_state instances - these have to be
 193         * cleaned up in do_exit() if the task exits prematurely:
 194         */
 195        struct list_head list;
 196
 197        /*
 198         * The PI object:
 199         */
 200        struct rt_mutex pi_mutex;
 201
 202        struct task_struct *owner;
 203        refcount_t refcount;
 204
 205        union futex_key key;
 206} __randomize_layout;
 207
 208/**
 209 * struct futex_q - The hashed futex queue entry, one per waiting task
 210 * @list:               priority-sorted list of tasks waiting on this futex
 211 * @task:               the task waiting on the futex
 212 * @lock_ptr:           the hash bucket lock
 213 * @key:                the key the futex is hashed on
 214 * @pi_state:           optional priority inheritance state
 215 * @rt_waiter:          rt_waiter storage for use with requeue_pi
 216 * @requeue_pi_key:     the requeue_pi target futex key
 217 * @bitset:             bitset for the optional bitmasked wakeup
 218 *
 219 * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
 220 * we can wake only the relevant ones (hashed queues may be shared).
 221 *
 222 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
 223 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
 224 * The order of wakeup is always to make the first condition true, then
 225 * the second.
 226 *
 227 * PI futexes are typically woken before they are removed from the hash list via
 228 * the rt_mutex code. See unqueue_me_pi().
 229 */
 230struct futex_q {
 231        struct plist_node list;
 232
 233        struct task_struct *task;
 234        spinlock_t *lock_ptr;
 235        union futex_key key;
 236        struct futex_pi_state *pi_state;
 237        struct rt_mutex_waiter *rt_waiter;
 238        union futex_key *requeue_pi_key;
 239        u32 bitset;
 240} __randomize_layout;
 241
 242static const struct futex_q futex_q_init = {
 243        /* list gets initialized in queue_me()*/
 244        .key = FUTEX_KEY_INIT,
 245        .bitset = FUTEX_BITSET_MATCH_ANY
 246};
 247
 248/*
 249 * Hash buckets are shared by all the futex_keys that hash to the same
 250 * location.  Each key may have multiple futex_q structures, one for each task
 251 * waiting on a futex.
 252 */
 253struct futex_hash_bucket {
 254        atomic_t waiters;
 255        spinlock_t lock;
 256        struct plist_head chain;
 257} ____cacheline_aligned_in_smp;
 258
 259/*
 260 * The base of the bucket array and its size are always used together
 261 * (after initialization only in hash_futex()), so ensure that they
 262 * reside in the same cacheline.
 263 */
 264static struct {
 265        struct futex_hash_bucket *queues;
 266        unsigned long            hashsize;
 267} __futex_data __read_mostly __aligned(2*sizeof(long));
 268#define futex_queues   (__futex_data.queues)
 269#define futex_hashsize (__futex_data.hashsize)
 270
 271
 272/*
 273 * Fault injections for futexes.
 274 */
 275#ifdef CONFIG_FAIL_FUTEX
 276
 277static struct {
 278        struct fault_attr attr;
 279
 280        bool ignore_private;
 281} fail_futex = {
 282        .attr = FAULT_ATTR_INITIALIZER,
 283        .ignore_private = false,
 284};
 285
 286static int __init setup_fail_futex(char *str)
 287{
 288        return setup_fault_attr(&fail_futex.attr, str);
 289}
 290__setup("fail_futex=", setup_fail_futex);
 291
 292static bool should_fail_futex(bool fshared)
 293{
 294        if (fail_futex.ignore_private && !fshared)
 295                return false;
 296
 297        return should_fail(&fail_futex.attr, 1);
 298}
 299
 300#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
 301
 302static int __init fail_futex_debugfs(void)
 303{
 304        umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
 305        struct dentry *dir;
 306
 307        dir = fault_create_debugfs_attr("fail_futex", NULL,
 308                                        &fail_futex.attr);
 309        if (IS_ERR(dir))
 310                return PTR_ERR(dir);
 311
 312        debugfs_create_bool("ignore-private", mode, dir,
 313                            &fail_futex.ignore_private);
 314        return 0;
 315}
 316
 317late_initcall(fail_futex_debugfs);
 318
 319#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
 320
 321#else
 322static inline bool should_fail_futex(bool fshared)
 323{
 324        return false;
 325}
 326#endif /* CONFIG_FAIL_FUTEX */
 327
 328#ifdef CONFIG_COMPAT
 329static void compat_exit_robust_list(struct task_struct *curr);
 330#else
 331static inline void compat_exit_robust_list(struct task_struct *curr) { }
 332#endif
 333
 334static inline void futex_get_mm(union futex_key *key)
 335{
 336        mmgrab(key->private.mm);
 337        /*
 338         * Ensure futex_get_mm() implies a full barrier such that
 339         * get_futex_key() implies a full barrier. This is relied upon
 340         * as smp_mb(); (B), see the ordering comment above.
 341         */
 342        smp_mb__after_atomic();
 343}
 344
 345/*
 346 * Reflects a new waiter being added to the waitqueue.
 347 */
 348static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
 349{
 350#ifdef CONFIG_SMP
 351        atomic_inc(&hb->waiters);
 352        /*
 353         * Full barrier (A), see the ordering comment above.
 354         */
 355        smp_mb__after_atomic();
 356#endif
 357}
 358
 359/*
 360 * Reflects a waiter being removed from the waitqueue by wakeup
 361 * paths.
 362 */
 363static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
 364{
 365#ifdef CONFIG_SMP
 366        atomic_dec(&hb->waiters);
 367#endif
 368}
 369
 370static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
 371{
 372#ifdef CONFIG_SMP
 373        return atomic_read(&hb->waiters);
 374#else
 375        return 1;
 376#endif
 377}
 378
 379/**
 380 * hash_futex - Return the hash bucket in the global hash
 381 * @key:        Pointer to the futex key for which the hash is calculated
 382 *
 383 * We hash on the keys returned from get_futex_key (see below) and return the
 384 * corresponding hash bucket in the global hash.
 385 */
 386static struct futex_hash_bucket *hash_futex(union futex_key *key)
 387{
 388        u32 hash = jhash2((u32*)&key->both.word,
 389                          (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
 390                          key->both.offset);
 391        return &futex_queues[hash & (futex_hashsize - 1)];
 392}
 393
 394
 395/**
 396 * match_futex - Check whether two futex keys are equal
 397 * @key1:       Pointer to key1
 398 * @key2:       Pointer to key2
 399 *
 400 * Return 1 if two futex_keys are equal, 0 otherwise.
 401 */
 402static inline int match_futex(union futex_key *key1, union futex_key *key2)
 403{
 404        return (key1 && key2
 405                && key1->both.word == key2->both.word
 406                && key1->both.ptr == key2->both.ptr
 407                && key1->both.offset == key2->both.offset);
 408}
 409
 410/*
 411 * Take a reference to the resource addressed by a key.
 412 * Can be called while holding spinlocks.
 413 *
 414 */
 415static void get_futex_key_refs(union futex_key *key)
 416{
 417        if (!key->both.ptr)
 418                return;
 419
 420        /*
 421         * On MMU less systems futexes are always "private" as there is no per
 422         * process address space. We need the smp wmb nevertheless - yes,
 423         * arch/blackfin has MMU less SMP ...
 424         */
 425        if (!IS_ENABLED(CONFIG_MMU)) {
 426                smp_mb(); /* explicit smp_mb(); (B) */
 427                return;
 428        }
 429
 430        switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
 431        case FUT_OFF_INODE:
 432                ihold(key->shared.inode); /* implies smp_mb(); (B) */
 433                break;
 434        case FUT_OFF_MMSHARED:
 435                futex_get_mm(key); /* implies smp_mb(); (B) */
 436                break;
 437        default:
 438                /*
 439                 * Private futexes do not hold reference on an inode or
 440                 * mm, therefore the only purpose of calling get_futex_key_refs
 441                 * is because we need the barrier for the lockless waiter check.
 442                 */
 443                smp_mb(); /* explicit smp_mb(); (B) */
 444        }
 445}
 446
 447/*
 448 * Drop a reference to the resource addressed by a key.
 449 * The hash bucket spinlock must not be held. This is
 450 * a no-op for private futexes, see comment in the get
 451 * counterpart.
 452 */
 453static void drop_futex_key_refs(union futex_key *key)
 454{
 455        if (!key->both.ptr) {
 456                /* If we're here then we tried to put a key we failed to get */
 457                WARN_ON_ONCE(1);
 458                return;
 459        }
 460
 461        if (!IS_ENABLED(CONFIG_MMU))
 462                return;
 463
 464        switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
 465        case FUT_OFF_INODE:
 466                iput(key->shared.inode);
 467                break;
 468        case FUT_OFF_MMSHARED:
 469                mmdrop(key->private.mm);
 470                break;
 471        }
 472}
 473
 474enum futex_access {
 475        FUTEX_READ,
 476        FUTEX_WRITE
 477};
 478
 479/**
 480 * futex_setup_timer - set up the sleeping hrtimer.
 481 * @time:       ptr to the given timeout value
 482 * @timeout:    the hrtimer_sleeper structure to be set up
 483 * @flags:      futex flags
 484 * @range_ns:   optional range in ns
 485 *
 486 * Return: Initialized hrtimer_sleeper structure or NULL if no timeout
 487 *         value given
 488 */
 489static inline struct hrtimer_sleeper *
 490futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout,
 491                  int flags, u64 range_ns)
 492{
 493        if (!time)
 494                return NULL;
 495
 496        hrtimer_init_sleeper_on_stack(timeout, (flags & FLAGS_CLOCKRT) ?
 497                                      CLOCK_REALTIME : CLOCK_MONOTONIC,
 498                                      HRTIMER_MODE_ABS);
 499        /*
 500         * If range_ns is 0, calling hrtimer_set_expires_range_ns() is
 501         * effectively the same as calling hrtimer_set_expires().
 502         */
 503        hrtimer_set_expires_range_ns(&timeout->timer, *time, range_ns);
 504
 505        return timeout;
 506}
 507
 508/**
 509 * get_futex_key() - Get parameters which are the keys for a futex
 510 * @uaddr:      virtual address of the futex
 511 * @fshared:    0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
 512 * @key:        address where result is stored.
 513 * @rw:         mapping needs to be read/write (values: FUTEX_READ,
 514 *              FUTEX_WRITE)
 515 *
 516 * Return: a negative error code or 0
 517 *
 518 * The key words are stored in @key on success.
 519 *
 520 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
 521 * offset_within_page).  For private mappings, it's (uaddr, current->mm).
 522 * We can usually work out the index without swapping in the page.
 523 *
 524 * lock_page() might sleep, the caller should not hold a spinlock.
 525 */
 526static int
 527get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, enum futex_access rw)
 528{
 529        unsigned long address = (unsigned long)uaddr;
 530        struct mm_struct *mm = current->mm;
 531        struct page *page, *tail;
 532        struct address_space *mapping;
 533        int err, ro = 0;
 534
 535        /*
 536         * The futex address must be "naturally" aligned.
 537         */
 538        key->both.offset = address % PAGE_SIZE;
 539        if (unlikely((address % sizeof(u32)) != 0))
 540                return -EINVAL;
 541        address -= key->both.offset;
 542
 543        if (unlikely(!access_ok(uaddr, sizeof(u32))))
 544                return -EFAULT;
 545
 546        if (unlikely(should_fail_futex(fshared)))
 547                return -EFAULT;
 548
 549        /*
 550         * PROCESS_PRIVATE futexes are fast.
 551         * As the mm cannot disappear under us and the 'key' only needs
 552         * virtual address, we dont even have to find the underlying vma.
 553         * Note : We do have to check 'uaddr' is a valid user address,
 554         *        but access_ok() should be faster than find_vma()
 555         */
 556        if (!fshared) {
 557                key->private.mm = mm;
 558                key->private.address = address;
 559                get_futex_key_refs(key);  /* implies smp_mb(); (B) */
 560                return 0;
 561        }
 562
 563again:
 564        /* Ignore any VERIFY_READ mapping (futex common case) */
 565        if (unlikely(should_fail_futex(fshared)))
 566                return -EFAULT;
 567
 568        err = get_user_pages_fast(address, 1, FOLL_WRITE, &page);
 569        /*
 570         * If write access is not required (eg. FUTEX_WAIT), try
 571         * and get read-only access.
 572         */
 573        if (err == -EFAULT && rw == FUTEX_READ) {
 574                err = get_user_pages_fast(address, 1, 0, &page);
 575                ro = 1;
 576        }
 577        if (err < 0)
 578                return err;
 579        else
 580                err = 0;
 581
 582        /*
 583         * The treatment of mapping from this point on is critical. The page
 584         * lock protects many things but in this context the page lock
 585         * stabilizes mapping, prevents inode freeing in the shared
 586         * file-backed region case and guards against movement to swap cache.
 587         *
 588         * Strictly speaking the page lock is not needed in all cases being
 589         * considered here and page lock forces unnecessarily serialization
 590         * From this point on, mapping will be re-verified if necessary and
 591         * page lock will be acquired only if it is unavoidable
 592         *
 593         * Mapping checks require the head page for any compound page so the
 594         * head page and mapping is looked up now. For anonymous pages, it
 595         * does not matter if the page splits in the future as the key is
 596         * based on the address. For filesystem-backed pages, the tail is
 597         * required as the index of the page determines the key. For
 598         * base pages, there is no tail page and tail == page.
 599         */
 600        tail = page;
 601        page = compound_head(page);
 602        mapping = READ_ONCE(page->mapping);
 603
 604        /*
 605         * If page->mapping is NULL, then it cannot be a PageAnon
 606         * page; but it might be the ZERO_PAGE or in the gate area or
 607         * in a special mapping (all cases which we are happy to fail);
 608         * or it may have been a good file page when get_user_pages_fast
 609         * found it, but truncated or holepunched or subjected to
 610         * invalidate_complete_page2 before we got the page lock (also
 611         * cases which we are happy to fail).  And we hold a reference,
 612         * so refcount care in invalidate_complete_page's remove_mapping
 613         * prevents drop_caches from setting mapping to NULL beneath us.
 614         *
 615         * The case we do have to guard against is when memory pressure made
 616         * shmem_writepage move it from filecache to swapcache beneath us:
 617         * an unlikely race, but we do need to retry for page->mapping.
 618         */
 619        if (unlikely(!mapping)) {
 620                int shmem_swizzled;
 621
 622                /*
 623                 * Page lock is required to identify which special case above
 624                 * applies. If this is really a shmem page then the page lock
 625                 * will prevent unexpected transitions.
 626                 */
 627                lock_page(page);
 628                shmem_swizzled = PageSwapCache(page) || page->mapping;
 629                unlock_page(page);
 630                put_page(page);
 631
 632                if (shmem_swizzled)
 633                        goto again;
 634
 635                return -EFAULT;
 636        }
 637
 638        /*
 639         * Private mappings are handled in a simple way.
 640         *
 641         * If the futex key is stored on an anonymous page, then the associated
 642         * object is the mm which is implicitly pinned by the calling process.
 643         *
 644         * NOTE: When userspace waits on a MAP_SHARED mapping, even if
 645         * it's a read-only handle, it's expected that futexes attach to
 646         * the object not the particular process.
 647         */
 648        if (PageAnon(page)) {
 649                /*
 650                 * A RO anonymous page will never change and thus doesn't make
 651                 * sense for futex operations.
 652                 */
 653                if (unlikely(should_fail_futex(fshared)) || ro) {
 654                        err = -EFAULT;
 655                        goto out;
 656                }
 657
 658                key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
 659                key->private.mm = mm;
 660                key->private.address = address;
 661
 662                get_futex_key_refs(key); /* implies smp_mb(); (B) */
 663
 664        } else {
 665                struct inode *inode;
 666
 667                /*
 668                 * The associated futex object in this case is the inode and
 669                 * the page->mapping must be traversed. Ordinarily this should
 670                 * be stabilised under page lock but it's not strictly
 671                 * necessary in this case as we just want to pin the inode, not
 672                 * update the radix tree or anything like that.
 673                 *
 674                 * The RCU read lock is taken as the inode is finally freed
 675                 * under RCU. If the mapping still matches expectations then the
 676                 * mapping->host can be safely accessed as being a valid inode.
 677                 */
 678                rcu_read_lock();
 679
 680                if (READ_ONCE(page->mapping) != mapping) {
 681                        rcu_read_unlock();
 682                        put_page(page);
 683
 684                        goto again;
 685                }
 686
 687                inode = READ_ONCE(mapping->host);
 688                if (!inode) {
 689                        rcu_read_unlock();
 690                        put_page(page);
 691
 692                        goto again;
 693                }
 694
 695                /*
 696                 * Take a reference unless it is about to be freed. Previously
 697                 * this reference was taken by ihold under the page lock
 698                 * pinning the inode in place so i_lock was unnecessary. The
 699                 * only way for this check to fail is if the inode was
 700                 * truncated in parallel which is almost certainly an
 701                 * application bug. In such a case, just retry.
 702                 *
 703                 * We are not calling into get_futex_key_refs() in file-backed
 704                 * cases, therefore a successful atomic_inc return below will
 705                 * guarantee that get_futex_key() will still imply smp_mb(); (B).
 706                 */
 707                if (!atomic_inc_not_zero(&inode->i_count)) {
 708                        rcu_read_unlock();
 709                        put_page(page);
 710
 711                        goto again;
 712                }
 713
 714                /* Should be impossible but lets be paranoid for now */
 715                if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
 716                        err = -EFAULT;
 717                        rcu_read_unlock();
 718                        iput(inode);
 719
 720                        goto out;
 721                }
 722
 723                key->both.offset |= FUT_OFF_INODE; /* inode-based key */
 724                key->shared.inode = inode;
 725                key->shared.pgoff = basepage_index(tail);
 726                rcu_read_unlock();
 727        }
 728
 729out:
 730        put_page(page);
 731        return err;
 732}
 733
 734static inline void put_futex_key(union futex_key *key)
 735{
 736        drop_futex_key_refs(key);
 737}
 738
 739/**
 740 * fault_in_user_writeable() - Fault in user address and verify RW access
 741 * @uaddr:      pointer to faulting user space address
 742 *
 743 * Slow path to fixup the fault we just took in the atomic write
 744 * access to @uaddr.
 745 *
 746 * We have no generic implementation of a non-destructive write to the
 747 * user address. We know that we faulted in the atomic pagefault
 748 * disabled section so we can as well avoid the #PF overhead by
 749 * calling get_user_pages() right away.
 750 */
 751static int fault_in_user_writeable(u32 __user *uaddr)
 752{
 753        struct mm_struct *mm = current->mm;
 754        int ret;
 755
 756        down_read(&mm->mmap_sem);
 757        ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
 758                               FAULT_FLAG_WRITE, NULL);
 759        up_read(&mm->mmap_sem);
 760
 761        return ret < 0 ? ret : 0;
 762}
 763
 764/**
 765 * futex_top_waiter() - Return the highest priority waiter on a futex
 766 * @hb:         the hash bucket the futex_q's reside in
 767 * @key:        the futex key (to distinguish it from other futex futex_q's)
 768 *
 769 * Must be called with the hb lock held.
 770 */
 771static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
 772                                        union futex_key *key)
 773{
 774        struct futex_q *this;
 775
 776        plist_for_each_entry(this, &hb->chain, list) {
 777                if (match_futex(&this->key, key))
 778                        return this;
 779        }
 780        return NULL;
 781}
 782
 783static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
 784                                      u32 uval, u32 newval)
 785{
 786        int ret;
 787
 788        pagefault_disable();
 789        ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
 790        pagefault_enable();
 791
 792        return ret;
 793}
 794
 795static int get_futex_value_locked(u32 *dest, u32 __user *from)
 796{
 797        int ret;
 798
 799        pagefault_disable();
 800        ret = __get_user(*dest, from);
 801        pagefault_enable();
 802
 803        return ret ? -EFAULT : 0;
 804}
 805
 806
 807/*
 808 * PI code:
 809 */
 810static int refill_pi_state_cache(void)
 811{
 812        struct futex_pi_state *pi_state;
 813
 814        if (likely(current->pi_state_cache))
 815                return 0;
 816
 817        pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
 818
 819        if (!pi_state)
 820                return -ENOMEM;
 821
 822        INIT_LIST_HEAD(&pi_state->list);
 823        /* pi_mutex gets initialized later */
 824        pi_state->owner = NULL;
 825        refcount_set(&pi_state->refcount, 1);
 826        pi_state->key = FUTEX_KEY_INIT;
 827
 828        current->pi_state_cache = pi_state;
 829
 830        return 0;
 831}
 832
 833static struct futex_pi_state *alloc_pi_state(void)
 834{
 835        struct futex_pi_state *pi_state = current->pi_state_cache;
 836
 837        WARN_ON(!pi_state);
 838        current->pi_state_cache = NULL;
 839
 840        return pi_state;
 841}
 842
 843static void get_pi_state(struct futex_pi_state *pi_state)
 844{
 845        WARN_ON_ONCE(!refcount_inc_not_zero(&pi_state->refcount));
 846}
 847
 848/*
 849 * Drops a reference to the pi_state object and frees or caches it
 850 * when the last reference is gone.
 851 */
 852static void put_pi_state(struct futex_pi_state *pi_state)
 853{
 854        if (!pi_state)
 855                return;
 856
 857        if (!refcount_dec_and_test(&pi_state->refcount))
 858                return;
 859
 860        /*
 861         * If pi_state->owner is NULL, the owner is most probably dying
 862         * and has cleaned up the pi_state already
 863         */
 864        if (pi_state->owner) {
 865                struct task_struct *owner;
 866
 867                raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
 868                owner = pi_state->owner;
 869                if (owner) {
 870                        raw_spin_lock(&owner->pi_lock);
 871                        list_del_init(&pi_state->list);
 872                        raw_spin_unlock(&owner->pi_lock);
 873                }
 874                rt_mutex_proxy_unlock(&pi_state->pi_mutex, owner);
 875                raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
 876        }
 877
 878        if (current->pi_state_cache) {
 879                kfree(pi_state);
 880        } else {
 881                /*
 882                 * pi_state->list is already empty.
 883                 * clear pi_state->owner.
 884                 * refcount is at 0 - put it back to 1.
 885                 */
 886                pi_state->owner = NULL;
 887                refcount_set(&pi_state->refcount, 1);
 888                current->pi_state_cache = pi_state;
 889        }
 890}
 891
 892#ifdef CONFIG_FUTEX_PI
 893
 894/*
 895 * This task is holding PI mutexes at exit time => bad.
 896 * Kernel cleans up PI-state, but userspace is likely hosed.
 897 * (Robust-futex cleanup is separate and might save the day for userspace.)
 898 */
 899static void exit_pi_state_list(struct task_struct *curr)
 900{
 901        struct list_head *next, *head = &curr->pi_state_list;
 902        struct futex_pi_state *pi_state;
 903        struct futex_hash_bucket *hb;
 904        union futex_key key = FUTEX_KEY_INIT;
 905
 906        if (!futex_cmpxchg_enabled)
 907                return;
 908        /*
 909         * We are a ZOMBIE and nobody can enqueue itself on
 910         * pi_state_list anymore, but we have to be careful
 911         * versus waiters unqueueing themselves:
 912         */
 913        raw_spin_lock_irq(&curr->pi_lock);
 914        while (!list_empty(head)) {
 915                next = head->next;
 916                pi_state = list_entry(next, struct futex_pi_state, list);
 917                key = pi_state->key;
 918                hb = hash_futex(&key);
 919
 920                /*
 921                 * We can race against put_pi_state() removing itself from the
 922                 * list (a waiter going away). put_pi_state() will first
 923                 * decrement the reference count and then modify the list, so
 924                 * its possible to see the list entry but fail this reference
 925                 * acquire.
 926                 *
 927                 * In that case; drop the locks to let put_pi_state() make
 928                 * progress and retry the loop.
 929                 */
 930                if (!refcount_inc_not_zero(&pi_state->refcount)) {
 931                        raw_spin_unlock_irq(&curr->pi_lock);
 932                        cpu_relax();
 933                        raw_spin_lock_irq(&curr->pi_lock);
 934                        continue;
 935                }
 936                raw_spin_unlock_irq(&curr->pi_lock);
 937
 938                spin_lock(&hb->lock);
 939                raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
 940                raw_spin_lock(&curr->pi_lock);
 941                /*
 942                 * We dropped the pi-lock, so re-check whether this
 943                 * task still owns the PI-state:
 944                 */
 945                if (head->next != next) {
 946                        /* retain curr->pi_lock for the loop invariant */
 947                        raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
 948                        spin_unlock(&hb->lock);
 949                        put_pi_state(pi_state);
 950                        continue;
 951                }
 952
 953                WARN_ON(pi_state->owner != curr);
 954                WARN_ON(list_empty(&pi_state->list));
 955                list_del_init(&pi_state->list);
 956                pi_state->owner = NULL;
 957
 958                raw_spin_unlock(&curr->pi_lock);
 959                raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
 960                spin_unlock(&hb->lock);
 961
 962                rt_mutex_futex_unlock(&pi_state->pi_mutex);
 963                put_pi_state(pi_state);
 964
 965                raw_spin_lock_irq(&curr->pi_lock);
 966        }
 967        raw_spin_unlock_irq(&curr->pi_lock);
 968}
 969#else
 970static inline void exit_pi_state_list(struct task_struct *curr) { }
 971#endif
 972
 973/*
 974 * We need to check the following states:
 975 *
 976 *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
 977 *
 978 * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
 979 * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
 980 *
 981 * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
 982 *
 983 * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
 984 * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
 985 *
 986 * [6]  Found  | Found    | task      | 0         | 1      | Valid
 987 *
 988 * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
 989 *
 990 * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
 991 * [9]  Found  | Found    | task      | 0         | 0      | Invalid
 992 * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
 993 *
 994 * [1]  Indicates that the kernel can acquire the futex atomically. We
 995 *      came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
 996 *
 997 * [2]  Valid, if TID does not belong to a kernel thread. If no matching
 998 *      thread is found then it indicates that the owner TID has died.
 999 *
1000 * [3]  Invalid. The waiter is queued on a non PI futex
1001 *
1002 * [4]  Valid state after exit_robust_list(), which sets the user space
1003 *      value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
1004 *
1005 * [5]  The user space value got manipulated between exit_robust_list()
1006 *      and exit_pi_state_list()
1007 *
1008 * [6]  Valid state after exit_pi_state_list() which sets the new owner in
1009 *      the pi_state but cannot access the user space value.
1010 *
1011 * [7]  pi_state->owner can only be NULL when the OWNER_DIED bit is set.
1012 *
1013 * [8]  Owner and user space value match
1014 *
1015 * [9]  There is no transient state which sets the user space TID to 0
1016 *      except exit_robust_list(), but this is indicated by the
1017 *      FUTEX_OWNER_DIED bit. See [4]
1018 *
1019 * [10] There is no transient state which leaves owner and user space
1020 *      TID out of sync.
1021 *
1022 *
1023 * Serialization and lifetime rules:
1024 *
1025 * hb->lock:
1026 *
1027 *      hb -> futex_q, relation
1028 *      futex_q -> pi_state, relation
1029 *
1030 *      (cannot be raw because hb can contain arbitrary amount
1031 *       of futex_q's)
1032 *
1033 * pi_mutex->wait_lock:
1034 *
1035 *      {uval, pi_state}
1036 *
1037 *      (and pi_mutex 'obviously')
1038 *
1039 * p->pi_lock:
1040 *
1041 *      p->pi_state_list -> pi_state->list, relation
1042 *
1043 * pi_state->refcount:
1044 *
1045 *      pi_state lifetime
1046 *
1047 *
1048 * Lock order:
1049 *
1050 *   hb->lock
1051 *     pi_mutex->wait_lock
1052 *       p->pi_lock
1053 *
1054 */
1055
1056/*
1057 * Validate that the existing waiter has a pi_state and sanity check
1058 * the pi_state against the user space value. If correct, attach to
1059 * it.
1060 */
1061static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1062                              struct futex_pi_state *pi_state,
1063                              struct futex_pi_state **ps)
1064{
1065        pid_t pid = uval & FUTEX_TID_MASK;
1066        u32 uval2;
1067        int ret;
1068
1069        /*
1070         * Userspace might have messed up non-PI and PI futexes [3]
1071         */
1072        if (unlikely(!pi_state))
1073                return -EINVAL;
1074
1075        /*
1076         * We get here with hb->lock held, and having found a
1077         * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1078         * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1079         * which in turn means that futex_lock_pi() still has a reference on
1080         * our pi_state.
1081         *
1082         * The waiter holding a reference on @pi_state also protects against
1083         * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1084         * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1085         * free pi_state before we can take a reference ourselves.
1086         */
1087        WARN_ON(!refcount_read(&pi_state->refcount));
1088
1089        /*
1090         * Now that we have a pi_state, we can acquire wait_lock
1091         * and do the state validation.
1092         */
1093        raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1094
1095        /*
1096         * Since {uval, pi_state} is serialized by wait_lock, and our current
1097         * uval was read without holding it, it can have changed. Verify it
1098         * still is what we expect it to be, otherwise retry the entire
1099         * operation.
1100         */
1101        if (get_futex_value_locked(&uval2, uaddr))
1102                goto out_efault;
1103
1104        if (uval != uval2)
1105                goto out_eagain;
1106
1107        /*
1108         * Handle the owner died case:
1109         */
1110        if (uval & FUTEX_OWNER_DIED) {
1111                /*
1112                 * exit_pi_state_list sets owner to NULL and wakes the
1113                 * topmost waiter. The task which acquires the
1114                 * pi_state->rt_mutex will fixup owner.
1115                 */
1116                if (!pi_state->owner) {
1117                        /*
1118                         * No pi state owner, but the user space TID
1119                         * is not 0. Inconsistent state. [5]
1120                         */
1121                        if (pid)
1122                                goto out_einval;
1123                        /*
1124                         * Take a ref on the state and return success. [4]
1125                         */
1126                        goto out_attach;
1127                }
1128
1129                /*
1130                 * If TID is 0, then either the dying owner has not
1131                 * yet executed exit_pi_state_list() or some waiter
1132                 * acquired the rtmutex in the pi state, but did not
1133                 * yet fixup the TID in user space.
1134                 *
1135                 * Take a ref on the state and return success. [6]
1136                 */
1137                if (!pid)
1138                        goto out_attach;
1139        } else {
1140                /*
1141                 * If the owner died bit is not set, then the pi_state
1142                 * must have an owner. [7]
1143                 */
1144                if (!pi_state->owner)
1145                        goto out_einval;
1146        }
1147
1148        /*
1149         * Bail out if user space manipulated the futex value. If pi
1150         * state exists then the owner TID must be the same as the
1151         * user space TID. [9/10]
1152         */
1153        if (pid != task_pid_vnr(pi_state->owner))
1154                goto out_einval;
1155
1156out_attach:
1157        get_pi_state(pi_state);
1158        raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1159        *ps = pi_state;
1160        return 0;
1161
1162out_einval:
1163        ret = -EINVAL;
1164        goto out_error;
1165
1166out_eagain:
1167        ret = -EAGAIN;
1168        goto out_error;
1169
1170out_efault:
1171        ret = -EFAULT;
1172        goto out_error;
1173
1174out_error:
1175        raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1176        return ret;
1177}
1178
1179/**
1180 * wait_for_owner_exiting - Block until the owner has exited
1181 * @ret: owner's current futex lock status
1182 * @exiting:    Pointer to the exiting task
1183 *
1184 * Caller must hold a refcount on @exiting.
1185 */
1186static void wait_for_owner_exiting(int ret, struct task_struct *exiting)
1187{
1188        if (ret != -EBUSY) {
1189                WARN_ON_ONCE(exiting);
1190                return;
1191        }
1192
1193        if (WARN_ON_ONCE(ret == -EBUSY && !exiting))
1194                return;
1195
1196        mutex_lock(&exiting->futex_exit_mutex);
1197        /*
1198         * No point in doing state checking here. If the waiter got here
1199         * while the task was in exec()->exec_futex_release() then it can
1200         * have any FUTEX_STATE_* value when the waiter has acquired the
1201         * mutex. OK, if running, EXITING or DEAD if it reached exit()
1202         * already. Highly unlikely and not a problem. Just one more round
1203         * through the futex maze.
1204         */
1205        mutex_unlock(&exiting->futex_exit_mutex);
1206
1207        put_task_struct(exiting);
1208}
1209
1210static int handle_exit_race(u32 __user *uaddr, u32 uval,
1211                            struct task_struct *tsk)
1212{
1213        u32 uval2;
1214
1215        /*
1216         * If the futex exit state is not yet FUTEX_STATE_DEAD, tell the
1217         * caller that the alleged owner is busy.
1218         */
1219        if (tsk && tsk->futex_state != FUTEX_STATE_DEAD)
1220                return -EBUSY;
1221
1222        /*
1223         * Reread the user space value to handle the following situation:
1224         *
1225         * CPU0                         CPU1
1226         *
1227         * sys_exit()                   sys_futex()
1228         *  do_exit()                    futex_lock_pi()
1229         *                                futex_lock_pi_atomic()
1230         *   exit_signals(tsk)              No waiters:
1231         *    tsk->flags |= PF_EXITING;     *uaddr == 0x00000PID
1232         *  mm_release(tsk)                 Set waiter bit
1233         *   exit_robust_list(tsk) {        *uaddr = 0x80000PID;
1234         *      Set owner died              attach_to_pi_owner() {
1235         *    *uaddr = 0xC0000000;           tsk = get_task(PID);
1236         *   }                               if (!tsk->flags & PF_EXITING) {
1237         *  ...                                attach();
1238         *  tsk->futex_state =               } else {
1239         *      FUTEX_STATE_DEAD;              if (tsk->futex_state !=
1240         *                                        FUTEX_STATE_DEAD)
1241         *                                       return -EAGAIN;
1242         *                                     return -ESRCH; <--- FAIL
1243         *                                   }
1244         *
1245         * Returning ESRCH unconditionally is wrong here because the
1246         * user space value has been changed by the exiting task.
1247         *
1248         * The same logic applies to the case where the exiting task is
1249         * already gone.
1250         */
1251        if (get_futex_value_locked(&uval2, uaddr))
1252                return -EFAULT;
1253
1254        /* If the user space value has changed, try again. */
1255        if (uval2 != uval)
1256                return -EAGAIN;
1257
1258        /*
1259         * The exiting task did not have a robust list, the robust list was
1260         * corrupted or the user space value in *uaddr is simply bogus.
1261         * Give up and tell user space.
1262         */
1263        return -ESRCH;
1264}
1265
1266/*
1267 * Lookup the task for the TID provided from user space and attach to
1268 * it after doing proper sanity checks.
1269 */
1270static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
1271                              struct futex_pi_state **ps,
1272                              struct task_struct **exiting)
1273{
1274        pid_t pid = uval & FUTEX_TID_MASK;
1275        struct futex_pi_state *pi_state;
1276        struct task_struct *p;
1277
1278        /*
1279         * We are the first waiter - try to look up the real owner and attach
1280         * the new pi_state to it, but bail out when TID = 0 [1]
1281         *
1282         * The !pid check is paranoid. None of the call sites should end up
1283         * with pid == 0, but better safe than sorry. Let the caller retry
1284         */
1285        if (!pid)
1286                return -EAGAIN;
1287        p = find_get_task_by_vpid(pid);
1288        if (!p)
1289                return handle_exit_race(uaddr, uval, NULL);
1290
1291        if (unlikely(p->flags & PF_KTHREAD)) {
1292                put_task_struct(p);
1293                return -EPERM;
1294        }
1295
1296        /*
1297         * We need to look at the task state to figure out, whether the
1298         * task is exiting. To protect against the change of the task state
1299         * in futex_exit_release(), we do this protected by p->pi_lock:
1300         */
1301        raw_spin_lock_irq(&p->pi_lock);
1302        if (unlikely(p->futex_state != FUTEX_STATE_OK)) {
1303                /*
1304                 * The task is on the way out. When the futex state is
1305                 * FUTEX_STATE_DEAD, we know that the task has finished
1306                 * the cleanup:
1307                 */
1308                int ret = handle_exit_race(uaddr, uval, p);
1309
1310                raw_spin_unlock_irq(&p->pi_lock);
1311                /*
1312                 * If the owner task is between FUTEX_STATE_EXITING and
1313                 * FUTEX_STATE_DEAD then store the task pointer and keep
1314                 * the reference on the task struct. The calling code will
1315                 * drop all locks, wait for the task to reach
1316                 * FUTEX_STATE_DEAD and then drop the refcount. This is
1317                 * required to prevent a live lock when the current task
1318                 * preempted the exiting task between the two states.
1319                 */
1320                if (ret == -EBUSY)
1321                        *exiting = p;
1322                else
1323                        put_task_struct(p);
1324                return ret;
1325        }
1326
1327        /*
1328         * No existing pi state. First waiter. [2]
1329         *
1330         * This creates pi_state, we have hb->lock held, this means nothing can
1331         * observe this state, wait_lock is irrelevant.
1332         */
1333        pi_state = alloc_pi_state();
1334
1335        /*
1336         * Initialize the pi_mutex in locked state and make @p
1337         * the owner of it:
1338         */
1339        rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1340
1341        /* Store the key for possible exit cleanups: */
1342        pi_state->key = *key;
1343
1344        WARN_ON(!list_empty(&pi_state->list));
1345        list_add(&pi_state->list, &p->pi_state_list);
1346        /*
1347         * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1348         * because there is no concurrency as the object is not published yet.
1349         */
1350        pi_state->owner = p;
1351        raw_spin_unlock_irq(&p->pi_lock);
1352
1353        put_task_struct(p);
1354
1355        *ps = pi_state;
1356
1357        return 0;
1358}
1359
1360static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1361                           struct futex_hash_bucket *hb,
1362                           union futex_key *key, struct futex_pi_state **ps,
1363                           struct task_struct **exiting)
1364{
1365        struct futex_q *top_waiter = futex_top_waiter(hb, key);
1366
1367        /*
1368         * If there is a waiter on that futex, validate it and
1369         * attach to the pi_state when the validation succeeds.
1370         */
1371        if (top_waiter)
1372                return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1373
1374        /*
1375         * We are the first waiter - try to look up the owner based on
1376         * @uval and attach to it.
1377         */
1378        return attach_to_pi_owner(uaddr, uval, key, ps, exiting);
1379}
1380
1381static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1382{
1383        int err;
1384        u32 uninitialized_var(curval);
1385
1386        if (unlikely(should_fail_futex(true)))
1387                return -EFAULT;
1388
1389        err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1390        if (unlikely(err))
1391                return err;
1392
1393        /* If user space value changed, let the caller retry */
1394        return curval != uval ? -EAGAIN : 0;
1395}
1396
1397/**
1398 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1399 * @uaddr:              the pi futex user address
1400 * @hb:                 the pi futex hash bucket
1401 * @key:                the futex key associated with uaddr and hb
1402 * @ps:                 the pi_state pointer where we store the result of the
1403 *                      lookup
1404 * @task:               the task to perform the atomic lock work for.  This will
1405 *                      be "current" except in the case of requeue pi.
1406 * @exiting:            Pointer to store the task pointer of the owner task
1407 *                      which is in the middle of exiting
1408 * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1409 *
1410 * Return:
1411 *  -  0 - ready to wait;
1412 *  -  1 - acquired the lock;
1413 *  - <0 - error
1414 *
1415 * The hb->lock and futex_key refs shall be held by the caller.
1416 *
1417 * @exiting is only set when the return value is -EBUSY. If so, this holds
1418 * a refcount on the exiting task on return and the caller needs to drop it
1419 * after waiting for the exit to complete.
1420 */
1421static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1422                                union futex_key *key,
1423                                struct futex_pi_state **ps,
1424                                struct task_struct *task,
1425                                struct task_struct **exiting,
1426                                int set_waiters)
1427{
1428        u32 uval, newval, vpid = task_pid_vnr(task);
1429        struct futex_q *top_waiter;
1430        int ret;
1431
1432        /*
1433         * Read the user space value first so we can validate a few
1434         * things before proceeding further.
1435         */
1436        if (get_futex_value_locked(&uval, uaddr))
1437                return -EFAULT;
1438
1439        if (unlikely(should_fail_futex(true)))
1440                return -EFAULT;
1441
1442        /*
1443         * Detect deadlocks.
1444         */
1445        if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1446                return -EDEADLK;
1447
1448        if ((unlikely(should_fail_futex(true))))
1449                return -EDEADLK;
1450
1451        /*
1452         * Lookup existing state first. If it exists, try to attach to
1453         * its pi_state.
1454         */
1455        top_waiter = futex_top_waiter(hb, key);
1456        if (top_waiter)
1457                return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1458
1459        /*
1460         * No waiter and user TID is 0. We are here because the
1461         * waiters or the owner died bit is set or called from
1462         * requeue_cmp_pi or for whatever reason something took the
1463         * syscall.
1464         */
1465        if (!(uval & FUTEX_TID_MASK)) {
1466                /*
1467                 * We take over the futex. No other waiters and the user space
1468                 * TID is 0. We preserve the owner died bit.
1469                 */
1470                newval = uval & FUTEX_OWNER_DIED;
1471                newval |= vpid;
1472
1473                /* The futex requeue_pi code can enforce the waiters bit */
1474                if (set_waiters)
1475                        newval |= FUTEX_WAITERS;
1476
1477                ret = lock_pi_update_atomic(uaddr, uval, newval);
1478                /* If the take over worked, return 1 */
1479                return ret < 0 ? ret : 1;
1480        }
1481
1482        /*
1483         * First waiter. Set the waiters bit before attaching ourself to
1484         * the owner. If owner tries to unlock, it will be forced into
1485         * the kernel and blocked on hb->lock.
1486         */
1487        newval = uval | FUTEX_WAITERS;
1488        ret = lock_pi_update_atomic(uaddr, uval, newval);
1489        if (ret)
1490                return ret;
1491        /*
1492         * If the update of the user space value succeeded, we try to
1493         * attach to the owner. If that fails, no harm done, we only
1494         * set the FUTEX_WAITERS bit in the user space variable.
1495         */
1496        return attach_to_pi_owner(uaddr, newval, key, ps, exiting);
1497}
1498
1499/**
1500 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1501 * @q:  The futex_q to unqueue
1502 *
1503 * The q->lock_ptr must not be NULL and must be held by the caller.
1504 */
1505static void __unqueue_futex(struct futex_q *q)
1506{
1507        struct futex_hash_bucket *hb;
1508
1509        if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
1510                return;
1511        lockdep_assert_held(q->lock_ptr);
1512
1513        hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1514        plist_del(&q->list, &hb->chain);
1515        hb_waiters_dec(hb);
1516}
1517
1518/*
1519 * The hash bucket lock must be held when this is called.
1520 * Afterwards, the futex_q must not be accessed. Callers
1521 * must ensure to later call wake_up_q() for the actual
1522 * wakeups to occur.
1523 */
1524static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1525{
1526        struct task_struct *p = q->task;
1527
1528        if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1529                return;
1530
1531        get_task_struct(p);
1532        __unqueue_futex(q);
1533        /*
1534         * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1535         * is written, without taking any locks. This is possible in the event
1536         * of a spurious wakeup, for example. A memory barrier is required here
1537         * to prevent the following store to lock_ptr from getting ahead of the
1538         * plist_del in __unqueue_futex().
1539         */
1540        smp_store_release(&q->lock_ptr, NULL);
1541
1542        /*
1543         * Queue the task for later wakeup for after we've released
1544         * the hb->lock.
1545         */
1546        wake_q_add_safe(wake_q, p);
1547}
1548
1549/*
1550 * Caller must hold a reference on @pi_state.
1551 */
1552static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1553{
1554        u32 uninitialized_var(curval), newval;
1555        struct task_struct *new_owner;
1556        bool postunlock = false;
1557        DEFINE_WAKE_Q(wake_q);
1558        int ret = 0;
1559
1560        new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1561        if (WARN_ON_ONCE(!new_owner)) {
1562                /*
1563                 * As per the comment in futex_unlock_pi() this should not happen.
1564                 *
1565                 * When this happens, give up our locks and try again, giving
1566                 * the futex_lock_pi() instance time to complete, either by
1567                 * waiting on the rtmutex or removing itself from the futex
1568                 * queue.
1569                 */
1570                ret = -EAGAIN;
1571                goto out_unlock;
1572        }
1573
1574        /*
1575         * We pass it to the next owner. The WAITERS bit is always kept
1576         * enabled while there is PI state around. We cleanup the owner
1577         * died bit, because we are the owner.
1578         */
1579        newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1580
1581        if (unlikely(should_fail_futex(true)))
1582                ret = -EFAULT;
1583
1584        ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1585        if (!ret && (curval != uval)) {
1586                /*
1587                 * If a unconditional UNLOCK_PI operation (user space did not
1588                 * try the TID->0 transition) raced with a waiter setting the
1589                 * FUTEX_WAITERS flag between get_user() and locking the hash
1590                 * bucket lock, retry the operation.
1591                 */
1592                if ((FUTEX_TID_MASK & curval) == uval)
1593                        ret = -EAGAIN;
1594                else
1595                        ret = -EINVAL;
1596        }
1597
1598        if (ret)
1599                goto out_unlock;
1600
1601        /*
1602         * This is a point of no return; once we modify the uval there is no
1603         * going back and subsequent operations must not fail.
1604         */
1605
1606        raw_spin_lock(&pi_state->owner->pi_lock);
1607        WARN_ON(list_empty(&pi_state->list));
1608        list_del_init(&pi_state->list);
1609        raw_spin_unlock(&pi_state->owner->pi_lock);
1610
1611        raw_spin_lock(&new_owner->pi_lock);
1612        WARN_ON(!list_empty(&pi_state->list));
1613        list_add(&pi_state->list, &new_owner->pi_state_list);
1614        pi_state->owner = new_owner;
1615        raw_spin_unlock(&new_owner->pi_lock);
1616
1617        postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1618
1619out_unlock:
1620        raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1621
1622        if (postunlock)
1623                rt_mutex_postunlock(&wake_q);
1624
1625        return ret;
1626}
1627
1628/*
1629 * Express the locking dependencies for lockdep:
1630 */
1631static inline void
1632double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1633{
1634        if (hb1 <= hb2) {
1635                spin_lock(&hb1->lock);
1636                if (hb1 < hb2)
1637                        spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1638        } else { /* hb1 > hb2 */
1639                spin_lock(&hb2->lock);
1640                spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1641        }
1642}
1643
1644static inline void
1645double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1646{
1647        spin_unlock(&hb1->lock);
1648        if (hb1 != hb2)
1649                spin_unlock(&hb2->lock);
1650}
1651
1652/*
1653 * Wake up waiters matching bitset queued on this futex (uaddr).
1654 */
1655static int
1656futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1657{
1658        struct futex_hash_bucket *hb;
1659        struct futex_q *this, *next;
1660        union futex_key key = FUTEX_KEY_INIT;
1661        int ret;
1662        DEFINE_WAKE_Q(wake_q);
1663
1664        if (!bitset)
1665                return -EINVAL;
1666
1667        ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_READ);
1668        if (unlikely(ret != 0))
1669                goto out;
1670
1671        hb = hash_futex(&key);
1672
1673        /* Make sure we really have tasks to wakeup */
1674        if (!hb_waiters_pending(hb))
1675                goto out_put_key;
1676
1677        spin_lock(&hb->lock);
1678
1679        plist_for_each_entry_safe(this, next, &hb->chain, list) {
1680                if (match_futex (&this->key, &key)) {
1681                        if (this->pi_state || this->rt_waiter) {
1682                                ret = -EINVAL;
1683                                break;
1684                        }
1685
1686                        /* Check if one of the bits is set in both bitsets */
1687                        if (!(this->bitset & bitset))
1688                                continue;
1689
1690                        mark_wake_futex(&wake_q, this);
1691                        if (++ret >= nr_wake)
1692                                break;
1693                }
1694        }
1695
1696        spin_unlock(&hb->lock);
1697        wake_up_q(&wake_q);
1698out_put_key:
1699        put_futex_key(&key);
1700out:
1701        return ret;
1702}
1703
1704static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1705{
1706        unsigned int op =         (encoded_op & 0x70000000) >> 28;
1707        unsigned int cmp =        (encoded_op & 0x0f000000) >> 24;
1708        int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1709        int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
1710        int oldval, ret;
1711
1712        if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1713                if (oparg < 0 || oparg > 31) {
1714                        char comm[sizeof(current->comm)];
1715                        /*
1716                         * kill this print and return -EINVAL when userspace
1717                         * is sane again
1718                         */
1719                        pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1720                                        get_task_comm(comm, current), oparg);
1721                        oparg &= 31;
1722                }
1723                oparg = 1 << oparg;
1724        }
1725
1726        if (!access_ok(uaddr, sizeof(u32)))
1727                return -EFAULT;
1728
1729        ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1730        if (ret)
1731                return ret;
1732
1733        switch (cmp) {
1734        case FUTEX_OP_CMP_EQ:
1735                return oldval == cmparg;
1736        case FUTEX_OP_CMP_NE:
1737                return oldval != cmparg;
1738        case FUTEX_OP_CMP_LT:
1739                return oldval < cmparg;
1740        case FUTEX_OP_CMP_GE:
1741                return oldval >= cmparg;
1742        case FUTEX_OP_CMP_LE:
1743                return oldval <= cmparg;
1744        case FUTEX_OP_CMP_GT:
1745                return oldval > cmparg;
1746        default:
1747                return -ENOSYS;
1748        }
1749}
1750
1751/*
1752 * Wake up all waiters hashed on the physical page that is mapped
1753 * to this virtual address:
1754 */
1755static int
1756futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1757              int nr_wake, int nr_wake2, int op)
1758{
1759        union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1760        struct futex_hash_bucket *hb1, *hb2;
1761        struct futex_q *this, *next;
1762        int ret, op_ret;
1763        DEFINE_WAKE_Q(wake_q);
1764
1765retry:
1766        ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1767        if (unlikely(ret != 0))
1768                goto out;
1769        ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
1770        if (unlikely(ret != 0))
1771                goto out_put_key1;
1772
1773        hb1 = hash_futex(&key1);
1774        hb2 = hash_futex(&key2);
1775
1776retry_private:
1777        double_lock_hb(hb1, hb2);
1778        op_ret = futex_atomic_op_inuser(op, uaddr2);
1779        if (unlikely(op_ret < 0)) {
1780                double_unlock_hb(hb1, hb2);
1781
1782                if (!IS_ENABLED(CONFIG_MMU) ||
1783                    unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) {
1784                        /*
1785                         * we don't get EFAULT from MMU faults if we don't have
1786                         * an MMU, but we might get them from range checking
1787                         */
1788                        ret = op_ret;
1789                        goto out_put_keys;
1790                }
1791
1792                if (op_ret == -EFAULT) {
1793                        ret = fault_in_user_writeable(uaddr2);
1794                        if (ret)
1795                                goto out_put_keys;
1796                }
1797
1798                if (!(flags & FLAGS_SHARED)) {
1799                        cond_resched();
1800                        goto retry_private;
1801                }
1802
1803                put_futex_key(&key2);
1804                put_futex_key(&key1);
1805                cond_resched();
1806                goto retry;
1807        }
1808
1809        plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1810                if (match_futex (&this->key, &key1)) {
1811                        if (this->pi_state || this->rt_waiter) {
1812                                ret = -EINVAL;
1813                                goto out_unlock;
1814                        }
1815                        mark_wake_futex(&wake_q, this);
1816                        if (++ret >= nr_wake)
1817                                break;
1818                }
1819        }
1820
1821        if (op_ret > 0) {
1822                op_ret = 0;
1823                plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1824                        if (match_futex (&this->key, &key2)) {
1825                                if (this->pi_state || this->rt_waiter) {
1826                                        ret = -EINVAL;
1827                                        goto out_unlock;
1828                                }
1829                                mark_wake_futex(&wake_q, this);
1830                                if (++op_ret >= nr_wake2)
1831                                        break;
1832                        }
1833                }
1834                ret += op_ret;
1835        }
1836
1837out_unlock:
1838        double_unlock_hb(hb1, hb2);
1839        wake_up_q(&wake_q);
1840out_put_keys:
1841        put_futex_key(&key2);
1842out_put_key1:
1843        put_futex_key(&key1);
1844out:
1845        return ret;
1846}
1847
1848/**
1849 * requeue_futex() - Requeue a futex_q from one hb to another
1850 * @q:          the futex_q to requeue
1851 * @hb1:        the source hash_bucket
1852 * @hb2:        the target hash_bucket
1853 * @key2:       the new key for the requeued futex_q
1854 */
1855static inline
1856void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1857                   struct futex_hash_bucket *hb2, union futex_key *key2)
1858{
1859
1860        /*
1861         * If key1 and key2 hash to the same bucket, no need to
1862         * requeue.
1863         */
1864        if (likely(&hb1->chain != &hb2->chain)) {
1865                plist_del(&q->list, &hb1->chain);
1866                hb_waiters_dec(hb1);
1867                hb_waiters_inc(hb2);
1868                plist_add(&q->list, &hb2->chain);
1869                q->lock_ptr = &hb2->lock;
1870        }
1871        get_futex_key_refs(key2);
1872        q->key = *key2;
1873}
1874
1875/**
1876 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1877 * @q:          the futex_q
1878 * @key:        the key of the requeue target futex
1879 * @hb:         the hash_bucket of the requeue target futex
1880 *
1881 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1882 * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1883 * to the requeue target futex so the waiter can detect the wakeup on the right
1884 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1885 * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1886 * to protect access to the pi_state to fixup the owner later.  Must be called
1887 * with both q->lock_ptr and hb->lock held.
1888 */
1889static inline
1890void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1891                           struct futex_hash_bucket *hb)
1892{
1893        get_futex_key_refs(key);
1894        q->key = *key;
1895
1896        __unqueue_futex(q);
1897
1898        WARN_ON(!q->rt_waiter);
1899        q->rt_waiter = NULL;
1900
1901        q->lock_ptr = &hb->lock;
1902
1903        wake_up_state(q->task, TASK_NORMAL);
1904}
1905
1906/**
1907 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1908 * @pifutex:            the user address of the to futex
1909 * @hb1:                the from futex hash bucket, must be locked by the caller
1910 * @hb2:                the to futex hash bucket, must be locked by the caller
1911 * @key1:               the from futex key
1912 * @key2:               the to futex key
1913 * @ps:                 address to store the pi_state pointer
1914 * @exiting:            Pointer to store the task pointer of the owner task
1915 *                      which is in the middle of exiting
1916 * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1917 *
1918 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1919 * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1920 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1921 * hb1 and hb2 must be held by the caller.
1922 *
1923 * @exiting is only set when the return value is -EBUSY. If so, this holds
1924 * a refcount on the exiting task on return and the caller needs to drop it
1925 * after waiting for the exit to complete.
1926 *
1927 * Return:
1928 *  -  0 - failed to acquire the lock atomically;
1929 *  - >0 - acquired the lock, return value is vpid of the top_waiter
1930 *  - <0 - error
1931 */
1932static int
1933futex_proxy_trylock_atomic(u32 __user *pifutex, struct futex_hash_bucket *hb1,
1934                           struct futex_hash_bucket *hb2, union futex_key *key1,
1935                           union futex_key *key2, struct futex_pi_state **ps,
1936                           struct task_struct **exiting, int set_waiters)
1937{
1938        struct futex_q *top_waiter = NULL;
1939        u32 curval;
1940        int ret, vpid;
1941
1942        if (get_futex_value_locked(&curval, pifutex))
1943                return -EFAULT;
1944
1945        if (unlikely(should_fail_futex(true)))
1946                return -EFAULT;
1947
1948        /*
1949         * Find the top_waiter and determine if there are additional waiters.
1950         * If the caller intends to requeue more than 1 waiter to pifutex,
1951         * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1952         * as we have means to handle the possible fault.  If not, don't set
1953         * the bit unecessarily as it will force the subsequent unlock to enter
1954         * the kernel.
1955         */
1956        top_waiter = futex_top_waiter(hb1, key1);
1957
1958        /* There are no waiters, nothing for us to do. */
1959        if (!top_waiter)
1960                return 0;
1961
1962        /* Ensure we requeue to the expected futex. */
1963        if (!match_futex(top_waiter->requeue_pi_key, key2))
1964                return -EINVAL;
1965
1966        /*
1967         * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1968         * the contended case or if set_waiters is 1.  The pi_state is returned
1969         * in ps in contended cases.
1970         */
1971        vpid = task_pid_vnr(top_waiter->task);
1972        ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1973                                   exiting, set_waiters);
1974        if (ret == 1) {
1975                requeue_pi_wake_futex(top_waiter, key2, hb2);
1976                return vpid;
1977        }
1978        return ret;
1979}
1980
1981/**
1982 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1983 * @uaddr1:     source futex user address
1984 * @flags:      futex flags (FLAGS_SHARED, etc.)
1985 * @uaddr2:     target futex user address
1986 * @nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
1987 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1988 * @cmpval:     @uaddr1 expected value (or %NULL)
1989 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1990 *              pi futex (pi to pi requeue is not supported)
1991 *
1992 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1993 * uaddr2 atomically on behalf of the top waiter.
1994 *
1995 * Return:
1996 *  - >=0 - on success, the number of tasks requeued or woken;
1997 *  -  <0 - on error
1998 */
1999static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
2000                         u32 __user *uaddr2, int nr_wake, int nr_requeue,
2001                         u32 *cmpval, int requeue_pi)
2002{
2003        union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
2004        int drop_count = 0, task_count = 0, ret;
2005        struct futex_pi_state *pi_state = NULL;
2006        struct futex_hash_bucket *hb1, *hb2;
2007        struct futex_q *this, *next;
2008        DEFINE_WAKE_Q(wake_q);
2009
2010        if (nr_wake < 0 || nr_requeue < 0)
2011                return -EINVAL;
2012
2013        /*
2014         * When PI not supported: return -ENOSYS if requeue_pi is true,
2015         * consequently the compiler knows requeue_pi is always false past
2016         * this point which will optimize away all the conditional code
2017         * further down.
2018         */
2019        if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
2020                return -ENOSYS;
2021
2022        if (requeue_pi) {
2023                /*
2024                 * Requeue PI only works on two distinct uaddrs. This
2025                 * check is only valid for private futexes. See below.
2026                 */
2027                if (uaddr1 == uaddr2)
2028                        return -EINVAL;
2029
2030                /*
2031                 * requeue_pi requires a pi_state, try to allocate it now
2032                 * without any locks in case it fails.
2033                 */
2034                if (refill_pi_state_cache())
2035                        return -ENOMEM;
2036                /*
2037                 * requeue_pi must wake as many tasks as it can, up to nr_wake
2038                 * + nr_requeue, since it acquires the rt_mutex prior to
2039                 * returning to userspace, so as to not leave the rt_mutex with
2040                 * waiters and no owner.  However, second and third wake-ups
2041                 * cannot be predicted as they involve race conditions with the
2042                 * first wake and a fault while looking up the pi_state.  Both
2043                 * pthread_cond_signal() and pthread_cond_broadcast() should
2044                 * use nr_wake=1.
2045                 */
2046                if (nr_wake != 1)
2047                        return -EINVAL;
2048        }
2049
2050retry:
2051        ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
2052        if (unlikely(ret != 0))
2053                goto out;
2054        ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
2055                            requeue_pi ? FUTEX_WRITE : FUTEX_READ);
2056        if (unlikely(ret != 0))
2057                goto out_put_key1;
2058
2059        /*
2060         * The check above which compares uaddrs is not sufficient for
2061         * shared futexes. We need to compare the keys:
2062         */
2063        if (requeue_pi && match_futex(&key1, &key2)) {
2064                ret = -EINVAL;
2065                goto out_put_keys;
2066        }
2067
2068        hb1 = hash_futex(&key1);
2069        hb2 = hash_futex(&key2);
2070
2071retry_private:
2072        hb_waiters_inc(hb2);
2073        double_lock_hb(hb1, hb2);
2074
2075        if (likely(cmpval != NULL)) {
2076                u32 curval;
2077
2078                ret = get_futex_value_locked(&curval, uaddr1);
2079
2080                if (unlikely(ret)) {
2081                        double_unlock_hb(hb1, hb2);
2082                        hb_waiters_dec(hb2);
2083
2084                        ret = get_user(curval, uaddr1);
2085                        if (ret)
2086                                goto out_put_keys;
2087
2088                        if (!(flags & FLAGS_SHARED))
2089                                goto retry_private;
2090
2091                        put_futex_key(&key2);
2092                        put_futex_key(&key1);
2093                        goto retry;
2094                }
2095                if (curval != *cmpval) {
2096                        ret = -EAGAIN;
2097                        goto out_unlock;
2098                }
2099        }
2100
2101        if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
2102                struct task_struct *exiting = NULL;
2103
2104                /*
2105                 * Attempt to acquire uaddr2 and wake the top waiter. If we
2106                 * intend to requeue waiters, force setting the FUTEX_WAITERS
2107                 * bit.  We force this here where we are able to easily handle
2108                 * faults rather in the requeue loop below.
2109                 */
2110                ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
2111                                                 &key2, &pi_state,
2112                                                 &exiting, nr_requeue);
2113
2114                /*
2115                 * At this point the top_waiter has either taken uaddr2 or is
2116                 * waiting on it.  If the former, then the pi_state will not
2117                 * exist yet, look it up one more time to ensure we have a
2118                 * reference to it. If the lock was taken, ret contains the
2119                 * vpid of the top waiter task.
2120                 * If the lock was not taken, we have pi_state and an initial
2121                 * refcount on it. In case of an error we have nothing.
2122                 */
2123                if (ret > 0) {
2124                        WARN_ON(pi_state);
2125                        drop_count++;
2126                        task_count++;
2127                        /*
2128                         * If we acquired the lock, then the user space value
2129                         * of uaddr2 should be vpid. It cannot be changed by
2130                         * the top waiter as it is blocked on hb2 lock if it
2131                         * tries to do so. If something fiddled with it behind
2132                         * our back the pi state lookup might unearth it. So
2133                         * we rather use the known value than rereading and
2134                         * handing potential crap to lookup_pi_state.
2135                         *
2136                         * If that call succeeds then we have pi_state and an
2137                         * initial refcount on it.
2138                         */
2139                        ret = lookup_pi_state(uaddr2, ret, hb2, &key2,
2140                                              &pi_state, &exiting);
2141                }
2142
2143                switch (ret) {
2144                case 0:
2145                        /* We hold a reference on the pi state. */
2146                        break;
2147
2148                        /* If the above failed, then pi_state is NULL */
2149                case -EFAULT:
2150                        double_unlock_hb(hb1, hb2);
2151                        hb_waiters_dec(hb2);
2152                        put_futex_key(&key2);
2153                        put_futex_key(&key1);
2154                        ret = fault_in_user_writeable(uaddr2);
2155                        if (!ret)
2156                                goto retry;
2157                        goto out;
2158                case -EBUSY:
2159                case -EAGAIN:
2160                        /*
2161                         * Two reasons for this:
2162                         * - EBUSY: Owner is exiting and we just wait for the
2163                         *   exit to complete.
2164                         * - EAGAIN: The user space value changed.
2165                         */
2166                        double_unlock_hb(hb1, hb2);
2167                        hb_waiters_dec(hb2);
2168                        put_futex_key(&key2);
2169                        put_futex_key(&key1);
2170                        /*
2171                         * Handle the case where the owner is in the middle of
2172                         * exiting. Wait for the exit to complete otherwise
2173                         * this task might loop forever, aka. live lock.
2174                         */
2175                        wait_for_owner_exiting(ret, exiting);
2176                        cond_resched();
2177                        goto retry;
2178                default:
2179                        goto out_unlock;
2180                }
2181        }
2182
2183        plist_for_each_entry_safe(this, next, &hb1->chain, list) {
2184                if (task_count - nr_wake >= nr_requeue)
2185                        break;
2186
2187                if (!match_futex(&this->key, &key1))
2188                        continue;
2189
2190                /*
2191                 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2192                 * be paired with each other and no other futex ops.
2193                 *
2194                 * We should never be requeueing a futex_q with a pi_state,
2195                 * which is awaiting a futex_unlock_pi().
2196                 */
2197                if ((requeue_pi && !this->rt_waiter) ||
2198                    (!requeue_pi && this->rt_waiter) ||
2199                    this->pi_state) {
2200                        ret = -EINVAL;
2201                        break;
2202                }
2203
2204                /*
2205                 * Wake nr_wake waiters.  For requeue_pi, if we acquired the
2206                 * lock, we already woke the top_waiter.  If not, it will be
2207                 * woken by futex_unlock_pi().
2208                 */
2209                if (++task_count <= nr_wake && !requeue_pi) {
2210                        mark_wake_futex(&wake_q, this);
2211                        continue;
2212                }
2213
2214                /* Ensure we requeue to the expected futex for requeue_pi. */
2215                if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2216                        ret = -EINVAL;
2217                        break;
2218                }
2219
2220                /*
2221                 * Requeue nr_requeue waiters and possibly one more in the case
2222                 * of requeue_pi if we couldn't acquire the lock atomically.
2223                 */
2224                if (requeue_pi) {
2225                        /*
2226                         * Prepare the waiter to take the rt_mutex. Take a
2227                         * refcount on the pi_state and store the pointer in
2228                         * the futex_q object of the waiter.
2229                         */
2230                        get_pi_state(pi_state);
2231                        this->pi_state = pi_state;
2232                        ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2233                                                        this->rt_waiter,
2234                                                        this->task);
2235                        if (ret == 1) {
2236                                /*
2237                                 * We got the lock. We do neither drop the
2238                                 * refcount on pi_state nor clear
2239                                 * this->pi_state because the waiter needs the
2240                                 * pi_state for cleaning up the user space
2241                                 * value. It will drop the refcount after
2242                                 * doing so.
2243                                 */
2244                                requeue_pi_wake_futex(this, &key2, hb2);
2245                                drop_count++;
2246                                continue;
2247                        } else if (ret) {
2248                                /*
2249                                 * rt_mutex_start_proxy_lock() detected a
2250                                 * potential deadlock when we tried to queue
2251                                 * that waiter. Drop the pi_state reference
2252                                 * which we took above and remove the pointer
2253                                 * to the state from the waiters futex_q
2254                                 * object.
2255                                 */
2256                                this->pi_state = NULL;
2257                                put_pi_state(pi_state);
2258                                /*
2259                                 * We stop queueing more waiters and let user
2260                                 * space deal with the mess.
2261                                 */
2262                                break;
2263                        }
2264                }
2265                requeue_futex(this, hb1, hb2, &key2);
2266                drop_count++;
2267        }
2268
2269        /*
2270         * We took an extra initial reference to the pi_state either
2271         * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2272         * need to drop it here again.
2273         */
2274        put_pi_state(pi_state);
2275
2276out_unlock:
2277        double_unlock_hb(hb1, hb2);
2278        wake_up_q(&wake_q);
2279        hb_waiters_dec(hb2);
2280
2281        /*
2282         * drop_futex_key_refs() must be called outside the spinlocks. During
2283         * the requeue we moved futex_q's from the hash bucket at key1 to the
2284         * one at key2 and updated their key pointer.  We no longer need to
2285         * hold the references to key1.
2286         */
2287        while (--drop_count >= 0)
2288                drop_futex_key_refs(&key1);
2289
2290out_put_keys:
2291        put_futex_key(&key2);
2292out_put_key1:
2293        put_futex_key(&key1);
2294out:
2295        return ret ? ret : task_count;
2296}
2297
2298/* The key must be already stored in q->key. */
2299static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2300        __acquires(&hb->lock)
2301{
2302        struct futex_hash_bucket *hb;
2303
2304        hb = hash_futex(&q->key);
2305
2306        /*
2307         * Increment the counter before taking the lock so that
2308         * a potential waker won't miss a to-be-slept task that is
2309         * waiting for the spinlock. This is safe as all queue_lock()
2310         * users end up calling queue_me(). Similarly, for housekeeping,
2311         * decrement the counter at queue_unlock() when some error has
2312         * occurred and we don't end up adding the task to the list.
2313         */
2314        hb_waiters_inc(hb); /* implies smp_mb(); (A) */
2315
2316        q->lock_ptr = &hb->lock;
2317
2318        spin_lock(&hb->lock);
2319        return hb;
2320}
2321
2322static inline void
2323queue_unlock(struct futex_hash_bucket *hb)
2324        __releases(&hb->lock)
2325{
2326        spin_unlock(&hb->lock);
2327        hb_waiters_dec(hb);
2328}
2329
2330static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2331{
2332        int prio;
2333
2334        /*
2335         * The priority used to register this element is
2336         * - either the real thread-priority for the real-time threads
2337         * (i.e. threads with a priority lower than MAX_RT_PRIO)
2338         * - or MAX_RT_PRIO for non-RT threads.
2339         * Thus, all RT-threads are woken first in priority order, and
2340         * the others are woken last, in FIFO order.
2341         */
2342        prio = min(current->normal_prio, MAX_RT_PRIO);
2343
2344        plist_node_init(&q->list, prio);
2345        plist_add(&q->list, &hb->chain);
2346        q->task = current;
2347}
2348
2349/**
2350 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2351 * @q:  The futex_q to enqueue
2352 * @hb: The destination hash bucket
2353 *
2354 * The hb->lock must be held by the caller, and is released here. A call to
2355 * queue_me() is typically paired with exactly one call to unqueue_me().  The
2356 * exceptions involve the PI related operations, which may use unqueue_me_pi()
2357 * or nothing if the unqueue is done as part of the wake process and the unqueue
2358 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2359 * an example).
2360 */
2361static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2362        __releases(&hb->lock)
2363{
2364        __queue_me(q, hb);
2365        spin_unlock(&hb->lock);
2366}
2367
2368/**
2369 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2370 * @q:  The futex_q to unqueue
2371 *
2372 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2373 * be paired with exactly one earlier call to queue_me().
2374 *
2375 * Return:
2376 *  - 1 - if the futex_q was still queued (and we removed unqueued it);
2377 *  - 0 - if the futex_q was already removed by the waking thread
2378 */
2379static int unqueue_me(struct futex_q *q)
2380{
2381        spinlock_t *lock_ptr;
2382        int ret = 0;
2383
2384        /* In the common case we don't take the spinlock, which is nice. */
2385retry:
2386        /*
2387         * q->lock_ptr can change between this read and the following spin_lock.
2388         * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2389         * optimizing lock_ptr out of the logic below.
2390         */
2391        lock_ptr = READ_ONCE(q->lock_ptr);
2392        if (lock_ptr != NULL) {
2393                spin_lock(lock_ptr);
2394                /*
2395                 * q->lock_ptr can change between reading it and
2396                 * spin_lock(), causing us to take the wrong lock.  This
2397                 * corrects the race condition.
2398                 *
2399                 * Reasoning goes like this: if we have the wrong lock,
2400                 * q->lock_ptr must have changed (maybe several times)
2401                 * between reading it and the spin_lock().  It can
2402                 * change again after the spin_lock() but only if it was
2403                 * already changed before the spin_lock().  It cannot,
2404                 * however, change back to the original value.  Therefore
2405                 * we can detect whether we acquired the correct lock.
2406                 */
2407                if (unlikely(lock_ptr != q->lock_ptr)) {
2408                        spin_unlock(lock_ptr);
2409                        goto retry;
2410                }
2411                __unqueue_futex(q);
2412
2413                BUG_ON(q->pi_state);
2414
2415                spin_unlock(lock_ptr);
2416                ret = 1;
2417        }
2418
2419        drop_futex_key_refs(&q->key);
2420        return ret;
2421}
2422
2423/*
2424 * PI futexes can not be requeued and must remove themself from the
2425 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2426 * and dropped here.
2427 */
2428static void unqueue_me_pi(struct futex_q *q)
2429        __releases(q->lock_ptr)
2430{
2431        __unqueue_futex(q);
2432
2433        BUG_ON(!q->pi_state);
2434        put_pi_state(q->pi_state);
2435        q->pi_state = NULL;
2436
2437        spin_unlock(q->lock_ptr);
2438}
2439
2440static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2441                                struct task_struct *argowner)
2442{
2443        struct futex_pi_state *pi_state = q->pi_state;
2444        u32 uval, uninitialized_var(curval), newval;
2445        struct task_struct *oldowner, *newowner;
2446        u32 newtid;
2447        int ret, err = 0;
2448
2449        lockdep_assert_held(q->lock_ptr);
2450
2451        raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2452
2453        oldowner = pi_state->owner;
2454
2455        /*
2456         * We are here because either:
2457         *
2458         *  - we stole the lock and pi_state->owner needs updating to reflect
2459         *    that (@argowner == current),
2460         *
2461         * or:
2462         *
2463         *  - someone stole our lock and we need to fix things to point to the
2464         *    new owner (@argowner == NULL).
2465         *
2466         * Either way, we have to replace the TID in the user space variable.
2467         * This must be atomic as we have to preserve the owner died bit here.
2468         *
2469         * Note: We write the user space value _before_ changing the pi_state
2470         * because we can fault here. Imagine swapped out pages or a fork
2471         * that marked all the anonymous memory readonly for cow.
2472         *
2473         * Modifying pi_state _before_ the user space value would leave the
2474         * pi_state in an inconsistent state when we fault here, because we
2475         * need to drop the locks to handle the fault. This might be observed
2476         * in the PID check in lookup_pi_state.
2477         */
2478retry:
2479        if (!argowner) {
2480                if (oldowner != current) {
2481                        /*
2482                         * We raced against a concurrent self; things are
2483                         * already fixed up. Nothing to do.
2484                         */
2485                        ret = 0;
2486                        goto out_unlock;
2487                }
2488
2489                if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
2490                        /* We got the lock after all, nothing to fix. */
2491                        ret = 0;
2492                        goto out_unlock;
2493                }
2494
2495                /*
2496                 * Since we just failed the trylock; there must be an owner.
2497                 */
2498                newowner = rt_mutex_owner(&pi_state->pi_mutex);
2499                BUG_ON(!newowner);
2500        } else {
2501                WARN_ON_ONCE(argowner != current);
2502                if (oldowner == current) {
2503                        /*
2504                         * We raced against a concurrent self; things are
2505                         * already fixed up. Nothing to do.
2506                         */
2507                        ret = 0;
2508                        goto out_unlock;
2509                }
2510                newowner = argowner;
2511        }
2512
2513        newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2514        /* Owner died? */
2515        if (!pi_state->owner)
2516                newtid |= FUTEX_OWNER_DIED;
2517
2518        err = get_futex_value_locked(&uval, uaddr);
2519        if (err)
2520                goto handle_err;
2521
2522        for (;;) {
2523                newval = (uval & FUTEX_OWNER_DIED) | newtid;
2524
2525                err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
2526                if (err)
2527                        goto handle_err;
2528
2529                if (curval == uval)
2530                        break;
2531                uval = curval;
2532        }
2533
2534        /*
2535         * We fixed up user space. Now we need to fix the pi_state
2536         * itself.
2537         */
2538        if (pi_state->owner != NULL) {
2539                raw_spin_lock(&pi_state->owner->pi_lock);
2540                WARN_ON(list_empty(&pi_state->list));
2541                list_del_init(&pi_state->list);
2542                raw_spin_unlock(&pi_state->owner->pi_lock);
2543        }
2544
2545        pi_state->owner = newowner;
2546
2547        raw_spin_lock(&newowner->pi_lock);
2548        WARN_ON(!list_empty(&pi_state->list));
2549        list_add(&pi_state->list, &newowner->pi_state_list);
2550        raw_spin_unlock(&newowner->pi_lock);
2551        raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2552
2553        return 0;
2554
2555        /*
2556         * In order to reschedule or handle a page fault, we need to drop the
2557         * locks here. In the case of a fault, this gives the other task
2558         * (either the highest priority waiter itself or the task which stole
2559         * the rtmutex) the chance to try the fixup of the pi_state. So once we
2560         * are back from handling the fault we need to check the pi_state after
2561         * reacquiring the locks and before trying to do another fixup. When
2562         * the fixup has been done already we simply return.
2563         *
2564         * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2565         * drop hb->lock since the caller owns the hb -> futex_q relation.
2566         * Dropping the pi_mutex->wait_lock requires the state revalidate.
2567         */
2568handle_err:
2569        raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2570        spin_unlock(q->lock_ptr);
2571
2572        switch (err) {
2573        case -EFAULT:
2574                ret = fault_in_user_writeable(uaddr);
2575                break;
2576
2577        case -EAGAIN:
2578                cond_resched();
2579                ret = 0;
2580                break;
2581
2582        default:
2583                WARN_ON_ONCE(1);
2584                ret = err;
2585                break;
2586        }
2587
2588        spin_lock(q->lock_ptr);
2589        raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2590
2591        /*
2592         * Check if someone else fixed it for us:
2593         */
2594        if (pi_state->owner != oldowner) {
2595                ret = 0;
2596                goto out_unlock;
2597        }
2598
2599        if (ret)
2600                goto out_unlock;
2601
2602        goto retry;
2603
2604out_unlock:
2605        raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2606        return ret;
2607}
2608
2609static long futex_wait_restart(struct restart_block *restart);
2610
2611/**
2612 * fixup_owner() - Post lock pi_state and corner case management
2613 * @uaddr:      user address of the futex
2614 * @q:          futex_q (contains pi_state and access to the rt_mutex)
2615 * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
2616 *
2617 * After attempting to lock an rt_mutex, this function is called to cleanup
2618 * the pi_state owner as well as handle race conditions that may allow us to
2619 * acquire the lock. Must be called with the hb lock held.
2620 *
2621 * Return:
2622 *  -  1 - success, lock taken;
2623 *  -  0 - success, lock not taken;
2624 *  - <0 - on error (-EFAULT)
2625 */
2626static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2627{
2628        int ret = 0;
2629
2630        if (locked) {
2631                /*
2632                 * Got the lock. We might not be the anticipated owner if we
2633                 * did a lock-steal - fix up the PI-state in that case:
2634                 *
2635                 * Speculative pi_state->owner read (we don't hold wait_lock);
2636                 * since we own the lock pi_state->owner == current is the
2637                 * stable state, anything else needs more attention.
2638                 */
2639                if (q->pi_state->owner != current)
2640                        ret = fixup_pi_state_owner(uaddr, q, current);
2641                goto out;
2642        }
2643
2644        /*
2645         * If we didn't get the lock; check if anybody stole it from us. In
2646         * that case, we need to fix up the uval to point to them instead of
2647         * us, otherwise bad things happen. [10]
2648         *
2649         * Another speculative read; pi_state->owner == current is unstable
2650         * but needs our attention.
2651         */
2652        if (q->pi_state->owner == current) {
2653                ret = fixup_pi_state_owner(uaddr, q, NULL);
2654                goto out;
2655        }
2656
2657        /*
2658         * Paranoia check. If we did not take the lock, then we should not be
2659         * the owner of the rt_mutex.
2660         */
2661        if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
2662                printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2663                                "pi-state %p\n", ret,
2664                                q->pi_state->pi_mutex.owner,
2665                                q->pi_state->owner);
2666        }
2667
2668out:
2669        return ret ? ret : locked;
2670}
2671
2672/**
2673 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2674 * @hb:         the futex hash bucket, must be locked by the caller
2675 * @q:          the futex_q to queue up on
2676 * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
2677 */
2678static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2679                                struct hrtimer_sleeper *timeout)
2680{
2681        /*
2682         * The task state is guaranteed to be set before another task can
2683         * wake it. set_current_state() is implemented using smp_store_mb() and
2684         * queue_me() calls spin_unlock() upon completion, both serializing
2685         * access to the hash list and forcing another memory barrier.
2686         */
2687        set_current_state(TASK_INTERRUPTIBLE);
2688        queue_me(q, hb);
2689
2690        /* Arm the timer */
2691        if (timeout)
2692                hrtimer_sleeper_start_expires(timeout, HRTIMER_MODE_ABS);
2693
2694        /*
2695         * If we have been removed from the hash list, then another task
2696         * has tried to wake us, and we can skip the call to schedule().
2697         */
2698        if (likely(!plist_node_empty(&q->list))) {
2699                /*
2700                 * If the timer has already expired, current will already be
2701                 * flagged for rescheduling. Only call schedule if there
2702                 * is no timeout, or if it has yet to expire.
2703                 */
2704                if (!timeout || timeout->task)
2705                        freezable_schedule();
2706        }
2707        __set_current_state(TASK_RUNNING);
2708}
2709
2710/**
2711 * futex_wait_setup() - Prepare to wait on a futex
2712 * @uaddr:      the futex userspace address
2713 * @val:        the expected value
2714 * @flags:      futex flags (FLAGS_SHARED, etc.)
2715 * @q:          the associated futex_q
2716 * @hb:         storage for hash_bucket pointer to be returned to caller
2717 *
2718 * Setup the futex_q and locate the hash_bucket.  Get the futex value and
2719 * compare it with the expected value.  Handle atomic faults internally.
2720 * Return with the hb lock held and a q.key reference on success, and unlocked
2721 * with no q.key reference on failure.
2722 *
2723 * Return:
2724 *  -  0 - uaddr contains val and hb has been locked;
2725 *  - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2726 */
2727static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2728                           struct futex_q *q, struct futex_hash_bucket **hb)
2729{
2730        u32 uval;
2731        int ret;
2732
2733        /*
2734         * Access the page AFTER the hash-bucket is locked.
2735         * Order is important:
2736         *
2737         *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2738         *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
2739         *
2740         * The basic logical guarantee of a futex is that it blocks ONLY
2741         * if cond(var) is known to be true at the time of blocking, for
2742         * any cond.  If we locked the hash-bucket after testing *uaddr, that
2743         * would open a race condition where we could block indefinitely with
2744         * cond(var) false, which would violate the guarantee.
2745         *
2746         * On the other hand, we insert q and release the hash-bucket only
2747         * after testing *uaddr.  This guarantees that futex_wait() will NOT
2748         * absorb a wakeup if *uaddr does not match the desired values
2749         * while the syscall executes.
2750         */
2751retry:
2752        ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, FUTEX_READ);
2753        if (unlikely(ret != 0))
2754                return ret;
2755
2756retry_private:
2757        *hb = queue_lock(q);
2758
2759        ret = get_futex_value_locked(&uval, uaddr);
2760
2761        if (ret) {
2762                queue_unlock(*hb);
2763
2764                ret = get_user(uval, uaddr);
2765                if (ret)
2766                        goto out;
2767
2768                if (!(flags & FLAGS_SHARED))
2769                        goto retry_private;
2770
2771                put_futex_key(&q->key);
2772                goto retry;
2773        }
2774
2775        if (uval != val) {
2776                queue_unlock(*hb);
2777                ret = -EWOULDBLOCK;
2778        }
2779
2780out:
2781        if (ret)
2782                put_futex_key(&q->key);
2783        return ret;
2784}
2785
2786static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2787                      ktime_t *abs_time, u32 bitset)
2788{
2789        struct hrtimer_sleeper timeout, *to;
2790        struct restart_block *restart;
2791        struct futex_hash_bucket *hb;
2792        struct futex_q q = futex_q_init;
2793        int ret;
2794
2795        if (!bitset)
2796                return -EINVAL;
2797        q.bitset = bitset;
2798
2799        to = futex_setup_timer(abs_time, &timeout, flags,
2800                               current->timer_slack_ns);
2801retry:
2802        /*
2803         * Prepare to wait on uaddr. On success, holds hb lock and increments
2804         * q.key refs.
2805         */
2806        ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2807        if (ret)
2808                goto out;
2809
2810        /* queue_me and wait for wakeup, timeout, or a signal. */
2811        futex_wait_queue_me(hb, &q, to);
2812
2813        /* If we were woken (and unqueued), we succeeded, whatever. */
2814        ret = 0;
2815        /* unqueue_me() drops q.key ref */
2816        if (!unqueue_me(&q))
2817                goto out;
2818        ret = -ETIMEDOUT;
2819        if (to && !to->task)
2820                goto out;
2821
2822        /*
2823         * We expect signal_pending(current), but we might be the
2824         * victim of a spurious wakeup as well.
2825         */
2826        if (!signal_pending(current))
2827                goto retry;
2828
2829        ret = -ERESTARTSYS;
2830        if (!abs_time)
2831                goto out;
2832
2833        restart = &current->restart_block;
2834        restart->fn = futex_wait_restart;
2835        restart->futex.uaddr = uaddr;
2836        restart->futex.val = val;
2837        restart->futex.time = *abs_time;
2838        restart->futex.bitset = bitset;
2839        restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2840
2841        ret = -ERESTART_RESTARTBLOCK;
2842
2843out:
2844        if (to) {
2845                hrtimer_cancel(&to->timer);
2846                destroy_hrtimer_on_stack(&to->timer);
2847        }
2848        return ret;
2849}
2850
2851
2852static long futex_wait_restart(struct restart_block *restart)
2853{
2854        u32 __user *uaddr = restart->futex.uaddr;
2855        ktime_t t, *tp = NULL;
2856
2857        if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2858                t = restart->futex.time;
2859                tp = &t;
2860        }
2861        restart->fn = do_no_restart_syscall;
2862
2863        return (long)futex_wait(uaddr, restart->futex.flags,
2864                                restart->futex.val, tp, restart->futex.bitset);
2865}
2866
2867
2868/*
2869 * Userspace tried a 0 -> TID atomic transition of the futex value
2870 * and failed. The kernel side here does the whole locking operation:
2871 * if there are waiters then it will block as a consequence of relying
2872 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2873 * a 0 value of the futex too.).
2874 *
2875 * Also serves as futex trylock_pi()'ing, and due semantics.
2876 */
2877static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2878                         ktime_t *time, int trylock)
2879{
2880        struct hrtimer_sleeper timeout, *to;
2881        struct futex_pi_state *pi_state = NULL;
2882        struct task_struct *exiting = NULL;
2883        struct rt_mutex_waiter rt_waiter;
2884        struct futex_hash_bucket *hb;
2885        struct futex_q q = futex_q_init;
2886        int res, ret;
2887
2888        if (!IS_ENABLED(CONFIG_FUTEX_PI))
2889                return -ENOSYS;
2890
2891        if (refill_pi_state_cache())
2892                return -ENOMEM;
2893
2894        to = futex_setup_timer(time, &timeout, FLAGS_CLOCKRT, 0);
2895
2896retry:
2897        ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, FUTEX_WRITE);
2898        if (unlikely(ret != 0))
2899                goto out;
2900
2901retry_private:
2902        hb = queue_lock(&q);
2903
2904        ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current,
2905                                   &exiting, 0);
2906        if (unlikely(ret)) {
2907                /*
2908                 * Atomic work succeeded and we got the lock,
2909                 * or failed. Either way, we do _not_ block.
2910                 */
2911                switch (ret) {
2912                case 1:
2913                        /* We got the lock. */
2914                        ret = 0;
2915                        goto out_unlock_put_key;
2916                case -EFAULT:
2917                        goto uaddr_faulted;
2918                case -EBUSY:
2919                case -EAGAIN:
2920                        /*
2921                         * Two reasons for this:
2922                         * - EBUSY: Task is exiting and we just wait for the
2923                         *   exit to complete.
2924                         * - EAGAIN: The user space value changed.
2925                         */
2926                        queue_unlock(hb);
2927                        put_futex_key(&q.key);
2928                        /*
2929                         * Handle the case where the owner is in the middle of
2930                         * exiting. Wait for the exit to complete otherwise
2931                         * this task might loop forever, aka. live lock.
2932                         */
2933                        wait_for_owner_exiting(ret, exiting);
2934                        cond_resched();
2935                        goto retry;
2936                default:
2937                        goto out_unlock_put_key;
2938                }
2939        }
2940
2941        WARN_ON(!q.pi_state);
2942
2943        /*
2944         * Only actually queue now that the atomic ops are done:
2945         */
2946        __queue_me(&q, hb);
2947
2948        if (trylock) {
2949                ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2950                /* Fixup the trylock return value: */
2951                ret = ret ? 0 : -EWOULDBLOCK;
2952                goto no_block;
2953        }
2954
2955        rt_mutex_init_waiter(&rt_waiter);
2956
2957        /*
2958         * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2959         * hold it while doing rt_mutex_start_proxy(), because then it will
2960         * include hb->lock in the blocking chain, even through we'll not in
2961         * fact hold it while blocking. This will lead it to report -EDEADLK
2962         * and BUG when futex_unlock_pi() interleaves with this.
2963         *
2964         * Therefore acquire wait_lock while holding hb->lock, but drop the
2965         * latter before calling __rt_mutex_start_proxy_lock(). This
2966         * interleaves with futex_unlock_pi() -- which does a similar lock
2967         * handoff -- such that the latter can observe the futex_q::pi_state
2968         * before __rt_mutex_start_proxy_lock() is done.
2969         */
2970        raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2971        spin_unlock(q.lock_ptr);
2972        /*
2973         * __rt_mutex_start_proxy_lock() unconditionally enqueues the @rt_waiter
2974         * such that futex_unlock_pi() is guaranteed to observe the waiter when
2975         * it sees the futex_q::pi_state.
2976         */
2977        ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2978        raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2979
2980        if (ret) {
2981                if (ret == 1)
2982                        ret = 0;
2983                goto cleanup;
2984        }
2985
2986        if (unlikely(to))
2987                hrtimer_sleeper_start_expires(to, HRTIMER_MODE_ABS);
2988
2989        ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2990
2991cleanup:
2992        spin_lock(q.lock_ptr);
2993        /*
2994         * If we failed to acquire the lock (deadlock/signal/timeout), we must
2995         * first acquire the hb->lock before removing the lock from the
2996         * rt_mutex waitqueue, such that we can keep the hb and rt_mutex wait
2997         * lists consistent.
2998         *
2999         * In particular; it is important that futex_unlock_pi() can not
3000         * observe this inconsistency.
3001         */
3002        if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
3003                ret = 0;
3004
3005no_block:
3006        /*
3007         * Fixup the pi_state owner and possibly acquire the lock if we
3008         * haven't already.
3009         */
3010        res = fixup_owner(uaddr, &q, !ret);
3011        /*
3012         * If fixup_owner() returned an error, proprogate that.  If it acquired
3013         * the lock, clear our -ETIMEDOUT or -EINTR.
3014         */
3015        if (res)
3016                ret = (res < 0) ? res : 0;
3017
3018        /*
3019         * If fixup_owner() faulted and was unable to handle the fault, unlock
3020         * it and return the fault to userspace.
3021         */
3022        if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
3023                pi_state = q.pi_state;
3024                get_pi_state(pi_state);
3025        }
3026
3027        /* Unqueue and drop the lock */
3028        unqueue_me_pi(&q);
3029
3030        if (pi_state) {
3031                rt_mutex_futex_unlock(&pi_state->pi_mutex);
3032                put_pi_state(pi_state);
3033        }
3034
3035        goto out_put_key;
3036
3037out_unlock_put_key:
3038        queue_unlock(hb);
3039
3040out_put_key:
3041        put_futex_key(&q.key);
3042out:
3043        if (to) {
3044                hrtimer_cancel(&to->timer);
3045                destroy_hrtimer_on_stack(&to->timer);
3046        }
3047        return ret != -EINTR ? ret : -ERESTARTNOINTR;
3048
3049uaddr_faulted:
3050        queue_unlock(hb);
3051
3052        ret = fault_in_user_writeable(uaddr);
3053        if (ret)
3054                goto out_put_key;
3055
3056        if (!(flags & FLAGS_SHARED))
3057                goto retry_private;
3058
3059        put_futex_key(&q.key);
3060        goto retry;
3061}
3062
3063/*
3064 * Userspace attempted a TID -> 0 atomic transition, and failed.
3065 * This is the in-kernel slowpath: we look up the PI state (if any),
3066 * and do the rt-mutex unlock.
3067 */
3068static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
3069{
3070        u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
3071        union futex_key key = FUTEX_KEY_INIT;
3072        struct futex_hash_bucket *hb;
3073        struct futex_q *top_waiter;
3074        int ret;
3075
3076        if (!IS_ENABLED(CONFIG_FUTEX_PI))
3077                return -ENOSYS;
3078
3079retry:
3080        if (get_user(uval, uaddr))
3081                return -EFAULT;
3082        /*
3083         * We release only a lock we actually own:
3084         */
3085        if ((uval & FUTEX_TID_MASK) != vpid)
3086                return -EPERM;
3087
3088        ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_WRITE);
3089        if (ret)
3090                return ret;
3091
3092        hb = hash_futex(&key);
3093        spin_lock(&hb->lock);
3094
3095        /*
3096         * Check waiters first. We do not trust user space values at
3097         * all and we at least want to know if user space fiddled
3098         * with the futex value instead of blindly unlocking.
3099         */
3100        top_waiter = futex_top_waiter(hb, &key);
3101        if (top_waiter) {
3102                struct futex_pi_state *pi_state = top_waiter->pi_state;
3103
3104                ret = -EINVAL;
3105                if (!pi_state)
3106                        goto out_unlock;
3107
3108                /*
3109                 * If current does not own the pi_state then the futex is
3110                 * inconsistent and user space fiddled with the futex value.
3111                 */
3112                if (pi_state->owner != current)
3113                        goto out_unlock;
3114
3115                get_pi_state(pi_state);
3116                /*
3117                 * By taking wait_lock while still holding hb->lock, we ensure
3118                 * there is no point where we hold neither; and therefore
3119                 * wake_futex_pi() must observe a state consistent with what we
3120                 * observed.
3121                 *
3122                 * In particular; this forces __rt_mutex_start_proxy() to
3123                 * complete such that we're guaranteed to observe the
3124                 * rt_waiter. Also see the WARN in wake_futex_pi().
3125                 */
3126                raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
3127                spin_unlock(&hb->lock);
3128
3129                /* drops pi_state->pi_mutex.wait_lock */
3130                ret = wake_futex_pi(uaddr, uval, pi_state);
3131
3132                put_pi_state(pi_state);
3133
3134                /*
3135                 * Success, we're done! No tricky corner cases.
3136                 */
3137                if (!ret)
3138                        goto out_putkey;
3139                /*
3140                 * The atomic access to the futex value generated a
3141                 * pagefault, so retry the user-access and the wakeup:
3142                 */
3143                if (ret == -EFAULT)
3144                        goto pi_faulted;
3145                /*
3146                 * A unconditional UNLOCK_PI op raced against a waiter
3147                 * setting the FUTEX_WAITERS bit. Try again.
3148                 */
3149                if (ret == -EAGAIN)
3150                        goto pi_retry;
3151                /*
3152                 * wake_futex_pi has detected invalid state. Tell user
3153                 * space.
3154                 */
3155                goto out_putkey;
3156        }
3157
3158        /*
3159         * We have no kernel internal state, i.e. no waiters in the
3160         * kernel. Waiters which are about to queue themselves are stuck
3161         * on hb->lock. So we can safely ignore them. We do neither
3162         * preserve the WAITERS bit not the OWNER_DIED one. We are the
3163         * owner.
3164         */
3165        if ((ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))) {
3166                spin_unlock(&hb->lock);
3167                switch (ret) {
3168                case -EFAULT:
3169                        goto pi_faulted;
3170
3171                case -EAGAIN:
3172                        goto pi_retry;
3173
3174                default:
3175                        WARN_ON_ONCE(1);
3176                        goto out_putkey;
3177                }
3178        }
3179
3180        /*
3181         * If uval has changed, let user space handle it.
3182         */
3183        ret = (curval == uval) ? 0 : -EAGAIN;
3184
3185out_unlock:
3186        spin_unlock(&hb->lock);
3187out_putkey:
3188        put_futex_key(&key);
3189        return ret;
3190
3191pi_retry:
3192        put_futex_key(&key);
3193        cond_resched();
3194        goto retry;
3195
3196pi_faulted:
3197        put_futex_key(&key);
3198
3199        ret = fault_in_user_writeable(uaddr);
3200        if (!ret)
3201                goto retry;
3202
3203        return ret;
3204}
3205
3206/**
3207 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
3208 * @hb:         the hash_bucket futex_q was original enqueued on
3209 * @q:          the futex_q woken while waiting to be requeued
3210 * @key2:       the futex_key of the requeue target futex
3211 * @timeout:    the timeout associated with the wait (NULL if none)
3212 *
3213 * Detect if the task was woken on the initial futex as opposed to the requeue
3214 * target futex.  If so, determine if it was a timeout or a signal that caused
3215 * the wakeup and return the appropriate error code to the caller.  Must be
3216 * called with the hb lock held.
3217 *
3218 * Return:
3219 *  -  0 = no early wakeup detected;
3220 *  - <0 = -ETIMEDOUT or -ERESTARTNOINTR
3221 */
3222static inline
3223int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3224                                   struct futex_q *q, union futex_key *key2,
3225                                   struct hrtimer_sleeper *timeout)
3226{
3227        int ret = 0;
3228
3229        /*
3230         * With the hb lock held, we avoid races while we process the wakeup.
3231         * We only need to hold hb (and not hb2) to ensure atomicity as the
3232         * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3233         * It can't be requeued from uaddr2 to something else since we don't
3234         * support a PI aware source futex for requeue.
3235         */
3236        if (!match_futex(&q->key, key2)) {
3237                WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3238                /*
3239                 * We were woken prior to requeue by a timeout or a signal.
3240                 * Unqueue the futex_q and determine which it was.
3241                 */
3242                plist_del(&q->list, &hb->chain);
3243                hb_waiters_dec(hb);
3244
3245                /* Handle spurious wakeups gracefully */
3246                ret = -EWOULDBLOCK;
3247                if (timeout && !timeout->task)
3248                        ret = -ETIMEDOUT;
3249                else if (signal_pending(current))
3250                        ret = -ERESTARTNOINTR;
3251        }
3252        return ret;
3253}
3254
3255/**
3256 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
3257 * @uaddr:      the futex we initially wait on (non-pi)
3258 * @flags:      futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
3259 *              the same type, no requeueing from private to shared, etc.
3260 * @val:        the expected value of uaddr
3261 * @abs_time:   absolute timeout
3262 * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
3263 * @uaddr2:     the pi futex we will take prior to returning to user-space
3264 *
3265 * The caller will wait on uaddr and will be requeued by futex_requeue() to
3266 * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
3267 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3268 * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
3269 * without one, the pi logic would not know which task to boost/deboost, if
3270 * there was a need to.
3271 *
3272 * We call schedule in futex_wait_queue_me() when we enqueue and return there
3273 * via the following--
3274 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
3275 * 2) wakeup on uaddr2 after a requeue
3276 * 3) signal
3277 * 4) timeout
3278 *
3279 * If 3, cleanup and return -ERESTARTNOINTR.
3280 *
3281 * If 2, we may then block on trying to take the rt_mutex and return via:
3282 * 5) successful lock
3283 * 6) signal
3284 * 7) timeout
3285 * 8) other lock acquisition failure
3286 *
3287 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
3288 *
3289 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3290 *
3291 * Return:
3292 *  -  0 - On success;
3293 *  - <0 - On error
3294 */
3295static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
3296                                 u32 val, ktime_t *abs_time, u32 bitset,
3297                                 u32 __user *uaddr2)
3298{
3299        struct hrtimer_sleeper timeout, *to;
3300        struct futex_pi_state *pi_state = NULL;
3301        struct rt_mutex_waiter rt_waiter;
3302        struct futex_hash_bucket *hb;
3303        union futex_key key2 = FUTEX_KEY_INIT;
3304        struct futex_q q = futex_q_init;
3305        int res, ret;
3306
3307        if (!IS_ENABLED(CONFIG_FUTEX_PI))
3308                return -ENOSYS;
3309
3310        if (uaddr == uaddr2)
3311                return -EINVAL;
3312
3313        if (!bitset)
3314                return -EINVAL;
3315
3316        to = futex_setup_timer(abs_time, &timeout, flags,
3317                               current->timer_slack_ns);
3318
3319        /*
3320         * The waiter is allocated on our stack, manipulated by the requeue
3321         * code while we sleep on uaddr.
3322         */
3323        rt_mutex_init_waiter(&rt_waiter);
3324
3325        ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
3326        if (unlikely(ret != 0))
3327                goto out;
3328
3329        q.bitset = bitset;
3330        q.rt_waiter = &rt_waiter;
3331        q.requeue_pi_key = &key2;
3332
3333        /*
3334         * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3335         * count.
3336         */
3337        ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
3338        if (ret)
3339                goto out_key2;
3340
3341        /*
3342         * The check above which compares uaddrs is not sufficient for
3343         * shared futexes. We need to compare the keys:
3344         */
3345        if (match_futex(&q.key, &key2)) {
3346                queue_unlock(hb);
3347                ret = -EINVAL;
3348                goto out_put_keys;
3349        }
3350
3351        /* Queue the futex_q, drop the hb lock, wait for wakeup. */
3352        futex_wait_queue_me(hb, &q, to);
3353
3354        spin_lock(&hb->lock);
3355        ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3356        spin_unlock(&hb->lock);
3357        if (ret)
3358                goto out_put_keys;
3359
3360        /*
3361         * In order for us to be here, we know our q.key == key2, and since
3362         * we took the hb->lock above, we also know that futex_requeue() has
3363         * completed and we no longer have to concern ourselves with a wakeup
3364         * race with the atomic proxy lock acquisition by the requeue code. The
3365         * futex_requeue dropped our key1 reference and incremented our key2
3366         * reference count.
3367         */
3368
3369        /* Check if the requeue code acquired the second futex for us. */
3370        if (!q.rt_waiter) {
3371                /*
3372                 * Got the lock. We might not be the anticipated owner if we
3373                 * did a lock-steal - fix up the PI-state in that case.
3374                 */
3375                if (q.pi_state && (q.pi_state->owner != current)) {
3376                        spin_lock(q.lock_ptr);
3377                        ret = fixup_pi_state_owner(uaddr2, &q, current);
3378                        if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3379                                pi_state = q.pi_state;
3380                                get_pi_state(pi_state);
3381                        }
3382                        /*
3383                         * Drop the reference to the pi state which
3384                         * the requeue_pi() code acquired for us.
3385                         */
3386                        put_pi_state(q.pi_state);
3387                        spin_unlock(q.lock_ptr);
3388                }
3389        } else {
3390                struct rt_mutex *pi_mutex;
3391
3392                /*
3393                 * We have been woken up by futex_unlock_pi(), a timeout, or a
3394                 * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
3395                 * the pi_state.
3396                 */
3397                WARN_ON(!q.pi_state);
3398                pi_mutex = &q.pi_state->pi_mutex;
3399                ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3400
3401                spin_lock(q.lock_ptr);
3402                if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3403                        ret = 0;
3404
3405                debug_rt_mutex_free_waiter(&rt_waiter);
3406                /*
3407                 * Fixup the pi_state owner and possibly acquire the lock if we
3408                 * haven't already.
3409                 */
3410                res = fixup_owner(uaddr2, &q, !ret);
3411                /*
3412                 * If fixup_owner() returned an error, proprogate that.  If it
3413                 * acquired the lock, clear -ETIMEDOUT or -EINTR.
3414                 */
3415                if (res)
3416                        ret = (res < 0) ? res : 0;
3417
3418                /*
3419                 * If fixup_pi_state_owner() faulted and was unable to handle
3420                 * the fault, unlock the rt_mutex and return the fault to
3421                 * userspace.
3422                 */
3423                if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3424                        pi_state = q.pi_state;
3425                        get_pi_state(pi_state);
3426                }
3427
3428                /* Unqueue and drop the lock. */
3429                unqueue_me_pi(&q);
3430        }
3431
3432        if (pi_state) {
3433                rt_mutex_futex_unlock(&pi_state->pi_mutex);
3434                put_pi_state(pi_state);
3435        }
3436
3437        if (ret == -EINTR) {
3438                /*
3439                 * We've already been requeued, but cannot restart by calling
3440                 * futex_lock_pi() directly. We could restart this syscall, but
3441                 * it would detect that the user space "val" changed and return
3442                 * -EWOULDBLOCK.  Save the overhead of the restart and return
3443                 * -EWOULDBLOCK directly.
3444                 */
3445                ret = -EWOULDBLOCK;
3446        }
3447
3448out_put_keys:
3449        put_futex_key(&q.key);
3450out_key2:
3451        put_futex_key(&key2);
3452
3453out:
3454        if (to) {
3455                hrtimer_cancel(&to->timer);
3456                destroy_hrtimer_on_stack(&to->timer);
3457        }
3458        return ret;
3459}
3460
3461/*
3462 * Support for robust futexes: the kernel cleans up held futexes at
3463 * thread exit time.
3464 *
3465 * Implementation: user-space maintains a per-thread list of locks it
3466 * is holding. Upon do_exit(), the kernel carefully walks this list,
3467 * and marks all locks that are owned by this thread with the
3468 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3469 * always manipulated with the lock held, so the list is private and
3470 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3471 * field, to allow the kernel to clean up if the thread dies after
3472 * acquiring the lock, but just before it could have added itself to
3473 * the list. There can only be one such pending lock.
3474 */
3475
3476/**
3477 * sys_set_robust_list() - Set the robust-futex list head of a task
3478 * @head:       pointer to the list-head
3479 * @len:        length of the list-head, as userspace expects
3480 */
3481SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3482                size_t, len)
3483{
3484        if (!futex_cmpxchg_enabled)
3485                return -ENOSYS;
3486        /*
3487         * The kernel knows only one size for now:
3488         */
3489        if (unlikely(len != sizeof(*head)))
3490                return -EINVAL;
3491
3492        current->robust_list = head;
3493
3494        return 0;
3495}
3496
3497/**
3498 * sys_get_robust_list() - Get the robust-futex list head of a task
3499 * @pid:        pid of the process [zero for current task]
3500 * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
3501 * @len_ptr:    pointer to a length field, the kernel fills in the header size
3502 */
3503SYSCALL_DEFINE3(get_robust_list, int, pid,
3504                struct robust_list_head __user * __user *, head_ptr,
3505                size_t __user *, len_ptr)
3506{
3507        struct robust_list_head __user *head;
3508        unsigned long ret;
3509        struct task_struct *p;
3510
3511        if (!futex_cmpxchg_enabled)
3512                return -ENOSYS;
3513
3514        rcu_read_lock();
3515
3516        ret = -ESRCH;
3517        if (!pid)
3518                p = current;
3519        else {
3520                p = find_task_by_vpid(pid);
3521                if (!p)
3522                        goto err_unlock;
3523        }
3524
3525        ret = -EPERM;
3526        if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3527                goto err_unlock;
3528
3529        head = p->robust_list;
3530        rcu_read_unlock();
3531
3532        if (put_user(sizeof(*head), len_ptr))
3533                return -EFAULT;
3534        return put_user(head, head_ptr);
3535
3536err_unlock:
3537        rcu_read_unlock();
3538
3539        return ret;
3540}
3541
3542/* Constants for the pending_op argument of handle_futex_death */
3543#define HANDLE_DEATH_PENDING    true
3544#define HANDLE_DEATH_LIST       false
3545
3546/*
3547 * Process a futex-list entry, check whether it's owned by the
3548 * dying task, and do notification if so:
3549 */
3550static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr,
3551                              bool pi, bool pending_op)
3552{
3553        u32 uval, uninitialized_var(nval), mval;
3554        int err;
3555
3556        /* Futex address must be 32bit aligned */
3557        if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
3558                return -1;
3559
3560retry:
3561        if (get_user(uval, uaddr))
3562                return -1;
3563
3564        /*
3565         * Special case for regular (non PI) futexes. The unlock path in
3566         * user space has two race scenarios:
3567         *
3568         * 1. The unlock path releases the user space futex value and
3569         *    before it can execute the futex() syscall to wake up
3570         *    waiters it is killed.
3571         *
3572         * 2. A woken up waiter is killed before it can acquire the
3573         *    futex in user space.
3574         *
3575         * In both cases the TID validation below prevents a wakeup of
3576         * potential waiters which can cause these waiters to block
3577         * forever.
3578         *
3579         * In both cases the following conditions are met:
3580         *
3581         *      1) task->robust_list->list_op_pending != NULL
3582         *         @pending_op == true
3583         *      2) User space futex value == 0
3584         *      3) Regular futex: @pi == false
3585         *
3586         * If these conditions are met, it is safe to attempt waking up a
3587         * potential waiter without touching the user space futex value and
3588         * trying to set the OWNER_DIED bit. The user space futex value is
3589         * uncontended and the rest of the user space mutex state is
3590         * consistent, so a woken waiter will just take over the
3591         * uncontended futex. Setting the OWNER_DIED bit would create
3592         * inconsistent state and malfunction of the user space owner died
3593         * handling.
3594         */
3595        if (pending_op && !pi && !uval) {
3596                futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3597                return 0;
3598        }
3599
3600        if ((uval & FUTEX_TID_MASK) != task_pid_vnr(curr))
3601                return 0;
3602
3603        /*
3604         * Ok, this dying thread is truly holding a futex
3605         * of interest. Set the OWNER_DIED bit atomically
3606         * via cmpxchg, and if the value had FUTEX_WAITERS
3607         * set, wake up a waiter (if any). (We have to do a
3608         * futex_wake() even if OWNER_DIED is already set -
3609         * to handle the rare but possible case of recursive
3610         * thread-death.) The rest of the cleanup is done in
3611         * userspace.
3612         */
3613        mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3614
3615        /*
3616         * We are not holding a lock here, but we want to have
3617         * the pagefault_disable/enable() protection because
3618         * we want to handle the fault gracefully. If the
3619         * access fails we try to fault in the futex with R/W
3620         * verification via get_user_pages. get_user() above
3621         * does not guarantee R/W access. If that fails we
3622         * give up and leave the futex locked.
3623         */
3624        if ((err = cmpxchg_futex_value_locked(&nval, uaddr, uval, mval))) {
3625                switch (err) {
3626                case -EFAULT:
3627                        if (fault_in_user_writeable(uaddr))
3628                                return -1;
3629                        goto retry;
3630
3631                case -EAGAIN:
3632                        cond_resched();
3633                        goto retry;
3634
3635                default:
3636                        WARN_ON_ONCE(1);
3637                        return err;
3638                }
3639        }
3640
3641        if (nval != uval)
3642                goto retry;
3643
3644        /*
3645         * Wake robust non-PI futexes here. The wakeup of
3646         * PI futexes happens in exit_pi_state():
3647         */
3648        if (!pi && (uval & FUTEX_WAITERS))
3649                futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3650
3651        return 0;
3652}
3653
3654/*
3655 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3656 */
3657static inline int fetch_robust_entry(struct robust_list __user **entry,
3658                                     struct robust_list __user * __user *head,
3659                                     unsigned int *pi)
3660{
3661        unsigned long uentry;
3662
3663        if (get_user(uentry, (unsigned long __user *)head))
3664                return -EFAULT;
3665
3666        *entry = (void __user *)(uentry & ~1UL);
3667        *pi = uentry & 1;
3668
3669        return 0;
3670}
3671
3672/*
3673 * Walk curr->robust_list (very carefully, it's a userspace list!)
3674 * and mark any locks found there dead, and notify any waiters.
3675 *
3676 * We silently return on any sign of list-walking problem.
3677 */
3678static void exit_robust_list(struct task_struct *curr)
3679{
3680        struct robust_list_head __user *head = curr->robust_list;
3681        struct robust_list __user *entry, *next_entry, *pending;
3682        unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3683        unsigned int uninitialized_var(next_pi);
3684        unsigned long futex_offset;
3685        int rc;
3686
3687        if (!futex_cmpxchg_enabled)
3688                return;
3689
3690        /*
3691         * Fetch the list head (which was registered earlier, via
3692         * sys_set_robust_list()):
3693         */
3694        if (fetch_robust_entry(&entry, &head->list.next, &pi))
3695                return;
3696        /*
3697         * Fetch the relative futex offset:
3698         */
3699        if (get_user(futex_offset, &head->futex_offset))
3700                return;
3701        /*
3702         * Fetch any possibly pending lock-add first, and handle it
3703         * if it exists:
3704         */
3705        if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3706                return;
3707
3708        next_entry = NULL;      /* avoid warning with gcc */
3709        while (entry != &head->list) {
3710                /*
3711                 * Fetch the next entry in the list before calling
3712                 * handle_futex_death:
3713                 */
3714                rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3715                /*
3716                 * A pending lock might already be on the list, so
3717                 * don't process it twice:
3718                 */
3719                if (entry != pending) {
3720                        if (handle_futex_death((void __user *)entry + futex_offset,
3721                                                curr, pi, HANDLE_DEATH_LIST))
3722                                return;
3723                }
3724                if (rc)
3725                        return;
3726                entry = next_entry;
3727                pi = next_pi;
3728                /*
3729                 * Avoid excessively long or circular lists:
3730                 */
3731                if (!--limit)
3732                        break;
3733
3734                cond_resched();
3735        }
3736
3737        if (pending) {
3738                handle_futex_death((void __user *)pending + futex_offset,
3739                                   curr, pip, HANDLE_DEATH_PENDING);
3740        }
3741}
3742
3743static void futex_cleanup(struct task_struct *tsk)
3744{
3745        if (unlikely(tsk->robust_list)) {
3746                exit_robust_list(tsk);
3747                tsk->robust_list = NULL;
3748        }
3749
3750#ifdef CONFIG_COMPAT
3751        if (unlikely(tsk->compat_robust_list)) {
3752                compat_exit_robust_list(tsk);
3753                tsk->compat_robust_list = NULL;
3754        }
3755#endif
3756
3757        if (unlikely(!list_empty(&tsk->pi_state_list)))
3758                exit_pi_state_list(tsk);
3759}
3760
3761/**
3762 * futex_exit_recursive - Set the tasks futex state to FUTEX_STATE_DEAD
3763 * @tsk:        task to set the state on
3764 *
3765 * Set the futex exit state of the task lockless. The futex waiter code
3766 * observes that state when a task is exiting and loops until the task has
3767 * actually finished the futex cleanup. The worst case for this is that the
3768 * waiter runs through the wait loop until the state becomes visible.
3769 *
3770 * This is called from the recursive fault handling path in do_exit().
3771 *
3772 * This is best effort. Either the futex exit code has run already or
3773 * not. If the OWNER_DIED bit has been set on the futex then the waiter can
3774 * take it over. If not, the problem is pushed back to user space. If the
3775 * futex exit code did not run yet, then an already queued waiter might
3776 * block forever, but there is nothing which can be done about that.
3777 */
3778void futex_exit_recursive(struct task_struct *tsk)
3779{
3780        /* If the state is FUTEX_STATE_EXITING then futex_exit_mutex is held */
3781        if (tsk->futex_state == FUTEX_STATE_EXITING)
3782                mutex_unlock(&tsk->futex_exit_mutex);
3783        tsk->futex_state = FUTEX_STATE_DEAD;
3784}
3785
3786static void futex_cleanup_begin(struct task_struct *tsk)
3787{
3788        /*
3789         * Prevent various race issues against a concurrent incoming waiter
3790         * including live locks by forcing the waiter to block on
3791         * tsk->futex_exit_mutex when it observes FUTEX_STATE_EXITING in
3792         * attach_to_pi_owner().
3793         */
3794        mutex_lock(&tsk->futex_exit_mutex);
3795
3796        /*
3797         * Switch the state to FUTEX_STATE_EXITING under tsk->pi_lock.
3798         *
3799         * This ensures that all subsequent checks of tsk->futex_state in
3800         * attach_to_pi_owner() must observe FUTEX_STATE_EXITING with
3801         * tsk->pi_lock held.
3802         *
3803         * It guarantees also that a pi_state which was queued right before
3804         * the state change under tsk->pi_lock by a concurrent waiter must
3805         * be observed in exit_pi_state_list().
3806         */
3807        raw_spin_lock_irq(&tsk->pi_lock);
3808        tsk->futex_state = FUTEX_STATE_EXITING;
3809        raw_spin_unlock_irq(&tsk->pi_lock);
3810}
3811
3812static void futex_cleanup_end(struct task_struct *tsk, int state)
3813{
3814        /*
3815         * Lockless store. The only side effect is that an observer might
3816         * take another loop until it becomes visible.
3817         */
3818        tsk->futex_state = state;
3819        /*
3820         * Drop the exit protection. This unblocks waiters which observed
3821         * FUTEX_STATE_EXITING to reevaluate the state.
3822         */
3823        mutex_unlock(&tsk->futex_exit_mutex);
3824}
3825
3826void futex_exec_release(struct task_struct *tsk)
3827{
3828        /*
3829         * The state handling is done for consistency, but in the case of
3830         * exec() there is no way to prevent futher damage as the PID stays
3831         * the same. But for the unlikely and arguably buggy case that a
3832         * futex is held on exec(), this provides at least as much state
3833         * consistency protection which is possible.
3834         */
3835        futex_cleanup_begin(tsk);
3836        futex_cleanup(tsk);
3837        /*
3838         * Reset the state to FUTEX_STATE_OK. The task is alive and about
3839         * exec a new binary.
3840         */
3841        futex_cleanup_end(tsk, FUTEX_STATE_OK);
3842}
3843
3844void futex_exit_release(struct task_struct *tsk)
3845{
3846        futex_cleanup_begin(tsk);
3847        futex_cleanup(tsk);
3848        futex_cleanup_end(tsk, FUTEX_STATE_DEAD);
3849}
3850
3851long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3852                u32 __user *uaddr2, u32 val2, u32 val3)
3853{
3854        int cmd = op & FUTEX_CMD_MASK;
3855        unsigned int flags = 0;
3856
3857        if (!(op & FUTEX_PRIVATE_FLAG))
3858                flags |= FLAGS_SHARED;
3859
3860        if (op & FUTEX_CLOCK_REALTIME) {
3861                flags |= FLAGS_CLOCKRT;
3862                if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3863                    cmd != FUTEX_WAIT_REQUEUE_PI)
3864                        return -ENOSYS;
3865        }
3866
3867        switch (cmd) {
3868        case FUTEX_LOCK_PI:
3869        case FUTEX_UNLOCK_PI:
3870        case FUTEX_TRYLOCK_PI:
3871        case FUTEX_WAIT_REQUEUE_PI:
3872        case FUTEX_CMP_REQUEUE_PI:
3873                if (!futex_cmpxchg_enabled)
3874                        return -ENOSYS;
3875        }
3876
3877        switch (cmd) {
3878        case FUTEX_WAIT:
3879                val3 = FUTEX_BITSET_MATCH_ANY;
3880                /* fall through */
3881        case FUTEX_WAIT_BITSET:
3882                return futex_wait(uaddr, flags, val, timeout, val3);
3883        case FUTEX_WAKE:
3884                val3 = FUTEX_BITSET_MATCH_ANY;
3885                /* fall through */
3886        case FUTEX_WAKE_BITSET:
3887                return futex_wake(uaddr, flags, val, val3);
3888        case FUTEX_REQUEUE:
3889                return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3890        case FUTEX_CMP_REQUEUE:
3891                return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3892        case FUTEX_WAKE_OP:
3893                return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3894        case FUTEX_LOCK_PI:
3895                return futex_lock_pi(uaddr, flags, timeout, 0);
3896        case FUTEX_UNLOCK_PI:
3897                return futex_unlock_pi(uaddr, flags);
3898        case FUTEX_TRYLOCK_PI:
3899                return futex_lock_pi(uaddr, flags, NULL, 1);
3900        case FUTEX_WAIT_REQUEUE_PI:
3901                val3 = FUTEX_BITSET_MATCH_ANY;
3902                return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3903                                             uaddr2);
3904        case FUTEX_CMP_REQUEUE_PI:
3905                return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3906        }
3907        return -ENOSYS;
3908}
3909
3910
3911SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3912                struct __kernel_timespec __user *, utime, u32 __user *, uaddr2,
3913                u32, val3)
3914{
3915        struct timespec64 ts;
3916        ktime_t t, *tp = NULL;
3917        u32 val2 = 0;
3918        int cmd = op & FUTEX_CMD_MASK;
3919
3920        if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3921                      cmd == FUTEX_WAIT_BITSET ||
3922                      cmd == FUTEX_WAIT_REQUEUE_PI)) {
3923                if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3924                        return -EFAULT;
3925                if (get_timespec64(&ts, utime))
3926                        return -EFAULT;
3927                if (!timespec64_valid(&ts))
3928                        return -EINVAL;
3929
3930                t = timespec64_to_ktime(ts);
3931                if (cmd == FUTEX_WAIT)
3932                        t = ktime_add_safe(ktime_get(), t);
3933                tp = &t;
3934        }
3935        /*
3936         * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3937         * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3938         */
3939        if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3940            cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3941                val2 = (u32) (unsigned long) utime;
3942
3943        return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3944}
3945
3946#ifdef CONFIG_COMPAT
3947/*
3948 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3949 */
3950static inline int
3951compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
3952                   compat_uptr_t __user *head, unsigned int *pi)
3953{
3954        if (get_user(*uentry, head))
3955                return -EFAULT;
3956
3957        *entry = compat_ptr((*uentry) & ~1);
3958        *pi = (unsigned int)(*uentry) & 1;
3959
3960        return 0;
3961}
3962
3963static void __user *futex_uaddr(struct robust_list __user *entry,
3964                                compat_long_t futex_offset)
3965{
3966        compat_uptr_t base = ptr_to_compat(entry);
3967        void __user *uaddr = compat_ptr(base + futex_offset);
3968
3969        return uaddr;
3970}
3971
3972/*
3973 * Walk curr->robust_list (very carefully, it's a userspace list!)
3974 * and mark any locks found there dead, and notify any waiters.
3975 *
3976 * We silently return on any sign of list-walking problem.
3977 */
3978static void compat_exit_robust_list(struct task_struct *curr)
3979{
3980        struct compat_robust_list_head __user *head = curr->compat_robust_list;
3981        struct robust_list __user *entry, *next_entry, *pending;
3982        unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3983        unsigned int uninitialized_var(next_pi);
3984        compat_uptr_t uentry, next_uentry, upending;
3985        compat_long_t futex_offset;
3986        int rc;
3987
3988        if (!futex_cmpxchg_enabled)
3989                return;
3990
3991        /*
3992         * Fetch the list head (which was registered earlier, via
3993         * sys_set_robust_list()):
3994         */
3995        if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
3996                return;
3997        /*
3998         * Fetch the relative futex offset:
3999         */
4000        if (get_user(futex_offset, &head->futex_offset))
4001                return;
4002        /*
4003         * Fetch any possibly pending lock-add first, and handle it
4004         * if it exists:
4005         */
4006        if (compat_fetch_robust_entry(&upending, &pending,
4007                               &head->list_op_pending, &pip))
4008                return;
4009
4010        next_entry = NULL;      /* avoid warning with gcc */
4011        while (entry != (struct robust_list __user *) &head->list) {
4012                /*
4013                 * Fetch the next entry in the list before calling
4014                 * handle_futex_death:
4015                 */
4016                rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
4017                        (compat_uptr_t __user *)&entry->next, &next_pi);
4018                /*
4019                 * A pending lock might already be on the list, so
4020                 * dont process it twice:
4021                 */
4022                if (entry != pending) {
4023                        void __user *uaddr = futex_uaddr(entry, futex_offset);
4024
4025                        if (handle_futex_death(uaddr, curr, pi,
4026                                               HANDLE_DEATH_LIST))
4027                                return;
4028                }
4029                if (rc)
4030                        return;
4031                uentry = next_uentry;
4032                entry = next_entry;
4033                pi = next_pi;
4034                /*
4035                 * Avoid excessively long or circular lists:
4036                 */
4037                if (!--limit)
4038                        break;
4039
4040                cond_resched();
4041        }
4042        if (pending) {
4043                void __user *uaddr = futex_uaddr(pending, futex_offset);
4044
4045                handle_futex_death(uaddr, curr, pip, HANDLE_DEATH_PENDING);
4046        }
4047}
4048
4049COMPAT_SYSCALL_DEFINE2(set_robust_list,
4050                struct compat_robust_list_head __user *, head,
4051                compat_size_t, len)
4052{
4053        if (!futex_cmpxchg_enabled)
4054                return -ENOSYS;
4055
4056        if (unlikely(len != sizeof(*head)))
4057                return -EINVAL;
4058
4059        current->compat_robust_list = head;
4060
4061        return 0;
4062}
4063
4064COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid,
4065                        compat_uptr_t __user *, head_ptr,
4066                        compat_size_t __user *, len_ptr)
4067{
4068        struct compat_robust_list_head __user *head;
4069        unsigned long ret;
4070        struct task_struct *p;
4071
4072        if (!futex_cmpxchg_enabled)
4073                return -ENOSYS;
4074
4075        rcu_read_lock();
4076
4077        ret = -ESRCH;
4078        if (!pid)
4079                p = current;
4080        else {
4081                p = find_task_by_vpid(pid);
4082                if (!p)
4083                        goto err_unlock;
4084        }
4085
4086        ret = -EPERM;
4087        if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
4088                goto err_unlock;
4089
4090        head = p->compat_robust_list;
4091        rcu_read_unlock();
4092
4093        if (put_user(sizeof(*head), len_ptr))
4094                return -EFAULT;
4095        return put_user(ptr_to_compat(head), head_ptr);
4096
4097err_unlock:
4098        rcu_read_unlock();
4099
4100        return ret;
4101}
4102#endif /* CONFIG_COMPAT */
4103
4104#ifdef CONFIG_COMPAT_32BIT_TIME
4105SYSCALL_DEFINE6(futex_time32, u32 __user *, uaddr, int, op, u32, val,
4106                struct old_timespec32 __user *, utime, u32 __user *, uaddr2,
4107                u32, val3)
4108{
4109        struct timespec64 ts;
4110        ktime_t t, *tp = NULL;
4111        int val2 = 0;
4112        int cmd = op & FUTEX_CMD_MASK;
4113
4114        if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
4115                      cmd == FUTEX_WAIT_BITSET ||
4116                      cmd == FUTEX_WAIT_REQUEUE_PI)) {
4117                if (get_old_timespec32(&ts, utime))
4118                        return -EFAULT;
4119                if (!timespec64_valid(&ts))
4120                        return -EINVAL;
4121
4122                t = timespec64_to_ktime(ts);
4123                if (cmd == FUTEX_WAIT)
4124                        t = ktime_add_safe(ktime_get(), t);
4125                tp = &t;
4126        }
4127        if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
4128            cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
4129                val2 = (int) (unsigned long) utime;
4130
4131        return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
4132}
4133#endif /* CONFIG_COMPAT_32BIT_TIME */
4134
4135static void __init futex_detect_cmpxchg(void)
4136{
4137#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
4138        u32 curval;
4139
4140        /*
4141         * This will fail and we want it. Some arch implementations do
4142         * runtime detection of the futex_atomic_cmpxchg_inatomic()
4143         * functionality. We want to know that before we call in any
4144         * of the complex code paths. Also we want to prevent
4145         * registration of robust lists in that case. NULL is
4146         * guaranteed to fault and we get -EFAULT on functional
4147         * implementation, the non-functional ones will return
4148         * -ENOSYS.
4149         */
4150        if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
4151                futex_cmpxchg_enabled = 1;
4152#endif
4153}
4154
4155static int __init futex_init(void)
4156{
4157        unsigned int futex_shift;
4158        unsigned long i;
4159
4160#if CONFIG_BASE_SMALL
4161        futex_hashsize = 16;
4162#else
4163        futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
4164#endif
4165
4166        futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
4167                                               futex_hashsize, 0,
4168                                               futex_hashsize < 256 ? HASH_SMALL : 0,
4169                                               &futex_shift, NULL,
4170                                               futex_hashsize, futex_hashsize);
4171        futex_hashsize = 1UL << futex_shift;
4172
4173        futex_detect_cmpxchg();
4174
4175        for (i = 0; i < futex_hashsize; i++) {
4176                atomic_set(&futex_queues[i].waiters, 0);
4177                plist_head_init(&futex_queues[i].chain);
4178                spin_lock_init(&futex_queues[i].lock);
4179        }
4180
4181        return 0;
4182}
4183core_initcall(futex_init);
4184