linux/kernel/rcu/tree_plugin.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0+ */
   2/*
   3 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
   4 * Internal non-public definitions that provide either classic
   5 * or preemptible semantics.
   6 *
   7 * Copyright Red Hat, 2009
   8 * Copyright IBM Corporation, 2009
   9 *
  10 * Author: Ingo Molnar <mingo@elte.hu>
  11 *         Paul E. McKenney <paulmck@linux.ibm.com>
  12 */
  13
  14#include "../locking/rtmutex_common.h"
  15
  16#ifdef CONFIG_RCU_NOCB_CPU
  17static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
  18static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
  19#endif /* #ifdef CONFIG_RCU_NOCB_CPU */
  20
  21/*
  22 * Check the RCU kernel configuration parameters and print informative
  23 * messages about anything out of the ordinary.
  24 */
  25static void __init rcu_bootup_announce_oddness(void)
  26{
  27        if (IS_ENABLED(CONFIG_RCU_TRACE))
  28                pr_info("\tRCU event tracing is enabled.\n");
  29        if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
  30            (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
  31                pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n",
  32                        RCU_FANOUT);
  33        if (rcu_fanout_exact)
  34                pr_info("\tHierarchical RCU autobalancing is disabled.\n");
  35        if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
  36                pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
  37        if (IS_ENABLED(CONFIG_PROVE_RCU))
  38                pr_info("\tRCU lockdep checking is enabled.\n");
  39        if (RCU_NUM_LVLS >= 4)
  40                pr_info("\tFour(or more)-level hierarchy is enabled.\n");
  41        if (RCU_FANOUT_LEAF != 16)
  42                pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
  43                        RCU_FANOUT_LEAF);
  44        if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
  45                pr_info("\tBoot-time adjustment of leaf fanout to %d.\n",
  46                        rcu_fanout_leaf);
  47        if (nr_cpu_ids != NR_CPUS)
  48                pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids);
  49#ifdef CONFIG_RCU_BOOST
  50        pr_info("\tRCU priority boosting: priority %d delay %d ms.\n",
  51                kthread_prio, CONFIG_RCU_BOOST_DELAY);
  52#endif
  53        if (blimit != DEFAULT_RCU_BLIMIT)
  54                pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit);
  55        if (qhimark != DEFAULT_RCU_QHIMARK)
  56                pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark);
  57        if (qlowmark != DEFAULT_RCU_QLOMARK)
  58                pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark);
  59        if (jiffies_till_first_fqs != ULONG_MAX)
  60                pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs);
  61        if (jiffies_till_next_fqs != ULONG_MAX)
  62                pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs);
  63        if (jiffies_till_sched_qs != ULONG_MAX)
  64                pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs);
  65        if (rcu_kick_kthreads)
  66                pr_info("\tKick kthreads if too-long grace period.\n");
  67        if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD))
  68                pr_info("\tRCU callback double-/use-after-free debug enabled.\n");
  69        if (gp_preinit_delay)
  70                pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay);
  71        if (gp_init_delay)
  72                pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay);
  73        if (gp_cleanup_delay)
  74                pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay);
  75        if (!use_softirq)
  76                pr_info("\tRCU_SOFTIRQ processing moved to rcuc kthreads.\n");
  77        if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG))
  78                pr_info("\tRCU debug extended QS entry/exit.\n");
  79        rcupdate_announce_bootup_oddness();
  80}
  81
  82#ifdef CONFIG_PREEMPT_RCU
  83
  84static void rcu_report_exp_rnp(struct rcu_node *rnp, bool wake);
  85static void rcu_read_unlock_special(struct task_struct *t);
  86
  87/*
  88 * Tell them what RCU they are running.
  89 */
  90static void __init rcu_bootup_announce(void)
  91{
  92        pr_info("Preemptible hierarchical RCU implementation.\n");
  93        rcu_bootup_announce_oddness();
  94}
  95
  96/* Flags for rcu_preempt_ctxt_queue() decision table. */
  97#define RCU_GP_TASKS    0x8
  98#define RCU_EXP_TASKS   0x4
  99#define RCU_GP_BLKD     0x2
 100#define RCU_EXP_BLKD    0x1
 101
 102/*
 103 * Queues a task preempted within an RCU-preempt read-side critical
 104 * section into the appropriate location within the ->blkd_tasks list,
 105 * depending on the states of any ongoing normal and expedited grace
 106 * periods.  The ->gp_tasks pointer indicates which element the normal
 107 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
 108 * indicates which element the expedited grace period is waiting on (again,
 109 * NULL if none).  If a grace period is waiting on a given element in the
 110 * ->blkd_tasks list, it also waits on all subsequent elements.  Thus,
 111 * adding a task to the tail of the list blocks any grace period that is
 112 * already waiting on one of the elements.  In contrast, adding a task
 113 * to the head of the list won't block any grace period that is already
 114 * waiting on one of the elements.
 115 *
 116 * This queuing is imprecise, and can sometimes make an ongoing grace
 117 * period wait for a task that is not strictly speaking blocking it.
 118 * Given the choice, we needlessly block a normal grace period rather than
 119 * blocking an expedited grace period.
 120 *
 121 * Note that an endless sequence of expedited grace periods still cannot
 122 * indefinitely postpone a normal grace period.  Eventually, all of the
 123 * fixed number of preempted tasks blocking the normal grace period that are
 124 * not also blocking the expedited grace period will resume and complete
 125 * their RCU read-side critical sections.  At that point, the ->gp_tasks
 126 * pointer will equal the ->exp_tasks pointer, at which point the end of
 127 * the corresponding expedited grace period will also be the end of the
 128 * normal grace period.
 129 */
 130static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
 131        __releases(rnp->lock) /* But leaves rrupts disabled. */
 132{
 133        int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
 134                         (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
 135                         (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
 136                         (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
 137        struct task_struct *t = current;
 138
 139        raw_lockdep_assert_held_rcu_node(rnp);
 140        WARN_ON_ONCE(rdp->mynode != rnp);
 141        WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
 142        /* RCU better not be waiting on newly onlined CPUs! */
 143        WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask &
 144                     rdp->grpmask);
 145
 146        /*
 147         * Decide where to queue the newly blocked task.  In theory,
 148         * this could be an if-statement.  In practice, when I tried
 149         * that, it was quite messy.
 150         */
 151        switch (blkd_state) {
 152        case 0:
 153        case                RCU_EXP_TASKS:
 154        case                RCU_EXP_TASKS + RCU_GP_BLKD:
 155        case RCU_GP_TASKS:
 156        case RCU_GP_TASKS + RCU_EXP_TASKS:
 157
 158                /*
 159                 * Blocking neither GP, or first task blocking the normal
 160                 * GP but not blocking the already-waiting expedited GP.
 161                 * Queue at the head of the list to avoid unnecessarily
 162                 * blocking the already-waiting GPs.
 163                 */
 164                list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
 165                break;
 166
 167        case                                              RCU_EXP_BLKD:
 168        case                                RCU_GP_BLKD:
 169        case                                RCU_GP_BLKD + RCU_EXP_BLKD:
 170        case RCU_GP_TASKS +                               RCU_EXP_BLKD:
 171        case RCU_GP_TASKS +                 RCU_GP_BLKD + RCU_EXP_BLKD:
 172        case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
 173
 174                /*
 175                 * First task arriving that blocks either GP, or first task
 176                 * arriving that blocks the expedited GP (with the normal
 177                 * GP already waiting), or a task arriving that blocks
 178                 * both GPs with both GPs already waiting.  Queue at the
 179                 * tail of the list to avoid any GP waiting on any of the
 180                 * already queued tasks that are not blocking it.
 181                 */
 182                list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
 183                break;
 184
 185        case                RCU_EXP_TASKS +               RCU_EXP_BLKD:
 186        case                RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
 187        case RCU_GP_TASKS + RCU_EXP_TASKS +               RCU_EXP_BLKD:
 188
 189                /*
 190                 * Second or subsequent task blocking the expedited GP.
 191                 * The task either does not block the normal GP, or is the
 192                 * first task blocking the normal GP.  Queue just after
 193                 * the first task blocking the expedited GP.
 194                 */
 195                list_add(&t->rcu_node_entry, rnp->exp_tasks);
 196                break;
 197
 198        case RCU_GP_TASKS +                 RCU_GP_BLKD:
 199        case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
 200
 201                /*
 202                 * Second or subsequent task blocking the normal GP.
 203                 * The task does not block the expedited GP. Queue just
 204                 * after the first task blocking the normal GP.
 205                 */
 206                list_add(&t->rcu_node_entry, rnp->gp_tasks);
 207                break;
 208
 209        default:
 210
 211                /* Yet another exercise in excessive paranoia. */
 212                WARN_ON_ONCE(1);
 213                break;
 214        }
 215
 216        /*
 217         * We have now queued the task.  If it was the first one to
 218         * block either grace period, update the ->gp_tasks and/or
 219         * ->exp_tasks pointers, respectively, to reference the newly
 220         * blocked tasks.
 221         */
 222        if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) {
 223                rnp->gp_tasks = &t->rcu_node_entry;
 224                WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq);
 225        }
 226        if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
 227                rnp->exp_tasks = &t->rcu_node_entry;
 228        WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) !=
 229                     !(rnp->qsmask & rdp->grpmask));
 230        WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) !=
 231                     !(rnp->expmask & rdp->grpmask));
 232        raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
 233
 234        /*
 235         * Report the quiescent state for the expedited GP.  This expedited
 236         * GP should not be able to end until we report, so there should be
 237         * no need to check for a subsequent expedited GP.  (Though we are
 238         * still in a quiescent state in any case.)
 239         */
 240        if (blkd_state & RCU_EXP_BLKD && rdp->exp_deferred_qs)
 241                rcu_report_exp_rdp(rdp);
 242        else
 243                WARN_ON_ONCE(rdp->exp_deferred_qs);
 244}
 245
 246/*
 247 * Record a preemptible-RCU quiescent state for the specified CPU.
 248 * Note that this does not necessarily mean that the task currently running
 249 * on the CPU is in a quiescent state:  Instead, it means that the current
 250 * grace period need not wait on any RCU read-side critical section that
 251 * starts later on this CPU.  It also means that if the current task is
 252 * in an RCU read-side critical section, it has already added itself to
 253 * some leaf rcu_node structure's ->blkd_tasks list.  In addition to the
 254 * current task, there might be any number of other tasks blocked while
 255 * in an RCU read-side critical section.
 256 *
 257 * Callers to this function must disable preemption.
 258 */
 259static void rcu_qs(void)
 260{
 261        RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n");
 262        if (__this_cpu_read(rcu_data.cpu_no_qs.s)) {
 263                trace_rcu_grace_period(TPS("rcu_preempt"),
 264                                       __this_cpu_read(rcu_data.gp_seq),
 265                                       TPS("cpuqs"));
 266                __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
 267                barrier(); /* Coordinate with rcu_flavor_sched_clock_irq(). */
 268                WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, false);
 269        }
 270}
 271
 272/*
 273 * We have entered the scheduler, and the current task might soon be
 274 * context-switched away from.  If this task is in an RCU read-side
 275 * critical section, we will no longer be able to rely on the CPU to
 276 * record that fact, so we enqueue the task on the blkd_tasks list.
 277 * The task will dequeue itself when it exits the outermost enclosing
 278 * RCU read-side critical section.  Therefore, the current grace period
 279 * cannot be permitted to complete until the blkd_tasks list entries
 280 * predating the current grace period drain, in other words, until
 281 * rnp->gp_tasks becomes NULL.
 282 *
 283 * Caller must disable interrupts.
 284 */
 285void rcu_note_context_switch(bool preempt)
 286{
 287        struct task_struct *t = current;
 288        struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 289        struct rcu_node *rnp;
 290
 291        trace_rcu_utilization(TPS("Start context switch"));
 292        lockdep_assert_irqs_disabled();
 293        WARN_ON_ONCE(!preempt && t->rcu_read_lock_nesting > 0);
 294        if (t->rcu_read_lock_nesting > 0 &&
 295            !t->rcu_read_unlock_special.b.blocked) {
 296
 297                /* Possibly blocking in an RCU read-side critical section. */
 298                rnp = rdp->mynode;
 299                raw_spin_lock_rcu_node(rnp);
 300                t->rcu_read_unlock_special.b.blocked = true;
 301                t->rcu_blocked_node = rnp;
 302
 303                /*
 304                 * Verify the CPU's sanity, trace the preemption, and
 305                 * then queue the task as required based on the states
 306                 * of any ongoing and expedited grace periods.
 307                 */
 308                WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
 309                WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
 310                trace_rcu_preempt_task(rcu_state.name,
 311                                       t->pid,
 312                                       (rnp->qsmask & rdp->grpmask)
 313                                       ? rnp->gp_seq
 314                                       : rcu_seq_snap(&rnp->gp_seq));
 315                rcu_preempt_ctxt_queue(rnp, rdp);
 316        } else {
 317                rcu_preempt_deferred_qs(t);
 318        }
 319
 320        /*
 321         * Either we were not in an RCU read-side critical section to
 322         * begin with, or we have now recorded that critical section
 323         * globally.  Either way, we can now note a quiescent state
 324         * for this CPU.  Again, if we were in an RCU read-side critical
 325         * section, and if that critical section was blocking the current
 326         * grace period, then the fact that the task has been enqueued
 327         * means that we continue to block the current grace period.
 328         */
 329        rcu_qs();
 330        if (rdp->exp_deferred_qs)
 331                rcu_report_exp_rdp(rdp);
 332        trace_rcu_utilization(TPS("End context switch"));
 333}
 334EXPORT_SYMBOL_GPL(rcu_note_context_switch);
 335
 336/*
 337 * Check for preempted RCU readers blocking the current grace period
 338 * for the specified rcu_node structure.  If the caller needs a reliable
 339 * answer, it must hold the rcu_node's ->lock.
 340 */
 341static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
 342{
 343        return rnp->gp_tasks != NULL;
 344}
 345
 346/* Bias and limit values for ->rcu_read_lock_nesting. */
 347#define RCU_NEST_BIAS INT_MAX
 348#define RCU_NEST_NMAX (-INT_MAX / 2)
 349#define RCU_NEST_PMAX (INT_MAX / 2)
 350
 351/*
 352 * Preemptible RCU implementation for rcu_read_lock().
 353 * Just increment ->rcu_read_lock_nesting, shared state will be updated
 354 * if we block.
 355 */
 356void __rcu_read_lock(void)
 357{
 358        current->rcu_read_lock_nesting++;
 359        if (IS_ENABLED(CONFIG_PROVE_LOCKING))
 360                WARN_ON_ONCE(current->rcu_read_lock_nesting > RCU_NEST_PMAX);
 361        barrier();  /* critical section after entry code. */
 362}
 363EXPORT_SYMBOL_GPL(__rcu_read_lock);
 364
 365/*
 366 * Preemptible RCU implementation for rcu_read_unlock().
 367 * Decrement ->rcu_read_lock_nesting.  If the result is zero (outermost
 368 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
 369 * invoke rcu_read_unlock_special() to clean up after a context switch
 370 * in an RCU read-side critical section and other special cases.
 371 */
 372void __rcu_read_unlock(void)
 373{
 374        struct task_struct *t = current;
 375
 376        if (t->rcu_read_lock_nesting != 1) {
 377                --t->rcu_read_lock_nesting;
 378        } else {
 379                barrier();  /* critical section before exit code. */
 380                t->rcu_read_lock_nesting = -RCU_NEST_BIAS;
 381                barrier();  /* assign before ->rcu_read_unlock_special load */
 382                if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
 383                        rcu_read_unlock_special(t);
 384                barrier();  /* ->rcu_read_unlock_special load before assign */
 385                t->rcu_read_lock_nesting = 0;
 386        }
 387        if (IS_ENABLED(CONFIG_PROVE_LOCKING)) {
 388                int rrln = t->rcu_read_lock_nesting;
 389
 390                WARN_ON_ONCE(rrln < 0 && rrln > RCU_NEST_NMAX);
 391        }
 392}
 393EXPORT_SYMBOL_GPL(__rcu_read_unlock);
 394
 395/*
 396 * Advance a ->blkd_tasks-list pointer to the next entry, instead
 397 * returning NULL if at the end of the list.
 398 */
 399static struct list_head *rcu_next_node_entry(struct task_struct *t,
 400                                             struct rcu_node *rnp)
 401{
 402        struct list_head *np;
 403
 404        np = t->rcu_node_entry.next;
 405        if (np == &rnp->blkd_tasks)
 406                np = NULL;
 407        return np;
 408}
 409
 410/*
 411 * Return true if the specified rcu_node structure has tasks that were
 412 * preempted within an RCU read-side critical section.
 413 */
 414static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
 415{
 416        return !list_empty(&rnp->blkd_tasks);
 417}
 418
 419/*
 420 * Report deferred quiescent states.  The deferral time can
 421 * be quite short, for example, in the case of the call from
 422 * rcu_read_unlock_special().
 423 */
 424static void
 425rcu_preempt_deferred_qs_irqrestore(struct task_struct *t, unsigned long flags)
 426{
 427        bool empty_exp;
 428        bool empty_norm;
 429        bool empty_exp_now;
 430        struct list_head *np;
 431        bool drop_boost_mutex = false;
 432        struct rcu_data *rdp;
 433        struct rcu_node *rnp;
 434        union rcu_special special;
 435
 436        /*
 437         * If RCU core is waiting for this CPU to exit its critical section,
 438         * report the fact that it has exited.  Because irqs are disabled,
 439         * t->rcu_read_unlock_special cannot change.
 440         */
 441        special = t->rcu_read_unlock_special;
 442        rdp = this_cpu_ptr(&rcu_data);
 443        if (!special.s && !rdp->exp_deferred_qs) {
 444                local_irq_restore(flags);
 445                return;
 446        }
 447        t->rcu_read_unlock_special.b.deferred_qs = false;
 448        if (special.b.need_qs) {
 449                rcu_qs();
 450                t->rcu_read_unlock_special.b.need_qs = false;
 451                if (!t->rcu_read_unlock_special.s && !rdp->exp_deferred_qs) {
 452                        local_irq_restore(flags);
 453                        return;
 454                }
 455        }
 456
 457        /*
 458         * Respond to a request by an expedited grace period for a
 459         * quiescent state from this CPU.  Note that requests from
 460         * tasks are handled when removing the task from the
 461         * blocked-tasks list below.
 462         */
 463        if (rdp->exp_deferred_qs) {
 464                rcu_report_exp_rdp(rdp);
 465                if (!t->rcu_read_unlock_special.s) {
 466                        local_irq_restore(flags);
 467                        return;
 468                }
 469        }
 470
 471        /* Clean up if blocked during RCU read-side critical section. */
 472        if (special.b.blocked) {
 473                t->rcu_read_unlock_special.b.blocked = false;
 474
 475                /*
 476                 * Remove this task from the list it blocked on.  The task
 477                 * now remains queued on the rcu_node corresponding to the
 478                 * CPU it first blocked on, so there is no longer any need
 479                 * to loop.  Retain a WARN_ON_ONCE() out of sheer paranoia.
 480                 */
 481                rnp = t->rcu_blocked_node;
 482                raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
 483                WARN_ON_ONCE(rnp != t->rcu_blocked_node);
 484                WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
 485                empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
 486                WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq &&
 487                             (!empty_norm || rnp->qsmask));
 488                empty_exp = sync_rcu_preempt_exp_done(rnp);
 489                smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
 490                np = rcu_next_node_entry(t, rnp);
 491                list_del_init(&t->rcu_node_entry);
 492                t->rcu_blocked_node = NULL;
 493                trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
 494                                                rnp->gp_seq, t->pid);
 495                if (&t->rcu_node_entry == rnp->gp_tasks)
 496                        rnp->gp_tasks = np;
 497                if (&t->rcu_node_entry == rnp->exp_tasks)
 498                        rnp->exp_tasks = np;
 499                if (IS_ENABLED(CONFIG_RCU_BOOST)) {
 500                        /* Snapshot ->boost_mtx ownership w/rnp->lock held. */
 501                        drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
 502                        if (&t->rcu_node_entry == rnp->boost_tasks)
 503                                rnp->boost_tasks = np;
 504                }
 505
 506                /*
 507                 * If this was the last task on the current list, and if
 508                 * we aren't waiting on any CPUs, report the quiescent state.
 509                 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
 510                 * so we must take a snapshot of the expedited state.
 511                 */
 512                empty_exp_now = sync_rcu_preempt_exp_done(rnp);
 513                if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
 514                        trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
 515                                                         rnp->gp_seq,
 516                                                         0, rnp->qsmask,
 517                                                         rnp->level,
 518                                                         rnp->grplo,
 519                                                         rnp->grphi,
 520                                                         !!rnp->gp_tasks);
 521                        rcu_report_unblock_qs_rnp(rnp, flags);
 522                } else {
 523                        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 524                }
 525
 526                /* Unboost if we were boosted. */
 527                if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
 528                        rt_mutex_futex_unlock(&rnp->boost_mtx);
 529
 530                /*
 531                 * If this was the last task on the expedited lists,
 532                 * then we need to report up the rcu_node hierarchy.
 533                 */
 534                if (!empty_exp && empty_exp_now)
 535                        rcu_report_exp_rnp(rnp, true);
 536        } else {
 537                local_irq_restore(flags);
 538        }
 539}
 540
 541/*
 542 * Is a deferred quiescent-state pending, and are we also not in
 543 * an RCU read-side critical section?  It is the caller's responsibility
 544 * to ensure it is otherwise safe to report any deferred quiescent
 545 * states.  The reason for this is that it is safe to report a
 546 * quiescent state during context switch even though preemption
 547 * is disabled.  This function cannot be expected to understand these
 548 * nuances, so the caller must handle them.
 549 */
 550static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
 551{
 552        return (__this_cpu_read(rcu_data.exp_deferred_qs) ||
 553                READ_ONCE(t->rcu_read_unlock_special.s)) &&
 554               t->rcu_read_lock_nesting <= 0;
 555}
 556
 557/*
 558 * Report a deferred quiescent state if needed and safe to do so.
 559 * As with rcu_preempt_need_deferred_qs(), "safe" involves only
 560 * not being in an RCU read-side critical section.  The caller must
 561 * evaluate safety in terms of interrupt, softirq, and preemption
 562 * disabling.
 563 */
 564static void rcu_preempt_deferred_qs(struct task_struct *t)
 565{
 566        unsigned long flags;
 567        bool couldrecurse = t->rcu_read_lock_nesting >= 0;
 568
 569        if (!rcu_preempt_need_deferred_qs(t))
 570                return;
 571        if (couldrecurse)
 572                t->rcu_read_lock_nesting -= RCU_NEST_BIAS;
 573        local_irq_save(flags);
 574        rcu_preempt_deferred_qs_irqrestore(t, flags);
 575        if (couldrecurse)
 576                t->rcu_read_lock_nesting += RCU_NEST_BIAS;
 577}
 578
 579/*
 580 * Minimal handler to give the scheduler a chance to re-evaluate.
 581 */
 582static void rcu_preempt_deferred_qs_handler(struct irq_work *iwp)
 583{
 584        struct rcu_data *rdp;
 585
 586        rdp = container_of(iwp, struct rcu_data, defer_qs_iw);
 587        rdp->defer_qs_iw_pending = false;
 588}
 589
 590/*
 591 * Handle special cases during rcu_read_unlock(), such as needing to
 592 * notify RCU core processing or task having blocked during the RCU
 593 * read-side critical section.
 594 */
 595static void rcu_read_unlock_special(struct task_struct *t)
 596{
 597        unsigned long flags;
 598        bool preempt_bh_were_disabled =
 599                        !!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK));
 600        bool irqs_were_disabled;
 601
 602        /* NMI handlers cannot block and cannot safely manipulate state. */
 603        if (in_nmi())
 604                return;
 605
 606        local_irq_save(flags);
 607        irqs_were_disabled = irqs_disabled_flags(flags);
 608        if (preempt_bh_were_disabled || irqs_were_disabled) {
 609                bool exp;
 610                struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 611                struct rcu_node *rnp = rdp->mynode;
 612
 613                t->rcu_read_unlock_special.b.exp_hint = false;
 614                exp = (t->rcu_blocked_node && t->rcu_blocked_node->exp_tasks) ||
 615                      (rdp->grpmask & rnp->expmask) ||
 616                      tick_nohz_full_cpu(rdp->cpu);
 617                // Need to defer quiescent state until everything is enabled.
 618                if (irqs_were_disabled && use_softirq &&
 619                    (in_interrupt() ||
 620                     (exp && !t->rcu_read_unlock_special.b.deferred_qs))) {
 621                        // Using softirq, safe to awaken, and we get
 622                        // no help from enabling irqs, unlike bh/preempt.
 623                        raise_softirq_irqoff(RCU_SOFTIRQ);
 624                } else {
 625                        // Enabling BH or preempt does reschedule, so...
 626                        // Also if no expediting or NO_HZ_FULL, slow is OK.
 627                        set_tsk_need_resched(current);
 628                        set_preempt_need_resched();
 629                        if (IS_ENABLED(CONFIG_IRQ_WORK) && irqs_were_disabled &&
 630                            !rdp->defer_qs_iw_pending && exp) {
 631                                // Get scheduler to re-evaluate and call hooks.
 632                                // If !IRQ_WORK, FQS scan will eventually IPI.
 633                                init_irq_work(&rdp->defer_qs_iw,
 634                                              rcu_preempt_deferred_qs_handler);
 635                                rdp->defer_qs_iw_pending = true;
 636                                irq_work_queue_on(&rdp->defer_qs_iw, rdp->cpu);
 637                        }
 638                }
 639                t->rcu_read_unlock_special.b.deferred_qs = true;
 640                local_irq_restore(flags);
 641                return;
 642        }
 643        WRITE_ONCE(t->rcu_read_unlock_special.b.exp_hint, false);
 644        rcu_preempt_deferred_qs_irqrestore(t, flags);
 645}
 646
 647/*
 648 * Check that the list of blocked tasks for the newly completed grace
 649 * period is in fact empty.  It is a serious bug to complete a grace
 650 * period that still has RCU readers blocked!  This function must be
 651 * invoked -before- updating this rnp's ->gp_seq, and the rnp's ->lock
 652 * must be held by the caller.
 653 *
 654 * Also, if there are blocked tasks on the list, they automatically
 655 * block the newly created grace period, so set up ->gp_tasks accordingly.
 656 */
 657static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
 658{
 659        struct task_struct *t;
 660
 661        RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
 662        if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
 663                dump_blkd_tasks(rnp, 10);
 664        if (rcu_preempt_has_tasks(rnp) &&
 665            (rnp->qsmaskinit || rnp->wait_blkd_tasks)) {
 666                rnp->gp_tasks = rnp->blkd_tasks.next;
 667                t = container_of(rnp->gp_tasks, struct task_struct,
 668                                 rcu_node_entry);
 669                trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"),
 670                                                rnp->gp_seq, t->pid);
 671        }
 672        WARN_ON_ONCE(rnp->qsmask);
 673}
 674
 675/*
 676 * Check for a quiescent state from the current CPU, including voluntary
 677 * context switches for Tasks RCU.  When a task blocks, the task is
 678 * recorded in the corresponding CPU's rcu_node structure, which is checked
 679 * elsewhere, hence this function need only check for quiescent states
 680 * related to the current CPU, not to those related to tasks.
 681 */
 682static void rcu_flavor_sched_clock_irq(int user)
 683{
 684        struct task_struct *t = current;
 685
 686        if (user || rcu_is_cpu_rrupt_from_idle()) {
 687                rcu_note_voluntary_context_switch(current);
 688        }
 689        if (t->rcu_read_lock_nesting > 0 ||
 690            (preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK))) {
 691                /* No QS, force context switch if deferred. */
 692                if (rcu_preempt_need_deferred_qs(t)) {
 693                        set_tsk_need_resched(t);
 694                        set_preempt_need_resched();
 695                }
 696        } else if (rcu_preempt_need_deferred_qs(t)) {
 697                rcu_preempt_deferred_qs(t); /* Report deferred QS. */
 698                return;
 699        } else if (!t->rcu_read_lock_nesting) {
 700                rcu_qs(); /* Report immediate QS. */
 701                return;
 702        }
 703
 704        /* If GP is oldish, ask for help from rcu_read_unlock_special(). */
 705        if (t->rcu_read_lock_nesting > 0 &&
 706            __this_cpu_read(rcu_data.core_needs_qs) &&
 707            __this_cpu_read(rcu_data.cpu_no_qs.b.norm) &&
 708            !t->rcu_read_unlock_special.b.need_qs &&
 709            time_after(jiffies, rcu_state.gp_start + HZ))
 710                t->rcu_read_unlock_special.b.need_qs = true;
 711}
 712
 713/*
 714 * Check for a task exiting while in a preemptible-RCU read-side
 715 * critical section, clean up if so.  No need to issue warnings, as
 716 * debug_check_no_locks_held() already does this if lockdep is enabled.
 717 * Besides, if this function does anything other than just immediately
 718 * return, there was a bug of some sort.  Spewing warnings from this
 719 * function is like as not to simply obscure important prior warnings.
 720 */
 721void exit_rcu(void)
 722{
 723        struct task_struct *t = current;
 724
 725        if (unlikely(!list_empty(&current->rcu_node_entry))) {
 726                t->rcu_read_lock_nesting = 1;
 727                barrier();
 728                WRITE_ONCE(t->rcu_read_unlock_special.b.blocked, true);
 729        } else if (unlikely(t->rcu_read_lock_nesting)) {
 730                t->rcu_read_lock_nesting = 1;
 731        } else {
 732                return;
 733        }
 734        __rcu_read_unlock();
 735        rcu_preempt_deferred_qs(current);
 736}
 737
 738/*
 739 * Dump the blocked-tasks state, but limit the list dump to the
 740 * specified number of elements.
 741 */
 742static void
 743dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
 744{
 745        int cpu;
 746        int i;
 747        struct list_head *lhp;
 748        bool onl;
 749        struct rcu_data *rdp;
 750        struct rcu_node *rnp1;
 751
 752        raw_lockdep_assert_held_rcu_node(rnp);
 753        pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
 754                __func__, rnp->grplo, rnp->grphi, rnp->level,
 755                (long)rnp->gp_seq, (long)rnp->completedqs);
 756        for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
 757                pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n",
 758                        __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext);
 759        pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n",
 760                __func__, rnp->gp_tasks, rnp->boost_tasks, rnp->exp_tasks);
 761        pr_info("%s: ->blkd_tasks", __func__);
 762        i = 0;
 763        list_for_each(lhp, &rnp->blkd_tasks) {
 764                pr_cont(" %p", lhp);
 765                if (++i >= ncheck)
 766                        break;
 767        }
 768        pr_cont("\n");
 769        for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
 770                rdp = per_cpu_ptr(&rcu_data, cpu);
 771                onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
 772                pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n",
 773                        cpu, ".o"[onl],
 774                        (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
 775                        (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
 776        }
 777}
 778
 779#else /* #ifdef CONFIG_PREEMPT_RCU */
 780
 781/*
 782 * Tell them what RCU they are running.
 783 */
 784static void __init rcu_bootup_announce(void)
 785{
 786        pr_info("Hierarchical RCU implementation.\n");
 787        rcu_bootup_announce_oddness();
 788}
 789
 790/*
 791 * Note a quiescent state for PREEMPT=n.  Because we do not need to know
 792 * how many quiescent states passed, just if there was at least one since
 793 * the start of the grace period, this just sets a flag.  The caller must
 794 * have disabled preemption.
 795 */
 796static void rcu_qs(void)
 797{
 798        RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!");
 799        if (!__this_cpu_read(rcu_data.cpu_no_qs.s))
 800                return;
 801        trace_rcu_grace_period(TPS("rcu_sched"),
 802                               __this_cpu_read(rcu_data.gp_seq), TPS("cpuqs"));
 803        __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
 804        if (!__this_cpu_read(rcu_data.cpu_no_qs.b.exp))
 805                return;
 806        __this_cpu_write(rcu_data.cpu_no_qs.b.exp, false);
 807        rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
 808}
 809
 810/*
 811 * Register an urgently needed quiescent state.  If there is an
 812 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
 813 * dyntick-idle quiescent state visible to other CPUs, which will in
 814 * some cases serve for expedited as well as normal grace periods.
 815 * Either way, register a lightweight quiescent state.
 816 */
 817void rcu_all_qs(void)
 818{
 819        unsigned long flags;
 820
 821        if (!raw_cpu_read(rcu_data.rcu_urgent_qs))
 822                return;
 823        preempt_disable();
 824        /* Load rcu_urgent_qs before other flags. */
 825        if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
 826                preempt_enable();
 827                return;
 828        }
 829        this_cpu_write(rcu_data.rcu_urgent_qs, false);
 830        if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) {
 831                local_irq_save(flags);
 832                rcu_momentary_dyntick_idle();
 833                local_irq_restore(flags);
 834        }
 835        rcu_qs();
 836        preempt_enable();
 837}
 838EXPORT_SYMBOL_GPL(rcu_all_qs);
 839
 840/*
 841 * Note a PREEMPT=n context switch.  The caller must have disabled interrupts.
 842 */
 843void rcu_note_context_switch(bool preempt)
 844{
 845        trace_rcu_utilization(TPS("Start context switch"));
 846        rcu_qs();
 847        /* Load rcu_urgent_qs before other flags. */
 848        if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs)))
 849                goto out;
 850        this_cpu_write(rcu_data.rcu_urgent_qs, false);
 851        if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs)))
 852                rcu_momentary_dyntick_idle();
 853        if (!preempt)
 854                rcu_tasks_qs(current);
 855out:
 856        trace_rcu_utilization(TPS("End context switch"));
 857}
 858EXPORT_SYMBOL_GPL(rcu_note_context_switch);
 859
 860/*
 861 * Because preemptible RCU does not exist, there are never any preempted
 862 * RCU readers.
 863 */
 864static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
 865{
 866        return 0;
 867}
 868
 869/*
 870 * Because there is no preemptible RCU, there can be no readers blocked.
 871 */
 872static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
 873{
 874        return false;
 875}
 876
 877/*
 878 * Because there is no preemptible RCU, there can be no deferred quiescent
 879 * states.
 880 */
 881static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
 882{
 883        return false;
 884}
 885static void rcu_preempt_deferred_qs(struct task_struct *t) { }
 886
 887/*
 888 * Because there is no preemptible RCU, there can be no readers blocked,
 889 * so there is no need to check for blocked tasks.  So check only for
 890 * bogus qsmask values.
 891 */
 892static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
 893{
 894        WARN_ON_ONCE(rnp->qsmask);
 895}
 896
 897/*
 898 * Check to see if this CPU is in a non-context-switch quiescent state,
 899 * namely user mode and idle loop.
 900 */
 901static void rcu_flavor_sched_clock_irq(int user)
 902{
 903        if (user || rcu_is_cpu_rrupt_from_idle()) {
 904
 905                /*
 906                 * Get here if this CPU took its interrupt from user
 907                 * mode or from the idle loop, and if this is not a
 908                 * nested interrupt.  In this case, the CPU is in
 909                 * a quiescent state, so note it.
 910                 *
 911                 * No memory barrier is required here because rcu_qs()
 912                 * references only CPU-local variables that other CPUs
 913                 * neither access nor modify, at least not while the
 914                 * corresponding CPU is online.
 915                 */
 916
 917                rcu_qs();
 918        }
 919}
 920
 921/*
 922 * Because preemptible RCU does not exist, tasks cannot possibly exit
 923 * while in preemptible RCU read-side critical sections.
 924 */
 925void exit_rcu(void)
 926{
 927}
 928
 929/*
 930 * Dump the guaranteed-empty blocked-tasks state.  Trust but verify.
 931 */
 932static void
 933dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
 934{
 935        WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks));
 936}
 937
 938#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
 939
 940/*
 941 * If boosting, set rcuc kthreads to realtime priority.
 942 */
 943static void rcu_cpu_kthread_setup(unsigned int cpu)
 944{
 945#ifdef CONFIG_RCU_BOOST
 946        struct sched_param sp;
 947
 948        sp.sched_priority = kthread_prio;
 949        sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
 950#endif /* #ifdef CONFIG_RCU_BOOST */
 951}
 952
 953#ifdef CONFIG_RCU_BOOST
 954
 955/*
 956 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
 957 * or ->boost_tasks, advancing the pointer to the next task in the
 958 * ->blkd_tasks list.
 959 *
 960 * Note that irqs must be enabled: boosting the task can block.
 961 * Returns 1 if there are more tasks needing to be boosted.
 962 */
 963static int rcu_boost(struct rcu_node *rnp)
 964{
 965        unsigned long flags;
 966        struct task_struct *t;
 967        struct list_head *tb;
 968
 969        if (READ_ONCE(rnp->exp_tasks) == NULL &&
 970            READ_ONCE(rnp->boost_tasks) == NULL)
 971                return 0;  /* Nothing left to boost. */
 972
 973        raw_spin_lock_irqsave_rcu_node(rnp, flags);
 974
 975        /*
 976         * Recheck under the lock: all tasks in need of boosting
 977         * might exit their RCU read-side critical sections on their own.
 978         */
 979        if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
 980                raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 981                return 0;
 982        }
 983
 984        /*
 985         * Preferentially boost tasks blocking expedited grace periods.
 986         * This cannot starve the normal grace periods because a second
 987         * expedited grace period must boost all blocked tasks, including
 988         * those blocking the pre-existing normal grace period.
 989         */
 990        if (rnp->exp_tasks != NULL)
 991                tb = rnp->exp_tasks;
 992        else
 993                tb = rnp->boost_tasks;
 994
 995        /*
 996         * We boost task t by manufacturing an rt_mutex that appears to
 997         * be held by task t.  We leave a pointer to that rt_mutex where
 998         * task t can find it, and task t will release the mutex when it
 999         * exits its outermost RCU read-side critical section.  Then
1000         * simply acquiring this artificial rt_mutex will boost task
1001         * t's priority.  (Thanks to tglx for suggesting this approach!)
1002         *
1003         * Note that task t must acquire rnp->lock to remove itself from
1004         * the ->blkd_tasks list, which it will do from exit() if from
1005         * nowhere else.  We therefore are guaranteed that task t will
1006         * stay around at least until we drop rnp->lock.  Note that
1007         * rnp->lock also resolves races between our priority boosting
1008         * and task t's exiting its outermost RCU read-side critical
1009         * section.
1010         */
1011        t = container_of(tb, struct task_struct, rcu_node_entry);
1012        rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
1013        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1014        /* Lock only for side effect: boosts task t's priority. */
1015        rt_mutex_lock(&rnp->boost_mtx);
1016        rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
1017
1018        return READ_ONCE(rnp->exp_tasks) != NULL ||
1019               READ_ONCE(rnp->boost_tasks) != NULL;
1020}
1021
1022/*
1023 * Priority-boosting kthread, one per leaf rcu_node.
1024 */
1025static int rcu_boost_kthread(void *arg)
1026{
1027        struct rcu_node *rnp = (struct rcu_node *)arg;
1028        int spincnt = 0;
1029        int more2boost;
1030
1031        trace_rcu_utilization(TPS("Start boost kthread@init"));
1032        for (;;) {
1033                rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1034                trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1035                rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1036                trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1037                rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1038                more2boost = rcu_boost(rnp);
1039                if (more2boost)
1040                        spincnt++;
1041                else
1042                        spincnt = 0;
1043                if (spincnt > 10) {
1044                        rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1045                        trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1046                        schedule_timeout_interruptible(2);
1047                        trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1048                        spincnt = 0;
1049                }
1050        }
1051        /* NOTREACHED */
1052        trace_rcu_utilization(TPS("End boost kthread@notreached"));
1053        return 0;
1054}
1055
1056/*
1057 * Check to see if it is time to start boosting RCU readers that are
1058 * blocking the current grace period, and, if so, tell the per-rcu_node
1059 * kthread to start boosting them.  If there is an expedited grace
1060 * period in progress, it is always time to boost.
1061 *
1062 * The caller must hold rnp->lock, which this function releases.
1063 * The ->boost_kthread_task is immortal, so we don't need to worry
1064 * about it going away.
1065 */
1066static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1067        __releases(rnp->lock)
1068{
1069        raw_lockdep_assert_held_rcu_node(rnp);
1070        if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1071                raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1072                return;
1073        }
1074        if (rnp->exp_tasks != NULL ||
1075            (rnp->gp_tasks != NULL &&
1076             rnp->boost_tasks == NULL &&
1077             rnp->qsmask == 0 &&
1078             ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1079                if (rnp->exp_tasks == NULL)
1080                        rnp->boost_tasks = rnp->gp_tasks;
1081                raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1082                rcu_wake_cond(rnp->boost_kthread_task,
1083                              rnp->boost_kthread_status);
1084        } else {
1085                raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1086        }
1087}
1088
1089/*
1090 * Is the current CPU running the RCU-callbacks kthread?
1091 * Caller must have preemption disabled.
1092 */
1093static bool rcu_is_callbacks_kthread(void)
1094{
1095        return __this_cpu_read(rcu_data.rcu_cpu_kthread_task) == current;
1096}
1097
1098#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1099
1100/*
1101 * Do priority-boost accounting for the start of a new grace period.
1102 */
1103static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1104{
1105        rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1106}
1107
1108/*
1109 * Create an RCU-boost kthread for the specified node if one does not
1110 * already exist.  We only create this kthread for preemptible RCU.
1111 * Returns zero if all is well, a negated errno otherwise.
1112 */
1113static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
1114{
1115        int rnp_index = rnp - rcu_get_root();
1116        unsigned long flags;
1117        struct sched_param sp;
1118        struct task_struct *t;
1119
1120        if (!IS_ENABLED(CONFIG_PREEMPT_RCU))
1121                return;
1122
1123        if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
1124                return;
1125
1126        rcu_state.boost = 1;
1127
1128        if (rnp->boost_kthread_task != NULL)
1129                return;
1130
1131        t = kthread_create(rcu_boost_kthread, (void *)rnp,
1132                           "rcub/%d", rnp_index);
1133        if (WARN_ON_ONCE(IS_ERR(t)))
1134                return;
1135
1136        raw_spin_lock_irqsave_rcu_node(rnp, flags);
1137        rnp->boost_kthread_task = t;
1138        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1139        sp.sched_priority = kthread_prio;
1140        sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1141        wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1142}
1143
1144/*
1145 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1146 * served by the rcu_node in question.  The CPU hotplug lock is still
1147 * held, so the value of rnp->qsmaskinit will be stable.
1148 *
1149 * We don't include outgoingcpu in the affinity set, use -1 if there is
1150 * no outgoing CPU.  If there are no CPUs left in the affinity set,
1151 * this function allows the kthread to execute on any CPU.
1152 */
1153static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1154{
1155        struct task_struct *t = rnp->boost_kthread_task;
1156        unsigned long mask = rcu_rnp_online_cpus(rnp);
1157        cpumask_var_t cm;
1158        int cpu;
1159
1160        if (!t)
1161                return;
1162        if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1163                return;
1164        for_each_leaf_node_possible_cpu(rnp, cpu)
1165                if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
1166                    cpu != outgoingcpu)
1167                        cpumask_set_cpu(cpu, cm);
1168        if (cpumask_weight(cm) == 0)
1169                cpumask_setall(cm);
1170        set_cpus_allowed_ptr(t, cm);
1171        free_cpumask_var(cm);
1172}
1173
1174/*
1175 * Spawn boost kthreads -- called as soon as the scheduler is running.
1176 */
1177static void __init rcu_spawn_boost_kthreads(void)
1178{
1179        struct rcu_node *rnp;
1180
1181        rcu_for_each_leaf_node(rnp)
1182                rcu_spawn_one_boost_kthread(rnp);
1183}
1184
1185static void rcu_prepare_kthreads(int cpu)
1186{
1187        struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1188        struct rcu_node *rnp = rdp->mynode;
1189
1190        /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1191        if (rcu_scheduler_fully_active)
1192                rcu_spawn_one_boost_kthread(rnp);
1193}
1194
1195#else /* #ifdef CONFIG_RCU_BOOST */
1196
1197static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1198        __releases(rnp->lock)
1199{
1200        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1201}
1202
1203static bool rcu_is_callbacks_kthread(void)
1204{
1205        return false;
1206}
1207
1208static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1209{
1210}
1211
1212static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1213{
1214}
1215
1216static void __init rcu_spawn_boost_kthreads(void)
1217{
1218}
1219
1220static void rcu_prepare_kthreads(int cpu)
1221{
1222}
1223
1224#endif /* #else #ifdef CONFIG_RCU_BOOST */
1225
1226#if !defined(CONFIG_RCU_FAST_NO_HZ)
1227
1228/*
1229 * Check to see if any future non-offloaded RCU-related work will need
1230 * to be done by the current CPU, even if none need be done immediately,
1231 * returning 1 if so.  This function is part of the RCU implementation;
1232 * it is -not- an exported member of the RCU API.
1233 *
1234 * Because we not have RCU_FAST_NO_HZ, just check whether or not this
1235 * CPU has RCU callbacks queued.
1236 */
1237int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1238{
1239        *nextevt = KTIME_MAX;
1240        return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) &&
1241               !rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist);
1242}
1243
1244/*
1245 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1246 * after it.
1247 */
1248static void rcu_cleanup_after_idle(void)
1249{
1250}
1251
1252/*
1253 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1254 * is nothing.
1255 */
1256static void rcu_prepare_for_idle(void)
1257{
1258}
1259
1260#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1261
1262/*
1263 * This code is invoked when a CPU goes idle, at which point we want
1264 * to have the CPU do everything required for RCU so that it can enter
1265 * the energy-efficient dyntick-idle mode.  This is handled by a
1266 * state machine implemented by rcu_prepare_for_idle() below.
1267 *
1268 * The following three proprocessor symbols control this state machine:
1269 *
1270 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1271 *      to sleep in dyntick-idle mode with RCU callbacks pending.  This
1272 *      is sized to be roughly one RCU grace period.  Those energy-efficiency
1273 *      benchmarkers who might otherwise be tempted to set this to a large
1274 *      number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1275 *      system.  And if you are -that- concerned about energy efficiency,
1276 *      just power the system down and be done with it!
1277 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1278 *      permitted to sleep in dyntick-idle mode with only lazy RCU
1279 *      callbacks pending.  Setting this too high can OOM your system.
1280 *
1281 * The values below work well in practice.  If future workloads require
1282 * adjustment, they can be converted into kernel config parameters, though
1283 * making the state machine smarter might be a better option.
1284 */
1285#define RCU_IDLE_GP_DELAY 4             /* Roughly one grace period. */
1286#define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
1287
1288static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1289module_param(rcu_idle_gp_delay, int, 0644);
1290static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1291module_param(rcu_idle_lazy_gp_delay, int, 0644);
1292
1293/*
1294 * Try to advance callbacks on the current CPU, but only if it has been
1295 * awhile since the last time we did so.  Afterwards, if there are any
1296 * callbacks ready for immediate invocation, return true.
1297 */
1298static bool __maybe_unused rcu_try_advance_all_cbs(void)
1299{
1300        bool cbs_ready = false;
1301        struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1302        struct rcu_node *rnp;
1303
1304        /* Exit early if we advanced recently. */
1305        if (jiffies == rdp->last_advance_all)
1306                return false;
1307        rdp->last_advance_all = jiffies;
1308
1309        rnp = rdp->mynode;
1310
1311        /*
1312         * Don't bother checking unless a grace period has
1313         * completed since we last checked and there are
1314         * callbacks not yet ready to invoke.
1315         */
1316        if ((rcu_seq_completed_gp(rdp->gp_seq,
1317                                  rcu_seq_current(&rnp->gp_seq)) ||
1318             unlikely(READ_ONCE(rdp->gpwrap))) &&
1319            rcu_segcblist_pend_cbs(&rdp->cblist))
1320                note_gp_changes(rdp);
1321
1322        if (rcu_segcblist_ready_cbs(&rdp->cblist))
1323                cbs_ready = true;
1324        return cbs_ready;
1325}
1326
1327/*
1328 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1329 * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1330 * caller to set the timeout based on whether or not there are non-lazy
1331 * callbacks.
1332 *
1333 * The caller must have disabled interrupts.
1334 */
1335int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1336{
1337        struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1338        unsigned long dj;
1339
1340        lockdep_assert_irqs_disabled();
1341
1342        /* If no non-offloaded callbacks, RCU doesn't need the CPU. */
1343        if (rcu_segcblist_empty(&rdp->cblist) ||
1344            rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist)) {
1345                *nextevt = KTIME_MAX;
1346                return 0;
1347        }
1348
1349        /* Attempt to advance callbacks. */
1350        if (rcu_try_advance_all_cbs()) {
1351                /* Some ready to invoke, so initiate later invocation. */
1352                invoke_rcu_core();
1353                return 1;
1354        }
1355        rdp->last_accelerate = jiffies;
1356
1357        /* Request timer delay depending on laziness, and round. */
1358        rdp->all_lazy = !rcu_segcblist_n_nonlazy_cbs(&rdp->cblist);
1359        if (rdp->all_lazy) {
1360                dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1361        } else {
1362                dj = round_up(rcu_idle_gp_delay + jiffies,
1363                               rcu_idle_gp_delay) - jiffies;
1364        }
1365        *nextevt = basemono + dj * TICK_NSEC;
1366        return 0;
1367}
1368
1369/*
1370 * Prepare a CPU for idle from an RCU perspective.  The first major task
1371 * is to sense whether nohz mode has been enabled or disabled via sysfs.
1372 * The second major task is to check to see if a non-lazy callback has
1373 * arrived at a CPU that previously had only lazy callbacks.  The third
1374 * major task is to accelerate (that is, assign grace-period numbers to)
1375 * any recently arrived callbacks.
1376 *
1377 * The caller must have disabled interrupts.
1378 */
1379static void rcu_prepare_for_idle(void)
1380{
1381        bool needwake;
1382        struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1383        struct rcu_node *rnp;
1384        int tne;
1385
1386        lockdep_assert_irqs_disabled();
1387        if (rcu_segcblist_is_offloaded(&rdp->cblist))
1388                return;
1389
1390        /* Handle nohz enablement switches conservatively. */
1391        tne = READ_ONCE(tick_nohz_active);
1392        if (tne != rdp->tick_nohz_enabled_snap) {
1393                if (!rcu_segcblist_empty(&rdp->cblist))
1394                        invoke_rcu_core(); /* force nohz to see update. */
1395                rdp->tick_nohz_enabled_snap = tne;
1396                return;
1397        }
1398        if (!tne)
1399                return;
1400
1401        /*
1402         * If a non-lazy callback arrived at a CPU having only lazy
1403         * callbacks, invoke RCU core for the side-effect of recalculating
1404         * idle duration on re-entry to idle.
1405         */
1406        if (rdp->all_lazy && rcu_segcblist_n_nonlazy_cbs(&rdp->cblist)) {
1407                rdp->all_lazy = false;
1408                invoke_rcu_core();
1409                return;
1410        }
1411
1412        /*
1413         * If we have not yet accelerated this jiffy, accelerate all
1414         * callbacks on this CPU.
1415         */
1416        if (rdp->last_accelerate == jiffies)
1417                return;
1418        rdp->last_accelerate = jiffies;
1419        if (rcu_segcblist_pend_cbs(&rdp->cblist)) {
1420                rnp = rdp->mynode;
1421                raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1422                needwake = rcu_accelerate_cbs(rnp, rdp);
1423                raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1424                if (needwake)
1425                        rcu_gp_kthread_wake();
1426        }
1427}
1428
1429/*
1430 * Clean up for exit from idle.  Attempt to advance callbacks based on
1431 * any grace periods that elapsed while the CPU was idle, and if any
1432 * callbacks are now ready to invoke, initiate invocation.
1433 */
1434static void rcu_cleanup_after_idle(void)
1435{
1436        struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1437
1438        lockdep_assert_irqs_disabled();
1439        if (rcu_segcblist_is_offloaded(&rdp->cblist))
1440                return;
1441        if (rcu_try_advance_all_cbs())
1442                invoke_rcu_core();
1443}
1444
1445#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1446
1447#ifdef CONFIG_RCU_NOCB_CPU
1448
1449/*
1450 * Offload callback processing from the boot-time-specified set of CPUs
1451 * specified by rcu_nocb_mask.  For the CPUs in the set, there are kthreads
1452 * created that pull the callbacks from the corresponding CPU, wait for
1453 * a grace period to elapse, and invoke the callbacks.  These kthreads
1454 * are organized into GP kthreads, which manage incoming callbacks, wait for
1455 * grace periods, and awaken CB kthreads, and the CB kthreads, which only
1456 * invoke callbacks.  Each GP kthread invokes its own CBs.  The no-CBs CPUs
1457 * do a wake_up() on their GP kthread when they insert a callback into any
1458 * empty list, unless the rcu_nocb_poll boot parameter has been specified,
1459 * in which case each kthread actively polls its CPU.  (Which isn't so great
1460 * for energy efficiency, but which does reduce RCU's overhead on that CPU.)
1461 *
1462 * This is intended to be used in conjunction with Frederic Weisbecker's
1463 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1464 * running CPU-bound user-mode computations.
1465 *
1466 * Offloading of callbacks can also be used as an energy-efficiency
1467 * measure because CPUs with no RCU callbacks queued are more aggressive
1468 * about entering dyntick-idle mode.
1469 */
1470
1471
1472/*
1473 * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters.
1474 * The string after the "rcu_nocbs=" is either "all" for all CPUs, or a
1475 * comma-separated list of CPUs and/or CPU ranges.  If an invalid list is
1476 * given, a warning is emitted and all CPUs are offloaded.
1477 */
1478static int __init rcu_nocb_setup(char *str)
1479{
1480        alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1481        if (!strcasecmp(str, "all"))
1482                cpumask_setall(rcu_nocb_mask);
1483        else
1484                if (cpulist_parse(str, rcu_nocb_mask)) {
1485                        pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n");
1486                        cpumask_setall(rcu_nocb_mask);
1487                }
1488        return 1;
1489}
1490__setup("rcu_nocbs=", rcu_nocb_setup);
1491
1492static int __init parse_rcu_nocb_poll(char *arg)
1493{
1494        rcu_nocb_poll = true;
1495        return 0;
1496}
1497early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1498
1499/*
1500 * Don't bother bypassing ->cblist if the call_rcu() rate is low.
1501 * After all, the main point of bypassing is to avoid lock contention
1502 * on ->nocb_lock, which only can happen at high call_rcu() rates.
1503 */
1504int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ;
1505module_param(nocb_nobypass_lim_per_jiffy, int, 0);
1506
1507/*
1508 * Acquire the specified rcu_data structure's ->nocb_bypass_lock.  If the
1509 * lock isn't immediately available, increment ->nocb_lock_contended to
1510 * flag the contention.
1511 */
1512static void rcu_nocb_bypass_lock(struct rcu_data *rdp)
1513{
1514        lockdep_assert_irqs_disabled();
1515        if (raw_spin_trylock(&rdp->nocb_bypass_lock))
1516                return;
1517        atomic_inc(&rdp->nocb_lock_contended);
1518        WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
1519        smp_mb__after_atomic(); /* atomic_inc() before lock. */
1520        raw_spin_lock(&rdp->nocb_bypass_lock);
1521        smp_mb__before_atomic(); /* atomic_dec() after lock. */
1522        atomic_dec(&rdp->nocb_lock_contended);
1523}
1524
1525/*
1526 * Spinwait until the specified rcu_data structure's ->nocb_lock is
1527 * not contended.  Please note that this is extremely special-purpose,
1528 * relying on the fact that at most two kthreads and one CPU contend for
1529 * this lock, and also that the two kthreads are guaranteed to have frequent
1530 * grace-period-duration time intervals between successive acquisitions
1531 * of the lock.  This allows us to use an extremely simple throttling
1532 * mechanism, and further to apply it only to the CPU doing floods of
1533 * call_rcu() invocations.  Don't try this at home!
1534 */
1535static void rcu_nocb_wait_contended(struct rcu_data *rdp)
1536{
1537        WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
1538        while (WARN_ON_ONCE(atomic_read(&rdp->nocb_lock_contended)))
1539                cpu_relax();
1540}
1541
1542/*
1543 * Conditionally acquire the specified rcu_data structure's
1544 * ->nocb_bypass_lock.
1545 */
1546static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp)
1547{
1548        lockdep_assert_irqs_disabled();
1549        return raw_spin_trylock(&rdp->nocb_bypass_lock);
1550}
1551
1552/*
1553 * Release the specified rcu_data structure's ->nocb_bypass_lock.
1554 */
1555static void rcu_nocb_bypass_unlock(struct rcu_data *rdp)
1556{
1557        lockdep_assert_irqs_disabled();
1558        raw_spin_unlock(&rdp->nocb_bypass_lock);
1559}
1560
1561/*
1562 * Acquire the specified rcu_data structure's ->nocb_lock, but only
1563 * if it corresponds to a no-CBs CPU.
1564 */
1565static void rcu_nocb_lock(struct rcu_data *rdp)
1566{
1567        lockdep_assert_irqs_disabled();
1568        if (!rcu_segcblist_is_offloaded(&rdp->cblist))
1569                return;
1570        raw_spin_lock(&rdp->nocb_lock);
1571}
1572
1573/*
1574 * Release the specified rcu_data structure's ->nocb_lock, but only
1575 * if it corresponds to a no-CBs CPU.
1576 */
1577static void rcu_nocb_unlock(struct rcu_data *rdp)
1578{
1579        if (rcu_segcblist_is_offloaded(&rdp->cblist)) {
1580                lockdep_assert_irqs_disabled();
1581                raw_spin_unlock(&rdp->nocb_lock);
1582        }
1583}
1584
1585/*
1586 * Release the specified rcu_data structure's ->nocb_lock and restore
1587 * interrupts, but only if it corresponds to a no-CBs CPU.
1588 */
1589static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
1590                                       unsigned long flags)
1591{
1592        if (rcu_segcblist_is_offloaded(&rdp->cblist)) {
1593                lockdep_assert_irqs_disabled();
1594                raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1595        } else {
1596                local_irq_restore(flags);
1597        }
1598}
1599
1600/* Lockdep check that ->cblist may be safely accessed. */
1601static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
1602{
1603        lockdep_assert_irqs_disabled();
1604        if (rcu_segcblist_is_offloaded(&rdp->cblist) &&
1605            cpu_online(rdp->cpu))
1606                lockdep_assert_held(&rdp->nocb_lock);
1607}
1608
1609/*
1610 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1611 * grace period.
1612 */
1613static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1614{
1615        swake_up_all(sq);
1616}
1617
1618static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1619{
1620        return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1];
1621}
1622
1623static void rcu_init_one_nocb(struct rcu_node *rnp)
1624{
1625        init_swait_queue_head(&rnp->nocb_gp_wq[0]);
1626        init_swait_queue_head(&rnp->nocb_gp_wq[1]);
1627}
1628
1629/* Is the specified CPU a no-CBs CPU? */
1630bool rcu_is_nocb_cpu(int cpu)
1631{
1632        if (cpumask_available(rcu_nocb_mask))
1633                return cpumask_test_cpu(cpu, rcu_nocb_mask);
1634        return false;
1635}
1636
1637/*
1638 * Kick the GP kthread for this NOCB group.  Caller holds ->nocb_lock
1639 * and this function releases it.
1640 */
1641static void wake_nocb_gp(struct rcu_data *rdp, bool force,
1642                           unsigned long flags)
1643        __releases(rdp->nocb_lock)
1644{
1645        bool needwake = false;
1646        struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1647
1648        lockdep_assert_held(&rdp->nocb_lock);
1649        if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) {
1650                trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1651                                    TPS("AlreadyAwake"));
1652                rcu_nocb_unlock_irqrestore(rdp, flags);
1653                return;
1654        }
1655        del_timer(&rdp->nocb_timer);
1656        rcu_nocb_unlock_irqrestore(rdp, flags);
1657        raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
1658        if (force || READ_ONCE(rdp_gp->nocb_gp_sleep)) {
1659                WRITE_ONCE(rdp_gp->nocb_gp_sleep, false);
1660                needwake = true;
1661                trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake"));
1662        }
1663        raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
1664        if (needwake)
1665                wake_up_process(rdp_gp->nocb_gp_kthread);
1666}
1667
1668/*
1669 * Arrange to wake the GP kthread for this NOCB group at some future
1670 * time when it is safe to do so.
1671 */
1672static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype,
1673                               const char *reason)
1674{
1675        if (rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT)
1676                mod_timer(&rdp->nocb_timer, jiffies + 1);
1677        if (rdp->nocb_defer_wakeup < waketype)
1678                WRITE_ONCE(rdp->nocb_defer_wakeup, waketype);
1679        trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason);
1680}
1681
1682/*
1683 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
1684 * However, if there is a callback to be enqueued and if ->nocb_bypass
1685 * proves to be initially empty, just return false because the no-CB GP
1686 * kthread may need to be awakened in this case.
1687 *
1688 * Note that this function always returns true if rhp is NULL.
1689 */
1690static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1691                                     unsigned long j)
1692{
1693        struct rcu_cblist rcl;
1694
1695        WARN_ON_ONCE(!rcu_segcblist_is_offloaded(&rdp->cblist));
1696        rcu_lockdep_assert_cblist_protected(rdp);
1697        lockdep_assert_held(&rdp->nocb_bypass_lock);
1698        if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) {
1699                raw_spin_unlock(&rdp->nocb_bypass_lock);
1700                return false;
1701        }
1702        /* Note: ->cblist.len already accounts for ->nocb_bypass contents. */
1703        if (rhp)
1704                rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
1705        rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp);
1706        rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl);
1707        WRITE_ONCE(rdp->nocb_bypass_first, j);
1708        rcu_nocb_bypass_unlock(rdp);
1709        return true;
1710}
1711
1712/*
1713 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
1714 * However, if there is a callback to be enqueued and if ->nocb_bypass
1715 * proves to be initially empty, just return false because the no-CB GP
1716 * kthread may need to be awakened in this case.
1717 *
1718 * Note that this function always returns true if rhp is NULL.
1719 */
1720static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1721                                  unsigned long j)
1722{
1723        if (!rcu_segcblist_is_offloaded(&rdp->cblist))
1724                return true;
1725        rcu_lockdep_assert_cblist_protected(rdp);
1726        rcu_nocb_bypass_lock(rdp);
1727        return rcu_nocb_do_flush_bypass(rdp, rhp, j);
1728}
1729
1730/*
1731 * If the ->nocb_bypass_lock is immediately available, flush the
1732 * ->nocb_bypass queue into ->cblist.
1733 */
1734static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j)
1735{
1736        rcu_lockdep_assert_cblist_protected(rdp);
1737        if (!rcu_segcblist_is_offloaded(&rdp->cblist) ||
1738            !rcu_nocb_bypass_trylock(rdp))
1739                return;
1740        WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j));
1741}
1742
1743/*
1744 * See whether it is appropriate to use the ->nocb_bypass list in order
1745 * to control contention on ->nocb_lock.  A limited number of direct
1746 * enqueues are permitted into ->cblist per jiffy.  If ->nocb_bypass
1747 * is non-empty, further callbacks must be placed into ->nocb_bypass,
1748 * otherwise rcu_barrier() breaks.  Use rcu_nocb_flush_bypass() to switch
1749 * back to direct use of ->cblist.  However, ->nocb_bypass should not be
1750 * used if ->cblist is empty, because otherwise callbacks can be stranded
1751 * on ->nocb_bypass because we cannot count on the current CPU ever again
1752 * invoking call_rcu().  The general rule is that if ->nocb_bypass is
1753 * non-empty, the corresponding no-CBs grace-period kthread must not be
1754 * in an indefinite sleep state.
1755 *
1756 * Finally, it is not permitted to use the bypass during early boot,
1757 * as doing so would confuse the auto-initialization code.  Besides
1758 * which, there is no point in worrying about lock contention while
1759 * there is only one CPU in operation.
1760 */
1761static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1762                                bool *was_alldone, unsigned long flags)
1763{
1764        unsigned long c;
1765        unsigned long cur_gp_seq;
1766        unsigned long j = jiffies;
1767        long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1768
1769        if (!rcu_segcblist_is_offloaded(&rdp->cblist)) {
1770                *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1771                return false; /* Not offloaded, no bypassing. */
1772        }
1773        lockdep_assert_irqs_disabled();
1774
1775        // Don't use ->nocb_bypass during early boot.
1776        if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) {
1777                rcu_nocb_lock(rdp);
1778                WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1779                *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1780                return false;
1781        }
1782
1783        // If we have advanced to a new jiffy, reset counts to allow
1784        // moving back from ->nocb_bypass to ->cblist.
1785        if (j == rdp->nocb_nobypass_last) {
1786                c = rdp->nocb_nobypass_count + 1;
1787        } else {
1788                WRITE_ONCE(rdp->nocb_nobypass_last, j);
1789                c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy;
1790                if (ULONG_CMP_LT(rdp->nocb_nobypass_count,
1791                                 nocb_nobypass_lim_per_jiffy))
1792                        c = 0;
1793                else if (c > nocb_nobypass_lim_per_jiffy)
1794                        c = nocb_nobypass_lim_per_jiffy;
1795        }
1796        WRITE_ONCE(rdp->nocb_nobypass_count, c);
1797
1798        // If there hasn't yet been all that many ->cblist enqueues
1799        // this jiffy, tell the caller to enqueue onto ->cblist.  But flush
1800        // ->nocb_bypass first.
1801        if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy) {
1802                rcu_nocb_lock(rdp);
1803                *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1804                if (*was_alldone)
1805                        trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1806                                            TPS("FirstQ"));
1807                WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j));
1808                WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1809                return false; // Caller must enqueue the callback.
1810        }
1811
1812        // If ->nocb_bypass has been used too long or is too full,
1813        // flush ->nocb_bypass to ->cblist.
1814        if ((ncbs && j != READ_ONCE(rdp->nocb_bypass_first)) ||
1815            ncbs >= qhimark) {
1816                rcu_nocb_lock(rdp);
1817                if (!rcu_nocb_flush_bypass(rdp, rhp, j)) {
1818                        *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1819                        if (*was_alldone)
1820                                trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1821                                                    TPS("FirstQ"));
1822                        WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1823                        return false; // Caller must enqueue the callback.
1824                }
1825                if (j != rdp->nocb_gp_adv_time &&
1826                    rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1827                    rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
1828                        rcu_advance_cbs_nowake(rdp->mynode, rdp);
1829                        rdp->nocb_gp_adv_time = j;
1830                }
1831                rcu_nocb_unlock_irqrestore(rdp, flags);
1832                return true; // Callback already enqueued.
1833        }
1834
1835        // We need to use the bypass.
1836        rcu_nocb_wait_contended(rdp);
1837        rcu_nocb_bypass_lock(rdp);
1838        ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1839        rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
1840        rcu_cblist_enqueue(&rdp->nocb_bypass, rhp);
1841        if (!ncbs) {
1842                WRITE_ONCE(rdp->nocb_bypass_first, j);
1843                trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ"));
1844        }
1845        rcu_nocb_bypass_unlock(rdp);
1846        smp_mb(); /* Order enqueue before wake. */
1847        if (ncbs) {
1848                local_irq_restore(flags);
1849        } else {
1850                // No-CBs GP kthread might be indefinitely asleep, if so, wake.
1851                rcu_nocb_lock(rdp); // Rare during call_rcu() flood.
1852                if (!rcu_segcblist_pend_cbs(&rdp->cblist)) {
1853                        trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1854                                            TPS("FirstBQwake"));
1855                        __call_rcu_nocb_wake(rdp, true, flags);
1856                } else {
1857                        trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1858                                            TPS("FirstBQnoWake"));
1859                        rcu_nocb_unlock_irqrestore(rdp, flags);
1860                }
1861        }
1862        return true; // Callback already enqueued.
1863}
1864
1865/*
1866 * Awaken the no-CBs grace-period kthead if needed, either due to it
1867 * legitimately being asleep or due to overload conditions.
1868 *
1869 * If warranted, also wake up the kthread servicing this CPUs queues.
1870 */
1871static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone,
1872                                 unsigned long flags)
1873                                 __releases(rdp->nocb_lock)
1874{
1875        unsigned long cur_gp_seq;
1876        unsigned long j;
1877        long len;
1878        struct task_struct *t;
1879
1880        // If we are being polled or there is no kthread, just leave.
1881        t = READ_ONCE(rdp->nocb_gp_kthread);
1882        if (rcu_nocb_poll || !t) {
1883                trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1884                                    TPS("WakeNotPoll"));
1885                rcu_nocb_unlock_irqrestore(rdp, flags);
1886                return;
1887        }
1888        // Need to actually to a wakeup.
1889        len = rcu_segcblist_n_cbs(&rdp->cblist);
1890        if (was_alldone) {
1891                rdp->qlen_last_fqs_check = len;
1892                if (!irqs_disabled_flags(flags)) {
1893                        /* ... if queue was empty ... */
1894                        wake_nocb_gp(rdp, false, flags);
1895                        trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1896                                            TPS("WakeEmpty"));
1897                } else {
1898                        wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE,
1899                                           TPS("WakeEmptyIsDeferred"));
1900                        rcu_nocb_unlock_irqrestore(rdp, flags);
1901                }
1902        } else if (len > rdp->qlen_last_fqs_check + qhimark) {
1903                /* ... or if many callbacks queued. */
1904                rdp->qlen_last_fqs_check = len;
1905                j = jiffies;
1906                if (j != rdp->nocb_gp_adv_time &&
1907                    rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1908                    rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
1909                        rcu_advance_cbs_nowake(rdp->mynode, rdp);
1910                        rdp->nocb_gp_adv_time = j;
1911                }
1912                smp_mb(); /* Enqueue before timer_pending(). */
1913                if ((rdp->nocb_cb_sleep ||
1914                     !rcu_segcblist_ready_cbs(&rdp->cblist)) &&
1915                    !timer_pending(&rdp->nocb_bypass_timer))
1916                        wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE,
1917                                           TPS("WakeOvfIsDeferred"));
1918                rcu_nocb_unlock_irqrestore(rdp, flags);
1919        } else {
1920                trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
1921                rcu_nocb_unlock_irqrestore(rdp, flags);
1922        }
1923        return;
1924}
1925
1926/* Wake up the no-CBs GP kthread to flush ->nocb_bypass. */
1927static void do_nocb_bypass_wakeup_timer(struct timer_list *t)
1928{
1929        unsigned long flags;
1930        struct rcu_data *rdp = from_timer(rdp, t, nocb_bypass_timer);
1931
1932        trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer"));
1933        rcu_nocb_lock_irqsave(rdp, flags);
1934        smp_mb__after_spinlock(); /* Timer expire before wakeup. */
1935        __call_rcu_nocb_wake(rdp, true, flags);
1936}
1937
1938/*
1939 * No-CBs GP kthreads come here to wait for additional callbacks to show up
1940 * or for grace periods to end.
1941 */
1942static void nocb_gp_wait(struct rcu_data *my_rdp)
1943{
1944        bool bypass = false;
1945        long bypass_ncbs;
1946        int __maybe_unused cpu = my_rdp->cpu;
1947        unsigned long cur_gp_seq;
1948        unsigned long flags;
1949        bool gotcbs = false;
1950        unsigned long j = jiffies;
1951        bool needwait_gp = false; // This prevents actual uninitialized use.
1952        bool needwake;
1953        bool needwake_gp;
1954        struct rcu_data *rdp;
1955        struct rcu_node *rnp;
1956        unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning.
1957
1958        /*
1959         * Each pass through the following loop checks for CBs and for the
1960         * nearest grace period (if any) to wait for next.  The CB kthreads
1961         * and the global grace-period kthread are awakened if needed.
1962         */
1963        for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_cb_rdp) {
1964                trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check"));
1965                rcu_nocb_lock_irqsave(rdp, flags);
1966                bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1967                if (bypass_ncbs &&
1968                    (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) ||
1969                     bypass_ncbs > 2 * qhimark)) {
1970                        // Bypass full or old, so flush it.
1971                        (void)rcu_nocb_try_flush_bypass(rdp, j);
1972                        bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1973                } else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) {
1974                        rcu_nocb_unlock_irqrestore(rdp, flags);
1975                        continue; /* No callbacks here, try next. */
1976                }
1977                if (bypass_ncbs) {
1978                        trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1979                                            TPS("Bypass"));
1980                        bypass = true;
1981                }
1982                rnp = rdp->mynode;
1983                if (bypass) {  // Avoid race with first bypass CB.
1984                        WRITE_ONCE(my_rdp->nocb_defer_wakeup,
1985                                   RCU_NOCB_WAKE_NOT);
1986                        del_timer(&my_rdp->nocb_timer);
1987                }
1988                // Advance callbacks if helpful and low contention.
1989                needwake_gp = false;
1990                if (!rcu_segcblist_restempty(&rdp->cblist,
1991                                             RCU_NEXT_READY_TAIL) ||
1992                    (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1993                     rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) {
1994                        raw_spin_lock_rcu_node(rnp); /* irqs disabled. */
1995                        needwake_gp = rcu_advance_cbs(rnp, rdp);
1996                        raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */
1997                }
1998                // Need to wait on some grace period?
1999                WARN_ON_ONCE(!rcu_segcblist_restempty(&rdp->cblist,
2000                                                      RCU_NEXT_READY_TAIL));
2001                if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) {
2002                        if (!needwait_gp ||
2003                            ULONG_CMP_LT(cur_gp_seq, wait_gp_seq))
2004                                wait_gp_seq = cur_gp_seq;
2005                        needwait_gp = true;
2006                        trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
2007                                            TPS("NeedWaitGP"));
2008                }
2009                if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
2010                        needwake = rdp->nocb_cb_sleep;
2011                        WRITE_ONCE(rdp->nocb_cb_sleep, false);
2012                        smp_mb(); /* CB invocation -after- GP end. */
2013                } else {
2014                        needwake = false;
2015                }
2016                rcu_nocb_unlock_irqrestore(rdp, flags);
2017                if (needwake) {
2018                        swake_up_one(&rdp->nocb_cb_wq);
2019                        gotcbs = true;
2020                }
2021                if (needwake_gp)
2022                        rcu_gp_kthread_wake();
2023        }
2024
2025        my_rdp->nocb_gp_bypass = bypass;
2026        my_rdp->nocb_gp_gp = needwait_gp;
2027        my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0;
2028        if (bypass && !rcu_nocb_poll) {
2029                // At least one child with non-empty ->nocb_bypass, so set
2030                // timer in order to avoid stranding its callbacks.
2031                raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
2032                mod_timer(&my_rdp->nocb_bypass_timer, j + 2);
2033                raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
2034        }
2035        if (rcu_nocb_poll) {
2036                /* Polling, so trace if first poll in the series. */
2037                if (gotcbs)
2038                        trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll"));
2039                schedule_timeout_interruptible(1);
2040        } else if (!needwait_gp) {
2041                /* Wait for callbacks to appear. */
2042                trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep"));
2043                swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq,
2044                                !READ_ONCE(my_rdp->nocb_gp_sleep));
2045                trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep"));
2046        } else {
2047                rnp = my_rdp->mynode;
2048                trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait"));
2049                swait_event_interruptible_exclusive(
2050                        rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1],
2051                        rcu_seq_done(&rnp->gp_seq, wait_gp_seq) ||
2052                        !READ_ONCE(my_rdp->nocb_gp_sleep));
2053                trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait"));
2054        }
2055        if (!rcu_nocb_poll) {
2056                raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
2057                if (bypass)
2058                        del_timer(&my_rdp->nocb_bypass_timer);
2059                WRITE_ONCE(my_rdp->nocb_gp_sleep, true);
2060                raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
2061        }
2062        my_rdp->nocb_gp_seq = -1;
2063        WARN_ON(signal_pending(current));
2064}
2065
2066/*
2067 * No-CBs grace-period-wait kthread.  There is one of these per group
2068 * of CPUs, but only once at least one CPU in that group has come online
2069 * at least once since boot.  This kthread checks for newly posted
2070 * callbacks from any of the CPUs it is responsible for, waits for a
2071 * grace period, then awakens all of the rcu_nocb_cb_kthread() instances
2072 * that then have callback-invocation work to do.
2073 */
2074static int rcu_nocb_gp_kthread(void *arg)
2075{
2076        struct rcu_data *rdp = arg;
2077
2078        for (;;) {
2079                WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1);
2080                nocb_gp_wait(rdp);
2081                cond_resched_tasks_rcu_qs();
2082        }
2083        return 0;
2084}
2085
2086/*
2087 * Invoke any ready callbacks from the corresponding no-CBs CPU,
2088 * then, if there are no more, wait for more to appear.
2089 */
2090static void nocb_cb_wait(struct rcu_data *rdp)
2091{
2092        unsigned long cur_gp_seq;
2093        unsigned long flags;
2094        bool needwake_gp = false;
2095        struct rcu_node *rnp = rdp->mynode;
2096
2097        local_irq_save(flags);
2098        rcu_momentary_dyntick_idle();
2099        local_irq_restore(flags);
2100        local_bh_disable();
2101        rcu_do_batch(rdp);
2102        local_bh_enable();
2103        lockdep_assert_irqs_enabled();
2104        rcu_nocb_lock_irqsave(rdp, flags);
2105        if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
2106            rcu_seq_done(&rnp->gp_seq, cur_gp_seq) &&
2107            raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */
2108                needwake_gp = rcu_advance_cbs(rdp->mynode, rdp);
2109                raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2110        }
2111        if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
2112                rcu_nocb_unlock_irqrestore(rdp, flags);
2113                if (needwake_gp)
2114                        rcu_gp_kthread_wake();
2115                return;
2116        }
2117
2118        trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep"));
2119        WRITE_ONCE(rdp->nocb_cb_sleep, true);
2120        rcu_nocb_unlock_irqrestore(rdp, flags);
2121        if (needwake_gp)
2122                rcu_gp_kthread_wake();
2123        swait_event_interruptible_exclusive(rdp->nocb_cb_wq,
2124                                 !READ_ONCE(rdp->nocb_cb_sleep));
2125        if (!smp_load_acquire(&rdp->nocb_cb_sleep)) { /* VVV */
2126                /* ^^^ Ensure CB invocation follows _sleep test. */
2127                return;
2128        }
2129        WARN_ON(signal_pending(current));
2130        trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty"));
2131}
2132
2133/*
2134 * Per-rcu_data kthread, but only for no-CBs CPUs.  Repeatedly invoke
2135 * nocb_cb_wait() to do the dirty work.
2136 */
2137static int rcu_nocb_cb_kthread(void *arg)
2138{
2139        struct rcu_data *rdp = arg;
2140
2141        // Each pass through this loop does one callback batch, and,
2142        // if there are no more ready callbacks, waits for them.
2143        for (;;) {
2144                nocb_cb_wait(rdp);
2145                cond_resched_tasks_rcu_qs();
2146        }
2147        return 0;
2148}
2149
2150/* Is a deferred wakeup of rcu_nocb_kthread() required? */
2151static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2152{
2153        return READ_ONCE(rdp->nocb_defer_wakeup);
2154}
2155
2156/* Do a deferred wakeup of rcu_nocb_kthread(). */
2157static void do_nocb_deferred_wakeup_common(struct rcu_data *rdp)
2158{
2159        unsigned long flags;
2160        int ndw;
2161
2162        rcu_nocb_lock_irqsave(rdp, flags);
2163        if (!rcu_nocb_need_deferred_wakeup(rdp)) {
2164                rcu_nocb_unlock_irqrestore(rdp, flags);
2165                return;
2166        }
2167        ndw = READ_ONCE(rdp->nocb_defer_wakeup);
2168        WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
2169        wake_nocb_gp(rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
2170        trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake"));
2171}
2172
2173/* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
2174static void do_nocb_deferred_wakeup_timer(struct timer_list *t)
2175{
2176        struct rcu_data *rdp = from_timer(rdp, t, nocb_timer);
2177
2178        do_nocb_deferred_wakeup_common(rdp);
2179}
2180
2181/*
2182 * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
2183 * This means we do an inexact common-case check.  Note that if
2184 * we miss, ->nocb_timer will eventually clean things up.
2185 */
2186static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2187{
2188        if (rcu_nocb_need_deferred_wakeup(rdp))
2189                do_nocb_deferred_wakeup_common(rdp);
2190}
2191
2192void __init rcu_init_nohz(void)
2193{
2194        int cpu;
2195        bool need_rcu_nocb_mask = false;
2196        struct rcu_data *rdp;
2197
2198#if defined(CONFIG_NO_HZ_FULL)
2199        if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2200                need_rcu_nocb_mask = true;
2201#endif /* #if defined(CONFIG_NO_HZ_FULL) */
2202
2203        if (!cpumask_available(rcu_nocb_mask) && need_rcu_nocb_mask) {
2204                if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2205                        pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2206                        return;
2207                }
2208        }
2209        if (!cpumask_available(rcu_nocb_mask))
2210                return;
2211
2212#if defined(CONFIG_NO_HZ_FULL)
2213        if (tick_nohz_full_running)
2214                cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2215#endif /* #if defined(CONFIG_NO_HZ_FULL) */
2216
2217        if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2218                pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n");
2219                cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2220                            rcu_nocb_mask);
2221        }
2222        if (cpumask_empty(rcu_nocb_mask))
2223                pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
2224        else
2225                pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2226                        cpumask_pr_args(rcu_nocb_mask));
2227        if (rcu_nocb_poll)
2228                pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2229
2230        for_each_cpu(cpu, rcu_nocb_mask) {
2231                rdp = per_cpu_ptr(&rcu_data, cpu);
2232                if (rcu_segcblist_empty(&rdp->cblist))
2233                        rcu_segcblist_init(&rdp->cblist);
2234                rcu_segcblist_offload(&rdp->cblist);
2235        }
2236        rcu_organize_nocb_kthreads();
2237}
2238
2239/* Initialize per-rcu_data variables for no-CBs CPUs. */
2240static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2241{
2242        init_swait_queue_head(&rdp->nocb_cb_wq);
2243        init_swait_queue_head(&rdp->nocb_gp_wq);
2244        raw_spin_lock_init(&rdp->nocb_lock);
2245        raw_spin_lock_init(&rdp->nocb_bypass_lock);
2246        raw_spin_lock_init(&rdp->nocb_gp_lock);
2247        timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
2248        timer_setup(&rdp->nocb_bypass_timer, do_nocb_bypass_wakeup_timer, 0);
2249        rcu_cblist_init(&rdp->nocb_bypass);
2250}
2251
2252/*
2253 * If the specified CPU is a no-CBs CPU that does not already have its
2254 * rcuo CB kthread, spawn it.  Additionally, if the rcuo GP kthread
2255 * for this CPU's group has not yet been created, spawn it as well.
2256 */
2257static void rcu_spawn_one_nocb_kthread(int cpu)
2258{
2259        struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2260        struct rcu_data *rdp_gp;
2261        struct task_struct *t;
2262
2263        /*
2264         * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2265         * then nothing to do.
2266         */
2267        if (!rcu_is_nocb_cpu(cpu) || rdp->nocb_cb_kthread)
2268                return;
2269
2270        /* If we didn't spawn the GP kthread first, reorganize! */
2271        rdp_gp = rdp->nocb_gp_rdp;
2272        if (!rdp_gp->nocb_gp_kthread) {
2273                t = kthread_run(rcu_nocb_gp_kthread, rdp_gp,
2274                                "rcuog/%d", rdp_gp->cpu);
2275                if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__))
2276                        return;
2277                WRITE_ONCE(rdp_gp->nocb_gp_kthread, t);
2278        }
2279
2280        /* Spawn the kthread for this CPU. */
2281        t = kthread_run(rcu_nocb_cb_kthread, rdp,
2282                        "rcuo%c/%d", rcu_state.abbr, cpu);
2283        if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__))
2284                return;
2285        WRITE_ONCE(rdp->nocb_cb_kthread, t);
2286        WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread);
2287}
2288
2289/*
2290 * If the specified CPU is a no-CBs CPU that does not already have its
2291 * rcuo kthread, spawn it.
2292 */
2293static void rcu_spawn_cpu_nocb_kthread(int cpu)
2294{
2295        if (rcu_scheduler_fully_active)
2296                rcu_spawn_one_nocb_kthread(cpu);
2297}
2298
2299/*
2300 * Once the scheduler is running, spawn rcuo kthreads for all online
2301 * no-CBs CPUs.  This assumes that the early_initcall()s happen before
2302 * non-boot CPUs come online -- if this changes, we will need to add
2303 * some mutual exclusion.
2304 */
2305static void __init rcu_spawn_nocb_kthreads(void)
2306{
2307        int cpu;
2308
2309        for_each_online_cpu(cpu)
2310                rcu_spawn_cpu_nocb_kthread(cpu);
2311}
2312
2313/* How many CB CPU IDs per GP kthread?  Default of -1 for sqrt(nr_cpu_ids). */
2314static int rcu_nocb_gp_stride = -1;
2315module_param(rcu_nocb_gp_stride, int, 0444);
2316
2317/*
2318 * Initialize GP-CB relationships for all no-CBs CPU.
2319 */
2320static void __init rcu_organize_nocb_kthreads(void)
2321{
2322        int cpu;
2323        bool firsttime = true;
2324        int ls = rcu_nocb_gp_stride;
2325        int nl = 0;  /* Next GP kthread. */
2326        struct rcu_data *rdp;
2327        struct rcu_data *rdp_gp = NULL;  /* Suppress misguided gcc warn. */
2328        struct rcu_data *rdp_prev = NULL;
2329
2330        if (!cpumask_available(rcu_nocb_mask))
2331                return;
2332        if (ls == -1) {
2333                ls = nr_cpu_ids / int_sqrt(nr_cpu_ids);
2334                rcu_nocb_gp_stride = ls;
2335        }
2336
2337        /*
2338         * Each pass through this loop sets up one rcu_data structure.
2339         * Should the corresponding CPU come online in the future, then
2340         * we will spawn the needed set of rcu_nocb_kthread() kthreads.
2341         */
2342        for_each_cpu(cpu, rcu_nocb_mask) {
2343                rdp = per_cpu_ptr(&rcu_data, cpu);
2344                if (rdp->cpu >= nl) {
2345                        /* New GP kthread, set up for CBs & next GP. */
2346                        nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2347                        rdp->nocb_gp_rdp = rdp;
2348                        rdp_gp = rdp;
2349                        if (!firsttime && dump_tree)
2350                                pr_cont("\n");
2351                        firsttime = false;
2352                        pr_alert("%s: No-CB GP kthread CPU %d:", __func__, cpu);
2353                } else {
2354                        /* Another CB kthread, link to previous GP kthread. */
2355                        rdp->nocb_gp_rdp = rdp_gp;
2356                        rdp_prev->nocb_next_cb_rdp = rdp;
2357                        pr_alert(" %d", cpu);
2358                }
2359                rdp_prev = rdp;
2360        }
2361}
2362
2363/*
2364 * Bind the current task to the offloaded CPUs.  If there are no offloaded
2365 * CPUs, leave the task unbound.  Splat if the bind attempt fails.
2366 */
2367void rcu_bind_current_to_nocb(void)
2368{
2369        if (cpumask_available(rcu_nocb_mask) && cpumask_weight(rcu_nocb_mask))
2370                WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask));
2371}
2372EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb);
2373
2374/*
2375 * Dump out nocb grace-period kthread state for the specified rcu_data
2376 * structure.
2377 */
2378static void show_rcu_nocb_gp_state(struct rcu_data *rdp)
2379{
2380        struct rcu_node *rnp = rdp->mynode;
2381
2382        pr_info("nocb GP %d %c%c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu\n",
2383                rdp->cpu,
2384                "kK"[!!rdp->nocb_gp_kthread],
2385                "lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)],
2386                "dD"[!!rdp->nocb_defer_wakeup],
2387                "tT"[timer_pending(&rdp->nocb_timer)],
2388                "bB"[timer_pending(&rdp->nocb_bypass_timer)],
2389                "sS"[!!rdp->nocb_gp_sleep],
2390                ".W"[swait_active(&rdp->nocb_gp_wq)],
2391                ".W"[swait_active(&rnp->nocb_gp_wq[0])],
2392                ".W"[swait_active(&rnp->nocb_gp_wq[1])],
2393                ".B"[!!rdp->nocb_gp_bypass],
2394                ".G"[!!rdp->nocb_gp_gp],
2395                (long)rdp->nocb_gp_seq,
2396                rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops));
2397}
2398
2399/* Dump out nocb kthread state for the specified rcu_data structure. */
2400static void show_rcu_nocb_state(struct rcu_data *rdp)
2401{
2402        struct rcu_segcblist *rsclp = &rdp->cblist;
2403        bool waslocked;
2404        bool wastimer;
2405        bool wassleep;
2406
2407        if (rdp->nocb_gp_rdp == rdp)
2408                show_rcu_nocb_gp_state(rdp);
2409
2410        pr_info("   CB %d->%d %c%c%c%c%c%c F%ld L%ld C%d %c%c%c%c%c q%ld\n",
2411                rdp->cpu, rdp->nocb_gp_rdp->cpu,
2412                "kK"[!!rdp->nocb_cb_kthread],
2413                "bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)],
2414                "cC"[!!atomic_read(&rdp->nocb_lock_contended)],
2415                "lL"[raw_spin_is_locked(&rdp->nocb_lock)],
2416                "sS"[!!rdp->nocb_cb_sleep],
2417                ".W"[swait_active(&rdp->nocb_cb_wq)],
2418                jiffies - rdp->nocb_bypass_first,
2419                jiffies - rdp->nocb_nobypass_last,
2420                rdp->nocb_nobypass_count,
2421                ".D"[rcu_segcblist_ready_cbs(rsclp)],
2422                ".W"[!rcu_segcblist_restempty(rsclp, RCU_DONE_TAIL)],
2423                ".R"[!rcu_segcblist_restempty(rsclp, RCU_WAIT_TAIL)],
2424                ".N"[!rcu_segcblist_restempty(rsclp, RCU_NEXT_READY_TAIL)],
2425                ".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)],
2426                rcu_segcblist_n_cbs(&rdp->cblist));
2427
2428        /* It is OK for GP kthreads to have GP state. */
2429        if (rdp->nocb_gp_rdp == rdp)
2430                return;
2431
2432        waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock);
2433        wastimer = timer_pending(&rdp->nocb_timer);
2434        wassleep = swait_active(&rdp->nocb_gp_wq);
2435        if (!rdp->nocb_defer_wakeup && !rdp->nocb_gp_sleep &&
2436            !waslocked && !wastimer && !wassleep)
2437                return;  /* Nothing untowards. */
2438
2439        pr_info("   !!! %c%c%c%c %c\n",
2440                "lL"[waslocked],
2441                "dD"[!!rdp->nocb_defer_wakeup],
2442                "tT"[wastimer],
2443                "sS"[!!rdp->nocb_gp_sleep],
2444                ".W"[wassleep]);
2445}
2446
2447#else /* #ifdef CONFIG_RCU_NOCB_CPU */
2448
2449/* No ->nocb_lock to acquire.  */
2450static void rcu_nocb_lock(struct rcu_data *rdp)
2451{
2452}
2453
2454/* No ->nocb_lock to release.  */
2455static void rcu_nocb_unlock(struct rcu_data *rdp)
2456{
2457}
2458
2459/* No ->nocb_lock to release.  */
2460static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
2461                                       unsigned long flags)
2462{
2463        local_irq_restore(flags);
2464}
2465
2466/* Lockdep check that ->cblist may be safely accessed. */
2467static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
2468{
2469        lockdep_assert_irqs_disabled();
2470}
2471
2472static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
2473{
2474}
2475
2476static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
2477{
2478        return NULL;
2479}
2480
2481static void rcu_init_one_nocb(struct rcu_node *rnp)
2482{
2483}
2484
2485static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
2486                                  unsigned long j)
2487{
2488        return true;
2489}
2490
2491static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
2492                                bool *was_alldone, unsigned long flags)
2493{
2494        return false;
2495}
2496
2497static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty,
2498                                 unsigned long flags)
2499{
2500        WARN_ON_ONCE(1);  /* Should be dead code! */
2501}
2502
2503static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2504{
2505}
2506
2507static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2508{
2509        return false;
2510}
2511
2512static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2513{
2514}
2515
2516static void rcu_spawn_cpu_nocb_kthread(int cpu)
2517{
2518}
2519
2520static void __init rcu_spawn_nocb_kthreads(void)
2521{
2522}
2523
2524static void show_rcu_nocb_state(struct rcu_data *rdp)
2525{
2526}
2527
2528#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2529
2530/*
2531 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2532 * grace-period kthread will do force_quiescent_state() processing?
2533 * The idea is to avoid waking up RCU core processing on such a
2534 * CPU unless the grace period has extended for too long.
2535 *
2536 * This code relies on the fact that all NO_HZ_FULL CPUs are also
2537 * CONFIG_RCU_NOCB_CPU CPUs.
2538 */
2539static bool rcu_nohz_full_cpu(void)
2540{
2541#ifdef CONFIG_NO_HZ_FULL
2542        if (tick_nohz_full_cpu(smp_processor_id()) &&
2543            (!rcu_gp_in_progress() ||
2544             ULONG_CMP_LT(jiffies, READ_ONCE(rcu_state.gp_start) + HZ)))
2545                return true;
2546#endif /* #ifdef CONFIG_NO_HZ_FULL */
2547        return false;
2548}
2549
2550/*
2551 * Bind the RCU grace-period kthreads to the housekeeping CPU.
2552 */
2553static void rcu_bind_gp_kthread(void)
2554{
2555        if (!tick_nohz_full_enabled())
2556                return;
2557        housekeeping_affine(current, HK_FLAG_RCU);
2558}
2559
2560/* Record the current task on dyntick-idle entry. */
2561static void rcu_dynticks_task_enter(void)
2562{
2563#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2564        WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
2565#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2566}
2567
2568/* Record no current task on dyntick-idle exit. */
2569static void rcu_dynticks_task_exit(void)
2570{
2571#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2572        WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
2573#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2574}
2575