linux/kernel/sched/fair.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
   4 *
   5 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
   6 *
   7 *  Interactivity improvements by Mike Galbraith
   8 *  (C) 2007 Mike Galbraith <efault@gmx.de>
   9 *
  10 *  Various enhancements by Dmitry Adamushko.
  11 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  12 *
  13 *  Group scheduling enhancements by Srivatsa Vaddagiri
  14 *  Copyright IBM Corporation, 2007
  15 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  16 *
  17 *  Scaled math optimizations by Thomas Gleixner
  18 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  19 *
  20 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  21 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
  22 */
  23#include "sched.h"
  24
  25#include <trace/events/sched.h>
  26
  27/*
  28 * Targeted preemption latency for CPU-bound tasks:
  29 *
  30 * NOTE: this latency value is not the same as the concept of
  31 * 'timeslice length' - timeslices in CFS are of variable length
  32 * and have no persistent notion like in traditional, time-slice
  33 * based scheduling concepts.
  34 *
  35 * (to see the precise effective timeslice length of your workload,
  36 *  run vmstat and monitor the context-switches (cs) field)
  37 *
  38 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
  39 */
  40unsigned int sysctl_sched_latency                       = 6000000ULL;
  41static unsigned int normalized_sysctl_sched_latency     = 6000000ULL;
  42
  43/*
  44 * The initial- and re-scaling of tunables is configurable
  45 *
  46 * Options are:
  47 *
  48 *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
  49 *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
  50 *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
  51 *
  52 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
  53 */
  54enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
  55
  56/*
  57 * Minimal preemption granularity for CPU-bound tasks:
  58 *
  59 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
  60 */
  61unsigned int sysctl_sched_min_granularity                       = 750000ULL;
  62static unsigned int normalized_sysctl_sched_min_granularity     = 750000ULL;
  63
  64/*
  65 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
  66 */
  67static unsigned int sched_nr_latency = 8;
  68
  69/*
  70 * After fork, child runs first. If set to 0 (default) then
  71 * parent will (try to) run first.
  72 */
  73unsigned int sysctl_sched_child_runs_first __read_mostly;
  74
  75/*
  76 * SCHED_OTHER wake-up granularity.
  77 *
  78 * This option delays the preemption effects of decoupled workloads
  79 * and reduces their over-scheduling. Synchronous workloads will still
  80 * have immediate wakeup/sleep latencies.
  81 *
  82 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
  83 */
  84unsigned int sysctl_sched_wakeup_granularity                    = 1000000UL;
  85static unsigned int normalized_sysctl_sched_wakeup_granularity  = 1000000UL;
  86
  87const_debug unsigned int sysctl_sched_migration_cost    = 500000UL;
  88
  89#ifdef CONFIG_SMP
  90/*
  91 * For asym packing, by default the lower numbered CPU has higher priority.
  92 */
  93int __weak arch_asym_cpu_priority(int cpu)
  94{
  95        return -cpu;
  96}
  97
  98/*
  99 * The margin used when comparing utilization with CPU capacity.
 100 *
 101 * (default: ~20%)
 102 */
 103#define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024)
 104
 105#endif
 106
 107#ifdef CONFIG_CFS_BANDWIDTH
 108/*
 109 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
 110 * each time a cfs_rq requests quota.
 111 *
 112 * Note: in the case that the slice exceeds the runtime remaining (either due
 113 * to consumption or the quota being specified to be smaller than the slice)
 114 * we will always only issue the remaining available time.
 115 *
 116 * (default: 5 msec, units: microseconds)
 117 */
 118unsigned int sysctl_sched_cfs_bandwidth_slice           = 5000UL;
 119#endif
 120
 121static inline void update_load_add(struct load_weight *lw, unsigned long inc)
 122{
 123        lw->weight += inc;
 124        lw->inv_weight = 0;
 125}
 126
 127static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
 128{
 129        lw->weight -= dec;
 130        lw->inv_weight = 0;
 131}
 132
 133static inline void update_load_set(struct load_weight *lw, unsigned long w)
 134{
 135        lw->weight = w;
 136        lw->inv_weight = 0;
 137}
 138
 139/*
 140 * Increase the granularity value when there are more CPUs,
 141 * because with more CPUs the 'effective latency' as visible
 142 * to users decreases. But the relationship is not linear,
 143 * so pick a second-best guess by going with the log2 of the
 144 * number of CPUs.
 145 *
 146 * This idea comes from the SD scheduler of Con Kolivas:
 147 */
 148static unsigned int get_update_sysctl_factor(void)
 149{
 150        unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
 151        unsigned int factor;
 152
 153        switch (sysctl_sched_tunable_scaling) {
 154        case SCHED_TUNABLESCALING_NONE:
 155                factor = 1;
 156                break;
 157        case SCHED_TUNABLESCALING_LINEAR:
 158                factor = cpus;
 159                break;
 160        case SCHED_TUNABLESCALING_LOG:
 161        default:
 162                factor = 1 + ilog2(cpus);
 163                break;
 164        }
 165
 166        return factor;
 167}
 168
 169static void update_sysctl(void)
 170{
 171        unsigned int factor = get_update_sysctl_factor();
 172
 173#define SET_SYSCTL(name) \
 174        (sysctl_##name = (factor) * normalized_sysctl_##name)
 175        SET_SYSCTL(sched_min_granularity);
 176        SET_SYSCTL(sched_latency);
 177        SET_SYSCTL(sched_wakeup_granularity);
 178#undef SET_SYSCTL
 179}
 180
 181void sched_init_granularity(void)
 182{
 183        update_sysctl();
 184}
 185
 186#define WMULT_CONST     (~0U)
 187#define WMULT_SHIFT     32
 188
 189static void __update_inv_weight(struct load_weight *lw)
 190{
 191        unsigned long w;
 192
 193        if (likely(lw->inv_weight))
 194                return;
 195
 196        w = scale_load_down(lw->weight);
 197
 198        if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
 199                lw->inv_weight = 1;
 200        else if (unlikely(!w))
 201                lw->inv_weight = WMULT_CONST;
 202        else
 203                lw->inv_weight = WMULT_CONST / w;
 204}
 205
 206/*
 207 * delta_exec * weight / lw.weight
 208 *   OR
 209 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
 210 *
 211 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
 212 * we're guaranteed shift stays positive because inv_weight is guaranteed to
 213 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
 214 *
 215 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
 216 * weight/lw.weight <= 1, and therefore our shift will also be positive.
 217 */
 218static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
 219{
 220        u64 fact = scale_load_down(weight);
 221        int shift = WMULT_SHIFT;
 222
 223        __update_inv_weight(lw);
 224
 225        if (unlikely(fact >> 32)) {
 226                while (fact >> 32) {
 227                        fact >>= 1;
 228                        shift--;
 229                }
 230        }
 231
 232        fact = mul_u32_u32(fact, lw->inv_weight);
 233
 234        while (fact >> 32) {
 235                fact >>= 1;
 236                shift--;
 237        }
 238
 239        return mul_u64_u32_shr(delta_exec, fact, shift);
 240}
 241
 242
 243const struct sched_class fair_sched_class;
 244
 245/**************************************************************
 246 * CFS operations on generic schedulable entities:
 247 */
 248
 249#ifdef CONFIG_FAIR_GROUP_SCHED
 250static inline struct task_struct *task_of(struct sched_entity *se)
 251{
 252        SCHED_WARN_ON(!entity_is_task(se));
 253        return container_of(se, struct task_struct, se);
 254}
 255
 256/* Walk up scheduling entities hierarchy */
 257#define for_each_sched_entity(se) \
 258                for (; se; se = se->parent)
 259
 260static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
 261{
 262        return p->se.cfs_rq;
 263}
 264
 265/* runqueue on which this entity is (to be) queued */
 266static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
 267{
 268        return se->cfs_rq;
 269}
 270
 271/* runqueue "owned" by this group */
 272static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
 273{
 274        return grp->my_q;
 275}
 276
 277static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
 278{
 279        if (!path)
 280                return;
 281
 282        if (cfs_rq && task_group_is_autogroup(cfs_rq->tg))
 283                autogroup_path(cfs_rq->tg, path, len);
 284        else if (cfs_rq && cfs_rq->tg->css.cgroup)
 285                cgroup_path(cfs_rq->tg->css.cgroup, path, len);
 286        else
 287                strlcpy(path, "(null)", len);
 288}
 289
 290static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
 291{
 292        struct rq *rq = rq_of(cfs_rq);
 293        int cpu = cpu_of(rq);
 294
 295        if (cfs_rq->on_list)
 296                return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
 297
 298        cfs_rq->on_list = 1;
 299
 300        /*
 301         * Ensure we either appear before our parent (if already
 302         * enqueued) or force our parent to appear after us when it is
 303         * enqueued. The fact that we always enqueue bottom-up
 304         * reduces this to two cases and a special case for the root
 305         * cfs_rq. Furthermore, it also means that we will always reset
 306         * tmp_alone_branch either when the branch is connected
 307         * to a tree or when we reach the top of the tree
 308         */
 309        if (cfs_rq->tg->parent &&
 310            cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
 311                /*
 312                 * If parent is already on the list, we add the child
 313                 * just before. Thanks to circular linked property of
 314                 * the list, this means to put the child at the tail
 315                 * of the list that starts by parent.
 316                 */
 317                list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
 318                        &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
 319                /*
 320                 * The branch is now connected to its tree so we can
 321                 * reset tmp_alone_branch to the beginning of the
 322                 * list.
 323                 */
 324                rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
 325                return true;
 326        }
 327
 328        if (!cfs_rq->tg->parent) {
 329                /*
 330                 * cfs rq without parent should be put
 331                 * at the tail of the list.
 332                 */
 333                list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
 334                        &rq->leaf_cfs_rq_list);
 335                /*
 336                 * We have reach the top of a tree so we can reset
 337                 * tmp_alone_branch to the beginning of the list.
 338                 */
 339                rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
 340                return true;
 341        }
 342
 343        /*
 344         * The parent has not already been added so we want to
 345         * make sure that it will be put after us.
 346         * tmp_alone_branch points to the begin of the branch
 347         * where we will add parent.
 348         */
 349        list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
 350        /*
 351         * update tmp_alone_branch to points to the new begin
 352         * of the branch
 353         */
 354        rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
 355        return false;
 356}
 357
 358static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
 359{
 360        if (cfs_rq->on_list) {
 361                struct rq *rq = rq_of(cfs_rq);
 362
 363                /*
 364                 * With cfs_rq being unthrottled/throttled during an enqueue,
 365                 * it can happen the tmp_alone_branch points the a leaf that
 366                 * we finally want to del. In this case, tmp_alone_branch moves
 367                 * to the prev element but it will point to rq->leaf_cfs_rq_list
 368                 * at the end of the enqueue.
 369                 */
 370                if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
 371                        rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
 372
 373                list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
 374                cfs_rq->on_list = 0;
 375        }
 376}
 377
 378static inline void assert_list_leaf_cfs_rq(struct rq *rq)
 379{
 380        SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
 381}
 382
 383/* Iterate thr' all leaf cfs_rq's on a runqueue */
 384#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)                      \
 385        list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,    \
 386                                 leaf_cfs_rq_list)
 387
 388/* Do the two (enqueued) entities belong to the same group ? */
 389static inline struct cfs_rq *
 390is_same_group(struct sched_entity *se, struct sched_entity *pse)
 391{
 392        if (se->cfs_rq == pse->cfs_rq)
 393                return se->cfs_rq;
 394
 395        return NULL;
 396}
 397
 398static inline struct sched_entity *parent_entity(struct sched_entity *se)
 399{
 400        return se->parent;
 401}
 402
 403static void
 404find_matching_se(struct sched_entity **se, struct sched_entity **pse)
 405{
 406        int se_depth, pse_depth;
 407
 408        /*
 409         * preemption test can be made between sibling entities who are in the
 410         * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
 411         * both tasks until we find their ancestors who are siblings of common
 412         * parent.
 413         */
 414
 415        /* First walk up until both entities are at same depth */
 416        se_depth = (*se)->depth;
 417        pse_depth = (*pse)->depth;
 418
 419        while (se_depth > pse_depth) {
 420                se_depth--;
 421                *se = parent_entity(*se);
 422        }
 423
 424        while (pse_depth > se_depth) {
 425                pse_depth--;
 426                *pse = parent_entity(*pse);
 427        }
 428
 429        while (!is_same_group(*se, *pse)) {
 430                *se = parent_entity(*se);
 431                *pse = parent_entity(*pse);
 432        }
 433}
 434
 435#else   /* !CONFIG_FAIR_GROUP_SCHED */
 436
 437static inline struct task_struct *task_of(struct sched_entity *se)
 438{
 439        return container_of(se, struct task_struct, se);
 440}
 441
 442#define for_each_sched_entity(se) \
 443                for (; se; se = NULL)
 444
 445static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
 446{
 447        return &task_rq(p)->cfs;
 448}
 449
 450static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
 451{
 452        struct task_struct *p = task_of(se);
 453        struct rq *rq = task_rq(p);
 454
 455        return &rq->cfs;
 456}
 457
 458/* runqueue "owned" by this group */
 459static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
 460{
 461        return NULL;
 462}
 463
 464static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
 465{
 466        if (path)
 467                strlcpy(path, "(null)", len);
 468}
 469
 470static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
 471{
 472        return true;
 473}
 474
 475static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
 476{
 477}
 478
 479static inline void assert_list_leaf_cfs_rq(struct rq *rq)
 480{
 481}
 482
 483#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)      \
 484                for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
 485
 486static inline struct sched_entity *parent_entity(struct sched_entity *se)
 487{
 488        return NULL;
 489}
 490
 491static inline void
 492find_matching_se(struct sched_entity **se, struct sched_entity **pse)
 493{
 494}
 495
 496#endif  /* CONFIG_FAIR_GROUP_SCHED */
 497
 498static __always_inline
 499void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
 500
 501/**************************************************************
 502 * Scheduling class tree data structure manipulation methods:
 503 */
 504
 505static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
 506{
 507        s64 delta = (s64)(vruntime - max_vruntime);
 508        if (delta > 0)
 509                max_vruntime = vruntime;
 510
 511        return max_vruntime;
 512}
 513
 514static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
 515{
 516        s64 delta = (s64)(vruntime - min_vruntime);
 517        if (delta < 0)
 518                min_vruntime = vruntime;
 519
 520        return min_vruntime;
 521}
 522
 523static inline int entity_before(struct sched_entity *a,
 524                                struct sched_entity *b)
 525{
 526        return (s64)(a->vruntime - b->vruntime) < 0;
 527}
 528
 529static void update_min_vruntime(struct cfs_rq *cfs_rq)
 530{
 531        struct sched_entity *curr = cfs_rq->curr;
 532        struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
 533
 534        u64 vruntime = cfs_rq->min_vruntime;
 535
 536        if (curr) {
 537                if (curr->on_rq)
 538                        vruntime = curr->vruntime;
 539                else
 540                        curr = NULL;
 541        }
 542
 543        if (leftmost) { /* non-empty tree */
 544                struct sched_entity *se;
 545                se = rb_entry(leftmost, struct sched_entity, run_node);
 546
 547                if (!curr)
 548                        vruntime = se->vruntime;
 549                else
 550                        vruntime = min_vruntime(vruntime, se->vruntime);
 551        }
 552
 553        /* ensure we never gain time by being placed backwards. */
 554        cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
 555#ifndef CONFIG_64BIT
 556        smp_wmb();
 557        cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
 558#endif
 559}
 560
 561/*
 562 * Enqueue an entity into the rb-tree:
 563 */
 564static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
 565{
 566        struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
 567        struct rb_node *parent = NULL;
 568        struct sched_entity *entry;
 569        bool leftmost = true;
 570
 571        /*
 572         * Find the right place in the rbtree:
 573         */
 574        while (*link) {
 575                parent = *link;
 576                entry = rb_entry(parent, struct sched_entity, run_node);
 577                /*
 578                 * We dont care about collisions. Nodes with
 579                 * the same key stay together.
 580                 */
 581                if (entity_before(se, entry)) {
 582                        link = &parent->rb_left;
 583                } else {
 584                        link = &parent->rb_right;
 585                        leftmost = false;
 586                }
 587        }
 588
 589        rb_link_node(&se->run_node, parent, link);
 590        rb_insert_color_cached(&se->run_node,
 591                               &cfs_rq->tasks_timeline, leftmost);
 592}
 593
 594static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
 595{
 596        rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
 597}
 598
 599struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
 600{
 601        struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
 602
 603        if (!left)
 604                return NULL;
 605
 606        return rb_entry(left, struct sched_entity, run_node);
 607}
 608
 609static struct sched_entity *__pick_next_entity(struct sched_entity *se)
 610{
 611        struct rb_node *next = rb_next(&se->run_node);
 612
 613        if (!next)
 614                return NULL;
 615
 616        return rb_entry(next, struct sched_entity, run_node);
 617}
 618
 619#ifdef CONFIG_SCHED_DEBUG
 620struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
 621{
 622        struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
 623
 624        if (!last)
 625                return NULL;
 626
 627        return rb_entry(last, struct sched_entity, run_node);
 628}
 629
 630/**************************************************************
 631 * Scheduling class statistics methods:
 632 */
 633
 634int sched_proc_update_handler(struct ctl_table *table, int write,
 635                void __user *buffer, size_t *lenp,
 636                loff_t *ppos)
 637{
 638        int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 639        unsigned int factor = get_update_sysctl_factor();
 640
 641        if (ret || !write)
 642                return ret;
 643
 644        sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
 645                                        sysctl_sched_min_granularity);
 646
 647#define WRT_SYSCTL(name) \
 648        (normalized_sysctl_##name = sysctl_##name / (factor))
 649        WRT_SYSCTL(sched_min_granularity);
 650        WRT_SYSCTL(sched_latency);
 651        WRT_SYSCTL(sched_wakeup_granularity);
 652#undef WRT_SYSCTL
 653
 654        return 0;
 655}
 656#endif
 657
 658/*
 659 * delta /= w
 660 */
 661static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
 662{
 663        if (unlikely(se->load.weight != NICE_0_LOAD))
 664                delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
 665
 666        return delta;
 667}
 668
 669/*
 670 * The idea is to set a period in which each task runs once.
 671 *
 672 * When there are too many tasks (sched_nr_latency) we have to stretch
 673 * this period because otherwise the slices get too small.
 674 *
 675 * p = (nr <= nl) ? l : l*nr/nl
 676 */
 677static u64 __sched_period(unsigned long nr_running)
 678{
 679        if (unlikely(nr_running > sched_nr_latency))
 680                return nr_running * sysctl_sched_min_granularity;
 681        else
 682                return sysctl_sched_latency;
 683}
 684
 685/*
 686 * We calculate the wall-time slice from the period by taking a part
 687 * proportional to the weight.
 688 *
 689 * s = p*P[w/rw]
 690 */
 691static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
 692{
 693        u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
 694
 695        for_each_sched_entity(se) {
 696                struct load_weight *load;
 697                struct load_weight lw;
 698
 699                cfs_rq = cfs_rq_of(se);
 700                load = &cfs_rq->load;
 701
 702                if (unlikely(!se->on_rq)) {
 703                        lw = cfs_rq->load;
 704
 705                        update_load_add(&lw, se->load.weight);
 706                        load = &lw;
 707                }
 708                slice = __calc_delta(slice, se->load.weight, load);
 709        }
 710        return slice;
 711}
 712
 713/*
 714 * We calculate the vruntime slice of a to-be-inserted task.
 715 *
 716 * vs = s/w
 717 */
 718static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
 719{
 720        return calc_delta_fair(sched_slice(cfs_rq, se), se);
 721}
 722
 723#include "pelt.h"
 724#ifdef CONFIG_SMP
 725
 726static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
 727static unsigned long task_h_load(struct task_struct *p);
 728static unsigned long capacity_of(int cpu);
 729
 730/* Give new sched_entity start runnable values to heavy its load in infant time */
 731void init_entity_runnable_average(struct sched_entity *se)
 732{
 733        struct sched_avg *sa = &se->avg;
 734
 735        memset(sa, 0, sizeof(*sa));
 736
 737        /*
 738         * Tasks are initialized with full load to be seen as heavy tasks until
 739         * they get a chance to stabilize to their real load level.
 740         * Group entities are initialized with zero load to reflect the fact that
 741         * nothing has been attached to the task group yet.
 742         */
 743        if (entity_is_task(se))
 744                sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight);
 745
 746        se->runnable_weight = se->load.weight;
 747
 748        /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
 749}
 750
 751static void attach_entity_cfs_rq(struct sched_entity *se);
 752
 753/*
 754 * With new tasks being created, their initial util_avgs are extrapolated
 755 * based on the cfs_rq's current util_avg:
 756 *
 757 *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
 758 *
 759 * However, in many cases, the above util_avg does not give a desired
 760 * value. Moreover, the sum of the util_avgs may be divergent, such
 761 * as when the series is a harmonic series.
 762 *
 763 * To solve this problem, we also cap the util_avg of successive tasks to
 764 * only 1/2 of the left utilization budget:
 765 *
 766 *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
 767 *
 768 * where n denotes the nth task and cpu_scale the CPU capacity.
 769 *
 770 * For example, for a CPU with 1024 of capacity, a simplest series from
 771 * the beginning would be like:
 772 *
 773 *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
 774 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
 775 *
 776 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
 777 * if util_avg > util_avg_cap.
 778 */
 779void post_init_entity_util_avg(struct task_struct *p)
 780{
 781        struct sched_entity *se = &p->se;
 782        struct cfs_rq *cfs_rq = cfs_rq_of(se);
 783        struct sched_avg *sa = &se->avg;
 784        long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
 785        long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
 786
 787        if (cap > 0) {
 788                if (cfs_rq->avg.util_avg != 0) {
 789                        sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
 790                        sa->util_avg /= (cfs_rq->avg.load_avg + 1);
 791
 792                        if (sa->util_avg > cap)
 793                                sa->util_avg = cap;
 794                } else {
 795                        sa->util_avg = cap;
 796                }
 797        }
 798
 799        if (p->sched_class != &fair_sched_class) {
 800                /*
 801                 * For !fair tasks do:
 802                 *
 803                update_cfs_rq_load_avg(now, cfs_rq);
 804                attach_entity_load_avg(cfs_rq, se, 0);
 805                switched_from_fair(rq, p);
 806                 *
 807                 * such that the next switched_to_fair() has the
 808                 * expected state.
 809                 */
 810                se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
 811                return;
 812        }
 813
 814        attach_entity_cfs_rq(se);
 815}
 816
 817#else /* !CONFIG_SMP */
 818void init_entity_runnable_average(struct sched_entity *se)
 819{
 820}
 821void post_init_entity_util_avg(struct task_struct *p)
 822{
 823}
 824static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
 825{
 826}
 827#endif /* CONFIG_SMP */
 828
 829/*
 830 * Update the current task's runtime statistics.
 831 */
 832static void update_curr(struct cfs_rq *cfs_rq)
 833{
 834        struct sched_entity *curr = cfs_rq->curr;
 835        u64 now = rq_clock_task(rq_of(cfs_rq));
 836        u64 delta_exec;
 837
 838        if (unlikely(!curr))
 839                return;
 840
 841        delta_exec = now - curr->exec_start;
 842        if (unlikely((s64)delta_exec <= 0))
 843                return;
 844
 845        curr->exec_start = now;
 846
 847        schedstat_set(curr->statistics.exec_max,
 848                      max(delta_exec, curr->statistics.exec_max));
 849
 850        curr->sum_exec_runtime += delta_exec;
 851        schedstat_add(cfs_rq->exec_clock, delta_exec);
 852
 853        curr->vruntime += calc_delta_fair(delta_exec, curr);
 854        update_min_vruntime(cfs_rq);
 855
 856        if (entity_is_task(curr)) {
 857                struct task_struct *curtask = task_of(curr);
 858
 859                trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
 860                cgroup_account_cputime(curtask, delta_exec);
 861                account_group_exec_runtime(curtask, delta_exec);
 862        }
 863
 864        account_cfs_rq_runtime(cfs_rq, delta_exec);
 865}
 866
 867static void update_curr_fair(struct rq *rq)
 868{
 869        update_curr(cfs_rq_of(&rq->curr->se));
 870}
 871
 872static inline void
 873update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
 874{
 875        u64 wait_start, prev_wait_start;
 876
 877        if (!schedstat_enabled())
 878                return;
 879
 880        wait_start = rq_clock(rq_of(cfs_rq));
 881        prev_wait_start = schedstat_val(se->statistics.wait_start);
 882
 883        if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
 884            likely(wait_start > prev_wait_start))
 885                wait_start -= prev_wait_start;
 886
 887        __schedstat_set(se->statistics.wait_start, wait_start);
 888}
 889
 890static inline void
 891update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
 892{
 893        struct task_struct *p;
 894        u64 delta;
 895
 896        if (!schedstat_enabled())
 897                return;
 898
 899        delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
 900
 901        if (entity_is_task(se)) {
 902                p = task_of(se);
 903                if (task_on_rq_migrating(p)) {
 904                        /*
 905                         * Preserve migrating task's wait time so wait_start
 906                         * time stamp can be adjusted to accumulate wait time
 907                         * prior to migration.
 908                         */
 909                        __schedstat_set(se->statistics.wait_start, delta);
 910                        return;
 911                }
 912                trace_sched_stat_wait(p, delta);
 913        }
 914
 915        __schedstat_set(se->statistics.wait_max,
 916                      max(schedstat_val(se->statistics.wait_max), delta));
 917        __schedstat_inc(se->statistics.wait_count);
 918        __schedstat_add(se->statistics.wait_sum, delta);
 919        __schedstat_set(se->statistics.wait_start, 0);
 920}
 921
 922static inline void
 923update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
 924{
 925        struct task_struct *tsk = NULL;
 926        u64 sleep_start, block_start;
 927
 928        if (!schedstat_enabled())
 929                return;
 930
 931        sleep_start = schedstat_val(se->statistics.sleep_start);
 932        block_start = schedstat_val(se->statistics.block_start);
 933
 934        if (entity_is_task(se))
 935                tsk = task_of(se);
 936
 937        if (sleep_start) {
 938                u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
 939
 940                if ((s64)delta < 0)
 941                        delta = 0;
 942
 943                if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
 944                        __schedstat_set(se->statistics.sleep_max, delta);
 945
 946                __schedstat_set(se->statistics.sleep_start, 0);
 947                __schedstat_add(se->statistics.sum_sleep_runtime, delta);
 948
 949                if (tsk) {
 950                        account_scheduler_latency(tsk, delta >> 10, 1);
 951                        trace_sched_stat_sleep(tsk, delta);
 952                }
 953        }
 954        if (block_start) {
 955                u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
 956
 957                if ((s64)delta < 0)
 958                        delta = 0;
 959
 960                if (unlikely(delta > schedstat_val(se->statistics.block_max)))
 961                        __schedstat_set(se->statistics.block_max, delta);
 962
 963                __schedstat_set(se->statistics.block_start, 0);
 964                __schedstat_add(se->statistics.sum_sleep_runtime, delta);
 965
 966                if (tsk) {
 967                        if (tsk->in_iowait) {
 968                                __schedstat_add(se->statistics.iowait_sum, delta);
 969                                __schedstat_inc(se->statistics.iowait_count);
 970                                trace_sched_stat_iowait(tsk, delta);
 971                        }
 972
 973                        trace_sched_stat_blocked(tsk, delta);
 974
 975                        /*
 976                         * Blocking time is in units of nanosecs, so shift by
 977                         * 20 to get a milliseconds-range estimation of the
 978                         * amount of time that the task spent sleeping:
 979                         */
 980                        if (unlikely(prof_on == SLEEP_PROFILING)) {
 981                                profile_hits(SLEEP_PROFILING,
 982                                                (void *)get_wchan(tsk),
 983                                                delta >> 20);
 984                        }
 985                        account_scheduler_latency(tsk, delta >> 10, 0);
 986                }
 987        }
 988}
 989
 990/*
 991 * Task is being enqueued - update stats:
 992 */
 993static inline void
 994update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
 995{
 996        if (!schedstat_enabled())
 997                return;
 998
 999        /*
1000         * Are we enqueueing a waiting task? (for current tasks
1001         * a dequeue/enqueue event is a NOP)
1002         */
1003        if (se != cfs_rq->curr)
1004                update_stats_wait_start(cfs_rq, se);
1005
1006        if (flags & ENQUEUE_WAKEUP)
1007                update_stats_enqueue_sleeper(cfs_rq, se);
1008}
1009
1010static inline void
1011update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1012{
1013
1014        if (!schedstat_enabled())
1015                return;
1016
1017        /*
1018         * Mark the end of the wait period if dequeueing a
1019         * waiting task:
1020         */
1021        if (se != cfs_rq->curr)
1022                update_stats_wait_end(cfs_rq, se);
1023
1024        if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1025                struct task_struct *tsk = task_of(se);
1026
1027                if (tsk->state & TASK_INTERRUPTIBLE)
1028                        __schedstat_set(se->statistics.sleep_start,
1029                                      rq_clock(rq_of(cfs_rq)));
1030                if (tsk->state & TASK_UNINTERRUPTIBLE)
1031                        __schedstat_set(se->statistics.block_start,
1032                                      rq_clock(rq_of(cfs_rq)));
1033        }
1034}
1035
1036/*
1037 * We are picking a new current task - update its stats:
1038 */
1039static inline void
1040update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1041{
1042        /*
1043         * We are starting a new run period:
1044         */
1045        se->exec_start = rq_clock_task(rq_of(cfs_rq));
1046}
1047
1048/**************************************************
1049 * Scheduling class queueing methods:
1050 */
1051
1052#ifdef CONFIG_NUMA_BALANCING
1053/*
1054 * Approximate time to scan a full NUMA task in ms. The task scan period is
1055 * calculated based on the tasks virtual memory size and
1056 * numa_balancing_scan_size.
1057 */
1058unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1059unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1060
1061/* Portion of address space to scan in MB */
1062unsigned int sysctl_numa_balancing_scan_size = 256;
1063
1064/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1065unsigned int sysctl_numa_balancing_scan_delay = 1000;
1066
1067struct numa_group {
1068        refcount_t refcount;
1069
1070        spinlock_t lock; /* nr_tasks, tasks */
1071        int nr_tasks;
1072        pid_t gid;
1073        int active_nodes;
1074
1075        struct rcu_head rcu;
1076        unsigned long total_faults;
1077        unsigned long max_faults_cpu;
1078        /*
1079         * Faults_cpu is used to decide whether memory should move
1080         * towards the CPU. As a consequence, these stats are weighted
1081         * more by CPU use than by memory faults.
1082         */
1083        unsigned long *faults_cpu;
1084        unsigned long faults[0];
1085};
1086
1087/*
1088 * For functions that can be called in multiple contexts that permit reading
1089 * ->numa_group (see struct task_struct for locking rules).
1090 */
1091static struct numa_group *deref_task_numa_group(struct task_struct *p)
1092{
1093        return rcu_dereference_check(p->numa_group, p == current ||
1094                (lockdep_is_held(&task_rq(p)->lock) && !READ_ONCE(p->on_cpu)));
1095}
1096
1097static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1098{
1099        return rcu_dereference_protected(p->numa_group, p == current);
1100}
1101
1102static inline unsigned long group_faults_priv(struct numa_group *ng);
1103static inline unsigned long group_faults_shared(struct numa_group *ng);
1104
1105static unsigned int task_nr_scan_windows(struct task_struct *p)
1106{
1107        unsigned long rss = 0;
1108        unsigned long nr_scan_pages;
1109
1110        /*
1111         * Calculations based on RSS as non-present and empty pages are skipped
1112         * by the PTE scanner and NUMA hinting faults should be trapped based
1113         * on resident pages
1114         */
1115        nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1116        rss = get_mm_rss(p->mm);
1117        if (!rss)
1118                rss = nr_scan_pages;
1119
1120        rss = round_up(rss, nr_scan_pages);
1121        return rss / nr_scan_pages;
1122}
1123
1124/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1125#define MAX_SCAN_WINDOW 2560
1126
1127static unsigned int task_scan_min(struct task_struct *p)
1128{
1129        unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1130        unsigned int scan, floor;
1131        unsigned int windows = 1;
1132
1133        if (scan_size < MAX_SCAN_WINDOW)
1134                windows = MAX_SCAN_WINDOW / scan_size;
1135        floor = 1000 / windows;
1136
1137        scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1138        return max_t(unsigned int, floor, scan);
1139}
1140
1141static unsigned int task_scan_start(struct task_struct *p)
1142{
1143        unsigned long smin = task_scan_min(p);
1144        unsigned long period = smin;
1145        struct numa_group *ng;
1146
1147        /* Scale the maximum scan period with the amount of shared memory. */
1148        rcu_read_lock();
1149        ng = rcu_dereference(p->numa_group);
1150        if (ng) {
1151                unsigned long shared = group_faults_shared(ng);
1152                unsigned long private = group_faults_priv(ng);
1153
1154                period *= refcount_read(&ng->refcount);
1155                period *= shared + 1;
1156                period /= private + shared + 1;
1157        }
1158        rcu_read_unlock();
1159
1160        return max(smin, period);
1161}
1162
1163static unsigned int task_scan_max(struct task_struct *p)
1164{
1165        unsigned long smin = task_scan_min(p);
1166        unsigned long smax;
1167        struct numa_group *ng;
1168
1169        /* Watch for min being lower than max due to floor calculations */
1170        smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1171
1172        /* Scale the maximum scan period with the amount of shared memory. */
1173        ng = deref_curr_numa_group(p);
1174        if (ng) {
1175                unsigned long shared = group_faults_shared(ng);
1176                unsigned long private = group_faults_priv(ng);
1177                unsigned long period = smax;
1178
1179                period *= refcount_read(&ng->refcount);
1180                period *= shared + 1;
1181                period /= private + shared + 1;
1182
1183                smax = max(smax, period);
1184        }
1185
1186        return max(smin, smax);
1187}
1188
1189static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1190{
1191        rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1192        rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1193}
1194
1195static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1196{
1197        rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1198        rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1199}
1200
1201/* Shared or private faults. */
1202#define NR_NUMA_HINT_FAULT_TYPES 2
1203
1204/* Memory and CPU locality */
1205#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1206
1207/* Averaged statistics, and temporary buffers. */
1208#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1209
1210pid_t task_numa_group_id(struct task_struct *p)
1211{
1212        struct numa_group *ng;
1213        pid_t gid = 0;
1214
1215        rcu_read_lock();
1216        ng = rcu_dereference(p->numa_group);
1217        if (ng)
1218                gid = ng->gid;
1219        rcu_read_unlock();
1220
1221        return gid;
1222}
1223
1224/*
1225 * The averaged statistics, shared & private, memory & CPU,
1226 * occupy the first half of the array. The second half of the
1227 * array is for current counters, which are averaged into the
1228 * first set by task_numa_placement.
1229 */
1230static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1231{
1232        return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1233}
1234
1235static inline unsigned long task_faults(struct task_struct *p, int nid)
1236{
1237        if (!p->numa_faults)
1238                return 0;
1239
1240        return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1241                p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1242}
1243
1244static inline unsigned long group_faults(struct task_struct *p, int nid)
1245{
1246        struct numa_group *ng = deref_task_numa_group(p);
1247
1248        if (!ng)
1249                return 0;
1250
1251        return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1252                ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1253}
1254
1255static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1256{
1257        return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1258                group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1259}
1260
1261static inline unsigned long group_faults_priv(struct numa_group *ng)
1262{
1263        unsigned long faults = 0;
1264        int node;
1265
1266        for_each_online_node(node) {
1267                faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1268        }
1269
1270        return faults;
1271}
1272
1273static inline unsigned long group_faults_shared(struct numa_group *ng)
1274{
1275        unsigned long faults = 0;
1276        int node;
1277
1278        for_each_online_node(node) {
1279                faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1280        }
1281
1282        return faults;
1283}
1284
1285/*
1286 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1287 * considered part of a numa group's pseudo-interleaving set. Migrations
1288 * between these nodes are slowed down, to allow things to settle down.
1289 */
1290#define ACTIVE_NODE_FRACTION 3
1291
1292static bool numa_is_active_node(int nid, struct numa_group *ng)
1293{
1294        return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1295}
1296
1297/* Handle placement on systems where not all nodes are directly connected. */
1298static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1299                                        int maxdist, bool task)
1300{
1301        unsigned long score = 0;
1302        int node;
1303
1304        /*
1305         * All nodes are directly connected, and the same distance
1306         * from each other. No need for fancy placement algorithms.
1307         */
1308        if (sched_numa_topology_type == NUMA_DIRECT)
1309                return 0;
1310
1311        /*
1312         * This code is called for each node, introducing N^2 complexity,
1313         * which should be ok given the number of nodes rarely exceeds 8.
1314         */
1315        for_each_online_node(node) {
1316                unsigned long faults;
1317                int dist = node_distance(nid, node);
1318
1319                /*
1320                 * The furthest away nodes in the system are not interesting
1321                 * for placement; nid was already counted.
1322                 */
1323                if (dist == sched_max_numa_distance || node == nid)
1324                        continue;
1325
1326                /*
1327                 * On systems with a backplane NUMA topology, compare groups
1328                 * of nodes, and move tasks towards the group with the most
1329                 * memory accesses. When comparing two nodes at distance
1330                 * "hoplimit", only nodes closer by than "hoplimit" are part
1331                 * of each group. Skip other nodes.
1332                 */
1333                if (sched_numa_topology_type == NUMA_BACKPLANE &&
1334                                        dist >= maxdist)
1335                        continue;
1336
1337                /* Add up the faults from nearby nodes. */
1338                if (task)
1339                        faults = task_faults(p, node);
1340                else
1341                        faults = group_faults(p, node);
1342
1343                /*
1344                 * On systems with a glueless mesh NUMA topology, there are
1345                 * no fixed "groups of nodes". Instead, nodes that are not
1346                 * directly connected bounce traffic through intermediate
1347                 * nodes; a numa_group can occupy any set of nodes.
1348                 * The further away a node is, the less the faults count.
1349                 * This seems to result in good task placement.
1350                 */
1351                if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1352                        faults *= (sched_max_numa_distance - dist);
1353                        faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1354                }
1355
1356                score += faults;
1357        }
1358
1359        return score;
1360}
1361
1362/*
1363 * These return the fraction of accesses done by a particular task, or
1364 * task group, on a particular numa node.  The group weight is given a
1365 * larger multiplier, in order to group tasks together that are almost
1366 * evenly spread out between numa nodes.
1367 */
1368static inline unsigned long task_weight(struct task_struct *p, int nid,
1369                                        int dist)
1370{
1371        unsigned long faults, total_faults;
1372
1373        if (!p->numa_faults)
1374                return 0;
1375
1376        total_faults = p->total_numa_faults;
1377
1378        if (!total_faults)
1379                return 0;
1380
1381        faults = task_faults(p, nid);
1382        faults += score_nearby_nodes(p, nid, dist, true);
1383
1384        return 1000 * faults / total_faults;
1385}
1386
1387static inline unsigned long group_weight(struct task_struct *p, int nid,
1388                                         int dist)
1389{
1390        struct numa_group *ng = deref_task_numa_group(p);
1391        unsigned long faults, total_faults;
1392
1393        if (!ng)
1394                return 0;
1395
1396        total_faults = ng->total_faults;
1397
1398        if (!total_faults)
1399                return 0;
1400
1401        faults = group_faults(p, nid);
1402        faults += score_nearby_nodes(p, nid, dist, false);
1403
1404        return 1000 * faults / total_faults;
1405}
1406
1407bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1408                                int src_nid, int dst_cpu)
1409{
1410        struct numa_group *ng = deref_curr_numa_group(p);
1411        int dst_nid = cpu_to_node(dst_cpu);
1412        int last_cpupid, this_cpupid;
1413
1414        this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1415        last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1416
1417        /*
1418         * Allow first faults or private faults to migrate immediately early in
1419         * the lifetime of a task. The magic number 4 is based on waiting for
1420         * two full passes of the "multi-stage node selection" test that is
1421         * executed below.
1422         */
1423        if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1424            (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1425                return true;
1426
1427        /*
1428         * Multi-stage node selection is used in conjunction with a periodic
1429         * migration fault to build a temporal task<->page relation. By using
1430         * a two-stage filter we remove short/unlikely relations.
1431         *
1432         * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1433         * a task's usage of a particular page (n_p) per total usage of this
1434         * page (n_t) (in a given time-span) to a probability.
1435         *
1436         * Our periodic faults will sample this probability and getting the
1437         * same result twice in a row, given these samples are fully
1438         * independent, is then given by P(n)^2, provided our sample period
1439         * is sufficiently short compared to the usage pattern.
1440         *
1441         * This quadric squishes small probabilities, making it less likely we
1442         * act on an unlikely task<->page relation.
1443         */
1444        if (!cpupid_pid_unset(last_cpupid) &&
1445                                cpupid_to_nid(last_cpupid) != dst_nid)
1446                return false;
1447
1448        /* Always allow migrate on private faults */
1449        if (cpupid_match_pid(p, last_cpupid))
1450                return true;
1451
1452        /* A shared fault, but p->numa_group has not been set up yet. */
1453        if (!ng)
1454                return true;
1455
1456        /*
1457         * Destination node is much more heavily used than the source
1458         * node? Allow migration.
1459         */
1460        if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1461                                        ACTIVE_NODE_FRACTION)
1462                return true;
1463
1464        /*
1465         * Distribute memory according to CPU & memory use on each node,
1466         * with 3/4 hysteresis to avoid unnecessary memory migrations:
1467         *
1468         * faults_cpu(dst)   3   faults_cpu(src)
1469         * --------------- * - > ---------------
1470         * faults_mem(dst)   4   faults_mem(src)
1471         */
1472        return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1473               group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1474}
1475
1476static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq);
1477
1478static unsigned long cpu_runnable_load(struct rq *rq)
1479{
1480        return cfs_rq_runnable_load_avg(&rq->cfs);
1481}
1482
1483/* Cached statistics for all CPUs within a node */
1484struct numa_stats {
1485        unsigned long load;
1486
1487        /* Total compute capacity of CPUs on a node */
1488        unsigned long compute_capacity;
1489};
1490
1491/*
1492 * XXX borrowed from update_sg_lb_stats
1493 */
1494static void update_numa_stats(struct numa_stats *ns, int nid)
1495{
1496        int cpu;
1497
1498        memset(ns, 0, sizeof(*ns));
1499        for_each_cpu(cpu, cpumask_of_node(nid)) {
1500                struct rq *rq = cpu_rq(cpu);
1501
1502                ns->load += cpu_runnable_load(rq);
1503                ns->compute_capacity += capacity_of(cpu);
1504        }
1505
1506}
1507
1508struct task_numa_env {
1509        struct task_struct *p;
1510
1511        int src_cpu, src_nid;
1512        int dst_cpu, dst_nid;
1513
1514        struct numa_stats src_stats, dst_stats;
1515
1516        int imbalance_pct;
1517        int dist;
1518
1519        struct task_struct *best_task;
1520        long best_imp;
1521        int best_cpu;
1522};
1523
1524static void task_numa_assign(struct task_numa_env *env,
1525                             struct task_struct *p, long imp)
1526{
1527        struct rq *rq = cpu_rq(env->dst_cpu);
1528
1529        /* Bail out if run-queue part of active NUMA balance. */
1530        if (xchg(&rq->numa_migrate_on, 1))
1531                return;
1532
1533        /*
1534         * Clear previous best_cpu/rq numa-migrate flag, since task now
1535         * found a better CPU to move/swap.
1536         */
1537        if (env->best_cpu != -1) {
1538                rq = cpu_rq(env->best_cpu);
1539                WRITE_ONCE(rq->numa_migrate_on, 0);
1540        }
1541
1542        if (env->best_task)
1543                put_task_struct(env->best_task);
1544        if (p)
1545                get_task_struct(p);
1546
1547        env->best_task = p;
1548        env->best_imp = imp;
1549        env->best_cpu = env->dst_cpu;
1550}
1551
1552static bool load_too_imbalanced(long src_load, long dst_load,
1553                                struct task_numa_env *env)
1554{
1555        long imb, old_imb;
1556        long orig_src_load, orig_dst_load;
1557        long src_capacity, dst_capacity;
1558
1559        /*
1560         * The load is corrected for the CPU capacity available on each node.
1561         *
1562         * src_load        dst_load
1563         * ------------ vs ---------
1564         * src_capacity    dst_capacity
1565         */
1566        src_capacity = env->src_stats.compute_capacity;
1567        dst_capacity = env->dst_stats.compute_capacity;
1568
1569        imb = abs(dst_load * src_capacity - src_load * dst_capacity);
1570
1571        orig_src_load = env->src_stats.load;
1572        orig_dst_load = env->dst_stats.load;
1573
1574        old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
1575
1576        /* Would this change make things worse? */
1577        return (imb > old_imb);
1578}
1579
1580/*
1581 * Maximum NUMA importance can be 1998 (2*999);
1582 * SMALLIMP @ 30 would be close to 1998/64.
1583 * Used to deter task migration.
1584 */
1585#define SMALLIMP        30
1586
1587/*
1588 * This checks if the overall compute and NUMA accesses of the system would
1589 * be improved if the source tasks was migrated to the target dst_cpu taking
1590 * into account that it might be best if task running on the dst_cpu should
1591 * be exchanged with the source task
1592 */
1593static void task_numa_compare(struct task_numa_env *env,
1594                              long taskimp, long groupimp, bool maymove)
1595{
1596        struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
1597        struct rq *dst_rq = cpu_rq(env->dst_cpu);
1598        long imp = p_ng ? groupimp : taskimp;
1599        struct task_struct *cur;
1600        long src_load, dst_load;
1601        int dist = env->dist;
1602        long moveimp = imp;
1603        long load;
1604
1605        if (READ_ONCE(dst_rq->numa_migrate_on))
1606                return;
1607
1608        rcu_read_lock();
1609        cur = rcu_dereference(dst_rq->curr);
1610        if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1611                cur = NULL;
1612
1613        /*
1614         * Because we have preemption enabled we can get migrated around and
1615         * end try selecting ourselves (current == env->p) as a swap candidate.
1616         */
1617        if (cur == env->p)
1618                goto unlock;
1619
1620        if (!cur) {
1621                if (maymove && moveimp >= env->best_imp)
1622                        goto assign;
1623                else
1624                        goto unlock;
1625        }
1626
1627        /*
1628         * "imp" is the fault differential for the source task between the
1629         * source and destination node. Calculate the total differential for
1630         * the source task and potential destination task. The more negative
1631         * the value is, the more remote accesses that would be expected to
1632         * be incurred if the tasks were swapped.
1633         */
1634        /* Skip this swap candidate if cannot move to the source cpu */
1635        if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
1636                goto unlock;
1637
1638        /*
1639         * If dst and source tasks are in the same NUMA group, or not
1640         * in any group then look only at task weights.
1641         */
1642        cur_ng = rcu_dereference(cur->numa_group);
1643        if (cur_ng == p_ng) {
1644                imp = taskimp + task_weight(cur, env->src_nid, dist) -
1645                      task_weight(cur, env->dst_nid, dist);
1646                /*
1647                 * Add some hysteresis to prevent swapping the
1648                 * tasks within a group over tiny differences.
1649                 */
1650                if (cur_ng)
1651                        imp -= imp / 16;
1652        } else {
1653                /*
1654                 * Compare the group weights. If a task is all by itself
1655                 * (not part of a group), use the task weight instead.
1656                 */
1657                if (cur_ng && p_ng)
1658                        imp += group_weight(cur, env->src_nid, dist) -
1659                               group_weight(cur, env->dst_nid, dist);
1660                else
1661                        imp += task_weight(cur, env->src_nid, dist) -
1662                               task_weight(cur, env->dst_nid, dist);
1663        }
1664
1665        if (maymove && moveimp > imp && moveimp > env->best_imp) {
1666                imp = moveimp;
1667                cur = NULL;
1668                goto assign;
1669        }
1670
1671        /*
1672         * If the NUMA importance is less than SMALLIMP,
1673         * task migration might only result in ping pong
1674         * of tasks and also hurt performance due to cache
1675         * misses.
1676         */
1677        if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1678                goto unlock;
1679
1680        /*
1681         * In the overloaded case, try and keep the load balanced.
1682         */
1683        load = task_h_load(env->p) - task_h_load(cur);
1684        if (!load)
1685                goto assign;
1686
1687        dst_load = env->dst_stats.load + load;
1688        src_load = env->src_stats.load - load;
1689
1690        if (load_too_imbalanced(src_load, dst_load, env))
1691                goto unlock;
1692
1693assign:
1694        /*
1695         * One idle CPU per node is evaluated for a task numa move.
1696         * Call select_idle_sibling to maybe find a better one.
1697         */
1698        if (!cur) {
1699                /*
1700                 * select_idle_siblings() uses an per-CPU cpumask that
1701                 * can be used from IRQ context.
1702                 */
1703                local_irq_disable();
1704                env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1705                                                   env->dst_cpu);
1706                local_irq_enable();
1707        }
1708
1709        task_numa_assign(env, cur, imp);
1710unlock:
1711        rcu_read_unlock();
1712}
1713
1714static void task_numa_find_cpu(struct task_numa_env *env,
1715                                long taskimp, long groupimp)
1716{
1717        long src_load, dst_load, load;
1718        bool maymove = false;
1719        int cpu;
1720
1721        load = task_h_load(env->p);
1722        dst_load = env->dst_stats.load + load;
1723        src_load = env->src_stats.load - load;
1724
1725        /*
1726         * If the improvement from just moving env->p direction is better
1727         * than swapping tasks around, check if a move is possible.
1728         */
1729        maymove = !load_too_imbalanced(src_load, dst_load, env);
1730
1731        for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1732                /* Skip this CPU if the source task cannot migrate */
1733                if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
1734                        continue;
1735
1736                env->dst_cpu = cpu;
1737                task_numa_compare(env, taskimp, groupimp, maymove);
1738        }
1739}
1740
1741static int task_numa_migrate(struct task_struct *p)
1742{
1743        struct task_numa_env env = {
1744                .p = p,
1745
1746                .src_cpu = task_cpu(p),
1747                .src_nid = task_node(p),
1748
1749                .imbalance_pct = 112,
1750
1751                .best_task = NULL,
1752                .best_imp = 0,
1753                .best_cpu = -1,
1754        };
1755        unsigned long taskweight, groupweight;
1756        struct sched_domain *sd;
1757        long taskimp, groupimp;
1758        struct numa_group *ng;
1759        struct rq *best_rq;
1760        int nid, ret, dist;
1761
1762        /*
1763         * Pick the lowest SD_NUMA domain, as that would have the smallest
1764         * imbalance and would be the first to start moving tasks about.
1765         *
1766         * And we want to avoid any moving of tasks about, as that would create
1767         * random movement of tasks -- counter the numa conditions we're trying
1768         * to satisfy here.
1769         */
1770        rcu_read_lock();
1771        sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1772        if (sd)
1773                env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1774        rcu_read_unlock();
1775
1776        /*
1777         * Cpusets can break the scheduler domain tree into smaller
1778         * balance domains, some of which do not cross NUMA boundaries.
1779         * Tasks that are "trapped" in such domains cannot be migrated
1780         * elsewhere, so there is no point in (re)trying.
1781         */
1782        if (unlikely(!sd)) {
1783                sched_setnuma(p, task_node(p));
1784                return -EINVAL;
1785        }
1786
1787        env.dst_nid = p->numa_preferred_nid;
1788        dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1789        taskweight = task_weight(p, env.src_nid, dist);
1790        groupweight = group_weight(p, env.src_nid, dist);
1791        update_numa_stats(&env.src_stats, env.src_nid);
1792        taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1793        groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1794        update_numa_stats(&env.dst_stats, env.dst_nid);
1795
1796        /* Try to find a spot on the preferred nid. */
1797        task_numa_find_cpu(&env, taskimp, groupimp);
1798
1799        /*
1800         * Look at other nodes in these cases:
1801         * - there is no space available on the preferred_nid
1802         * - the task is part of a numa_group that is interleaved across
1803         *   multiple NUMA nodes; in order to better consolidate the group,
1804         *   we need to check other locations.
1805         */
1806        ng = deref_curr_numa_group(p);
1807        if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
1808                for_each_online_node(nid) {
1809                        if (nid == env.src_nid || nid == p->numa_preferred_nid)
1810                                continue;
1811
1812                        dist = node_distance(env.src_nid, env.dst_nid);
1813                        if (sched_numa_topology_type == NUMA_BACKPLANE &&
1814                                                dist != env.dist) {
1815                                taskweight = task_weight(p, env.src_nid, dist);
1816                                groupweight = group_weight(p, env.src_nid, dist);
1817                        }
1818
1819                        /* Only consider nodes where both task and groups benefit */
1820                        taskimp = task_weight(p, nid, dist) - taskweight;
1821                        groupimp = group_weight(p, nid, dist) - groupweight;
1822                        if (taskimp < 0 && groupimp < 0)
1823                                continue;
1824
1825                        env.dist = dist;
1826                        env.dst_nid = nid;
1827                        update_numa_stats(&env.dst_stats, env.dst_nid);
1828                        task_numa_find_cpu(&env, taskimp, groupimp);
1829                }
1830        }
1831
1832        /*
1833         * If the task is part of a workload that spans multiple NUMA nodes,
1834         * and is migrating into one of the workload's active nodes, remember
1835         * this node as the task's preferred numa node, so the workload can
1836         * settle down.
1837         * A task that migrated to a second choice node will be better off
1838         * trying for a better one later. Do not set the preferred node here.
1839         */
1840        if (ng) {
1841                if (env.best_cpu == -1)
1842                        nid = env.src_nid;
1843                else
1844                        nid = cpu_to_node(env.best_cpu);
1845
1846                if (nid != p->numa_preferred_nid)
1847                        sched_setnuma(p, nid);
1848        }
1849
1850        /* No better CPU than the current one was found. */
1851        if (env.best_cpu == -1)
1852                return -EAGAIN;
1853
1854        best_rq = cpu_rq(env.best_cpu);
1855        if (env.best_task == NULL) {
1856                ret = migrate_task_to(p, env.best_cpu);
1857                WRITE_ONCE(best_rq->numa_migrate_on, 0);
1858                if (ret != 0)
1859                        trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1860                return ret;
1861        }
1862
1863        ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
1864        WRITE_ONCE(best_rq->numa_migrate_on, 0);
1865
1866        if (ret != 0)
1867                trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1868        put_task_struct(env.best_task);
1869        return ret;
1870}
1871
1872/* Attempt to migrate a task to a CPU on the preferred node. */
1873static void numa_migrate_preferred(struct task_struct *p)
1874{
1875        unsigned long interval = HZ;
1876
1877        /* This task has no NUMA fault statistics yet */
1878        if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
1879                return;
1880
1881        /* Periodically retry migrating the task to the preferred node */
1882        interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1883        p->numa_migrate_retry = jiffies + interval;
1884
1885        /* Success if task is already running on preferred CPU */
1886        if (task_node(p) == p->numa_preferred_nid)
1887                return;
1888
1889        /* Otherwise, try migrate to a CPU on the preferred node */
1890        task_numa_migrate(p);
1891}
1892
1893/*
1894 * Find out how many nodes on the workload is actively running on. Do this by
1895 * tracking the nodes from which NUMA hinting faults are triggered. This can
1896 * be different from the set of nodes where the workload's memory is currently
1897 * located.
1898 */
1899static void numa_group_count_active_nodes(struct numa_group *numa_group)
1900{
1901        unsigned long faults, max_faults = 0;
1902        int nid, active_nodes = 0;
1903
1904        for_each_online_node(nid) {
1905                faults = group_faults_cpu(numa_group, nid);
1906                if (faults > max_faults)
1907                        max_faults = faults;
1908        }
1909
1910        for_each_online_node(nid) {
1911                faults = group_faults_cpu(numa_group, nid);
1912                if (faults * ACTIVE_NODE_FRACTION > max_faults)
1913                        active_nodes++;
1914        }
1915
1916        numa_group->max_faults_cpu = max_faults;
1917        numa_group->active_nodes = active_nodes;
1918}
1919
1920/*
1921 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1922 * increments. The more local the fault statistics are, the higher the scan
1923 * period will be for the next scan window. If local/(local+remote) ratio is
1924 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1925 * the scan period will decrease. Aim for 70% local accesses.
1926 */
1927#define NUMA_PERIOD_SLOTS 10
1928#define NUMA_PERIOD_THRESHOLD 7
1929
1930/*
1931 * Increase the scan period (slow down scanning) if the majority of
1932 * our memory is already on our local node, or if the majority of
1933 * the page accesses are shared with other processes.
1934 * Otherwise, decrease the scan period.
1935 */
1936static void update_task_scan_period(struct task_struct *p,
1937                        unsigned long shared, unsigned long private)
1938{
1939        unsigned int period_slot;
1940        int lr_ratio, ps_ratio;
1941        int diff;
1942
1943        unsigned long remote = p->numa_faults_locality[0];
1944        unsigned long local = p->numa_faults_locality[1];
1945
1946        /*
1947         * If there were no record hinting faults then either the task is
1948         * completely idle or all activity is areas that are not of interest
1949         * to automatic numa balancing. Related to that, if there were failed
1950         * migration then it implies we are migrating too quickly or the local
1951         * node is overloaded. In either case, scan slower
1952         */
1953        if (local + shared == 0 || p->numa_faults_locality[2]) {
1954                p->numa_scan_period = min(p->numa_scan_period_max,
1955                        p->numa_scan_period << 1);
1956
1957                p->mm->numa_next_scan = jiffies +
1958                        msecs_to_jiffies(p->numa_scan_period);
1959
1960                return;
1961        }
1962
1963        /*
1964         * Prepare to scale scan period relative to the current period.
1965         *       == NUMA_PERIOD_THRESHOLD scan period stays the same
1966         *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1967         *       >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1968         */
1969        period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1970        lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1971        ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
1972
1973        if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
1974                /*
1975                 * Most memory accesses are local. There is no need to
1976                 * do fast NUMA scanning, since memory is already local.
1977                 */
1978                int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
1979                if (!slot)
1980                        slot = 1;
1981                diff = slot * period_slot;
1982        } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
1983                /*
1984                 * Most memory accesses are shared with other tasks.
1985                 * There is no point in continuing fast NUMA scanning,
1986                 * since other tasks may just move the memory elsewhere.
1987                 */
1988                int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
1989                if (!slot)
1990                        slot = 1;
1991                diff = slot * period_slot;
1992        } else {
1993                /*
1994                 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
1995                 * yet they are not on the local NUMA node. Speed up
1996                 * NUMA scanning to get the memory moved over.
1997                 */
1998                int ratio = max(lr_ratio, ps_ratio);
1999                diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2000        }
2001
2002        p->numa_scan_period = clamp(p->numa_scan_period + diff,
2003                        task_scan_min(p), task_scan_max(p));
2004        memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2005}
2006
2007/*
2008 * Get the fraction of time the task has been running since the last
2009 * NUMA placement cycle. The scheduler keeps similar statistics, but
2010 * decays those on a 32ms period, which is orders of magnitude off
2011 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2012 * stats only if the task is so new there are no NUMA statistics yet.
2013 */
2014static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2015{
2016        u64 runtime, delta, now;
2017        /* Use the start of this time slice to avoid calculations. */
2018        now = p->se.exec_start;
2019        runtime = p->se.sum_exec_runtime;
2020
2021        if (p->last_task_numa_placement) {
2022                delta = runtime - p->last_sum_exec_runtime;
2023                *period = now - p->last_task_numa_placement;
2024
2025                /* Avoid time going backwards, prevent potential divide error: */
2026                if (unlikely((s64)*period < 0))
2027                        *period = 0;
2028        } else {
2029                delta = p->se.avg.load_sum;
2030                *period = LOAD_AVG_MAX;
2031        }
2032
2033        p->last_sum_exec_runtime = runtime;
2034        p->last_task_numa_placement = now;
2035
2036        return delta;
2037}
2038
2039/*
2040 * Determine the preferred nid for a task in a numa_group. This needs to
2041 * be done in a way that produces consistent results with group_weight,
2042 * otherwise workloads might not converge.
2043 */
2044static int preferred_group_nid(struct task_struct *p, int nid)
2045{
2046        nodemask_t nodes;
2047        int dist;
2048
2049        /* Direct connections between all NUMA nodes. */
2050        if (sched_numa_topology_type == NUMA_DIRECT)
2051                return nid;
2052
2053        /*
2054         * On a system with glueless mesh NUMA topology, group_weight
2055         * scores nodes according to the number of NUMA hinting faults on
2056         * both the node itself, and on nearby nodes.
2057         */
2058        if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2059                unsigned long score, max_score = 0;
2060                int node, max_node = nid;
2061
2062                dist = sched_max_numa_distance;
2063
2064                for_each_online_node(node) {
2065                        score = group_weight(p, node, dist);
2066                        if (score > max_score) {
2067                                max_score = score;
2068                                max_node = node;
2069                        }
2070                }
2071                return max_node;
2072        }
2073
2074        /*
2075         * Finding the preferred nid in a system with NUMA backplane
2076         * interconnect topology is more involved. The goal is to locate
2077         * tasks from numa_groups near each other in the system, and
2078         * untangle workloads from different sides of the system. This requires
2079         * searching down the hierarchy of node groups, recursively searching
2080         * inside the highest scoring group of nodes. The nodemask tricks
2081         * keep the complexity of the search down.
2082         */
2083        nodes = node_online_map;
2084        for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2085                unsigned long max_faults = 0;
2086                nodemask_t max_group = NODE_MASK_NONE;
2087                int a, b;
2088
2089                /* Are there nodes at this distance from each other? */
2090                if (!find_numa_distance(dist))
2091                        continue;
2092
2093                for_each_node_mask(a, nodes) {
2094                        unsigned long faults = 0;
2095                        nodemask_t this_group;
2096                        nodes_clear(this_group);
2097
2098                        /* Sum group's NUMA faults; includes a==b case. */
2099                        for_each_node_mask(b, nodes) {
2100                                if (node_distance(a, b) < dist) {
2101                                        faults += group_faults(p, b);
2102                                        node_set(b, this_group);
2103                                        node_clear(b, nodes);
2104                                }
2105                        }
2106
2107                        /* Remember the top group. */
2108                        if (faults > max_faults) {
2109                                max_faults = faults;
2110                                max_group = this_group;
2111                                /*
2112                                 * subtle: at the smallest distance there is
2113                                 * just one node left in each "group", the
2114                                 * winner is the preferred nid.
2115                                 */
2116                                nid = a;
2117                        }
2118                }
2119                /* Next round, evaluate the nodes within max_group. */
2120                if (!max_faults)
2121                        break;
2122                nodes = max_group;
2123        }
2124        return nid;
2125}
2126
2127static void task_numa_placement(struct task_struct *p)
2128{
2129        int seq, nid, max_nid = NUMA_NO_NODE;
2130        unsigned long max_faults = 0;
2131        unsigned long fault_types[2] = { 0, 0 };
2132        unsigned long total_faults;
2133        u64 runtime, period;
2134        spinlock_t *group_lock = NULL;
2135        struct numa_group *ng;
2136
2137        /*
2138         * The p->mm->numa_scan_seq field gets updated without
2139         * exclusive access. Use READ_ONCE() here to ensure
2140         * that the field is read in a single access:
2141         */
2142        seq = READ_ONCE(p->mm->numa_scan_seq);
2143        if (p->numa_scan_seq == seq)
2144                return;
2145        p->numa_scan_seq = seq;
2146        p->numa_scan_period_max = task_scan_max(p);
2147
2148        total_faults = p->numa_faults_locality[0] +
2149                       p->numa_faults_locality[1];
2150        runtime = numa_get_avg_runtime(p, &period);
2151
2152        /* If the task is part of a group prevent parallel updates to group stats */
2153        ng = deref_curr_numa_group(p);
2154        if (ng) {
2155                group_lock = &ng->lock;
2156                spin_lock_irq(group_lock);
2157        }
2158
2159        /* Find the node with the highest number of faults */
2160        for_each_online_node(nid) {
2161                /* Keep track of the offsets in numa_faults array */
2162                int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2163                unsigned long faults = 0, group_faults = 0;
2164                int priv;
2165
2166                for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2167                        long diff, f_diff, f_weight;
2168
2169                        mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2170                        membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2171                        cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2172                        cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2173
2174                        /* Decay existing window, copy faults since last scan */
2175                        diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2176                        fault_types[priv] += p->numa_faults[membuf_idx];
2177                        p->numa_faults[membuf_idx] = 0;
2178
2179                        /*
2180                         * Normalize the faults_from, so all tasks in a group
2181                         * count according to CPU use, instead of by the raw
2182                         * number of faults. Tasks with little runtime have
2183                         * little over-all impact on throughput, and thus their
2184                         * faults are less important.
2185                         */
2186                        f_weight = div64_u64(runtime << 16, period + 1);
2187                        f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2188                                   (total_faults + 1);
2189                        f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2190                        p->numa_faults[cpubuf_idx] = 0;
2191
2192                        p->numa_faults[mem_idx] += diff;
2193                        p->numa_faults[cpu_idx] += f_diff;
2194                        faults += p->numa_faults[mem_idx];
2195                        p->total_numa_faults += diff;
2196                        if (ng) {
2197                                /*
2198                                 * safe because we can only change our own group
2199                                 *
2200                                 * mem_idx represents the offset for a given
2201                                 * nid and priv in a specific region because it
2202                                 * is at the beginning of the numa_faults array.
2203                                 */
2204                                ng->faults[mem_idx] += diff;
2205                                ng->faults_cpu[mem_idx] += f_diff;
2206                                ng->total_faults += diff;
2207                                group_faults += ng->faults[mem_idx];
2208                        }
2209                }
2210
2211                if (!ng) {
2212                        if (faults > max_faults) {
2213                                max_faults = faults;
2214                                max_nid = nid;
2215                        }
2216                } else if (group_faults > max_faults) {
2217                        max_faults = group_faults;
2218                        max_nid = nid;
2219                }
2220        }
2221
2222        if (ng) {
2223                numa_group_count_active_nodes(ng);
2224                spin_unlock_irq(group_lock);
2225                max_nid = preferred_group_nid(p, max_nid);
2226        }
2227
2228        if (max_faults) {
2229                /* Set the new preferred node */
2230                if (max_nid != p->numa_preferred_nid)
2231                        sched_setnuma(p, max_nid);
2232        }
2233
2234        update_task_scan_period(p, fault_types[0], fault_types[1]);
2235}
2236
2237static inline int get_numa_group(struct numa_group *grp)
2238{
2239        return refcount_inc_not_zero(&grp->refcount);
2240}
2241
2242static inline void put_numa_group(struct numa_group *grp)
2243{
2244        if (refcount_dec_and_test(&grp->refcount))
2245                kfree_rcu(grp, rcu);
2246}
2247
2248static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2249                        int *priv)
2250{
2251        struct numa_group *grp, *my_grp;
2252        struct task_struct *tsk;
2253        bool join = false;
2254        int cpu = cpupid_to_cpu(cpupid);
2255        int i;
2256
2257        if (unlikely(!deref_curr_numa_group(p))) {
2258                unsigned int size = sizeof(struct numa_group) +
2259                                    4*nr_node_ids*sizeof(unsigned long);
2260
2261                grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2262                if (!grp)
2263                        return;
2264
2265                refcount_set(&grp->refcount, 1);
2266                grp->active_nodes = 1;
2267                grp->max_faults_cpu = 0;
2268                spin_lock_init(&grp->lock);
2269                grp->gid = p->pid;
2270                /* Second half of the array tracks nids where faults happen */
2271                grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2272                                                nr_node_ids;
2273
2274                for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2275                        grp->faults[i] = p->numa_faults[i];
2276
2277                grp->total_faults = p->total_numa_faults;
2278
2279                grp->nr_tasks++;
2280                rcu_assign_pointer(p->numa_group, grp);
2281        }
2282
2283        rcu_read_lock();
2284        tsk = READ_ONCE(cpu_rq(cpu)->curr);
2285
2286        if (!cpupid_match_pid(tsk, cpupid))
2287                goto no_join;
2288
2289        grp = rcu_dereference(tsk->numa_group);
2290        if (!grp)
2291                goto no_join;
2292
2293        my_grp = deref_curr_numa_group(p);
2294        if (grp == my_grp)
2295                goto no_join;
2296
2297        /*
2298         * Only join the other group if its bigger; if we're the bigger group,
2299         * the other task will join us.
2300         */
2301        if (my_grp->nr_tasks > grp->nr_tasks)
2302                goto no_join;
2303
2304        /*
2305         * Tie-break on the grp address.
2306         */
2307        if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2308                goto no_join;
2309
2310        /* Always join threads in the same process. */
2311        if (tsk->mm == current->mm)
2312                join = true;
2313
2314        /* Simple filter to avoid false positives due to PID collisions */
2315        if (flags & TNF_SHARED)
2316                join = true;
2317
2318        /* Update priv based on whether false sharing was detected */
2319        *priv = !join;
2320
2321        if (join && !get_numa_group(grp))
2322                goto no_join;
2323
2324        rcu_read_unlock();
2325
2326        if (!join)
2327                return;
2328
2329        BUG_ON(irqs_disabled());
2330        double_lock_irq(&my_grp->lock, &grp->lock);
2331
2332        for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2333                my_grp->faults[i] -= p->numa_faults[i];
2334                grp->faults[i] += p->numa_faults[i];
2335        }
2336        my_grp->total_faults -= p->total_numa_faults;
2337        grp->total_faults += p->total_numa_faults;
2338
2339        my_grp->nr_tasks--;
2340        grp->nr_tasks++;
2341
2342        spin_unlock(&my_grp->lock);
2343        spin_unlock_irq(&grp->lock);
2344
2345        rcu_assign_pointer(p->numa_group, grp);
2346
2347        put_numa_group(my_grp);
2348        return;
2349
2350no_join:
2351        rcu_read_unlock();
2352        return;
2353}
2354
2355/*
2356 * Get rid of NUMA staticstics associated with a task (either current or dead).
2357 * If @final is set, the task is dead and has reached refcount zero, so we can
2358 * safely free all relevant data structures. Otherwise, there might be
2359 * concurrent reads from places like load balancing and procfs, and we should
2360 * reset the data back to default state without freeing ->numa_faults.
2361 */
2362void task_numa_free(struct task_struct *p, bool final)
2363{
2364        /* safe: p either is current or is being freed by current */
2365        struct numa_group *grp = rcu_dereference_raw(p->numa_group);
2366        unsigned long *numa_faults = p->numa_faults;
2367        unsigned long flags;
2368        int i;
2369
2370        if (!numa_faults)
2371                return;
2372
2373        if (grp) {
2374                spin_lock_irqsave(&grp->lock, flags);
2375                for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2376                        grp->faults[i] -= p->numa_faults[i];
2377                grp->total_faults -= p->total_numa_faults;
2378
2379                grp->nr_tasks--;
2380                spin_unlock_irqrestore(&grp->lock, flags);
2381                RCU_INIT_POINTER(p->numa_group, NULL);
2382                put_numa_group(grp);
2383        }
2384
2385        if (final) {
2386                p->numa_faults = NULL;
2387                kfree(numa_faults);
2388        } else {
2389                p->total_numa_faults = 0;
2390                for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2391                        numa_faults[i] = 0;
2392        }
2393}
2394
2395/*
2396 * Got a PROT_NONE fault for a page on @node.
2397 */
2398void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2399{
2400        struct task_struct *p = current;
2401        bool migrated = flags & TNF_MIGRATED;
2402        int cpu_node = task_node(current);
2403        int local = !!(flags & TNF_FAULT_LOCAL);
2404        struct numa_group *ng;
2405        int priv;
2406
2407        if (!static_branch_likely(&sched_numa_balancing))
2408                return;
2409
2410        /* for example, ksmd faulting in a user's mm */
2411        if (!p->mm)
2412                return;
2413
2414        /* Allocate buffer to track faults on a per-node basis */
2415        if (unlikely(!p->numa_faults)) {
2416                int size = sizeof(*p->numa_faults) *
2417                           NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2418
2419                p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2420                if (!p->numa_faults)
2421                        return;
2422
2423                p->total_numa_faults = 0;
2424                memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2425        }
2426
2427        /*
2428         * First accesses are treated as private, otherwise consider accesses
2429         * to be private if the accessing pid has not changed
2430         */
2431        if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2432                priv = 1;
2433        } else {
2434                priv = cpupid_match_pid(p, last_cpupid);
2435                if (!priv && !(flags & TNF_NO_GROUP))
2436                        task_numa_group(p, last_cpupid, flags, &priv);
2437        }
2438
2439        /*
2440         * If a workload spans multiple NUMA nodes, a shared fault that
2441         * occurs wholly within the set of nodes that the workload is
2442         * actively using should be counted as local. This allows the
2443         * scan rate to slow down when a workload has settled down.
2444         */
2445        ng = deref_curr_numa_group(p);
2446        if (!priv && !local && ng && ng->active_nodes > 1 &&
2447                                numa_is_active_node(cpu_node, ng) &&
2448                                numa_is_active_node(mem_node, ng))
2449                local = 1;
2450
2451        /*
2452         * Retry to migrate task to preferred node periodically, in case it
2453         * previously failed, or the scheduler moved us.
2454         */
2455        if (time_after(jiffies, p->numa_migrate_retry)) {
2456                task_numa_placement(p);
2457                numa_migrate_preferred(p);
2458        }
2459
2460        if (migrated)
2461                p->numa_pages_migrated += pages;
2462        if (flags & TNF_MIGRATE_FAIL)
2463                p->numa_faults_locality[2] += pages;
2464
2465        p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2466        p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2467        p->numa_faults_locality[local] += pages;
2468}
2469
2470static void reset_ptenuma_scan(struct task_struct *p)
2471{
2472        /*
2473         * We only did a read acquisition of the mmap sem, so
2474         * p->mm->numa_scan_seq is written to without exclusive access
2475         * and the update is not guaranteed to be atomic. That's not
2476         * much of an issue though, since this is just used for
2477         * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2478         * expensive, to avoid any form of compiler optimizations:
2479         */
2480        WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2481        p->mm->numa_scan_offset = 0;
2482}
2483
2484/*
2485 * The expensive part of numa migration is done from task_work context.
2486 * Triggered from task_tick_numa().
2487 */
2488static void task_numa_work(struct callback_head *work)
2489{
2490        unsigned long migrate, next_scan, now = jiffies;
2491        struct task_struct *p = current;
2492        struct mm_struct *mm = p->mm;
2493        u64 runtime = p->se.sum_exec_runtime;
2494        struct vm_area_struct *vma;
2495        unsigned long start, end;
2496        unsigned long nr_pte_updates = 0;
2497        long pages, virtpages;
2498
2499        SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2500
2501        work->next = work;
2502        /*
2503         * Who cares about NUMA placement when they're dying.
2504         *
2505         * NOTE: make sure not to dereference p->mm before this check,
2506         * exit_task_work() happens _after_ exit_mm() so we could be called
2507         * without p->mm even though we still had it when we enqueued this
2508         * work.
2509         */
2510        if (p->flags & PF_EXITING)
2511                return;
2512
2513        if (!mm->numa_next_scan) {
2514                mm->numa_next_scan = now +
2515                        msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2516        }
2517
2518        /*
2519         * Enforce maximal scan/migration frequency..
2520         */
2521        migrate = mm->numa_next_scan;
2522        if (time_before(now, migrate))
2523                return;
2524
2525        if (p->numa_scan_period == 0) {
2526                p->numa_scan_period_max = task_scan_max(p);
2527                p->numa_scan_period = task_scan_start(p);
2528        }
2529
2530        next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2531        if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2532                return;
2533
2534        /*
2535         * Delay this task enough that another task of this mm will likely win
2536         * the next time around.
2537         */
2538        p->node_stamp += 2 * TICK_NSEC;
2539
2540        start = mm->numa_scan_offset;
2541        pages = sysctl_numa_balancing_scan_size;
2542        pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2543        virtpages = pages * 8;     /* Scan up to this much virtual space */
2544        if (!pages)
2545                return;
2546
2547
2548        if (!down_read_trylock(&mm->mmap_sem))
2549                return;
2550        vma = find_vma(mm, start);
2551        if (!vma) {
2552                reset_ptenuma_scan(p);
2553                start = 0;
2554                vma = mm->mmap;
2555        }
2556        for (; vma; vma = vma->vm_next) {
2557                if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2558                        is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2559                        continue;
2560                }
2561
2562                /*
2563                 * Shared library pages mapped by multiple processes are not
2564                 * migrated as it is expected they are cache replicated. Avoid
2565                 * hinting faults in read-only file-backed mappings or the vdso
2566                 * as migrating the pages will be of marginal benefit.
2567                 */
2568                if (!vma->vm_mm ||
2569                    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2570                        continue;
2571
2572                /*
2573                 * Skip inaccessible VMAs to avoid any confusion between
2574                 * PROT_NONE and NUMA hinting ptes
2575                 */
2576                if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2577                        continue;
2578
2579                do {
2580                        start = max(start, vma->vm_start);
2581                        end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2582                        end = min(end, vma->vm_end);
2583                        nr_pte_updates = change_prot_numa(vma, start, end);
2584
2585                        /*
2586                         * Try to scan sysctl_numa_balancing_size worth of
2587                         * hpages that have at least one present PTE that
2588                         * is not already pte-numa. If the VMA contains
2589                         * areas that are unused or already full of prot_numa
2590                         * PTEs, scan up to virtpages, to skip through those
2591                         * areas faster.
2592                         */
2593                        if (nr_pte_updates)
2594                                pages -= (end - start) >> PAGE_SHIFT;
2595                        virtpages -= (end - start) >> PAGE_SHIFT;
2596
2597                        start = end;
2598                        if (pages <= 0 || virtpages <= 0)
2599                                goto out;
2600
2601                        cond_resched();
2602                } while (end != vma->vm_end);
2603        }
2604
2605out:
2606        /*
2607         * It is possible to reach the end of the VMA list but the last few
2608         * VMAs are not guaranteed to the vma_migratable. If they are not, we
2609         * would find the !migratable VMA on the next scan but not reset the
2610         * scanner to the start so check it now.
2611         */
2612        if (vma)
2613                mm->numa_scan_offset = start;
2614        else
2615                reset_ptenuma_scan(p);
2616        up_read(&mm->mmap_sem);
2617
2618        /*
2619         * Make sure tasks use at least 32x as much time to run other code
2620         * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2621         * Usually update_task_scan_period slows down scanning enough; on an
2622         * overloaded system we need to limit overhead on a per task basis.
2623         */
2624        if (unlikely(p->se.sum_exec_runtime != runtime)) {
2625                u64 diff = p->se.sum_exec_runtime - runtime;
2626                p->node_stamp += 32 * diff;
2627        }
2628}
2629
2630void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
2631{
2632        int mm_users = 0;
2633        struct mm_struct *mm = p->mm;
2634
2635        if (mm) {
2636                mm_users = atomic_read(&mm->mm_users);
2637                if (mm_users == 1) {
2638                        mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2639                        mm->numa_scan_seq = 0;
2640                }
2641        }
2642        p->node_stamp                   = 0;
2643        p->numa_scan_seq                = mm ? mm->numa_scan_seq : 0;
2644        p->numa_scan_period             = sysctl_numa_balancing_scan_delay;
2645        /* Protect against double add, see task_tick_numa and task_numa_work */
2646        p->numa_work.next               = &p->numa_work;
2647        p->numa_faults                  = NULL;
2648        RCU_INIT_POINTER(p->numa_group, NULL);
2649        p->last_task_numa_placement     = 0;
2650        p->last_sum_exec_runtime        = 0;
2651
2652        init_task_work(&p->numa_work, task_numa_work);
2653
2654        /* New address space, reset the preferred nid */
2655        if (!(clone_flags & CLONE_VM)) {
2656                p->numa_preferred_nid = NUMA_NO_NODE;
2657                return;
2658        }
2659
2660        /*
2661         * New thread, keep existing numa_preferred_nid which should be copied
2662         * already by arch_dup_task_struct but stagger when scans start.
2663         */
2664        if (mm) {
2665                unsigned int delay;
2666
2667                delay = min_t(unsigned int, task_scan_max(current),
2668                        current->numa_scan_period * mm_users * NSEC_PER_MSEC);
2669                delay += 2 * TICK_NSEC;
2670                p->node_stamp = delay;
2671        }
2672}
2673
2674/*
2675 * Drive the periodic memory faults..
2676 */
2677static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2678{
2679        struct callback_head *work = &curr->numa_work;
2680        u64 period, now;
2681
2682        /*
2683         * We don't care about NUMA placement if we don't have memory.
2684         */
2685        if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2686                return;
2687
2688        /*
2689         * Using runtime rather than walltime has the dual advantage that
2690         * we (mostly) drive the selection from busy threads and that the
2691         * task needs to have done some actual work before we bother with
2692         * NUMA placement.
2693         */
2694        now = curr->se.sum_exec_runtime;
2695        period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2696
2697        if (now > curr->node_stamp + period) {
2698                if (!curr->node_stamp)
2699                        curr->numa_scan_period = task_scan_start(curr);
2700                curr->node_stamp += period;
2701
2702                if (!time_before(jiffies, curr->mm->numa_next_scan))
2703                        task_work_add(curr, work, true);
2704        }
2705}
2706
2707static void update_scan_period(struct task_struct *p, int new_cpu)
2708{
2709        int src_nid = cpu_to_node(task_cpu(p));
2710        int dst_nid = cpu_to_node(new_cpu);
2711
2712        if (!static_branch_likely(&sched_numa_balancing))
2713                return;
2714
2715        if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2716                return;
2717
2718        if (src_nid == dst_nid)
2719                return;
2720
2721        /*
2722         * Allow resets if faults have been trapped before one scan
2723         * has completed. This is most likely due to a new task that
2724         * is pulled cross-node due to wakeups or load balancing.
2725         */
2726        if (p->numa_scan_seq) {
2727                /*
2728                 * Avoid scan adjustments if moving to the preferred
2729                 * node or if the task was not previously running on
2730                 * the preferred node.
2731                 */
2732                if (dst_nid == p->numa_preferred_nid ||
2733                    (p->numa_preferred_nid != NUMA_NO_NODE &&
2734                        src_nid != p->numa_preferred_nid))
2735                        return;
2736        }
2737
2738        p->numa_scan_period = task_scan_start(p);
2739}
2740
2741#else
2742static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2743{
2744}
2745
2746static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2747{
2748}
2749
2750static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2751{
2752}
2753
2754static inline void update_scan_period(struct task_struct *p, int new_cpu)
2755{
2756}
2757
2758#endif /* CONFIG_NUMA_BALANCING */
2759
2760static void
2761account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2762{
2763        update_load_add(&cfs_rq->load, se->load.weight);
2764#ifdef CONFIG_SMP
2765        if (entity_is_task(se)) {
2766                struct rq *rq = rq_of(cfs_rq);
2767
2768                account_numa_enqueue(rq, task_of(se));
2769                list_add(&se->group_node, &rq->cfs_tasks);
2770        }
2771#endif
2772        cfs_rq->nr_running++;
2773}
2774
2775static void
2776account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2777{
2778        update_load_sub(&cfs_rq->load, se->load.weight);
2779#ifdef CONFIG_SMP
2780        if (entity_is_task(se)) {
2781                account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2782                list_del_init(&se->group_node);
2783        }
2784#endif
2785        cfs_rq->nr_running--;
2786}
2787
2788/*
2789 * Signed add and clamp on underflow.
2790 *
2791 * Explicitly do a load-store to ensure the intermediate value never hits
2792 * memory. This allows lockless observations without ever seeing the negative
2793 * values.
2794 */
2795#define add_positive(_ptr, _val) do {                           \
2796        typeof(_ptr) ptr = (_ptr);                              \
2797        typeof(_val) val = (_val);                              \
2798        typeof(*ptr) res, var = READ_ONCE(*ptr);                \
2799                                                                \
2800        res = var + val;                                        \
2801                                                                \
2802        if (val < 0 && res > var)                               \
2803                res = 0;                                        \
2804                                                                \
2805        WRITE_ONCE(*ptr, res);                                  \
2806} while (0)
2807
2808/*
2809 * Unsigned subtract and clamp on underflow.
2810 *
2811 * Explicitly do a load-store to ensure the intermediate value never hits
2812 * memory. This allows lockless observations without ever seeing the negative
2813 * values.
2814 */
2815#define sub_positive(_ptr, _val) do {                           \
2816        typeof(_ptr) ptr = (_ptr);                              \
2817        typeof(*ptr) val = (_val);                              \
2818        typeof(*ptr) res, var = READ_ONCE(*ptr);                \
2819        res = var - val;                                        \
2820        if (res > var)                                          \
2821                res = 0;                                        \
2822        WRITE_ONCE(*ptr, res);                                  \
2823} while (0)
2824
2825/*
2826 * Remove and clamp on negative, from a local variable.
2827 *
2828 * A variant of sub_positive(), which does not use explicit load-store
2829 * and is thus optimized for local variable updates.
2830 */
2831#define lsub_positive(_ptr, _val) do {                          \
2832        typeof(_ptr) ptr = (_ptr);                              \
2833        *ptr -= min_t(typeof(*ptr), *ptr, _val);                \
2834} while (0)
2835
2836#ifdef CONFIG_SMP
2837static inline void
2838enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2839{
2840        cfs_rq->runnable_weight += se->runnable_weight;
2841
2842        cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg;
2843        cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum;
2844}
2845
2846static inline void
2847dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2848{
2849        cfs_rq->runnable_weight -= se->runnable_weight;
2850
2851        sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg);
2852        sub_positive(&cfs_rq->avg.runnable_load_sum,
2853                     se_runnable(se) * se->avg.runnable_load_sum);
2854}
2855
2856static inline void
2857enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2858{
2859        cfs_rq->avg.load_avg += se->avg.load_avg;
2860        cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
2861}
2862
2863static inline void
2864dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2865{
2866        sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
2867        sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
2868}
2869#else
2870static inline void
2871enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2872static inline void
2873dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2874static inline void
2875enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2876static inline void
2877dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2878#endif
2879
2880static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2881                            unsigned long weight, unsigned long runnable)
2882{
2883        if (se->on_rq) {
2884                /* commit outstanding execution time */
2885                if (cfs_rq->curr == se)
2886                        update_curr(cfs_rq);
2887                account_entity_dequeue(cfs_rq, se);
2888                dequeue_runnable_load_avg(cfs_rq, se);
2889        }
2890        dequeue_load_avg(cfs_rq, se);
2891
2892        se->runnable_weight = runnable;
2893        update_load_set(&se->load, weight);
2894
2895#ifdef CONFIG_SMP
2896        do {
2897                u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib;
2898
2899                se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
2900                se->avg.runnable_load_avg =
2901                        div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider);
2902        } while (0);
2903#endif
2904
2905        enqueue_load_avg(cfs_rq, se);
2906        if (se->on_rq) {
2907                account_entity_enqueue(cfs_rq, se);
2908                enqueue_runnable_load_avg(cfs_rq, se);
2909        }
2910}
2911
2912void reweight_task(struct task_struct *p, int prio)
2913{
2914        struct sched_entity *se = &p->se;
2915        struct cfs_rq *cfs_rq = cfs_rq_of(se);
2916        struct load_weight *load = &se->load;
2917        unsigned long weight = scale_load(sched_prio_to_weight[prio]);
2918
2919        reweight_entity(cfs_rq, se, weight, weight);
2920        load->inv_weight = sched_prio_to_wmult[prio];
2921}
2922
2923#ifdef CONFIG_FAIR_GROUP_SCHED
2924#ifdef CONFIG_SMP
2925/*
2926 * All this does is approximate the hierarchical proportion which includes that
2927 * global sum we all love to hate.
2928 *
2929 * That is, the weight of a group entity, is the proportional share of the
2930 * group weight based on the group runqueue weights. That is:
2931 *
2932 *                     tg->weight * grq->load.weight
2933 *   ge->load.weight = -----------------------------               (1)
2934 *                        \Sum grq->load.weight
2935 *
2936 * Now, because computing that sum is prohibitively expensive to compute (been
2937 * there, done that) we approximate it with this average stuff. The average
2938 * moves slower and therefore the approximation is cheaper and more stable.
2939 *
2940 * So instead of the above, we substitute:
2941 *
2942 *   grq->load.weight -> grq->avg.load_avg                         (2)
2943 *
2944 * which yields the following:
2945 *
2946 *                     tg->weight * grq->avg.load_avg
2947 *   ge->load.weight = ------------------------------              (3)
2948 *                              tg->load_avg
2949 *
2950 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
2951 *
2952 * That is shares_avg, and it is right (given the approximation (2)).
2953 *
2954 * The problem with it is that because the average is slow -- it was designed
2955 * to be exactly that of course -- this leads to transients in boundary
2956 * conditions. In specific, the case where the group was idle and we start the
2957 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
2958 * yielding bad latency etc..
2959 *
2960 * Now, in that special case (1) reduces to:
2961 *
2962 *                     tg->weight * grq->load.weight
2963 *   ge->load.weight = ----------------------------- = tg->weight   (4)
2964 *                          grp->load.weight
2965 *
2966 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
2967 *
2968 * So what we do is modify our approximation (3) to approach (4) in the (near)
2969 * UP case, like:
2970 *
2971 *   ge->load.weight =
2972 *
2973 *              tg->weight * grq->load.weight
2974 *     ---------------------------------------------------         (5)
2975 *     tg->load_avg - grq->avg.load_avg + grq->load.weight
2976 *
2977 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
2978 * we need to use grq->avg.load_avg as its lower bound, which then gives:
2979 *
2980 *
2981 *                     tg->weight * grq->load.weight
2982 *   ge->load.weight = -----------------------------               (6)
2983 *                              tg_load_avg'
2984 *
2985 * Where:
2986 *
2987 *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
2988 *                  max(grq->load.weight, grq->avg.load_avg)
2989 *
2990 * And that is shares_weight and is icky. In the (near) UP case it approaches
2991 * (4) while in the normal case it approaches (3). It consistently
2992 * overestimates the ge->load.weight and therefore:
2993 *
2994 *   \Sum ge->load.weight >= tg->weight
2995 *
2996 * hence icky!
2997 */
2998static long calc_group_shares(struct cfs_rq *cfs_rq)
2999{
3000        long tg_weight, tg_shares, load, shares;
3001        struct task_group *tg = cfs_rq->tg;
3002
3003        tg_shares = READ_ONCE(tg->shares);
3004
3005        load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3006
3007        tg_weight = atomic_long_read(&tg->load_avg);
3008
3009        /* Ensure tg_weight >= load */
3010        tg_weight -= cfs_rq->tg_load_avg_contrib;
3011        tg_weight += load;
3012
3013        shares = (tg_shares * load);
3014        if (tg_weight)
3015                shares /= tg_weight;
3016
3017        /*
3018         * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3019         * of a group with small tg->shares value. It is a floor value which is
3020         * assigned as a minimum load.weight to the sched_entity representing
3021         * the group on a CPU.
3022         *
3023         * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3024         * on an 8-core system with 8 tasks each runnable on one CPU shares has
3025         * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3026         * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3027         * instead of 0.
3028         */
3029        return clamp_t(long, shares, MIN_SHARES, tg_shares);
3030}
3031
3032/*
3033 * This calculates the effective runnable weight for a group entity based on
3034 * the group entity weight calculated above.
3035 *
3036 * Because of the above approximation (2), our group entity weight is
3037 * an load_avg based ratio (3). This means that it includes blocked load and
3038 * does not represent the runnable weight.
3039 *
3040 * Approximate the group entity's runnable weight per ratio from the group
3041 * runqueue:
3042 *
3043 *                                           grq->avg.runnable_load_avg
3044 *   ge->runnable_weight = ge->load.weight * -------------------------- (7)
3045 *                                               grq->avg.load_avg
3046 *
3047 * However, analogous to above, since the avg numbers are slow, this leads to
3048 * transients in the from-idle case. Instead we use:
3049 *
3050 *   ge->runnable_weight = ge->load.weight *
3051 *
3052 *              max(grq->avg.runnable_load_avg, grq->runnable_weight)
3053 *              -----------------------------------------------------   (8)
3054 *                    max(grq->avg.load_avg, grq->load.weight)
3055 *
3056 * Where these max() serve both to use the 'instant' values to fix the slow
3057 * from-idle and avoid the /0 on to-idle, similar to (6).
3058 */
3059static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares)
3060{
3061        long runnable, load_avg;
3062
3063        load_avg = max(cfs_rq->avg.load_avg,
3064                       scale_load_down(cfs_rq->load.weight));
3065
3066        runnable = max(cfs_rq->avg.runnable_load_avg,
3067                       scale_load_down(cfs_rq->runnable_weight));
3068
3069        runnable *= shares;
3070        if (load_avg)
3071                runnable /= load_avg;
3072
3073        return clamp_t(long, runnable, MIN_SHARES, shares);
3074}
3075#endif /* CONFIG_SMP */
3076
3077static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3078
3079/*
3080 * Recomputes the group entity based on the current state of its group
3081 * runqueue.
3082 */
3083static void update_cfs_group(struct sched_entity *se)
3084{
3085        struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3086        long shares, runnable;
3087
3088        if (!gcfs_rq)
3089                return;
3090
3091        if (throttled_hierarchy(gcfs_rq))
3092                return;
3093
3094#ifndef CONFIG_SMP
3095        runnable = shares = READ_ONCE(gcfs_rq->tg->shares);
3096
3097        if (likely(se->load.weight == shares))
3098                return;
3099#else
3100        shares   = calc_group_shares(gcfs_rq);
3101        runnable = calc_group_runnable(gcfs_rq, shares);
3102#endif
3103
3104        reweight_entity(cfs_rq_of(se), se, shares, runnable);
3105}
3106
3107#else /* CONFIG_FAIR_GROUP_SCHED */
3108static inline void update_cfs_group(struct sched_entity *se)
3109{
3110}
3111#endif /* CONFIG_FAIR_GROUP_SCHED */
3112
3113static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3114{
3115        struct rq *rq = rq_of(cfs_rq);
3116
3117        if (&rq->cfs == cfs_rq || (flags & SCHED_CPUFREQ_MIGRATION)) {
3118                /*
3119                 * There are a few boundary cases this might miss but it should
3120                 * get called often enough that that should (hopefully) not be
3121                 * a real problem.
3122                 *
3123                 * It will not get called when we go idle, because the idle
3124                 * thread is a different class (!fair), nor will the utilization
3125                 * number include things like RT tasks.
3126                 *
3127                 * As is, the util number is not freq-invariant (we'd have to
3128                 * implement arch_scale_freq_capacity() for that).
3129                 *
3130                 * See cpu_util().
3131                 */
3132                cpufreq_update_util(rq, flags);
3133        }
3134}
3135
3136#ifdef CONFIG_SMP
3137#ifdef CONFIG_FAIR_GROUP_SCHED
3138/**
3139 * update_tg_load_avg - update the tg's load avg
3140 * @cfs_rq: the cfs_rq whose avg changed
3141 * @force: update regardless of how small the difference
3142 *
3143 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3144 * However, because tg->load_avg is a global value there are performance
3145 * considerations.
3146 *
3147 * In order to avoid having to look at the other cfs_rq's, we use a
3148 * differential update where we store the last value we propagated. This in
3149 * turn allows skipping updates if the differential is 'small'.
3150 *
3151 * Updating tg's load_avg is necessary before update_cfs_share().
3152 */
3153static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
3154{
3155        long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3156
3157        /*
3158         * No need to update load_avg for root_task_group as it is not used.
3159         */
3160        if (cfs_rq->tg == &root_task_group)
3161                return;
3162
3163        if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3164                atomic_long_add(delta, &cfs_rq->tg->load_avg);
3165                cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3166        }
3167}
3168
3169/*
3170 * Called within set_task_rq() right before setting a task's CPU. The
3171 * caller only guarantees p->pi_lock is held; no other assumptions,
3172 * including the state of rq->lock, should be made.
3173 */
3174void set_task_rq_fair(struct sched_entity *se,
3175                      struct cfs_rq *prev, struct cfs_rq *next)
3176{
3177        u64 p_last_update_time;
3178        u64 n_last_update_time;
3179
3180        if (!sched_feat(ATTACH_AGE_LOAD))
3181                return;
3182
3183        /*
3184         * We are supposed to update the task to "current" time, then its up to
3185         * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3186         * getting what current time is, so simply throw away the out-of-date
3187         * time. This will result in the wakee task is less decayed, but giving
3188         * the wakee more load sounds not bad.
3189         */
3190        if (!(se->avg.last_update_time && prev))
3191                return;
3192
3193#ifndef CONFIG_64BIT
3194        {
3195                u64 p_last_update_time_copy;
3196                u64 n_last_update_time_copy;
3197
3198                do {
3199                        p_last_update_time_copy = prev->load_last_update_time_copy;
3200                        n_last_update_time_copy = next->load_last_update_time_copy;
3201
3202                        smp_rmb();
3203
3204                        p_last_update_time = prev->avg.last_update_time;
3205                        n_last_update_time = next->avg.last_update_time;
3206
3207                } while (p_last_update_time != p_last_update_time_copy ||
3208                         n_last_update_time != n_last_update_time_copy);
3209        }
3210#else
3211        p_last_update_time = prev->avg.last_update_time;
3212        n_last_update_time = next->avg.last_update_time;
3213#endif
3214        __update_load_avg_blocked_se(p_last_update_time, se);
3215        se->avg.last_update_time = n_last_update_time;
3216}
3217
3218
3219/*
3220 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3221 * propagate its contribution. The key to this propagation is the invariant
3222 * that for each group:
3223 *
3224 *   ge->avg == grq->avg                                                (1)
3225 *
3226 * _IFF_ we look at the pure running and runnable sums. Because they
3227 * represent the very same entity, just at different points in the hierarchy.
3228 *
3229 * Per the above update_tg_cfs_util() is trivial and simply copies the running
3230 * sum over (but still wrong, because the group entity and group rq do not have
3231 * their PELT windows aligned).
3232 *
3233 * However, update_tg_cfs_runnable() is more complex. So we have:
3234 *
3235 *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg          (2)
3236 *
3237 * And since, like util, the runnable part should be directly transferable,
3238 * the following would _appear_ to be the straight forward approach:
3239 *
3240 *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg       (3)
3241 *
3242 * And per (1) we have:
3243 *
3244 *   ge->avg.runnable_avg == grq->avg.runnable_avg
3245 *
3246 * Which gives:
3247 *
3248 *                      ge->load.weight * grq->avg.load_avg
3249 *   ge->avg.load_avg = -----------------------------------             (4)
3250 *                               grq->load.weight
3251 *
3252 * Except that is wrong!
3253 *
3254 * Because while for entities historical weight is not important and we
3255 * really only care about our future and therefore can consider a pure
3256 * runnable sum, runqueues can NOT do this.
3257 *
3258 * We specifically want runqueues to have a load_avg that includes
3259 * historical weights. Those represent the blocked load, the load we expect
3260 * to (shortly) return to us. This only works by keeping the weights as
3261 * integral part of the sum. We therefore cannot decompose as per (3).
3262 *
3263 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3264 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3265 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3266 * runnable section of these tasks overlap (or not). If they were to perfectly
3267 * align the rq as a whole would be runnable 2/3 of the time. If however we
3268 * always have at least 1 runnable task, the rq as a whole is always runnable.
3269 *
3270 * So we'll have to approximate.. :/
3271 *
3272 * Given the constraint:
3273 *
3274 *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3275 *
3276 * We can construct a rule that adds runnable to a rq by assuming minimal
3277 * overlap.
3278 *
3279 * On removal, we'll assume each task is equally runnable; which yields:
3280 *
3281 *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3282 *
3283 * XXX: only do this for the part of runnable > running ?
3284 *
3285 */
3286
3287static inline void
3288update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3289{
3290        long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3291
3292        /* Nothing to update */
3293        if (!delta)
3294                return;
3295
3296        /*
3297         * The relation between sum and avg is:
3298         *
3299         *   LOAD_AVG_MAX - 1024 + sa->period_contrib
3300         *
3301         * however, the PELT windows are not aligned between grq and gse.
3302         */
3303
3304        /* Set new sched_entity's utilization */
3305        se->avg.util_avg = gcfs_rq->avg.util_avg;
3306        se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
3307
3308        /* Update parent cfs_rq utilization */
3309        add_positive(&cfs_rq->avg.util_avg, delta);
3310        cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
3311}
3312
3313static inline void
3314update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3315{
3316        long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3317        unsigned long runnable_load_avg, load_avg;
3318        u64 runnable_load_sum, load_sum = 0;
3319        s64 delta_sum;
3320
3321        if (!runnable_sum)
3322                return;
3323
3324        gcfs_rq->prop_runnable_sum = 0;
3325
3326        if (runnable_sum >= 0) {
3327                /*
3328                 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3329                 * the CPU is saturated running == runnable.
3330                 */
3331                runnable_sum += se->avg.load_sum;
3332                runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX);
3333        } else {
3334                /*
3335                 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3336                 * assuming all tasks are equally runnable.
3337                 */
3338                if (scale_load_down(gcfs_rq->load.weight)) {
3339                        load_sum = div_s64(gcfs_rq->avg.load_sum,
3340                                scale_load_down(gcfs_rq->load.weight));
3341                }
3342
3343                /* But make sure to not inflate se's runnable */
3344                runnable_sum = min(se->avg.load_sum, load_sum);
3345        }
3346
3347        /*
3348         * runnable_sum can't be lower than running_sum
3349         * Rescale running sum to be in the same range as runnable sum
3350         * running_sum is in [0 : LOAD_AVG_MAX <<  SCHED_CAPACITY_SHIFT]
3351         * runnable_sum is in [0 : LOAD_AVG_MAX]
3352         */
3353        running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
3354        runnable_sum = max(runnable_sum, running_sum);
3355
3356        load_sum = (s64)se_weight(se) * runnable_sum;
3357        load_avg = div_s64(load_sum, LOAD_AVG_MAX);
3358
3359        delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3360        delta_avg = load_avg - se->avg.load_avg;
3361
3362        se->avg.load_sum = runnable_sum;
3363        se->avg.load_avg = load_avg;
3364        add_positive(&cfs_rq->avg.load_avg, delta_avg);
3365        add_positive(&cfs_rq->avg.load_sum, delta_sum);
3366
3367        runnable_load_sum = (s64)se_runnable(se) * runnable_sum;
3368        runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX);
3369        delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum;
3370        delta_avg = runnable_load_avg - se->avg.runnable_load_avg;
3371
3372        se->avg.runnable_load_sum = runnable_sum;
3373        se->avg.runnable_load_avg = runnable_load_avg;
3374
3375        if (se->on_rq) {
3376                add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg);
3377                add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum);
3378        }
3379}
3380
3381static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3382{
3383        cfs_rq->propagate = 1;
3384        cfs_rq->prop_runnable_sum += runnable_sum;
3385}
3386
3387/* Update task and its cfs_rq load average */
3388static inline int propagate_entity_load_avg(struct sched_entity *se)
3389{
3390        struct cfs_rq *cfs_rq, *gcfs_rq;
3391
3392        if (entity_is_task(se))
3393                return 0;
3394
3395        gcfs_rq = group_cfs_rq(se);
3396        if (!gcfs_rq->propagate)
3397                return 0;
3398
3399        gcfs_rq->propagate = 0;
3400
3401        cfs_rq = cfs_rq_of(se);
3402
3403        add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3404
3405        update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3406        update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3407
3408        trace_pelt_cfs_tp(cfs_rq);
3409        trace_pelt_se_tp(se);
3410
3411        return 1;
3412}
3413
3414/*
3415 * Check if we need to update the load and the utilization of a blocked
3416 * group_entity:
3417 */
3418static inline bool skip_blocked_update(struct sched_entity *se)
3419{
3420        struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3421
3422        /*
3423         * If sched_entity still have not zero load or utilization, we have to
3424         * decay it:
3425         */
3426        if (se->avg.load_avg || se->avg.util_avg)
3427                return false;
3428
3429        /*
3430         * If there is a pending propagation, we have to update the load and
3431         * the utilization of the sched_entity:
3432         */
3433        if (gcfs_rq->propagate)
3434                return false;
3435
3436        /*
3437         * Otherwise, the load and the utilization of the sched_entity is
3438         * already zero and there is no pending propagation, so it will be a
3439         * waste of time to try to decay it:
3440         */
3441        return true;
3442}
3443
3444#else /* CONFIG_FAIR_GROUP_SCHED */
3445
3446static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
3447
3448static inline int propagate_entity_load_avg(struct sched_entity *se)
3449{
3450        return 0;
3451}
3452
3453static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3454
3455#endif /* CONFIG_FAIR_GROUP_SCHED */
3456
3457/**
3458 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3459 * @now: current time, as per cfs_rq_clock_pelt()
3460 * @cfs_rq: cfs_rq to update
3461 *
3462 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3463 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3464 * post_init_entity_util_avg().
3465 *
3466 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3467 *
3468 * Returns true if the load decayed or we removed load.
3469 *
3470 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3471 * call update_tg_load_avg() when this function returns true.
3472 */
3473static inline int
3474update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3475{
3476        unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0;
3477        struct sched_avg *sa = &cfs_rq->avg;
3478        int decayed = 0;
3479
3480        if (cfs_rq->removed.nr) {
3481                unsigned long r;
3482                u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
3483
3484                raw_spin_lock(&cfs_rq->removed.lock);
3485                swap(cfs_rq->removed.util_avg, removed_util);
3486                swap(cfs_rq->removed.load_avg, removed_load);
3487                swap(cfs_rq->removed.runnable_sum, removed_runnable_sum);
3488                cfs_rq->removed.nr = 0;
3489                raw_spin_unlock(&cfs_rq->removed.lock);
3490
3491                r = removed_load;
3492                sub_positive(&sa->load_avg, r);
3493                sub_positive(&sa->load_sum, r * divider);
3494
3495                r = removed_util;
3496                sub_positive(&sa->util_avg, r);
3497                sub_positive(&sa->util_sum, r * divider);
3498
3499                add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum);
3500
3501                decayed = 1;
3502        }
3503
3504        decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
3505
3506#ifndef CONFIG_64BIT
3507        smp_wmb();
3508        cfs_rq->load_last_update_time_copy = sa->last_update_time;
3509#endif
3510
3511        return decayed;
3512}
3513
3514/**
3515 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3516 * @cfs_rq: cfs_rq to attach to
3517 * @se: sched_entity to attach
3518 * @flags: migration hints
3519 *
3520 * Must call update_cfs_rq_load_avg() before this, since we rely on
3521 * cfs_rq->avg.last_update_time being current.
3522 */
3523static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3524{
3525        u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib;
3526
3527        /*
3528         * When we attach the @se to the @cfs_rq, we must align the decay
3529         * window because without that, really weird and wonderful things can
3530         * happen.
3531         *
3532         * XXX illustrate
3533         */
3534        se->avg.last_update_time = cfs_rq->avg.last_update_time;
3535        se->avg.period_contrib = cfs_rq->avg.period_contrib;
3536
3537        /*
3538         * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3539         * period_contrib. This isn't strictly correct, but since we're
3540         * entirely outside of the PELT hierarchy, nobody cares if we truncate
3541         * _sum a little.
3542         */
3543        se->avg.util_sum = se->avg.util_avg * divider;
3544
3545        se->avg.load_sum = divider;
3546        if (se_weight(se)) {
3547                se->avg.load_sum =
3548                        div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3549        }
3550
3551        se->avg.runnable_load_sum = se->avg.load_sum;
3552
3553        enqueue_load_avg(cfs_rq, se);
3554        cfs_rq->avg.util_avg += se->avg.util_avg;
3555        cfs_rq->avg.util_sum += se->avg.util_sum;
3556
3557        add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3558
3559        cfs_rq_util_change(cfs_rq, flags);
3560
3561        trace_pelt_cfs_tp(cfs_rq);
3562}
3563
3564/**
3565 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3566 * @cfs_rq: cfs_rq to detach from
3567 * @se: sched_entity to detach
3568 *
3569 * Must call update_cfs_rq_load_avg() before this, since we rely on
3570 * cfs_rq->avg.last_update_time being current.
3571 */
3572static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3573{
3574        dequeue_load_avg(cfs_rq, se);
3575        sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3576        sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3577
3578        add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3579
3580        cfs_rq_util_change(cfs_rq, 0);
3581
3582        trace_pelt_cfs_tp(cfs_rq);
3583}
3584
3585/*
3586 * Optional action to be done while updating the load average
3587 */
3588#define UPDATE_TG       0x1
3589#define SKIP_AGE_LOAD   0x2
3590#define DO_ATTACH       0x4
3591
3592/* Update task and its cfs_rq load average */
3593static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3594{
3595        u64 now = cfs_rq_clock_pelt(cfs_rq);
3596        int decayed;
3597
3598        /*
3599         * Track task load average for carrying it to new CPU after migrated, and
3600         * track group sched_entity load average for task_h_load calc in migration
3601         */
3602        if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3603                __update_load_avg_se(now, cfs_rq, se);
3604
3605        decayed  = update_cfs_rq_load_avg(now, cfs_rq);
3606        decayed |= propagate_entity_load_avg(se);
3607
3608        if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3609
3610                /*
3611                 * DO_ATTACH means we're here from enqueue_entity().
3612                 * !last_update_time means we've passed through
3613                 * migrate_task_rq_fair() indicating we migrated.
3614                 *
3615                 * IOW we're enqueueing a task on a new CPU.
3616                 */
3617                attach_entity_load_avg(cfs_rq, se, SCHED_CPUFREQ_MIGRATION);
3618                update_tg_load_avg(cfs_rq, 0);
3619
3620        } else if (decayed) {
3621                cfs_rq_util_change(cfs_rq, 0);
3622
3623                if (flags & UPDATE_TG)
3624                        update_tg_load_avg(cfs_rq, 0);
3625        }
3626}
3627
3628#ifndef CONFIG_64BIT
3629static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3630{
3631        u64 last_update_time_copy;
3632        u64 last_update_time;
3633
3634        do {
3635                last_update_time_copy = cfs_rq->load_last_update_time_copy;
3636                smp_rmb();
3637                last_update_time = cfs_rq->avg.last_update_time;
3638        } while (last_update_time != last_update_time_copy);
3639
3640        return last_update_time;
3641}
3642#else
3643static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3644{
3645        return cfs_rq->avg.last_update_time;
3646}
3647#endif
3648
3649/*
3650 * Synchronize entity load avg of dequeued entity without locking
3651 * the previous rq.
3652 */
3653static void sync_entity_load_avg(struct sched_entity *se)
3654{
3655        struct cfs_rq *cfs_rq = cfs_rq_of(se);
3656        u64 last_update_time;
3657
3658        last_update_time = cfs_rq_last_update_time(cfs_rq);
3659        __update_load_avg_blocked_se(last_update_time, se);
3660}
3661
3662/*
3663 * Task first catches up with cfs_rq, and then subtract
3664 * itself from the cfs_rq (task must be off the queue now).
3665 */
3666static void remove_entity_load_avg(struct sched_entity *se)
3667{
3668        struct cfs_rq *cfs_rq = cfs_rq_of(se);
3669        unsigned long flags;
3670
3671        /*
3672         * tasks cannot exit without having gone through wake_up_new_task() ->
3673         * post_init_entity_util_avg() which will have added things to the
3674         * cfs_rq, so we can remove unconditionally.
3675         */
3676
3677        sync_entity_load_avg(se);
3678
3679        raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3680        ++cfs_rq->removed.nr;
3681        cfs_rq->removed.util_avg        += se->avg.util_avg;
3682        cfs_rq->removed.load_avg        += se->avg.load_avg;
3683        cfs_rq->removed.runnable_sum    += se->avg.load_sum; /* == runnable_sum */
3684        raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3685}
3686
3687static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3688{
3689        return cfs_rq->avg.runnable_load_avg;
3690}
3691
3692static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3693{
3694        return cfs_rq->avg.load_avg;
3695}
3696
3697static inline unsigned long task_util(struct task_struct *p)
3698{
3699        return READ_ONCE(p->se.avg.util_avg);
3700}
3701
3702static inline unsigned long _task_util_est(struct task_struct *p)
3703{
3704        struct util_est ue = READ_ONCE(p->se.avg.util_est);
3705
3706        return (max(ue.ewma, ue.enqueued) | UTIL_AVG_UNCHANGED);
3707}
3708
3709static inline unsigned long task_util_est(struct task_struct *p)
3710{
3711        return max(task_util(p), _task_util_est(p));
3712}
3713
3714static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3715                                    struct task_struct *p)
3716{
3717        unsigned int enqueued;
3718
3719        if (!sched_feat(UTIL_EST))
3720                return;
3721
3722        /* Update root cfs_rq's estimated utilization */
3723        enqueued  = cfs_rq->avg.util_est.enqueued;
3724        enqueued += _task_util_est(p);
3725        WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3726}
3727
3728/*
3729 * Check if a (signed) value is within a specified (unsigned) margin,
3730 * based on the observation that:
3731 *
3732 *     abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3733 *
3734 * NOTE: this only works when value + maring < INT_MAX.
3735 */
3736static inline bool within_margin(int value, int margin)
3737{
3738        return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
3739}
3740
3741static void
3742util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep)
3743{
3744        long last_ewma_diff;
3745        struct util_est ue;
3746        int cpu;
3747
3748        if (!sched_feat(UTIL_EST))
3749                return;
3750
3751        /* Update root cfs_rq's estimated utilization */
3752        ue.enqueued  = cfs_rq->avg.util_est.enqueued;
3753        ue.enqueued -= min_t(unsigned int, ue.enqueued, _task_util_est(p));
3754        WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued);
3755
3756        /*
3757         * Skip update of task's estimated utilization when the task has not
3758         * yet completed an activation, e.g. being migrated.
3759         */
3760        if (!task_sleep)
3761                return;
3762
3763        /*
3764         * If the PELT values haven't changed since enqueue time,
3765         * skip the util_est update.
3766         */
3767        ue = p->se.avg.util_est;
3768        if (ue.enqueued & UTIL_AVG_UNCHANGED)
3769                return;
3770
3771        /*
3772         * Reset EWMA on utilization increases, the moving average is used only
3773         * to smooth utilization decreases.
3774         */
3775        ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED);
3776        if (sched_feat(UTIL_EST_FASTUP)) {
3777                if (ue.ewma < ue.enqueued) {
3778                        ue.ewma = ue.enqueued;
3779                        goto done;
3780                }
3781        }
3782
3783        /*
3784         * Skip update of task's estimated utilization when its EWMA is
3785         * already ~1% close to its last activation value.
3786         */
3787        last_ewma_diff = ue.enqueued - ue.ewma;
3788        if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100)))
3789                return;
3790
3791        /*
3792         * To avoid overestimation of actual task utilization, skip updates if
3793         * we cannot grant there is idle time in this CPU.
3794         */
3795        cpu = cpu_of(rq_of(cfs_rq));
3796        if (task_util(p) > capacity_orig_of(cpu))
3797                return;
3798
3799        /*
3800         * Update Task's estimated utilization
3801         *
3802         * When *p completes an activation we can consolidate another sample
3803         * of the task size. This is done by storing the current PELT value
3804         * as ue.enqueued and by using this value to update the Exponential
3805         * Weighted Moving Average (EWMA):
3806         *
3807         *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
3808         *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
3809         *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
3810         *          = w * (      last_ewma_diff            ) +     ewma(t-1)
3811         *          = w * (last_ewma_diff  +  ewma(t-1) / w)
3812         *
3813         * Where 'w' is the weight of new samples, which is configured to be
3814         * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
3815         */
3816        ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
3817        ue.ewma  += last_ewma_diff;
3818        ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
3819done:
3820        WRITE_ONCE(p->se.avg.util_est, ue);
3821}
3822
3823static inline int task_fits_capacity(struct task_struct *p, long capacity)
3824{
3825        return fits_capacity(task_util_est(p), capacity);
3826}
3827
3828static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
3829{
3830        if (!static_branch_unlikely(&sched_asym_cpucapacity))
3831                return;
3832
3833        if (!p) {
3834                rq->misfit_task_load = 0;
3835                return;
3836        }
3837
3838        if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
3839                rq->misfit_task_load = 0;
3840                return;
3841        }
3842
3843        rq->misfit_task_load = task_h_load(p);
3844}
3845
3846#else /* CONFIG_SMP */
3847
3848#define UPDATE_TG       0x0
3849#define SKIP_AGE_LOAD   0x0
3850#define DO_ATTACH       0x0
3851
3852static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
3853{
3854        cfs_rq_util_change(cfs_rq, 0);
3855}
3856
3857static inline void remove_entity_load_avg(struct sched_entity *se) {}
3858
3859static inline void
3860attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) {}
3861static inline void
3862detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3863
3864static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
3865{
3866        return 0;
3867}
3868
3869static inline void
3870util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
3871
3872static inline void
3873util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p,
3874                 bool task_sleep) {}
3875static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
3876
3877#endif /* CONFIG_SMP */
3878
3879static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3880{
3881#ifdef CONFIG_SCHED_DEBUG
3882        s64 d = se->vruntime - cfs_rq->min_vruntime;
3883
3884        if (d < 0)
3885                d = -d;
3886
3887        if (d > 3*sysctl_sched_latency)
3888                schedstat_inc(cfs_rq->nr_spread_over);
3889#endif
3890}
3891
3892static void
3893place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3894{
3895        u64 vruntime = cfs_rq->min_vruntime;
3896
3897        /*
3898         * The 'current' period is already promised to the current tasks,
3899         * however the extra weight of the new task will slow them down a
3900         * little, place the new task so that it fits in the slot that
3901         * stays open at the end.
3902         */
3903        if (initial && sched_feat(START_DEBIT))
3904                vruntime += sched_vslice(cfs_rq, se);
3905
3906        /* sleeps up to a single latency don't count. */
3907        if (!initial) {
3908                unsigned long thresh = sysctl_sched_latency;
3909
3910                /*
3911                 * Halve their sleep time's effect, to allow
3912                 * for a gentler effect of sleepers:
3913                 */
3914                if (sched_feat(GENTLE_FAIR_SLEEPERS))
3915                        thresh >>= 1;
3916
3917                vruntime -= thresh;
3918        }
3919
3920        /* ensure we never gain time by being placed backwards. */
3921        se->vruntime = max_vruntime(se->vruntime, vruntime);
3922}
3923
3924static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3925
3926static inline void check_schedstat_required(void)
3927{
3928#ifdef CONFIG_SCHEDSTATS
3929        if (schedstat_enabled())
3930                return;
3931
3932        /* Force schedstat enabled if a dependent tracepoint is active */
3933        if (trace_sched_stat_wait_enabled()    ||
3934                        trace_sched_stat_sleep_enabled()   ||
3935                        trace_sched_stat_iowait_enabled()  ||
3936                        trace_sched_stat_blocked_enabled() ||
3937                        trace_sched_stat_runtime_enabled())  {
3938                printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3939                             "stat_blocked and stat_runtime require the "
3940                             "kernel parameter schedstats=enable or "
3941                             "kernel.sched_schedstats=1\n");
3942        }
3943#endif
3944}
3945
3946
3947/*
3948 * MIGRATION
3949 *
3950 *      dequeue
3951 *        update_curr()
3952 *          update_min_vruntime()
3953 *        vruntime -= min_vruntime
3954 *
3955 *      enqueue
3956 *        update_curr()
3957 *          update_min_vruntime()
3958 *        vruntime += min_vruntime
3959 *
3960 * this way the vruntime transition between RQs is done when both
3961 * min_vruntime are up-to-date.
3962 *
3963 * WAKEUP (remote)
3964 *
3965 *      ->migrate_task_rq_fair() (p->state == TASK_WAKING)
3966 *        vruntime -= min_vruntime
3967 *
3968 *      enqueue
3969 *        update_curr()
3970 *          update_min_vruntime()
3971 *        vruntime += min_vruntime
3972 *
3973 * this way we don't have the most up-to-date min_vruntime on the originating
3974 * CPU and an up-to-date min_vruntime on the destination CPU.
3975 */
3976
3977static void
3978enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3979{
3980        bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3981        bool curr = cfs_rq->curr == se;
3982
3983        /*
3984         * If we're the current task, we must renormalise before calling
3985         * update_curr().
3986         */
3987        if (renorm && curr)
3988                se->vruntime += cfs_rq->min_vruntime;
3989
3990        update_curr(cfs_rq);
3991
3992        /*
3993         * Otherwise, renormalise after, such that we're placed at the current
3994         * moment in time, instead of some random moment in the past. Being
3995         * placed in the past could significantly boost this task to the
3996         * fairness detriment of existing tasks.
3997         */
3998        if (renorm && !curr)
3999                se->vruntime += cfs_rq->min_vruntime;
4000
4001        /*
4002         * When enqueuing a sched_entity, we must:
4003         *   - Update loads to have both entity and cfs_rq synced with now.
4004         *   - Add its load to cfs_rq->runnable_avg
4005         *   - For group_entity, update its weight to reflect the new share of
4006         *     its group cfs_rq
4007         *   - Add its new weight to cfs_rq->load.weight
4008         */
4009        update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
4010        update_cfs_group(se);
4011        enqueue_runnable_load_avg(cfs_rq, se);
4012        account_entity_enqueue(cfs_rq, se);
4013
4014        if (flags & ENQUEUE_WAKEUP)
4015                place_entity(cfs_rq, se, 0);
4016
4017        check_schedstat_required();
4018        update_stats_enqueue(cfs_rq, se, flags);
4019        check_spread(cfs_rq, se);
4020        if (!curr)
4021                __enqueue_entity(cfs_rq, se);
4022        se->on_rq = 1;
4023
4024        if (cfs_rq->nr_running == 1) {
4025                list_add_leaf_cfs_rq(cfs_rq);
4026                check_enqueue_throttle(cfs_rq);
4027        }
4028}
4029
4030static void __clear_buddies_last(struct sched_entity *se)
4031{
4032        for_each_sched_entity(se) {
4033                struct cfs_rq *cfs_rq = cfs_rq_of(se);
4034                if (cfs_rq->last != se)
4035                        break;
4036
4037                cfs_rq->last = NULL;
4038        }
4039}
4040
4041static void __clear_buddies_next(struct sched_entity *se)
4042{
4043        for_each_sched_entity(se) {
4044                struct cfs_rq *cfs_rq = cfs_rq_of(se);
4045                if (cfs_rq->next != se)
4046                        break;
4047
4048                cfs_rq->next = NULL;
4049        }
4050}
4051
4052static void __clear_buddies_skip(struct sched_entity *se)
4053{
4054        for_each_sched_entity(se) {
4055                struct cfs_rq *cfs_rq = cfs_rq_of(se);
4056                if (cfs_rq->skip != se)
4057                        break;
4058
4059                cfs_rq->skip = NULL;
4060        }
4061}
4062
4063static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4064{
4065        if (cfs_rq->last == se)
4066                __clear_buddies_last(se);
4067
4068        if (cfs_rq->next == se)
4069                __clear_buddies_next(se);
4070
4071        if (cfs_rq->skip == se)
4072                __clear_buddies_skip(se);
4073}
4074
4075static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4076
4077static void
4078dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4079{
4080        /*
4081         * Update run-time statistics of the 'current'.
4082         */
4083        update_curr(cfs_rq);
4084
4085        /*
4086         * When dequeuing a sched_entity, we must:
4087         *   - Update loads to have both entity and cfs_rq synced with now.
4088         *   - Subtract its load from the cfs_rq->runnable_avg.
4089         *   - Subtract its previous weight from cfs_rq->load.weight.
4090         *   - For group entity, update its weight to reflect the new share
4091         *     of its group cfs_rq.
4092         */
4093        update_load_avg(cfs_rq, se, UPDATE_TG);
4094        dequeue_runnable_load_avg(cfs_rq, se);
4095
4096        update_stats_dequeue(cfs_rq, se, flags);
4097
4098        clear_buddies(cfs_rq, se);
4099
4100        if (se != cfs_rq->curr)
4101                __dequeue_entity(cfs_rq, se);
4102        se->on_rq = 0;
4103        account_entity_dequeue(cfs_rq, se);
4104
4105        /*
4106         * Normalize after update_curr(); which will also have moved
4107         * min_vruntime if @se is the one holding it back. But before doing
4108         * update_min_vruntime() again, which will discount @se's position and
4109         * can move min_vruntime forward still more.
4110         */
4111        if (!(flags & DEQUEUE_SLEEP))
4112                se->vruntime -= cfs_rq->min_vruntime;
4113
4114        /* return excess runtime on last dequeue */
4115        return_cfs_rq_runtime(cfs_rq);
4116
4117        update_cfs_group(se);
4118
4119        /*
4120         * Now advance min_vruntime if @se was the entity holding it back,
4121         * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4122         * put back on, and if we advance min_vruntime, we'll be placed back
4123         * further than we started -- ie. we'll be penalized.
4124         */
4125        if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
4126                update_min_vruntime(cfs_rq);
4127}
4128
4129/*
4130 * Preempt the current task with a newly woken task if needed:
4131 */
4132static void
4133check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4134{
4135        unsigned long ideal_runtime, delta_exec;
4136        struct sched_entity *se;
4137        s64 delta;
4138
4139        ideal_runtime = sched_slice(cfs_rq, curr);
4140        delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4141        if (delta_exec > ideal_runtime) {
4142                resched_curr(rq_of(cfs_rq));
4143                /*
4144                 * The current task ran long enough, ensure it doesn't get
4145                 * re-elected due to buddy favours.
4146                 */
4147                clear_buddies(cfs_rq, curr);
4148                return;
4149        }
4150
4151        /*
4152         * Ensure that a task that missed wakeup preemption by a
4153         * narrow margin doesn't have to wait for a full slice.
4154         * This also mitigates buddy induced latencies under load.
4155         */
4156        if (delta_exec < sysctl_sched_min_granularity)
4157                return;
4158
4159        se = __pick_first_entity(cfs_rq);
4160        delta = curr->vruntime - se->vruntime;
4161
4162        if (delta < 0)
4163                return;
4164
4165        if (delta > ideal_runtime)
4166                resched_curr(rq_of(cfs_rq));
4167}
4168
4169static void
4170set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4171{
4172        /* 'current' is not kept within the tree. */
4173        if (se->on_rq) {
4174                /*
4175                 * Any task has to be enqueued before it get to execute on
4176                 * a CPU. So account for the time it spent waiting on the
4177                 * runqueue.
4178                 */
4179                update_stats_wait_end(cfs_rq, se);
4180                __dequeue_entity(cfs_rq, se);
4181                update_load_avg(cfs_rq, se, UPDATE_TG);
4182        }
4183
4184        update_stats_curr_start(cfs_rq, se);
4185        cfs_rq->curr = se;
4186
4187        /*
4188         * Track our maximum slice length, if the CPU's load is at
4189         * least twice that of our own weight (i.e. dont track it
4190         * when there are only lesser-weight tasks around):
4191         */
4192        if (schedstat_enabled() &&
4193            rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
4194                schedstat_set(se->statistics.slice_max,
4195                        max((u64)schedstat_val(se->statistics.slice_max),
4196                            se->sum_exec_runtime - se->prev_sum_exec_runtime));
4197        }
4198
4199        se->prev_sum_exec_runtime = se->sum_exec_runtime;
4200}
4201
4202static int
4203wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4204
4205/*
4206 * Pick the next process, keeping these things in mind, in this order:
4207 * 1) keep things fair between processes/task groups
4208 * 2) pick the "next" process, since someone really wants that to run
4209 * 3) pick the "last" process, for cache locality
4210 * 4) do not run the "skip" process, if something else is available
4211 */
4212static struct sched_entity *
4213pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4214{
4215        struct sched_entity *left = __pick_first_entity(cfs_rq);
4216        struct sched_entity *se;
4217
4218        /*
4219         * If curr is set we have to see if its left of the leftmost entity
4220         * still in the tree, provided there was anything in the tree at all.
4221         */
4222        if (!left || (curr && entity_before(curr, left)))
4223                left = curr;
4224
4225        se = left; /* ideally we run the leftmost entity */
4226
4227        /*
4228         * Avoid running the skip buddy, if running something else can
4229         * be done without getting too unfair.
4230         */
4231        if (cfs_rq->skip == se) {
4232                struct sched_entity *second;
4233
4234                if (se == curr) {
4235                        second = __pick_first_entity(cfs_rq);
4236                } else {
4237                        second = __pick_next_entity(se);
4238                        if (!second || (curr && entity_before(curr, second)))
4239                                second = curr;
4240                }
4241
4242                if (second && wakeup_preempt_entity(second, left) < 1)
4243                        se = second;
4244        }
4245
4246        /*
4247         * Prefer last buddy, try to return the CPU to a preempted task.
4248         */
4249        if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
4250                se = cfs_rq->last;
4251
4252        /*
4253         * Someone really wants this to run. If it's not unfair, run it.
4254         */
4255        if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
4256                se = cfs_rq->next;
4257
4258        clear_buddies(cfs_rq, se);
4259
4260        return se;
4261}
4262
4263static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4264
4265static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4266{
4267        /*
4268         * If still on the runqueue then deactivate_task()
4269         * was not called and update_curr() has to be done:
4270         */
4271        if (prev->on_rq)
4272                update_curr(cfs_rq);
4273
4274        /* throttle cfs_rqs exceeding runtime */
4275        check_cfs_rq_runtime(cfs_rq);
4276
4277        check_spread(cfs_rq, prev);
4278
4279        if (prev->on_rq) {
4280                update_stats_wait_start(cfs_rq, prev);
4281                /* Put 'current' back into the tree. */
4282                __enqueue_entity(cfs_rq, prev);
4283                /* in !on_rq case, update occurred at dequeue */
4284                update_load_avg(cfs_rq, prev, 0);
4285        }
4286        cfs_rq->curr = NULL;
4287}
4288
4289static void
4290entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4291{
4292        /*
4293         * Update run-time statistics of the 'current'.
4294         */
4295        update_curr(cfs_rq);
4296
4297        /*
4298         * Ensure that runnable average is periodically updated.
4299         */
4300        update_load_avg(cfs_rq, curr, UPDATE_TG);
4301        update_cfs_group(curr);
4302
4303#ifdef CONFIG_SCHED_HRTICK
4304        /*
4305         * queued ticks are scheduled to match the slice, so don't bother
4306         * validating it and just reschedule.
4307         */
4308        if (queued) {
4309                resched_curr(rq_of(cfs_rq));
4310                return;
4311        }
4312        /*
4313         * don't let the period tick interfere with the hrtick preemption
4314         */
4315        if (!sched_feat(DOUBLE_TICK) &&
4316                        hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4317                return;
4318#endif
4319
4320        if (cfs_rq->nr_running > 1)
4321                check_preempt_tick(cfs_rq, curr);
4322}
4323
4324
4325/**************************************************
4326 * CFS bandwidth control machinery
4327 */
4328
4329#ifdef CONFIG_CFS_BANDWIDTH
4330
4331#ifdef CONFIG_JUMP_LABEL
4332static struct static_key __cfs_bandwidth_used;
4333
4334static inline bool cfs_bandwidth_used(void)
4335{
4336        return static_key_false(&__cfs_bandwidth_used);
4337}
4338
4339void cfs_bandwidth_usage_inc(void)
4340{
4341        static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4342}
4343
4344void cfs_bandwidth_usage_dec(void)
4345{
4346        static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4347}
4348#else /* CONFIG_JUMP_LABEL */
4349static bool cfs_bandwidth_used(void)
4350{
4351        return true;
4352}
4353
4354void cfs_bandwidth_usage_inc(void) {}
4355void cfs_bandwidth_usage_dec(void) {}
4356#endif /* CONFIG_JUMP_LABEL */
4357
4358/*
4359 * default period for cfs group bandwidth.
4360 * default: 0.1s, units: nanoseconds
4361 */
4362static inline u64 default_cfs_period(void)
4363{
4364        return 100000000ULL;
4365}
4366
4367static inline u64 sched_cfs_bandwidth_slice(void)
4368{
4369        return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4370}
4371
4372/*
4373 * Replenish runtime according to assigned quota. We use sched_clock_cpu
4374 * directly instead of rq->clock to avoid adding additional synchronization
4375 * around rq->lock.
4376 *
4377 * requires cfs_b->lock
4378 */
4379void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4380{
4381        if (cfs_b->quota != RUNTIME_INF)
4382                cfs_b->runtime = cfs_b->quota;
4383}
4384
4385static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4386{
4387        return &tg->cfs_bandwidth;
4388}
4389
4390/* returns 0 on failure to allocate runtime */
4391static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4392{
4393        struct task_group *tg = cfs_rq->tg;
4394        struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
4395        u64 amount = 0, min_amount;
4396
4397        /* note: this is a positive sum as runtime_remaining <= 0 */
4398        min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
4399
4400        raw_spin_lock(&cfs_b->lock);
4401        if (cfs_b->quota == RUNTIME_INF)
4402                amount = min_amount;
4403        else {
4404                start_cfs_bandwidth(cfs_b);
4405
4406                if (cfs_b->runtime > 0) {
4407                        amount = min(cfs_b->runtime, min_amount);
4408                        cfs_b->runtime -= amount;
4409                        cfs_b->idle = 0;
4410                }
4411        }
4412        raw_spin_unlock(&cfs_b->lock);
4413
4414        cfs_rq->runtime_remaining += amount;
4415
4416        return cfs_rq->runtime_remaining > 0;
4417}
4418
4419static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4420{
4421        /* dock delta_exec before expiring quota (as it could span periods) */
4422        cfs_rq->runtime_remaining -= delta_exec;
4423
4424        if (likely(cfs_rq->runtime_remaining > 0))
4425                return;
4426
4427        if (cfs_rq->throttled)
4428                return;
4429        /*
4430         * if we're unable to extend our runtime we resched so that the active
4431         * hierarchy can be throttled
4432         */
4433        if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4434                resched_curr(rq_of(cfs_rq));
4435}
4436
4437static __always_inline
4438void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4439{
4440        if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4441                return;
4442
4443        __account_cfs_rq_runtime(cfs_rq, delta_exec);
4444}
4445
4446static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4447{
4448        return cfs_bandwidth_used() && cfs_rq->throttled;
4449}
4450
4451/* check whether cfs_rq, or any parent, is throttled */
4452static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4453{
4454        return cfs_bandwidth_used() && cfs_rq->throttle_count;
4455}
4456
4457/*
4458 * Ensure that neither of the group entities corresponding to src_cpu or
4459 * dest_cpu are members of a throttled hierarchy when performing group
4460 * load-balance operations.
4461 */
4462static inline int throttled_lb_pair(struct task_group *tg,
4463                                    int src_cpu, int dest_cpu)
4464{
4465        struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4466
4467        src_cfs_rq = tg->cfs_rq[src_cpu];
4468        dest_cfs_rq = tg->cfs_rq[dest_cpu];
4469
4470        return throttled_hierarchy(src_cfs_rq) ||
4471               throttled_hierarchy(dest_cfs_rq);
4472}
4473
4474static int tg_unthrottle_up(struct task_group *tg, void *data)
4475{
4476        struct rq *rq = data;
4477        struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4478
4479        cfs_rq->throttle_count--;
4480        if (!cfs_rq->throttle_count) {
4481                cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4482                                             cfs_rq->throttled_clock_task;
4483
4484                /* Add cfs_rq with already running entity in the list */
4485                if (cfs_rq->nr_running >= 1)
4486                        list_add_leaf_cfs_rq(cfs_rq);
4487        }
4488
4489        return 0;
4490}
4491
4492static int tg_throttle_down(struct task_group *tg, void *data)
4493{
4494        struct rq *rq = data;
4495        struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4496
4497        /* group is entering throttled state, stop time */
4498        if (!cfs_rq->throttle_count) {
4499                cfs_rq->throttled_clock_task = rq_clock_task(rq);
4500                list_del_leaf_cfs_rq(cfs_rq);
4501        }
4502        cfs_rq->throttle_count++;
4503
4504        return 0;
4505}
4506
4507static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
4508{
4509        struct rq *rq = rq_of(cfs_rq);
4510        struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4511        struct sched_entity *se;
4512        long task_delta, idle_task_delta, dequeue = 1;
4513        bool empty;
4514
4515        se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4516
4517        /* freeze hierarchy runnable averages while throttled */
4518        rcu_read_lock();
4519        walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4520        rcu_read_unlock();
4521
4522        task_delta = cfs_rq->h_nr_running;
4523        idle_task_delta = cfs_rq->idle_h_nr_running;
4524        for_each_sched_entity(se) {
4525                struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4526                /* throttled entity or throttle-on-deactivate */
4527                if (!se->on_rq)
4528                        break;
4529
4530                if (dequeue)
4531                        dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4532                qcfs_rq->h_nr_running -= task_delta;
4533                qcfs_rq->idle_h_nr_running -= idle_task_delta;
4534
4535                if (qcfs_rq->load.weight)
4536                        dequeue = 0;
4537        }
4538
4539        if (!se)
4540                sub_nr_running(rq, task_delta);
4541
4542        cfs_rq->throttled = 1;
4543        cfs_rq->throttled_clock = rq_clock(rq);
4544        raw_spin_lock(&cfs_b->lock);
4545        empty = list_empty(&cfs_b->throttled_cfs_rq);
4546
4547        /*
4548         * Add to the _head_ of the list, so that an already-started
4549         * distribute_cfs_runtime will not see us. If disribute_cfs_runtime is
4550         * not running add to the tail so that later runqueues don't get starved.
4551         */
4552        if (cfs_b->distribute_running)
4553                list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
4554        else
4555                list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
4556
4557        /*
4558         * If we're the first throttled task, make sure the bandwidth
4559         * timer is running.
4560         */
4561        if (empty)
4562                start_cfs_bandwidth(cfs_b);
4563
4564        raw_spin_unlock(&cfs_b->lock);
4565}
4566
4567void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4568{
4569        struct rq *rq = rq_of(cfs_rq);
4570        struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4571        struct sched_entity *se;
4572        int enqueue = 1;
4573        long task_delta, idle_task_delta;
4574
4575        se = cfs_rq->tg->se[cpu_of(rq)];
4576
4577        cfs_rq->throttled = 0;
4578
4579        update_rq_clock(rq);
4580
4581        raw_spin_lock(&cfs_b->lock);
4582        cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4583        list_del_rcu(&cfs_rq->throttled_list);
4584        raw_spin_unlock(&cfs_b->lock);
4585
4586        /* update hierarchical throttle state */
4587        walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4588
4589        if (!cfs_rq->load.weight)
4590                return;
4591
4592        task_delta = cfs_rq->h_nr_running;
4593        idle_task_delta = cfs_rq->idle_h_nr_running;
4594        for_each_sched_entity(se) {
4595                if (se->on_rq)
4596                        enqueue = 0;
4597
4598                cfs_rq = cfs_rq_of(se);
4599                if (enqueue)
4600                        enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4601                cfs_rq->h_nr_running += task_delta;
4602                cfs_rq->idle_h_nr_running += idle_task_delta;
4603
4604                if (cfs_rq_throttled(cfs_rq))
4605                        break;
4606        }
4607
4608        assert_list_leaf_cfs_rq(rq);
4609
4610        if (!se)
4611                add_nr_running(rq, task_delta);
4612
4613        /* Determine whether we need to wake up potentially idle CPU: */
4614        if (rq->curr == rq->idle && rq->cfs.nr_running)
4615                resched_curr(rq);
4616}
4617
4618static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b, u64 remaining)
4619{
4620        struct cfs_rq *cfs_rq;
4621        u64 runtime;
4622        u64 starting_runtime = remaining;
4623
4624        rcu_read_lock();
4625        list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4626                                throttled_list) {
4627                struct rq *rq = rq_of(cfs_rq);
4628                struct rq_flags rf;
4629
4630                rq_lock_irqsave(rq, &rf);
4631                if (!cfs_rq_throttled(cfs_rq))
4632                        goto next;
4633
4634                /* By the above check, this should never be true */
4635                SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
4636
4637                runtime = -cfs_rq->runtime_remaining + 1;
4638                if (runtime > remaining)
4639                        runtime = remaining;
4640                remaining -= runtime;
4641
4642                cfs_rq->runtime_remaining += runtime;
4643
4644                /* we check whether we're throttled above */
4645                if (cfs_rq->runtime_remaining > 0)
4646                        unthrottle_cfs_rq(cfs_rq);
4647
4648next:
4649                rq_unlock_irqrestore(rq, &rf);
4650
4651                if (!remaining)
4652                        break;
4653        }
4654        rcu_read_unlock();
4655
4656        return starting_runtime - remaining;
4657}
4658
4659/*
4660 * Responsible for refilling a task_group's bandwidth and unthrottling its
4661 * cfs_rqs as appropriate. If there has been no activity within the last
4662 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4663 * used to track this state.
4664 */
4665static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
4666{
4667        u64 runtime;
4668        int throttled;
4669
4670        /* no need to continue the timer with no bandwidth constraint */
4671        if (cfs_b->quota == RUNTIME_INF)
4672                goto out_deactivate;
4673
4674        throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4675        cfs_b->nr_periods += overrun;
4676
4677        /*
4678         * idle depends on !throttled (for the case of a large deficit), and if
4679         * we're going inactive then everything else can be deferred
4680         */
4681        if (cfs_b->idle && !throttled)
4682                goto out_deactivate;
4683
4684        __refill_cfs_bandwidth_runtime(cfs_b);
4685
4686        if (!throttled) {
4687                /* mark as potentially idle for the upcoming period */
4688                cfs_b->idle = 1;
4689                return 0;
4690        }
4691
4692        /* account preceding periods in which throttling occurred */
4693        cfs_b->nr_throttled += overrun;
4694
4695        /*
4696         * This check is repeated as we are holding onto the new bandwidth while
4697         * we unthrottle. This can potentially race with an unthrottled group
4698         * trying to acquire new bandwidth from the global pool. This can result
4699         * in us over-using our runtime if it is all used during this loop, but
4700         * only by limited amounts in that extreme case.
4701         */
4702        while (throttled && cfs_b->runtime > 0 && !cfs_b->distribute_running) {
4703                runtime = cfs_b->runtime;
4704                cfs_b->distribute_running = 1;
4705                raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4706                /* we can't nest cfs_b->lock while distributing bandwidth */
4707                runtime = distribute_cfs_runtime(cfs_b, runtime);
4708                raw_spin_lock_irqsave(&cfs_b->lock, flags);
4709
4710                cfs_b->distribute_running = 0;
4711                throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4712
4713                lsub_positive(&cfs_b->runtime, runtime);
4714        }
4715
4716        /*
4717         * While we are ensured activity in the period following an
4718         * unthrottle, this also covers the case in which the new bandwidth is
4719         * insufficient to cover the existing bandwidth deficit.  (Forcing the
4720         * timer to remain active while there are any throttled entities.)
4721         */
4722        cfs_b->idle = 0;
4723
4724        return 0;
4725
4726out_deactivate:
4727        return 1;
4728}
4729
4730/* a cfs_rq won't donate quota below this amount */
4731static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4732/* minimum remaining period time to redistribute slack quota */
4733static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4734/* how long we wait to gather additional slack before distributing */
4735static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4736
4737/*
4738 * Are we near the end of the current quota period?
4739 *
4740 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4741 * hrtimer base being cleared by hrtimer_start. In the case of
4742 * migrate_hrtimers, base is never cleared, so we are fine.
4743 */
4744static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4745{
4746        struct hrtimer *refresh_timer = &cfs_b->period_timer;
4747        u64 remaining;
4748
4749        /* if the call-back is running a quota refresh is already occurring */
4750        if (hrtimer_callback_running(refresh_timer))
4751                return 1;
4752
4753        /* is a quota refresh about to occur? */
4754        remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4755        if (remaining < min_expire)
4756                return 1;
4757
4758        return 0;
4759}
4760
4761static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4762{
4763        u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4764
4765        /* if there's a quota refresh soon don't bother with slack */
4766        if (runtime_refresh_within(cfs_b, min_left))
4767                return;
4768
4769        /* don't push forwards an existing deferred unthrottle */
4770        if (cfs_b->slack_started)
4771                return;
4772        cfs_b->slack_started = true;
4773
4774        hrtimer_start(&cfs_b->slack_timer,
4775                        ns_to_ktime(cfs_bandwidth_slack_period),
4776                        HRTIMER_MODE_REL);
4777}
4778
4779/* we know any runtime found here is valid as update_curr() precedes return */
4780static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4781{
4782        struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4783        s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4784
4785        if (slack_runtime <= 0)
4786                return;
4787
4788        raw_spin_lock(&cfs_b->lock);
4789        if (cfs_b->quota != RUNTIME_INF) {
4790                cfs_b->runtime += slack_runtime;
4791
4792                /* we are under rq->lock, defer unthrottling using a timer */
4793                if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4794                    !list_empty(&cfs_b->throttled_cfs_rq))
4795                        start_cfs_slack_bandwidth(cfs_b);
4796        }
4797        raw_spin_unlock(&cfs_b->lock);
4798
4799        /* even if it's not valid for return we don't want to try again */
4800        cfs_rq->runtime_remaining -= slack_runtime;
4801}
4802
4803static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4804{
4805        if (!cfs_bandwidth_used())
4806                return;
4807
4808        if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4809                return;
4810
4811        __return_cfs_rq_runtime(cfs_rq);
4812}
4813
4814/*
4815 * This is done with a timer (instead of inline with bandwidth return) since
4816 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4817 */
4818static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4819{
4820        u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4821        unsigned long flags;
4822
4823        /* confirm we're still not at a refresh boundary */
4824        raw_spin_lock_irqsave(&cfs_b->lock, flags);
4825        cfs_b->slack_started = false;
4826        if (cfs_b->distribute_running) {
4827                raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4828                return;
4829        }
4830
4831        if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4832                raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4833                return;
4834        }
4835
4836        if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4837                runtime = cfs_b->runtime;
4838
4839        if (runtime)
4840                cfs_b->distribute_running = 1;
4841
4842        raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4843
4844        if (!runtime)
4845                return;
4846
4847        runtime = distribute_cfs_runtime(cfs_b, runtime);
4848
4849        raw_spin_lock_irqsave(&cfs_b->lock, flags);
4850        lsub_positive(&cfs_b->runtime, runtime);
4851        cfs_b->distribute_running = 0;
4852        raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4853}
4854
4855/*
4856 * When a group wakes up we want to make sure that its quota is not already
4857 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4858 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4859 */
4860static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4861{
4862        if (!cfs_bandwidth_used())
4863                return;
4864
4865        /* an active group must be handled by the update_curr()->put() path */
4866        if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4867                return;
4868
4869        /* ensure the group is not already throttled */
4870        if (cfs_rq_throttled(cfs_rq))
4871                return;
4872
4873        /* update runtime allocation */
4874        account_cfs_rq_runtime(cfs_rq, 0);
4875        if (cfs_rq->runtime_remaining <= 0)
4876                throttle_cfs_rq(cfs_rq);
4877}
4878
4879static void sync_throttle(struct task_group *tg, int cpu)
4880{
4881        struct cfs_rq *pcfs_rq, *cfs_rq;
4882
4883        if (!cfs_bandwidth_used())
4884                return;
4885
4886        if (!tg->parent)
4887                return;
4888
4889        cfs_rq = tg->cfs_rq[cpu];
4890        pcfs_rq = tg->parent->cfs_rq[cpu];
4891
4892        cfs_rq->throttle_count = pcfs_rq->throttle_count;
4893        cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
4894}
4895
4896/* conditionally throttle active cfs_rq's from put_prev_entity() */
4897static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4898{
4899        if (!cfs_bandwidth_used())
4900                return false;
4901
4902        if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4903                return false;
4904
4905        /*
4906         * it's possible for a throttled entity to be forced into a running
4907         * state (e.g. set_curr_task), in this case we're finished.
4908         */
4909        if (cfs_rq_throttled(cfs_rq))
4910                return true;
4911
4912        throttle_cfs_rq(cfs_rq);
4913        return true;
4914}
4915
4916static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4917{
4918        struct cfs_bandwidth *cfs_b =
4919                container_of(timer, struct cfs_bandwidth, slack_timer);
4920
4921        do_sched_cfs_slack_timer(cfs_b);
4922
4923        return HRTIMER_NORESTART;
4924}
4925
4926extern const u64 max_cfs_quota_period;
4927
4928static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4929{
4930        struct cfs_bandwidth *cfs_b =
4931                container_of(timer, struct cfs_bandwidth, period_timer);
4932        unsigned long flags;
4933        int overrun;
4934        int idle = 0;
4935        int count = 0;
4936
4937        raw_spin_lock_irqsave(&cfs_b->lock, flags);
4938        for (;;) {
4939                overrun = hrtimer_forward_now(timer, cfs_b->period);
4940                if (!overrun)
4941                        break;
4942
4943                if (++count > 3) {
4944                        u64 new, old = ktime_to_ns(cfs_b->period);
4945
4946                        /*
4947                         * Grow period by a factor of 2 to avoid losing precision.
4948                         * Precision loss in the quota/period ratio can cause __cfs_schedulable
4949                         * to fail.
4950                         */
4951                        new = old * 2;
4952                        if (new < max_cfs_quota_period) {
4953                                cfs_b->period = ns_to_ktime(new);
4954                                cfs_b->quota *= 2;
4955
4956                                pr_warn_ratelimited(
4957        "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
4958                                        smp_processor_id(),
4959                                        div_u64(new, NSEC_PER_USEC),
4960                                        div_u64(cfs_b->quota, NSEC_PER_USEC));
4961                        } else {
4962                                pr_warn_ratelimited(
4963        "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
4964                                        smp_processor_id(),
4965                                        div_u64(old, NSEC_PER_USEC),
4966                                        div_u64(cfs_b->quota, NSEC_PER_USEC));
4967                        }
4968
4969                        /* reset count so we don't come right back in here */
4970                        count = 0;
4971                }
4972
4973                idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
4974        }
4975        if (idle)
4976                cfs_b->period_active = 0;
4977        raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4978
4979        return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4980}
4981
4982void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4983{
4984        raw_spin_lock_init(&cfs_b->lock);
4985        cfs_b->runtime = 0;
4986        cfs_b->quota = RUNTIME_INF;
4987        cfs_b->period = ns_to_ktime(default_cfs_period());
4988
4989        INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4990        hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4991        cfs_b->period_timer.function = sched_cfs_period_timer;
4992        hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4993        cfs_b->slack_timer.function = sched_cfs_slack_timer;
4994        cfs_b->distribute_running = 0;
4995        cfs_b->slack_started = false;
4996}
4997
4998static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4999{
5000        cfs_rq->runtime_enabled = 0;
5001        INIT_LIST_HEAD(&cfs_rq->throttled_list);
5002}
5003
5004void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5005{
5006        lockdep_assert_held(&cfs_b->lock);
5007
5008        if (cfs_b->period_active)
5009                return;
5010
5011        cfs_b->period_active = 1;
5012        hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
5013        hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
5014}
5015
5016static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5017{
5018        /* init_cfs_bandwidth() was not called */
5019        if (!cfs_b->throttled_cfs_rq.next)
5020                return;
5021
5022        hrtimer_cancel(&cfs_b->period_timer);
5023        hrtimer_cancel(&cfs_b->slack_timer);
5024}
5025
5026/*
5027 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
5028 *
5029 * The race is harmless, since modifying bandwidth settings of unhooked group
5030 * bits doesn't do much.
5031 */
5032
5033/* cpu online calback */
5034static void __maybe_unused update_runtime_enabled(struct rq *rq)
5035{
5036        struct task_group *tg;
5037
5038        lockdep_assert_held(&rq->lock);
5039
5040        rcu_read_lock();
5041        list_for_each_entry_rcu(tg, &task_groups, list) {
5042                struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5043                struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5044
5045                raw_spin_lock(&cfs_b->lock);
5046                cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5047                raw_spin_unlock(&cfs_b->lock);
5048        }
5049        rcu_read_unlock();
5050}
5051
5052/* cpu offline callback */
5053static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
5054{
5055        struct task_group *tg;
5056
5057        lockdep_assert_held(&rq->lock);
5058
5059        rcu_read_lock();
5060        list_for_each_entry_rcu(tg, &task_groups, list) {
5061                struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5062
5063                if (!cfs_rq->runtime_enabled)
5064                        continue;
5065
5066                /*
5067                 * clock_task is not advancing so we just need to make sure
5068                 * there's some valid quota amount
5069                 */
5070                cfs_rq->runtime_remaining = 1;
5071                /*
5072                 * Offline rq is schedulable till CPU is completely disabled
5073                 * in take_cpu_down(), so we prevent new cfs throttling here.
5074                 */
5075                cfs_rq->runtime_enabled = 0;
5076
5077                if (cfs_rq_throttled(cfs_rq))
5078                        unthrottle_cfs_rq(cfs_rq);
5079        }
5080        rcu_read_unlock();
5081}
5082
5083#else /* CONFIG_CFS_BANDWIDTH */
5084
5085static inline bool cfs_bandwidth_used(void)
5086{
5087        return false;
5088}
5089
5090static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
5091static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
5092static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
5093static inline void sync_throttle(struct task_group *tg, int cpu) {}
5094static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5095
5096static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5097{
5098        return 0;
5099}
5100
5101static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5102{
5103        return 0;
5104}
5105
5106static inline int throttled_lb_pair(struct task_group *tg,
5107                                    int src_cpu, int dest_cpu)
5108{
5109        return 0;
5110}
5111
5112void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5113
5114#ifdef CONFIG_FAIR_GROUP_SCHED
5115static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5116#endif
5117
5118static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5119{
5120        return NULL;
5121}
5122static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5123static inline void update_runtime_enabled(struct rq *rq) {}
5124static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
5125
5126#endif /* CONFIG_CFS_BANDWIDTH */
5127
5128/**************************************************
5129 * CFS operations on tasks:
5130 */
5131
5132#ifdef CONFIG_SCHED_HRTICK
5133static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5134{
5135        struct sched_entity *se = &p->se;
5136        struct cfs_rq *cfs_rq = cfs_rq_of(se);
5137
5138        SCHED_WARN_ON(task_rq(p) != rq);
5139
5140        if (rq->cfs.h_nr_running > 1) {
5141                u64 slice = sched_slice(cfs_rq, se);
5142                u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5143                s64 delta = slice - ran;
5144
5145                if (delta < 0) {
5146                        if (rq->curr == p)
5147                                resched_curr(rq);
5148                        return;
5149                }
5150                hrtick_start(rq, delta);
5151        }
5152}
5153
5154/*
5155 * called from enqueue/dequeue and updates the hrtick when the
5156 * current task is from our class and nr_running is low enough
5157 * to matter.
5158 */
5159static void hrtick_update(struct rq *rq)
5160{
5161        struct task_struct *curr = rq->curr;
5162
5163        if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
5164                return;
5165
5166        if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5167                hrtick_start_fair(rq, curr);
5168}
5169#else /* !CONFIG_SCHED_HRTICK */
5170static inline void
5171hrtick_start_fair(struct rq *rq, struct task_struct *p)
5172{
5173}
5174
5175static inline void hrtick_update(struct rq *rq)
5176{
5177}
5178#endif
5179
5180#ifdef CONFIG_SMP
5181static inline unsigned long cpu_util(int cpu);
5182
5183static inline bool cpu_overutilized(int cpu)
5184{
5185        return !fits_capacity(cpu_util(cpu), capacity_of(cpu));
5186}
5187
5188static inline void update_overutilized_status(struct rq *rq)
5189{
5190        if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
5191                WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
5192                trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
5193        }
5194}
5195#else
5196static inline void update_overutilized_status(struct rq *rq) { }
5197#endif
5198
5199/*
5200 * The enqueue_task method is called before nr_running is
5201 * increased. Here we update the fair scheduling stats and
5202 * then put the task into the rbtree:
5203 */
5204static void
5205enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5206{
5207        struct cfs_rq *cfs_rq;
5208        struct sched_entity *se = &p->se;
5209        int idle_h_nr_running = task_has_idle_policy(p);
5210
5211        /*
5212         * The code below (indirectly) updates schedutil which looks at
5213         * the cfs_rq utilization to select a frequency.
5214         * Let's add the task's estimated utilization to the cfs_rq's
5215         * estimated utilization, before we update schedutil.
5216         */
5217        util_est_enqueue(&rq->cfs, p);
5218
5219        /*
5220         * If in_iowait is set, the code below may not trigger any cpufreq
5221         * utilization updates, so do it here explicitly with the IOWAIT flag
5222         * passed.
5223         */
5224        if (p->in_iowait)
5225                cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5226
5227        for_each_sched_entity(se) {
5228                if (se->on_rq)
5229                        break;
5230                cfs_rq = cfs_rq_of(se);
5231                enqueue_entity(cfs_rq, se, flags);
5232
5233                /*
5234                 * end evaluation on encountering a throttled cfs_rq
5235                 *
5236                 * note: in the case of encountering a throttled cfs_rq we will
5237                 * post the final h_nr_running increment below.
5238                 */
5239                if (cfs_rq_throttled(cfs_rq))
5240                        break;
5241                cfs_rq->h_nr_running++;
5242                cfs_rq->idle_h_nr_running += idle_h_nr_running;
5243
5244                flags = ENQUEUE_WAKEUP;
5245        }
5246
5247        for_each_sched_entity(se) {
5248                cfs_rq = cfs_rq_of(se);
5249                cfs_rq->h_nr_running++;
5250                cfs_rq->idle_h_nr_running += idle_h_nr_running;
5251
5252                if (cfs_rq_throttled(cfs_rq))
5253                        break;
5254
5255                update_load_avg(cfs_rq, se, UPDATE_TG);
5256                update_cfs_group(se);
5257        }
5258
5259        if (!se) {
5260                add_nr_running(rq, 1);
5261                /*
5262                 * Since new tasks are assigned an initial util_avg equal to
5263                 * half of the spare capacity of their CPU, tiny tasks have the
5264                 * ability to cross the overutilized threshold, which will
5265                 * result in the load balancer ruining all the task placement
5266                 * done by EAS. As a way to mitigate that effect, do not account
5267                 * for the first enqueue operation of new tasks during the
5268                 * overutilized flag detection.
5269                 *
5270                 * A better way of solving this problem would be to wait for
5271                 * the PELT signals of tasks to converge before taking them
5272                 * into account, but that is not straightforward to implement,
5273                 * and the following generally works well enough in practice.
5274                 */
5275                if (flags & ENQUEUE_WAKEUP)
5276                        update_overutilized_status(rq);
5277
5278        }
5279
5280        if (cfs_bandwidth_used()) {
5281                /*
5282                 * When bandwidth control is enabled; the cfs_rq_throttled()
5283                 * breaks in the above iteration can result in incomplete
5284                 * leaf list maintenance, resulting in triggering the assertion
5285                 * below.
5286                 */
5287                for_each_sched_entity(se) {
5288                        cfs_rq = cfs_rq_of(se);
5289
5290                        if (list_add_leaf_cfs_rq(cfs_rq))
5291                                break;
5292                }
5293        }
5294
5295        assert_list_leaf_cfs_rq(rq);
5296
5297        hrtick_update(rq);
5298}
5299
5300static void set_next_buddy(struct sched_entity *se);
5301
5302/*
5303 * The dequeue_task method is called before nr_running is
5304 * decreased. We remove the task from the rbtree and
5305 * update the fair scheduling stats:
5306 */
5307static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5308{
5309        struct cfs_rq *cfs_rq;
5310        struct sched_entity *se = &p->se;
5311        int task_sleep = flags & DEQUEUE_SLEEP;
5312        int idle_h_nr_running = task_has_idle_policy(p);
5313
5314        for_each_sched_entity(se) {
5315                cfs_rq = cfs_rq_of(se);
5316                dequeue_entity(cfs_rq, se, flags);
5317
5318                /*
5319                 * end evaluation on encountering a throttled cfs_rq
5320                 *
5321                 * note: in the case of encountering a throttled cfs_rq we will
5322                 * post the final h_nr_running decrement below.
5323                */
5324                if (cfs_rq_throttled(cfs_rq))
5325                        break;
5326                cfs_rq->h_nr_running--;
5327                cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5328
5329                /* Don't dequeue parent if it has other entities besides us */
5330                if (cfs_rq->load.weight) {
5331                        /* Avoid re-evaluating load for this entity: */
5332                        se = parent_entity(se);
5333                        /*
5334                         * Bias pick_next to pick a task from this cfs_rq, as
5335                         * p is sleeping when it is within its sched_slice.
5336                         */
5337                        if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5338                                set_next_buddy(se);
5339                        break;
5340                }
5341                flags |= DEQUEUE_SLEEP;
5342        }
5343
5344        for_each_sched_entity(se) {
5345                cfs_rq = cfs_rq_of(se);
5346                cfs_rq->h_nr_running--;
5347                cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5348
5349                if (cfs_rq_throttled(cfs_rq))
5350                        break;
5351
5352                update_load_avg(cfs_rq, se, UPDATE_TG);
5353                update_cfs_group(se);
5354        }
5355
5356        if (!se)
5357                sub_nr_running(rq, 1);
5358
5359        util_est_dequeue(&rq->cfs, p, task_sleep);
5360        hrtick_update(rq);
5361}
5362
5363#ifdef CONFIG_SMP
5364
5365/* Working cpumask for: load_balance, load_balance_newidle. */
5366DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5367DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5368
5369#ifdef CONFIG_NO_HZ_COMMON
5370
5371static struct {
5372        cpumask_var_t idle_cpus_mask;
5373        atomic_t nr_cpus;
5374        int has_blocked;                /* Idle CPUS has blocked load */
5375        unsigned long next_balance;     /* in jiffy units */
5376        unsigned long next_blocked;     /* Next update of blocked load in jiffies */
5377} nohz ____cacheline_aligned;
5378
5379#endif /* CONFIG_NO_HZ_COMMON */
5380
5381/* CPU only has SCHED_IDLE tasks enqueued */
5382static int sched_idle_cpu(int cpu)
5383{
5384        struct rq *rq = cpu_rq(cpu);
5385
5386        return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
5387                        rq->nr_running);
5388}
5389
5390static unsigned long cpu_load(struct rq *rq)
5391{
5392        return cfs_rq_load_avg(&rq->cfs);
5393}
5394
5395/*
5396 * cpu_load_without - compute CPU load without any contributions from *p
5397 * @cpu: the CPU which load is requested
5398 * @p: the task which load should be discounted
5399 *
5400 * The load of a CPU is defined by the load of tasks currently enqueued on that
5401 * CPU as well as tasks which are currently sleeping after an execution on that
5402 * CPU.
5403 *
5404 * This method returns the load of the specified CPU by discounting the load of
5405 * the specified task, whenever the task is currently contributing to the CPU
5406 * load.
5407 */
5408static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
5409{
5410        struct cfs_rq *cfs_rq;
5411        unsigned int load;
5412
5413        /* Task has no contribution or is new */
5414        if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5415                return cpu_load(rq);
5416
5417        cfs_rq = &rq->cfs;
5418        load = READ_ONCE(cfs_rq->avg.load_avg);
5419
5420        /* Discount task's util from CPU's util */
5421        lsub_positive(&load, task_h_load(p));
5422
5423        return load;
5424}
5425
5426static unsigned long capacity_of(int cpu)
5427{
5428        return cpu_rq(cpu)->cpu_capacity;
5429}
5430
5431static void record_wakee(struct task_struct *p)
5432{
5433        /*
5434         * Only decay a single time; tasks that have less then 1 wakeup per
5435         * jiffy will not have built up many flips.
5436         */
5437        if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5438                current->wakee_flips >>= 1;
5439                current->wakee_flip_decay_ts = jiffies;
5440        }
5441
5442        if (current->last_wakee != p) {
5443                current->last_wakee = p;
5444                current->wakee_flips++;
5445        }
5446}
5447
5448/*
5449 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5450 *
5451 * A waker of many should wake a different task than the one last awakened
5452 * at a frequency roughly N times higher than one of its wakees.
5453 *
5454 * In order to determine whether we should let the load spread vs consolidating
5455 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5456 * partner, and a factor of lls_size higher frequency in the other.
5457 *
5458 * With both conditions met, we can be relatively sure that the relationship is
5459 * non-monogamous, with partner count exceeding socket size.
5460 *
5461 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5462 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5463 * socket size.
5464 */
5465static int wake_wide(struct task_struct *p)
5466{
5467        unsigned int master = current->wakee_flips;
5468        unsigned int slave = p->wakee_flips;
5469        int factor = this_cpu_read(sd_llc_size);
5470
5471        if (master < slave)
5472                swap(master, slave);
5473        if (slave < factor || master < slave * factor)
5474                return 0;
5475        return 1;
5476}
5477
5478/*
5479 * The purpose of wake_affine() is to quickly determine on which CPU we can run
5480 * soonest. For the purpose of speed we only consider the waking and previous
5481 * CPU.
5482 *
5483 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5484 *                      cache-affine and is (or will be) idle.
5485 *
5486 * wake_affine_weight() - considers the weight to reflect the average
5487 *                        scheduling latency of the CPUs. This seems to work
5488 *                        for the overloaded case.
5489 */
5490static int
5491wake_affine_idle(int this_cpu, int prev_cpu, int sync)
5492{
5493        /*
5494         * If this_cpu is idle, it implies the wakeup is from interrupt
5495         * context. Only allow the move if cache is shared. Otherwise an
5496         * interrupt intensive workload could force all tasks onto one
5497         * node depending on the IO topology or IRQ affinity settings.
5498         *
5499         * If the prev_cpu is idle and cache affine then avoid a migration.
5500         * There is no guarantee that the cache hot data from an interrupt
5501         * is more important than cache hot data on the prev_cpu and from
5502         * a cpufreq perspective, it's better to have higher utilisation
5503         * on one CPU.
5504         */
5505        if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5506                return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
5507
5508        if (sync && cpu_rq(this_cpu)->nr_running == 1)
5509                return this_cpu;
5510
5511        return nr_cpumask_bits;
5512}
5513
5514static int
5515wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5516                   int this_cpu, int prev_cpu, int sync)
5517{
5518        s64 this_eff_load, prev_eff_load;
5519        unsigned long task_load;
5520
5521        this_eff_load = cpu_load(cpu_rq(this_cpu));
5522
5523        if (sync) {
5524                unsigned long current_load = task_h_load(current);
5525
5526                if (current_load > this_eff_load)
5527                        return this_cpu;
5528
5529                this_eff_load -= current_load;
5530        }
5531
5532        task_load = task_h_load(p);
5533
5534        this_eff_load += task_load;
5535        if (sched_feat(WA_BIAS))
5536                this_eff_load *= 100;
5537        this_eff_load *= capacity_of(prev_cpu);
5538
5539        prev_eff_load = cpu_load(cpu_rq(prev_cpu));
5540        prev_eff_load -= task_load;
5541        if (sched_feat(WA_BIAS))
5542                prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5543        prev_eff_load *= capacity_of(this_cpu);
5544
5545        /*
5546         * If sync, adjust the weight of prev_eff_load such that if
5547         * prev_eff == this_eff that select_idle_sibling() will consider
5548         * stacking the wakee on top of the waker if no other CPU is
5549         * idle.
5550         */
5551        if (sync)
5552                prev_eff_load += 1;
5553
5554        return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
5555}
5556
5557static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5558                       int this_cpu, int prev_cpu, int sync)
5559{
5560        int target = nr_cpumask_bits;
5561
5562        if (sched_feat(WA_IDLE))
5563                target = wake_affine_idle(this_cpu, prev_cpu, sync);
5564
5565        if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5566                target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
5567
5568        schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5569        if (target == nr_cpumask_bits)
5570                return prev_cpu;
5571
5572        schedstat_inc(sd->ttwu_move_affine);
5573        schedstat_inc(p->se.statistics.nr_wakeups_affine);
5574        return target;
5575}
5576
5577static struct sched_group *
5578find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5579                  int this_cpu, int sd_flag);
5580
5581/*
5582 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
5583 */
5584static int
5585find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5586{
5587        unsigned long load, min_load = ULONG_MAX;
5588        unsigned int min_exit_latency = UINT_MAX;
5589        u64 latest_idle_timestamp = 0;
5590        int least_loaded_cpu = this_cpu;
5591        int shallowest_idle_cpu = -1, si_cpu = -1;
5592        int i;
5593
5594        /* Check if we have any choice: */
5595        if (group->group_weight == 1)
5596                return cpumask_first(sched_group_span(group));
5597
5598        /* Traverse only the allowed CPUs */
5599        for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
5600                if (available_idle_cpu(i)) {
5601                        struct rq *rq = cpu_rq(i);
5602                        struct cpuidle_state *idle = idle_get_state(rq);
5603                        if (idle && idle->exit_latency < min_exit_latency) {
5604                                /*
5605                                 * We give priority to a CPU whose idle state
5606                                 * has the smallest exit latency irrespective
5607                                 * of any idle timestamp.
5608                                 */
5609                                min_exit_latency = idle->exit_latency;
5610                                latest_idle_timestamp = rq->idle_stamp;
5611                                shallowest_idle_cpu = i;
5612                        } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5613                                   rq->idle_stamp > latest_idle_timestamp) {
5614                                /*
5615                                 * If equal or no active idle state, then
5616                                 * the most recently idled CPU might have
5617                                 * a warmer cache.
5618                                 */
5619                                latest_idle_timestamp = rq->idle_stamp;
5620                                shallowest_idle_cpu = i;
5621                        }
5622                } else if (shallowest_idle_cpu == -1 && si_cpu == -1) {
5623                        if (sched_idle_cpu(i)) {
5624                                si_cpu = i;
5625                                continue;
5626                        }
5627
5628                        load = cpu_load(cpu_rq(i));
5629                        if (load < min_load) {
5630                                min_load = load;
5631                                least_loaded_cpu = i;
5632                        }
5633                }
5634        }
5635
5636        if (shallowest_idle_cpu != -1)
5637                return shallowest_idle_cpu;
5638        if (si_cpu != -1)
5639                return si_cpu;
5640        return least_loaded_cpu;
5641}
5642
5643static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
5644                                  int cpu, int prev_cpu, int sd_flag)
5645{
5646        int new_cpu = cpu;
5647
5648        if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
5649                return prev_cpu;
5650
5651        /*
5652         * We need task's util for cpu_util_without, sync it up to
5653         * prev_cpu's last_update_time.
5654         */
5655        if (!(sd_flag & SD_BALANCE_FORK))
5656                sync_entity_load_avg(&p->se);
5657
5658        while (sd) {
5659                struct sched_group *group;
5660                struct sched_domain *tmp;
5661                int weight;
5662
5663                if (!(sd->flags & sd_flag)) {
5664                        sd = sd->child;
5665                        continue;
5666                }
5667
5668                group = find_idlest_group(sd, p, cpu, sd_flag);
5669                if (!group) {
5670                        sd = sd->child;
5671                        continue;
5672                }
5673
5674                new_cpu = find_idlest_group_cpu(group, p, cpu);
5675                if (new_cpu == cpu) {
5676                        /* Now try balancing at a lower domain level of 'cpu': */
5677                        sd = sd->child;
5678                        continue;
5679                }
5680
5681                /* Now try balancing at a lower domain level of 'new_cpu': */
5682                cpu = new_cpu;
5683                weight = sd->span_weight;
5684                sd = NULL;
5685                for_each_domain(cpu, tmp) {
5686                        if (weight <= tmp->span_weight)
5687                                break;
5688                        if (tmp->flags & sd_flag)
5689                                sd = tmp;
5690                }
5691        }
5692
5693        return new_cpu;
5694}
5695
5696#ifdef CONFIG_SCHED_SMT
5697DEFINE_STATIC_KEY_FALSE(sched_smt_present);
5698EXPORT_SYMBOL_GPL(sched_smt_present);
5699
5700static inline void set_idle_cores(int cpu, int val)
5701{
5702        struct sched_domain_shared *sds;
5703
5704        sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5705        if (sds)
5706                WRITE_ONCE(sds->has_idle_cores, val);
5707}
5708
5709static inline bool test_idle_cores(int cpu, bool def)
5710{
5711        struct sched_domain_shared *sds;
5712
5713        sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5714        if (sds)
5715                return READ_ONCE(sds->has_idle_cores);
5716
5717        return def;
5718}
5719
5720/*
5721 * Scans the local SMT mask to see if the entire core is idle, and records this
5722 * information in sd_llc_shared->has_idle_cores.
5723 *
5724 * Since SMT siblings share all cache levels, inspecting this limited remote
5725 * state should be fairly cheap.
5726 */
5727void __update_idle_core(struct rq *rq)
5728{
5729        int core = cpu_of(rq);
5730        int cpu;
5731
5732        rcu_read_lock();
5733        if (test_idle_cores(core, true))
5734                goto unlock;
5735
5736        for_each_cpu(cpu, cpu_smt_mask(core)) {
5737                if (cpu == core)
5738                        continue;
5739
5740                if (!available_idle_cpu(cpu))
5741                        goto unlock;
5742        }
5743
5744        set_idle_cores(core, 1);
5745unlock:
5746        rcu_read_unlock();
5747}
5748
5749/*
5750 * Scan the entire LLC domain for idle cores; this dynamically switches off if
5751 * there are no idle cores left in the system; tracked through
5752 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
5753 */
5754static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5755{
5756        struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
5757        int core, cpu;
5758
5759        if (!static_branch_likely(&sched_smt_present))
5760                return -1;
5761
5762        if (!test_idle_cores(target, false))
5763                return -1;
5764
5765        cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
5766
5767        for_each_cpu_wrap(core, cpus, target) {
5768                bool idle = true;
5769
5770                for_each_cpu(cpu, cpu_smt_mask(core)) {
5771                        __cpumask_clear_cpu(cpu, cpus);
5772                        if (!available_idle_cpu(cpu))
5773                                idle = false;
5774                }
5775
5776                if (idle)
5777                        return core;
5778        }
5779
5780        /*
5781         * Failed to find an idle core; stop looking for one.
5782         */
5783        set_idle_cores(target, 0);
5784
5785        return -1;
5786}
5787
5788/*
5789 * Scan the local SMT mask for idle CPUs.
5790 */
5791static int select_idle_smt(struct task_struct *p, int target)
5792{
5793        int cpu, si_cpu = -1;
5794
5795        if (!static_branch_likely(&sched_smt_present))
5796                return -1;
5797
5798        for_each_cpu(cpu, cpu_smt_mask(target)) {
5799                if (!cpumask_test_cpu(cpu, p->cpus_ptr))
5800                        continue;
5801                if (available_idle_cpu(cpu))
5802                        return cpu;
5803                if (si_cpu == -1 && sched_idle_cpu(cpu))
5804                        si_cpu = cpu;
5805        }
5806
5807        return si_cpu;
5808}
5809
5810#else /* CONFIG_SCHED_SMT */
5811
5812static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5813{
5814        return -1;
5815}
5816
5817static inline int select_idle_smt(struct task_struct *p, int target)
5818{
5819        return -1;
5820}
5821
5822#endif /* CONFIG_SCHED_SMT */
5823
5824/*
5825 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
5826 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
5827 * average idle time for this rq (as found in rq->avg_idle).
5828 */
5829static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
5830{
5831        struct sched_domain *this_sd;
5832        u64 avg_cost, avg_idle;
5833        u64 time, cost;
5834        s64 delta;
5835        int this = smp_processor_id();
5836        int cpu, nr = INT_MAX, si_cpu = -1;
5837
5838        this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
5839        if (!this_sd)
5840                return -1;
5841
5842        /*
5843         * Due to large variance we need a large fuzz factor; hackbench in
5844         * particularly is sensitive here.
5845         */
5846        avg_idle = this_rq()->avg_idle / 512;
5847        avg_cost = this_sd->avg_scan_cost + 1;
5848
5849        if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
5850                return -1;
5851
5852        if (sched_feat(SIS_PROP)) {
5853                u64 span_avg = sd->span_weight * avg_idle;
5854                if (span_avg > 4*avg_cost)
5855                        nr = div_u64(span_avg, avg_cost);
5856                else
5857                        nr = 4;
5858        }
5859
5860        time = cpu_clock(this);
5861
5862        for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
5863                if (!--nr)
5864                        return si_cpu;
5865                if (!cpumask_test_cpu(cpu, p->cpus_ptr))
5866                        continue;
5867                if (available_idle_cpu(cpu))
5868                        break;
5869                if (si_cpu == -1 && sched_idle_cpu(cpu))
5870                        si_cpu = cpu;
5871        }
5872
5873        time = cpu_clock(this) - time;
5874        cost = this_sd->avg_scan_cost;
5875        delta = (s64)(time - cost) / 8;
5876        this_sd->avg_scan_cost += delta;
5877
5878        return cpu;
5879}
5880
5881/*
5882 * Try and locate an idle core/thread in the LLC cache domain.
5883 */
5884static int select_idle_sibling(struct task_struct *p, int prev, int target)
5885{
5886        struct sched_domain *sd;
5887        int i, recent_used_cpu;
5888
5889        if (available_idle_cpu(target) || sched_idle_cpu(target))
5890                return target;
5891
5892        /*
5893         * If the previous CPU is cache affine and idle, don't be stupid:
5894         */
5895        if (prev != target && cpus_share_cache(prev, target) &&
5896            (available_idle_cpu(prev) || sched_idle_cpu(prev)))
5897                return prev;
5898
5899        /* Check a recently used CPU as a potential idle candidate: */
5900        recent_used_cpu = p->recent_used_cpu;
5901        if (recent_used_cpu != prev &&
5902            recent_used_cpu != target &&
5903            cpus_share_cache(recent_used_cpu, target) &&
5904            (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
5905            cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr)) {
5906                /*
5907                 * Replace recent_used_cpu with prev as it is a potential
5908                 * candidate for the next wake:
5909                 */
5910                p->recent_used_cpu = prev;
5911                return recent_used_cpu;
5912        }
5913
5914        sd = rcu_dereference(per_cpu(sd_llc, target));
5915        if (!sd)
5916                return target;
5917
5918        i = select_idle_core(p, sd, target);
5919        if ((unsigned)i < nr_cpumask_bits)
5920                return i;
5921
5922        i = select_idle_cpu(p, sd, target);
5923        if ((unsigned)i < nr_cpumask_bits)
5924                return i;
5925
5926        i = select_idle_smt(p, target);
5927        if ((unsigned)i < nr_cpumask_bits)
5928                return i;
5929
5930        return target;
5931}
5932
5933/**
5934 * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks
5935 * @cpu: the CPU to get the utilization of
5936 *
5937 * The unit of the return value must be the one of capacity so we can compare
5938 * the utilization with the capacity of the CPU that is available for CFS task
5939 * (ie cpu_capacity).
5940 *
5941 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5942 * recent utilization of currently non-runnable tasks on a CPU. It represents
5943 * the amount of utilization of a CPU in the range [0..capacity_orig] where
5944 * capacity_orig is the cpu_capacity available at the highest frequency
5945 * (arch_scale_freq_capacity()).
5946 * The utilization of a CPU converges towards a sum equal to or less than the
5947 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5948 * the running time on this CPU scaled by capacity_curr.
5949 *
5950 * The estimated utilization of a CPU is defined to be the maximum between its
5951 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
5952 * currently RUNNABLE on that CPU.
5953 * This allows to properly represent the expected utilization of a CPU which
5954 * has just got a big task running since a long sleep period. At the same time
5955 * however it preserves the benefits of the "blocked utilization" in
5956 * describing the potential for other tasks waking up on the same CPU.
5957 *
5958 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5959 * higher than capacity_orig because of unfortunate rounding in
5960 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5961 * the average stabilizes with the new running time. We need to check that the
5962 * utilization stays within the range of [0..capacity_orig] and cap it if
5963 * necessary. Without utilization capping, a group could be seen as overloaded
5964 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5965 * available capacity. We allow utilization to overshoot capacity_curr (but not
5966 * capacity_orig) as it useful for predicting the capacity required after task
5967 * migrations (scheduler-driven DVFS).
5968 *
5969 * Return: the (estimated) utilization for the specified CPU
5970 */
5971static inline unsigned long cpu_util(int cpu)
5972{
5973        struct cfs_rq *cfs_rq;
5974        unsigned int util;
5975
5976        cfs_rq = &cpu_rq(cpu)->cfs;
5977        util = READ_ONCE(cfs_rq->avg.util_avg);
5978
5979        if (sched_feat(UTIL_EST))
5980                util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
5981
5982        return min_t(unsigned long, util, capacity_orig_of(cpu));
5983}
5984
5985/*
5986 * cpu_util_without: compute cpu utilization without any contributions from *p
5987 * @cpu: the CPU which utilization is requested
5988 * @p: the task which utilization should be discounted
5989 *
5990 * The utilization of a CPU is defined by the utilization of tasks currently
5991 * enqueued on that CPU as well as tasks which are currently sleeping after an
5992 * execution on that CPU.
5993 *
5994 * This method returns the utilization of the specified CPU by discounting the
5995 * utilization of the specified task, whenever the task is currently
5996 * contributing to the CPU utilization.
5997 */
5998static unsigned long cpu_util_without(int cpu, struct task_struct *p)
5999{
6000        struct cfs_rq *cfs_rq;
6001        unsigned int util;
6002
6003        /* Task has no contribution or is new */
6004        if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6005                return cpu_util(cpu);
6006
6007        cfs_rq = &cpu_rq(cpu)->cfs;
6008        util = READ_ONCE(cfs_rq->avg.util_avg);
6009
6010        /* Discount task's util from CPU's util */
6011        lsub_positive(&util, task_util(p));
6012
6013        /*
6014         * Covered cases:
6015         *
6016         * a) if *p is the only task sleeping on this CPU, then:
6017         *      cpu_util (== task_util) > util_est (== 0)
6018         *    and thus we return:
6019         *      cpu_util_without = (cpu_util - task_util) = 0
6020         *
6021         * b) if other tasks are SLEEPING on this CPU, which is now exiting
6022         *    IDLE, then:
6023         *      cpu_util >= task_util
6024         *      cpu_util > util_est (== 0)
6025         *    and thus we discount *p's blocked utilization to return:
6026         *      cpu_util_without = (cpu_util - task_util) >= 0
6027         *
6028         * c) if other tasks are RUNNABLE on that CPU and
6029         *      util_est > cpu_util
6030         *    then we use util_est since it returns a more restrictive
6031         *    estimation of the spare capacity on that CPU, by just
6032         *    considering the expected utilization of tasks already
6033         *    runnable on that CPU.
6034         *
6035         * Cases a) and b) are covered by the above code, while case c) is
6036         * covered by the following code when estimated utilization is
6037         * enabled.
6038         */
6039        if (sched_feat(UTIL_EST)) {
6040                unsigned int estimated =
6041                        READ_ONCE(cfs_rq->avg.util_est.enqueued);
6042
6043                /*
6044                 * Despite the following checks we still have a small window
6045                 * for a possible race, when an execl's select_task_rq_fair()
6046                 * races with LB's detach_task():
6047                 *
6048                 *   detach_task()
6049                 *     p->on_rq = TASK_ON_RQ_MIGRATING;
6050                 *     ---------------------------------- A
6051                 *     deactivate_task()                   \
6052                 *       dequeue_task()                     + RaceTime
6053                 *         util_est_dequeue()              /
6054                 *     ---------------------------------- B
6055                 *
6056                 * The additional check on "current == p" it's required to
6057                 * properly fix the execl regression and it helps in further
6058                 * reducing the chances for the above race.
6059                 */
6060                if (unlikely(task_on_rq_queued(p) || current == p))
6061                        lsub_positive(&estimated, _task_util_est(p));
6062
6063                util = max(util, estimated);
6064        }
6065
6066        /*
6067         * Utilization (estimated) can exceed the CPU capacity, thus let's
6068         * clamp to the maximum CPU capacity to ensure consistency with
6069         * the cpu_util call.
6070         */
6071        return min_t(unsigned long, util, capacity_orig_of(cpu));
6072}
6073
6074/*
6075 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
6076 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
6077 *
6078 * In that case WAKE_AFFINE doesn't make sense and we'll let
6079 * BALANCE_WAKE sort things out.
6080 */
6081static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
6082{
6083        long min_cap, max_cap;
6084
6085        if (!static_branch_unlikely(&sched_asym_cpucapacity))
6086                return 0;
6087
6088        min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
6089        max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
6090
6091        /* Minimum capacity is close to max, no need to abort wake_affine */
6092        if (max_cap - min_cap < max_cap >> 3)
6093                return 0;
6094
6095        /* Bring task utilization in sync with prev_cpu */
6096        sync_entity_load_avg(&p->se);
6097
6098        return !task_fits_capacity(p, min_cap);
6099}
6100
6101/*
6102 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6103 * to @dst_cpu.
6104 */
6105static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6106{
6107        struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6108        unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
6109
6110        /*
6111         * If @p migrates from @cpu to another, remove its contribution. Or,
6112         * if @p migrates from another CPU to @cpu, add its contribution. In
6113         * the other cases, @cpu is not impacted by the migration, so the
6114         * util_avg should already be correct.
6115         */
6116        if (task_cpu(p) == cpu && dst_cpu != cpu)
6117                sub_positive(&util, task_util(p));
6118        else if (task_cpu(p) != cpu && dst_cpu == cpu)
6119                util += task_util(p);
6120
6121        if (sched_feat(UTIL_EST)) {
6122                util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6123
6124                /*
6125                 * During wake-up, the task isn't enqueued yet and doesn't
6126                 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6127                 * so just add it (if needed) to "simulate" what will be
6128                 * cpu_util() after the task has been enqueued.
6129                 */
6130                if (dst_cpu == cpu)
6131                        util_est += _task_util_est(p);
6132
6133                util = max(util, util_est);
6134        }
6135
6136        return min(util, capacity_orig_of(cpu));
6137}
6138
6139/*
6140 * compute_energy(): Estimates the energy that @pd would consume if @p was
6141 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
6142 * landscape of @pd's CPUs after the task migration, and uses the Energy Model
6143 * to compute what would be the energy if we decided to actually migrate that
6144 * task.
6145 */
6146static long
6147compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
6148{
6149        struct cpumask *pd_mask = perf_domain_span(pd);
6150        unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask));
6151        unsigned long max_util = 0, sum_util = 0;
6152        int cpu;
6153
6154        /*
6155         * The capacity state of CPUs of the current rd can be driven by CPUs
6156         * of another rd if they belong to the same pd. So, account for the
6157         * utilization of these CPUs too by masking pd with cpu_online_mask
6158         * instead of the rd span.
6159         *
6160         * If an entire pd is outside of the current rd, it will not appear in
6161         * its pd list and will not be accounted by compute_energy().
6162         */
6163        for_each_cpu_and(cpu, pd_mask, cpu_online_mask) {
6164                unsigned long cpu_util, util_cfs = cpu_util_next(cpu, p, dst_cpu);
6165                struct task_struct *tsk = cpu == dst_cpu ? p : NULL;
6166
6167                /*
6168                 * Busy time computation: utilization clamping is not
6169                 * required since the ratio (sum_util / cpu_capacity)
6170                 * is already enough to scale the EM reported power
6171                 * consumption at the (eventually clamped) cpu_capacity.
6172                 */
6173                sum_util += schedutil_cpu_util(cpu, util_cfs, cpu_cap,
6174                                               ENERGY_UTIL, NULL);
6175
6176                /*
6177                 * Performance domain frequency: utilization clamping
6178                 * must be considered since it affects the selection
6179                 * of the performance domain frequency.
6180                 * NOTE: in case RT tasks are running, by default the
6181                 * FREQUENCY_UTIL's utilization can be max OPP.
6182                 */
6183                cpu_util = schedutil_cpu_util(cpu, util_cfs, cpu_cap,
6184                                              FREQUENCY_UTIL, tsk);
6185                max_util = max(max_util, cpu_util);
6186        }
6187
6188        return em_pd_energy(pd->em_pd, max_util, sum_util);
6189}
6190
6191/*
6192 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6193 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6194 * spare capacity in each performance domain and uses it as a potential
6195 * candidate to execute the task. Then, it uses the Energy Model to figure
6196 * out which of the CPU candidates is the most energy-efficient.
6197 *
6198 * The rationale for this heuristic is as follows. In a performance domain,
6199 * all the most energy efficient CPU candidates (according to the Energy
6200 * Model) are those for which we'll request a low frequency. When there are
6201 * several CPUs for which the frequency request will be the same, we don't
6202 * have enough data to break the tie between them, because the Energy Model
6203 * only includes active power costs. With this model, if we assume that
6204 * frequency requests follow utilization (e.g. using schedutil), the CPU with
6205 * the maximum spare capacity in a performance domain is guaranteed to be among
6206 * the best candidates of the performance domain.
6207 *
6208 * In practice, it could be preferable from an energy standpoint to pack
6209 * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6210 * but that could also hurt our chances to go cluster idle, and we have no
6211 * ways to tell with the current Energy Model if this is actually a good
6212 * idea or not. So, find_energy_efficient_cpu() basically favors
6213 * cluster-packing, and spreading inside a cluster. That should at least be
6214 * a good thing for latency, and this is consistent with the idea that most
6215 * of the energy savings of EAS come from the asymmetry of the system, and
6216 * not so much from breaking the tie between identical CPUs. That's also the
6217 * reason why EAS is enabled in the topology code only for systems where
6218 * SD_ASYM_CPUCAPACITY is set.
6219 *
6220 * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6221 * they don't have any useful utilization data yet and it's not possible to
6222 * forecast their impact on energy consumption. Consequently, they will be
6223 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6224 * to be energy-inefficient in some use-cases. The alternative would be to
6225 * bias new tasks towards specific types of CPUs first, or to try to infer
6226 * their util_avg from the parent task, but those heuristics could hurt
6227 * other use-cases too. So, until someone finds a better way to solve this,
6228 * let's keep things simple by re-using the existing slow path.
6229 */
6230static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
6231{
6232        unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
6233        struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
6234        unsigned long cpu_cap, util, base_energy = 0;
6235        int cpu, best_energy_cpu = prev_cpu;
6236        struct sched_domain *sd;
6237        struct perf_domain *pd;
6238
6239        rcu_read_lock();
6240        pd = rcu_dereference(rd->pd);
6241        if (!pd || READ_ONCE(rd->overutilized))
6242                goto fail;
6243
6244        /*
6245         * Energy-aware wake-up happens on the lowest sched_domain starting
6246         * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6247         */
6248        sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
6249        while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
6250                sd = sd->parent;
6251        if (!sd)
6252                goto fail;
6253
6254        sync_entity_load_avg(&p->se);
6255        if (!task_util_est(p))
6256                goto unlock;
6257
6258        for (; pd; pd = pd->next) {
6259                unsigned long cur_delta, spare_cap, max_spare_cap = 0;
6260                unsigned long base_energy_pd;
6261                int max_spare_cap_cpu = -1;
6262
6263                /* Compute the 'base' energy of the pd, without @p */
6264                base_energy_pd = compute_energy(p, -1, pd);
6265                base_energy += base_energy_pd;
6266
6267                for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
6268                        if (!cpumask_test_cpu(cpu, p->cpus_ptr))
6269                                continue;
6270
6271                        /* Skip CPUs that will be overutilized. */
6272                        util = cpu_util_next(cpu, p, cpu);
6273                        cpu_cap = capacity_of(cpu);
6274                        if (!fits_capacity(util, cpu_cap))
6275                                continue;
6276
6277                        /* Always use prev_cpu as a candidate. */
6278                        if (cpu == prev_cpu) {
6279                                prev_delta = compute_energy(p, prev_cpu, pd);
6280                                prev_delta -= base_energy_pd;
6281                                best_delta = min(best_delta, prev_delta);
6282                        }
6283
6284                        /*
6285                         * Find the CPU with the maximum spare capacity in
6286                         * the performance domain
6287                         */
6288                        spare_cap = cpu_cap - util;
6289                        if (spare_cap > max_spare_cap) {
6290                                max_spare_cap = spare_cap;
6291                                max_spare_cap_cpu = cpu;
6292                        }
6293                }
6294
6295                /* Evaluate the energy impact of using this CPU. */
6296                if (max_spare_cap_cpu >= 0 && max_spare_cap_cpu != prev_cpu) {
6297                        cur_delta = compute_energy(p, max_spare_cap_cpu, pd);
6298                        cur_delta -= base_energy_pd;
6299                        if (cur_delta < best_delta) {
6300                                best_delta = cur_delta;
6301                                best_energy_cpu = max_spare_cap_cpu;
6302                        }
6303                }
6304        }
6305unlock:
6306        rcu_read_unlock();
6307
6308        /*
6309         * Pick the best CPU if prev_cpu cannot be used, or if it saves at
6310         * least 6% of the energy used by prev_cpu.
6311         */
6312        if (prev_delta == ULONG_MAX)
6313                return best_energy_cpu;
6314
6315        if ((prev_delta - best_delta) > ((prev_delta + base_energy) >> 4))
6316                return best_energy_cpu;
6317
6318        return prev_cpu;
6319
6320fail:
6321        rcu_read_unlock();
6322
6323        return -1;
6324}
6325
6326/*
6327 * select_task_rq_fair: Select target runqueue for the waking task in domains
6328 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
6329 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6330 *
6331 * Balances load by selecting the idlest CPU in the idlest group, or under
6332 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
6333 *
6334 * Returns the target CPU number.
6335 *
6336 * preempt must be disabled.
6337 */
6338static int
6339select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
6340{
6341        struct sched_domain *tmp, *sd = NULL;
6342        int cpu = smp_processor_id();
6343        int new_cpu = prev_cpu;
6344        int want_affine = 0;
6345        int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
6346
6347        if (sd_flag & SD_BALANCE_WAKE) {
6348                record_wakee(p);
6349
6350                if (sched_energy_enabled()) {
6351                        new_cpu = find_energy_efficient_cpu(p, prev_cpu);
6352                        if (new_cpu >= 0)
6353                                return new_cpu;
6354                        new_cpu = prev_cpu;
6355                }
6356
6357                want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu) &&
6358                              cpumask_test_cpu(cpu, p->cpus_ptr);
6359        }
6360
6361        rcu_read_lock();
6362        for_each_domain(cpu, tmp) {
6363                if (!(tmp->flags & SD_LOAD_BALANCE))
6364                        break;
6365
6366                /*
6367                 * If both 'cpu' and 'prev_cpu' are part of this domain,
6368                 * cpu is a valid SD_WAKE_AFFINE target.
6369                 */
6370                if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6371                    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6372                        if (cpu != prev_cpu)
6373                                new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6374
6375                        sd = NULL; /* Prefer wake_affine over balance flags */
6376                        break;
6377                }
6378
6379                if (tmp->flags & sd_flag)
6380                        sd = tmp;
6381                else if (!want_affine)
6382                        break;
6383        }
6384
6385        if (unlikely(sd)) {
6386                /* Slow path */
6387                new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
6388        } else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */
6389                /* Fast path */
6390
6391                new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6392
6393                if (want_affine)
6394                        current->recent_used_cpu = cpu;
6395        }
6396        rcu_read_unlock();
6397
6398        return new_cpu;
6399}
6400
6401static void detach_entity_cfs_rq(struct sched_entity *se);
6402
6403/*
6404 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
6405 * cfs_rq_of(p) references at time of call are still valid and identify the
6406 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6407 */
6408static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
6409{
6410        /*
6411         * As blocked tasks retain absolute vruntime the migration needs to
6412         * deal with this by subtracting the old and adding the new
6413         * min_vruntime -- the latter is done by enqueue_entity() when placing
6414         * the task on the new runqueue.
6415         */
6416        if (p->state == TASK_WAKING) {
6417                struct sched_entity *se = &p->se;
6418                struct cfs_rq *cfs_rq = cfs_rq_of(se);
6419                u64 min_vruntime;
6420
6421#ifndef CONFIG_64BIT
6422                u64 min_vruntime_copy;
6423
6424                do {
6425                        min_vruntime_copy = cfs_rq->min_vruntime_copy;
6426                        smp_rmb();
6427                        min_vruntime = cfs_rq->min_vruntime;
6428                } while (min_vruntime != min_vruntime_copy);
6429#else
6430                min_vruntime = cfs_rq->min_vruntime;
6431#endif
6432
6433                se->vruntime -= min_vruntime;
6434        }
6435
6436        if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6437                /*
6438                 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6439                 * rq->lock and can modify state directly.
6440                 */
6441                lockdep_assert_held(&task_rq(p)->lock);
6442                detach_entity_cfs_rq(&p->se);
6443
6444        } else {
6445                /*
6446                 * We are supposed to update the task to "current" time, then
6447                 * its up to date and ready to go to new CPU/cfs_rq. But we
6448                 * have difficulty in getting what current time is, so simply
6449                 * throw away the out-of-date time. This will result in the
6450                 * wakee task is less decayed, but giving the wakee more load
6451                 * sounds not bad.
6452                 */
6453                remove_entity_load_avg(&p->se);
6454        }
6455
6456        /* Tell new CPU we are migrated */
6457        p->se.avg.last_update_time = 0;
6458
6459        /* We have migrated, no longer consider this task hot */
6460        p->se.exec_start = 0;
6461
6462        update_scan_period(p, new_cpu);
6463}
6464
6465static void task_dead_fair(struct task_struct *p)
6466{
6467        remove_entity_load_avg(&p->se);
6468}
6469
6470static int
6471balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6472{
6473        if (rq->nr_running)
6474                return 1;
6475
6476        return newidle_balance(rq, rf) != 0;
6477}
6478#endif /* CONFIG_SMP */
6479
6480static unsigned long wakeup_gran(struct sched_entity *se)
6481{
6482        unsigned long gran = sysctl_sched_wakeup_granularity;
6483
6484        /*
6485         * Since its curr running now, convert the gran from real-time
6486         * to virtual-time in his units.
6487         *
6488         * By using 'se' instead of 'curr' we penalize light tasks, so
6489         * they get preempted easier. That is, if 'se' < 'curr' then
6490         * the resulting gran will be larger, therefore penalizing the
6491         * lighter, if otoh 'se' > 'curr' then the resulting gran will
6492         * be smaller, again penalizing the lighter task.
6493         *
6494         * This is especially important for buddies when the leftmost
6495         * task is higher priority than the buddy.
6496         */
6497        return calc_delta_fair(gran, se);
6498}
6499
6500/*
6501 * Should 'se' preempt 'curr'.
6502 *
6503 *             |s1
6504 *        |s2
6505 *   |s3
6506 *         g
6507 *      |<--->|c
6508 *
6509 *  w(c, s1) = -1
6510 *  w(c, s2) =  0
6511 *  w(c, s3) =  1
6512 *
6513 */
6514static int
6515wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6516{
6517        s64 gran, vdiff = curr->vruntime - se->vruntime;
6518
6519        if (vdiff <= 0)
6520                return -1;
6521
6522        gran = wakeup_gran(se);
6523        if (vdiff > gran)
6524                return 1;
6525
6526        return 0;
6527}
6528
6529static void set_last_buddy(struct sched_entity *se)
6530{
6531        if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
6532                return;
6533
6534        for_each_sched_entity(se) {
6535                if (SCHED_WARN_ON(!se->on_rq))
6536                        return;
6537                cfs_rq_of(se)->last = se;
6538        }
6539}
6540
6541static void set_next_buddy(struct sched_entity *se)
6542{
6543        if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
6544                return;
6545
6546        for_each_sched_entity(se) {
6547                if (SCHED_WARN_ON(!se->on_rq))
6548                        return;
6549                cfs_rq_of(se)->next = se;
6550        }
6551}
6552
6553static void set_skip_buddy(struct sched_entity *se)
6554{
6555        for_each_sched_entity(se)
6556                cfs_rq_of(se)->skip = se;
6557}
6558
6559/*
6560 * Preempt the current task with a newly woken task if needed:
6561 */
6562static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
6563{
6564        struct task_struct *curr = rq->curr;
6565        struct sched_entity *se = &curr->se, *pse = &p->se;
6566        struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6567        int scale = cfs_rq->nr_running >= sched_nr_latency;
6568        int next_buddy_marked = 0;
6569
6570        if (unlikely(se == pse))
6571                return;
6572
6573        /*
6574         * This is possible from callers such as attach_tasks(), in which we
6575         * unconditionally check_prempt_curr() after an enqueue (which may have
6576         * lead to a throttle).  This both saves work and prevents false
6577         * next-buddy nomination below.
6578         */
6579        if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6580                return;
6581
6582        if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
6583                set_next_buddy(pse);
6584                next_buddy_marked = 1;
6585        }
6586
6587        /*
6588         * We can come here with TIF_NEED_RESCHED already set from new task
6589         * wake up path.
6590         *
6591         * Note: this also catches the edge-case of curr being in a throttled
6592         * group (e.g. via set_curr_task), since update_curr() (in the
6593         * enqueue of curr) will have resulted in resched being set.  This
6594         * prevents us from potentially nominating it as a false LAST_BUDDY
6595         * below.
6596         */
6597        if (test_tsk_need_resched(curr))
6598                return;
6599
6600        /* Idle tasks are by definition preempted by non-idle tasks. */
6601        if (unlikely(task_has_idle_policy(curr)) &&
6602            likely(!task_has_idle_policy(p)))
6603                goto preempt;
6604
6605        /*
6606         * Batch and idle tasks do not preempt non-idle tasks (their preemption
6607         * is driven by the tick):
6608         */
6609        if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
6610                return;
6611
6612        find_matching_se(&se, &pse);
6613        update_curr(cfs_rq_of(se));
6614        BUG_ON(!pse);
6615        if (wakeup_preempt_entity(se, pse) == 1) {
6616                /*
6617                 * Bias pick_next to pick the sched entity that is
6618                 * triggering this preemption.
6619                 */
6620                if (!next_buddy_marked)
6621                        set_next_buddy(pse);
6622                goto preempt;
6623        }
6624
6625        return;
6626
6627preempt:
6628        resched_curr(rq);
6629        /*
6630         * Only set the backward buddy when the current task is still
6631         * on the rq. This can happen when a wakeup gets interleaved
6632         * with schedule on the ->pre_schedule() or idle_balance()
6633         * point, either of which can * drop the rq lock.
6634         *
6635         * Also, during early boot the idle thread is in the fair class,
6636         * for obvious reasons its a bad idea to schedule back to it.
6637         */
6638        if (unlikely(!se->on_rq || curr == rq->idle))
6639                return;
6640
6641        if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6642                set_last_buddy(se);
6643}
6644
6645struct task_struct *
6646pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6647{
6648        struct cfs_rq *cfs_rq = &rq->cfs;
6649        struct sched_entity *se;
6650        struct task_struct *p;
6651        int new_tasks;
6652
6653again:
6654        if (!sched_fair_runnable(rq))
6655                goto idle;
6656
6657#ifdef CONFIG_FAIR_GROUP_SCHED
6658        if (!prev || prev->sched_class != &fair_sched_class)
6659                goto simple;
6660
6661        /*
6662         * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6663         * likely that a next task is from the same cgroup as the current.
6664         *
6665         * Therefore attempt to avoid putting and setting the entire cgroup
6666         * hierarchy, only change the part that actually changes.
6667         */
6668
6669        do {
6670                struct sched_entity *curr = cfs_rq->curr;
6671
6672                /*
6673                 * Since we got here without doing put_prev_entity() we also
6674                 * have to consider cfs_rq->curr. If it is still a runnable
6675                 * entity, update_curr() will update its vruntime, otherwise
6676                 * forget we've ever seen it.
6677                 */
6678                if (curr) {
6679                        if (curr->on_rq)
6680                                update_curr(cfs_rq);
6681                        else
6682                                curr = NULL;
6683
6684                        /*
6685                         * This call to check_cfs_rq_runtime() will do the
6686                         * throttle and dequeue its entity in the parent(s).
6687                         * Therefore the nr_running test will indeed
6688                         * be correct.
6689                         */
6690                        if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
6691                                cfs_rq = &rq->cfs;
6692
6693                                if (!cfs_rq->nr_running)
6694                                        goto idle;
6695
6696                                goto simple;
6697                        }
6698                }
6699
6700                se = pick_next_entity(cfs_rq, curr);
6701                cfs_rq = group_cfs_rq(se);
6702        } while (cfs_rq);
6703
6704        p = task_of(se);
6705
6706        /*
6707         * Since we haven't yet done put_prev_entity and if the selected task
6708         * is a different task than we started out with, try and touch the
6709         * least amount of cfs_rqs.
6710         */
6711        if (prev != p) {
6712                struct sched_entity *pse = &prev->se;
6713
6714                while (!(cfs_rq = is_same_group(se, pse))) {
6715                        int se_depth = se->depth;
6716                        int pse_depth = pse->depth;
6717
6718                        if (se_depth <= pse_depth) {
6719                                put_prev_entity(cfs_rq_of(pse), pse);
6720                                pse = parent_entity(pse);
6721                        }
6722                        if (se_depth >= pse_depth) {
6723                                set_next_entity(cfs_rq_of(se), se);
6724                                se = parent_entity(se);
6725                        }
6726                }
6727
6728                put_prev_entity(cfs_rq, pse);
6729                set_next_entity(cfs_rq, se);
6730        }
6731
6732        goto done;
6733simple:
6734#endif
6735        if (prev)
6736                put_prev_task(rq, prev);
6737
6738        do {
6739                se = pick_next_entity(cfs_rq, NULL);
6740                set_next_entity(cfs_rq, se);
6741                cfs_rq = group_cfs_rq(se);
6742        } while (cfs_rq);
6743
6744        p = task_of(se);
6745
6746done: __maybe_unused;
6747#ifdef CONFIG_SMP
6748        /*
6749         * Move the next running task to the front of
6750         * the list, so our cfs_tasks list becomes MRU
6751         * one.
6752         */
6753        list_move(&p->se.group_node, &rq->cfs_tasks);
6754#endif
6755
6756        if (hrtick_enabled(rq))
6757                hrtick_start_fair(rq, p);
6758
6759        update_misfit_status(p, rq);
6760
6761        return p;
6762
6763idle:
6764        if (!rf)
6765                return NULL;
6766
6767        new_tasks = newidle_balance(rq, rf);
6768
6769        /*
6770         * Because newidle_balance() releases (and re-acquires) rq->lock, it is
6771         * possible for any higher priority task to appear. In that case we
6772         * must re-start the pick_next_entity() loop.
6773         */
6774        if (new_tasks < 0)
6775                return RETRY_TASK;
6776
6777        if (new_tasks > 0)
6778                goto again;
6779
6780        /*
6781         * rq is about to be idle, check if we need to update the
6782         * lost_idle_time of clock_pelt
6783         */
6784        update_idle_rq_clock_pelt(rq);
6785
6786        return NULL;
6787}
6788
6789static struct task_struct *__pick_next_task_fair(struct rq *rq)
6790{
6791        return pick_next_task_fair(rq, NULL, NULL);
6792}
6793
6794/*
6795 * Account for a descheduled task:
6796 */
6797static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
6798{
6799        struct sched_entity *se = &prev->se;
6800        struct cfs_rq *cfs_rq;
6801
6802        for_each_sched_entity(se) {
6803                cfs_rq = cfs_rq_of(se);
6804                put_prev_entity(cfs_rq, se);
6805        }
6806}
6807
6808/*
6809 * sched_yield() is very simple
6810 *
6811 * The magic of dealing with the ->skip buddy is in pick_next_entity.
6812 */
6813static void yield_task_fair(struct rq *rq)
6814{
6815        struct task_struct *curr = rq->curr;
6816        struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6817        struct sched_entity *se = &curr->se;
6818
6819        /*
6820         * Are we the only task in the tree?
6821         */
6822        if (unlikely(rq->nr_running == 1))
6823                return;
6824
6825        clear_buddies(cfs_rq, se);
6826
6827        if (curr->policy != SCHED_BATCH) {
6828                update_rq_clock(rq);
6829                /*
6830                 * Update run-time statistics of the 'current'.
6831                 */
6832                update_curr(cfs_rq);
6833                /*
6834                 * Tell update_rq_clock() that we've just updated,
6835                 * so we don't do microscopic update in schedule()
6836                 * and double the fastpath cost.
6837                 */
6838                rq_clock_skip_update(rq);
6839        }
6840
6841        set_skip_buddy(se);
6842}
6843
6844static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
6845{
6846        struct sched_entity *se = &p->se;
6847
6848        /* throttled hierarchies are not runnable */
6849        if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
6850                return false;
6851
6852        /* Tell the scheduler that we'd really like pse to run next. */
6853        set_next_buddy(se);
6854
6855        yield_task_fair(rq);
6856
6857        return true;
6858}
6859
6860#ifdef CONFIG_SMP
6861/**************************************************
6862 * Fair scheduling class load-balancing methods.
6863 *
6864 * BASICS
6865 *
6866 * The purpose of load-balancing is to achieve the same basic fairness the
6867 * per-CPU scheduler provides, namely provide a proportional amount of compute
6868 * time to each task. This is expressed in the following equation:
6869 *
6870 *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
6871 *
6872 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
6873 * W_i,0 is defined as:
6874 *
6875 *   W_i,0 = \Sum_j w_i,j                                             (2)
6876 *
6877 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
6878 * is derived from the nice value as per sched_prio_to_weight[].
6879 *
6880 * The weight average is an exponential decay average of the instantaneous
6881 * weight:
6882 *
6883 *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
6884 *
6885 * C_i is the compute capacity of CPU i, typically it is the
6886 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
6887 * can also include other factors [XXX].
6888 *
6889 * To achieve this balance we define a measure of imbalance which follows
6890 * directly from (1):
6891 *
6892 *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
6893 *
6894 * We them move tasks around to minimize the imbalance. In the continuous
6895 * function space it is obvious this converges, in the discrete case we get
6896 * a few fun cases generally called infeasible weight scenarios.
6897 *
6898 * [XXX expand on:
6899 *     - infeasible weights;
6900 *     - local vs global optima in the discrete case. ]
6901 *
6902 *
6903 * SCHED DOMAINS
6904 *
6905 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
6906 * for all i,j solution, we create a tree of CPUs that follows the hardware
6907 * topology where each level pairs two lower groups (or better). This results
6908 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
6909 * tree to only the first of the previous level and we decrease the frequency
6910 * of load-balance at each level inv. proportional to the number of CPUs in
6911 * the groups.
6912 *
6913 * This yields:
6914 *
6915 *     log_2 n     1     n
6916 *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
6917 *     i = 0      2^i   2^i
6918 *                               `- size of each group
6919 *         |         |     `- number of CPUs doing load-balance
6920 *         |         `- freq
6921 *         `- sum over all levels
6922 *
6923 * Coupled with a limit on how many tasks we can migrate every balance pass,
6924 * this makes (5) the runtime complexity of the balancer.
6925 *
6926 * An important property here is that each CPU is still (indirectly) connected
6927 * to every other CPU in at most O(log n) steps:
6928 *
6929 * The adjacency matrix of the resulting graph is given by:
6930 *
6931 *             log_2 n
6932 *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
6933 *             k = 0
6934 *
6935 * And you'll find that:
6936 *
6937 *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
6938 *
6939 * Showing there's indeed a path between every CPU in at most O(log n) steps.
6940 * The task movement gives a factor of O(m), giving a convergence complexity
6941 * of:
6942 *
6943 *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
6944 *
6945 *
6946 * WORK CONSERVING
6947 *
6948 * In order to avoid CPUs going idle while there's still work to do, new idle
6949 * balancing is more aggressive and has the newly idle CPU iterate up the domain
6950 * tree itself instead of relying on other CPUs to bring it work.
6951 *
6952 * This adds some complexity to both (5) and (8) but it reduces the total idle
6953 * time.
6954 *
6955 * [XXX more?]
6956 *
6957 *
6958 * CGROUPS
6959 *
6960 * Cgroups make a horror show out of (2), instead of a simple sum we get:
6961 *
6962 *                                s_k,i
6963 *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
6964 *                                 S_k
6965 *
6966 * Where
6967 *
6968 *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
6969 *
6970 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
6971 *
6972 * The big problem is S_k, its a global sum needed to compute a local (W_i)
6973 * property.
6974 *
6975 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
6976 *      rewrite all of this once again.]
6977 */
6978
6979static unsigned long __read_mostly max_load_balance_interval = HZ/10;
6980
6981enum fbq_type { regular, remote, all };
6982
6983/*
6984 * 'group_type' describes the group of CPUs at the moment of load balancing.
6985 *
6986 * The enum is ordered by pulling priority, with the group with lowest priority
6987 * first so the group_type can simply be compared when selecting the busiest
6988 * group. See update_sd_pick_busiest().
6989 */
6990enum group_type {
6991        /* The group has spare capacity that can be used to run more tasks.  */
6992        group_has_spare = 0,
6993        /*
6994         * The group is fully used and the tasks don't compete for more CPU
6995         * cycles. Nevertheless, some tasks might wait before running.
6996         */
6997        group_fully_busy,
6998        /*
6999         * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity
7000         * and must be migrated to a more powerful CPU.
7001         */
7002        group_misfit_task,
7003        /*
7004         * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
7005         * and the task should be migrated to it instead of running on the
7006         * current CPU.
7007         */
7008        group_asym_packing,
7009        /*
7010         * The tasks' affinity constraints previously prevented the scheduler
7011         * from balancing the load across the system.
7012         */
7013        group_imbalanced,
7014        /*
7015         * The CPU is overloaded and can't provide expected CPU cycles to all
7016         * tasks.
7017         */
7018        group_overloaded
7019};
7020
7021enum migration_type {
7022        migrate_load = 0,
7023        migrate_util,
7024        migrate_task,
7025        migrate_misfit
7026};
7027
7028#define LBF_ALL_PINNED  0x01
7029#define LBF_NEED_BREAK  0x02
7030#define LBF_DST_PINNED  0x04
7031#define LBF_SOME_PINNED 0x08
7032#define LBF_NOHZ_STATS  0x10
7033#define LBF_NOHZ_AGAIN  0x20
7034
7035struct lb_env {
7036        struct sched_domain     *sd;
7037
7038        struct rq               *src_rq;
7039        int                     src_cpu;
7040
7041        int                     dst_cpu;
7042        struct rq               *dst_rq;
7043
7044        struct cpumask          *dst_grpmask;
7045        int                     new_dst_cpu;
7046        enum cpu_idle_type      idle;
7047        long                    imbalance;
7048        /* The set of CPUs under consideration for load-balancing */
7049        struct cpumask          *cpus;
7050
7051        unsigned int            flags;
7052
7053        unsigned int            loop;
7054        unsigned int            loop_break;
7055        unsigned int            loop_max;
7056
7057        enum fbq_type           fbq_type;
7058        enum migration_type     migration_type;
7059        struct list_head        tasks;
7060};
7061
7062/*
7063 * Is this task likely cache-hot:
7064 */
7065static int task_hot(struct task_struct *p, struct lb_env *env)
7066{
7067        s64 delta;
7068
7069        lockdep_assert_held(&env->src_rq->lock);
7070
7071        if (p->sched_class != &fair_sched_class)
7072                return 0;
7073
7074        if (unlikely(task_has_idle_policy(p)))
7075                return 0;
7076
7077        /*
7078         * Buddy candidates are cache hot:
7079         */
7080        if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
7081                        (&p->se == cfs_rq_of(&p->se)->next ||
7082                         &p->se == cfs_rq_of(&p->se)->last))
7083                return 1;
7084
7085        if (sysctl_sched_migration_cost == -1)
7086                return 1;
7087        if (sysctl_sched_migration_cost == 0)
7088                return 0;
7089
7090        delta = rq_clock_task(env->src_rq) - p->se.exec_start;
7091
7092        return delta < (s64)sysctl_sched_migration_cost;
7093}
7094
7095#ifdef CONFIG_NUMA_BALANCING
7096/*
7097 * Returns 1, if task migration degrades locality
7098 * Returns 0, if task migration improves locality i.e migration preferred.
7099 * Returns -1, if task migration is not affected by locality.
7100 */
7101static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
7102{
7103        struct numa_group *numa_group = rcu_dereference(p->numa_group);
7104        unsigned long src_weight, dst_weight;
7105        int src_nid, dst_nid, dist;
7106
7107        if (!static_branch_likely(&sched_numa_balancing))
7108                return -1;
7109
7110        if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7111                return -1;
7112
7113        src_nid = cpu_to_node(env->src_cpu);
7114        dst_nid = cpu_to_node(env->dst_cpu);
7115
7116        if (src_nid == dst_nid)
7117                return -1;
7118
7119        /* Migrating away from the preferred node is always bad. */
7120        if (src_nid == p->numa_preferred_nid) {
7121                if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7122                        return 1;
7123                else
7124                        return -1;
7125        }
7126
7127        /* Encourage migration to the preferred node. */
7128        if (dst_nid == p->numa_preferred_nid)
7129                return 0;
7130
7131        /* Leaving a core idle is often worse than degrading locality. */
7132        if (env->idle == CPU_IDLE)
7133                return -1;
7134
7135        dist = node_distance(src_nid, dst_nid);
7136        if (numa_group) {
7137                src_weight = group_weight(p, src_nid, dist);
7138                dst_weight = group_weight(p, dst_nid, dist);
7139        } else {
7140                src_weight = task_weight(p, src_nid, dist);
7141                dst_weight = task_weight(p, dst_nid, dist);
7142        }
7143
7144        return dst_weight < src_weight;
7145}
7146
7147#else
7148static inline int migrate_degrades_locality(struct task_struct *p,
7149                                             struct lb_env *env)
7150{
7151        return -1;
7152}
7153#endif
7154
7155/*
7156 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7157 */
7158static
7159int can_migrate_task(struct task_struct *p, struct lb_env *env)
7160{
7161        int tsk_cache_hot;
7162
7163        lockdep_assert_held(&env->src_rq->lock);
7164
7165        /*
7166         * We do not migrate tasks that are:
7167         * 1) throttled_lb_pair, or
7168         * 2) cannot be migrated to this CPU due to cpus_ptr, or
7169         * 3) running (obviously), or
7170         * 4) are cache-hot on their current CPU.
7171         */
7172        if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7173                return 0;
7174
7175        if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
7176                int cpu;
7177
7178                schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
7179
7180                env->flags |= LBF_SOME_PINNED;
7181
7182                /*
7183                 * Remember if this task can be migrated to any other CPU in
7184                 * our sched_group. We may want to revisit it if we couldn't
7185                 * meet load balance goals by pulling other tasks on src_cpu.
7186                 *
7187                 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
7188                 * already computed one in current iteration.
7189                 */
7190                if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
7191                        return 0;
7192
7193                /* Prevent to re-select dst_cpu via env's CPUs: */
7194                for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
7195                        if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
7196                                env->flags |= LBF_DST_PINNED;
7197                                env->new_dst_cpu = cpu;
7198                                break;
7199                        }
7200                }
7201
7202                return 0;
7203        }
7204
7205        /* Record that we found atleast one task that could run on dst_cpu */
7206        env->flags &= ~LBF_ALL_PINNED;
7207
7208        if (task_running(env->src_rq, p)) {
7209                schedstat_inc(p->se.statistics.nr_failed_migrations_running);
7210                return 0;
7211        }
7212
7213        /*
7214         * Aggressive migration if:
7215         * 1) destination numa is preferred
7216         * 2) task is cache cold, or
7217         * 3) too many balance attempts have failed.
7218         */
7219        tsk_cache_hot = migrate_degrades_locality(p, env);
7220        if (tsk_cache_hot == -1)
7221                tsk_cache_hot = task_hot(p, env);
7222
7223        if (tsk_cache_hot <= 0 ||
7224            env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
7225                if (tsk_cache_hot == 1) {
7226                        schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7227                        schedstat_inc(p->se.statistics.nr_forced_migrations);
7228                }
7229                return 1;
7230        }
7231
7232        schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
7233        return 0;
7234}
7235
7236/*
7237 * detach_task() -- detach the task for the migration specified in env
7238 */
7239static void detach_task(struct task_struct *p, struct lb_env *env)
7240{
7241        lockdep_assert_held(&env->src_rq->lock);
7242
7243        deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
7244        set_task_cpu(p, env->dst_cpu);
7245}
7246
7247/*
7248 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7249 * part of active balancing operations within "domain".
7250 *
7251 * Returns a task if successful and NULL otherwise.
7252 */
7253static struct task_struct *detach_one_task(struct lb_env *env)
7254{
7255        struct task_struct *p;
7256
7257        lockdep_assert_held(&env->src_rq->lock);
7258
7259        list_for_each_entry_reverse(p,
7260                        &env->src_rq->cfs_tasks, se.group_node) {
7261                if (!can_migrate_task(p, env))
7262                        continue;
7263
7264                detach_task(p, env);
7265
7266                /*
7267                 * Right now, this is only the second place where
7268                 * lb_gained[env->idle] is updated (other is detach_tasks)
7269                 * so we can safely collect stats here rather than
7270                 * inside detach_tasks().
7271                 */
7272                schedstat_inc(env->sd->lb_gained[env->idle]);
7273                return p;
7274        }
7275        return NULL;
7276}
7277
7278static const unsigned int sched_nr_migrate_break = 32;
7279
7280/*
7281 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
7282 * busiest_rq, as part of a balancing operation within domain "sd".
7283 *
7284 * Returns number of detached tasks if successful and 0 otherwise.
7285 */
7286static int detach_tasks(struct lb_env *env)
7287{
7288        struct list_head *tasks = &env->src_rq->cfs_tasks;
7289        unsigned long util, load;
7290        struct task_struct *p;
7291        int detached = 0;
7292
7293        lockdep_assert_held(&env->src_rq->lock);
7294
7295        if (env->imbalance <= 0)
7296                return 0;
7297
7298        while (!list_empty(tasks)) {
7299                /*
7300                 * We don't want to steal all, otherwise we may be treated likewise,
7301                 * which could at worst lead to a livelock crash.
7302                 */
7303                if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7304                        break;
7305
7306                p = list_last_entry(tasks, struct task_struct, se.group_node);
7307
7308                env->loop++;
7309                /* We've more or less seen every task there is, call it quits */
7310                if (env->loop > env->loop_max)
7311                        break;
7312
7313                /* take a breather every nr_migrate tasks */
7314                if (env->loop > env->loop_break) {
7315                        env->loop_break += sched_nr_migrate_break;
7316                        env->flags |= LBF_NEED_BREAK;
7317                        break;
7318                }
7319
7320                if (!can_migrate_task(p, env))
7321                        goto next;
7322
7323                switch (env->migration_type) {
7324                case migrate_load:
7325                        load = task_h_load(p);
7326
7327                        if (sched_feat(LB_MIN) &&
7328                            load < 16 && !env->sd->nr_balance_failed)
7329                                goto next;
7330
7331                        /*
7332                         * Make sure that we don't migrate too much load.
7333                         * Nevertheless, let relax the constraint if
7334                         * scheduler fails to find a good waiting task to
7335                         * migrate.
7336                         */
7337                        if (load/2 > env->imbalance &&
7338                            env->sd->nr_balance_failed <= env->sd->cache_nice_tries)
7339                                goto next;
7340
7341                        env->imbalance -= load;
7342                        break;
7343
7344                case migrate_util:
7345                        util = task_util_est(p);
7346
7347                        if (util > env->imbalance)
7348                                goto next;
7349
7350                        env->imbalance -= util;
7351                        break;
7352
7353                case migrate_task:
7354                        env->imbalance--;
7355                        break;
7356
7357                case migrate_misfit:
7358                        /* This is not a misfit task */
7359                        if (task_fits_capacity(p, capacity_of(env->src_cpu)))
7360                                goto next;
7361
7362                        env->imbalance = 0;
7363                        break;
7364                }
7365
7366                detach_task(p, env);
7367                list_add(&p->se.group_node, &env->tasks);
7368
7369                detached++;
7370
7371#ifdef CONFIG_PREEMPTION
7372                /*
7373                 * NEWIDLE balancing is a source of latency, so preemptible
7374                 * kernels will stop after the first task is detached to minimize
7375                 * the critical section.
7376                 */
7377                if (env->idle == CPU_NEWLY_IDLE)
7378                        break;
7379#endif
7380
7381                /*
7382                 * We only want to steal up to the prescribed amount of
7383                 * load/util/tasks.
7384                 */
7385                if (env->imbalance <= 0)
7386                        break;
7387
7388                continue;
7389next:
7390                list_move(&p->se.group_node, tasks);
7391        }
7392
7393        /*
7394         * Right now, this is one of only two places we collect this stat
7395         * so we can safely collect detach_one_task() stats here rather
7396         * than inside detach_one_task().
7397         */
7398        schedstat_add(env->sd->lb_gained[env->idle], detached);
7399
7400        return detached;
7401}
7402
7403/*
7404 * attach_task() -- attach the task detached by detach_task() to its new rq.
7405 */
7406static void attach_task(struct rq *rq, struct task_struct *p)
7407{
7408        lockdep_assert_held(&rq->lock);
7409
7410        BUG_ON(task_rq(p) != rq);
7411        activate_task(rq, p, ENQUEUE_NOCLOCK);
7412        check_preempt_curr(rq, p, 0);
7413}
7414
7415/*
7416 * attach_one_task() -- attaches the task returned from detach_one_task() to
7417 * its new rq.
7418 */
7419static void attach_one_task(struct rq *rq, struct task_struct *p)
7420{
7421        struct rq_flags rf;
7422
7423        rq_lock(rq, &rf);
7424        update_rq_clock(rq);
7425        attach_task(rq, p);
7426        rq_unlock(rq, &rf);
7427}
7428
7429/*
7430 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7431 * new rq.
7432 */
7433static void attach_tasks(struct lb_env *env)
7434{
7435        struct list_head *tasks = &env->tasks;
7436        struct task_struct *p;
7437        struct rq_flags rf;
7438
7439        rq_lock(env->dst_rq, &rf);
7440        update_rq_clock(env->dst_rq);
7441
7442        while (!list_empty(tasks)) {
7443                p = list_first_entry(tasks, struct task_struct, se.group_node);
7444                list_del_init(&p->se.group_node);
7445
7446                attach_task(env->dst_rq, p);
7447        }
7448
7449        rq_unlock(env->dst_rq, &rf);
7450}
7451
7452#ifdef CONFIG_NO_HZ_COMMON
7453static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
7454{
7455        if (cfs_rq->avg.load_avg)
7456                return true;
7457
7458        if (cfs_rq->avg.util_avg)
7459                return true;
7460
7461        return false;
7462}
7463
7464static inline bool others_have_blocked(struct rq *rq)
7465{
7466        if (READ_ONCE(rq->avg_rt.util_avg))
7467                return true;
7468
7469        if (READ_ONCE(rq->avg_dl.util_avg))
7470                return true;
7471
7472#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
7473        if (READ_ONCE(rq->avg_irq.util_avg))
7474                return true;
7475#endif
7476
7477        return false;
7478}
7479
7480static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
7481{
7482        rq->last_blocked_load_update_tick = jiffies;
7483
7484        if (!has_blocked)
7485                rq->has_blocked_load = 0;
7486}
7487#else
7488static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
7489static inline bool others_have_blocked(struct rq *rq) { return false; }
7490static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
7491#endif
7492
7493static bool __update_blocked_others(struct rq *rq, bool *done)
7494{
7495        const struct sched_class *curr_class;
7496        u64 now = rq_clock_pelt(rq);
7497        bool decayed;
7498
7499        /*
7500         * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
7501         * DL and IRQ signals have been updated before updating CFS.
7502         */
7503        curr_class = rq->curr->sched_class;
7504
7505        decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
7506                  update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
7507                  update_irq_load_avg(rq, 0);
7508
7509        if (others_have_blocked(rq))
7510                *done = false;
7511
7512        return decayed;
7513}
7514
7515#ifdef CONFIG_FAIR_GROUP_SCHED
7516
7517static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
7518{
7519        if (cfs_rq->load.weight)
7520                return false;
7521
7522        if (cfs_rq->avg.load_sum)
7523                return false;
7524
7525        if (cfs_rq->avg.util_sum)
7526                return false;
7527
7528        if (cfs_rq->avg.runnable_load_sum)
7529                return false;
7530
7531        return true;
7532}
7533
7534static bool __update_blocked_fair(struct rq *rq, bool *done)
7535{
7536        struct cfs_rq *cfs_rq, *pos;
7537        bool decayed = false;
7538        int cpu = cpu_of(rq);
7539
7540        /*
7541         * Iterates the task_group tree in a bottom up fashion, see
7542         * list_add_leaf_cfs_rq() for details.
7543         */
7544        for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
7545                struct sched_entity *se;
7546
7547                if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
7548                        update_tg_load_avg(cfs_rq, 0);
7549
7550                        if (cfs_rq == &rq->cfs)
7551                                decayed = true;
7552                }
7553
7554                /* Propagate pending load changes to the parent, if any: */
7555                se = cfs_rq->tg->se[cpu];
7556                if (se && !skip_blocked_update(se))
7557                        update_load_avg(cfs_rq_of(se), se, 0);
7558
7559                /*
7560                 * There can be a lot of idle CPU cgroups.  Don't let fully
7561                 * decayed cfs_rqs linger on the list.
7562                 */
7563                if (cfs_rq_is_decayed(cfs_rq))
7564                        list_del_leaf_cfs_rq(cfs_rq);
7565
7566                /* Don't need periodic decay once load/util_avg are null */
7567                if (cfs_rq_has_blocked(cfs_rq))
7568                        *done = false;
7569        }
7570
7571        return decayed;
7572}
7573
7574/*
7575 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
7576 * This needs to be done in a top-down fashion because the load of a child
7577 * group is a fraction of its parents load.
7578 */
7579static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
7580{
7581        struct rq *rq = rq_of(cfs_rq);
7582        struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
7583        unsigned long now = jiffies;
7584        unsigned long load;
7585
7586        if (cfs_rq->last_h_load_update == now)
7587                return;
7588
7589        WRITE_ONCE(cfs_rq->h_load_next, NULL);
7590        for_each_sched_entity(se) {
7591                cfs_rq = cfs_rq_of(se);
7592                WRITE_ONCE(cfs_rq->h_load_next, se);
7593                if (cfs_rq->last_h_load_update == now)
7594                        break;
7595        }
7596
7597        if (!se) {
7598                cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
7599                cfs_rq->last_h_load_update = now;
7600        }
7601
7602        while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
7603                load = cfs_rq->h_load;
7604                load = div64_ul(load * se->avg.load_avg,
7605                        cfs_rq_load_avg(cfs_rq) + 1);
7606                cfs_rq = group_cfs_rq(se);
7607                cfs_rq->h_load = load;
7608                cfs_rq->last_h_load_update = now;
7609        }
7610}
7611
7612static unsigned long task_h_load(struct task_struct *p)
7613{
7614        struct cfs_rq *cfs_rq = task_cfs_rq(p);
7615
7616        update_cfs_rq_h_load(cfs_rq);
7617        return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7618                        cfs_rq_load_avg(cfs_rq) + 1);
7619}
7620#else
7621static bool __update_blocked_fair(struct rq *rq, bool *done)
7622{
7623        struct cfs_rq *cfs_rq = &rq->cfs;
7624        bool decayed;
7625
7626        decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
7627        if (cfs_rq_has_blocked(cfs_rq))
7628                *done = false;
7629
7630        return decayed;
7631}
7632
7633static unsigned long task_h_load(struct task_struct *p)
7634{
7635        return p->se.avg.load_avg;
7636}
7637#endif
7638
7639static void update_blocked_averages(int cpu)
7640{
7641        bool decayed = false, done = true;
7642        struct rq *rq = cpu_rq(cpu);
7643        struct rq_flags rf;
7644
7645        rq_lock_irqsave(rq, &rf);
7646        update_rq_clock(rq);
7647
7648        decayed |= __update_blocked_others(rq, &done);
7649        decayed |= __update_blocked_fair(rq, &done);
7650
7651        update_blocked_load_status(rq, !done);
7652        if (decayed)
7653                cpufreq_update_util(rq, 0);
7654        rq_unlock_irqrestore(rq, &rf);
7655}
7656
7657/********** Helpers for find_busiest_group ************************/
7658
7659/*
7660 * sg_lb_stats - stats of a sched_group required for load_balancing
7661 */
7662struct sg_lb_stats {
7663        unsigned long avg_load; /*Avg load across the CPUs of the group */
7664        unsigned long group_load; /* Total load over the CPUs of the group */
7665        unsigned long group_capacity;
7666        unsigned long group_util; /* Total utilization of the group */
7667        unsigned int sum_nr_running; /* Nr of tasks running in the group */
7668        unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
7669        unsigned int idle_cpus;
7670        unsigned int group_weight;
7671        enum group_type group_type;
7672        unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
7673        unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
7674#ifdef CONFIG_NUMA_BALANCING
7675        unsigned int nr_numa_running;
7676        unsigned int nr_preferred_running;
7677#endif
7678};
7679
7680/*
7681 * sd_lb_stats - Structure to store the statistics of a sched_domain
7682 *               during load balancing.
7683 */
7684struct sd_lb_stats {
7685        struct sched_group *busiest;    /* Busiest group in this sd */
7686        struct sched_group *local;      /* Local group in this sd */
7687        unsigned long total_load;       /* Total load of all groups in sd */
7688        unsigned long total_capacity;   /* Total capacity of all groups in sd */
7689        unsigned long avg_load; /* Average load across all groups in sd */
7690        unsigned int prefer_sibling; /* tasks should go to sibling first */
7691
7692        struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
7693        struct sg_lb_stats local_stat;  /* Statistics of the local group */
7694};
7695
7696static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
7697{
7698        /*
7699         * Skimp on the clearing to avoid duplicate work. We can avoid clearing
7700         * local_stat because update_sg_lb_stats() does a full clear/assignment.
7701         * We must however set busiest_stat::group_type and
7702         * busiest_stat::idle_cpus to the worst busiest group because
7703         * update_sd_pick_busiest() reads these before assignment.
7704         */
7705        *sds = (struct sd_lb_stats){
7706                .busiest = NULL,
7707                .local = NULL,
7708                .total_load = 0UL,
7709                .total_capacity = 0UL,
7710                .busiest_stat = {
7711                        .idle_cpus = UINT_MAX,
7712                        .group_type = group_has_spare,
7713                },
7714        };
7715}
7716
7717static unsigned long scale_rt_capacity(struct sched_domain *sd, int cpu)
7718{
7719        struct rq *rq = cpu_rq(cpu);
7720        unsigned long max = arch_scale_cpu_capacity(cpu);
7721        unsigned long used, free;
7722        unsigned long irq;
7723
7724        irq = cpu_util_irq(rq);
7725
7726        if (unlikely(irq >= max))
7727                return 1;
7728
7729        used = READ_ONCE(rq->avg_rt.util_avg);
7730        used += READ_ONCE(rq->avg_dl.util_avg);
7731
7732        if (unlikely(used >= max))
7733                return 1;
7734
7735        free = max - used;
7736
7737        return scale_irq_capacity(free, irq, max);
7738}
7739
7740static void update_cpu_capacity(struct sched_domain *sd, int cpu)
7741{
7742        unsigned long capacity = scale_rt_capacity(sd, cpu);
7743        struct sched_group *sdg = sd->groups;
7744
7745        cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
7746
7747        if (!capacity)
7748                capacity = 1;
7749
7750        cpu_rq(cpu)->cpu_capacity = capacity;
7751        sdg->sgc->capacity = capacity;
7752        sdg->sgc->min_capacity = capacity;
7753        sdg->sgc->max_capacity = capacity;
7754}
7755
7756void update_group_capacity(struct sched_domain *sd, int cpu)
7757{
7758        struct sched_domain *child = sd->child;
7759        struct sched_group *group, *sdg = sd->groups;
7760        unsigned long capacity, min_capacity, max_capacity;
7761        unsigned long interval;
7762
7763        interval = msecs_to_jiffies(sd->balance_interval);
7764        interval = clamp(interval, 1UL, max_load_balance_interval);
7765        sdg->sgc->next_update = jiffies + interval;
7766
7767        if (!child) {
7768                update_cpu_capacity(sd, cpu);
7769                return;
7770        }
7771
7772        capacity = 0;
7773        min_capacity = ULONG_MAX;
7774        max_capacity = 0;
7775
7776        if (child->flags & SD_OVERLAP) {
7777                /*
7778                 * SD_OVERLAP domains cannot assume that child groups
7779                 * span the current group.
7780                 */
7781
7782                for_each_cpu(cpu, sched_group_span(sdg)) {
7783                        struct sched_group_capacity *sgc;
7784                        struct rq *rq = cpu_rq(cpu);
7785
7786                        /*
7787                         * build_sched_domains() -> init_sched_groups_capacity()
7788                         * gets here before we've attached the domains to the
7789                         * runqueues.
7790                         *
7791                         * Use capacity_of(), which is set irrespective of domains
7792                         * in update_cpu_capacity().
7793                         *
7794                         * This avoids capacity from being 0 and
7795                         * causing divide-by-zero issues on boot.
7796                         */
7797                        if (unlikely(!rq->sd)) {
7798                                capacity += capacity_of(cpu);
7799                        } else {
7800                                sgc = rq->sd->groups->sgc;
7801                                capacity += sgc->capacity;
7802                        }
7803
7804                        min_capacity = min(capacity, min_capacity);
7805                        max_capacity = max(capacity, max_capacity);
7806                }
7807        } else  {
7808                /*
7809                 * !SD_OVERLAP domains can assume that child groups
7810                 * span the current group.
7811                 */
7812
7813                group = child->groups;
7814                do {
7815                        struct sched_group_capacity *sgc = group->sgc;
7816
7817                        capacity += sgc->capacity;
7818                        min_capacity = min(sgc->min_capacity, min_capacity);
7819                        max_capacity = max(sgc->max_capacity, max_capacity);
7820                        group = group->next;
7821                } while (group != child->groups);
7822        }
7823
7824        sdg->sgc->capacity = capacity;
7825        sdg->sgc->min_capacity = min_capacity;
7826        sdg->sgc->max_capacity = max_capacity;
7827}
7828
7829/*
7830 * Check whether the capacity of the rq has been noticeably reduced by side
7831 * activity. The imbalance_pct is used for the threshold.
7832 * Return true is the capacity is reduced
7833 */
7834static inline int
7835check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
7836{
7837        return ((rq->cpu_capacity * sd->imbalance_pct) <
7838                                (rq->cpu_capacity_orig * 100));
7839}
7840
7841/*
7842 * Check whether a rq has a misfit task and if it looks like we can actually
7843 * help that task: we can migrate the task to a CPU of higher capacity, or
7844 * the task's current CPU is heavily pressured.
7845 */
7846static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
7847{
7848        return rq->misfit_task_load &&
7849                (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
7850                 check_cpu_capacity(rq, sd));
7851}
7852
7853/*
7854 * Group imbalance indicates (and tries to solve) the problem where balancing
7855 * groups is inadequate due to ->cpus_ptr constraints.
7856 *
7857 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
7858 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
7859 * Something like:
7860 *
7861 *      { 0 1 2 3 } { 4 5 6 7 }
7862 *              *     * * *
7863 *
7864 * If we were to balance group-wise we'd place two tasks in the first group and
7865 * two tasks in the second group. Clearly this is undesired as it will overload
7866 * cpu 3 and leave one of the CPUs in the second group unused.
7867 *
7868 * The current solution to this issue is detecting the skew in the first group
7869 * by noticing the lower domain failed to reach balance and had difficulty
7870 * moving tasks due to affinity constraints.
7871 *
7872 * When this is so detected; this group becomes a candidate for busiest; see
7873 * update_sd_pick_busiest(). And calculate_imbalance() and
7874 * find_busiest_group() avoid some of the usual balance conditions to allow it
7875 * to create an effective group imbalance.
7876 *
7877 * This is a somewhat tricky proposition since the next run might not find the
7878 * group imbalance and decide the groups need to be balanced again. A most
7879 * subtle and fragile situation.
7880 */
7881
7882static inline int sg_imbalanced(struct sched_group *group)
7883{
7884        return group->sgc->imbalance;
7885}
7886
7887/*
7888 * group_has_capacity returns true if the group has spare capacity that could
7889 * be used by some tasks.
7890 * We consider that a group has spare capacity if the  * number of task is
7891 * smaller than the number of CPUs or if the utilization is lower than the
7892 * available capacity for CFS tasks.
7893 * For the latter, we use a threshold to stabilize the state, to take into
7894 * account the variance of the tasks' load and to return true if the available
7895 * capacity in meaningful for the load balancer.
7896 * As an example, an available capacity of 1% can appear but it doesn't make
7897 * any benefit for the load balance.
7898 */
7899static inline bool
7900group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
7901{
7902        if (sgs->sum_nr_running < sgs->group_weight)
7903                return true;
7904
7905        if ((sgs->group_capacity * 100) >
7906                        (sgs->group_util * imbalance_pct))
7907                return true;
7908
7909        return false;
7910}
7911
7912/*
7913 *  group_is_overloaded returns true if the group has more tasks than it can
7914 *  handle.
7915 *  group_is_overloaded is not equals to !group_has_capacity because a group
7916 *  with the exact right number of tasks, has no more spare capacity but is not
7917 *  overloaded so both group_has_capacity and group_is_overloaded return
7918 *  false.
7919 */
7920static inline bool
7921group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
7922{
7923        if (sgs->sum_nr_running <= sgs->group_weight)
7924                return false;
7925
7926        if ((sgs->group_capacity * 100) <
7927                        (sgs->group_util * imbalance_pct))
7928                return true;
7929
7930        return false;
7931}
7932
7933/*
7934 * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller
7935 * per-CPU capacity than sched_group ref.
7936 */
7937static inline bool
7938group_smaller_min_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
7939{
7940        return fits_capacity(sg->sgc->min_capacity, ref->sgc->min_capacity);
7941}
7942
7943/*
7944 * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller
7945 * per-CPU capacity_orig than sched_group ref.
7946 */
7947static inline bool
7948group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
7949{
7950        return fits_capacity(sg->sgc->max_capacity, ref->sgc->max_capacity);
7951}
7952
7953static inline enum
7954group_type group_classify(unsigned int imbalance_pct,
7955                          struct sched_group *group,
7956                          struct sg_lb_stats *sgs)
7957{
7958        if (group_is_overloaded(imbalance_pct, sgs))
7959                return group_overloaded;
7960
7961        if (sg_imbalanced(group))
7962                return group_imbalanced;
7963
7964        if (sgs->group_asym_packing)
7965                return group_asym_packing;
7966
7967        if (sgs->group_misfit_task_load)
7968                return group_misfit_task;
7969
7970        if (!group_has_capacity(imbalance_pct, sgs))
7971                return group_fully_busy;
7972
7973        return group_has_spare;
7974}
7975
7976static bool update_nohz_stats(struct rq *rq, bool force)
7977{
7978#ifdef CONFIG_NO_HZ_COMMON
7979        unsigned int cpu = rq->cpu;
7980
7981        if (!rq->has_blocked_load)
7982                return false;
7983
7984        if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
7985                return false;
7986
7987        if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick))
7988                return true;
7989
7990        update_blocked_averages(cpu);
7991
7992        return rq->has_blocked_load;
7993#else
7994        return false;
7995#endif
7996}
7997
7998/**
7999 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
8000 * @env: The load balancing environment.
8001 * @group: sched_group whose statistics are to be updated.
8002 * @sgs: variable to hold the statistics for this group.
8003 * @sg_status: Holds flag indicating the status of the sched_group
8004 */
8005static inline void update_sg_lb_stats(struct lb_env *env,
8006                                      struct sched_group *group,
8007                                      struct sg_lb_stats *sgs,
8008                                      int *sg_status)
8009{
8010        int i, nr_running, local_group;
8011
8012        memset(sgs, 0, sizeof(*sgs));
8013
8014        local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group));
8015
8016        for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8017                struct rq *rq = cpu_rq(i);
8018
8019                if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false))
8020                        env->flags |= LBF_NOHZ_AGAIN;
8021
8022                sgs->group_load += cpu_load(rq);
8023                sgs->group_util += cpu_util(i);
8024                sgs->sum_h_nr_running += rq->cfs.h_nr_running;
8025
8026                nr_running = rq->nr_running;
8027                sgs->sum_nr_running += nr_running;
8028
8029                if (nr_running > 1)
8030                        *sg_status |= SG_OVERLOAD;
8031
8032                if (cpu_overutilized(i))
8033                        *sg_status |= SG_OVERUTILIZED;
8034
8035#ifdef CONFIG_NUMA_BALANCING
8036                sgs->nr_numa_running += rq->nr_numa_running;
8037                sgs->nr_preferred_running += rq->nr_preferred_running;
8038#endif
8039                /*
8040                 * No need to call idle_cpu() if nr_running is not 0
8041                 */
8042                if (!nr_running && idle_cpu(i)) {
8043                        sgs->idle_cpus++;
8044                        /* Idle cpu can't have misfit task */
8045                        continue;
8046                }
8047
8048                if (local_group)
8049                        continue;
8050
8051                /* Check for a misfit task on the cpu */
8052                if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8053                    sgs->group_misfit_task_load < rq->misfit_task_load) {
8054                        sgs->group_misfit_task_load = rq->misfit_task_load;
8055                        *sg_status |= SG_OVERLOAD;
8056                }
8057        }
8058
8059        /* Check if dst CPU is idle and preferred to this group */
8060        if (env->sd->flags & SD_ASYM_PACKING &&
8061            env->idle != CPU_NOT_IDLE &&
8062            sgs->sum_h_nr_running &&
8063            sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu)) {
8064                sgs->group_asym_packing = 1;
8065        }
8066
8067        sgs->group_capacity = group->sgc->capacity;
8068
8069        sgs->group_weight = group->group_weight;
8070
8071        sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
8072
8073        /* Computing avg_load makes sense only when group is overloaded */
8074        if (sgs->group_type == group_overloaded)
8075                sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8076                                sgs->group_capacity;
8077}
8078
8079/**
8080 * update_sd_pick_busiest - return 1 on busiest group
8081 * @env: The load balancing environment.
8082 * @sds: sched_domain statistics
8083 * @sg: sched_group candidate to be checked for being the busiest
8084 * @sgs: sched_group statistics
8085 *
8086 * Determine if @sg is a busier group than the previously selected
8087 * busiest group.
8088 *
8089 * Return: %true if @sg is a busier group than the previously selected
8090 * busiest group. %false otherwise.
8091 */
8092static bool update_sd_pick_busiest(struct lb_env *env,
8093                                   struct sd_lb_stats *sds,
8094                                   struct sched_group *sg,
8095                                   struct sg_lb_stats *sgs)
8096{
8097        struct sg_lb_stats *busiest = &sds->busiest_stat;
8098
8099        /* Make sure that there is at least one task to pull */
8100        if (!sgs->sum_h_nr_running)
8101                return false;
8102
8103        /*
8104         * Don't try to pull misfit tasks we can't help.
8105         * We can use max_capacity here as reduction in capacity on some
8106         * CPUs in the group should either be possible to resolve
8107         * internally or be covered by avg_load imbalance (eventually).
8108         */
8109        if (sgs->group_type == group_misfit_task &&
8110            (!group_smaller_max_cpu_capacity(sg, sds->local) ||
8111             sds->local_stat.group_type != group_has_spare))
8112                return false;
8113
8114        if (sgs->group_type > busiest->group_type)
8115                return true;
8116
8117        if (sgs->group_type < busiest->group_type)
8118                return false;
8119
8120        /*
8121         * The candidate and the current busiest group are the same type of
8122         * group. Let check which one is the busiest according to the type.
8123         */
8124
8125        switch (sgs->group_type) {
8126        case group_overloaded:
8127                /* Select the overloaded group with highest avg_load. */
8128                if (sgs->avg_load <= busiest->avg_load)
8129                        return false;
8130                break;
8131
8132        case group_imbalanced:
8133                /*
8134                 * Select the 1st imbalanced group as we don't have any way to
8135                 * choose one more than another.
8136                 */
8137                return false;
8138
8139        case group_asym_packing:
8140                /* Prefer to move from lowest priority CPU's work */
8141                if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
8142                        return false;
8143                break;
8144
8145        case group_misfit_task:
8146                /*
8147                 * If we have more than one misfit sg go with the biggest
8148                 * misfit.
8149                 */
8150                if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
8151                        return false;
8152                break;
8153
8154        case group_fully_busy:
8155                /*
8156                 * Select the fully busy group with highest avg_load. In
8157                 * theory, there is no need to pull task from such kind of
8158                 * group because tasks have all compute capacity that they need
8159                 * but we can still improve the overall throughput by reducing
8160                 * contention when accessing shared HW resources.
8161                 *
8162                 * XXX for now avg_load is not computed and always 0 so we
8163                 * select the 1st one.
8164                 */
8165                if (sgs->avg_load <= busiest->avg_load)
8166                        return false;
8167                break;
8168
8169        case group_has_spare:
8170                /*
8171                 * Select not overloaded group with lowest number of
8172                 * idle cpus. We could also compare the spare capacity
8173                 * which is more stable but it can end up that the
8174                 * group has less spare capacity but finally more idle
8175                 * CPUs which means less opportunity to pull tasks.
8176                 */
8177                if (sgs->idle_cpus >= busiest->idle_cpus)
8178                        return false;
8179                break;
8180        }
8181
8182        /*
8183         * Candidate sg has no more than one task per CPU and has higher
8184         * per-CPU capacity. Migrating tasks to less capable CPUs may harm
8185         * throughput. Maximize throughput, power/energy consequences are not
8186         * considered.
8187         */
8188        if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
8189            (sgs->group_type <= group_fully_busy) &&
8190            (group_smaller_min_cpu_capacity(sds->local, sg)))
8191                return false;
8192
8193        return true;
8194}
8195
8196#ifdef CONFIG_NUMA_BALANCING
8197static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8198{
8199        if (sgs->sum_h_nr_running > sgs->nr_numa_running)
8200                return regular;
8201        if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
8202                return remote;
8203        return all;
8204}
8205
8206static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8207{
8208        if (rq->nr_running > rq->nr_numa_running)
8209                return regular;
8210        if (rq->nr_running > rq->nr_preferred_running)
8211                return remote;
8212        return all;
8213}
8214#else
8215static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8216{
8217        return all;
8218}
8219
8220static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8221{
8222        return regular;
8223}
8224#endif /* CONFIG_NUMA_BALANCING */
8225
8226
8227struct sg_lb_stats;
8228
8229/*
8230 * task_running_on_cpu - return 1 if @p is running on @cpu.
8231 */
8232
8233static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
8234{
8235        /* Task has no contribution or is new */
8236        if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
8237                return 0;
8238
8239        if (task_on_rq_queued(p))
8240                return 1;
8241
8242        return 0;
8243}
8244
8245/**
8246 * idle_cpu_without - would a given CPU be idle without p ?
8247 * @cpu: the processor on which idleness is tested.
8248 * @p: task which should be ignored.
8249 *
8250 * Return: 1 if the CPU would be idle. 0 otherwise.
8251 */
8252static int idle_cpu_without(int cpu, struct task_struct *p)
8253{
8254        struct rq *rq = cpu_rq(cpu);
8255
8256        if (rq->curr != rq->idle && rq->curr != p)
8257                return 0;
8258
8259        /*
8260         * rq->nr_running can't be used but an updated version without the
8261         * impact of p on cpu must be used instead. The updated nr_running
8262         * be computed and tested before calling idle_cpu_without().
8263         */
8264
8265#ifdef CONFIG_SMP
8266        if (!llist_empty(&rq->wake_list))
8267                return 0;
8268#endif
8269
8270        return 1;
8271}
8272
8273/*
8274 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
8275 * @sd: The sched_domain level to look for idlest group.
8276 * @group: sched_group whose statistics are to be updated.
8277 * @sgs: variable to hold the statistics for this group.
8278 * @p: The task for which we look for the idlest group/CPU.
8279 */
8280static inline void update_sg_wakeup_stats(struct sched_domain *sd,
8281                                          struct sched_group *group,
8282                                          struct sg_lb_stats *sgs,
8283                                          struct task_struct *p)
8284{
8285        int i, nr_running;
8286
8287        memset(sgs, 0, sizeof(*sgs));
8288
8289        for_each_cpu(i, sched_group_span(group)) {
8290                struct rq *rq = cpu_rq(i);
8291                unsigned int local;
8292
8293                sgs->group_load += cpu_load_without(rq, p);
8294                sgs->group_util += cpu_util_without(i, p);
8295                local = task_running_on_cpu(i, p);
8296                sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
8297
8298                nr_running = rq->nr_running - local;
8299                sgs->sum_nr_running += nr_running;
8300
8301                /*
8302                 * No need to call idle_cpu_without() if nr_running is not 0
8303                 */
8304                if (!nr_running && idle_cpu_without(i, p))
8305                        sgs->idle_cpus++;
8306
8307        }
8308
8309        /* Check if task fits in the group */
8310        if (sd->flags & SD_ASYM_CPUCAPACITY &&
8311            !task_fits_capacity(p, group->sgc->max_capacity)) {
8312                sgs->group_misfit_task_load = 1;
8313        }
8314
8315        sgs->group_capacity = group->sgc->capacity;
8316
8317        sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
8318
8319        /*
8320         * Computing avg_load makes sense only when group is fully busy or
8321         * overloaded
8322         */
8323        if (sgs->group_type < group_fully_busy)
8324                sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8325                                sgs->group_capacity;
8326}
8327
8328static bool update_pick_idlest(struct sched_group *idlest,
8329                               struct sg_lb_stats *idlest_sgs,
8330                               struct sched_group *group,
8331                               struct sg_lb_stats *sgs)
8332{
8333        if (sgs->group_type < idlest_sgs->group_type)
8334                return true;
8335
8336        if (sgs->group_type > idlest_sgs->group_type)
8337                return false;
8338
8339        /*
8340         * The candidate and the current idlest group are the same type of
8341         * group. Let check which one is the idlest according to the type.
8342         */
8343
8344        switch (sgs->group_type) {
8345        case group_overloaded:
8346        case group_fully_busy:
8347                /* Select the group with lowest avg_load. */
8348                if (idlest_sgs->avg_load <= sgs->avg_load)
8349                        return false;
8350                break;
8351
8352        case group_imbalanced:
8353        case group_asym_packing:
8354                /* Those types are not used in the slow wakeup path */
8355                return false;
8356
8357        case group_misfit_task:
8358                /* Select group with the highest max capacity */
8359                if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
8360                        return false;
8361                break;
8362
8363        case group_has_spare:
8364                /* Select group with most idle CPUs */
8365                if (idlest_sgs->idle_cpus >= sgs->idle_cpus)
8366                        return false;
8367                break;
8368        }
8369
8370        return true;
8371}
8372
8373/*
8374 * find_idlest_group() finds and returns the least busy CPU group within the
8375 * domain.
8376 *
8377 * Assumes p is allowed on at least one CPU in sd.
8378 */
8379static struct sched_group *
8380find_idlest_group(struct sched_domain *sd, struct task_struct *p,
8381                  int this_cpu, int sd_flag)
8382{
8383        struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
8384        struct sg_lb_stats local_sgs, tmp_sgs;
8385        struct sg_lb_stats *sgs;
8386        unsigned long imbalance;
8387        struct sg_lb_stats idlest_sgs = {
8388                        .avg_load = UINT_MAX,
8389                        .group_type = group_overloaded,
8390        };
8391
8392        imbalance = scale_load_down(NICE_0_LOAD) *
8393                                (sd->imbalance_pct-100) / 100;
8394
8395        do {
8396                int local_group;
8397
8398                /* Skip over this group if it has no CPUs allowed */
8399                if (!cpumask_intersects(sched_group_span(group),
8400                                        p->cpus_ptr))
8401                        continue;
8402
8403                local_group = cpumask_test_cpu(this_cpu,
8404                                               sched_group_span(group));
8405
8406                if (local_group) {
8407                        sgs = &local_sgs;
8408                        local = group;
8409                } else {
8410                        sgs = &tmp_sgs;
8411                }
8412
8413                update_sg_wakeup_stats(sd, group, sgs, p);
8414
8415                if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
8416                        idlest = group;
8417                        idlest_sgs = *sgs;
8418                }
8419
8420        } while (group = group->next, group != sd->groups);
8421
8422
8423        /* There is no idlest group to push tasks to */
8424        if (!idlest)
8425                return NULL;
8426
8427        /* The local group has been skipped because of CPU affinity */
8428        if (!local)
8429                return idlest;
8430
8431        /*
8432         * If the local group is idler than the selected idlest group
8433         * don't try and push the task.
8434         */
8435        if (local_sgs.group_type < idlest_sgs.group_type)
8436                return NULL;
8437
8438        /*
8439         * If the local group is busier than the selected idlest group
8440         * try and push the task.
8441         */
8442        if (local_sgs.group_type > idlest_sgs.group_type)
8443                return idlest;
8444
8445        switch (local_sgs.group_type) {
8446        case group_overloaded:
8447        case group_fully_busy:
8448                /*
8449                 * When comparing groups across NUMA domains, it's possible for
8450                 * the local domain to be very lightly loaded relative to the
8451                 * remote domains but "imbalance" skews the comparison making
8452                 * remote CPUs look much more favourable. When considering
8453                 * cross-domain, add imbalance to the load on the remote node
8454                 * and consider staying local.
8455                 */
8456
8457                if ((sd->flags & SD_NUMA) &&
8458                    ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
8459                        return NULL;
8460
8461                /*
8462                 * If the local group is less loaded than the selected
8463                 * idlest group don't try and push any tasks.
8464                 */
8465                if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
8466                        return NULL;
8467
8468                if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
8469                        return NULL;
8470                break;
8471
8472        case group_imbalanced:
8473        case group_asym_packing:
8474                /* Those type are not used in the slow wakeup path */
8475                return NULL;
8476
8477        case group_misfit_task:
8478                /* Select group with the highest max capacity */
8479                if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
8480                        return NULL;
8481                break;
8482
8483        case group_has_spare:
8484                if (sd->flags & SD_NUMA) {
8485#ifdef CONFIG_NUMA_BALANCING
8486                        int idlest_cpu;
8487                        /*
8488                         * If there is spare capacity at NUMA, try to select
8489                         * the preferred node
8490                         */
8491                        if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
8492                                return NULL;
8493
8494                        idlest_cpu = cpumask_first(sched_group_span(idlest));
8495                        if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
8496                                return idlest;
8497#endif
8498                        /*
8499                         * Otherwise, keep the task on this node to stay close
8500                         * its wakeup source and improve locality. If there is
8501                         * a real need of migration, periodic load balance will
8502                         * take care of it.
8503                         */
8504                        if (local_sgs.idle_cpus)
8505                                return NULL;
8506                }
8507
8508                /*
8509                 * Select group with highest number of idle CPUs. We could also
8510                 * compare the utilization which is more stable but it can end
8511                 * up that the group has less spare capacity but finally more
8512                 * idle CPUs which means more opportunity to run task.
8513                 */
8514                if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
8515                        return NULL;
8516                break;
8517        }
8518
8519        return idlest;
8520}
8521
8522/**
8523 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
8524 * @env: The load balancing environment.
8525 * @sds: variable to hold the statistics for this sched_domain.
8526 */
8527
8528static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
8529{
8530        struct sched_domain *child = env->sd->child;
8531        struct sched_group *sg = env->sd->groups;
8532        struct sg_lb_stats *local = &sds->local_stat;
8533        struct sg_lb_stats tmp_sgs;
8534        int sg_status = 0;
8535
8536#ifdef CONFIG_NO_HZ_COMMON
8537        if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked))
8538                env->flags |= LBF_NOHZ_STATS;
8539#endif
8540
8541        do {
8542                struct sg_lb_stats *sgs = &tmp_sgs;
8543                int local_group;
8544
8545                local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
8546                if (local_group) {
8547                        sds->local = sg;
8548                        sgs = local;
8549
8550                        if (env->idle != CPU_NEWLY_IDLE ||
8551                            time_after_eq(jiffies, sg->sgc->next_update))
8552                                update_group_capacity(env->sd, env->dst_cpu);
8553                }
8554
8555                update_sg_lb_stats(env, sg, sgs, &sg_status);
8556
8557                if (local_group)
8558                        goto next_group;
8559
8560
8561                if (update_sd_pick_busiest(env, sds, sg, sgs)) {
8562                        sds->busiest = sg;
8563                        sds->busiest_stat = *sgs;
8564                }
8565
8566next_group:
8567                /* Now, start updating sd_lb_stats */
8568                sds->total_load += sgs->group_load;
8569                sds->total_capacity += sgs->group_capacity;
8570
8571                sg = sg->next;
8572        } while (sg != env->sd->groups);
8573
8574        /* Tag domain that child domain prefers tasks go to siblings first */
8575        sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
8576
8577#ifdef CONFIG_NO_HZ_COMMON
8578        if ((env->flags & LBF_NOHZ_AGAIN) &&
8579            cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) {
8580
8581                WRITE_ONCE(nohz.next_blocked,
8582                           jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD));
8583        }
8584#endif
8585
8586        if (env->sd->flags & SD_NUMA)
8587                env->fbq_type = fbq_classify_group(&sds->busiest_stat);
8588
8589        if (!env->sd->parent) {
8590                struct root_domain *rd = env->dst_rq->rd;
8591
8592                /* update overload indicator if we are at root domain */
8593                WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
8594
8595                /* Update over-utilization (tipping point, U >= 0) indicator */
8596                WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
8597                trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
8598        } else if (sg_status & SG_OVERUTILIZED) {
8599                struct root_domain *rd = env->dst_rq->rd;
8600
8601                WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
8602                trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
8603        }
8604}
8605
8606/**
8607 * calculate_imbalance - Calculate the amount of imbalance present within the
8608 *                       groups of a given sched_domain during load balance.
8609 * @env: load balance environment
8610 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
8611 */
8612static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8613{
8614        struct sg_lb_stats *local, *busiest;
8615
8616        local = &sds->local_stat;
8617        busiest = &sds->busiest_stat;
8618
8619        if (busiest->group_type == group_misfit_task) {
8620                /* Set imbalance to allow misfit tasks to be balanced. */
8621                env->migration_type = migrate_misfit;
8622                env->imbalance = 1;
8623                return;
8624        }
8625
8626        if (busiest->group_type == group_asym_packing) {
8627                /*
8628                 * In case of asym capacity, we will try to migrate all load to
8629                 * the preferred CPU.
8630                 */
8631                env->migration_type = migrate_task;
8632                env->imbalance = busiest->sum_h_nr_running;
8633                return;
8634        }
8635
8636        if (busiest->group_type == group_imbalanced) {
8637                /*
8638                 * In the group_imb case we cannot rely on group-wide averages
8639                 * to ensure CPU-load equilibrium, try to move any task to fix
8640                 * the imbalance. The next load balance will take care of
8641                 * balancing back the system.
8642                 */
8643                env->migration_type = migrate_task;
8644                env->imbalance = 1;
8645                return;
8646        }
8647
8648        /*
8649         * Try to use spare capacity of local group without overloading it or
8650         * emptying busiest.
8651         * XXX Spreading tasks across NUMA nodes is not always the best policy
8652         * and special care should be taken for SD_NUMA domain level before
8653         * spreading the tasks. For now, load_balance() fully relies on
8654         * NUMA_BALANCING and fbq_classify_group/rq to override the decision.
8655         */
8656        if (local->group_type == group_has_spare) {
8657                if (busiest->group_type > group_fully_busy) {
8658                        /*
8659                         * If busiest is overloaded, try to fill spare
8660                         * capacity. This might end up creating spare capacity
8661                         * in busiest or busiest still being overloaded but
8662                         * there is no simple way to directly compute the
8663                         * amount of load to migrate in order to balance the
8664                         * system.
8665                         */
8666                        env->migration_type = migrate_util;
8667                        env->imbalance = max(local->group_capacity, local->group_util) -
8668                                         local->group_util;
8669
8670                        /*
8671                         * In some cases, the group's utilization is max or even
8672                         * higher than capacity because of migrations but the
8673                         * local CPU is (newly) idle. There is at least one
8674                         * waiting task in this overloaded busiest group. Let's
8675                         * try to pull it.
8676                         */
8677                        if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
8678                                env->migration_type = migrate_task;
8679                                env->imbalance = 1;
8680                        }
8681
8682                        return;
8683                }
8684
8685                if (busiest->group_weight == 1 || sds->prefer_sibling) {
8686                        unsigned int nr_diff = busiest->sum_nr_running;
8687                        /*
8688                         * When prefer sibling, evenly spread running tasks on
8689                         * groups.
8690                         */
8691                        env->migration_type = migrate_task;
8692                        lsub_positive(&nr_diff, local->sum_nr_running);
8693                        env->imbalance = nr_diff >> 1;
8694                        return;
8695                }
8696
8697                /*
8698                 * If there is no overload, we just want to even the number of
8699                 * idle cpus.
8700                 */
8701                env->migration_type = migrate_task;
8702                env->imbalance = max_t(long, 0, (local->idle_cpus -
8703                                                 busiest->idle_cpus) >> 1);
8704                return;
8705        }
8706
8707        /*
8708         * Local is fully busy but has to take more load to relieve the
8709         * busiest group
8710         */
8711        if (local->group_type < group_overloaded) {
8712                /*
8713                 * Local will become overloaded so the avg_load metrics are
8714                 * finally needed.
8715                 */
8716
8717                local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
8718                                  local->group_capacity;
8719
8720                sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
8721                                sds->total_capacity;
8722        }
8723
8724        /*
8725         * Both group are or will become overloaded and we're trying to get all
8726         * the CPUs to the average_load, so we don't want to push ourselves
8727         * above the average load, nor do we wish to reduce the max loaded CPU
8728         * below the average load. At the same time, we also don't want to
8729         * reduce the group load below the group capacity. Thus we look for
8730         * the minimum possible imbalance.
8731         */
8732        env->migration_type = migrate_load;
8733        env->imbalance = min(
8734                (busiest->avg_load - sds->avg_load) * busiest->group_capacity,
8735                (sds->avg_load - local->avg_load) * local->group_capacity
8736        ) / SCHED_CAPACITY_SCALE;
8737}
8738
8739/******* find_busiest_group() helpers end here *********************/
8740
8741/*
8742 * Decision matrix according to the local and busiest group type:
8743 *
8744 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
8745 * has_spare        nr_idle   balanced   N/A    N/A  balanced   balanced
8746 * fully_busy       nr_idle   nr_idle    N/A    N/A  balanced   balanced
8747 * misfit_task      force     N/A        N/A    N/A  force      force
8748 * asym_packing     force     force      N/A    N/A  force      force
8749 * imbalanced       force     force      N/A    N/A  force      force
8750 * overloaded       force     force      N/A    N/A  force      avg_load
8751 *
8752 * N/A :      Not Applicable because already filtered while updating
8753 *            statistics.
8754 * balanced : The system is balanced for these 2 groups.
8755 * force :    Calculate the imbalance as load migration is probably needed.
8756 * avg_load : Only if imbalance is significant enough.
8757 * nr_idle :  dst_cpu is not busy and the number of idle CPUs is quite
8758 *            different in groups.
8759 */
8760
8761/**
8762 * find_busiest_group - Returns the busiest group within the sched_domain
8763 * if there is an imbalance.
8764 *
8765 * Also calculates the amount of runnable load which should be moved
8766 * to restore balance.
8767 *
8768 * @env: The load balancing environment.
8769 *
8770 * Return:      - The busiest group if imbalance exists.
8771 */
8772static struct sched_group *find_busiest_group(struct lb_env *env)
8773{
8774        struct sg_lb_stats *local, *busiest;
8775        struct sd_lb_stats sds;
8776
8777        init_sd_lb_stats(&sds);
8778
8779        /*
8780         * Compute the various statistics relevant for load balancing at
8781         * this level.
8782         */
8783        update_sd_lb_stats(env, &sds);
8784
8785        if (sched_energy_enabled()) {
8786                struct root_domain *rd = env->dst_rq->rd;
8787
8788                if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
8789                        goto out_balanced;
8790        }
8791
8792        local = &sds.local_stat;
8793        busiest = &sds.busiest_stat;
8794
8795        /* There is no busy sibling group to pull tasks from */
8796        if (!sds.busiest)
8797                goto out_balanced;
8798
8799        /* Misfit tasks should be dealt with regardless of the avg load */
8800        if (busiest->group_type == group_misfit_task)
8801                goto force_balance;
8802
8803        /* ASYM feature bypasses nice load balance check */
8804        if (busiest->group_type == group_asym_packing)
8805                goto force_balance;
8806
8807        /*
8808         * If the busiest group is imbalanced the below checks don't
8809         * work because they assume all things are equal, which typically
8810         * isn't true due to cpus_ptr constraints and the like.
8811         */
8812        if (busiest->group_type == group_imbalanced)
8813                goto force_balance;
8814
8815        /*
8816         * If the local group is busier than the selected busiest group
8817         * don't try and pull any tasks.
8818         */
8819        if (local->group_type > busiest->group_type)
8820                goto out_balanced;
8821
8822        /*
8823         * When groups are overloaded, use the avg_load to ensure fairness
8824         * between tasks.
8825         */
8826        if (local->group_type == group_overloaded) {
8827                /*
8828                 * If the local group is more loaded than the selected
8829                 * busiest group don't try to pull any tasks.
8830                 */
8831                if (local->avg_load >= busiest->avg_load)
8832                        goto out_balanced;
8833
8834                /* XXX broken for overlapping NUMA groups */
8835                sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
8836                                sds.total_capacity;
8837
8838                /*
8839                 * Don't pull any tasks if this group is already above the
8840                 * domain average load.
8841                 */
8842                if (local->avg_load >= sds.avg_load)
8843                        goto out_balanced;
8844
8845                /*
8846                 * If the busiest group is more loaded, use imbalance_pct to be
8847                 * conservative.
8848                 */
8849                if (100 * busiest->avg_load <=
8850                                env->sd->imbalance_pct * local->avg_load)
8851                        goto out_balanced;
8852        }
8853
8854        /* Try to move all excess tasks to child's sibling domain */
8855        if (sds.prefer_sibling && local->group_type == group_has_spare &&
8856            busiest->sum_nr_running > local->sum_nr_running + 1)
8857                goto force_balance;
8858
8859        if (busiest->group_type != group_overloaded) {
8860                if (env->idle == CPU_NOT_IDLE)
8861                        /*
8862                         * If the busiest group is not overloaded (and as a
8863                         * result the local one too) but this CPU is already
8864                         * busy, let another idle CPU try to pull task.
8865                         */
8866                        goto out_balanced;
8867
8868                if (busiest->group_weight > 1 &&
8869                    local->idle_cpus <= (busiest->idle_cpus + 1))
8870                        /*
8871                         * If the busiest group is not overloaded
8872                         * and there is no imbalance between this and busiest
8873                         * group wrt idle CPUs, it is balanced. The imbalance
8874                         * becomes significant if the diff is greater than 1
8875                         * otherwise we might end up to just move the imbalance
8876                         * on another group. Of course this applies only if
8877                         * there is more than 1 CPU per group.
8878                         */
8879                        goto out_balanced;
8880
8881                if (busiest->sum_h_nr_running == 1)
8882                        /*
8883                         * busiest doesn't have any tasks waiting to run
8884                         */
8885                        goto out_balanced;
8886        }
8887
8888force_balance:
8889        /* Looks like there is an imbalance. Compute it */
8890        calculate_imbalance(env, &sds);
8891        return env->imbalance ? sds.busiest : NULL;
8892
8893out_balanced:
8894        env->imbalance = 0;
8895        return NULL;
8896}
8897
8898/*
8899 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
8900 */
8901static struct rq *find_busiest_queue(struct lb_env *env,
8902                                     struct sched_group *group)
8903{
8904        struct rq *busiest = NULL, *rq;
8905        unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
8906        unsigned int busiest_nr = 0;
8907        int i;
8908
8909        for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8910                unsigned long capacity, load, util;
8911                unsigned int nr_running;
8912                enum fbq_type rt;
8913
8914                rq = cpu_rq(i);
8915                rt = fbq_classify_rq(rq);
8916
8917                /*
8918                 * We classify groups/runqueues into three groups:
8919                 *  - regular: there are !numa tasks
8920                 *  - remote:  there are numa tasks that run on the 'wrong' node
8921                 *  - all:     there is no distinction
8922                 *
8923                 * In order to avoid migrating ideally placed numa tasks,
8924                 * ignore those when there's better options.
8925                 *
8926                 * If we ignore the actual busiest queue to migrate another
8927                 * task, the next balance pass can still reduce the busiest
8928                 * queue by moving tasks around inside the node.
8929                 *
8930                 * If we cannot move enough load due to this classification
8931                 * the next pass will adjust the group classification and
8932                 * allow migration of more tasks.
8933                 *
8934                 * Both cases only affect the total convergence complexity.
8935                 */
8936                if (rt > env->fbq_type)
8937                        continue;
8938
8939                capacity = capacity_of(i);
8940                nr_running = rq->cfs.h_nr_running;
8941
8942                /*
8943                 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
8944                 * eventually lead to active_balancing high->low capacity.
8945                 * Higher per-CPU capacity is considered better than balancing
8946                 * average load.
8947                 */
8948                if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8949                    capacity_of(env->dst_cpu) < capacity &&
8950                    nr_running == 1)
8951                        continue;
8952
8953                switch (env->migration_type) {
8954                case migrate_load:
8955                        /*
8956                         * When comparing with load imbalance, use cpu_load()
8957                         * which is not scaled with the CPU capacity.
8958                         */
8959                        load = cpu_load(rq);
8960
8961                        if (nr_running == 1 && load > env->imbalance &&
8962                            !check_cpu_capacity(rq, env->sd))
8963                                break;
8964
8965                        /*
8966                         * For the load comparisons with the other CPUs,
8967                         * consider the cpu_load() scaled with the CPU
8968                         * capacity, so that the load can be moved away
8969                         * from the CPU that is potentially running at a
8970                         * lower capacity.
8971                         *
8972                         * Thus we're looking for max(load_i / capacity_i),
8973                         * crosswise multiplication to rid ourselves of the
8974                         * division works out to:
8975                         * load_i * capacity_j > load_j * capacity_i;
8976                         * where j is our previous maximum.
8977                         */
8978                        if (load * busiest_capacity > busiest_load * capacity) {
8979                                busiest_load = load;
8980                                busiest_capacity = capacity;
8981                                busiest = rq;
8982                        }
8983                        break;
8984
8985                case migrate_util:
8986                        util = cpu_util(cpu_of(rq));
8987
8988                        if (busiest_util < util) {
8989                                busiest_util = util;
8990                                busiest = rq;
8991                        }
8992                        break;
8993
8994                case migrate_task:
8995                        if (busiest_nr < nr_running) {
8996                                busiest_nr = nr_running;
8997                                busiest = rq;
8998                        }
8999                        break;
9000
9001                case migrate_misfit:
9002                        /*
9003                         * For ASYM_CPUCAPACITY domains with misfit tasks we
9004                         * simply seek the "biggest" misfit task.
9005                         */
9006                        if (rq->misfit_task_load > busiest_load) {
9007                                busiest_load = rq->misfit_task_load;
9008                                busiest = rq;
9009                        }
9010
9011                        break;
9012
9013                }
9014        }
9015
9016        return busiest;
9017}
9018
9019/*
9020 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
9021 * so long as it is large enough.
9022 */
9023#define MAX_PINNED_INTERVAL     512
9024
9025static inline bool
9026asym_active_balance(struct lb_env *env)
9027{
9028        /*
9029         * ASYM_PACKING needs to force migrate tasks from busy but
9030         * lower priority CPUs in order to pack all tasks in the
9031         * highest priority CPUs.
9032         */
9033        return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
9034               sched_asym_prefer(env->dst_cpu, env->src_cpu);
9035}
9036
9037static inline bool
9038voluntary_active_balance(struct lb_env *env)
9039{
9040        struct sched_domain *sd = env->sd;
9041
9042        if (asym_active_balance(env))
9043                return 1;
9044
9045        /*
9046         * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
9047         * It's worth migrating the task if the src_cpu's capacity is reduced
9048         * because of other sched_class or IRQs if more capacity stays
9049         * available on dst_cpu.
9050         */
9051        if ((env->idle != CPU_NOT_IDLE) &&
9052            (env->src_rq->cfs.h_nr_running == 1)) {
9053                if ((check_cpu_capacity(env->src_rq, sd)) &&
9054                    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
9055                        return 1;
9056        }
9057
9058        if (env->migration_type == migrate_misfit)
9059                return 1;
9060
9061        return 0;
9062}
9063
9064static int need_active_balance(struct lb_env *env)
9065{
9066        struct sched_domain *sd = env->sd;
9067
9068        if (voluntary_active_balance(env))
9069                return 1;
9070
9071        return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
9072}
9073
9074static int active_load_balance_cpu_stop(void *data);
9075
9076static int should_we_balance(struct lb_env *env)
9077{
9078        struct sched_group *sg = env->sd->groups;
9079        int cpu, balance_cpu = -1;
9080
9081        /*
9082         * Ensure the balancing environment is consistent; can happen
9083         * when the softirq triggers 'during' hotplug.
9084         */
9085        if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
9086                return 0;
9087
9088        /*
9089         * In the newly idle case, we will allow all the CPUs
9090         * to do the newly idle load balance.
9091         */
9092        if (env->idle == CPU_NEWLY_IDLE)
9093                return 1;
9094
9095        /* Try to find first idle CPU */
9096        for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
9097                if (!idle_cpu(cpu))
9098                        continue;
9099
9100                balance_cpu = cpu;
9101                break;
9102        }
9103
9104        if (balance_cpu == -1)
9105                balance_cpu = group_balance_cpu(sg);
9106
9107        /*
9108         * First idle CPU or the first CPU(busiest) in this sched group
9109         * is eligible for doing load balancing at this and above domains.
9110         */
9111        return balance_cpu == env->dst_cpu;
9112}
9113
9114/*
9115 * Check this_cpu to ensure it is balanced within domain. Attempt to move
9116 * tasks if there is an imbalance.
9117 */
9118static int load_balance(int this_cpu, struct rq *this_rq,
9119                        struct sched_domain *sd, enum cpu_idle_type idle,
9120                        int *continue_balancing)
9121{
9122        int ld_moved, cur_ld_moved, active_balance = 0;
9123        struct sched_domain *sd_parent = sd->parent;
9124        struct sched_group *group;
9125        struct rq *busiest;
9126        struct rq_flags rf;
9127        struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
9128
9129        struct lb_env env = {
9130                .sd             = sd,
9131                .dst_cpu        = this_cpu,
9132                .dst_rq         = this_rq,
9133                .dst_grpmask    = sched_group_span(sd->groups),
9134                .idle           = idle,
9135                .loop_break     = sched_nr_migrate_break,
9136                .cpus           = cpus,
9137                .fbq_type       = all,
9138                .tasks          = LIST_HEAD_INIT(env.tasks),
9139        };
9140
9141        cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
9142
9143        schedstat_inc(sd->lb_count[idle]);
9144
9145redo:
9146        if (!should_we_balance(&env)) {
9147                *continue_balancing = 0;
9148                goto out_balanced;
9149        }
9150
9151        group = find_busiest_group(&env);
9152        if (!group) {
9153                schedstat_inc(sd->lb_nobusyg[idle]);
9154                goto out_balanced;
9155        }
9156
9157        busiest = find_busiest_queue(&env, group);
9158        if (!busiest) {
9159                schedstat_inc(sd->lb_nobusyq[idle]);
9160                goto out_balanced;
9161        }
9162
9163        BUG_ON(busiest == env.dst_rq);
9164
9165        schedstat_add(sd->lb_imbalance[idle], env.imbalance);
9166
9167        env.src_cpu = busiest->cpu;
9168        env.src_rq = busiest;
9169
9170        ld_moved = 0;
9171        if (busiest->nr_running > 1) {
9172                /*
9173                 * Attempt to move tasks. If find_busiest_group has found
9174                 * an imbalance but busiest->nr_running <= 1, the group is
9175                 * still unbalanced. ld_moved simply stays zero, so it is
9176                 * correctly treated as an imbalance.
9177                 */
9178                env.flags |= LBF_ALL_PINNED;
9179                env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
9180
9181more_balance:
9182                rq_lock_irqsave(busiest, &rf);
9183                update_rq_clock(busiest);
9184
9185                /*
9186                 * cur_ld_moved - load moved in current iteration
9187                 * ld_moved     - cumulative load moved across iterations
9188                 */
9189                cur_ld_moved = detach_tasks(&env);
9190
9191                /*
9192                 * We've detached some tasks from busiest_rq. Every
9193                 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
9194                 * unlock busiest->lock, and we are able to be sure
9195                 * that nobody can manipulate the tasks in parallel.
9196                 * See task_rq_lock() family for the details.
9197                 */
9198
9199                rq_unlock(busiest, &rf);
9200
9201                if (cur_ld_moved) {
9202                        attach_tasks(&env);
9203                        ld_moved += cur_ld_moved;
9204                }
9205
9206                local_irq_restore(rf.flags);
9207
9208                if (env.flags & LBF_NEED_BREAK) {
9209                        env.flags &= ~LBF_NEED_BREAK;
9210                        goto more_balance;
9211                }
9212
9213                /*
9214                 * Revisit (affine) tasks on src_cpu that couldn't be moved to
9215                 * us and move them to an alternate dst_cpu in our sched_group
9216                 * where they can run. The upper limit on how many times we
9217                 * iterate on same src_cpu is dependent on number of CPUs in our
9218                 * sched_group.
9219                 *
9220                 * This changes load balance semantics a bit on who can move
9221                 * load to a given_cpu. In addition to the given_cpu itself
9222                 * (or a ilb_cpu acting on its behalf where given_cpu is
9223                 * nohz-idle), we now have balance_cpu in a position to move
9224                 * load to given_cpu. In rare situations, this may cause
9225                 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
9226                 * _independently_ and at _same_ time to move some load to
9227                 * given_cpu) causing exceess load to be moved to given_cpu.
9228                 * This however should not happen so much in practice and
9229                 * moreover subsequent load balance cycles should correct the
9230                 * excess load moved.
9231                 */
9232                if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
9233
9234                        /* Prevent to re-select dst_cpu via env's CPUs */
9235                        __cpumask_clear_cpu(env.dst_cpu, env.cpus);
9236
9237                        env.dst_rq       = cpu_rq(env.new_dst_cpu);
9238                        env.dst_cpu      = env.new_dst_cpu;
9239                        env.flags       &= ~LBF_DST_PINNED;
9240                        env.loop         = 0;
9241                        env.loop_break   = sched_nr_migrate_break;
9242
9243                        /*
9244                         * Go back to "more_balance" rather than "redo" since we
9245                         * need to continue with same src_cpu.
9246                         */
9247                        goto more_balance;
9248                }
9249
9250                /*
9251                 * We failed to reach balance because of affinity.
9252                 */
9253                if (sd_parent) {
9254                        int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9255
9256                        if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
9257                                *group_imbalance = 1;
9258                }
9259
9260                /* All tasks on this runqueue were pinned by CPU affinity */
9261                if (unlikely(env.flags & LBF_ALL_PINNED)) {
9262                        __cpumask_clear_cpu(cpu_of(busiest), cpus);
9263                        /*
9264                         * Attempting to continue load balancing at the current
9265                         * sched_domain level only makes sense if there are
9266                         * active CPUs remaining as possible busiest CPUs to
9267                         * pull load from which are not contained within the
9268                         * destination group that is receiving any migrated
9269                         * load.
9270                         */
9271                        if (!cpumask_subset(cpus, env.dst_grpmask)) {
9272                                env.loop = 0;
9273                                env.loop_break = sched_nr_migrate_break;
9274                                goto redo;
9275                        }
9276                        goto out_all_pinned;
9277                }
9278        }
9279
9280        if (!ld_moved) {
9281                schedstat_inc(sd->lb_failed[idle]);
9282                /*
9283                 * Increment the failure counter only on periodic balance.
9284                 * We do not want newidle balance, which can be very
9285                 * frequent, pollute the failure counter causing
9286                 * excessive cache_hot migrations and active balances.
9287                 */
9288                if (idle != CPU_NEWLY_IDLE)
9289                        sd->nr_balance_failed++;
9290
9291                if (need_active_balance(&env)) {
9292                        unsigned long flags;
9293
9294                        raw_spin_lock_irqsave(&busiest->lock, flags);
9295
9296                        /*
9297                         * Don't kick the active_load_balance_cpu_stop,
9298                         * if the curr task on busiest CPU can't be
9299                         * moved to this_cpu:
9300                         */
9301                        if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
9302                                raw_spin_unlock_irqrestore(&busiest->lock,
9303                                                            flags);
9304                                env.flags |= LBF_ALL_PINNED;
9305                                goto out_one_pinned;
9306                        }
9307
9308                        /*
9309                         * ->active_balance synchronizes accesses to
9310                         * ->active_balance_work.  Once set, it's cleared
9311                         * only after active load balance is finished.
9312                         */
9313                        if (!busiest->active_balance) {
9314                                busiest->active_balance = 1;
9315                                busiest->push_cpu = this_cpu;
9316                                active_balance = 1;
9317                        }
9318                        raw_spin_unlock_irqrestore(&busiest->lock, flags);
9319
9320                        if (active_balance) {
9321                                stop_one_cpu_nowait(cpu_of(busiest),
9322                                        active_load_balance_cpu_stop, busiest,
9323                                        &busiest->active_balance_work);
9324                        }
9325
9326                        /* We've kicked active balancing, force task migration. */
9327                        sd->nr_balance_failed = sd->cache_nice_tries+1;
9328                }
9329        } else
9330                sd->nr_balance_failed = 0;
9331
9332        if (likely(!active_balance) || voluntary_active_balance(&env)) {
9333                /* We were unbalanced, so reset the balancing interval */
9334                sd->balance_interval = sd->min_interval;
9335        } else {
9336                /*
9337                 * If we've begun active balancing, start to back off. This
9338                 * case may not be covered by the all_pinned logic if there
9339                 * is only 1 task on the busy runqueue (because we don't call
9340                 * detach_tasks).
9341                 */
9342                if (sd->balance_interval < sd->max_interval)
9343                        sd->balance_interval *= 2;
9344        }
9345
9346        goto out;
9347
9348out_balanced:
9349        /*
9350         * We reach balance although we may have faced some affinity
9351         * constraints. Clear the imbalance flag only if other tasks got
9352         * a chance to move and fix the imbalance.
9353         */
9354        if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
9355                int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9356
9357                if (*group_imbalance)
9358                        *group_imbalance = 0;
9359        }
9360
9361out_all_pinned:
9362        /*
9363         * We reach balance because all tasks are pinned at this level so
9364         * we can't migrate them. Let the imbalance flag set so parent level
9365         * can try to migrate them.
9366         */
9367        schedstat_inc(sd->lb_balanced[idle]);
9368
9369        sd->nr_balance_failed = 0;
9370
9371out_one_pinned:
9372        ld_moved = 0;
9373
9374        /*
9375         * newidle_balance() disregards balance intervals, so we could
9376         * repeatedly reach this code, which would lead to balance_interval
9377         * skyrocketting in a short amount of time. Skip the balance_interval
9378         * increase logic to avoid that.
9379         */
9380        if (env.idle == CPU_NEWLY_IDLE)
9381                goto out;
9382
9383        /* tune up the balancing interval */
9384        if ((env.flags & LBF_ALL_PINNED &&
9385             sd->balance_interval < MAX_PINNED_INTERVAL) ||
9386            sd->balance_interval < sd->max_interval)
9387                sd->balance_interval *= 2;
9388out:
9389        return ld_moved;
9390}
9391
9392static inline unsigned long
9393get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
9394{
9395        unsigned long interval = sd->balance_interval;
9396
9397        if (cpu_busy)
9398                interval *= sd->busy_factor;
9399
9400        /* scale ms to jiffies */
9401        interval = msecs_to_jiffies(interval);
9402        interval = clamp(interval, 1UL, max_load_balance_interval);
9403
9404        return interval;
9405}
9406
9407static inline void
9408update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
9409{
9410        unsigned long interval, next;
9411
9412        /* used by idle balance, so cpu_busy = 0 */
9413        interval = get_sd_balance_interval(sd, 0);
9414        next = sd->last_balance + interval;
9415
9416        if (time_after(*next_balance, next))
9417                *next_balance = next;
9418}
9419
9420/*
9421 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
9422 * running tasks off the busiest CPU onto idle CPUs. It requires at
9423 * least 1 task to be running on each physical CPU where possible, and
9424 * avoids physical / logical imbalances.
9425 */
9426static int active_load_balance_cpu_stop(void *data)
9427{
9428        struct rq *busiest_rq = data;
9429        int busiest_cpu = cpu_of(busiest_rq);
9430        int target_cpu = busiest_rq->push_cpu;
9431        struct rq *target_rq = cpu_rq(target_cpu);
9432        struct sched_domain *sd;
9433        struct task_struct *p = NULL;
9434        struct rq_flags rf;
9435
9436        rq_lock_irq(busiest_rq, &rf);
9437        /*
9438         * Between queueing the stop-work and running it is a hole in which
9439         * CPUs can become inactive. We should not move tasks from or to
9440         * inactive CPUs.
9441         */
9442        if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
9443                goto out_unlock;
9444
9445        /* Make sure the requested CPU hasn't gone down in the meantime: */
9446        if (unlikely(busiest_cpu != smp_processor_id() ||
9447                     !busiest_rq->active_balance))
9448                goto out_unlock;
9449
9450        /* Is there any task to move? */
9451        if (busiest_rq->nr_running <= 1)
9452                goto out_unlock;
9453
9454        /*
9455         * This condition is "impossible", if it occurs
9456         * we need to fix it. Originally reported by
9457         * Bjorn Helgaas on a 128-CPU setup.
9458         */
9459        BUG_ON(busiest_rq == target_rq);
9460
9461        /* Search for an sd spanning us and the target CPU. */
9462        rcu_read_lock();
9463        for_each_domain(target_cpu, sd) {
9464                if ((sd->flags & SD_LOAD_BALANCE) &&
9465                    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
9466                                break;
9467        }
9468
9469        if (likely(sd)) {
9470                struct lb_env env = {
9471                        .sd             = sd,
9472                        .dst_cpu        = target_cpu,
9473                        .dst_rq         = target_rq,
9474                        .src_cpu        = busiest_rq->cpu,
9475                        .src_rq         = busiest_rq,
9476                        .idle           = CPU_IDLE,
9477                        /*
9478                         * can_migrate_task() doesn't need to compute new_dst_cpu
9479                         * for active balancing. Since we have CPU_IDLE, but no
9480                         * @dst_grpmask we need to make that test go away with lying
9481                         * about DST_PINNED.
9482                         */
9483                        .flags          = LBF_DST_PINNED,
9484                };
9485
9486                schedstat_inc(sd->alb_count);
9487                update_rq_clock(busiest_rq);
9488
9489                p = detach_one_task(&env);
9490                if (p) {
9491                        schedstat_inc(sd->alb_pushed);
9492                        /* Active balancing done, reset the failure counter. */
9493                        sd->nr_balance_failed = 0;
9494                } else {
9495                        schedstat_inc(sd->alb_failed);
9496                }
9497        }
9498        rcu_read_unlock();
9499out_unlock:
9500        busiest_rq->active_balance = 0;
9501        rq_unlock(busiest_rq, &rf);
9502
9503        if (p)
9504                attach_one_task(target_rq, p);
9505
9506        local_irq_enable();
9507
9508        return 0;
9509}
9510
9511static DEFINE_SPINLOCK(balancing);
9512
9513/*
9514 * Scale the max load_balance interval with the number of CPUs in the system.
9515 * This trades load-balance latency on larger machines for less cross talk.
9516 */
9517void update_max_interval(void)
9518{
9519        max_load_balance_interval = HZ*num_online_cpus()/10;
9520}
9521
9522/*
9523 * It checks each scheduling domain to see if it is due to be balanced,
9524 * and initiates a balancing operation if so.
9525 *
9526 * Balancing parameters are set up in init_sched_domains.
9527 */
9528static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
9529{
9530        int continue_balancing = 1;
9531        int cpu = rq->cpu;
9532        unsigned long interval;
9533        struct sched_domain *sd;
9534        /* Earliest time when we have to do rebalance again */
9535        unsigned long next_balance = jiffies + 60*HZ;
9536        int update_next_balance = 0;
9537        int need_serialize, need_decay = 0;
9538        u64 max_cost = 0;
9539
9540        rcu_read_lock();
9541        for_each_domain(cpu, sd) {
9542                /*
9543                 * Decay the newidle max times here because this is a regular
9544                 * visit to all the domains. Decay ~1% per second.
9545                 */
9546                if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
9547                        sd->max_newidle_lb_cost =
9548                                (sd->max_newidle_lb_cost * 253) / 256;
9549                        sd->next_decay_max_lb_cost = jiffies + HZ;
9550                        need_decay = 1;
9551                }
9552                max_cost += sd->max_newidle_lb_cost;
9553
9554                if (!(sd->flags & SD_LOAD_BALANCE))
9555                        continue;
9556
9557                /*
9558                 * Stop the load balance at this level. There is another
9559                 * CPU in our sched group which is doing load balancing more
9560                 * actively.
9561                 */
9562                if (!continue_balancing) {
9563                        if (need_decay)
9564                                continue;
9565                        break;
9566                }
9567
9568                interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
9569
9570                need_serialize = sd->flags & SD_SERIALIZE;
9571                if (need_serialize) {
9572                        if (!spin_trylock(&balancing))
9573                                goto out;
9574                }
9575
9576                if (time_after_eq(jiffies, sd->last_balance + interval)) {
9577                        if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
9578                                /*
9579                                 * The LBF_DST_PINNED logic could have changed
9580                                 * env->dst_cpu, so we can't know our idle
9581                                 * state even if we migrated tasks. Update it.
9582                                 */
9583                                idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
9584                        }
9585                        sd->last_balance = jiffies;
9586                        interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
9587                }
9588                if (need_serialize)
9589                        spin_unlock(&balancing);
9590out:
9591                if (time_after(next_balance, sd->last_balance + interval)) {
9592                        next_balance = sd->last_balance + interval;
9593                        update_next_balance = 1;
9594                }
9595        }
9596        if (need_decay) {
9597                /*
9598                 * Ensure the rq-wide value also decays but keep it at a
9599                 * reasonable floor to avoid funnies with rq->avg_idle.
9600                 */
9601                rq->max_idle_balance_cost =
9602                        max((u64)sysctl_sched_migration_cost, max_cost);
9603        }
9604        rcu_read_unlock();
9605
9606        /*
9607         * next_balance will be updated only when there is a need.
9608         * When the cpu is attached to null domain for ex, it will not be
9609         * updated.
9610         */
9611        if (likely(update_next_balance)) {
9612                rq->next_balance = next_balance;
9613
9614#ifdef CONFIG_NO_HZ_COMMON
9615                /*
9616                 * If this CPU has been elected to perform the nohz idle
9617                 * balance. Other idle CPUs have already rebalanced with
9618                 * nohz_idle_balance() and nohz.next_balance has been
9619                 * updated accordingly. This CPU is now running the idle load
9620                 * balance for itself and we need to update the
9621                 * nohz.next_balance accordingly.
9622                 */
9623                if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
9624                        nohz.next_balance = rq->next_balance;
9625#endif
9626        }
9627}
9628
9629static inline int on_null_domain(struct rq *rq)
9630{
9631        return unlikely(!rcu_dereference_sched(rq->sd));
9632}
9633
9634#ifdef CONFIG_NO_HZ_COMMON
9635/*
9636 * idle load balancing details
9637 * - When one of the busy CPUs notice that there may be an idle rebalancing
9638 *   needed, they will kick the idle load balancer, which then does idle
9639 *   load balancing for all the idle CPUs.
9640 * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set
9641 *   anywhere yet.
9642 */
9643
9644static inline int find_new_ilb(void)
9645{
9646        int ilb;
9647
9648        for_each_cpu_and(ilb, nohz.idle_cpus_mask,
9649                              housekeeping_cpumask(HK_FLAG_MISC)) {
9650                if (idle_cpu(ilb))
9651                        return ilb;
9652        }
9653
9654        return nr_cpu_ids;
9655}
9656
9657/*
9658 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
9659 * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one).
9660 */
9661static void kick_ilb(unsigned int flags)
9662{
9663        int ilb_cpu;
9664
9665        nohz.next_balance++;
9666
9667        ilb_cpu = find_new_ilb();
9668
9669        if (ilb_cpu >= nr_cpu_ids)
9670                return;
9671
9672        flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
9673        if (flags & NOHZ_KICK_MASK)
9674                return;
9675
9676        /*
9677         * Use smp_send_reschedule() instead of resched_cpu().
9678         * This way we generate a sched IPI on the target CPU which
9679         * is idle. And the softirq performing nohz idle load balance
9680         * will be run before returning from the IPI.
9681         */
9682        smp_send_reschedule(ilb_cpu);
9683}
9684
9685/*
9686 * Current decision point for kicking the idle load balancer in the presence
9687 * of idle CPUs in the system.
9688 */
9689static void nohz_balancer_kick(struct rq *rq)
9690{
9691        unsigned long now = jiffies;
9692        struct sched_domain_shared *sds;
9693        struct sched_domain *sd;
9694        int nr_busy, i, cpu = rq->cpu;
9695        unsigned int flags = 0;
9696
9697        if (unlikely(rq->idle_balance))
9698                return;
9699
9700        /*
9701         * We may be recently in ticked or tickless idle mode. At the first
9702         * busy tick after returning from idle, we will update the busy stats.
9703         */
9704        nohz_balance_exit_idle(rq);
9705
9706        /*
9707         * None are in tickless mode and hence no need for NOHZ idle load
9708         * balancing.
9709         */
9710        if (likely(!atomic_read(&nohz.nr_cpus)))
9711                return;
9712
9713        if (READ_ONCE(nohz.has_blocked) &&
9714            time_after(now, READ_ONCE(nohz.next_blocked)))
9715                flags = NOHZ_STATS_KICK;
9716
9717        if (time_before(now, nohz.next_balance))
9718                goto out;
9719
9720        if (rq->nr_running >= 2) {
9721                flags = NOHZ_KICK_MASK;
9722                goto out;
9723        }
9724
9725        rcu_read_lock();
9726
9727        sd = rcu_dereference(rq->sd);
9728        if (sd) {
9729                /*
9730                 * If there's a CFS task and the current CPU has reduced
9731                 * capacity; kick the ILB to see if there's a better CPU to run
9732                 * on.
9733                 */
9734                if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
9735                        flags = NOHZ_KICK_MASK;
9736                        goto unlock;
9737                }
9738        }
9739
9740        sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
9741        if (sd) {
9742                /*
9743                 * When ASYM_PACKING; see if there's a more preferred CPU
9744                 * currently idle; in which case, kick the ILB to move tasks
9745                 * around.
9746                 */
9747                for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
9748                        if (sched_asym_prefer(i, cpu)) {
9749                                flags = NOHZ_KICK_MASK;
9750                                goto unlock;
9751                        }
9752                }
9753        }
9754
9755        sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
9756        if (sd) {
9757                /*
9758                 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
9759                 * to run the misfit task on.
9760                 */
9761                if (check_misfit_status(rq, sd)) {
9762                        flags = NOHZ_KICK_MASK;
9763                        goto unlock;
9764                }
9765
9766                /*
9767                 * For asymmetric systems, we do not want to nicely balance
9768                 * cache use, instead we want to embrace asymmetry and only
9769                 * ensure tasks have enough CPU capacity.
9770                 *
9771                 * Skip the LLC logic because it's not relevant in that case.
9772                 */
9773                goto unlock;
9774        }
9775
9776        sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
9777        if (sds) {
9778                /*
9779                 * If there is an imbalance between LLC domains (IOW we could
9780                 * increase the overall cache use), we need some less-loaded LLC
9781                 * domain to pull some load. Likewise, we may need to spread
9782                 * load within the current LLC domain (e.g. packed SMT cores but
9783                 * other CPUs are idle). We can't really know from here how busy
9784                 * the others are - so just get a nohz balance going if it looks
9785                 * like this LLC domain has tasks we could move.
9786                 */
9787                nr_busy = atomic_read(&sds->nr_busy_cpus);
9788                if (nr_busy > 1) {
9789                        flags = NOHZ_KICK_MASK;
9790                        goto unlock;
9791                }
9792        }
9793unlock:
9794        rcu_read_unlock();
9795out:
9796        if (flags)
9797                kick_ilb(flags);
9798}
9799
9800static void set_cpu_sd_state_busy(int cpu)
9801{
9802        struct sched_domain *sd;
9803
9804        rcu_read_lock();
9805        sd = rcu_dereference(per_cpu(sd_llc, cpu));
9806
9807        if (!sd || !sd->nohz_idle)
9808                goto unlock;
9809        sd->nohz_idle = 0;
9810
9811        atomic_inc(&sd->shared->nr_busy_cpus);
9812unlock:
9813        rcu_read_unlock();
9814}
9815
9816void nohz_balance_exit_idle(struct rq *rq)
9817{
9818        SCHED_WARN_ON(rq != this_rq());
9819
9820        if (likely(!rq->nohz_tick_stopped))
9821                return;
9822
9823        rq->nohz_tick_stopped = 0;
9824        cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
9825        atomic_dec(&nohz.nr_cpus);
9826
9827        set_cpu_sd_state_busy(rq->cpu);
9828}
9829
9830static void set_cpu_sd_state_idle(int cpu)
9831{
9832        struct sched_domain *sd;
9833
9834        rcu_read_lock();
9835        sd = rcu_dereference(per_cpu(sd_llc, cpu));
9836
9837        if (!sd || sd->nohz_idle)
9838                goto unlock;
9839        sd->nohz_idle = 1;
9840
9841        atomic_dec(&sd->shared->nr_busy_cpus);
9842unlock:
9843        rcu_read_unlock();
9844}
9845
9846/*
9847 * This routine will record that the CPU is going idle with tick stopped.
9848 * This info will be used in performing idle load balancing in the future.
9849 */
9850void nohz_balance_enter_idle(int cpu)
9851{
9852        struct rq *rq = cpu_rq(cpu);
9853
9854        SCHED_WARN_ON(cpu != smp_processor_id());
9855
9856        /* If this CPU is going down, then nothing needs to be done: */
9857        if (!cpu_active(cpu))
9858                return;
9859
9860        /* Spare idle load balancing on CPUs that don't want to be disturbed: */
9861        if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
9862                return;
9863
9864        /*
9865         * Can be set safely without rq->lock held
9866         * If a clear happens, it will have evaluated last additions because
9867         * rq->lock is held during the check and the clear
9868         */
9869        rq->has_blocked_load = 1;
9870
9871        /*
9872         * The tick is still stopped but load could have been added in the
9873         * meantime. We set the nohz.has_blocked flag to trig a check of the
9874         * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
9875         * of nohz.has_blocked can only happen after checking the new load
9876         */
9877        if (rq->nohz_tick_stopped)
9878                goto out;
9879
9880        /* If we're a completely isolated CPU, we don't play: */
9881        if (on_null_domain(rq))
9882                return;
9883
9884        rq->nohz_tick_stopped = 1;
9885
9886        cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
9887        atomic_inc(&nohz.nr_cpus);
9888
9889        /*
9890         * Ensures that if nohz_idle_balance() fails to observe our
9891         * @idle_cpus_mask store, it must observe the @has_blocked
9892         * store.
9893         */
9894        smp_mb__after_atomic();
9895
9896        set_cpu_sd_state_idle(cpu);
9897
9898out:
9899        /*
9900         * Each time a cpu enter idle, we assume that it has blocked load and
9901         * enable the periodic update of the load of idle cpus
9902         */
9903        WRITE_ONCE(nohz.has_blocked, 1);
9904}
9905
9906/*
9907 * Internal function that runs load balance for all idle cpus. The load balance
9908 * can be a simple update of blocked load or a complete load balance with
9909 * tasks movement depending of flags.
9910 * The function returns false if the loop has stopped before running
9911 * through all idle CPUs.
9912 */
9913static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
9914                               enum cpu_idle_type idle)
9915{
9916        /* Earliest time when we have to do rebalance again */
9917        unsigned long now = jiffies;
9918        unsigned long next_balance = now + 60*HZ;
9919        bool has_blocked_load = false;
9920        int update_next_balance = 0;
9921        int this_cpu = this_rq->cpu;
9922        int balance_cpu;
9923        int ret = false;
9924        struct rq *rq;
9925
9926        SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
9927
9928        /*
9929         * We assume there will be no idle load after this update and clear
9930         * the has_blocked flag. If a cpu enters idle in the mean time, it will
9931         * set the has_blocked flag and trig another update of idle load.
9932         * Because a cpu that becomes idle, is added to idle_cpus_mask before
9933         * setting the flag, we are sure to not clear the state and not
9934         * check the load of an idle cpu.
9935         */
9936        WRITE_ONCE(nohz.has_blocked, 0);
9937
9938        /*
9939         * Ensures that if we miss the CPU, we must see the has_blocked
9940         * store from nohz_balance_enter_idle().
9941         */
9942        smp_mb();
9943
9944        for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
9945                if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
9946                        continue;
9947
9948                /*
9949                 * If this CPU gets work to do, stop the load balancing
9950                 * work being done for other CPUs. Next load
9951                 * balancing owner will pick it up.
9952                 */
9953                if (need_resched()) {
9954                        has_blocked_load = true;
9955                        goto abort;
9956                }
9957
9958                rq = cpu_rq(balance_cpu);
9959
9960                has_blocked_load |= update_nohz_stats(rq, true);
9961
9962                /*
9963                 * If time for next balance is due,
9964                 * do the balance.
9965                 */
9966                if (time_after_eq(jiffies, rq->next_balance)) {
9967                        struct rq_flags rf;
9968
9969                        rq_lock_irqsave(rq, &rf);
9970                        update_rq_clock(rq);
9971                        rq_unlock_irqrestore(rq, &rf);
9972
9973                        if (flags & NOHZ_BALANCE_KICK)
9974                                rebalance_domains(rq, CPU_IDLE);
9975                }
9976
9977                if (time_after(next_balance, rq->next_balance)) {
9978                        next_balance = rq->next_balance;
9979                        update_next_balance = 1;
9980                }
9981        }
9982
9983        /* Newly idle CPU doesn't need an update */
9984        if (idle != CPU_NEWLY_IDLE) {
9985                update_blocked_averages(this_cpu);
9986                has_blocked_load |= this_rq->has_blocked_load;
9987        }
9988
9989        if (flags & NOHZ_BALANCE_KICK)
9990                rebalance_domains(this_rq, CPU_IDLE);
9991
9992        WRITE_ONCE(nohz.next_blocked,
9993                now + msecs_to_jiffies(LOAD_AVG_PERIOD));
9994
9995        /* The full idle balance loop has been done */
9996        ret = true;
9997
9998abort:
9999        /* There is still blocked load, enable periodic update */
10000        if (has_blocked_load)
10001                WRITE_ONCE(nohz.has_blocked, 1);
10002
10003        /*
10004         * next_balance will be updated only when there is a need.
10005         * When the CPU is attached to null domain for ex, it will not be
10006         * updated.
10007         */
10008        if (likely(update_next_balance))
10009                nohz.next_balance = next_balance;
10010
10011        return ret;
10012}
10013
10014/*
10015 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
10016 * rebalancing for all the cpus for whom scheduler ticks are stopped.
10017 */
10018static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10019{
10020        int this_cpu = this_rq->cpu;
10021        unsigned int flags;
10022
10023        if (!(atomic_read(nohz_flags(this_cpu)) & NOHZ_KICK_MASK))
10024                return false;
10025
10026        if (idle != CPU_IDLE) {
10027                atomic_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
10028                return false;
10029        }
10030
10031        /* could be _relaxed() */
10032        flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
10033        if (!(flags & NOHZ_KICK_MASK))
10034                return false;
10035
10036        _nohz_idle_balance(this_rq, flags, idle);
10037
10038        return true;
10039}
10040
10041static void nohz_newidle_balance(struct rq *this_rq)
10042{
10043        int this_cpu = this_rq->cpu;
10044
10045        /*
10046         * This CPU doesn't want to be disturbed by scheduler
10047         * housekeeping
10048         */
10049        if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
10050                return;
10051
10052        /* Will wake up very soon. No time for doing anything else*/
10053        if (this_rq->avg_idle < sysctl_sched_migration_cost)
10054                return;
10055
10056        /* Don't need to update blocked load of idle CPUs*/
10057        if (!READ_ONCE(nohz.has_blocked) ||
10058            time_before(jiffies, READ_ONCE(nohz.next_blocked)))
10059                return;
10060
10061        raw_spin_unlock(&this_rq->lock);
10062        /*
10063         * This CPU is going to be idle and blocked load of idle CPUs
10064         * need to be updated. Run the ilb locally as it is a good
10065         * candidate for ilb instead of waking up another idle CPU.
10066         * Kick an normal ilb if we failed to do the update.
10067         */
10068        if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE))
10069                kick_ilb(NOHZ_STATS_KICK);
10070        raw_spin_lock(&this_rq->lock);
10071}
10072
10073#else /* !CONFIG_NO_HZ_COMMON */
10074static inline void nohz_balancer_kick(struct rq *rq) { }
10075
10076static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10077{
10078        return false;
10079}
10080
10081static inline void nohz_newidle_balance(struct rq *this_rq) { }
10082#endif /* CONFIG_NO_HZ_COMMON */
10083
10084/*
10085 * idle_balance is called by schedule() if this_cpu is about to become
10086 * idle. Attempts to pull tasks from other CPUs.
10087 *
10088 * Returns:
10089 *   < 0 - we released the lock and there are !fair tasks present
10090 *     0 - failed, no new tasks
10091 *   > 0 - success, new (fair) tasks present
10092 */
10093int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
10094{
10095        unsigned long next_balance = jiffies + HZ;
10096        int this_cpu = this_rq->cpu;
10097        struct sched_domain *sd;
10098        int pulled_task = 0;
10099        u64 curr_cost = 0;
10100
10101        update_misfit_status(NULL, this_rq);
10102        /*
10103         * We must set idle_stamp _before_ calling idle_balance(), such that we
10104         * measure the duration of idle_balance() as idle time.
10105         */
10106        this_rq->idle_stamp = rq_clock(this_rq);
10107
10108        /*
10109         * Do not pull tasks towards !active CPUs...
10110         */
10111        if (!cpu_active(this_cpu))
10112                return 0;
10113
10114        /*
10115         * This is OK, because current is on_cpu, which avoids it being picked
10116         * for load-balance and preemption/IRQs are still disabled avoiding
10117         * further scheduler activity on it and we're being very careful to
10118         * re-start the picking loop.
10119         */
10120        rq_unpin_lock(this_rq, rf);
10121
10122        if (this_rq->avg_idle < sysctl_sched_migration_cost ||
10123            !READ_ONCE(this_rq->rd->overload)) {
10124
10125                rcu_read_lock();
10126                sd = rcu_dereference_check_sched_domain(this_rq->sd);
10127                if (sd)
10128                        update_next_balance(sd, &next_balance);
10129                rcu_read_unlock();
10130
10131                nohz_newidle_balance(this_rq);
10132
10133                goto out;
10134        }
10135
10136        raw_spin_unlock(&this_rq->lock);
10137
10138        update_blocked_averages(this_cpu);
10139        rcu_read_lock();
10140        for_each_domain(this_cpu, sd) {
10141                int continue_balancing = 1;
10142                u64 t0, domain_cost;
10143
10144                if (!(sd->flags & SD_LOAD_BALANCE))
10145                        continue;
10146
10147                if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
10148                        update_next_balance(sd, &next_balance);
10149                        break;
10150                }
10151
10152                if (sd->flags & SD_BALANCE_NEWIDLE) {
10153                        t0 = sched_clock_cpu(this_cpu);
10154
10155                        pulled_task = load_balance(this_cpu, this_rq,
10156                                                   sd, CPU_NEWLY_IDLE,
10157                                                   &continue_balancing);
10158
10159                        domain_cost = sched_clock_cpu(this_cpu) - t0;
10160                        if (domain_cost > sd->max_newidle_lb_cost)
10161                                sd->max_newidle_lb_cost = domain_cost;
10162
10163                        curr_cost += domain_cost;
10164                }
10165
10166                update_next_balance(sd, &next_balance);
10167
10168                /*
10169                 * Stop searching for tasks to pull if there are
10170                 * now runnable tasks on this rq.
10171                 */
10172                if (pulled_task || this_rq->nr_running > 0)
10173                        break;
10174        }
10175        rcu_read_unlock();
10176
10177        raw_spin_lock(&this_rq->lock);
10178
10179        if (curr_cost > this_rq->max_idle_balance_cost)
10180                this_rq->max_idle_balance_cost = curr_cost;
10181
10182out:
10183        /*
10184         * While browsing the domains, we released the rq lock, a task could
10185         * have been enqueued in the meantime. Since we're not going idle,
10186         * pretend we pulled a task.
10187         */
10188        if (this_rq->cfs.h_nr_running && !pulled_task)
10189                pulled_task = 1;
10190
10191        /* Move the next balance forward */
10192        if (time_after(this_rq->next_balance, next_balance))
10193                this_rq->next_balance = next_balance;
10194
10195        /* Is there a task of a high priority class? */
10196        if (this_rq->nr_running != this_rq->cfs.h_nr_running)
10197                pulled_task = -1;
10198
10199        if (pulled_task)
10200                this_rq->idle_stamp = 0;
10201
10202        rq_repin_lock(this_rq, rf);
10203
10204        return pulled_task;
10205}
10206
10207/*
10208 * run_rebalance_domains is triggered when needed from the scheduler tick.
10209 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
10210 */
10211static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
10212{
10213        struct rq *this_rq = this_rq();
10214        enum cpu_idle_type idle = this_rq->idle_balance ?
10215                                                CPU_IDLE : CPU_NOT_IDLE;
10216
10217        /*
10218         * If this CPU has a pending nohz_balance_kick, then do the
10219         * balancing on behalf of the other idle CPUs whose ticks are
10220         * stopped. Do nohz_idle_balance *before* rebalance_domains to
10221         * give the idle CPUs a chance to load balance. Else we may
10222         * load balance only within the local sched_domain hierarchy
10223         * and abort nohz_idle_balance altogether if we pull some load.
10224         */
10225        if (nohz_idle_balance(this_rq, idle))
10226                return;
10227
10228        /* normal load balance */
10229        update_blocked_averages(this_rq->cpu);
10230        rebalance_domains(this_rq, idle);
10231}
10232
10233/*
10234 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
10235 */
10236void trigger_load_balance(struct rq *rq)
10237{
10238        /* Don't need to rebalance while attached to NULL domain */
10239        if (unlikely(on_null_domain(rq)))
10240                return;
10241
10242        if (time_after_eq(jiffies, rq->next_balance))
10243                raise_softirq(SCHED_SOFTIRQ);
10244
10245        nohz_balancer_kick(rq);
10246}
10247
10248static void rq_online_fair(struct rq *rq)
10249{
10250        update_sysctl();
10251
10252        update_runtime_enabled(rq);
10253}
10254
10255static void rq_offline_fair(struct rq *rq)
10256{
10257        update_sysctl();
10258
10259        /* Ensure any throttled groups are reachable by pick_next_task */
10260        unthrottle_offline_cfs_rqs(rq);
10261}
10262
10263#endif /* CONFIG_SMP */
10264
10265/*
10266 * scheduler tick hitting a task of our scheduling class.
10267 *
10268 * NOTE: This function can be called remotely by the tick offload that
10269 * goes along full dynticks. Therefore no local assumption can be made
10270 * and everything must be accessed through the @rq and @curr passed in
10271 * parameters.
10272 */
10273static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
10274{
10275        struct cfs_rq *cfs_rq;
10276        struct sched_entity *se = &curr->se;
10277
10278        for_each_sched_entity(se) {
10279                cfs_rq = cfs_rq_of(se);
10280                entity_tick(cfs_rq, se, queued);
10281        }
10282
10283        if (static_branch_unlikely(&sched_numa_balancing))
10284                task_tick_numa(rq, curr);
10285
10286        update_misfit_status(curr, rq);
10287        update_overutilized_status(task_rq(curr));
10288}
10289
10290/*
10291 * called on fork with the child task as argument from the parent's context
10292 *  - child not yet on the tasklist
10293 *  - preemption disabled
10294 */
10295static void task_fork_fair(struct task_struct *p)
10296{
10297        struct cfs_rq *cfs_rq;
10298        struct sched_entity *se = &p->se, *curr;
10299        struct rq *rq = this_rq();
10300        struct rq_flags rf;
10301
10302        rq_lock(rq, &rf);
10303        update_rq_clock(rq);
10304
10305        cfs_rq = task_cfs_rq(current);
10306        curr = cfs_rq->curr;
10307        if (curr) {
10308                update_curr(cfs_rq);
10309                se->vruntime = curr->vruntime;
10310        }
10311        place_entity(cfs_rq, se, 1);
10312
10313        if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
10314                /*
10315                 * Upon rescheduling, sched_class::put_prev_task() will place
10316                 * 'current' within the tree based on its new key value.
10317                 */
10318                swap(curr->vruntime, se->vruntime);
10319                resched_curr(rq);
10320        }
10321
10322        se->vruntime -= cfs_rq->min_vruntime;
10323        rq_unlock(rq, &rf);
10324}
10325
10326/*
10327 * Priority of the task has changed. Check to see if we preempt
10328 * the current task.
10329 */
10330static void
10331prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
10332{
10333        if (!task_on_rq_queued(p))
10334                return;
10335
10336        /*
10337         * Reschedule if we are currently running on this runqueue and
10338         * our priority decreased, or if we are not currently running on
10339         * this runqueue and our priority is higher than the current's
10340         */
10341        if (rq->curr == p) {
10342                if (p->prio > oldprio)
10343                        resched_curr(rq);
10344        } else
10345                check_preempt_curr(rq, p, 0);
10346}
10347
10348static inline bool vruntime_normalized(struct task_struct *p)
10349{
10350        struct sched_entity *se = &p->se;
10351
10352        /*
10353         * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
10354         * the dequeue_entity(.flags=0) will already have normalized the
10355         * vruntime.
10356         */
10357        if (p->on_rq)
10358                return true;
10359
10360        /*
10361         * When !on_rq, vruntime of the task has usually NOT been normalized.
10362         * But there are some cases where it has already been normalized:
10363         *
10364         * - A forked child which is waiting for being woken up by
10365         *   wake_up_new_task().
10366         * - A task which has been woken up by try_to_wake_up() and
10367         *   waiting for actually being woken up by sched_ttwu_pending().
10368         */
10369        if (!se->sum_exec_runtime ||
10370            (p->state == TASK_WAKING && p->sched_remote_wakeup))
10371                return true;
10372
10373        return false;
10374}
10375
10376#ifdef CONFIG_FAIR_GROUP_SCHED
10377/*
10378 * Propagate the changes of the sched_entity across the tg tree to make it
10379 * visible to the root
10380 */
10381static void propagate_entity_cfs_rq(struct sched_entity *se)
10382{
10383        struct cfs_rq *cfs_rq;
10384
10385        /* Start to propagate at parent */
10386        se = se->parent;
10387
10388        for_each_sched_entity(se) {
10389                cfs_rq = cfs_rq_of(se);
10390
10391                if (cfs_rq_throttled(cfs_rq))
10392                        break;
10393
10394                update_load_avg(cfs_rq, se, UPDATE_TG);
10395        }
10396}
10397#else
10398static void propagate_entity_cfs_rq(struct sched_entity *se) { }
10399#endif
10400
10401static void detach_entity_cfs_rq(struct sched_entity *se)
10402{
10403        struct cfs_rq *cfs_rq = cfs_rq_of(se);
10404
10405        /* Catch up with the cfs_rq and remove our load when we leave */
10406        update_load_avg(cfs_rq, se, 0);
10407        detach_entity_load_avg(cfs_rq, se);
10408        update_tg_load_avg(cfs_rq, false);
10409        propagate_entity_cfs_rq(se);
10410}
10411
10412static void attach_entity_cfs_rq(struct sched_entity *se)
10413{
10414        struct cfs_rq *cfs_rq = cfs_rq_of(se);
10415
10416#ifdef CONFIG_FAIR_GROUP_SCHED
10417        /*
10418         * Since the real-depth could have been changed (only FAIR
10419         * class maintain depth value), reset depth properly.
10420         */
10421        se->depth = se->parent ? se->parent->depth + 1 : 0;
10422#endif
10423
10424        /* Synchronize entity with its cfs_rq */
10425        update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
10426        attach_entity_load_avg(cfs_rq, se, 0);
10427        update_tg_load_avg(cfs_rq, false);
10428        propagate_entity_cfs_rq(se);
10429}
10430
10431static void detach_task_cfs_rq(struct task_struct *p)
10432{
10433        struct sched_entity *se = &p->se;
10434        struct cfs_rq *cfs_rq = cfs_rq_of(se);
10435
10436        if (!vruntime_normalized(p)) {
10437                /*
10438                 * Fix up our vruntime so that the current sleep doesn't
10439                 * cause 'unlimited' sleep bonus.
10440                 */
10441                place_entity(cfs_rq, se, 0);
10442                se->vruntime -= cfs_rq->min_vruntime;
10443        }
10444
10445        detach_entity_cfs_rq(se);
10446}
10447
10448static void attach_task_cfs_rq(struct task_struct *p)
10449{
10450        struct sched_entity *se = &p->se;
10451        struct cfs_rq *cfs_rq = cfs_rq_of(se);
10452
10453        attach_entity_cfs_rq(se);
10454
10455        if (!vruntime_normalized(p))
10456                se->vruntime += cfs_rq->min_vruntime;
10457}
10458
10459static void switched_from_fair(struct rq *rq, struct task_struct *p)
10460{
10461        detach_task_cfs_rq(p);
10462}
10463
10464static void switched_to_fair(struct rq *rq, struct task_struct *p)
10465{
10466        attach_task_cfs_rq(p);
10467
10468        if (task_on_rq_queued(p)) {
10469                /*
10470                 * We were most likely switched from sched_rt, so
10471                 * kick off the schedule if running, otherwise just see
10472                 * if we can still preempt the current task.
10473                 */
10474                if (rq->curr == p)
10475                        resched_curr(rq);
10476                else
10477                        check_preempt_curr(rq, p, 0);
10478        }
10479}
10480
10481/* Account for a task changing its policy or group.
10482 *
10483 * This routine is mostly called to set cfs_rq->curr field when a task
10484 * migrates between groups/classes.
10485 */
10486static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
10487{
10488        struct sched_entity *se = &p->se;
10489
10490#ifdef CONFIG_SMP
10491        if (task_on_rq_queued(p)) {
10492                /*
10493                 * Move the next running task to the front of the list, so our
10494                 * cfs_tasks list becomes MRU one.
10495                 */
10496                list_move(&se->group_node, &rq->cfs_tasks);
10497        }
10498#endif
10499
10500        for_each_sched_entity(se) {
10501                struct cfs_rq *cfs_rq = cfs_rq_of(se);
10502
10503                set_next_entity(cfs_rq, se);
10504                /* ensure bandwidth has been allocated on our new cfs_rq */
10505                account_cfs_rq_runtime(cfs_rq, 0);
10506        }
10507}
10508
10509void init_cfs_rq(struct cfs_rq *cfs_rq)
10510{
10511        cfs_rq->tasks_timeline = RB_ROOT_CACHED;
10512        cfs_rq->min_vruntime = (u64)(-(1LL << 20));
10513#ifndef CONFIG_64BIT
10514        cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
10515#endif
10516#ifdef CONFIG_SMP
10517        raw_spin_lock_init(&cfs_rq->removed.lock);
10518#endif
10519}
10520
10521#ifdef CONFIG_FAIR_GROUP_SCHED
10522static void task_set_group_fair(struct task_struct *p)
10523{
10524        struct sched_entity *se = &p->se;
10525
10526        set_task_rq(p, task_cpu(p));
10527        se->depth = se->parent ? se->parent->depth + 1 : 0;
10528}
10529
10530static void task_move_group_fair(struct task_struct *p)
10531{
10532        detach_task_cfs_rq(p);
10533        set_task_rq(p, task_cpu(p));
10534
10535#ifdef CONFIG_SMP
10536        /* Tell se's cfs_rq has been changed -- migrated */
10537        p->se.avg.last_update_time = 0;
10538#endif
10539        attach_task_cfs_rq(p);
10540}
10541
10542static void task_change_group_fair(struct task_struct *p, int type)
10543{
10544        switch (type) {
10545        case TASK_SET_GROUP:
10546                task_set_group_fair(p);
10547                break;
10548
10549        case TASK_MOVE_GROUP:
10550                task_move_group_fair(p);
10551                break;
10552        }
10553}
10554
10555void free_fair_sched_group(struct task_group *tg)
10556{
10557        int i;
10558
10559        destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
10560
10561        for_each_possible_cpu(i) {
10562                if (tg->cfs_rq)
10563                        kfree(tg->cfs_rq[i]);
10564                if (tg->se)
10565                        kfree(tg->se[i]);
10566        }
10567
10568        kfree(tg->cfs_rq);
10569        kfree(tg->se);
10570}
10571
10572int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10573{
10574        struct sched_entity *se;
10575        struct cfs_rq *cfs_rq;
10576        int i;
10577
10578        tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
10579        if (!tg->cfs_rq)
10580                goto err;
10581        tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
10582        if (!tg->se)
10583                goto err;
10584
10585        tg->shares = NICE_0_LOAD;
10586
10587        init_cfs_bandwidth(tg_cfs_bandwidth(tg));
10588
10589        for_each_possible_cpu(i) {
10590                cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
10591                                      GFP_KERNEL, cpu_to_node(i));
10592                if (!cfs_rq)
10593                        goto err;
10594
10595                se = kzalloc_node(sizeof(struct sched_entity),
10596                                  GFP_KERNEL, cpu_to_node(i));
10597                if (!se)
10598                        goto err_free_rq;
10599
10600                init_cfs_rq(cfs_rq);
10601                init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
10602                init_entity_runnable_average(se);
10603        }
10604
10605        return 1;
10606
10607err_free_rq:
10608        kfree(cfs_rq);
10609err:
10610        return 0;
10611}
10612
10613void online_fair_sched_group(struct task_group *tg)
10614{
10615        struct sched_entity *se;
10616        struct rq_flags rf;
10617        struct rq *rq;
10618        int i;
10619
10620        for_each_possible_cpu(i) {
10621                rq = cpu_rq(i);
10622                se = tg->se[i];
10623                rq_lock_irq(rq, &rf);
10624                update_rq_clock(rq);
10625                attach_entity_cfs_rq(se);
10626                sync_throttle(tg, i);
10627                rq_unlock_irq(rq, &rf);
10628        }
10629}
10630
10631void unregister_fair_sched_group(struct task_group *tg)
10632{
10633        unsigned long flags;
10634        struct rq *rq;
10635        int cpu;
10636
10637        for_each_possible_cpu(cpu) {
10638                if (tg->se[cpu])
10639                        remove_entity_load_avg(tg->se[cpu]);
10640
10641                /*
10642                 * Only empty task groups can be destroyed; so we can speculatively
10643                 * check on_list without danger of it being re-added.
10644                 */
10645                if (!tg->cfs_rq[cpu]->on_list)
10646                        continue;
10647
10648                rq = cpu_rq(cpu);
10649
10650                raw_spin_lock_irqsave(&rq->lock, flags);
10651                list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
10652                raw_spin_unlock_irqrestore(&rq->lock, flags);
10653        }
10654}
10655
10656void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
10657                        struct sched_entity *se, int cpu,
10658                        struct sched_entity *parent)
10659{
10660        struct rq *rq = cpu_rq(cpu);
10661
10662        cfs_rq->tg = tg;
10663        cfs_rq->rq = rq;
10664        init_cfs_rq_runtime(cfs_rq);
10665
10666        tg->cfs_rq[cpu] = cfs_rq;
10667        tg->se[cpu] = se;
10668
10669        /* se could be NULL for root_task_group */
10670        if (!se)
10671                return;
10672
10673        if (!parent) {
10674                se->cfs_rq = &rq->cfs;
10675                se->depth = 0;
10676        } else {
10677                se->cfs_rq = parent->my_q;
10678                se->depth = parent->depth + 1;
10679        }
10680
10681        se->my_q = cfs_rq;
10682        /* guarantee group entities always have weight */
10683        update_load_set(&se->load, NICE_0_LOAD);
10684        se->parent = parent;
10685}
10686
10687static DEFINE_MUTEX(shares_mutex);
10688
10689int sched_group_set_shares(struct task_group *tg, unsigned long shares)
10690{
10691        int i;
10692
10693        /*
10694         * We can't change the weight of the root cgroup.
10695         */
10696        if (!tg->se[0])
10697                return -EINVAL;
10698
10699        shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
10700
10701        mutex_lock(&shares_mutex);
10702        if (tg->shares == shares)
10703                goto done;
10704
10705        tg->shares = shares;
10706        for_each_possible_cpu(i) {
10707                struct rq *rq = cpu_rq(i);
10708                struct sched_entity *se = tg->se[i];
10709                struct rq_flags rf;
10710
10711                /* Propagate contribution to hierarchy */
10712                rq_lock_irqsave(rq, &rf);
10713                update_rq_clock(rq);
10714                for_each_sched_entity(se) {
10715                        update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
10716                        update_cfs_group(se);
10717                }
10718                rq_unlock_irqrestore(rq, &rf);
10719        }
10720
10721done:
10722        mutex_unlock(&shares_mutex);
10723        return 0;
10724}
10725#else /* CONFIG_FAIR_GROUP_SCHED */
10726
10727void free_fair_sched_group(struct task_group *tg) { }
10728
10729int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10730{
10731        return 1;
10732}
10733
10734void online_fair_sched_group(struct task_group *tg) { }
10735
10736void unregister_fair_sched_group(struct task_group *tg) { }
10737
10738#endif /* CONFIG_FAIR_GROUP_SCHED */
10739
10740
10741static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
10742{
10743        struct sched_entity *se = &task->se;
10744        unsigned int rr_interval = 0;
10745
10746        /*
10747         * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
10748         * idle runqueue:
10749         */
10750        if (rq->cfs.load.weight)
10751                rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
10752
10753        return rr_interval;
10754}
10755
10756/*
10757 * All the scheduling class methods:
10758 */
10759const struct sched_class fair_sched_class = {
10760        .next                   = &idle_sched_class,
10761        .enqueue_task           = enqueue_task_fair,
10762        .dequeue_task           = dequeue_task_fair,
10763        .yield_task             = yield_task_fair,
10764        .yield_to_task          = yield_to_task_fair,
10765
10766        .check_preempt_curr     = check_preempt_wakeup,
10767
10768        .pick_next_task         = __pick_next_task_fair,
10769        .put_prev_task          = put_prev_task_fair,
10770        .set_next_task          = set_next_task_fair,
10771
10772#ifdef CONFIG_SMP
10773        .balance                = balance_fair,
10774        .select_task_rq         = select_task_rq_fair,
10775        .migrate_task_rq        = migrate_task_rq_fair,
10776
10777        .rq_online              = rq_online_fair,
10778        .rq_offline             = rq_offline_fair,
10779
10780        .task_dead              = task_dead_fair,
10781        .set_cpus_allowed       = set_cpus_allowed_common,
10782#endif
10783
10784        .task_tick              = task_tick_fair,
10785        .task_fork              = task_fork_fair,
10786
10787        .prio_changed           = prio_changed_fair,
10788        .switched_from          = switched_from_fair,
10789        .switched_to            = switched_to_fair,
10790
10791        .get_rr_interval        = get_rr_interval_fair,
10792
10793        .update_curr            = update_curr_fair,
10794
10795#ifdef CONFIG_FAIR_GROUP_SCHED
10796        .task_change_group      = task_change_group_fair,
10797#endif
10798
10799#ifdef CONFIG_UCLAMP_TASK
10800        .uclamp_enabled         = 1,
10801#endif
10802};
10803
10804#ifdef CONFIG_SCHED_DEBUG
10805void print_cfs_stats(struct seq_file *m, int cpu)
10806{
10807        struct cfs_rq *cfs_rq, *pos;
10808
10809        rcu_read_lock();
10810        for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
10811                print_cfs_rq(m, cpu, cfs_rq);
10812        rcu_read_unlock();
10813}
10814
10815#ifdef CONFIG_NUMA_BALANCING
10816void show_numa_stats(struct task_struct *p, struct seq_file *m)
10817{
10818        int node;
10819        unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
10820        struct numa_group *ng;
10821
10822        rcu_read_lock();
10823        ng = rcu_dereference(p->numa_group);
10824        for_each_online_node(node) {
10825                if (p->numa_faults) {
10826                        tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
10827                        tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
10828                }
10829                if (ng) {
10830                        gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
10831                        gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
10832                }
10833                print_numa_stats(m, node, tsf, tpf, gsf, gpf);
10834        }
10835        rcu_read_unlock();
10836}
10837#endif /* CONFIG_NUMA_BALANCING */
10838#endif /* CONFIG_SCHED_DEBUG */
10839
10840__init void init_sched_fair_class(void)
10841{
10842#ifdef CONFIG_SMP
10843        open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
10844
10845#ifdef CONFIG_NO_HZ_COMMON
10846        nohz.next_balance = jiffies;
10847        nohz.next_blocked = jiffies;
10848        zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
10849#endif
10850#endif /* SMP */
10851
10852}
10853
10854/*
10855 * Helper functions to facilitate extracting info from tracepoints.
10856 */
10857
10858const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq)
10859{
10860#ifdef CONFIG_SMP
10861        return cfs_rq ? &cfs_rq->avg : NULL;
10862#else
10863        return NULL;
10864#endif
10865}
10866EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg);
10867
10868char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len)
10869{
10870        if (!cfs_rq) {
10871                if (str)
10872                        strlcpy(str, "(null)", len);
10873                else
10874                        return NULL;
10875        }
10876
10877        cfs_rq_tg_path(cfs_rq, str, len);
10878        return str;
10879}
10880EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path);
10881
10882int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq)
10883{
10884        return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1;
10885}
10886EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu);
10887
10888const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq)
10889{
10890#ifdef CONFIG_SMP
10891        return rq ? &rq->avg_rt : NULL;
10892#else
10893        return NULL;
10894#endif
10895}
10896EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt);
10897
10898const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq)
10899{
10900#ifdef CONFIG_SMP
10901        return rq ? &rq->avg_dl : NULL;
10902#else
10903        return NULL;
10904#endif
10905}
10906EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl);
10907
10908const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq)
10909{
10910#if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ)
10911        return rq ? &rq->avg_irq : NULL;
10912#else
10913        return NULL;
10914#endif
10915}
10916EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq);
10917
10918int sched_trace_rq_cpu(struct rq *rq)
10919{
10920        return rq ? cpu_of(rq) : -1;
10921}
10922EXPORT_SYMBOL_GPL(sched_trace_rq_cpu);
10923
10924const struct cpumask *sched_trace_rd_span(struct root_domain *rd)
10925{
10926#ifdef CONFIG_SMP
10927        return rd ? rd->span : NULL;
10928#else
10929        return NULL;
10930#endif
10931}
10932EXPORT_SYMBOL_GPL(sched_trace_rd_span);
10933