linux/kernel/locking/rwsem.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/* kernel/rwsem.c: R/W semaphores, public implementation
   3 *
   4 * Written by David Howells (dhowells@redhat.com).
   5 * Derived from asm-i386/semaphore.h
   6 *
   7 * Writer lock-stealing by Alex Shi <alex.shi@intel.com>
   8 * and Michel Lespinasse <walken@google.com>
   9 *
  10 * Optimistic spinning by Tim Chen <tim.c.chen@intel.com>
  11 * and Davidlohr Bueso <davidlohr@hp.com>. Based on mutexes.
  12 *
  13 * Rwsem count bit fields re-definition and rwsem rearchitecture by
  14 * Waiman Long <longman@redhat.com> and
  15 * Peter Zijlstra <peterz@infradead.org>.
  16 */
  17
  18#include <linux/types.h>
  19#include <linux/kernel.h>
  20#include <linux/sched.h>
  21#include <linux/sched/rt.h>
  22#include <linux/sched/task.h>
  23#include <linux/sched/debug.h>
  24#include <linux/sched/wake_q.h>
  25#include <linux/sched/signal.h>
  26#include <linux/sched/clock.h>
  27#include <linux/export.h>
  28#include <linux/rwsem.h>
  29#include <linux/atomic.h>
  30
  31#include "rwsem.h"
  32#include "lock_events.h"
  33
  34/*
  35 * The least significant 3 bits of the owner value has the following
  36 * meanings when set.
  37 *  - Bit 0: RWSEM_READER_OWNED - The rwsem is owned by readers
  38 *  - Bit 1: RWSEM_RD_NONSPINNABLE - Readers cannot spin on this lock.
  39 *  - Bit 2: RWSEM_WR_NONSPINNABLE - Writers cannot spin on this lock.
  40 *
  41 * When the rwsem is either owned by an anonymous writer, or it is
  42 * reader-owned, but a spinning writer has timed out, both nonspinnable
  43 * bits will be set to disable optimistic spinning by readers and writers.
  44 * In the later case, the last unlocking reader should then check the
  45 * writer nonspinnable bit and clear it only to give writers preference
  46 * to acquire the lock via optimistic spinning, but not readers. Similar
  47 * action is also done in the reader slowpath.
  48
  49 * When a writer acquires a rwsem, it puts its task_struct pointer
  50 * into the owner field. It is cleared after an unlock.
  51 *
  52 * When a reader acquires a rwsem, it will also puts its task_struct
  53 * pointer into the owner field with the RWSEM_READER_OWNED bit set.
  54 * On unlock, the owner field will largely be left untouched. So
  55 * for a free or reader-owned rwsem, the owner value may contain
  56 * information about the last reader that acquires the rwsem.
  57 *
  58 * That information may be helpful in debugging cases where the system
  59 * seems to hang on a reader owned rwsem especially if only one reader
  60 * is involved. Ideally we would like to track all the readers that own
  61 * a rwsem, but the overhead is simply too big.
  62 *
  63 * Reader optimistic spinning is helpful when the reader critical section
  64 * is short and there aren't that many readers around. It makes readers
  65 * relatively more preferred than writers. When a writer times out spinning
  66 * on a reader-owned lock and set the nospinnable bits, there are two main
  67 * reasons for that.
  68 *
  69 *  1) The reader critical section is long, perhaps the task sleeps after
  70 *     acquiring the read lock.
  71 *  2) There are just too many readers contending the lock causing it to
  72 *     take a while to service all of them.
  73 *
  74 * In the former case, long reader critical section will impede the progress
  75 * of writers which is usually more important for system performance. In
  76 * the later case, reader optimistic spinning tends to make the reader
  77 * groups that contain readers that acquire the lock together smaller
  78 * leading to more of them. That may hurt performance in some cases. In
  79 * other words, the setting of nonspinnable bits indicates that reader
  80 * optimistic spinning may not be helpful for those workloads that cause
  81 * it.
  82 *
  83 * Therefore, any writers that had observed the setting of the writer
  84 * nonspinnable bit for a given rwsem after they fail to acquire the lock
  85 * via optimistic spinning will set the reader nonspinnable bit once they
  86 * acquire the write lock. Similarly, readers that observe the setting
  87 * of reader nonspinnable bit at slowpath entry will set the reader
  88 * nonspinnable bits when they acquire the read lock via the wakeup path.
  89 *
  90 * Once the reader nonspinnable bit is on, it will only be reset when
  91 * a writer is able to acquire the rwsem in the fast path or somehow a
  92 * reader or writer in the slowpath doesn't observe the nonspinable bit.
  93 *
  94 * This is to discourage reader optmistic spinning on that particular
  95 * rwsem and make writers more preferred. This adaptive disabling of reader
  96 * optimistic spinning will alleviate the negative side effect of this
  97 * feature.
  98 */
  99#define RWSEM_READER_OWNED      (1UL << 0)
 100#define RWSEM_RD_NONSPINNABLE   (1UL << 1)
 101#define RWSEM_WR_NONSPINNABLE   (1UL << 2)
 102#define RWSEM_NONSPINNABLE      (RWSEM_RD_NONSPINNABLE | RWSEM_WR_NONSPINNABLE)
 103#define RWSEM_OWNER_FLAGS_MASK  (RWSEM_READER_OWNED | RWSEM_NONSPINNABLE)
 104
 105#ifdef CONFIG_DEBUG_RWSEMS
 106# define DEBUG_RWSEMS_WARN_ON(c, sem)   do {                    \
 107        if (!debug_locks_silent &&                              \
 108            WARN_ONCE(c, "DEBUG_RWSEMS_WARN_ON(%s): count = 0x%lx, magic = 0x%lx, owner = 0x%lx, curr 0x%lx, list %sempty\n",\
 109                #c, atomic_long_read(&(sem)->count),            \
 110                (unsigned long) sem->magic,                     \
 111                atomic_long_read(&(sem)->owner), (long)current, \
 112                list_empty(&(sem)->wait_list) ? "" : "not "))   \
 113                        debug_locks_off();                      \
 114        } while (0)
 115#else
 116# define DEBUG_RWSEMS_WARN_ON(c, sem)
 117#endif
 118
 119/*
 120 * On 64-bit architectures, the bit definitions of the count are:
 121 *
 122 * Bit  0    - writer locked bit
 123 * Bit  1    - waiters present bit
 124 * Bit  2    - lock handoff bit
 125 * Bits 3-7  - reserved
 126 * Bits 8-62 - 55-bit reader count
 127 * Bit  63   - read fail bit
 128 *
 129 * On 32-bit architectures, the bit definitions of the count are:
 130 *
 131 * Bit  0    - writer locked bit
 132 * Bit  1    - waiters present bit
 133 * Bit  2    - lock handoff bit
 134 * Bits 3-7  - reserved
 135 * Bits 8-30 - 23-bit reader count
 136 * Bit  31   - read fail bit
 137 *
 138 * It is not likely that the most significant bit (read fail bit) will ever
 139 * be set. This guard bit is still checked anyway in the down_read() fastpath
 140 * just in case we need to use up more of the reader bits for other purpose
 141 * in the future.
 142 *
 143 * atomic_long_fetch_add() is used to obtain reader lock, whereas
 144 * atomic_long_cmpxchg() will be used to obtain writer lock.
 145 *
 146 * There are three places where the lock handoff bit may be set or cleared.
 147 * 1) rwsem_mark_wake() for readers.
 148 * 2) rwsem_try_write_lock() for writers.
 149 * 3) Error path of rwsem_down_write_slowpath().
 150 *
 151 * For all the above cases, wait_lock will be held. A writer must also
 152 * be the first one in the wait_list to be eligible for setting the handoff
 153 * bit. So concurrent setting/clearing of handoff bit is not possible.
 154 */
 155#define RWSEM_WRITER_LOCKED     (1UL << 0)
 156#define RWSEM_FLAG_WAITERS      (1UL << 1)
 157#define RWSEM_FLAG_HANDOFF      (1UL << 2)
 158#define RWSEM_FLAG_READFAIL     (1UL << (BITS_PER_LONG - 1))
 159
 160#define RWSEM_READER_SHIFT      8
 161#define RWSEM_READER_BIAS       (1UL << RWSEM_READER_SHIFT)
 162#define RWSEM_READER_MASK       (~(RWSEM_READER_BIAS - 1))
 163#define RWSEM_WRITER_MASK       RWSEM_WRITER_LOCKED
 164#define RWSEM_LOCK_MASK         (RWSEM_WRITER_MASK|RWSEM_READER_MASK)
 165#define RWSEM_READ_FAILED_MASK  (RWSEM_WRITER_MASK|RWSEM_FLAG_WAITERS|\
 166                                 RWSEM_FLAG_HANDOFF|RWSEM_FLAG_READFAIL)
 167
 168/*
 169 * All writes to owner are protected by WRITE_ONCE() to make sure that
 170 * store tearing can't happen as optimistic spinners may read and use
 171 * the owner value concurrently without lock. Read from owner, however,
 172 * may not need READ_ONCE() as long as the pointer value is only used
 173 * for comparison and isn't being dereferenced.
 174 */
 175static inline void rwsem_set_owner(struct rw_semaphore *sem)
 176{
 177        atomic_long_set(&sem->owner, (long)current);
 178}
 179
 180static inline void rwsem_clear_owner(struct rw_semaphore *sem)
 181{
 182        atomic_long_set(&sem->owner, 0);
 183}
 184
 185/*
 186 * Test the flags in the owner field.
 187 */
 188static inline bool rwsem_test_oflags(struct rw_semaphore *sem, long flags)
 189{
 190        return atomic_long_read(&sem->owner) & flags;
 191}
 192
 193/*
 194 * The task_struct pointer of the last owning reader will be left in
 195 * the owner field.
 196 *
 197 * Note that the owner value just indicates the task has owned the rwsem
 198 * previously, it may not be the real owner or one of the real owners
 199 * anymore when that field is examined, so take it with a grain of salt.
 200 *
 201 * The reader non-spinnable bit is preserved.
 202 */
 203static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem,
 204                                            struct task_struct *owner)
 205{
 206        unsigned long val = (unsigned long)owner | RWSEM_READER_OWNED |
 207                (atomic_long_read(&sem->owner) & RWSEM_RD_NONSPINNABLE);
 208
 209        atomic_long_set(&sem->owner, val);
 210}
 211
 212static inline void rwsem_set_reader_owned(struct rw_semaphore *sem)
 213{
 214        __rwsem_set_reader_owned(sem, current);
 215}
 216
 217/*
 218 * Return true if the rwsem is owned by a reader.
 219 */
 220static inline bool is_rwsem_reader_owned(struct rw_semaphore *sem)
 221{
 222#ifdef CONFIG_DEBUG_RWSEMS
 223        /*
 224         * Check the count to see if it is write-locked.
 225         */
 226        long count = atomic_long_read(&sem->count);
 227
 228        if (count & RWSEM_WRITER_MASK)
 229                return false;
 230#endif
 231        return rwsem_test_oflags(sem, RWSEM_READER_OWNED);
 232}
 233
 234#ifdef CONFIG_DEBUG_RWSEMS
 235/*
 236 * With CONFIG_DEBUG_RWSEMS configured, it will make sure that if there
 237 * is a task pointer in owner of a reader-owned rwsem, it will be the
 238 * real owner or one of the real owners. The only exception is when the
 239 * unlock is done by up_read_non_owner().
 240 */
 241static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem)
 242{
 243        unsigned long val = atomic_long_read(&sem->owner);
 244
 245        while ((val & ~RWSEM_OWNER_FLAGS_MASK) == (unsigned long)current) {
 246                if (atomic_long_try_cmpxchg(&sem->owner, &val,
 247                                            val & RWSEM_OWNER_FLAGS_MASK))
 248                        return;
 249        }
 250}
 251#else
 252static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem)
 253{
 254}
 255#endif
 256
 257/*
 258 * Set the RWSEM_NONSPINNABLE bits if the RWSEM_READER_OWNED flag
 259 * remains set. Otherwise, the operation will be aborted.
 260 */
 261static inline void rwsem_set_nonspinnable(struct rw_semaphore *sem)
 262{
 263        unsigned long owner = atomic_long_read(&sem->owner);
 264
 265        do {
 266                if (!(owner & RWSEM_READER_OWNED))
 267                        break;
 268                if (owner & RWSEM_NONSPINNABLE)
 269                        break;
 270        } while (!atomic_long_try_cmpxchg(&sem->owner, &owner,
 271                                          owner | RWSEM_NONSPINNABLE));
 272}
 273
 274static inline bool rwsem_read_trylock(struct rw_semaphore *sem)
 275{
 276        long cnt = atomic_long_add_return_acquire(RWSEM_READER_BIAS, &sem->count);
 277        if (WARN_ON_ONCE(cnt < 0))
 278                rwsem_set_nonspinnable(sem);
 279        return !(cnt & RWSEM_READ_FAILED_MASK);
 280}
 281
 282/*
 283 * Return just the real task structure pointer of the owner
 284 */
 285static inline struct task_struct *rwsem_owner(struct rw_semaphore *sem)
 286{
 287        return (struct task_struct *)
 288                (atomic_long_read(&sem->owner) & ~RWSEM_OWNER_FLAGS_MASK);
 289}
 290
 291/*
 292 * Return the real task structure pointer of the owner and the embedded
 293 * flags in the owner. pflags must be non-NULL.
 294 */
 295static inline struct task_struct *
 296rwsem_owner_flags(struct rw_semaphore *sem, unsigned long *pflags)
 297{
 298        unsigned long owner = atomic_long_read(&sem->owner);
 299
 300        *pflags = owner & RWSEM_OWNER_FLAGS_MASK;
 301        return (struct task_struct *)(owner & ~RWSEM_OWNER_FLAGS_MASK);
 302}
 303
 304/*
 305 * Guide to the rw_semaphore's count field.
 306 *
 307 * When the RWSEM_WRITER_LOCKED bit in count is set, the lock is owned
 308 * by a writer.
 309 *
 310 * The lock is owned by readers when
 311 * (1) the RWSEM_WRITER_LOCKED isn't set in count,
 312 * (2) some of the reader bits are set in count, and
 313 * (3) the owner field has RWSEM_READ_OWNED bit set.
 314 *
 315 * Having some reader bits set is not enough to guarantee a readers owned
 316 * lock as the readers may be in the process of backing out from the count
 317 * and a writer has just released the lock. So another writer may steal
 318 * the lock immediately after that.
 319 */
 320
 321/*
 322 * Initialize an rwsem:
 323 */
 324void __init_rwsem(struct rw_semaphore *sem, const char *name,
 325                  struct lock_class_key *key)
 326{
 327#ifdef CONFIG_DEBUG_LOCK_ALLOC
 328        /*
 329         * Make sure we are not reinitializing a held semaphore:
 330         */
 331        debug_check_no_locks_freed((void *)sem, sizeof(*sem));
 332        lockdep_init_map(&sem->dep_map, name, key, 0);
 333#endif
 334#ifdef CONFIG_DEBUG_RWSEMS
 335        sem->magic = sem;
 336#endif
 337        atomic_long_set(&sem->count, RWSEM_UNLOCKED_VALUE);
 338        raw_spin_lock_init(&sem->wait_lock);
 339        INIT_LIST_HEAD(&sem->wait_list);
 340        atomic_long_set(&sem->owner, 0L);
 341#ifdef CONFIG_RWSEM_SPIN_ON_OWNER
 342        osq_lock_init(&sem->osq);
 343#endif
 344}
 345EXPORT_SYMBOL(__init_rwsem);
 346
 347enum rwsem_waiter_type {
 348        RWSEM_WAITING_FOR_WRITE,
 349        RWSEM_WAITING_FOR_READ
 350};
 351
 352struct rwsem_waiter {
 353        struct list_head list;
 354        struct task_struct *task;
 355        enum rwsem_waiter_type type;
 356        unsigned long timeout;
 357        unsigned long last_rowner;
 358};
 359#define rwsem_first_waiter(sem) \
 360        list_first_entry(&sem->wait_list, struct rwsem_waiter, list)
 361
 362enum rwsem_wake_type {
 363        RWSEM_WAKE_ANY,         /* Wake whatever's at head of wait list */
 364        RWSEM_WAKE_READERS,     /* Wake readers only */
 365        RWSEM_WAKE_READ_OWNED   /* Waker thread holds the read lock */
 366};
 367
 368enum writer_wait_state {
 369        WRITER_NOT_FIRST,       /* Writer is not first in wait list */
 370        WRITER_FIRST,           /* Writer is first in wait list     */
 371        WRITER_HANDOFF          /* Writer is first & handoff needed */
 372};
 373
 374/*
 375 * The typical HZ value is either 250 or 1000. So set the minimum waiting
 376 * time to at least 4ms or 1 jiffy (if it is higher than 4ms) in the wait
 377 * queue before initiating the handoff protocol.
 378 */
 379#define RWSEM_WAIT_TIMEOUT      DIV_ROUND_UP(HZ, 250)
 380
 381/*
 382 * Magic number to batch-wakeup waiting readers, even when writers are
 383 * also present in the queue. This both limits the amount of work the
 384 * waking thread must do and also prevents any potential counter overflow,
 385 * however unlikely.
 386 */
 387#define MAX_READERS_WAKEUP      0x100
 388
 389/*
 390 * handle the lock release when processes blocked on it that can now run
 391 * - if we come here from up_xxxx(), then the RWSEM_FLAG_WAITERS bit must
 392 *   have been set.
 393 * - there must be someone on the queue
 394 * - the wait_lock must be held by the caller
 395 * - tasks are marked for wakeup, the caller must later invoke wake_up_q()
 396 *   to actually wakeup the blocked task(s) and drop the reference count,
 397 *   preferably when the wait_lock is released
 398 * - woken process blocks are discarded from the list after having task zeroed
 399 * - writers are only marked woken if downgrading is false
 400 */
 401static void rwsem_mark_wake(struct rw_semaphore *sem,
 402                            enum rwsem_wake_type wake_type,
 403                            struct wake_q_head *wake_q)
 404{
 405        struct rwsem_waiter *waiter, *tmp;
 406        long oldcount, woken = 0, adjustment = 0;
 407        struct list_head wlist;
 408
 409        lockdep_assert_held(&sem->wait_lock);
 410
 411        /*
 412         * Take a peek at the queue head waiter such that we can determine
 413         * the wakeup(s) to perform.
 414         */
 415        waiter = rwsem_first_waiter(sem);
 416
 417        if (waiter->type == RWSEM_WAITING_FOR_WRITE) {
 418                if (wake_type == RWSEM_WAKE_ANY) {
 419                        /*
 420                         * Mark writer at the front of the queue for wakeup.
 421                         * Until the task is actually later awoken later by
 422                         * the caller, other writers are able to steal it.
 423                         * Readers, on the other hand, will block as they
 424                         * will notice the queued writer.
 425                         */
 426                        wake_q_add(wake_q, waiter->task);
 427                        lockevent_inc(rwsem_wake_writer);
 428                }
 429
 430                return;
 431        }
 432
 433        /*
 434         * No reader wakeup if there are too many of them already.
 435         */
 436        if (unlikely(atomic_long_read(&sem->count) < 0))
 437                return;
 438
 439        /*
 440         * Writers might steal the lock before we grant it to the next reader.
 441         * We prefer to do the first reader grant before counting readers
 442         * so we can bail out early if a writer stole the lock.
 443         */
 444        if (wake_type != RWSEM_WAKE_READ_OWNED) {
 445                struct task_struct *owner;
 446
 447                adjustment = RWSEM_READER_BIAS;
 448                oldcount = atomic_long_fetch_add(adjustment, &sem->count);
 449                if (unlikely(oldcount & RWSEM_WRITER_MASK)) {
 450                        /*
 451                         * When we've been waiting "too" long (for writers
 452                         * to give up the lock), request a HANDOFF to
 453                         * force the issue.
 454                         */
 455                        if (!(oldcount & RWSEM_FLAG_HANDOFF) &&
 456                            time_after(jiffies, waiter->timeout)) {
 457                                adjustment -= RWSEM_FLAG_HANDOFF;
 458                                lockevent_inc(rwsem_rlock_handoff);
 459                        }
 460
 461                        atomic_long_add(-adjustment, &sem->count);
 462                        return;
 463                }
 464                /*
 465                 * Set it to reader-owned to give spinners an early
 466                 * indication that readers now have the lock.
 467                 * The reader nonspinnable bit seen at slowpath entry of
 468                 * the reader is copied over.
 469                 */
 470                owner = waiter->task;
 471                if (waiter->last_rowner & RWSEM_RD_NONSPINNABLE) {
 472                        owner = (void *)((unsigned long)owner | RWSEM_RD_NONSPINNABLE);
 473                        lockevent_inc(rwsem_opt_norspin);
 474                }
 475                __rwsem_set_reader_owned(sem, owner);
 476        }
 477
 478        /*
 479         * Grant up to MAX_READERS_WAKEUP read locks to all the readers in the
 480         * queue. We know that the woken will be at least 1 as we accounted
 481         * for above. Note we increment the 'active part' of the count by the
 482         * number of readers before waking any processes up.
 483         *
 484         * This is an adaptation of the phase-fair R/W locks where at the
 485         * reader phase (first waiter is a reader), all readers are eligible
 486         * to acquire the lock at the same time irrespective of their order
 487         * in the queue. The writers acquire the lock according to their
 488         * order in the queue.
 489         *
 490         * We have to do wakeup in 2 passes to prevent the possibility that
 491         * the reader count may be decremented before it is incremented. It
 492         * is because the to-be-woken waiter may not have slept yet. So it
 493         * may see waiter->task got cleared, finish its critical section and
 494         * do an unlock before the reader count increment.
 495         *
 496         * 1) Collect the read-waiters in a separate list, count them and
 497         *    fully increment the reader count in rwsem.
 498         * 2) For each waiters in the new list, clear waiter->task and
 499         *    put them into wake_q to be woken up later.
 500         */
 501        INIT_LIST_HEAD(&wlist);
 502        list_for_each_entry_safe(waiter, tmp, &sem->wait_list, list) {
 503                if (waiter->type == RWSEM_WAITING_FOR_WRITE)
 504                        continue;
 505
 506                woken++;
 507                list_move_tail(&waiter->list, &wlist);
 508
 509                /*
 510                 * Limit # of readers that can be woken up per wakeup call.
 511                 */
 512                if (woken >= MAX_READERS_WAKEUP)
 513                        break;
 514        }
 515
 516        adjustment = woken * RWSEM_READER_BIAS - adjustment;
 517        lockevent_cond_inc(rwsem_wake_reader, woken);
 518        if (list_empty(&sem->wait_list)) {
 519                /* hit end of list above */
 520                adjustment -= RWSEM_FLAG_WAITERS;
 521        }
 522
 523        /*
 524         * When we've woken a reader, we no longer need to force writers
 525         * to give up the lock and we can clear HANDOFF.
 526         */
 527        if (woken && (atomic_long_read(&sem->count) & RWSEM_FLAG_HANDOFF))
 528                adjustment -= RWSEM_FLAG_HANDOFF;
 529
 530        if (adjustment)
 531                atomic_long_add(adjustment, &sem->count);
 532
 533        /* 2nd pass */
 534        list_for_each_entry_safe(waiter, tmp, &wlist, list) {
 535                struct task_struct *tsk;
 536
 537                tsk = waiter->task;
 538                get_task_struct(tsk);
 539
 540                /*
 541                 * Ensure calling get_task_struct() before setting the reader
 542                 * waiter to nil such that rwsem_down_read_slowpath() cannot
 543                 * race with do_exit() by always holding a reference count
 544                 * to the task to wakeup.
 545                 */
 546                smp_store_release(&waiter->task, NULL);
 547                /*
 548                 * Ensure issuing the wakeup (either by us or someone else)
 549                 * after setting the reader waiter to nil.
 550                 */
 551                wake_q_add_safe(wake_q, tsk);
 552        }
 553}
 554
 555/*
 556 * This function must be called with the sem->wait_lock held to prevent
 557 * race conditions between checking the rwsem wait list and setting the
 558 * sem->count accordingly.
 559 *
 560 * If wstate is WRITER_HANDOFF, it will make sure that either the handoff
 561 * bit is set or the lock is acquired with handoff bit cleared.
 562 */
 563static inline bool rwsem_try_write_lock(struct rw_semaphore *sem,
 564                                        enum writer_wait_state wstate)
 565{
 566        long count, new;
 567
 568        lockdep_assert_held(&sem->wait_lock);
 569
 570        count = atomic_long_read(&sem->count);
 571        do {
 572                bool has_handoff = !!(count & RWSEM_FLAG_HANDOFF);
 573
 574                if (has_handoff && wstate == WRITER_NOT_FIRST)
 575                        return false;
 576
 577                new = count;
 578
 579                if (count & RWSEM_LOCK_MASK) {
 580                        if (has_handoff || (wstate != WRITER_HANDOFF))
 581                                return false;
 582
 583                        new |= RWSEM_FLAG_HANDOFF;
 584                } else {
 585                        new |= RWSEM_WRITER_LOCKED;
 586                        new &= ~RWSEM_FLAG_HANDOFF;
 587
 588                        if (list_is_singular(&sem->wait_list))
 589                                new &= ~RWSEM_FLAG_WAITERS;
 590                }
 591        } while (!atomic_long_try_cmpxchg_acquire(&sem->count, &count, new));
 592
 593        /*
 594         * We have either acquired the lock with handoff bit cleared or
 595         * set the handoff bit.
 596         */
 597        if (new & RWSEM_FLAG_HANDOFF)
 598                return false;
 599
 600        rwsem_set_owner(sem);
 601        return true;
 602}
 603
 604#ifdef CONFIG_RWSEM_SPIN_ON_OWNER
 605/*
 606 * Try to acquire read lock before the reader is put on wait queue.
 607 * Lock acquisition isn't allowed if the rwsem is locked or a writer handoff
 608 * is ongoing.
 609 */
 610static inline bool rwsem_try_read_lock_unqueued(struct rw_semaphore *sem)
 611{
 612        long count = atomic_long_read(&sem->count);
 613
 614        if (count & (RWSEM_WRITER_MASK | RWSEM_FLAG_HANDOFF))
 615                return false;
 616
 617        count = atomic_long_fetch_add_acquire(RWSEM_READER_BIAS, &sem->count);
 618        if (!(count & (RWSEM_WRITER_MASK | RWSEM_FLAG_HANDOFF))) {
 619                rwsem_set_reader_owned(sem);
 620                lockevent_inc(rwsem_opt_rlock);
 621                return true;
 622        }
 623
 624        /* Back out the change */
 625        atomic_long_add(-RWSEM_READER_BIAS, &sem->count);
 626        return false;
 627}
 628
 629/*
 630 * Try to acquire write lock before the writer has been put on wait queue.
 631 */
 632static inline bool rwsem_try_write_lock_unqueued(struct rw_semaphore *sem)
 633{
 634        long count = atomic_long_read(&sem->count);
 635
 636        while (!(count & (RWSEM_LOCK_MASK|RWSEM_FLAG_HANDOFF))) {
 637                if (atomic_long_try_cmpxchg_acquire(&sem->count, &count,
 638                                        count | RWSEM_WRITER_LOCKED)) {
 639                        rwsem_set_owner(sem);
 640                        lockevent_inc(rwsem_opt_wlock);
 641                        return true;
 642                }
 643        }
 644        return false;
 645}
 646
 647static inline bool owner_on_cpu(struct task_struct *owner)
 648{
 649        /*
 650         * As lock holder preemption issue, we both skip spinning if
 651         * task is not on cpu or its cpu is preempted
 652         */
 653        return owner->on_cpu && !vcpu_is_preempted(task_cpu(owner));
 654}
 655
 656static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem,
 657                                           unsigned long nonspinnable)
 658{
 659        struct task_struct *owner;
 660        unsigned long flags;
 661        bool ret = true;
 662
 663        BUILD_BUG_ON(!(RWSEM_OWNER_UNKNOWN & RWSEM_NONSPINNABLE));
 664
 665        if (need_resched()) {
 666                lockevent_inc(rwsem_opt_fail);
 667                return false;
 668        }
 669
 670        preempt_disable();
 671        rcu_read_lock();
 672        owner = rwsem_owner_flags(sem, &flags);
 673        /*
 674         * Don't check the read-owner as the entry may be stale.
 675         */
 676        if ((flags & nonspinnable) ||
 677            (owner && !(flags & RWSEM_READER_OWNED) && !owner_on_cpu(owner)))
 678                ret = false;
 679        rcu_read_unlock();
 680        preempt_enable();
 681
 682        lockevent_cond_inc(rwsem_opt_fail, !ret);
 683        return ret;
 684}
 685
 686/*
 687 * The rwsem_spin_on_owner() function returns the folowing 4 values
 688 * depending on the lock owner state.
 689 *   OWNER_NULL  : owner is currently NULL
 690 *   OWNER_WRITER: when owner changes and is a writer
 691 *   OWNER_READER: when owner changes and the new owner may be a reader.
 692 *   OWNER_NONSPINNABLE:
 693 *                 when optimistic spinning has to stop because either the
 694 *                 owner stops running, is unknown, or its timeslice has
 695 *                 been used up.
 696 */
 697enum owner_state {
 698        OWNER_NULL              = 1 << 0,
 699        OWNER_WRITER            = 1 << 1,
 700        OWNER_READER            = 1 << 2,
 701        OWNER_NONSPINNABLE      = 1 << 3,
 702};
 703#define OWNER_SPINNABLE         (OWNER_NULL | OWNER_WRITER | OWNER_READER)
 704
 705static inline enum owner_state
 706rwsem_owner_state(struct task_struct *owner, unsigned long flags, unsigned long nonspinnable)
 707{
 708        if (flags & nonspinnable)
 709                return OWNER_NONSPINNABLE;
 710
 711        if (flags & RWSEM_READER_OWNED)
 712                return OWNER_READER;
 713
 714        return owner ? OWNER_WRITER : OWNER_NULL;
 715}
 716
 717static noinline enum owner_state
 718rwsem_spin_on_owner(struct rw_semaphore *sem, unsigned long nonspinnable)
 719{
 720        struct task_struct *new, *owner;
 721        unsigned long flags, new_flags;
 722        enum owner_state state;
 723
 724        owner = rwsem_owner_flags(sem, &flags);
 725        state = rwsem_owner_state(owner, flags, nonspinnable);
 726        if (state != OWNER_WRITER)
 727                return state;
 728
 729        rcu_read_lock();
 730        for (;;) {
 731                /*
 732                 * When a waiting writer set the handoff flag, it may spin
 733                 * on the owner as well. Once that writer acquires the lock,
 734                 * we can spin on it. So we don't need to quit even when the
 735                 * handoff bit is set.
 736                 */
 737                new = rwsem_owner_flags(sem, &new_flags);
 738                if ((new != owner) || (new_flags != flags)) {
 739                        state = rwsem_owner_state(new, new_flags, nonspinnable);
 740                        break;
 741                }
 742
 743                /*
 744                 * Ensure we emit the owner->on_cpu, dereference _after_
 745                 * checking sem->owner still matches owner, if that fails,
 746                 * owner might point to free()d memory, if it still matches,
 747                 * the rcu_read_lock() ensures the memory stays valid.
 748                 */
 749                barrier();
 750
 751                if (need_resched() || !owner_on_cpu(owner)) {
 752                        state = OWNER_NONSPINNABLE;
 753                        break;
 754                }
 755
 756                cpu_relax();
 757        }
 758        rcu_read_unlock();
 759
 760        return state;
 761}
 762
 763/*
 764 * Calculate reader-owned rwsem spinning threshold for writer
 765 *
 766 * The more readers own the rwsem, the longer it will take for them to
 767 * wind down and free the rwsem. So the empirical formula used to
 768 * determine the actual spinning time limit here is:
 769 *
 770 *   Spinning threshold = (10 + nr_readers/2)us
 771 *
 772 * The limit is capped to a maximum of 25us (30 readers). This is just
 773 * a heuristic and is subjected to change in the future.
 774 */
 775static inline u64 rwsem_rspin_threshold(struct rw_semaphore *sem)
 776{
 777        long count = atomic_long_read(&sem->count);
 778        int readers = count >> RWSEM_READER_SHIFT;
 779        u64 delta;
 780
 781        if (readers > 30)
 782                readers = 30;
 783        delta = (20 + readers) * NSEC_PER_USEC / 2;
 784
 785        return sched_clock() + delta;
 786}
 787
 788static bool rwsem_optimistic_spin(struct rw_semaphore *sem, bool wlock)
 789{
 790        bool taken = false;
 791        int prev_owner_state = OWNER_NULL;
 792        int loop = 0;
 793        u64 rspin_threshold = 0;
 794        unsigned long nonspinnable = wlock ? RWSEM_WR_NONSPINNABLE
 795                                           : RWSEM_RD_NONSPINNABLE;
 796
 797        preempt_disable();
 798
 799        /* sem->wait_lock should not be held when doing optimistic spinning */
 800        if (!osq_lock(&sem->osq))
 801                goto done;
 802
 803        /*
 804         * Optimistically spin on the owner field and attempt to acquire the
 805         * lock whenever the owner changes. Spinning will be stopped when:
 806         *  1) the owning writer isn't running; or
 807         *  2) readers own the lock and spinning time has exceeded limit.
 808         */
 809        for (;;) {
 810                enum owner_state owner_state;
 811
 812                owner_state = rwsem_spin_on_owner(sem, nonspinnable);
 813                if (!(owner_state & OWNER_SPINNABLE))
 814                        break;
 815
 816                /*
 817                 * Try to acquire the lock
 818                 */
 819                taken = wlock ? rwsem_try_write_lock_unqueued(sem)
 820                              : rwsem_try_read_lock_unqueued(sem);
 821
 822                if (taken)
 823                        break;
 824
 825                /*
 826                 * Time-based reader-owned rwsem optimistic spinning
 827                 */
 828                if (wlock && (owner_state == OWNER_READER)) {
 829                        /*
 830                         * Re-initialize rspin_threshold every time when
 831                         * the owner state changes from non-reader to reader.
 832                         * This allows a writer to steal the lock in between
 833                         * 2 reader phases and have the threshold reset at
 834                         * the beginning of the 2nd reader phase.
 835                         */
 836                        if (prev_owner_state != OWNER_READER) {
 837                                if (rwsem_test_oflags(sem, nonspinnable))
 838                                        break;
 839                                rspin_threshold = rwsem_rspin_threshold(sem);
 840                                loop = 0;
 841                        }
 842
 843                        /*
 844                         * Check time threshold once every 16 iterations to
 845                         * avoid calling sched_clock() too frequently so
 846                         * as to reduce the average latency between the times
 847                         * when the lock becomes free and when the spinner
 848                         * is ready to do a trylock.
 849                         */
 850                        else if (!(++loop & 0xf) && (sched_clock() > rspin_threshold)) {
 851                                rwsem_set_nonspinnable(sem);
 852                                lockevent_inc(rwsem_opt_nospin);
 853                                break;
 854                        }
 855                }
 856
 857                /*
 858                 * An RT task cannot do optimistic spinning if it cannot
 859                 * be sure the lock holder is running or live-lock may
 860                 * happen if the current task and the lock holder happen
 861                 * to run in the same CPU. However, aborting optimistic
 862                 * spinning while a NULL owner is detected may miss some
 863                 * opportunity where spinning can continue without causing
 864                 * problem.
 865                 *
 866                 * There are 2 possible cases where an RT task may be able
 867                 * to continue spinning.
 868                 *
 869                 * 1) The lock owner is in the process of releasing the
 870                 *    lock, sem->owner is cleared but the lock has not
 871                 *    been released yet.
 872                 * 2) The lock was free and owner cleared, but another
 873                 *    task just comes in and acquire the lock before
 874                 *    we try to get it. The new owner may be a spinnable
 875                 *    writer.
 876                 *
 877                 * To take advantage of two scenarios listed agove, the RT
 878                 * task is made to retry one more time to see if it can
 879                 * acquire the lock or continue spinning on the new owning
 880                 * writer. Of course, if the time lag is long enough or the
 881                 * new owner is not a writer or spinnable, the RT task will
 882                 * quit spinning.
 883                 *
 884                 * If the owner is a writer, the need_resched() check is
 885                 * done inside rwsem_spin_on_owner(). If the owner is not
 886                 * a writer, need_resched() check needs to be done here.
 887                 */
 888                if (owner_state != OWNER_WRITER) {
 889                        if (need_resched())
 890                                break;
 891                        if (rt_task(current) &&
 892                           (prev_owner_state != OWNER_WRITER))
 893                                break;
 894                }
 895                prev_owner_state = owner_state;
 896
 897                /*
 898                 * The cpu_relax() call is a compiler barrier which forces
 899                 * everything in this loop to be re-loaded. We don't need
 900                 * memory barriers as we'll eventually observe the right
 901                 * values at the cost of a few extra spins.
 902                 */
 903                cpu_relax();
 904        }
 905        osq_unlock(&sem->osq);
 906done:
 907        preempt_enable();
 908        lockevent_cond_inc(rwsem_opt_fail, !taken);
 909        return taken;
 910}
 911
 912/*
 913 * Clear the owner's RWSEM_WR_NONSPINNABLE bit if it is set. This should
 914 * only be called when the reader count reaches 0.
 915 *
 916 * This give writers better chance to acquire the rwsem first before
 917 * readers when the rwsem was being held by readers for a relatively long
 918 * period of time. Race can happen that an optimistic spinner may have
 919 * just stolen the rwsem and set the owner, but just clearing the
 920 * RWSEM_WR_NONSPINNABLE bit will do no harm anyway.
 921 */
 922static inline void clear_wr_nonspinnable(struct rw_semaphore *sem)
 923{
 924        if (rwsem_test_oflags(sem, RWSEM_WR_NONSPINNABLE))
 925                atomic_long_andnot(RWSEM_WR_NONSPINNABLE, &sem->owner);
 926}
 927
 928/*
 929 * This function is called when the reader fails to acquire the lock via
 930 * optimistic spinning. In this case we will still attempt to do a trylock
 931 * when comparing the rwsem state right now with the state when entering
 932 * the slowpath indicates that the reader is still in a valid reader phase.
 933 * This happens when the following conditions are true:
 934 *
 935 * 1) The lock is currently reader owned, and
 936 * 2) The lock is previously not reader-owned or the last read owner changes.
 937 *
 938 * In the former case, we have transitioned from a writer phase to a
 939 * reader-phase while spinning. In the latter case, it means the reader
 940 * phase hasn't ended when we entered the optimistic spinning loop. In
 941 * both cases, the reader is eligible to acquire the lock. This is the
 942 * secondary path where a read lock is acquired optimistically.
 943 *
 944 * The reader non-spinnable bit wasn't set at time of entry or it will
 945 * not be here at all.
 946 */
 947static inline bool rwsem_reader_phase_trylock(struct rw_semaphore *sem,
 948                                              unsigned long last_rowner)
 949{
 950        unsigned long owner = atomic_long_read(&sem->owner);
 951
 952        if (!(owner & RWSEM_READER_OWNED))
 953                return false;
 954
 955        if (((owner ^ last_rowner) & ~RWSEM_OWNER_FLAGS_MASK) &&
 956            rwsem_try_read_lock_unqueued(sem)) {
 957                lockevent_inc(rwsem_opt_rlock2);
 958                lockevent_add(rwsem_opt_fail, -1);
 959                return true;
 960        }
 961        return false;
 962}
 963#else
 964static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem,
 965                                           unsigned long nonspinnable)
 966{
 967        return false;
 968}
 969
 970static inline bool rwsem_optimistic_spin(struct rw_semaphore *sem, bool wlock)
 971{
 972        return false;
 973}
 974
 975static inline void clear_wr_nonspinnable(struct rw_semaphore *sem) { }
 976
 977static inline bool rwsem_reader_phase_trylock(struct rw_semaphore *sem,
 978                                              unsigned long last_rowner)
 979{
 980        return false;
 981}
 982
 983static inline int
 984rwsem_spin_on_owner(struct rw_semaphore *sem, unsigned long nonspinnable)
 985{
 986        return 0;
 987}
 988#define OWNER_NULL      1
 989#endif
 990
 991/*
 992 * Wait for the read lock to be granted
 993 */
 994static struct rw_semaphore __sched *
 995rwsem_down_read_slowpath(struct rw_semaphore *sem, int state)
 996{
 997        long count, adjustment = -RWSEM_READER_BIAS;
 998        struct rwsem_waiter waiter;
 999        DEFINE_WAKE_Q(wake_q);
1000        bool wake = false;
1001
1002        /*
1003         * Save the current read-owner of rwsem, if available, and the
1004         * reader nonspinnable bit.
1005         */
1006        waiter.last_rowner = atomic_long_read(&sem->owner);
1007        if (!(waiter.last_rowner & RWSEM_READER_OWNED))
1008                waiter.last_rowner &= RWSEM_RD_NONSPINNABLE;
1009
1010        if (!rwsem_can_spin_on_owner(sem, RWSEM_RD_NONSPINNABLE))
1011                goto queue;
1012
1013        /*
1014         * Undo read bias from down_read() and do optimistic spinning.
1015         */
1016        atomic_long_add(-RWSEM_READER_BIAS, &sem->count);
1017        adjustment = 0;
1018        if (rwsem_optimistic_spin(sem, false)) {
1019                /* rwsem_optimistic_spin() implies ACQUIRE on success */
1020                /*
1021                 * Wake up other readers in the wait list if the front
1022                 * waiter is a reader.
1023                 */
1024                if ((atomic_long_read(&sem->count) & RWSEM_FLAG_WAITERS)) {
1025                        raw_spin_lock_irq(&sem->wait_lock);
1026                        if (!list_empty(&sem->wait_list))
1027                                rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED,
1028                                                &wake_q);
1029                        raw_spin_unlock_irq(&sem->wait_lock);
1030                        wake_up_q(&wake_q);
1031                }
1032                return sem;
1033        } else if (rwsem_reader_phase_trylock(sem, waiter.last_rowner)) {
1034                /* rwsem_reader_phase_trylock() implies ACQUIRE on success */
1035                return sem;
1036        }
1037
1038queue:
1039        waiter.task = current;
1040        waiter.type = RWSEM_WAITING_FOR_READ;
1041        waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT;
1042
1043        raw_spin_lock_irq(&sem->wait_lock);
1044        if (list_empty(&sem->wait_list)) {
1045                /*
1046                 * In case the wait queue is empty and the lock isn't owned
1047                 * by a writer or has the handoff bit set, this reader can
1048                 * exit the slowpath and return immediately as its
1049                 * RWSEM_READER_BIAS has already been set in the count.
1050                 */
1051                if (adjustment && !(atomic_long_read(&sem->count) &
1052                     (RWSEM_WRITER_MASK | RWSEM_FLAG_HANDOFF))) {
1053                        /* Provide lock ACQUIRE */
1054                        smp_acquire__after_ctrl_dep();
1055                        raw_spin_unlock_irq(&sem->wait_lock);
1056                        rwsem_set_reader_owned(sem);
1057                        lockevent_inc(rwsem_rlock_fast);
1058                        return sem;
1059                }
1060                adjustment += RWSEM_FLAG_WAITERS;
1061        }
1062        list_add_tail(&waiter.list, &sem->wait_list);
1063
1064        /* we're now waiting on the lock, but no longer actively locking */
1065        if (adjustment)
1066                count = atomic_long_add_return(adjustment, &sem->count);
1067        else
1068                count = atomic_long_read(&sem->count);
1069
1070        /*
1071         * If there are no active locks, wake the front queued process(es).
1072         *
1073         * If there are no writers and we are first in the queue,
1074         * wake our own waiter to join the existing active readers !
1075         */
1076        if (!(count & RWSEM_LOCK_MASK)) {
1077                clear_wr_nonspinnable(sem);
1078                wake = true;
1079        }
1080        if (wake || (!(count & RWSEM_WRITER_MASK) &&
1081                    (adjustment & RWSEM_FLAG_WAITERS)))
1082                rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q);
1083
1084        raw_spin_unlock_irq(&sem->wait_lock);
1085        wake_up_q(&wake_q);
1086
1087        /* wait to be given the lock */
1088        for (;;) {
1089                set_current_state(state);
1090                if (!smp_load_acquire(&waiter.task)) {
1091                        /* Matches rwsem_mark_wake()'s smp_store_release(). */
1092                        break;
1093                }
1094                if (signal_pending_state(state, current)) {
1095                        raw_spin_lock_irq(&sem->wait_lock);
1096                        if (waiter.task)
1097                                goto out_nolock;
1098                        raw_spin_unlock_irq(&sem->wait_lock);
1099                        /* Ordered by sem->wait_lock against rwsem_mark_wake(). */
1100                        break;
1101                }
1102                schedule();
1103                lockevent_inc(rwsem_sleep_reader);
1104        }
1105
1106        __set_current_state(TASK_RUNNING);
1107        lockevent_inc(rwsem_rlock);
1108        return sem;
1109
1110out_nolock:
1111        list_del(&waiter.list);
1112        if (list_empty(&sem->wait_list)) {
1113                atomic_long_andnot(RWSEM_FLAG_WAITERS|RWSEM_FLAG_HANDOFF,
1114                                   &sem->count);
1115        }
1116        raw_spin_unlock_irq(&sem->wait_lock);
1117        __set_current_state(TASK_RUNNING);
1118        lockevent_inc(rwsem_rlock_fail);
1119        return ERR_PTR(-EINTR);
1120}
1121
1122/*
1123 * This function is called by the a write lock owner. So the owner value
1124 * won't get changed by others.
1125 */
1126static inline void rwsem_disable_reader_optspin(struct rw_semaphore *sem,
1127                                                bool disable)
1128{
1129        if (unlikely(disable)) {
1130                atomic_long_or(RWSEM_RD_NONSPINNABLE, &sem->owner);
1131                lockevent_inc(rwsem_opt_norspin);
1132        }
1133}
1134
1135/*
1136 * Wait until we successfully acquire the write lock
1137 */
1138static struct rw_semaphore *
1139rwsem_down_write_slowpath(struct rw_semaphore *sem, int state)
1140{
1141        long count;
1142        bool disable_rspin;
1143        enum writer_wait_state wstate;
1144        struct rwsem_waiter waiter;
1145        struct rw_semaphore *ret = sem;
1146        DEFINE_WAKE_Q(wake_q);
1147
1148        /* do optimistic spinning and steal lock if possible */
1149        if (rwsem_can_spin_on_owner(sem, RWSEM_WR_NONSPINNABLE) &&
1150            rwsem_optimistic_spin(sem, true)) {
1151                /* rwsem_optimistic_spin() implies ACQUIRE on success */
1152                return sem;
1153        }
1154
1155        /*
1156         * Disable reader optimistic spinning for this rwsem after
1157         * acquiring the write lock when the setting of the nonspinnable
1158         * bits are observed.
1159         */
1160        disable_rspin = atomic_long_read(&sem->owner) & RWSEM_NONSPINNABLE;
1161
1162        /*
1163         * Optimistic spinning failed, proceed to the slowpath
1164         * and block until we can acquire the sem.
1165         */
1166        waiter.task = current;
1167        waiter.type = RWSEM_WAITING_FOR_WRITE;
1168        waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT;
1169
1170        raw_spin_lock_irq(&sem->wait_lock);
1171
1172        /* account for this before adding a new element to the list */
1173        wstate = list_empty(&sem->wait_list) ? WRITER_FIRST : WRITER_NOT_FIRST;
1174
1175        list_add_tail(&waiter.list, &sem->wait_list);
1176
1177        /* we're now waiting on the lock */
1178        if (wstate == WRITER_NOT_FIRST) {
1179                count = atomic_long_read(&sem->count);
1180
1181                /*
1182                 * If there were already threads queued before us and:
1183                 *  1) there are no no active locks, wake the front
1184                 *     queued process(es) as the handoff bit might be set.
1185                 *  2) there are no active writers and some readers, the lock
1186                 *     must be read owned; so we try to wake any read lock
1187                 *     waiters that were queued ahead of us.
1188                 */
1189                if (count & RWSEM_WRITER_MASK)
1190                        goto wait;
1191
1192                rwsem_mark_wake(sem, (count & RWSEM_READER_MASK)
1193                                        ? RWSEM_WAKE_READERS
1194                                        : RWSEM_WAKE_ANY, &wake_q);
1195
1196                if (!wake_q_empty(&wake_q)) {
1197                        /*
1198                         * We want to minimize wait_lock hold time especially
1199                         * when a large number of readers are to be woken up.
1200                         */
1201                        raw_spin_unlock_irq(&sem->wait_lock);
1202                        wake_up_q(&wake_q);
1203                        wake_q_init(&wake_q);   /* Used again, reinit */
1204                        raw_spin_lock_irq(&sem->wait_lock);
1205                }
1206        } else {
1207                atomic_long_or(RWSEM_FLAG_WAITERS, &sem->count);
1208        }
1209
1210wait:
1211        /* wait until we successfully acquire the lock */
1212        set_current_state(state);
1213        for (;;) {
1214                if (rwsem_try_write_lock(sem, wstate)) {
1215                        /* rwsem_try_write_lock() implies ACQUIRE on success */
1216                        break;
1217                }
1218
1219                raw_spin_unlock_irq(&sem->wait_lock);
1220
1221                /*
1222                 * After setting the handoff bit and failing to acquire
1223                 * the lock, attempt to spin on owner to accelerate lock
1224                 * transfer. If the previous owner is a on-cpu writer and it
1225                 * has just released the lock, OWNER_NULL will be returned.
1226                 * In this case, we attempt to acquire the lock again
1227                 * without sleeping.
1228                 */
1229                if (wstate == WRITER_HANDOFF &&
1230                    rwsem_spin_on_owner(sem, RWSEM_NONSPINNABLE) == OWNER_NULL)
1231                        goto trylock_again;
1232
1233                /* Block until there are no active lockers. */
1234                for (;;) {
1235                        if (signal_pending_state(state, current))
1236                                goto out_nolock;
1237
1238                        schedule();
1239                        lockevent_inc(rwsem_sleep_writer);
1240                        set_current_state(state);
1241                        /*
1242                         * If HANDOFF bit is set, unconditionally do
1243                         * a trylock.
1244                         */
1245                        if (wstate == WRITER_HANDOFF)
1246                                break;
1247
1248                        if ((wstate == WRITER_NOT_FIRST) &&
1249                            (rwsem_first_waiter(sem) == &waiter))
1250                                wstate = WRITER_FIRST;
1251
1252                        count = atomic_long_read(&sem->count);
1253                        if (!(count & RWSEM_LOCK_MASK))
1254                                break;
1255
1256                        /*
1257                         * The setting of the handoff bit is deferred
1258                         * until rwsem_try_write_lock() is called.
1259                         */
1260                        if ((wstate == WRITER_FIRST) && (rt_task(current) ||
1261                            time_after(jiffies, waiter.timeout))) {
1262                                wstate = WRITER_HANDOFF;
1263                                lockevent_inc(rwsem_wlock_handoff);
1264                                break;
1265                        }
1266                }
1267trylock_again:
1268                raw_spin_lock_irq(&sem->wait_lock);
1269        }
1270        __set_current_state(TASK_RUNNING);
1271        list_del(&waiter.list);
1272        rwsem_disable_reader_optspin(sem, disable_rspin);
1273        raw_spin_unlock_irq(&sem->wait_lock);
1274        lockevent_inc(rwsem_wlock);
1275
1276        return ret;
1277
1278out_nolock:
1279        __set_current_state(TASK_RUNNING);
1280        raw_spin_lock_irq(&sem->wait_lock);
1281        list_del(&waiter.list);
1282
1283        if (unlikely(wstate == WRITER_HANDOFF))
1284                atomic_long_add(-RWSEM_FLAG_HANDOFF,  &sem->count);
1285
1286        if (list_empty(&sem->wait_list))
1287                atomic_long_andnot(RWSEM_FLAG_WAITERS, &sem->count);
1288        else
1289                rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q);
1290        raw_spin_unlock_irq(&sem->wait_lock);
1291        wake_up_q(&wake_q);
1292        lockevent_inc(rwsem_wlock_fail);
1293
1294        return ERR_PTR(-EINTR);
1295}
1296
1297/*
1298 * handle waking up a waiter on the semaphore
1299 * - up_read/up_write has decremented the active part of count if we come here
1300 */
1301static struct rw_semaphore *rwsem_wake(struct rw_semaphore *sem, long count)
1302{
1303        unsigned long flags;
1304        DEFINE_WAKE_Q(wake_q);
1305
1306        raw_spin_lock_irqsave(&sem->wait_lock, flags);
1307
1308        if (!list_empty(&sem->wait_list))
1309                rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q);
1310
1311        raw_spin_unlock_irqrestore(&sem->wait_lock, flags);
1312        wake_up_q(&wake_q);
1313
1314        return sem;
1315}
1316
1317/*
1318 * downgrade a write lock into a read lock
1319 * - caller incremented waiting part of count and discovered it still negative
1320 * - just wake up any readers at the front of the queue
1321 */
1322static struct rw_semaphore *rwsem_downgrade_wake(struct rw_semaphore *sem)
1323{
1324        unsigned long flags;
1325        DEFINE_WAKE_Q(wake_q);
1326
1327        raw_spin_lock_irqsave(&sem->wait_lock, flags);
1328
1329        if (!list_empty(&sem->wait_list))
1330                rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED, &wake_q);
1331
1332        raw_spin_unlock_irqrestore(&sem->wait_lock, flags);
1333        wake_up_q(&wake_q);
1334
1335        return sem;
1336}
1337
1338/*
1339 * lock for reading
1340 */
1341inline void __down_read(struct rw_semaphore *sem)
1342{
1343        if (!rwsem_read_trylock(sem)) {
1344                rwsem_down_read_slowpath(sem, TASK_UNINTERRUPTIBLE);
1345                DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1346        } else {
1347                rwsem_set_reader_owned(sem);
1348        }
1349}
1350
1351static inline int __down_read_killable(struct rw_semaphore *sem)
1352{
1353        if (!rwsem_read_trylock(sem)) {
1354                if (IS_ERR(rwsem_down_read_slowpath(sem, TASK_KILLABLE)))
1355                        return -EINTR;
1356                DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1357        } else {
1358                rwsem_set_reader_owned(sem);
1359        }
1360        return 0;
1361}
1362
1363static inline int __down_read_trylock(struct rw_semaphore *sem)
1364{
1365        long tmp;
1366
1367        DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1368
1369        /*
1370         * Optimize for the case when the rwsem is not locked at all.
1371         */
1372        tmp = RWSEM_UNLOCKED_VALUE;
1373        do {
1374                if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp,
1375                                        tmp + RWSEM_READER_BIAS)) {
1376                        rwsem_set_reader_owned(sem);
1377                        return 1;
1378                }
1379        } while (!(tmp & RWSEM_READ_FAILED_MASK));
1380        return 0;
1381}
1382
1383/*
1384 * lock for writing
1385 */
1386static inline void __down_write(struct rw_semaphore *sem)
1387{
1388        long tmp = RWSEM_UNLOCKED_VALUE;
1389
1390        if (unlikely(!atomic_long_try_cmpxchg_acquire(&sem->count, &tmp,
1391                                                      RWSEM_WRITER_LOCKED)))
1392                rwsem_down_write_slowpath(sem, TASK_UNINTERRUPTIBLE);
1393        else
1394                rwsem_set_owner(sem);
1395}
1396
1397static inline int __down_write_killable(struct rw_semaphore *sem)
1398{
1399        long tmp = RWSEM_UNLOCKED_VALUE;
1400
1401        if (unlikely(!atomic_long_try_cmpxchg_acquire(&sem->count, &tmp,
1402                                                      RWSEM_WRITER_LOCKED))) {
1403                if (IS_ERR(rwsem_down_write_slowpath(sem, TASK_KILLABLE)))
1404                        return -EINTR;
1405        } else {
1406                rwsem_set_owner(sem);
1407        }
1408        return 0;
1409}
1410
1411static inline int __down_write_trylock(struct rw_semaphore *sem)
1412{
1413        long tmp;
1414
1415        DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1416
1417        tmp  = RWSEM_UNLOCKED_VALUE;
1418        if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp,
1419                                            RWSEM_WRITER_LOCKED)) {
1420                rwsem_set_owner(sem);
1421                return true;
1422        }
1423        return false;
1424}
1425
1426/*
1427 * unlock after reading
1428 */
1429inline void __up_read(struct rw_semaphore *sem)
1430{
1431        long tmp;
1432
1433        DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1434        DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1435
1436        rwsem_clear_reader_owned(sem);
1437        tmp = atomic_long_add_return_release(-RWSEM_READER_BIAS, &sem->count);
1438        DEBUG_RWSEMS_WARN_ON(tmp < 0, sem);
1439        if (unlikely((tmp & (RWSEM_LOCK_MASK|RWSEM_FLAG_WAITERS)) ==
1440                      RWSEM_FLAG_WAITERS)) {
1441                clear_wr_nonspinnable(sem);
1442                rwsem_wake(sem, tmp);
1443        }
1444}
1445
1446/*
1447 * unlock after writing
1448 */
1449static inline void __up_write(struct rw_semaphore *sem)
1450{
1451        long tmp;
1452
1453        DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1454        /*
1455         * sem->owner may differ from current if the ownership is transferred
1456         * to an anonymous writer by setting the RWSEM_NONSPINNABLE bits.
1457         */
1458        DEBUG_RWSEMS_WARN_ON((rwsem_owner(sem) != current) &&
1459                            !rwsem_test_oflags(sem, RWSEM_NONSPINNABLE), sem);
1460
1461        rwsem_clear_owner(sem);
1462        tmp = atomic_long_fetch_add_release(-RWSEM_WRITER_LOCKED, &sem->count);
1463        if (unlikely(tmp & RWSEM_FLAG_WAITERS))
1464                rwsem_wake(sem, tmp);
1465}
1466
1467/*
1468 * downgrade write lock to read lock
1469 */
1470static inline void __downgrade_write(struct rw_semaphore *sem)
1471{
1472        long tmp;
1473
1474        /*
1475         * When downgrading from exclusive to shared ownership,
1476         * anything inside the write-locked region cannot leak
1477         * into the read side. In contrast, anything in the
1478         * read-locked region is ok to be re-ordered into the
1479         * write side. As such, rely on RELEASE semantics.
1480         */
1481        DEBUG_RWSEMS_WARN_ON(rwsem_owner(sem) != current, sem);
1482        tmp = atomic_long_fetch_add_release(
1483                -RWSEM_WRITER_LOCKED+RWSEM_READER_BIAS, &sem->count);
1484        rwsem_set_reader_owned(sem);
1485        if (tmp & RWSEM_FLAG_WAITERS)
1486                rwsem_downgrade_wake(sem);
1487}
1488
1489/*
1490 * lock for reading
1491 */
1492void __sched down_read(struct rw_semaphore *sem)
1493{
1494        might_sleep();
1495        rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
1496
1497        LOCK_CONTENDED(sem, __down_read_trylock, __down_read);
1498}
1499EXPORT_SYMBOL(down_read);
1500
1501int __sched down_read_killable(struct rw_semaphore *sem)
1502{
1503        might_sleep();
1504        rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
1505
1506        if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) {
1507                rwsem_release(&sem->dep_map, _RET_IP_);
1508                return -EINTR;
1509        }
1510
1511        return 0;
1512}
1513EXPORT_SYMBOL(down_read_killable);
1514
1515/*
1516 * trylock for reading -- returns 1 if successful, 0 if contention
1517 */
1518int down_read_trylock(struct rw_semaphore *sem)
1519{
1520        int ret = __down_read_trylock(sem);
1521
1522        if (ret == 1)
1523                rwsem_acquire_read(&sem->dep_map, 0, 1, _RET_IP_);
1524        return ret;
1525}
1526EXPORT_SYMBOL(down_read_trylock);
1527
1528/*
1529 * lock for writing
1530 */
1531void __sched down_write(struct rw_semaphore *sem)
1532{
1533        might_sleep();
1534        rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_);
1535        LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1536}
1537EXPORT_SYMBOL(down_write);
1538
1539/*
1540 * lock for writing
1541 */
1542int __sched down_write_killable(struct rw_semaphore *sem)
1543{
1544        might_sleep();
1545        rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_);
1546
1547        if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock,
1548                                  __down_write_killable)) {
1549                rwsem_release(&sem->dep_map, _RET_IP_);
1550                return -EINTR;
1551        }
1552
1553        return 0;
1554}
1555EXPORT_SYMBOL(down_write_killable);
1556
1557/*
1558 * trylock for writing -- returns 1 if successful, 0 if contention
1559 */
1560int down_write_trylock(struct rw_semaphore *sem)
1561{
1562        int ret = __down_write_trylock(sem);
1563
1564        if (ret == 1)
1565                rwsem_acquire(&sem->dep_map, 0, 1, _RET_IP_);
1566
1567        return ret;
1568}
1569EXPORT_SYMBOL(down_write_trylock);
1570
1571/*
1572 * release a read lock
1573 */
1574void up_read(struct rw_semaphore *sem)
1575{
1576        rwsem_release(&sem->dep_map, _RET_IP_);
1577        __up_read(sem);
1578}
1579EXPORT_SYMBOL(up_read);
1580
1581/*
1582 * release a write lock
1583 */
1584void up_write(struct rw_semaphore *sem)
1585{
1586        rwsem_release(&sem->dep_map, _RET_IP_);
1587        __up_write(sem);
1588}
1589EXPORT_SYMBOL(up_write);
1590
1591/*
1592 * downgrade write lock to read lock
1593 */
1594void downgrade_write(struct rw_semaphore *sem)
1595{
1596        lock_downgrade(&sem->dep_map, _RET_IP_);
1597        __downgrade_write(sem);
1598}
1599EXPORT_SYMBOL(downgrade_write);
1600
1601#ifdef CONFIG_DEBUG_LOCK_ALLOC
1602
1603void down_read_nested(struct rw_semaphore *sem, int subclass)
1604{
1605        might_sleep();
1606        rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_);
1607        LOCK_CONTENDED(sem, __down_read_trylock, __down_read);
1608}
1609EXPORT_SYMBOL(down_read_nested);
1610
1611void _down_write_nest_lock(struct rw_semaphore *sem, struct lockdep_map *nest)
1612{
1613        might_sleep();
1614        rwsem_acquire_nest(&sem->dep_map, 0, 0, nest, _RET_IP_);
1615        LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1616}
1617EXPORT_SYMBOL(_down_write_nest_lock);
1618
1619void down_read_non_owner(struct rw_semaphore *sem)
1620{
1621        might_sleep();
1622        __down_read(sem);
1623        __rwsem_set_reader_owned(sem, NULL);
1624}
1625EXPORT_SYMBOL(down_read_non_owner);
1626
1627void down_write_nested(struct rw_semaphore *sem, int subclass)
1628{
1629        might_sleep();
1630        rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_);
1631        LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1632}
1633EXPORT_SYMBOL(down_write_nested);
1634
1635int __sched down_write_killable_nested(struct rw_semaphore *sem, int subclass)
1636{
1637        might_sleep();
1638        rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_);
1639
1640        if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock,
1641                                  __down_write_killable)) {
1642                rwsem_release(&sem->dep_map, _RET_IP_);
1643                return -EINTR;
1644        }
1645
1646        return 0;
1647}
1648EXPORT_SYMBOL(down_write_killable_nested);
1649
1650void up_read_non_owner(struct rw_semaphore *sem)
1651{
1652        DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1653        __up_read(sem);
1654}
1655EXPORT_SYMBOL(up_read_non_owner);
1656
1657#endif
1658