linux/kernel/kprobes.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  Kernel Probes (KProbes)
   4 *  kernel/kprobes.c
   5 *
   6 * Copyright (C) IBM Corporation, 2002, 2004
   7 *
   8 * 2002-Oct     Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
   9 *              Probes initial implementation (includes suggestions from
  10 *              Rusty Russell).
  11 * 2004-Aug     Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
  12 *              hlists and exceptions notifier as suggested by Andi Kleen.
  13 * 2004-July    Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
  14 *              interface to access function arguments.
  15 * 2004-Sep     Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
  16 *              exceptions notifier to be first on the priority list.
  17 * 2005-May     Hien Nguyen <hien@us.ibm.com>, Jim Keniston
  18 *              <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
  19 *              <prasanna@in.ibm.com> added function-return probes.
  20 */
  21#include <linux/kprobes.h>
  22#include <linux/hash.h>
  23#include <linux/init.h>
  24#include <linux/slab.h>
  25#include <linux/stddef.h>
  26#include <linux/export.h>
  27#include <linux/moduleloader.h>
  28#include <linux/kallsyms.h>
  29#include <linux/freezer.h>
  30#include <linux/seq_file.h>
  31#include <linux/debugfs.h>
  32#include <linux/sysctl.h>
  33#include <linux/kdebug.h>
  34#include <linux/memory.h>
  35#include <linux/ftrace.h>
  36#include <linux/cpu.h>
  37#include <linux/jump_label.h>
  38
  39#include <asm/sections.h>
  40#include <asm/cacheflush.h>
  41#include <asm/errno.h>
  42#include <linux/uaccess.h>
  43
  44#define KPROBE_HASH_BITS 6
  45#define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
  46
  47
  48static int kprobes_initialized;
  49static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
  50static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
  51
  52/* NOTE: change this value only with kprobe_mutex held */
  53static bool kprobes_all_disarmed;
  54
  55/* This protects kprobe_table and optimizing_list */
  56static DEFINE_MUTEX(kprobe_mutex);
  57static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
  58static struct {
  59        raw_spinlock_t lock ____cacheline_aligned_in_smp;
  60} kretprobe_table_locks[KPROBE_TABLE_SIZE];
  61
  62kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
  63                                        unsigned int __unused)
  64{
  65        return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
  66}
  67
  68static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
  69{
  70        return &(kretprobe_table_locks[hash].lock);
  71}
  72
  73/* Blacklist -- list of struct kprobe_blacklist_entry */
  74static LIST_HEAD(kprobe_blacklist);
  75
  76#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
  77/*
  78 * kprobe->ainsn.insn points to the copy of the instruction to be
  79 * single-stepped. x86_64, POWER4 and above have no-exec support and
  80 * stepping on the instruction on a vmalloced/kmalloced/data page
  81 * is a recipe for disaster
  82 */
  83struct kprobe_insn_page {
  84        struct list_head list;
  85        kprobe_opcode_t *insns;         /* Page of instruction slots */
  86        struct kprobe_insn_cache *cache;
  87        int nused;
  88        int ngarbage;
  89        char slot_used[];
  90};
  91
  92#define KPROBE_INSN_PAGE_SIZE(slots)                    \
  93        (offsetof(struct kprobe_insn_page, slot_used) + \
  94         (sizeof(char) * (slots)))
  95
  96static int slots_per_page(struct kprobe_insn_cache *c)
  97{
  98        return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
  99}
 100
 101enum kprobe_slot_state {
 102        SLOT_CLEAN = 0,
 103        SLOT_DIRTY = 1,
 104        SLOT_USED = 2,
 105};
 106
 107void __weak *alloc_insn_page(void)
 108{
 109        return module_alloc(PAGE_SIZE);
 110}
 111
 112void __weak free_insn_page(void *page)
 113{
 114        module_memfree(page);
 115}
 116
 117struct kprobe_insn_cache kprobe_insn_slots = {
 118        .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
 119        .alloc = alloc_insn_page,
 120        .free = free_insn_page,
 121        .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
 122        .insn_size = MAX_INSN_SIZE,
 123        .nr_garbage = 0,
 124};
 125static int collect_garbage_slots(struct kprobe_insn_cache *c);
 126
 127/**
 128 * __get_insn_slot() - Find a slot on an executable page for an instruction.
 129 * We allocate an executable page if there's no room on existing ones.
 130 */
 131kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
 132{
 133        struct kprobe_insn_page *kip;
 134        kprobe_opcode_t *slot = NULL;
 135
 136        /* Since the slot array is not protected by rcu, we need a mutex */
 137        mutex_lock(&c->mutex);
 138 retry:
 139        rcu_read_lock();
 140        list_for_each_entry_rcu(kip, &c->pages, list) {
 141                if (kip->nused < slots_per_page(c)) {
 142                        int i;
 143                        for (i = 0; i < slots_per_page(c); i++) {
 144                                if (kip->slot_used[i] == SLOT_CLEAN) {
 145                                        kip->slot_used[i] = SLOT_USED;
 146                                        kip->nused++;
 147                                        slot = kip->insns + (i * c->insn_size);
 148                                        rcu_read_unlock();
 149                                        goto out;
 150                                }
 151                        }
 152                        /* kip->nused is broken. Fix it. */
 153                        kip->nused = slots_per_page(c);
 154                        WARN_ON(1);
 155                }
 156        }
 157        rcu_read_unlock();
 158
 159        /* If there are any garbage slots, collect it and try again. */
 160        if (c->nr_garbage && collect_garbage_slots(c) == 0)
 161                goto retry;
 162
 163        /* All out of space.  Need to allocate a new page. */
 164        kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
 165        if (!kip)
 166                goto out;
 167
 168        /*
 169         * Use module_alloc so this page is within +/- 2GB of where the
 170         * kernel image and loaded module images reside. This is required
 171         * so x86_64 can correctly handle the %rip-relative fixups.
 172         */
 173        kip->insns = c->alloc();
 174        if (!kip->insns) {
 175                kfree(kip);
 176                goto out;
 177        }
 178        INIT_LIST_HEAD(&kip->list);
 179        memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
 180        kip->slot_used[0] = SLOT_USED;
 181        kip->nused = 1;
 182        kip->ngarbage = 0;
 183        kip->cache = c;
 184        list_add_rcu(&kip->list, &c->pages);
 185        slot = kip->insns;
 186out:
 187        mutex_unlock(&c->mutex);
 188        return slot;
 189}
 190
 191/* Return 1 if all garbages are collected, otherwise 0. */
 192static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
 193{
 194        kip->slot_used[idx] = SLOT_CLEAN;
 195        kip->nused--;
 196        if (kip->nused == 0) {
 197                /*
 198                 * Page is no longer in use.  Free it unless
 199                 * it's the last one.  We keep the last one
 200                 * so as not to have to set it up again the
 201                 * next time somebody inserts a probe.
 202                 */
 203                if (!list_is_singular(&kip->list)) {
 204                        list_del_rcu(&kip->list);
 205                        synchronize_rcu();
 206                        kip->cache->free(kip->insns);
 207                        kfree(kip);
 208                }
 209                return 1;
 210        }
 211        return 0;
 212}
 213
 214static int collect_garbage_slots(struct kprobe_insn_cache *c)
 215{
 216        struct kprobe_insn_page *kip, *next;
 217
 218        /* Ensure no-one is interrupted on the garbages */
 219        synchronize_rcu();
 220
 221        list_for_each_entry_safe(kip, next, &c->pages, list) {
 222                int i;
 223                if (kip->ngarbage == 0)
 224                        continue;
 225                kip->ngarbage = 0;      /* we will collect all garbages */
 226                for (i = 0; i < slots_per_page(c); i++) {
 227                        if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
 228                                break;
 229                }
 230        }
 231        c->nr_garbage = 0;
 232        return 0;
 233}
 234
 235void __free_insn_slot(struct kprobe_insn_cache *c,
 236                      kprobe_opcode_t *slot, int dirty)
 237{
 238        struct kprobe_insn_page *kip;
 239        long idx;
 240
 241        mutex_lock(&c->mutex);
 242        rcu_read_lock();
 243        list_for_each_entry_rcu(kip, &c->pages, list) {
 244                idx = ((long)slot - (long)kip->insns) /
 245                        (c->insn_size * sizeof(kprobe_opcode_t));
 246                if (idx >= 0 && idx < slots_per_page(c))
 247                        goto out;
 248        }
 249        /* Could not find this slot. */
 250        WARN_ON(1);
 251        kip = NULL;
 252out:
 253        rcu_read_unlock();
 254        /* Mark and sweep: this may sleep */
 255        if (kip) {
 256                /* Check double free */
 257                WARN_ON(kip->slot_used[idx] != SLOT_USED);
 258                if (dirty) {
 259                        kip->slot_used[idx] = SLOT_DIRTY;
 260                        kip->ngarbage++;
 261                        if (++c->nr_garbage > slots_per_page(c))
 262                                collect_garbage_slots(c);
 263                } else {
 264                        collect_one_slot(kip, idx);
 265                }
 266        }
 267        mutex_unlock(&c->mutex);
 268}
 269
 270/*
 271 * Check given address is on the page of kprobe instruction slots.
 272 * This will be used for checking whether the address on a stack
 273 * is on a text area or not.
 274 */
 275bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
 276{
 277        struct kprobe_insn_page *kip;
 278        bool ret = false;
 279
 280        rcu_read_lock();
 281        list_for_each_entry_rcu(kip, &c->pages, list) {
 282                if (addr >= (unsigned long)kip->insns &&
 283                    addr < (unsigned long)kip->insns + PAGE_SIZE) {
 284                        ret = true;
 285                        break;
 286                }
 287        }
 288        rcu_read_unlock();
 289
 290        return ret;
 291}
 292
 293#ifdef CONFIG_OPTPROBES
 294/* For optimized_kprobe buffer */
 295struct kprobe_insn_cache kprobe_optinsn_slots = {
 296        .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
 297        .alloc = alloc_insn_page,
 298        .free = free_insn_page,
 299        .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
 300        /* .insn_size is initialized later */
 301        .nr_garbage = 0,
 302};
 303#endif
 304#endif
 305
 306/* We have preemption disabled.. so it is safe to use __ versions */
 307static inline void set_kprobe_instance(struct kprobe *kp)
 308{
 309        __this_cpu_write(kprobe_instance, kp);
 310}
 311
 312static inline void reset_kprobe_instance(void)
 313{
 314        __this_cpu_write(kprobe_instance, NULL);
 315}
 316
 317/*
 318 * This routine is called either:
 319 *      - under the kprobe_mutex - during kprobe_[un]register()
 320 *                              OR
 321 *      - with preemption disabled - from arch/xxx/kernel/kprobes.c
 322 */
 323struct kprobe *get_kprobe(void *addr)
 324{
 325        struct hlist_head *head;
 326        struct kprobe *p;
 327
 328        head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
 329        hlist_for_each_entry_rcu(p, head, hlist) {
 330                if (p->addr == addr)
 331                        return p;
 332        }
 333
 334        return NULL;
 335}
 336NOKPROBE_SYMBOL(get_kprobe);
 337
 338static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
 339
 340/* Return true if the kprobe is an aggregator */
 341static inline int kprobe_aggrprobe(struct kprobe *p)
 342{
 343        return p->pre_handler == aggr_pre_handler;
 344}
 345
 346/* Return true(!0) if the kprobe is unused */
 347static inline int kprobe_unused(struct kprobe *p)
 348{
 349        return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
 350               list_empty(&p->list);
 351}
 352
 353/*
 354 * Keep all fields in the kprobe consistent
 355 */
 356static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
 357{
 358        memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
 359        memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
 360}
 361
 362#ifdef CONFIG_OPTPROBES
 363/* NOTE: change this value only with kprobe_mutex held */
 364static bool kprobes_allow_optimization;
 365
 366/*
 367 * Call all pre_handler on the list, but ignores its return value.
 368 * This must be called from arch-dep optimized caller.
 369 */
 370void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
 371{
 372        struct kprobe *kp;
 373
 374        list_for_each_entry_rcu(kp, &p->list, list) {
 375                if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
 376                        set_kprobe_instance(kp);
 377                        kp->pre_handler(kp, regs);
 378                }
 379                reset_kprobe_instance();
 380        }
 381}
 382NOKPROBE_SYMBOL(opt_pre_handler);
 383
 384/* Free optimized instructions and optimized_kprobe */
 385static void free_aggr_kprobe(struct kprobe *p)
 386{
 387        struct optimized_kprobe *op;
 388
 389        op = container_of(p, struct optimized_kprobe, kp);
 390        arch_remove_optimized_kprobe(op);
 391        arch_remove_kprobe(p);
 392        kfree(op);
 393}
 394
 395/* Return true(!0) if the kprobe is ready for optimization. */
 396static inline int kprobe_optready(struct kprobe *p)
 397{
 398        struct optimized_kprobe *op;
 399
 400        if (kprobe_aggrprobe(p)) {
 401                op = container_of(p, struct optimized_kprobe, kp);
 402                return arch_prepared_optinsn(&op->optinsn);
 403        }
 404
 405        return 0;
 406}
 407
 408/* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
 409static inline int kprobe_disarmed(struct kprobe *p)
 410{
 411        struct optimized_kprobe *op;
 412
 413        /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
 414        if (!kprobe_aggrprobe(p))
 415                return kprobe_disabled(p);
 416
 417        op = container_of(p, struct optimized_kprobe, kp);
 418
 419        return kprobe_disabled(p) && list_empty(&op->list);
 420}
 421
 422/* Return true(!0) if the probe is queued on (un)optimizing lists */
 423static int kprobe_queued(struct kprobe *p)
 424{
 425        struct optimized_kprobe *op;
 426
 427        if (kprobe_aggrprobe(p)) {
 428                op = container_of(p, struct optimized_kprobe, kp);
 429                if (!list_empty(&op->list))
 430                        return 1;
 431        }
 432        return 0;
 433}
 434
 435/*
 436 * Return an optimized kprobe whose optimizing code replaces
 437 * instructions including addr (exclude breakpoint).
 438 */
 439static struct kprobe *get_optimized_kprobe(unsigned long addr)
 440{
 441        int i;
 442        struct kprobe *p = NULL;
 443        struct optimized_kprobe *op;
 444
 445        /* Don't check i == 0, since that is a breakpoint case. */
 446        for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
 447                p = get_kprobe((void *)(addr - i));
 448
 449        if (p && kprobe_optready(p)) {
 450                op = container_of(p, struct optimized_kprobe, kp);
 451                if (arch_within_optimized_kprobe(op, addr))
 452                        return p;
 453        }
 454
 455        return NULL;
 456}
 457
 458/* Optimization staging list, protected by kprobe_mutex */
 459static LIST_HEAD(optimizing_list);
 460static LIST_HEAD(unoptimizing_list);
 461static LIST_HEAD(freeing_list);
 462
 463static void kprobe_optimizer(struct work_struct *work);
 464static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
 465#define OPTIMIZE_DELAY 5
 466
 467/*
 468 * Optimize (replace a breakpoint with a jump) kprobes listed on
 469 * optimizing_list.
 470 */
 471static void do_optimize_kprobes(void)
 472{
 473        lockdep_assert_held(&text_mutex);
 474        /*
 475         * The optimization/unoptimization refers online_cpus via
 476         * stop_machine() and cpu-hotplug modifies online_cpus.
 477         * And same time, text_mutex will be held in cpu-hotplug and here.
 478         * This combination can cause a deadlock (cpu-hotplug try to lock
 479         * text_mutex but stop_machine can not be done because online_cpus
 480         * has been changed)
 481         * To avoid this deadlock, caller must have locked cpu hotplug
 482         * for preventing cpu-hotplug outside of text_mutex locking.
 483         */
 484        lockdep_assert_cpus_held();
 485
 486        /* Optimization never be done when disarmed */
 487        if (kprobes_all_disarmed || !kprobes_allow_optimization ||
 488            list_empty(&optimizing_list))
 489                return;
 490
 491        arch_optimize_kprobes(&optimizing_list);
 492}
 493
 494/*
 495 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
 496 * if need) kprobes listed on unoptimizing_list.
 497 */
 498static void do_unoptimize_kprobes(void)
 499{
 500        struct optimized_kprobe *op, *tmp;
 501
 502        lockdep_assert_held(&text_mutex);
 503        /* See comment in do_optimize_kprobes() */
 504        lockdep_assert_cpus_held();
 505
 506        /* Unoptimization must be done anytime */
 507        if (list_empty(&unoptimizing_list))
 508                return;
 509
 510        arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
 511        /* Loop free_list for disarming */
 512        list_for_each_entry_safe(op, tmp, &freeing_list, list) {
 513                /* Disarm probes if marked disabled */
 514                if (kprobe_disabled(&op->kp))
 515                        arch_disarm_kprobe(&op->kp);
 516                if (kprobe_unused(&op->kp)) {
 517                        /*
 518                         * Remove unused probes from hash list. After waiting
 519                         * for synchronization, these probes are reclaimed.
 520                         * (reclaiming is done by do_free_cleaned_kprobes.)
 521                         */
 522                        hlist_del_rcu(&op->kp.hlist);
 523                } else
 524                        list_del_init(&op->list);
 525        }
 526}
 527
 528/* Reclaim all kprobes on the free_list */
 529static void do_free_cleaned_kprobes(void)
 530{
 531        struct optimized_kprobe *op, *tmp;
 532
 533        list_for_each_entry_safe(op, tmp, &freeing_list, list) {
 534                list_del_init(&op->list);
 535                if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
 536                        /*
 537                         * This must not happen, but if there is a kprobe
 538                         * still in use, keep it on kprobes hash list.
 539                         */
 540                        continue;
 541                }
 542                free_aggr_kprobe(&op->kp);
 543        }
 544}
 545
 546/* Start optimizer after OPTIMIZE_DELAY passed */
 547static void kick_kprobe_optimizer(void)
 548{
 549        schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
 550}
 551
 552/* Kprobe jump optimizer */
 553static void kprobe_optimizer(struct work_struct *work)
 554{
 555        mutex_lock(&kprobe_mutex);
 556        cpus_read_lock();
 557        mutex_lock(&text_mutex);
 558        /* Lock modules while optimizing kprobes */
 559        mutex_lock(&module_mutex);
 560
 561        /*
 562         * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
 563         * kprobes before waiting for quiesence period.
 564         */
 565        do_unoptimize_kprobes();
 566
 567        /*
 568         * Step 2: Wait for quiesence period to ensure all potentially
 569         * preempted tasks to have normally scheduled. Because optprobe
 570         * may modify multiple instructions, there is a chance that Nth
 571         * instruction is preempted. In that case, such tasks can return
 572         * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
 573         * Note that on non-preemptive kernel, this is transparently converted
 574         * to synchronoze_sched() to wait for all interrupts to have completed.
 575         */
 576        synchronize_rcu_tasks();
 577
 578        /* Step 3: Optimize kprobes after quiesence period */
 579        do_optimize_kprobes();
 580
 581        /* Step 4: Free cleaned kprobes after quiesence period */
 582        do_free_cleaned_kprobes();
 583
 584        mutex_unlock(&module_mutex);
 585        mutex_unlock(&text_mutex);
 586        cpus_read_unlock();
 587        mutex_unlock(&kprobe_mutex);
 588
 589        /* Step 5: Kick optimizer again if needed */
 590        if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
 591                kick_kprobe_optimizer();
 592}
 593
 594/* Wait for completing optimization and unoptimization */
 595void wait_for_kprobe_optimizer(void)
 596{
 597        mutex_lock(&kprobe_mutex);
 598
 599        while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
 600                mutex_unlock(&kprobe_mutex);
 601
 602                /* this will also make optimizing_work execute immmediately */
 603                flush_delayed_work(&optimizing_work);
 604                /* @optimizing_work might not have been queued yet, relax */
 605                cpu_relax();
 606
 607                mutex_lock(&kprobe_mutex);
 608        }
 609
 610        mutex_unlock(&kprobe_mutex);
 611}
 612
 613/* Optimize kprobe if p is ready to be optimized */
 614static void optimize_kprobe(struct kprobe *p)
 615{
 616        struct optimized_kprobe *op;
 617
 618        /* Check if the kprobe is disabled or not ready for optimization. */
 619        if (!kprobe_optready(p) || !kprobes_allow_optimization ||
 620            (kprobe_disabled(p) || kprobes_all_disarmed))
 621                return;
 622
 623        /* kprobes with post_handler can not be optimized */
 624        if (p->post_handler)
 625                return;
 626
 627        op = container_of(p, struct optimized_kprobe, kp);
 628
 629        /* Check there is no other kprobes at the optimized instructions */
 630        if (arch_check_optimized_kprobe(op) < 0)
 631                return;
 632
 633        /* Check if it is already optimized. */
 634        if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
 635                return;
 636        op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
 637
 638        if (!list_empty(&op->list))
 639                /* This is under unoptimizing. Just dequeue the probe */
 640                list_del_init(&op->list);
 641        else {
 642                list_add(&op->list, &optimizing_list);
 643                kick_kprobe_optimizer();
 644        }
 645}
 646
 647/* Short cut to direct unoptimizing */
 648static void force_unoptimize_kprobe(struct optimized_kprobe *op)
 649{
 650        lockdep_assert_cpus_held();
 651        arch_unoptimize_kprobe(op);
 652        if (kprobe_disabled(&op->kp))
 653                arch_disarm_kprobe(&op->kp);
 654}
 655
 656/* Unoptimize a kprobe if p is optimized */
 657static void unoptimize_kprobe(struct kprobe *p, bool force)
 658{
 659        struct optimized_kprobe *op;
 660
 661        if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
 662                return; /* This is not an optprobe nor optimized */
 663
 664        op = container_of(p, struct optimized_kprobe, kp);
 665        if (!kprobe_optimized(p)) {
 666                /* Unoptimized or unoptimizing case */
 667                if (force && !list_empty(&op->list)) {
 668                        /*
 669                         * Only if this is unoptimizing kprobe and forced,
 670                         * forcibly unoptimize it. (No need to unoptimize
 671                         * unoptimized kprobe again :)
 672                         */
 673                        list_del_init(&op->list);
 674                        force_unoptimize_kprobe(op);
 675                }
 676                return;
 677        }
 678
 679        op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
 680        if (!list_empty(&op->list)) {
 681                /* Dequeue from the optimization queue */
 682                list_del_init(&op->list);
 683                return;
 684        }
 685        /* Optimized kprobe case */
 686        if (force)
 687                /* Forcibly update the code: this is a special case */
 688                force_unoptimize_kprobe(op);
 689        else {
 690                list_add(&op->list, &unoptimizing_list);
 691                kick_kprobe_optimizer();
 692        }
 693}
 694
 695/* Cancel unoptimizing for reusing */
 696static int reuse_unused_kprobe(struct kprobe *ap)
 697{
 698        struct optimized_kprobe *op;
 699
 700        /*
 701         * Unused kprobe MUST be on the way of delayed unoptimizing (means
 702         * there is still a relative jump) and disabled.
 703         */
 704        op = container_of(ap, struct optimized_kprobe, kp);
 705        WARN_ON_ONCE(list_empty(&op->list));
 706        /* Enable the probe again */
 707        ap->flags &= ~KPROBE_FLAG_DISABLED;
 708        /* Optimize it again (remove from op->list) */
 709        if (!kprobe_optready(ap))
 710                return -EINVAL;
 711
 712        optimize_kprobe(ap);
 713        return 0;
 714}
 715
 716/* Remove optimized instructions */
 717static void kill_optimized_kprobe(struct kprobe *p)
 718{
 719        struct optimized_kprobe *op;
 720
 721        op = container_of(p, struct optimized_kprobe, kp);
 722        if (!list_empty(&op->list))
 723                /* Dequeue from the (un)optimization queue */
 724                list_del_init(&op->list);
 725        op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
 726
 727        if (kprobe_unused(p)) {
 728                /* Enqueue if it is unused */
 729                list_add(&op->list, &freeing_list);
 730                /*
 731                 * Remove unused probes from the hash list. After waiting
 732                 * for synchronization, this probe is reclaimed.
 733                 * (reclaiming is done by do_free_cleaned_kprobes().)
 734                 */
 735                hlist_del_rcu(&op->kp.hlist);
 736        }
 737
 738        /* Don't touch the code, because it is already freed. */
 739        arch_remove_optimized_kprobe(op);
 740}
 741
 742static inline
 743void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
 744{
 745        if (!kprobe_ftrace(p))
 746                arch_prepare_optimized_kprobe(op, p);
 747}
 748
 749/* Try to prepare optimized instructions */
 750static void prepare_optimized_kprobe(struct kprobe *p)
 751{
 752        struct optimized_kprobe *op;
 753
 754        op = container_of(p, struct optimized_kprobe, kp);
 755        __prepare_optimized_kprobe(op, p);
 756}
 757
 758/* Allocate new optimized_kprobe and try to prepare optimized instructions */
 759static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
 760{
 761        struct optimized_kprobe *op;
 762
 763        op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
 764        if (!op)
 765                return NULL;
 766
 767        INIT_LIST_HEAD(&op->list);
 768        op->kp.addr = p->addr;
 769        __prepare_optimized_kprobe(op, p);
 770
 771        return &op->kp;
 772}
 773
 774static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
 775
 776/*
 777 * Prepare an optimized_kprobe and optimize it
 778 * NOTE: p must be a normal registered kprobe
 779 */
 780static void try_to_optimize_kprobe(struct kprobe *p)
 781{
 782        struct kprobe *ap;
 783        struct optimized_kprobe *op;
 784
 785        /* Impossible to optimize ftrace-based kprobe */
 786        if (kprobe_ftrace(p))
 787                return;
 788
 789        /* For preparing optimization, jump_label_text_reserved() is called */
 790        cpus_read_lock();
 791        jump_label_lock();
 792        mutex_lock(&text_mutex);
 793
 794        ap = alloc_aggr_kprobe(p);
 795        if (!ap)
 796                goto out;
 797
 798        op = container_of(ap, struct optimized_kprobe, kp);
 799        if (!arch_prepared_optinsn(&op->optinsn)) {
 800                /* If failed to setup optimizing, fallback to kprobe */
 801                arch_remove_optimized_kprobe(op);
 802                kfree(op);
 803                goto out;
 804        }
 805
 806        init_aggr_kprobe(ap, p);
 807        optimize_kprobe(ap);    /* This just kicks optimizer thread */
 808
 809out:
 810        mutex_unlock(&text_mutex);
 811        jump_label_unlock();
 812        cpus_read_unlock();
 813}
 814
 815#ifdef CONFIG_SYSCTL
 816static void optimize_all_kprobes(void)
 817{
 818        struct hlist_head *head;
 819        struct kprobe *p;
 820        unsigned int i;
 821
 822        mutex_lock(&kprobe_mutex);
 823        /* If optimization is already allowed, just return */
 824        if (kprobes_allow_optimization)
 825                goto out;
 826
 827        cpus_read_lock();
 828        kprobes_allow_optimization = true;
 829        for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
 830                head = &kprobe_table[i];
 831                hlist_for_each_entry_rcu(p, head, hlist)
 832                        if (!kprobe_disabled(p))
 833                                optimize_kprobe(p);
 834        }
 835        cpus_read_unlock();
 836        printk(KERN_INFO "Kprobes globally optimized\n");
 837out:
 838        mutex_unlock(&kprobe_mutex);
 839}
 840
 841static void unoptimize_all_kprobes(void)
 842{
 843        struct hlist_head *head;
 844        struct kprobe *p;
 845        unsigned int i;
 846
 847        mutex_lock(&kprobe_mutex);
 848        /* If optimization is already prohibited, just return */
 849        if (!kprobes_allow_optimization) {
 850                mutex_unlock(&kprobe_mutex);
 851                return;
 852        }
 853
 854        cpus_read_lock();
 855        kprobes_allow_optimization = false;
 856        for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
 857                head = &kprobe_table[i];
 858                hlist_for_each_entry_rcu(p, head, hlist) {
 859                        if (!kprobe_disabled(p))
 860                                unoptimize_kprobe(p, false);
 861                }
 862        }
 863        cpus_read_unlock();
 864        mutex_unlock(&kprobe_mutex);
 865
 866        /* Wait for unoptimizing completion */
 867        wait_for_kprobe_optimizer();
 868        printk(KERN_INFO "Kprobes globally unoptimized\n");
 869}
 870
 871static DEFINE_MUTEX(kprobe_sysctl_mutex);
 872int sysctl_kprobes_optimization;
 873int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
 874                                      void __user *buffer, size_t *length,
 875                                      loff_t *ppos)
 876{
 877        int ret;
 878
 879        mutex_lock(&kprobe_sysctl_mutex);
 880        sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
 881        ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
 882
 883        if (sysctl_kprobes_optimization)
 884                optimize_all_kprobes();
 885        else
 886                unoptimize_all_kprobes();
 887        mutex_unlock(&kprobe_sysctl_mutex);
 888
 889        return ret;
 890}
 891#endif /* CONFIG_SYSCTL */
 892
 893/* Put a breakpoint for a probe. Must be called with text_mutex locked */
 894static void __arm_kprobe(struct kprobe *p)
 895{
 896        struct kprobe *_p;
 897
 898        /* Check collision with other optimized kprobes */
 899        _p = get_optimized_kprobe((unsigned long)p->addr);
 900        if (unlikely(_p))
 901                /* Fallback to unoptimized kprobe */
 902                unoptimize_kprobe(_p, true);
 903
 904        arch_arm_kprobe(p);
 905        optimize_kprobe(p);     /* Try to optimize (add kprobe to a list) */
 906}
 907
 908/* Remove the breakpoint of a probe. Must be called with text_mutex locked */
 909static void __disarm_kprobe(struct kprobe *p, bool reopt)
 910{
 911        struct kprobe *_p;
 912
 913        /* Try to unoptimize */
 914        unoptimize_kprobe(p, kprobes_all_disarmed);
 915
 916        if (!kprobe_queued(p)) {
 917                arch_disarm_kprobe(p);
 918                /* If another kprobe was blocked, optimize it. */
 919                _p = get_optimized_kprobe((unsigned long)p->addr);
 920                if (unlikely(_p) && reopt)
 921                        optimize_kprobe(_p);
 922        }
 923        /* TODO: reoptimize others after unoptimized this probe */
 924}
 925
 926#else /* !CONFIG_OPTPROBES */
 927
 928#define optimize_kprobe(p)                      do {} while (0)
 929#define unoptimize_kprobe(p, f)                 do {} while (0)
 930#define kill_optimized_kprobe(p)                do {} while (0)
 931#define prepare_optimized_kprobe(p)             do {} while (0)
 932#define try_to_optimize_kprobe(p)               do {} while (0)
 933#define __arm_kprobe(p)                         arch_arm_kprobe(p)
 934#define __disarm_kprobe(p, o)                   arch_disarm_kprobe(p)
 935#define kprobe_disarmed(p)                      kprobe_disabled(p)
 936#define wait_for_kprobe_optimizer()             do {} while (0)
 937
 938static int reuse_unused_kprobe(struct kprobe *ap)
 939{
 940        /*
 941         * If the optimized kprobe is NOT supported, the aggr kprobe is
 942         * released at the same time that the last aggregated kprobe is
 943         * unregistered.
 944         * Thus there should be no chance to reuse unused kprobe.
 945         */
 946        printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
 947        return -EINVAL;
 948}
 949
 950static void free_aggr_kprobe(struct kprobe *p)
 951{
 952        arch_remove_kprobe(p);
 953        kfree(p);
 954}
 955
 956static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
 957{
 958        return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
 959}
 960#endif /* CONFIG_OPTPROBES */
 961
 962#ifdef CONFIG_KPROBES_ON_FTRACE
 963static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
 964        .func = kprobe_ftrace_handler,
 965        .flags = FTRACE_OPS_FL_SAVE_REGS,
 966};
 967
 968static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = {
 969        .func = kprobe_ftrace_handler,
 970        .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
 971};
 972
 973static int kprobe_ipmodify_enabled;
 974static int kprobe_ftrace_enabled;
 975
 976/* Must ensure p->addr is really on ftrace */
 977static int prepare_kprobe(struct kprobe *p)
 978{
 979        if (!kprobe_ftrace(p))
 980                return arch_prepare_kprobe(p);
 981
 982        return arch_prepare_kprobe_ftrace(p);
 983}
 984
 985/* Caller must lock kprobe_mutex */
 986static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
 987                               int *cnt)
 988{
 989        int ret = 0;
 990
 991        ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0);
 992        if (ret) {
 993                pr_debug("Failed to arm kprobe-ftrace at %pS (%d)\n",
 994                         p->addr, ret);
 995                return ret;
 996        }
 997
 998        if (*cnt == 0) {
 999                ret = register_ftrace_function(ops);
1000                if (ret) {
1001                        pr_debug("Failed to init kprobe-ftrace (%d)\n", ret);
1002                        goto err_ftrace;
1003                }
1004        }
1005
1006        (*cnt)++;
1007        return ret;
1008
1009err_ftrace:
1010        /*
1011         * At this point, sinec ops is not registered, we should be sefe from
1012         * registering empty filter.
1013         */
1014        ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1015        return ret;
1016}
1017
1018static int arm_kprobe_ftrace(struct kprobe *p)
1019{
1020        bool ipmodify = (p->post_handler != NULL);
1021
1022        return __arm_kprobe_ftrace(p,
1023                ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1024                ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1025}
1026
1027/* Caller must lock kprobe_mutex */
1028static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1029                                  int *cnt)
1030{
1031        int ret = 0;
1032
1033        if (*cnt == 1) {
1034                ret = unregister_ftrace_function(ops);
1035                if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret))
1036                        return ret;
1037        }
1038
1039        (*cnt)--;
1040
1041        ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1042        WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n",
1043                  p->addr, ret);
1044        return ret;
1045}
1046
1047static int disarm_kprobe_ftrace(struct kprobe *p)
1048{
1049        bool ipmodify = (p->post_handler != NULL);
1050
1051        return __disarm_kprobe_ftrace(p,
1052                ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1053                ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1054}
1055#else   /* !CONFIG_KPROBES_ON_FTRACE */
1056#define prepare_kprobe(p)       arch_prepare_kprobe(p)
1057#define arm_kprobe_ftrace(p)    (-ENODEV)
1058#define disarm_kprobe_ftrace(p) (-ENODEV)
1059#endif
1060
1061/* Arm a kprobe with text_mutex */
1062static int arm_kprobe(struct kprobe *kp)
1063{
1064        if (unlikely(kprobe_ftrace(kp)))
1065                return arm_kprobe_ftrace(kp);
1066
1067        cpus_read_lock();
1068        mutex_lock(&text_mutex);
1069        __arm_kprobe(kp);
1070        mutex_unlock(&text_mutex);
1071        cpus_read_unlock();
1072
1073        return 0;
1074}
1075
1076/* Disarm a kprobe with text_mutex */
1077static int disarm_kprobe(struct kprobe *kp, bool reopt)
1078{
1079        if (unlikely(kprobe_ftrace(kp)))
1080                return disarm_kprobe_ftrace(kp);
1081
1082        cpus_read_lock();
1083        mutex_lock(&text_mutex);
1084        __disarm_kprobe(kp, reopt);
1085        mutex_unlock(&text_mutex);
1086        cpus_read_unlock();
1087
1088        return 0;
1089}
1090
1091/*
1092 * Aggregate handlers for multiple kprobes support - these handlers
1093 * take care of invoking the individual kprobe handlers on p->list
1094 */
1095static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1096{
1097        struct kprobe *kp;
1098
1099        list_for_each_entry_rcu(kp, &p->list, list) {
1100                if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1101                        set_kprobe_instance(kp);
1102                        if (kp->pre_handler(kp, regs))
1103                                return 1;
1104                }
1105                reset_kprobe_instance();
1106        }
1107        return 0;
1108}
1109NOKPROBE_SYMBOL(aggr_pre_handler);
1110
1111static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1112                              unsigned long flags)
1113{
1114        struct kprobe *kp;
1115
1116        list_for_each_entry_rcu(kp, &p->list, list) {
1117                if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1118                        set_kprobe_instance(kp);
1119                        kp->post_handler(kp, regs, flags);
1120                        reset_kprobe_instance();
1121                }
1122        }
1123}
1124NOKPROBE_SYMBOL(aggr_post_handler);
1125
1126static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1127                              int trapnr)
1128{
1129        struct kprobe *cur = __this_cpu_read(kprobe_instance);
1130
1131        /*
1132         * if we faulted "during" the execution of a user specified
1133         * probe handler, invoke just that probe's fault handler
1134         */
1135        if (cur && cur->fault_handler) {
1136                if (cur->fault_handler(cur, regs, trapnr))
1137                        return 1;
1138        }
1139        return 0;
1140}
1141NOKPROBE_SYMBOL(aggr_fault_handler);
1142
1143/* Walks the list and increments nmissed count for multiprobe case */
1144void kprobes_inc_nmissed_count(struct kprobe *p)
1145{
1146        struct kprobe *kp;
1147        if (!kprobe_aggrprobe(p)) {
1148                p->nmissed++;
1149        } else {
1150                list_for_each_entry_rcu(kp, &p->list, list)
1151                        kp->nmissed++;
1152        }
1153        return;
1154}
1155NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1156
1157void recycle_rp_inst(struct kretprobe_instance *ri,
1158                     struct hlist_head *head)
1159{
1160        struct kretprobe *rp = ri->rp;
1161
1162        /* remove rp inst off the rprobe_inst_table */
1163        hlist_del(&ri->hlist);
1164        INIT_HLIST_NODE(&ri->hlist);
1165        if (likely(rp)) {
1166                raw_spin_lock(&rp->lock);
1167                hlist_add_head(&ri->hlist, &rp->free_instances);
1168                raw_spin_unlock(&rp->lock);
1169        } else
1170                /* Unregistering */
1171                hlist_add_head(&ri->hlist, head);
1172}
1173NOKPROBE_SYMBOL(recycle_rp_inst);
1174
1175void kretprobe_hash_lock(struct task_struct *tsk,
1176                         struct hlist_head **head, unsigned long *flags)
1177__acquires(hlist_lock)
1178{
1179        unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1180        raw_spinlock_t *hlist_lock;
1181
1182        *head = &kretprobe_inst_table[hash];
1183        hlist_lock = kretprobe_table_lock_ptr(hash);
1184        raw_spin_lock_irqsave(hlist_lock, *flags);
1185}
1186NOKPROBE_SYMBOL(kretprobe_hash_lock);
1187
1188static void kretprobe_table_lock(unsigned long hash,
1189                                 unsigned long *flags)
1190__acquires(hlist_lock)
1191{
1192        raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1193        raw_spin_lock_irqsave(hlist_lock, *flags);
1194}
1195NOKPROBE_SYMBOL(kretprobe_table_lock);
1196
1197void kretprobe_hash_unlock(struct task_struct *tsk,
1198                           unsigned long *flags)
1199__releases(hlist_lock)
1200{
1201        unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1202        raw_spinlock_t *hlist_lock;
1203
1204        hlist_lock = kretprobe_table_lock_ptr(hash);
1205        raw_spin_unlock_irqrestore(hlist_lock, *flags);
1206}
1207NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1208
1209static void kretprobe_table_unlock(unsigned long hash,
1210                                   unsigned long *flags)
1211__releases(hlist_lock)
1212{
1213        raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1214        raw_spin_unlock_irqrestore(hlist_lock, *flags);
1215}
1216NOKPROBE_SYMBOL(kretprobe_table_unlock);
1217
1218/*
1219 * This function is called from finish_task_switch when task tk becomes dead,
1220 * so that we can recycle any function-return probe instances associated
1221 * with this task. These left over instances represent probed functions
1222 * that have been called but will never return.
1223 */
1224void kprobe_flush_task(struct task_struct *tk)
1225{
1226        struct kretprobe_instance *ri;
1227        struct hlist_head *head, empty_rp;
1228        struct hlist_node *tmp;
1229        unsigned long hash, flags = 0;
1230
1231        if (unlikely(!kprobes_initialized))
1232                /* Early boot.  kretprobe_table_locks not yet initialized. */
1233                return;
1234
1235        INIT_HLIST_HEAD(&empty_rp);
1236        hash = hash_ptr(tk, KPROBE_HASH_BITS);
1237        head = &kretprobe_inst_table[hash];
1238        kretprobe_table_lock(hash, &flags);
1239        hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1240                if (ri->task == tk)
1241                        recycle_rp_inst(ri, &empty_rp);
1242        }
1243        kretprobe_table_unlock(hash, &flags);
1244        hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1245                hlist_del(&ri->hlist);
1246                kfree(ri);
1247        }
1248}
1249NOKPROBE_SYMBOL(kprobe_flush_task);
1250
1251static inline void free_rp_inst(struct kretprobe *rp)
1252{
1253        struct kretprobe_instance *ri;
1254        struct hlist_node *next;
1255
1256        hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1257                hlist_del(&ri->hlist);
1258                kfree(ri);
1259        }
1260}
1261
1262static void cleanup_rp_inst(struct kretprobe *rp)
1263{
1264        unsigned long flags, hash;
1265        struct kretprobe_instance *ri;
1266        struct hlist_node *next;
1267        struct hlist_head *head;
1268
1269        /* No race here */
1270        for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1271                kretprobe_table_lock(hash, &flags);
1272                head = &kretprobe_inst_table[hash];
1273                hlist_for_each_entry_safe(ri, next, head, hlist) {
1274                        if (ri->rp == rp)
1275                                ri->rp = NULL;
1276                }
1277                kretprobe_table_unlock(hash, &flags);
1278        }
1279        free_rp_inst(rp);
1280}
1281NOKPROBE_SYMBOL(cleanup_rp_inst);
1282
1283/* Add the new probe to ap->list */
1284static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1285{
1286        if (p->post_handler)
1287                unoptimize_kprobe(ap, true);    /* Fall back to normal kprobe */
1288
1289        list_add_rcu(&p->list, &ap->list);
1290        if (p->post_handler && !ap->post_handler)
1291                ap->post_handler = aggr_post_handler;
1292
1293        return 0;
1294}
1295
1296/*
1297 * Fill in the required fields of the "manager kprobe". Replace the
1298 * earlier kprobe in the hlist with the manager kprobe
1299 */
1300static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1301{
1302        /* Copy p's insn slot to ap */
1303        copy_kprobe(p, ap);
1304        flush_insn_slot(ap);
1305        ap->addr = p->addr;
1306        ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1307        ap->pre_handler = aggr_pre_handler;
1308        ap->fault_handler = aggr_fault_handler;
1309        /* We don't care the kprobe which has gone. */
1310        if (p->post_handler && !kprobe_gone(p))
1311                ap->post_handler = aggr_post_handler;
1312
1313        INIT_LIST_HEAD(&ap->list);
1314        INIT_HLIST_NODE(&ap->hlist);
1315
1316        list_add_rcu(&p->list, &ap->list);
1317        hlist_replace_rcu(&p->hlist, &ap->hlist);
1318}
1319
1320/*
1321 * This is the second or subsequent kprobe at the address - handle
1322 * the intricacies
1323 */
1324static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1325{
1326        int ret = 0;
1327        struct kprobe *ap = orig_p;
1328
1329        cpus_read_lock();
1330
1331        /* For preparing optimization, jump_label_text_reserved() is called */
1332        jump_label_lock();
1333        mutex_lock(&text_mutex);
1334
1335        if (!kprobe_aggrprobe(orig_p)) {
1336                /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1337                ap = alloc_aggr_kprobe(orig_p);
1338                if (!ap) {
1339                        ret = -ENOMEM;
1340                        goto out;
1341                }
1342                init_aggr_kprobe(ap, orig_p);
1343        } else if (kprobe_unused(ap)) {
1344                /* This probe is going to die. Rescue it */
1345                ret = reuse_unused_kprobe(ap);
1346                if (ret)
1347                        goto out;
1348        }
1349
1350        if (kprobe_gone(ap)) {
1351                /*
1352                 * Attempting to insert new probe at the same location that
1353                 * had a probe in the module vaddr area which already
1354                 * freed. So, the instruction slot has already been
1355                 * released. We need a new slot for the new probe.
1356                 */
1357                ret = arch_prepare_kprobe(ap);
1358                if (ret)
1359                        /*
1360                         * Even if fail to allocate new slot, don't need to
1361                         * free aggr_probe. It will be used next time, or
1362                         * freed by unregister_kprobe.
1363                         */
1364                        goto out;
1365
1366                /* Prepare optimized instructions if possible. */
1367                prepare_optimized_kprobe(ap);
1368
1369                /*
1370                 * Clear gone flag to prevent allocating new slot again, and
1371                 * set disabled flag because it is not armed yet.
1372                 */
1373                ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1374                            | KPROBE_FLAG_DISABLED;
1375        }
1376
1377        /* Copy ap's insn slot to p */
1378        copy_kprobe(ap, p);
1379        ret = add_new_kprobe(ap, p);
1380
1381out:
1382        mutex_unlock(&text_mutex);
1383        jump_label_unlock();
1384        cpus_read_unlock();
1385
1386        if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1387                ap->flags &= ~KPROBE_FLAG_DISABLED;
1388                if (!kprobes_all_disarmed) {
1389                        /* Arm the breakpoint again. */
1390                        ret = arm_kprobe(ap);
1391                        if (ret) {
1392                                ap->flags |= KPROBE_FLAG_DISABLED;
1393                                list_del_rcu(&p->list);
1394                                synchronize_rcu();
1395                        }
1396                }
1397        }
1398        return ret;
1399}
1400
1401bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1402{
1403        /* The __kprobes marked functions and entry code must not be probed */
1404        return addr >= (unsigned long)__kprobes_text_start &&
1405               addr < (unsigned long)__kprobes_text_end;
1406}
1407
1408static bool __within_kprobe_blacklist(unsigned long addr)
1409{
1410        struct kprobe_blacklist_entry *ent;
1411
1412        if (arch_within_kprobe_blacklist(addr))
1413                return true;
1414        /*
1415         * If there exists a kprobe_blacklist, verify and
1416         * fail any probe registration in the prohibited area
1417         */
1418        list_for_each_entry(ent, &kprobe_blacklist, list) {
1419                if (addr >= ent->start_addr && addr < ent->end_addr)
1420                        return true;
1421        }
1422        return false;
1423}
1424
1425bool within_kprobe_blacklist(unsigned long addr)
1426{
1427        char symname[KSYM_NAME_LEN], *p;
1428
1429        if (__within_kprobe_blacklist(addr))
1430                return true;
1431
1432        /* Check if the address is on a suffixed-symbol */
1433        if (!lookup_symbol_name(addr, symname)) {
1434                p = strchr(symname, '.');
1435                if (!p)
1436                        return false;
1437                *p = '\0';
1438                addr = (unsigned long)kprobe_lookup_name(symname, 0);
1439                if (addr)
1440                        return __within_kprobe_blacklist(addr);
1441        }
1442        return false;
1443}
1444
1445/*
1446 * If we have a symbol_name argument, look it up and add the offset field
1447 * to it. This way, we can specify a relative address to a symbol.
1448 * This returns encoded errors if it fails to look up symbol or invalid
1449 * combination of parameters.
1450 */
1451static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1452                        const char *symbol_name, unsigned int offset)
1453{
1454        if ((symbol_name && addr) || (!symbol_name && !addr))
1455                goto invalid;
1456
1457        if (symbol_name) {
1458                addr = kprobe_lookup_name(symbol_name, offset);
1459                if (!addr)
1460                        return ERR_PTR(-ENOENT);
1461        }
1462
1463        addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1464        if (addr)
1465                return addr;
1466
1467invalid:
1468        return ERR_PTR(-EINVAL);
1469}
1470
1471static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1472{
1473        return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1474}
1475
1476/* Check passed kprobe is valid and return kprobe in kprobe_table. */
1477static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1478{
1479        struct kprobe *ap, *list_p;
1480
1481        ap = get_kprobe(p->addr);
1482        if (unlikely(!ap))
1483                return NULL;
1484
1485        if (p != ap) {
1486                list_for_each_entry_rcu(list_p, &ap->list, list)
1487                        if (list_p == p)
1488                        /* kprobe p is a valid probe */
1489                                goto valid;
1490                return NULL;
1491        }
1492valid:
1493        return ap;
1494}
1495
1496/* Return error if the kprobe is being re-registered */
1497static inline int check_kprobe_rereg(struct kprobe *p)
1498{
1499        int ret = 0;
1500
1501        mutex_lock(&kprobe_mutex);
1502        if (__get_valid_kprobe(p))
1503                ret = -EINVAL;
1504        mutex_unlock(&kprobe_mutex);
1505
1506        return ret;
1507}
1508
1509int __weak arch_check_ftrace_location(struct kprobe *p)
1510{
1511        unsigned long ftrace_addr;
1512
1513        ftrace_addr = ftrace_location((unsigned long)p->addr);
1514        if (ftrace_addr) {
1515#ifdef CONFIG_KPROBES_ON_FTRACE
1516                /* Given address is not on the instruction boundary */
1517                if ((unsigned long)p->addr != ftrace_addr)
1518                        return -EILSEQ;
1519                p->flags |= KPROBE_FLAG_FTRACE;
1520#else   /* !CONFIG_KPROBES_ON_FTRACE */
1521                return -EINVAL;
1522#endif
1523        }
1524        return 0;
1525}
1526
1527static int check_kprobe_address_safe(struct kprobe *p,
1528                                     struct module **probed_mod)
1529{
1530        int ret;
1531
1532        ret = arch_check_ftrace_location(p);
1533        if (ret)
1534                return ret;
1535        jump_label_lock();
1536        preempt_disable();
1537
1538        /* Ensure it is not in reserved area nor out of text */
1539        if (!kernel_text_address((unsigned long) p->addr) ||
1540            within_kprobe_blacklist((unsigned long) p->addr) ||
1541            jump_label_text_reserved(p->addr, p->addr) ||
1542            find_bug((unsigned long)p->addr)) {
1543                ret = -EINVAL;
1544                goto out;
1545        }
1546
1547        /* Check if are we probing a module */
1548        *probed_mod = __module_text_address((unsigned long) p->addr);
1549        if (*probed_mod) {
1550                /*
1551                 * We must hold a refcount of the probed module while updating
1552                 * its code to prohibit unexpected unloading.
1553                 */
1554                if (unlikely(!try_module_get(*probed_mod))) {
1555                        ret = -ENOENT;
1556                        goto out;
1557                }
1558
1559                /*
1560                 * If the module freed .init.text, we couldn't insert
1561                 * kprobes in there.
1562                 */
1563                if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1564                    (*probed_mod)->state != MODULE_STATE_COMING) {
1565                        module_put(*probed_mod);
1566                        *probed_mod = NULL;
1567                        ret = -ENOENT;
1568                }
1569        }
1570out:
1571        preempt_enable();
1572        jump_label_unlock();
1573
1574        return ret;
1575}
1576
1577int register_kprobe(struct kprobe *p)
1578{
1579        int ret;
1580        struct kprobe *old_p;
1581        struct module *probed_mod;
1582        kprobe_opcode_t *addr;
1583
1584        /* Adjust probe address from symbol */
1585        addr = kprobe_addr(p);
1586        if (IS_ERR(addr))
1587                return PTR_ERR(addr);
1588        p->addr = addr;
1589
1590        ret = check_kprobe_rereg(p);
1591        if (ret)
1592                return ret;
1593
1594        /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1595        p->flags &= KPROBE_FLAG_DISABLED;
1596        p->nmissed = 0;
1597        INIT_LIST_HEAD(&p->list);
1598
1599        ret = check_kprobe_address_safe(p, &probed_mod);
1600        if (ret)
1601                return ret;
1602
1603        mutex_lock(&kprobe_mutex);
1604
1605        old_p = get_kprobe(p->addr);
1606        if (old_p) {
1607                /* Since this may unoptimize old_p, locking text_mutex. */
1608                ret = register_aggr_kprobe(old_p, p);
1609                goto out;
1610        }
1611
1612        cpus_read_lock();
1613        /* Prevent text modification */
1614        mutex_lock(&text_mutex);
1615        ret = prepare_kprobe(p);
1616        mutex_unlock(&text_mutex);
1617        cpus_read_unlock();
1618        if (ret)
1619                goto out;
1620
1621        INIT_HLIST_NODE(&p->hlist);
1622        hlist_add_head_rcu(&p->hlist,
1623                       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1624
1625        if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1626                ret = arm_kprobe(p);
1627                if (ret) {
1628                        hlist_del_rcu(&p->hlist);
1629                        synchronize_rcu();
1630                        goto out;
1631                }
1632        }
1633
1634        /* Try to optimize kprobe */
1635        try_to_optimize_kprobe(p);
1636out:
1637        mutex_unlock(&kprobe_mutex);
1638
1639        if (probed_mod)
1640                module_put(probed_mod);
1641
1642        return ret;
1643}
1644EXPORT_SYMBOL_GPL(register_kprobe);
1645
1646/* Check if all probes on the aggrprobe are disabled */
1647static int aggr_kprobe_disabled(struct kprobe *ap)
1648{
1649        struct kprobe *kp;
1650
1651        list_for_each_entry_rcu(kp, &ap->list, list)
1652                if (!kprobe_disabled(kp))
1653                        /*
1654                         * There is an active probe on the list.
1655                         * We can't disable this ap.
1656                         */
1657                        return 0;
1658
1659        return 1;
1660}
1661
1662/* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1663static struct kprobe *__disable_kprobe(struct kprobe *p)
1664{
1665        struct kprobe *orig_p;
1666        int ret;
1667
1668        /* Get an original kprobe for return */
1669        orig_p = __get_valid_kprobe(p);
1670        if (unlikely(orig_p == NULL))
1671                return ERR_PTR(-EINVAL);
1672
1673        if (!kprobe_disabled(p)) {
1674                /* Disable probe if it is a child probe */
1675                if (p != orig_p)
1676                        p->flags |= KPROBE_FLAG_DISABLED;
1677
1678                /* Try to disarm and disable this/parent probe */
1679                if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1680                        /*
1681                         * If kprobes_all_disarmed is set, orig_p
1682                         * should have already been disarmed, so
1683                         * skip unneed disarming process.
1684                         */
1685                        if (!kprobes_all_disarmed) {
1686                                ret = disarm_kprobe(orig_p, true);
1687                                if (ret) {
1688                                        p->flags &= ~KPROBE_FLAG_DISABLED;
1689                                        return ERR_PTR(ret);
1690                                }
1691                        }
1692                        orig_p->flags |= KPROBE_FLAG_DISABLED;
1693                }
1694        }
1695
1696        return orig_p;
1697}
1698
1699/*
1700 * Unregister a kprobe without a scheduler synchronization.
1701 */
1702static int __unregister_kprobe_top(struct kprobe *p)
1703{
1704        struct kprobe *ap, *list_p;
1705
1706        /* Disable kprobe. This will disarm it if needed. */
1707        ap = __disable_kprobe(p);
1708        if (IS_ERR(ap))
1709                return PTR_ERR(ap);
1710
1711        if (ap == p)
1712                /*
1713                 * This probe is an independent(and non-optimized) kprobe
1714                 * (not an aggrprobe). Remove from the hash list.
1715                 */
1716                goto disarmed;
1717
1718        /* Following process expects this probe is an aggrprobe */
1719        WARN_ON(!kprobe_aggrprobe(ap));
1720
1721        if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1722                /*
1723                 * !disarmed could be happen if the probe is under delayed
1724                 * unoptimizing.
1725                 */
1726                goto disarmed;
1727        else {
1728                /* If disabling probe has special handlers, update aggrprobe */
1729                if (p->post_handler && !kprobe_gone(p)) {
1730                        list_for_each_entry_rcu(list_p, &ap->list, list) {
1731                                if ((list_p != p) && (list_p->post_handler))
1732                                        goto noclean;
1733                        }
1734                        ap->post_handler = NULL;
1735                }
1736noclean:
1737                /*
1738                 * Remove from the aggrprobe: this path will do nothing in
1739                 * __unregister_kprobe_bottom().
1740                 */
1741                list_del_rcu(&p->list);
1742                if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1743                        /*
1744                         * Try to optimize this probe again, because post
1745                         * handler may have been changed.
1746                         */
1747                        optimize_kprobe(ap);
1748        }
1749        return 0;
1750
1751disarmed:
1752        hlist_del_rcu(&ap->hlist);
1753        return 0;
1754}
1755
1756static void __unregister_kprobe_bottom(struct kprobe *p)
1757{
1758        struct kprobe *ap;
1759
1760        if (list_empty(&p->list))
1761                /* This is an independent kprobe */
1762                arch_remove_kprobe(p);
1763        else if (list_is_singular(&p->list)) {
1764                /* This is the last child of an aggrprobe */
1765                ap = list_entry(p->list.next, struct kprobe, list);
1766                list_del(&p->list);
1767                free_aggr_kprobe(ap);
1768        }
1769        /* Otherwise, do nothing. */
1770}
1771
1772int register_kprobes(struct kprobe **kps, int num)
1773{
1774        int i, ret = 0;
1775
1776        if (num <= 0)
1777                return -EINVAL;
1778        for (i = 0; i < num; i++) {
1779                ret = register_kprobe(kps[i]);
1780                if (ret < 0) {
1781                        if (i > 0)
1782                                unregister_kprobes(kps, i);
1783                        break;
1784                }
1785        }
1786        return ret;
1787}
1788EXPORT_SYMBOL_GPL(register_kprobes);
1789
1790void unregister_kprobe(struct kprobe *p)
1791{
1792        unregister_kprobes(&p, 1);
1793}
1794EXPORT_SYMBOL_GPL(unregister_kprobe);
1795
1796void unregister_kprobes(struct kprobe **kps, int num)
1797{
1798        int i;
1799
1800        if (num <= 0)
1801                return;
1802        mutex_lock(&kprobe_mutex);
1803        for (i = 0; i < num; i++)
1804                if (__unregister_kprobe_top(kps[i]) < 0)
1805                        kps[i]->addr = NULL;
1806        mutex_unlock(&kprobe_mutex);
1807
1808        synchronize_rcu();
1809        for (i = 0; i < num; i++)
1810                if (kps[i]->addr)
1811                        __unregister_kprobe_bottom(kps[i]);
1812}
1813EXPORT_SYMBOL_GPL(unregister_kprobes);
1814
1815int __weak kprobe_exceptions_notify(struct notifier_block *self,
1816                                        unsigned long val, void *data)
1817{
1818        return NOTIFY_DONE;
1819}
1820NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1821
1822static struct notifier_block kprobe_exceptions_nb = {
1823        .notifier_call = kprobe_exceptions_notify,
1824        .priority = 0x7fffffff /* we need to be notified first */
1825};
1826
1827unsigned long __weak arch_deref_entry_point(void *entry)
1828{
1829        return (unsigned long)entry;
1830}
1831
1832#ifdef CONFIG_KRETPROBES
1833/*
1834 * This kprobe pre_handler is registered with every kretprobe. When probe
1835 * hits it will set up the return probe.
1836 */
1837static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1838{
1839        struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1840        unsigned long hash, flags = 0;
1841        struct kretprobe_instance *ri;
1842
1843        /*
1844         * To avoid deadlocks, prohibit return probing in NMI contexts,
1845         * just skip the probe and increase the (inexact) 'nmissed'
1846         * statistical counter, so that the user is informed that
1847         * something happened:
1848         */
1849        if (unlikely(in_nmi())) {
1850                rp->nmissed++;
1851                return 0;
1852        }
1853
1854        /* TODO: consider to only swap the RA after the last pre_handler fired */
1855        hash = hash_ptr(current, KPROBE_HASH_BITS);
1856        raw_spin_lock_irqsave(&rp->lock, flags);
1857        if (!hlist_empty(&rp->free_instances)) {
1858                ri = hlist_entry(rp->free_instances.first,
1859                                struct kretprobe_instance, hlist);
1860                hlist_del(&ri->hlist);
1861                raw_spin_unlock_irqrestore(&rp->lock, flags);
1862
1863                ri->rp = rp;
1864                ri->task = current;
1865
1866                if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1867                        raw_spin_lock_irqsave(&rp->lock, flags);
1868                        hlist_add_head(&ri->hlist, &rp->free_instances);
1869                        raw_spin_unlock_irqrestore(&rp->lock, flags);
1870                        return 0;
1871                }
1872
1873                arch_prepare_kretprobe(ri, regs);
1874
1875                /* XXX(hch): why is there no hlist_move_head? */
1876                INIT_HLIST_NODE(&ri->hlist);
1877                kretprobe_table_lock(hash, &flags);
1878                hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1879                kretprobe_table_unlock(hash, &flags);
1880        } else {
1881                rp->nmissed++;
1882                raw_spin_unlock_irqrestore(&rp->lock, flags);
1883        }
1884        return 0;
1885}
1886NOKPROBE_SYMBOL(pre_handler_kretprobe);
1887
1888bool __weak arch_kprobe_on_func_entry(unsigned long offset)
1889{
1890        return !offset;
1891}
1892
1893bool kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1894{
1895        kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1896
1897        if (IS_ERR(kp_addr))
1898                return false;
1899
1900        if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset) ||
1901                                                !arch_kprobe_on_func_entry(offset))
1902                return false;
1903
1904        return true;
1905}
1906
1907int register_kretprobe(struct kretprobe *rp)
1908{
1909        int ret = 0;
1910        struct kretprobe_instance *inst;
1911        int i;
1912        void *addr;
1913
1914        if (!kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset))
1915                return -EINVAL;
1916
1917        if (kretprobe_blacklist_size) {
1918                addr = kprobe_addr(&rp->kp);
1919                if (IS_ERR(addr))
1920                        return PTR_ERR(addr);
1921
1922                for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1923                        if (kretprobe_blacklist[i].addr == addr)
1924                                return -EINVAL;
1925                }
1926        }
1927
1928        rp->kp.pre_handler = pre_handler_kretprobe;
1929        rp->kp.post_handler = NULL;
1930        rp->kp.fault_handler = NULL;
1931
1932        /* Pre-allocate memory for max kretprobe instances */
1933        if (rp->maxactive <= 0) {
1934#ifdef CONFIG_PREEMPTION
1935                rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1936#else
1937                rp->maxactive = num_possible_cpus();
1938#endif
1939        }
1940        raw_spin_lock_init(&rp->lock);
1941        INIT_HLIST_HEAD(&rp->free_instances);
1942        for (i = 0; i < rp->maxactive; i++) {
1943                inst = kmalloc(sizeof(struct kretprobe_instance) +
1944                               rp->data_size, GFP_KERNEL);
1945                if (inst == NULL) {
1946                        free_rp_inst(rp);
1947                        return -ENOMEM;
1948                }
1949                INIT_HLIST_NODE(&inst->hlist);
1950                hlist_add_head(&inst->hlist, &rp->free_instances);
1951        }
1952
1953        rp->nmissed = 0;
1954        /* Establish function entry probe point */
1955        ret = register_kprobe(&rp->kp);
1956        if (ret != 0)
1957                free_rp_inst(rp);
1958        return ret;
1959}
1960EXPORT_SYMBOL_GPL(register_kretprobe);
1961
1962int register_kretprobes(struct kretprobe **rps, int num)
1963{
1964        int ret = 0, i;
1965
1966        if (num <= 0)
1967                return -EINVAL;
1968        for (i = 0; i < num; i++) {
1969                ret = register_kretprobe(rps[i]);
1970                if (ret < 0) {
1971                        if (i > 0)
1972                                unregister_kretprobes(rps, i);
1973                        break;
1974                }
1975        }
1976        return ret;
1977}
1978EXPORT_SYMBOL_GPL(register_kretprobes);
1979
1980void unregister_kretprobe(struct kretprobe *rp)
1981{
1982        unregister_kretprobes(&rp, 1);
1983}
1984EXPORT_SYMBOL_GPL(unregister_kretprobe);
1985
1986void unregister_kretprobes(struct kretprobe **rps, int num)
1987{
1988        int i;
1989
1990        if (num <= 0)
1991                return;
1992        mutex_lock(&kprobe_mutex);
1993        for (i = 0; i < num; i++)
1994                if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1995                        rps[i]->kp.addr = NULL;
1996        mutex_unlock(&kprobe_mutex);
1997
1998        synchronize_rcu();
1999        for (i = 0; i < num; i++) {
2000                if (rps[i]->kp.addr) {
2001                        __unregister_kprobe_bottom(&rps[i]->kp);
2002                        cleanup_rp_inst(rps[i]);
2003                }
2004        }
2005}
2006EXPORT_SYMBOL_GPL(unregister_kretprobes);
2007
2008#else /* CONFIG_KRETPROBES */
2009int register_kretprobe(struct kretprobe *rp)
2010{
2011        return -ENOSYS;
2012}
2013EXPORT_SYMBOL_GPL(register_kretprobe);
2014
2015int register_kretprobes(struct kretprobe **rps, int num)
2016{
2017        return -ENOSYS;
2018}
2019EXPORT_SYMBOL_GPL(register_kretprobes);
2020
2021void unregister_kretprobe(struct kretprobe *rp)
2022{
2023}
2024EXPORT_SYMBOL_GPL(unregister_kretprobe);
2025
2026void unregister_kretprobes(struct kretprobe **rps, int num)
2027{
2028}
2029EXPORT_SYMBOL_GPL(unregister_kretprobes);
2030
2031static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2032{
2033        return 0;
2034}
2035NOKPROBE_SYMBOL(pre_handler_kretprobe);
2036
2037#endif /* CONFIG_KRETPROBES */
2038
2039/* Set the kprobe gone and remove its instruction buffer. */
2040static void kill_kprobe(struct kprobe *p)
2041{
2042        struct kprobe *kp;
2043
2044        p->flags |= KPROBE_FLAG_GONE;
2045        if (kprobe_aggrprobe(p)) {
2046                /*
2047                 * If this is an aggr_kprobe, we have to list all the
2048                 * chained probes and mark them GONE.
2049                 */
2050                list_for_each_entry_rcu(kp, &p->list, list)
2051                        kp->flags |= KPROBE_FLAG_GONE;
2052                p->post_handler = NULL;
2053                kill_optimized_kprobe(p);
2054        }
2055        /*
2056         * Here, we can remove insn_slot safely, because no thread calls
2057         * the original probed function (which will be freed soon) any more.
2058         */
2059        arch_remove_kprobe(p);
2060}
2061
2062/* Disable one kprobe */
2063int disable_kprobe(struct kprobe *kp)
2064{
2065        int ret = 0;
2066        struct kprobe *p;
2067
2068        mutex_lock(&kprobe_mutex);
2069
2070        /* Disable this kprobe */
2071        p = __disable_kprobe(kp);
2072        if (IS_ERR(p))
2073                ret = PTR_ERR(p);
2074
2075        mutex_unlock(&kprobe_mutex);
2076        return ret;
2077}
2078EXPORT_SYMBOL_GPL(disable_kprobe);
2079
2080/* Enable one kprobe */
2081int enable_kprobe(struct kprobe *kp)
2082{
2083        int ret = 0;
2084        struct kprobe *p;
2085
2086        mutex_lock(&kprobe_mutex);
2087
2088        /* Check whether specified probe is valid. */
2089        p = __get_valid_kprobe(kp);
2090        if (unlikely(p == NULL)) {
2091                ret = -EINVAL;
2092                goto out;
2093        }
2094
2095        if (kprobe_gone(kp)) {
2096                /* This kprobe has gone, we couldn't enable it. */
2097                ret = -EINVAL;
2098                goto out;
2099        }
2100
2101        if (p != kp)
2102                kp->flags &= ~KPROBE_FLAG_DISABLED;
2103
2104        if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2105                p->flags &= ~KPROBE_FLAG_DISABLED;
2106                ret = arm_kprobe(p);
2107                if (ret)
2108                        p->flags |= KPROBE_FLAG_DISABLED;
2109        }
2110out:
2111        mutex_unlock(&kprobe_mutex);
2112        return ret;
2113}
2114EXPORT_SYMBOL_GPL(enable_kprobe);
2115
2116/* Caller must NOT call this in usual path. This is only for critical case */
2117void dump_kprobe(struct kprobe *kp)
2118{
2119        pr_err("Dumping kprobe:\n");
2120        pr_err("Name: %s\nOffset: %x\nAddress: %pS\n",
2121               kp->symbol_name, kp->offset, kp->addr);
2122}
2123NOKPROBE_SYMBOL(dump_kprobe);
2124
2125int kprobe_add_ksym_blacklist(unsigned long entry)
2126{
2127        struct kprobe_blacklist_entry *ent;
2128        unsigned long offset = 0, size = 0;
2129
2130        if (!kernel_text_address(entry) ||
2131            !kallsyms_lookup_size_offset(entry, &size, &offset))
2132                return -EINVAL;
2133
2134        ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2135        if (!ent)
2136                return -ENOMEM;
2137        ent->start_addr = entry;
2138        ent->end_addr = entry + size;
2139        INIT_LIST_HEAD(&ent->list);
2140        list_add_tail(&ent->list, &kprobe_blacklist);
2141
2142        return (int)size;
2143}
2144
2145/* Add all symbols in given area into kprobe blacklist */
2146int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2147{
2148        unsigned long entry;
2149        int ret = 0;
2150
2151        for (entry = start; entry < end; entry += ret) {
2152                ret = kprobe_add_ksym_blacklist(entry);
2153                if (ret < 0)
2154                        return ret;
2155                if (ret == 0)   /* In case of alias symbol */
2156                        ret = 1;
2157        }
2158        return 0;
2159}
2160
2161int __init __weak arch_populate_kprobe_blacklist(void)
2162{
2163        return 0;
2164}
2165
2166/*
2167 * Lookup and populate the kprobe_blacklist.
2168 *
2169 * Unlike the kretprobe blacklist, we'll need to determine
2170 * the range of addresses that belong to the said functions,
2171 * since a kprobe need not necessarily be at the beginning
2172 * of a function.
2173 */
2174static int __init populate_kprobe_blacklist(unsigned long *start,
2175                                             unsigned long *end)
2176{
2177        unsigned long entry;
2178        unsigned long *iter;
2179        int ret;
2180
2181        for (iter = start; iter < end; iter++) {
2182                entry = arch_deref_entry_point((void *)*iter);
2183                ret = kprobe_add_ksym_blacklist(entry);
2184                if (ret == -EINVAL)
2185                        continue;
2186                if (ret < 0)
2187                        return ret;
2188        }
2189
2190        /* Symbols in __kprobes_text are blacklisted */
2191        ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2192                                        (unsigned long)__kprobes_text_end);
2193
2194        return ret ? : arch_populate_kprobe_blacklist();
2195}
2196
2197/* Module notifier call back, checking kprobes on the module */
2198static int kprobes_module_callback(struct notifier_block *nb,
2199                                   unsigned long val, void *data)
2200{
2201        struct module *mod = data;
2202        struct hlist_head *head;
2203        struct kprobe *p;
2204        unsigned int i;
2205        int checkcore = (val == MODULE_STATE_GOING);
2206
2207        if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2208                return NOTIFY_DONE;
2209
2210        /*
2211         * When MODULE_STATE_GOING was notified, both of module .text and
2212         * .init.text sections would be freed. When MODULE_STATE_LIVE was
2213         * notified, only .init.text section would be freed. We need to
2214         * disable kprobes which have been inserted in the sections.
2215         */
2216        mutex_lock(&kprobe_mutex);
2217        for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2218                head = &kprobe_table[i];
2219                hlist_for_each_entry_rcu(p, head, hlist)
2220                        if (within_module_init((unsigned long)p->addr, mod) ||
2221                            (checkcore &&
2222                             within_module_core((unsigned long)p->addr, mod))) {
2223                                /*
2224                                 * The vaddr this probe is installed will soon
2225                                 * be vfreed buy not synced to disk. Hence,
2226                                 * disarming the breakpoint isn't needed.
2227                                 *
2228                                 * Note, this will also move any optimized probes
2229                                 * that are pending to be removed from their
2230                                 * corresponding lists to the freeing_list and
2231                                 * will not be touched by the delayed
2232                                 * kprobe_optimizer work handler.
2233                                 */
2234                                kill_kprobe(p);
2235                        }
2236        }
2237        mutex_unlock(&kprobe_mutex);
2238        return NOTIFY_DONE;
2239}
2240
2241static struct notifier_block kprobe_module_nb = {
2242        .notifier_call = kprobes_module_callback,
2243        .priority = 0
2244};
2245
2246/* Markers of _kprobe_blacklist section */
2247extern unsigned long __start_kprobe_blacklist[];
2248extern unsigned long __stop_kprobe_blacklist[];
2249
2250static int __init init_kprobes(void)
2251{
2252        int i, err = 0;
2253
2254        /* FIXME allocate the probe table, currently defined statically */
2255        /* initialize all list heads */
2256        for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2257                INIT_HLIST_HEAD(&kprobe_table[i]);
2258                INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2259                raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2260        }
2261
2262        err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2263                                        __stop_kprobe_blacklist);
2264        if (err) {
2265                pr_err("kprobes: failed to populate blacklist: %d\n", err);
2266                pr_err("Please take care of using kprobes.\n");
2267        }
2268
2269        if (kretprobe_blacklist_size) {
2270                /* lookup the function address from its name */
2271                for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2272                        kretprobe_blacklist[i].addr =
2273                                kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2274                        if (!kretprobe_blacklist[i].addr)
2275                                printk("kretprobe: lookup failed: %s\n",
2276                                       kretprobe_blacklist[i].name);
2277                }
2278        }
2279
2280#if defined(CONFIG_OPTPROBES)
2281#if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2282        /* Init kprobe_optinsn_slots */
2283        kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2284#endif
2285        /* By default, kprobes can be optimized */
2286        kprobes_allow_optimization = true;
2287#endif
2288
2289        /* By default, kprobes are armed */
2290        kprobes_all_disarmed = false;
2291
2292        err = arch_init_kprobes();
2293        if (!err)
2294                err = register_die_notifier(&kprobe_exceptions_nb);
2295        if (!err)
2296                err = register_module_notifier(&kprobe_module_nb);
2297
2298        kprobes_initialized = (err == 0);
2299
2300        if (!err)
2301                init_test_probes();
2302        return err;
2303}
2304subsys_initcall(init_kprobes);
2305
2306#ifdef CONFIG_DEBUG_FS
2307static void report_probe(struct seq_file *pi, struct kprobe *p,
2308                const char *sym, int offset, char *modname, struct kprobe *pp)
2309{
2310        char *kprobe_type;
2311        void *addr = p->addr;
2312
2313        if (p->pre_handler == pre_handler_kretprobe)
2314                kprobe_type = "r";
2315        else
2316                kprobe_type = "k";
2317
2318        if (!kallsyms_show_value())
2319                addr = NULL;
2320
2321        if (sym)
2322                seq_printf(pi, "%px  %s  %s+0x%x  %s ",
2323                        addr, kprobe_type, sym, offset,
2324                        (modname ? modname : " "));
2325        else    /* try to use %pS */
2326                seq_printf(pi, "%px  %s  %pS ",
2327                        addr, kprobe_type, p->addr);
2328
2329        if (!pp)
2330                pp = p;
2331        seq_printf(pi, "%s%s%s%s\n",
2332                (kprobe_gone(p) ? "[GONE]" : ""),
2333                ((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2334                (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2335                (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2336}
2337
2338static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2339{
2340        return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2341}
2342
2343static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2344{
2345        (*pos)++;
2346        if (*pos >= KPROBE_TABLE_SIZE)
2347                return NULL;
2348        return pos;
2349}
2350
2351static void kprobe_seq_stop(struct seq_file *f, void *v)
2352{
2353        /* Nothing to do */
2354}
2355
2356static int show_kprobe_addr(struct seq_file *pi, void *v)
2357{
2358        struct hlist_head *head;
2359        struct kprobe *p, *kp;
2360        const char *sym = NULL;
2361        unsigned int i = *(loff_t *) v;
2362        unsigned long offset = 0;
2363        char *modname, namebuf[KSYM_NAME_LEN];
2364
2365        head = &kprobe_table[i];
2366        preempt_disable();
2367        hlist_for_each_entry_rcu(p, head, hlist) {
2368                sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2369                                        &offset, &modname, namebuf);
2370                if (kprobe_aggrprobe(p)) {
2371                        list_for_each_entry_rcu(kp, &p->list, list)
2372                                report_probe(pi, kp, sym, offset, modname, p);
2373                } else
2374                        report_probe(pi, p, sym, offset, modname, NULL);
2375        }
2376        preempt_enable();
2377        return 0;
2378}
2379
2380static const struct seq_operations kprobes_seq_ops = {
2381        .start = kprobe_seq_start,
2382        .next  = kprobe_seq_next,
2383        .stop  = kprobe_seq_stop,
2384        .show  = show_kprobe_addr
2385};
2386
2387static int kprobes_open(struct inode *inode, struct file *filp)
2388{
2389        return seq_open(filp, &kprobes_seq_ops);
2390}
2391
2392static const struct file_operations debugfs_kprobes_operations = {
2393        .open           = kprobes_open,
2394        .read           = seq_read,
2395        .llseek         = seq_lseek,
2396        .release        = seq_release,
2397};
2398
2399/* kprobes/blacklist -- shows which functions can not be probed */
2400static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2401{
2402        return seq_list_start(&kprobe_blacklist, *pos);
2403}
2404
2405static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2406{
2407        return seq_list_next(v, &kprobe_blacklist, pos);
2408}
2409
2410static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2411{
2412        struct kprobe_blacklist_entry *ent =
2413                list_entry(v, struct kprobe_blacklist_entry, list);
2414
2415        /*
2416         * If /proc/kallsyms is not showing kernel address, we won't
2417         * show them here either.
2418         */
2419        if (!kallsyms_show_value())
2420                seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2421                           (void *)ent->start_addr);
2422        else
2423                seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2424                           (void *)ent->end_addr, (void *)ent->start_addr);
2425        return 0;
2426}
2427
2428static const struct seq_operations kprobe_blacklist_seq_ops = {
2429        .start = kprobe_blacklist_seq_start,
2430        .next  = kprobe_blacklist_seq_next,
2431        .stop  = kprobe_seq_stop,       /* Reuse void function */
2432        .show  = kprobe_blacklist_seq_show,
2433};
2434
2435static int kprobe_blacklist_open(struct inode *inode, struct file *filp)
2436{
2437        return seq_open(filp, &kprobe_blacklist_seq_ops);
2438}
2439
2440static const struct file_operations debugfs_kprobe_blacklist_ops = {
2441        .open           = kprobe_blacklist_open,
2442        .read           = seq_read,
2443        .llseek         = seq_lseek,
2444        .release        = seq_release,
2445};
2446
2447static int arm_all_kprobes(void)
2448{
2449        struct hlist_head *head;
2450        struct kprobe *p;
2451        unsigned int i, total = 0, errors = 0;
2452        int err, ret = 0;
2453
2454        mutex_lock(&kprobe_mutex);
2455
2456        /* If kprobes are armed, just return */
2457        if (!kprobes_all_disarmed)
2458                goto already_enabled;
2459
2460        /*
2461         * optimize_kprobe() called by arm_kprobe() checks
2462         * kprobes_all_disarmed, so set kprobes_all_disarmed before
2463         * arm_kprobe.
2464         */
2465        kprobes_all_disarmed = false;
2466        /* Arming kprobes doesn't optimize kprobe itself */
2467        for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2468                head = &kprobe_table[i];
2469                /* Arm all kprobes on a best-effort basis */
2470                hlist_for_each_entry_rcu(p, head, hlist) {
2471                        if (!kprobe_disabled(p)) {
2472                                err = arm_kprobe(p);
2473                                if (err)  {
2474                                        errors++;
2475                                        ret = err;
2476                                }
2477                                total++;
2478                        }
2479                }
2480        }
2481
2482        if (errors)
2483                pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n",
2484                        errors, total);
2485        else
2486                pr_info("Kprobes globally enabled\n");
2487
2488already_enabled:
2489        mutex_unlock(&kprobe_mutex);
2490        return ret;
2491}
2492
2493static int disarm_all_kprobes(void)
2494{
2495        struct hlist_head *head;
2496        struct kprobe *p;
2497        unsigned int i, total = 0, errors = 0;
2498        int err, ret = 0;
2499
2500        mutex_lock(&kprobe_mutex);
2501
2502        /* If kprobes are already disarmed, just return */
2503        if (kprobes_all_disarmed) {
2504                mutex_unlock(&kprobe_mutex);
2505                return 0;
2506        }
2507
2508        kprobes_all_disarmed = true;
2509
2510        for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2511                head = &kprobe_table[i];
2512                /* Disarm all kprobes on a best-effort basis */
2513                hlist_for_each_entry_rcu(p, head, hlist) {
2514                        if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2515                                err = disarm_kprobe(p, false);
2516                                if (err) {
2517                                        errors++;
2518                                        ret = err;
2519                                }
2520                                total++;
2521                        }
2522                }
2523        }
2524
2525        if (errors)
2526                pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n",
2527                        errors, total);
2528        else
2529                pr_info("Kprobes globally disabled\n");
2530
2531        mutex_unlock(&kprobe_mutex);
2532
2533        /* Wait for disarming all kprobes by optimizer */
2534        wait_for_kprobe_optimizer();
2535
2536        return ret;
2537}
2538
2539/*
2540 * XXX: The debugfs bool file interface doesn't allow for callbacks
2541 * when the bool state is switched. We can reuse that facility when
2542 * available
2543 */
2544static ssize_t read_enabled_file_bool(struct file *file,
2545               char __user *user_buf, size_t count, loff_t *ppos)
2546{
2547        char buf[3];
2548
2549        if (!kprobes_all_disarmed)
2550                buf[0] = '1';
2551        else
2552                buf[0] = '0';
2553        buf[1] = '\n';
2554        buf[2] = 0x00;
2555        return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2556}
2557
2558static ssize_t write_enabled_file_bool(struct file *file,
2559               const char __user *user_buf, size_t count, loff_t *ppos)
2560{
2561        char buf[32];
2562        size_t buf_size;
2563        int ret = 0;
2564
2565        buf_size = min(count, (sizeof(buf)-1));
2566        if (copy_from_user(buf, user_buf, buf_size))
2567                return -EFAULT;
2568
2569        buf[buf_size] = '\0';
2570        switch (buf[0]) {
2571        case 'y':
2572        case 'Y':
2573        case '1':
2574                ret = arm_all_kprobes();
2575                break;
2576        case 'n':
2577        case 'N':
2578        case '0':
2579                ret = disarm_all_kprobes();
2580                break;
2581        default:
2582                return -EINVAL;
2583        }
2584
2585        if (ret)
2586                return ret;
2587
2588        return count;
2589}
2590
2591static const struct file_operations fops_kp = {
2592        .read =         read_enabled_file_bool,
2593        .write =        write_enabled_file_bool,
2594        .llseek =       default_llseek,
2595};
2596
2597static int __init debugfs_kprobe_init(void)
2598{
2599        struct dentry *dir;
2600        unsigned int value = 1;
2601
2602        dir = debugfs_create_dir("kprobes", NULL);
2603
2604        debugfs_create_file("list", 0400, dir, NULL,
2605                            &debugfs_kprobes_operations);
2606
2607        debugfs_create_file("enabled", 0600, dir, &value, &fops_kp);
2608
2609        debugfs_create_file("blacklist", 0400, dir, NULL,
2610                            &debugfs_kprobe_blacklist_ops);
2611
2612        return 0;
2613}
2614
2615late_initcall(debugfs_kprobe_init);
2616#endif /* CONFIG_DEBUG_FS */
2617