linux/kernel/sched/rt.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
   4 * policies)
   5 */
   6#include "sched.h"
   7
   8#include "pelt.h"
   9
  10int sched_rr_timeslice = RR_TIMESLICE;
  11int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE;
  12
  13static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  14
  15struct rt_bandwidth def_rt_bandwidth;
  16
  17static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  18{
  19        struct rt_bandwidth *rt_b =
  20                container_of(timer, struct rt_bandwidth, rt_period_timer);
  21        int idle = 0;
  22        int overrun;
  23
  24        raw_spin_lock(&rt_b->rt_runtime_lock);
  25        for (;;) {
  26                overrun = hrtimer_forward_now(timer, rt_b->rt_period);
  27                if (!overrun)
  28                        break;
  29
  30                raw_spin_unlock(&rt_b->rt_runtime_lock);
  31                idle = do_sched_rt_period_timer(rt_b, overrun);
  32                raw_spin_lock(&rt_b->rt_runtime_lock);
  33        }
  34        if (idle)
  35                rt_b->rt_period_active = 0;
  36        raw_spin_unlock(&rt_b->rt_runtime_lock);
  37
  38        return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  39}
  40
  41void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  42{
  43        rt_b->rt_period = ns_to_ktime(period);
  44        rt_b->rt_runtime = runtime;
  45
  46        raw_spin_lock_init(&rt_b->rt_runtime_lock);
  47
  48        hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC,
  49                     HRTIMER_MODE_REL_HARD);
  50        rt_b->rt_period_timer.function = sched_rt_period_timer;
  51}
  52
  53static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  54{
  55        if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  56                return;
  57
  58        raw_spin_lock(&rt_b->rt_runtime_lock);
  59        if (!rt_b->rt_period_active) {
  60                rt_b->rt_period_active = 1;
  61                /*
  62                 * SCHED_DEADLINE updates the bandwidth, as a run away
  63                 * RT task with a DL task could hog a CPU. But DL does
  64                 * not reset the period. If a deadline task was running
  65                 * without an RT task running, it can cause RT tasks to
  66                 * throttle when they start up. Kick the timer right away
  67                 * to update the period.
  68                 */
  69                hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
  70                hrtimer_start_expires(&rt_b->rt_period_timer,
  71                                      HRTIMER_MODE_ABS_PINNED_HARD);
  72        }
  73        raw_spin_unlock(&rt_b->rt_runtime_lock);
  74}
  75
  76void init_rt_rq(struct rt_rq *rt_rq)
  77{
  78        struct rt_prio_array *array;
  79        int i;
  80
  81        array = &rt_rq->active;
  82        for (i = 0; i < MAX_RT_PRIO; i++) {
  83                INIT_LIST_HEAD(array->queue + i);
  84                __clear_bit(i, array->bitmap);
  85        }
  86        /* delimiter for bitsearch: */
  87        __set_bit(MAX_RT_PRIO, array->bitmap);
  88
  89#if defined CONFIG_SMP
  90        rt_rq->highest_prio.curr = MAX_RT_PRIO;
  91        rt_rq->highest_prio.next = MAX_RT_PRIO;
  92        rt_rq->rt_nr_migratory = 0;
  93        rt_rq->overloaded = 0;
  94        plist_head_init(&rt_rq->pushable_tasks);
  95#endif /* CONFIG_SMP */
  96        /* We start is dequeued state, because no RT tasks are queued */
  97        rt_rq->rt_queued = 0;
  98
  99        rt_rq->rt_time = 0;
 100        rt_rq->rt_throttled = 0;
 101        rt_rq->rt_runtime = 0;
 102        raw_spin_lock_init(&rt_rq->rt_runtime_lock);
 103}
 104
 105#ifdef CONFIG_RT_GROUP_SCHED
 106static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
 107{
 108        hrtimer_cancel(&rt_b->rt_period_timer);
 109}
 110
 111#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
 112
 113static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
 114{
 115#ifdef CONFIG_SCHED_DEBUG
 116        WARN_ON_ONCE(!rt_entity_is_task(rt_se));
 117#endif
 118        return container_of(rt_se, struct task_struct, rt);
 119}
 120
 121static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
 122{
 123        return rt_rq->rq;
 124}
 125
 126static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
 127{
 128        return rt_se->rt_rq;
 129}
 130
 131static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
 132{
 133        struct rt_rq *rt_rq = rt_se->rt_rq;
 134
 135        return rt_rq->rq;
 136}
 137
 138void free_rt_sched_group(struct task_group *tg)
 139{
 140        int i;
 141
 142        if (tg->rt_se)
 143                destroy_rt_bandwidth(&tg->rt_bandwidth);
 144
 145        for_each_possible_cpu(i) {
 146                if (tg->rt_rq)
 147                        kfree(tg->rt_rq[i]);
 148                if (tg->rt_se)
 149                        kfree(tg->rt_se[i]);
 150        }
 151
 152        kfree(tg->rt_rq);
 153        kfree(tg->rt_se);
 154}
 155
 156void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
 157                struct sched_rt_entity *rt_se, int cpu,
 158                struct sched_rt_entity *parent)
 159{
 160        struct rq *rq = cpu_rq(cpu);
 161
 162        rt_rq->highest_prio.curr = MAX_RT_PRIO;
 163        rt_rq->rt_nr_boosted = 0;
 164        rt_rq->rq = rq;
 165        rt_rq->tg = tg;
 166
 167        tg->rt_rq[cpu] = rt_rq;
 168        tg->rt_se[cpu] = rt_se;
 169
 170        if (!rt_se)
 171                return;
 172
 173        if (!parent)
 174                rt_se->rt_rq = &rq->rt;
 175        else
 176                rt_se->rt_rq = parent->my_q;
 177
 178        rt_se->my_q = rt_rq;
 179        rt_se->parent = parent;
 180        INIT_LIST_HEAD(&rt_se->run_list);
 181}
 182
 183int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
 184{
 185        struct rt_rq *rt_rq;
 186        struct sched_rt_entity *rt_se;
 187        int i;
 188
 189        tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL);
 190        if (!tg->rt_rq)
 191                goto err;
 192        tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL);
 193        if (!tg->rt_se)
 194                goto err;
 195
 196        init_rt_bandwidth(&tg->rt_bandwidth,
 197                        ktime_to_ns(def_rt_bandwidth.rt_period), 0);
 198
 199        for_each_possible_cpu(i) {
 200                rt_rq = kzalloc_node(sizeof(struct rt_rq),
 201                                     GFP_KERNEL, cpu_to_node(i));
 202                if (!rt_rq)
 203                        goto err;
 204
 205                rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
 206                                     GFP_KERNEL, cpu_to_node(i));
 207                if (!rt_se)
 208                        goto err_free_rq;
 209
 210                init_rt_rq(rt_rq);
 211                rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
 212                init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
 213        }
 214
 215        return 1;
 216
 217err_free_rq:
 218        kfree(rt_rq);
 219err:
 220        return 0;
 221}
 222
 223#else /* CONFIG_RT_GROUP_SCHED */
 224
 225#define rt_entity_is_task(rt_se) (1)
 226
 227static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
 228{
 229        return container_of(rt_se, struct task_struct, rt);
 230}
 231
 232static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
 233{
 234        return container_of(rt_rq, struct rq, rt);
 235}
 236
 237static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
 238{
 239        struct task_struct *p = rt_task_of(rt_se);
 240
 241        return task_rq(p);
 242}
 243
 244static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
 245{
 246        struct rq *rq = rq_of_rt_se(rt_se);
 247
 248        return &rq->rt;
 249}
 250
 251void free_rt_sched_group(struct task_group *tg) { }
 252
 253int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
 254{
 255        return 1;
 256}
 257#endif /* CONFIG_RT_GROUP_SCHED */
 258
 259#ifdef CONFIG_SMP
 260
 261static void pull_rt_task(struct rq *this_rq);
 262
 263static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
 264{
 265        /* Try to pull RT tasks here if we lower this rq's prio */
 266        return rq->rt.highest_prio.curr > prev->prio;
 267}
 268
 269static inline int rt_overloaded(struct rq *rq)
 270{
 271        return atomic_read(&rq->rd->rto_count);
 272}
 273
 274static inline void rt_set_overload(struct rq *rq)
 275{
 276        if (!rq->online)
 277                return;
 278
 279        cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
 280        /*
 281         * Make sure the mask is visible before we set
 282         * the overload count. That is checked to determine
 283         * if we should look at the mask. It would be a shame
 284         * if we looked at the mask, but the mask was not
 285         * updated yet.
 286         *
 287         * Matched by the barrier in pull_rt_task().
 288         */
 289        smp_wmb();
 290        atomic_inc(&rq->rd->rto_count);
 291}
 292
 293static inline void rt_clear_overload(struct rq *rq)
 294{
 295        if (!rq->online)
 296                return;
 297
 298        /* the order here really doesn't matter */
 299        atomic_dec(&rq->rd->rto_count);
 300        cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
 301}
 302
 303static void update_rt_migration(struct rt_rq *rt_rq)
 304{
 305        if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
 306                if (!rt_rq->overloaded) {
 307                        rt_set_overload(rq_of_rt_rq(rt_rq));
 308                        rt_rq->overloaded = 1;
 309                }
 310        } else if (rt_rq->overloaded) {
 311                rt_clear_overload(rq_of_rt_rq(rt_rq));
 312                rt_rq->overloaded = 0;
 313        }
 314}
 315
 316static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 317{
 318        struct task_struct *p;
 319
 320        if (!rt_entity_is_task(rt_se))
 321                return;
 322
 323        p = rt_task_of(rt_se);
 324        rt_rq = &rq_of_rt_rq(rt_rq)->rt;
 325
 326        rt_rq->rt_nr_total++;
 327        if (p->nr_cpus_allowed > 1)
 328                rt_rq->rt_nr_migratory++;
 329
 330        update_rt_migration(rt_rq);
 331}
 332
 333static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 334{
 335        struct task_struct *p;
 336
 337        if (!rt_entity_is_task(rt_se))
 338                return;
 339
 340        p = rt_task_of(rt_se);
 341        rt_rq = &rq_of_rt_rq(rt_rq)->rt;
 342
 343        rt_rq->rt_nr_total--;
 344        if (p->nr_cpus_allowed > 1)
 345                rt_rq->rt_nr_migratory--;
 346
 347        update_rt_migration(rt_rq);
 348}
 349
 350static inline int has_pushable_tasks(struct rq *rq)
 351{
 352        return !plist_head_empty(&rq->rt.pushable_tasks);
 353}
 354
 355static DEFINE_PER_CPU(struct callback_head, rt_push_head);
 356static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
 357
 358static void push_rt_tasks(struct rq *);
 359static void pull_rt_task(struct rq *);
 360
 361static inline void rt_queue_push_tasks(struct rq *rq)
 362{
 363        if (!has_pushable_tasks(rq))
 364                return;
 365
 366        queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
 367}
 368
 369static inline void rt_queue_pull_task(struct rq *rq)
 370{
 371        queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
 372}
 373
 374static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
 375{
 376        plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
 377        plist_node_init(&p->pushable_tasks, p->prio);
 378        plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
 379
 380        /* Update the highest prio pushable task */
 381        if (p->prio < rq->rt.highest_prio.next)
 382                rq->rt.highest_prio.next = p->prio;
 383}
 384
 385static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
 386{
 387        plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
 388
 389        /* Update the new highest prio pushable task */
 390        if (has_pushable_tasks(rq)) {
 391                p = plist_first_entry(&rq->rt.pushable_tasks,
 392                                      struct task_struct, pushable_tasks);
 393                rq->rt.highest_prio.next = p->prio;
 394        } else
 395                rq->rt.highest_prio.next = MAX_RT_PRIO;
 396}
 397
 398#else
 399
 400static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
 401{
 402}
 403
 404static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
 405{
 406}
 407
 408static inline
 409void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 410{
 411}
 412
 413static inline
 414void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 415{
 416}
 417
 418static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
 419{
 420        return false;
 421}
 422
 423static inline void pull_rt_task(struct rq *this_rq)
 424{
 425}
 426
 427static inline void rt_queue_push_tasks(struct rq *rq)
 428{
 429}
 430#endif /* CONFIG_SMP */
 431
 432static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
 433static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
 434
 435static inline int on_rt_rq(struct sched_rt_entity *rt_se)
 436{
 437        return rt_se->on_rq;
 438}
 439
 440#ifdef CONFIG_RT_GROUP_SCHED
 441
 442static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
 443{
 444        if (!rt_rq->tg)
 445                return RUNTIME_INF;
 446
 447        return rt_rq->rt_runtime;
 448}
 449
 450static inline u64 sched_rt_period(struct rt_rq *rt_rq)
 451{
 452        return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
 453}
 454
 455typedef struct task_group *rt_rq_iter_t;
 456
 457static inline struct task_group *next_task_group(struct task_group *tg)
 458{
 459        do {
 460                tg = list_entry_rcu(tg->list.next,
 461                        typeof(struct task_group), list);
 462        } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
 463
 464        if (&tg->list == &task_groups)
 465                tg = NULL;
 466
 467        return tg;
 468}
 469
 470#define for_each_rt_rq(rt_rq, iter, rq)                                 \
 471        for (iter = container_of(&task_groups, typeof(*iter), list);    \
 472                (iter = next_task_group(iter)) &&                       \
 473                (rt_rq = iter->rt_rq[cpu_of(rq)]);)
 474
 475#define for_each_sched_rt_entity(rt_se) \
 476        for (; rt_se; rt_se = rt_se->parent)
 477
 478static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
 479{
 480        return rt_se->my_q;
 481}
 482
 483static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
 484static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
 485
 486static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
 487{
 488        struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
 489        struct rq *rq = rq_of_rt_rq(rt_rq);
 490        struct sched_rt_entity *rt_se;
 491
 492        int cpu = cpu_of(rq);
 493
 494        rt_se = rt_rq->tg->rt_se[cpu];
 495
 496        if (rt_rq->rt_nr_running) {
 497                if (!rt_se)
 498                        enqueue_top_rt_rq(rt_rq);
 499                else if (!on_rt_rq(rt_se))
 500                        enqueue_rt_entity(rt_se, 0);
 501
 502                if (rt_rq->highest_prio.curr < curr->prio)
 503                        resched_curr(rq);
 504        }
 505}
 506
 507static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
 508{
 509        struct sched_rt_entity *rt_se;
 510        int cpu = cpu_of(rq_of_rt_rq(rt_rq));
 511
 512        rt_se = rt_rq->tg->rt_se[cpu];
 513
 514        if (!rt_se) {
 515                dequeue_top_rt_rq(rt_rq);
 516                /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
 517                cpufreq_update_util(rq_of_rt_rq(rt_rq), 0);
 518        }
 519        else if (on_rt_rq(rt_se))
 520                dequeue_rt_entity(rt_se, 0);
 521}
 522
 523static inline int rt_rq_throttled(struct rt_rq *rt_rq)
 524{
 525        return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
 526}
 527
 528static int rt_se_boosted(struct sched_rt_entity *rt_se)
 529{
 530        struct rt_rq *rt_rq = group_rt_rq(rt_se);
 531        struct task_struct *p;
 532
 533        if (rt_rq)
 534                return !!rt_rq->rt_nr_boosted;
 535
 536        p = rt_task_of(rt_se);
 537        return p->prio != p->normal_prio;
 538}
 539
 540#ifdef CONFIG_SMP
 541static inline const struct cpumask *sched_rt_period_mask(void)
 542{
 543        return this_rq()->rd->span;
 544}
 545#else
 546static inline const struct cpumask *sched_rt_period_mask(void)
 547{
 548        return cpu_online_mask;
 549}
 550#endif
 551
 552static inline
 553struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
 554{
 555        return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
 556}
 557
 558static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
 559{
 560        return &rt_rq->tg->rt_bandwidth;
 561}
 562
 563#else /* !CONFIG_RT_GROUP_SCHED */
 564
 565static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
 566{
 567        return rt_rq->rt_runtime;
 568}
 569
 570static inline u64 sched_rt_period(struct rt_rq *rt_rq)
 571{
 572        return ktime_to_ns(def_rt_bandwidth.rt_period);
 573}
 574
 575typedef struct rt_rq *rt_rq_iter_t;
 576
 577#define for_each_rt_rq(rt_rq, iter, rq) \
 578        for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
 579
 580#define for_each_sched_rt_entity(rt_se) \
 581        for (; rt_se; rt_se = NULL)
 582
 583static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
 584{
 585        return NULL;
 586}
 587
 588static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
 589{
 590        struct rq *rq = rq_of_rt_rq(rt_rq);
 591
 592        if (!rt_rq->rt_nr_running)
 593                return;
 594
 595        enqueue_top_rt_rq(rt_rq);
 596        resched_curr(rq);
 597}
 598
 599static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
 600{
 601        dequeue_top_rt_rq(rt_rq);
 602}
 603
 604static inline int rt_rq_throttled(struct rt_rq *rt_rq)
 605{
 606        return rt_rq->rt_throttled;
 607}
 608
 609static inline const struct cpumask *sched_rt_period_mask(void)
 610{
 611        return cpu_online_mask;
 612}
 613
 614static inline
 615struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
 616{
 617        return &cpu_rq(cpu)->rt;
 618}
 619
 620static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
 621{
 622        return &def_rt_bandwidth;
 623}
 624
 625#endif /* CONFIG_RT_GROUP_SCHED */
 626
 627bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
 628{
 629        struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 630
 631        return (hrtimer_active(&rt_b->rt_period_timer) ||
 632                rt_rq->rt_time < rt_b->rt_runtime);
 633}
 634
 635#ifdef CONFIG_SMP
 636/*
 637 * We ran out of runtime, see if we can borrow some from our neighbours.
 638 */
 639static void do_balance_runtime(struct rt_rq *rt_rq)
 640{
 641        struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 642        struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
 643        int i, weight;
 644        u64 rt_period;
 645
 646        weight = cpumask_weight(rd->span);
 647
 648        raw_spin_lock(&rt_b->rt_runtime_lock);
 649        rt_period = ktime_to_ns(rt_b->rt_period);
 650        for_each_cpu(i, rd->span) {
 651                struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
 652                s64 diff;
 653
 654                if (iter == rt_rq)
 655                        continue;
 656
 657                raw_spin_lock(&iter->rt_runtime_lock);
 658                /*
 659                 * Either all rqs have inf runtime and there's nothing to steal
 660                 * or __disable_runtime() below sets a specific rq to inf to
 661                 * indicate its been disabled and disalow stealing.
 662                 */
 663                if (iter->rt_runtime == RUNTIME_INF)
 664                        goto next;
 665
 666                /*
 667                 * From runqueues with spare time, take 1/n part of their
 668                 * spare time, but no more than our period.
 669                 */
 670                diff = iter->rt_runtime - iter->rt_time;
 671                if (diff > 0) {
 672                        diff = div_u64((u64)diff, weight);
 673                        if (rt_rq->rt_runtime + diff > rt_period)
 674                                diff = rt_period - rt_rq->rt_runtime;
 675                        iter->rt_runtime -= diff;
 676                        rt_rq->rt_runtime += diff;
 677                        if (rt_rq->rt_runtime == rt_period) {
 678                                raw_spin_unlock(&iter->rt_runtime_lock);
 679                                break;
 680                        }
 681                }
 682next:
 683                raw_spin_unlock(&iter->rt_runtime_lock);
 684        }
 685        raw_spin_unlock(&rt_b->rt_runtime_lock);
 686}
 687
 688/*
 689 * Ensure this RQ takes back all the runtime it lend to its neighbours.
 690 */
 691static void __disable_runtime(struct rq *rq)
 692{
 693        struct root_domain *rd = rq->rd;
 694        rt_rq_iter_t iter;
 695        struct rt_rq *rt_rq;
 696
 697        if (unlikely(!scheduler_running))
 698                return;
 699
 700        for_each_rt_rq(rt_rq, iter, rq) {
 701                struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 702                s64 want;
 703                int i;
 704
 705                raw_spin_lock(&rt_b->rt_runtime_lock);
 706                raw_spin_lock(&rt_rq->rt_runtime_lock);
 707                /*
 708                 * Either we're all inf and nobody needs to borrow, or we're
 709                 * already disabled and thus have nothing to do, or we have
 710                 * exactly the right amount of runtime to take out.
 711                 */
 712                if (rt_rq->rt_runtime == RUNTIME_INF ||
 713                                rt_rq->rt_runtime == rt_b->rt_runtime)
 714                        goto balanced;
 715                raw_spin_unlock(&rt_rq->rt_runtime_lock);
 716
 717                /*
 718                 * Calculate the difference between what we started out with
 719                 * and what we current have, that's the amount of runtime
 720                 * we lend and now have to reclaim.
 721                 */
 722                want = rt_b->rt_runtime - rt_rq->rt_runtime;
 723
 724                /*
 725                 * Greedy reclaim, take back as much as we can.
 726                 */
 727                for_each_cpu(i, rd->span) {
 728                        struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
 729                        s64 diff;
 730
 731                        /*
 732                         * Can't reclaim from ourselves or disabled runqueues.
 733                         */
 734                        if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
 735                                continue;
 736
 737                        raw_spin_lock(&iter->rt_runtime_lock);
 738                        if (want > 0) {
 739                                diff = min_t(s64, iter->rt_runtime, want);
 740                                iter->rt_runtime -= diff;
 741                                want -= diff;
 742                        } else {
 743                                iter->rt_runtime -= want;
 744                                want -= want;
 745                        }
 746                        raw_spin_unlock(&iter->rt_runtime_lock);
 747
 748                        if (!want)
 749                                break;
 750                }
 751
 752                raw_spin_lock(&rt_rq->rt_runtime_lock);
 753                /*
 754                 * We cannot be left wanting - that would mean some runtime
 755                 * leaked out of the system.
 756                 */
 757                BUG_ON(want);
 758balanced:
 759                /*
 760                 * Disable all the borrow logic by pretending we have inf
 761                 * runtime - in which case borrowing doesn't make sense.
 762                 */
 763                rt_rq->rt_runtime = RUNTIME_INF;
 764                rt_rq->rt_throttled = 0;
 765                raw_spin_unlock(&rt_rq->rt_runtime_lock);
 766                raw_spin_unlock(&rt_b->rt_runtime_lock);
 767
 768                /* Make rt_rq available for pick_next_task() */
 769                sched_rt_rq_enqueue(rt_rq);
 770        }
 771}
 772
 773static void __enable_runtime(struct rq *rq)
 774{
 775        rt_rq_iter_t iter;
 776        struct rt_rq *rt_rq;
 777
 778        if (unlikely(!scheduler_running))
 779                return;
 780
 781        /*
 782         * Reset each runqueue's bandwidth settings
 783         */
 784        for_each_rt_rq(rt_rq, iter, rq) {
 785                struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 786
 787                raw_spin_lock(&rt_b->rt_runtime_lock);
 788                raw_spin_lock(&rt_rq->rt_runtime_lock);
 789                rt_rq->rt_runtime = rt_b->rt_runtime;
 790                rt_rq->rt_time = 0;
 791                rt_rq->rt_throttled = 0;
 792                raw_spin_unlock(&rt_rq->rt_runtime_lock);
 793                raw_spin_unlock(&rt_b->rt_runtime_lock);
 794        }
 795}
 796
 797static void balance_runtime(struct rt_rq *rt_rq)
 798{
 799        if (!sched_feat(RT_RUNTIME_SHARE))
 800                return;
 801
 802        if (rt_rq->rt_time > rt_rq->rt_runtime) {
 803                raw_spin_unlock(&rt_rq->rt_runtime_lock);
 804                do_balance_runtime(rt_rq);
 805                raw_spin_lock(&rt_rq->rt_runtime_lock);
 806        }
 807}
 808#else /* !CONFIG_SMP */
 809static inline void balance_runtime(struct rt_rq *rt_rq) {}
 810#endif /* CONFIG_SMP */
 811
 812static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
 813{
 814        int i, idle = 1, throttled = 0;
 815        const struct cpumask *span;
 816
 817        span = sched_rt_period_mask();
 818#ifdef CONFIG_RT_GROUP_SCHED
 819        /*
 820         * FIXME: isolated CPUs should really leave the root task group,
 821         * whether they are isolcpus or were isolated via cpusets, lest
 822         * the timer run on a CPU which does not service all runqueues,
 823         * potentially leaving other CPUs indefinitely throttled.  If
 824         * isolation is really required, the user will turn the throttle
 825         * off to kill the perturbations it causes anyway.  Meanwhile,
 826         * this maintains functionality for boot and/or troubleshooting.
 827         */
 828        if (rt_b == &root_task_group.rt_bandwidth)
 829                span = cpu_online_mask;
 830#endif
 831        for_each_cpu(i, span) {
 832                int enqueue = 0;
 833                struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
 834                struct rq *rq = rq_of_rt_rq(rt_rq);
 835                int skip;
 836
 837                /*
 838                 * When span == cpu_online_mask, taking each rq->lock
 839                 * can be time-consuming. Try to avoid it when possible.
 840                 */
 841                raw_spin_lock(&rt_rq->rt_runtime_lock);
 842                if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF)
 843                        rt_rq->rt_runtime = rt_b->rt_runtime;
 844                skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
 845                raw_spin_unlock(&rt_rq->rt_runtime_lock);
 846                if (skip)
 847                        continue;
 848
 849                raw_spin_lock(&rq->lock);
 850                update_rq_clock(rq);
 851
 852                if (rt_rq->rt_time) {
 853                        u64 runtime;
 854
 855                        raw_spin_lock(&rt_rq->rt_runtime_lock);
 856                        if (rt_rq->rt_throttled)
 857                                balance_runtime(rt_rq);
 858                        runtime = rt_rq->rt_runtime;
 859                        rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
 860                        if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
 861                                rt_rq->rt_throttled = 0;
 862                                enqueue = 1;
 863
 864                                /*
 865                                 * When we're idle and a woken (rt) task is
 866                                 * throttled check_preempt_curr() will set
 867                                 * skip_update and the time between the wakeup
 868                                 * and this unthrottle will get accounted as
 869                                 * 'runtime'.
 870                                 */
 871                                if (rt_rq->rt_nr_running && rq->curr == rq->idle)
 872                                        rq_clock_cancel_skipupdate(rq);
 873                        }
 874                        if (rt_rq->rt_time || rt_rq->rt_nr_running)
 875                                idle = 0;
 876                        raw_spin_unlock(&rt_rq->rt_runtime_lock);
 877                } else if (rt_rq->rt_nr_running) {
 878                        idle = 0;
 879                        if (!rt_rq_throttled(rt_rq))
 880                                enqueue = 1;
 881                }
 882                if (rt_rq->rt_throttled)
 883                        throttled = 1;
 884
 885                if (enqueue)
 886                        sched_rt_rq_enqueue(rt_rq);
 887                raw_spin_unlock(&rq->lock);
 888        }
 889
 890        if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
 891                return 1;
 892
 893        return idle;
 894}
 895
 896static inline int rt_se_prio(struct sched_rt_entity *rt_se)
 897{
 898#ifdef CONFIG_RT_GROUP_SCHED
 899        struct rt_rq *rt_rq = group_rt_rq(rt_se);
 900
 901        if (rt_rq)
 902                return rt_rq->highest_prio.curr;
 903#endif
 904
 905        return rt_task_of(rt_se)->prio;
 906}
 907
 908static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
 909{
 910        u64 runtime = sched_rt_runtime(rt_rq);
 911
 912        if (rt_rq->rt_throttled)
 913                return rt_rq_throttled(rt_rq);
 914
 915        if (runtime >= sched_rt_period(rt_rq))
 916                return 0;
 917
 918        balance_runtime(rt_rq);
 919        runtime = sched_rt_runtime(rt_rq);
 920        if (runtime == RUNTIME_INF)
 921                return 0;
 922
 923        if (rt_rq->rt_time > runtime) {
 924                struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 925
 926                /*
 927                 * Don't actually throttle groups that have no runtime assigned
 928                 * but accrue some time due to boosting.
 929                 */
 930                if (likely(rt_b->rt_runtime)) {
 931                        rt_rq->rt_throttled = 1;
 932                        printk_deferred_once("sched: RT throttling activated\n");
 933                } else {
 934                        /*
 935                         * In case we did anyway, make it go away,
 936                         * replenishment is a joke, since it will replenish us
 937                         * with exactly 0 ns.
 938                         */
 939                        rt_rq->rt_time = 0;
 940                }
 941
 942                if (rt_rq_throttled(rt_rq)) {
 943                        sched_rt_rq_dequeue(rt_rq);
 944                        return 1;
 945                }
 946        }
 947
 948        return 0;
 949}
 950
 951/*
 952 * Update the current task's runtime statistics. Skip current tasks that
 953 * are not in our scheduling class.
 954 */
 955static void update_curr_rt(struct rq *rq)
 956{
 957        struct task_struct *curr = rq->curr;
 958        struct sched_rt_entity *rt_se = &curr->rt;
 959        u64 delta_exec;
 960        u64 now;
 961
 962        if (curr->sched_class != &rt_sched_class)
 963                return;
 964
 965        now = rq_clock_task(rq);
 966        delta_exec = now - curr->se.exec_start;
 967        if (unlikely((s64)delta_exec <= 0))
 968                return;
 969
 970        schedstat_set(curr->se.statistics.exec_max,
 971                      max(curr->se.statistics.exec_max, delta_exec));
 972
 973        curr->se.sum_exec_runtime += delta_exec;
 974        account_group_exec_runtime(curr, delta_exec);
 975
 976        curr->se.exec_start = now;
 977        cgroup_account_cputime(curr, delta_exec);
 978
 979        if (!rt_bandwidth_enabled())
 980                return;
 981
 982        for_each_sched_rt_entity(rt_se) {
 983                struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
 984
 985                if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
 986                        raw_spin_lock(&rt_rq->rt_runtime_lock);
 987                        rt_rq->rt_time += delta_exec;
 988                        if (sched_rt_runtime_exceeded(rt_rq))
 989                                resched_curr(rq);
 990                        raw_spin_unlock(&rt_rq->rt_runtime_lock);
 991                }
 992        }
 993}
 994
 995static void
 996dequeue_top_rt_rq(struct rt_rq *rt_rq)
 997{
 998        struct rq *rq = rq_of_rt_rq(rt_rq);
 999
1000        BUG_ON(&rq->rt != rt_rq);
1001
1002        if (!rt_rq->rt_queued)
1003                return;
1004
1005        BUG_ON(!rq->nr_running);
1006
1007        sub_nr_running(rq, rt_rq->rt_nr_running);
1008        rt_rq->rt_queued = 0;
1009
1010}
1011
1012static void
1013enqueue_top_rt_rq(struct rt_rq *rt_rq)
1014{
1015        struct rq *rq = rq_of_rt_rq(rt_rq);
1016
1017        BUG_ON(&rq->rt != rt_rq);
1018
1019        if (rt_rq->rt_queued)
1020                return;
1021
1022        if (rt_rq_throttled(rt_rq))
1023                return;
1024
1025        if (rt_rq->rt_nr_running) {
1026                add_nr_running(rq, rt_rq->rt_nr_running);
1027                rt_rq->rt_queued = 1;
1028        }
1029
1030        /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1031        cpufreq_update_util(rq, 0);
1032}
1033
1034#if defined CONFIG_SMP
1035
1036static void
1037inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1038{
1039        struct rq *rq = rq_of_rt_rq(rt_rq);
1040
1041#ifdef CONFIG_RT_GROUP_SCHED
1042        /*
1043         * Change rq's cpupri only if rt_rq is the top queue.
1044         */
1045        if (&rq->rt != rt_rq)
1046                return;
1047#endif
1048        if (rq->online && prio < prev_prio)
1049                cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1050}
1051
1052static void
1053dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1054{
1055        struct rq *rq = rq_of_rt_rq(rt_rq);
1056
1057#ifdef CONFIG_RT_GROUP_SCHED
1058        /*
1059         * Change rq's cpupri only if rt_rq is the top queue.
1060         */
1061        if (&rq->rt != rt_rq)
1062                return;
1063#endif
1064        if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1065                cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1066}
1067
1068#else /* CONFIG_SMP */
1069
1070static inline
1071void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1072static inline
1073void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1074
1075#endif /* CONFIG_SMP */
1076
1077#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1078static void
1079inc_rt_prio(struct rt_rq *rt_rq, int prio)
1080{
1081        int prev_prio = rt_rq->highest_prio.curr;
1082
1083        if (prio < prev_prio)
1084                rt_rq->highest_prio.curr = prio;
1085
1086        inc_rt_prio_smp(rt_rq, prio, prev_prio);
1087}
1088
1089static void
1090dec_rt_prio(struct rt_rq *rt_rq, int prio)
1091{
1092        int prev_prio = rt_rq->highest_prio.curr;
1093
1094        if (rt_rq->rt_nr_running) {
1095
1096                WARN_ON(prio < prev_prio);
1097
1098                /*
1099                 * This may have been our highest task, and therefore
1100                 * we may have some recomputation to do
1101                 */
1102                if (prio == prev_prio) {
1103                        struct rt_prio_array *array = &rt_rq->active;
1104
1105                        rt_rq->highest_prio.curr =
1106                                sched_find_first_bit(array->bitmap);
1107                }
1108
1109        } else
1110                rt_rq->highest_prio.curr = MAX_RT_PRIO;
1111
1112        dec_rt_prio_smp(rt_rq, prio, prev_prio);
1113}
1114
1115#else
1116
1117static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1118static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1119
1120#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1121
1122#ifdef CONFIG_RT_GROUP_SCHED
1123
1124static void
1125inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1126{
1127        if (rt_se_boosted(rt_se))
1128                rt_rq->rt_nr_boosted++;
1129
1130        if (rt_rq->tg)
1131                start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1132}
1133
1134static void
1135dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1136{
1137        if (rt_se_boosted(rt_se))
1138                rt_rq->rt_nr_boosted--;
1139
1140        WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1141}
1142
1143#else /* CONFIG_RT_GROUP_SCHED */
1144
1145static void
1146inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1147{
1148        start_rt_bandwidth(&def_rt_bandwidth);
1149}
1150
1151static inline
1152void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1153
1154#endif /* CONFIG_RT_GROUP_SCHED */
1155
1156static inline
1157unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1158{
1159        struct rt_rq *group_rq = group_rt_rq(rt_se);
1160
1161        if (group_rq)
1162                return group_rq->rt_nr_running;
1163        else
1164                return 1;
1165}
1166
1167static inline
1168unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1169{
1170        struct rt_rq *group_rq = group_rt_rq(rt_se);
1171        struct task_struct *tsk;
1172
1173        if (group_rq)
1174                return group_rq->rr_nr_running;
1175
1176        tsk = rt_task_of(rt_se);
1177
1178        return (tsk->policy == SCHED_RR) ? 1 : 0;
1179}
1180
1181static inline
1182void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1183{
1184        int prio = rt_se_prio(rt_se);
1185
1186        WARN_ON(!rt_prio(prio));
1187        rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1188        rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1189
1190        inc_rt_prio(rt_rq, prio);
1191        inc_rt_migration(rt_se, rt_rq);
1192        inc_rt_group(rt_se, rt_rq);
1193}
1194
1195static inline
1196void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1197{
1198        WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1199        WARN_ON(!rt_rq->rt_nr_running);
1200        rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1201        rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1202
1203        dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1204        dec_rt_migration(rt_se, rt_rq);
1205        dec_rt_group(rt_se, rt_rq);
1206}
1207
1208/*
1209 * Change rt_se->run_list location unless SAVE && !MOVE
1210 *
1211 * assumes ENQUEUE/DEQUEUE flags match
1212 */
1213static inline bool move_entity(unsigned int flags)
1214{
1215        if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1216                return false;
1217
1218        return true;
1219}
1220
1221static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1222{
1223        list_del_init(&rt_se->run_list);
1224
1225        if (list_empty(array->queue + rt_se_prio(rt_se)))
1226                __clear_bit(rt_se_prio(rt_se), array->bitmap);
1227
1228        rt_se->on_list = 0;
1229}
1230
1231static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1232{
1233        struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1234        struct rt_prio_array *array = &rt_rq->active;
1235        struct rt_rq *group_rq = group_rt_rq(rt_se);
1236        struct list_head *queue = array->queue + rt_se_prio(rt_se);
1237
1238        /*
1239         * Don't enqueue the group if its throttled, or when empty.
1240         * The latter is a consequence of the former when a child group
1241         * get throttled and the current group doesn't have any other
1242         * active members.
1243         */
1244        if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1245                if (rt_se->on_list)
1246                        __delist_rt_entity(rt_se, array);
1247                return;
1248        }
1249
1250        if (move_entity(flags)) {
1251                WARN_ON_ONCE(rt_se->on_list);
1252                if (flags & ENQUEUE_HEAD)
1253                        list_add(&rt_se->run_list, queue);
1254                else
1255                        list_add_tail(&rt_se->run_list, queue);
1256
1257                __set_bit(rt_se_prio(rt_se), array->bitmap);
1258                rt_se->on_list = 1;
1259        }
1260        rt_se->on_rq = 1;
1261
1262        inc_rt_tasks(rt_se, rt_rq);
1263}
1264
1265static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1266{
1267        struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1268        struct rt_prio_array *array = &rt_rq->active;
1269
1270        if (move_entity(flags)) {
1271                WARN_ON_ONCE(!rt_se->on_list);
1272                __delist_rt_entity(rt_se, array);
1273        }
1274        rt_se->on_rq = 0;
1275
1276        dec_rt_tasks(rt_se, rt_rq);
1277}
1278
1279/*
1280 * Because the prio of an upper entry depends on the lower
1281 * entries, we must remove entries top - down.
1282 */
1283static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1284{
1285        struct sched_rt_entity *back = NULL;
1286
1287        for_each_sched_rt_entity(rt_se) {
1288                rt_se->back = back;
1289                back = rt_se;
1290        }
1291
1292        dequeue_top_rt_rq(rt_rq_of_se(back));
1293
1294        for (rt_se = back; rt_se; rt_se = rt_se->back) {
1295                if (on_rt_rq(rt_se))
1296                        __dequeue_rt_entity(rt_se, flags);
1297        }
1298}
1299
1300static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1301{
1302        struct rq *rq = rq_of_rt_se(rt_se);
1303
1304        dequeue_rt_stack(rt_se, flags);
1305        for_each_sched_rt_entity(rt_se)
1306                __enqueue_rt_entity(rt_se, flags);
1307        enqueue_top_rt_rq(&rq->rt);
1308}
1309
1310static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1311{
1312        struct rq *rq = rq_of_rt_se(rt_se);
1313
1314        dequeue_rt_stack(rt_se, flags);
1315
1316        for_each_sched_rt_entity(rt_se) {
1317                struct rt_rq *rt_rq = group_rt_rq(rt_se);
1318
1319                if (rt_rq && rt_rq->rt_nr_running)
1320                        __enqueue_rt_entity(rt_se, flags);
1321        }
1322        enqueue_top_rt_rq(&rq->rt);
1323}
1324
1325/*
1326 * Adding/removing a task to/from a priority array:
1327 */
1328static void
1329enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1330{
1331        struct sched_rt_entity *rt_se = &p->rt;
1332
1333        if (flags & ENQUEUE_WAKEUP)
1334                rt_se->timeout = 0;
1335
1336        enqueue_rt_entity(rt_se, flags);
1337
1338        if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1339                enqueue_pushable_task(rq, p);
1340}
1341
1342static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1343{
1344        struct sched_rt_entity *rt_se = &p->rt;
1345
1346        update_curr_rt(rq);
1347        dequeue_rt_entity(rt_se, flags);
1348
1349        dequeue_pushable_task(rq, p);
1350}
1351
1352/*
1353 * Put task to the head or the end of the run list without the overhead of
1354 * dequeue followed by enqueue.
1355 */
1356static void
1357requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1358{
1359        if (on_rt_rq(rt_se)) {
1360                struct rt_prio_array *array = &rt_rq->active;
1361                struct list_head *queue = array->queue + rt_se_prio(rt_se);
1362
1363                if (head)
1364                        list_move(&rt_se->run_list, queue);
1365                else
1366                        list_move_tail(&rt_se->run_list, queue);
1367        }
1368}
1369
1370static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1371{
1372        struct sched_rt_entity *rt_se = &p->rt;
1373        struct rt_rq *rt_rq;
1374
1375        for_each_sched_rt_entity(rt_se) {
1376                rt_rq = rt_rq_of_se(rt_se);
1377                requeue_rt_entity(rt_rq, rt_se, head);
1378        }
1379}
1380
1381static void yield_task_rt(struct rq *rq)
1382{
1383        requeue_task_rt(rq, rq->curr, 0);
1384}
1385
1386#ifdef CONFIG_SMP
1387static int find_lowest_rq(struct task_struct *task);
1388
1389static int
1390select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1391{
1392        struct task_struct *curr;
1393        struct rq *rq;
1394
1395        /* For anything but wake ups, just return the task_cpu */
1396        if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1397                goto out;
1398
1399        rq = cpu_rq(cpu);
1400
1401        rcu_read_lock();
1402        curr = READ_ONCE(rq->curr); /* unlocked access */
1403
1404        /*
1405         * If the current task on @p's runqueue is an RT task, then
1406         * try to see if we can wake this RT task up on another
1407         * runqueue. Otherwise simply start this RT task
1408         * on its current runqueue.
1409         *
1410         * We want to avoid overloading runqueues. If the woken
1411         * task is a higher priority, then it will stay on this CPU
1412         * and the lower prio task should be moved to another CPU.
1413         * Even though this will probably make the lower prio task
1414         * lose its cache, we do not want to bounce a higher task
1415         * around just because it gave up its CPU, perhaps for a
1416         * lock?
1417         *
1418         * For equal prio tasks, we just let the scheduler sort it out.
1419         *
1420         * Otherwise, just let it ride on the affined RQ and the
1421         * post-schedule router will push the preempted task away
1422         *
1423         * This test is optimistic, if we get it wrong the load-balancer
1424         * will have to sort it out.
1425         */
1426        if (curr && unlikely(rt_task(curr)) &&
1427            (curr->nr_cpus_allowed < 2 ||
1428             curr->prio <= p->prio)) {
1429                int target = find_lowest_rq(p);
1430
1431                /*
1432                 * Don't bother moving it if the destination CPU is
1433                 * not running a lower priority task.
1434                 */
1435                if (target != -1 &&
1436                    p->prio < cpu_rq(target)->rt.highest_prio.curr)
1437                        cpu = target;
1438        }
1439        rcu_read_unlock();
1440
1441out:
1442        return cpu;
1443}
1444
1445static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1446{
1447        /*
1448         * Current can't be migrated, useless to reschedule,
1449         * let's hope p can move out.
1450         */
1451        if (rq->curr->nr_cpus_allowed == 1 ||
1452            !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1453                return;
1454
1455        /*
1456         * p is migratable, so let's not schedule it and
1457         * see if it is pushed or pulled somewhere else.
1458         */
1459        if (p->nr_cpus_allowed != 1
1460            && cpupri_find(&rq->rd->cpupri, p, NULL))
1461                return;
1462
1463        /*
1464         * There appear to be other CPUs that can accept
1465         * the current task but none can run 'p', so lets reschedule
1466         * to try and push the current task away:
1467         */
1468        requeue_task_rt(rq, p, 1);
1469        resched_curr(rq);
1470}
1471
1472static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1473{
1474        if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) {
1475                /*
1476                 * This is OK, because current is on_cpu, which avoids it being
1477                 * picked for load-balance and preemption/IRQs are still
1478                 * disabled avoiding further scheduler activity on it and we've
1479                 * not yet started the picking loop.
1480                 */
1481                rq_unpin_lock(rq, rf);
1482                pull_rt_task(rq);
1483                rq_repin_lock(rq, rf);
1484        }
1485
1486        return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq);
1487}
1488#endif /* CONFIG_SMP */
1489
1490/*
1491 * Preempt the current task with a newly woken task if needed:
1492 */
1493static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1494{
1495        if (p->prio < rq->curr->prio) {
1496                resched_curr(rq);
1497                return;
1498        }
1499
1500#ifdef CONFIG_SMP
1501        /*
1502         * If:
1503         *
1504         * - the newly woken task is of equal priority to the current task
1505         * - the newly woken task is non-migratable while current is migratable
1506         * - current will be preempted on the next reschedule
1507         *
1508         * we should check to see if current can readily move to a different
1509         * cpu.  If so, we will reschedule to allow the push logic to try
1510         * to move current somewhere else, making room for our non-migratable
1511         * task.
1512         */
1513        if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1514                check_preempt_equal_prio(rq, p);
1515#endif
1516}
1517
1518static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first)
1519{
1520        p->se.exec_start = rq_clock_task(rq);
1521
1522        /* The running task is never eligible for pushing */
1523        dequeue_pushable_task(rq, p);
1524
1525        if (!first)
1526                return;
1527
1528        /*
1529         * If prev task was rt, put_prev_task() has already updated the
1530         * utilization. We only care of the case where we start to schedule a
1531         * rt task
1532         */
1533        if (rq->curr->sched_class != &rt_sched_class)
1534                update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1535
1536        rt_queue_push_tasks(rq);
1537}
1538
1539static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1540                                                   struct rt_rq *rt_rq)
1541{
1542        struct rt_prio_array *array = &rt_rq->active;
1543        struct sched_rt_entity *next = NULL;
1544        struct list_head *queue;
1545        int idx;
1546
1547        idx = sched_find_first_bit(array->bitmap);
1548        BUG_ON(idx >= MAX_RT_PRIO);
1549
1550        queue = array->queue + idx;
1551        next = list_entry(queue->next, struct sched_rt_entity, run_list);
1552
1553        return next;
1554}
1555
1556static struct task_struct *_pick_next_task_rt(struct rq *rq)
1557{
1558        struct sched_rt_entity *rt_se;
1559        struct rt_rq *rt_rq  = &rq->rt;
1560
1561        do {
1562                rt_se = pick_next_rt_entity(rq, rt_rq);
1563                BUG_ON(!rt_se);
1564                rt_rq = group_rt_rq(rt_se);
1565        } while (rt_rq);
1566
1567        return rt_task_of(rt_se);
1568}
1569
1570static struct task_struct *pick_next_task_rt(struct rq *rq)
1571{
1572        struct task_struct *p;
1573
1574        if (!sched_rt_runnable(rq))
1575                return NULL;
1576
1577        p = _pick_next_task_rt(rq);
1578        set_next_task_rt(rq, p, true);
1579        return p;
1580}
1581
1582static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1583{
1584        update_curr_rt(rq);
1585
1586        update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1587
1588        /*
1589         * The previous task needs to be made eligible for pushing
1590         * if it is still active
1591         */
1592        if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1593                enqueue_pushable_task(rq, p);
1594}
1595
1596#ifdef CONFIG_SMP
1597
1598/* Only try algorithms three times */
1599#define RT_MAX_TRIES 3
1600
1601static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1602{
1603        if (!task_running(rq, p) &&
1604            cpumask_test_cpu(cpu, p->cpus_ptr))
1605                return 1;
1606
1607        return 0;
1608}
1609
1610/*
1611 * Return the highest pushable rq's task, which is suitable to be executed
1612 * on the CPU, NULL otherwise
1613 */
1614static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1615{
1616        struct plist_head *head = &rq->rt.pushable_tasks;
1617        struct task_struct *p;
1618
1619        if (!has_pushable_tasks(rq))
1620                return NULL;
1621
1622        plist_for_each_entry(p, head, pushable_tasks) {
1623                if (pick_rt_task(rq, p, cpu))
1624                        return p;
1625        }
1626
1627        return NULL;
1628}
1629
1630static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1631
1632static int find_lowest_rq(struct task_struct *task)
1633{
1634        struct sched_domain *sd;
1635        struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1636        int this_cpu = smp_processor_id();
1637        int cpu      = task_cpu(task);
1638
1639        /* Make sure the mask is initialized first */
1640        if (unlikely(!lowest_mask))
1641                return -1;
1642
1643        if (task->nr_cpus_allowed == 1)
1644                return -1; /* No other targets possible */
1645
1646        if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1647                return -1; /* No targets found */
1648
1649        /*
1650         * At this point we have built a mask of CPUs representing the
1651         * lowest priority tasks in the system.  Now we want to elect
1652         * the best one based on our affinity and topology.
1653         *
1654         * We prioritize the last CPU that the task executed on since
1655         * it is most likely cache-hot in that location.
1656         */
1657        if (cpumask_test_cpu(cpu, lowest_mask))
1658                return cpu;
1659
1660        /*
1661         * Otherwise, we consult the sched_domains span maps to figure
1662         * out which CPU is logically closest to our hot cache data.
1663         */
1664        if (!cpumask_test_cpu(this_cpu, lowest_mask))
1665                this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1666
1667        rcu_read_lock();
1668        for_each_domain(cpu, sd) {
1669                if (sd->flags & SD_WAKE_AFFINE) {
1670                        int best_cpu;
1671
1672                        /*
1673                         * "this_cpu" is cheaper to preempt than a
1674                         * remote processor.
1675                         */
1676                        if (this_cpu != -1 &&
1677                            cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1678                                rcu_read_unlock();
1679                                return this_cpu;
1680                        }
1681
1682                        best_cpu = cpumask_first_and(lowest_mask,
1683                                                     sched_domain_span(sd));
1684                        if (best_cpu < nr_cpu_ids) {
1685                                rcu_read_unlock();
1686                                return best_cpu;
1687                        }
1688                }
1689        }
1690        rcu_read_unlock();
1691
1692        /*
1693         * And finally, if there were no matches within the domains
1694         * just give the caller *something* to work with from the compatible
1695         * locations.
1696         */
1697        if (this_cpu != -1)
1698                return this_cpu;
1699
1700        cpu = cpumask_any(lowest_mask);
1701        if (cpu < nr_cpu_ids)
1702                return cpu;
1703
1704        return -1;
1705}
1706
1707/* Will lock the rq it finds */
1708static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1709{
1710        struct rq *lowest_rq = NULL;
1711        int tries;
1712        int cpu;
1713
1714        for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1715                cpu = find_lowest_rq(task);
1716
1717                if ((cpu == -1) || (cpu == rq->cpu))
1718                        break;
1719
1720                lowest_rq = cpu_rq(cpu);
1721
1722                if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1723                        /*
1724                         * Target rq has tasks of equal or higher priority,
1725                         * retrying does not release any lock and is unlikely
1726                         * to yield a different result.
1727                         */
1728                        lowest_rq = NULL;
1729                        break;
1730                }
1731
1732                /* if the prio of this runqueue changed, try again */
1733                if (double_lock_balance(rq, lowest_rq)) {
1734                        /*
1735                         * We had to unlock the run queue. In
1736                         * the mean time, task could have
1737                         * migrated already or had its affinity changed.
1738                         * Also make sure that it wasn't scheduled on its rq.
1739                         */
1740                        if (unlikely(task_rq(task) != rq ||
1741                                     !cpumask_test_cpu(lowest_rq->cpu, task->cpus_ptr) ||
1742                                     task_running(rq, task) ||
1743                                     !rt_task(task) ||
1744                                     !task_on_rq_queued(task))) {
1745
1746                                double_unlock_balance(rq, lowest_rq);
1747                                lowest_rq = NULL;
1748                                break;
1749                        }
1750                }
1751
1752                /* If this rq is still suitable use it. */
1753                if (lowest_rq->rt.highest_prio.curr > task->prio)
1754                        break;
1755
1756                /* try again */
1757                double_unlock_balance(rq, lowest_rq);
1758                lowest_rq = NULL;
1759        }
1760
1761        return lowest_rq;
1762}
1763
1764static struct task_struct *pick_next_pushable_task(struct rq *rq)
1765{
1766        struct task_struct *p;
1767
1768        if (!has_pushable_tasks(rq))
1769                return NULL;
1770
1771        p = plist_first_entry(&rq->rt.pushable_tasks,
1772                              struct task_struct, pushable_tasks);
1773
1774        BUG_ON(rq->cpu != task_cpu(p));
1775        BUG_ON(task_current(rq, p));
1776        BUG_ON(p->nr_cpus_allowed <= 1);
1777
1778        BUG_ON(!task_on_rq_queued(p));
1779        BUG_ON(!rt_task(p));
1780
1781        return p;
1782}
1783
1784/*
1785 * If the current CPU has more than one RT task, see if the non
1786 * running task can migrate over to a CPU that is running a task
1787 * of lesser priority.
1788 */
1789static int push_rt_task(struct rq *rq)
1790{
1791        struct task_struct *next_task;
1792        struct rq *lowest_rq;
1793        int ret = 0;
1794
1795        if (!rq->rt.overloaded)
1796                return 0;
1797
1798        next_task = pick_next_pushable_task(rq);
1799        if (!next_task)
1800                return 0;
1801
1802retry:
1803        if (WARN_ON(next_task == rq->curr))
1804                return 0;
1805
1806        /*
1807         * It's possible that the next_task slipped in of
1808         * higher priority than current. If that's the case
1809         * just reschedule current.
1810         */
1811        if (unlikely(next_task->prio < rq->curr->prio)) {
1812                resched_curr(rq);
1813                return 0;
1814        }
1815
1816        /* We might release rq lock */
1817        get_task_struct(next_task);
1818
1819        /* find_lock_lowest_rq locks the rq if found */
1820        lowest_rq = find_lock_lowest_rq(next_task, rq);
1821        if (!lowest_rq) {
1822                struct task_struct *task;
1823                /*
1824                 * find_lock_lowest_rq releases rq->lock
1825                 * so it is possible that next_task has migrated.
1826                 *
1827                 * We need to make sure that the task is still on the same
1828                 * run-queue and is also still the next task eligible for
1829                 * pushing.
1830                 */
1831                task = pick_next_pushable_task(rq);
1832                if (task == next_task) {
1833                        /*
1834                         * The task hasn't migrated, and is still the next
1835                         * eligible task, but we failed to find a run-queue
1836                         * to push it to.  Do not retry in this case, since
1837                         * other CPUs will pull from us when ready.
1838                         */
1839                        goto out;
1840                }
1841
1842                if (!task)
1843                        /* No more tasks, just exit */
1844                        goto out;
1845
1846                /*
1847                 * Something has shifted, try again.
1848                 */
1849                put_task_struct(next_task);
1850                next_task = task;
1851                goto retry;
1852        }
1853
1854        deactivate_task(rq, next_task, 0);
1855        set_task_cpu(next_task, lowest_rq->cpu);
1856        activate_task(lowest_rq, next_task, 0);
1857        ret = 1;
1858
1859        resched_curr(lowest_rq);
1860
1861        double_unlock_balance(rq, lowest_rq);
1862
1863out:
1864        put_task_struct(next_task);
1865
1866        return ret;
1867}
1868
1869static void push_rt_tasks(struct rq *rq)
1870{
1871        /* push_rt_task will return true if it moved an RT */
1872        while (push_rt_task(rq))
1873                ;
1874}
1875
1876#ifdef HAVE_RT_PUSH_IPI
1877
1878/*
1879 * When a high priority task schedules out from a CPU and a lower priority
1880 * task is scheduled in, a check is made to see if there's any RT tasks
1881 * on other CPUs that are waiting to run because a higher priority RT task
1882 * is currently running on its CPU. In this case, the CPU with multiple RT
1883 * tasks queued on it (overloaded) needs to be notified that a CPU has opened
1884 * up that may be able to run one of its non-running queued RT tasks.
1885 *
1886 * All CPUs with overloaded RT tasks need to be notified as there is currently
1887 * no way to know which of these CPUs have the highest priority task waiting
1888 * to run. Instead of trying to take a spinlock on each of these CPUs,
1889 * which has shown to cause large latency when done on machines with many
1890 * CPUs, sending an IPI to the CPUs to have them push off the overloaded
1891 * RT tasks waiting to run.
1892 *
1893 * Just sending an IPI to each of the CPUs is also an issue, as on large
1894 * count CPU machines, this can cause an IPI storm on a CPU, especially
1895 * if its the only CPU with multiple RT tasks queued, and a large number
1896 * of CPUs scheduling a lower priority task at the same time.
1897 *
1898 * Each root domain has its own irq work function that can iterate over
1899 * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
1900 * tassk must be checked if there's one or many CPUs that are lowering
1901 * their priority, there's a single irq work iterator that will try to
1902 * push off RT tasks that are waiting to run.
1903 *
1904 * When a CPU schedules a lower priority task, it will kick off the
1905 * irq work iterator that will jump to each CPU with overloaded RT tasks.
1906 * As it only takes the first CPU that schedules a lower priority task
1907 * to start the process, the rto_start variable is incremented and if
1908 * the atomic result is one, then that CPU will try to take the rto_lock.
1909 * This prevents high contention on the lock as the process handles all
1910 * CPUs scheduling lower priority tasks.
1911 *
1912 * All CPUs that are scheduling a lower priority task will increment the
1913 * rt_loop_next variable. This will make sure that the irq work iterator
1914 * checks all RT overloaded CPUs whenever a CPU schedules a new lower
1915 * priority task, even if the iterator is in the middle of a scan. Incrementing
1916 * the rt_loop_next will cause the iterator to perform another scan.
1917 *
1918 */
1919static int rto_next_cpu(struct root_domain *rd)
1920{
1921        int next;
1922        int cpu;
1923
1924        /*
1925         * When starting the IPI RT pushing, the rto_cpu is set to -1,
1926         * rt_next_cpu() will simply return the first CPU found in
1927         * the rto_mask.
1928         *
1929         * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
1930         * will return the next CPU found in the rto_mask.
1931         *
1932         * If there are no more CPUs left in the rto_mask, then a check is made
1933         * against rto_loop and rto_loop_next. rto_loop is only updated with
1934         * the rto_lock held, but any CPU may increment the rto_loop_next
1935         * without any locking.
1936         */
1937        for (;;) {
1938
1939                /* When rto_cpu is -1 this acts like cpumask_first() */
1940                cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
1941
1942                rd->rto_cpu = cpu;
1943
1944                if (cpu < nr_cpu_ids)
1945                        return cpu;
1946
1947                rd->rto_cpu = -1;
1948
1949                /*
1950                 * ACQUIRE ensures we see the @rto_mask changes
1951                 * made prior to the @next value observed.
1952                 *
1953                 * Matches WMB in rt_set_overload().
1954                 */
1955                next = atomic_read_acquire(&rd->rto_loop_next);
1956
1957                if (rd->rto_loop == next)
1958                        break;
1959
1960                rd->rto_loop = next;
1961        }
1962
1963        return -1;
1964}
1965
1966static inline bool rto_start_trylock(atomic_t *v)
1967{
1968        return !atomic_cmpxchg_acquire(v, 0, 1);
1969}
1970
1971static inline void rto_start_unlock(atomic_t *v)
1972{
1973        atomic_set_release(v, 0);
1974}
1975
1976static void tell_cpu_to_push(struct rq *rq)
1977{
1978        int cpu = -1;
1979
1980        /* Keep the loop going if the IPI is currently active */
1981        atomic_inc(&rq->rd->rto_loop_next);
1982
1983        /* Only one CPU can initiate a loop at a time */
1984        if (!rto_start_trylock(&rq->rd->rto_loop_start))
1985                return;
1986
1987        raw_spin_lock(&rq->rd->rto_lock);
1988
1989        /*
1990         * The rto_cpu is updated under the lock, if it has a valid CPU
1991         * then the IPI is still running and will continue due to the
1992         * update to loop_next, and nothing needs to be done here.
1993         * Otherwise it is finishing up and an ipi needs to be sent.
1994         */
1995        if (rq->rd->rto_cpu < 0)
1996                cpu = rto_next_cpu(rq->rd);
1997
1998        raw_spin_unlock(&rq->rd->rto_lock);
1999
2000        rto_start_unlock(&rq->rd->rto_loop_start);
2001
2002        if (cpu >= 0) {
2003                /* Make sure the rd does not get freed while pushing */
2004                sched_get_rd(rq->rd);
2005                irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2006        }
2007}
2008
2009/* Called from hardirq context */
2010void rto_push_irq_work_func(struct irq_work *work)
2011{
2012        struct root_domain *rd =
2013                container_of(work, struct root_domain, rto_push_work);
2014        struct rq *rq;
2015        int cpu;
2016
2017        rq = this_rq();
2018
2019        /*
2020         * We do not need to grab the lock to check for has_pushable_tasks.
2021         * When it gets updated, a check is made if a push is possible.
2022         */
2023        if (has_pushable_tasks(rq)) {
2024                raw_spin_lock(&rq->lock);
2025                push_rt_tasks(rq);
2026                raw_spin_unlock(&rq->lock);
2027        }
2028
2029        raw_spin_lock(&rd->rto_lock);
2030
2031        /* Pass the IPI to the next rt overloaded queue */
2032        cpu = rto_next_cpu(rd);
2033
2034        raw_spin_unlock(&rd->rto_lock);
2035
2036        if (cpu < 0) {
2037                sched_put_rd(rd);
2038                return;
2039        }
2040
2041        /* Try the next RT overloaded CPU */
2042        irq_work_queue_on(&rd->rto_push_work, cpu);
2043}
2044#endif /* HAVE_RT_PUSH_IPI */
2045
2046static void pull_rt_task(struct rq *this_rq)
2047{
2048        int this_cpu = this_rq->cpu, cpu;
2049        bool resched = false;
2050        struct task_struct *p;
2051        struct rq *src_rq;
2052        int rt_overload_count = rt_overloaded(this_rq);
2053
2054        if (likely(!rt_overload_count))
2055                return;
2056
2057        /*
2058         * Match the barrier from rt_set_overloaded; this guarantees that if we
2059         * see overloaded we must also see the rto_mask bit.
2060         */
2061        smp_rmb();
2062
2063        /* If we are the only overloaded CPU do nothing */
2064        if (rt_overload_count == 1 &&
2065            cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2066                return;
2067
2068#ifdef HAVE_RT_PUSH_IPI
2069        if (sched_feat(RT_PUSH_IPI)) {
2070                tell_cpu_to_push(this_rq);
2071                return;
2072        }
2073#endif
2074
2075        for_each_cpu(cpu, this_rq->rd->rto_mask) {
2076                if (this_cpu == cpu)
2077                        continue;
2078
2079                src_rq = cpu_rq(cpu);
2080
2081                /*
2082                 * Don't bother taking the src_rq->lock if the next highest
2083                 * task is known to be lower-priority than our current task.
2084                 * This may look racy, but if this value is about to go
2085                 * logically higher, the src_rq will push this task away.
2086                 * And if its going logically lower, we do not care
2087                 */
2088                if (src_rq->rt.highest_prio.next >=
2089                    this_rq->rt.highest_prio.curr)
2090                        continue;
2091
2092                /*
2093                 * We can potentially drop this_rq's lock in
2094                 * double_lock_balance, and another CPU could
2095                 * alter this_rq
2096                 */
2097                double_lock_balance(this_rq, src_rq);
2098
2099                /*
2100                 * We can pull only a task, which is pushable
2101                 * on its rq, and no others.
2102                 */
2103                p = pick_highest_pushable_task(src_rq, this_cpu);
2104
2105                /*
2106                 * Do we have an RT task that preempts
2107                 * the to-be-scheduled task?
2108                 */
2109                if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2110                        WARN_ON(p == src_rq->curr);
2111                        WARN_ON(!task_on_rq_queued(p));
2112
2113                        /*
2114                         * There's a chance that p is higher in priority
2115                         * than what's currently running on its CPU.
2116                         * This is just that p is wakeing up and hasn't
2117                         * had a chance to schedule. We only pull
2118                         * p if it is lower in priority than the
2119                         * current task on the run queue
2120                         */
2121                        if (p->prio < src_rq->curr->prio)
2122                                goto skip;
2123
2124                        resched = true;
2125
2126                        deactivate_task(src_rq, p, 0);
2127                        set_task_cpu(p, this_cpu);
2128                        activate_task(this_rq, p, 0);
2129                        /*
2130                         * We continue with the search, just in
2131                         * case there's an even higher prio task
2132                         * in another runqueue. (low likelihood
2133                         * but possible)
2134                         */
2135                }
2136skip:
2137                double_unlock_balance(this_rq, src_rq);
2138        }
2139
2140        if (resched)
2141                resched_curr(this_rq);
2142}
2143
2144/*
2145 * If we are not running and we are not going to reschedule soon, we should
2146 * try to push tasks away now
2147 */
2148static void task_woken_rt(struct rq *rq, struct task_struct *p)
2149{
2150        if (!task_running(rq, p) &&
2151            !test_tsk_need_resched(rq->curr) &&
2152            p->nr_cpus_allowed > 1 &&
2153            (dl_task(rq->curr) || rt_task(rq->curr)) &&
2154            (rq->curr->nr_cpus_allowed < 2 ||
2155             rq->curr->prio <= p->prio))
2156                push_rt_tasks(rq);
2157}
2158
2159/* Assumes rq->lock is held */
2160static void rq_online_rt(struct rq *rq)
2161{
2162        if (rq->rt.overloaded)
2163                rt_set_overload(rq);
2164
2165        __enable_runtime(rq);
2166
2167        cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2168}
2169
2170/* Assumes rq->lock is held */
2171static void rq_offline_rt(struct rq *rq)
2172{
2173        if (rq->rt.overloaded)
2174                rt_clear_overload(rq);
2175
2176        __disable_runtime(rq);
2177
2178        cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2179}
2180
2181/*
2182 * When switch from the rt queue, we bring ourselves to a position
2183 * that we might want to pull RT tasks from other runqueues.
2184 */
2185static void switched_from_rt(struct rq *rq, struct task_struct *p)
2186{
2187        /*
2188         * If there are other RT tasks then we will reschedule
2189         * and the scheduling of the other RT tasks will handle
2190         * the balancing. But if we are the last RT task
2191         * we may need to handle the pulling of RT tasks
2192         * now.
2193         */
2194        if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2195                return;
2196
2197        rt_queue_pull_task(rq);
2198}
2199
2200void __init init_sched_rt_class(void)
2201{
2202        unsigned int i;
2203
2204        for_each_possible_cpu(i) {
2205                zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2206                                        GFP_KERNEL, cpu_to_node(i));
2207        }
2208}
2209#endif /* CONFIG_SMP */
2210
2211/*
2212 * When switching a task to RT, we may overload the runqueue
2213 * with RT tasks. In this case we try to push them off to
2214 * other runqueues.
2215 */
2216static void switched_to_rt(struct rq *rq, struct task_struct *p)
2217{
2218        /*
2219         * If we are already running, then there's nothing
2220         * that needs to be done. But if we are not running
2221         * we may need to preempt the current running task.
2222         * If that current running task is also an RT task
2223         * then see if we can move to another run queue.
2224         */
2225        if (task_on_rq_queued(p) && rq->curr != p) {
2226#ifdef CONFIG_SMP
2227                if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2228                        rt_queue_push_tasks(rq);
2229#endif /* CONFIG_SMP */
2230                if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
2231                        resched_curr(rq);
2232        }
2233}
2234
2235/*
2236 * Priority of the task has changed. This may cause
2237 * us to initiate a push or pull.
2238 */
2239static void
2240prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2241{
2242        if (!task_on_rq_queued(p))
2243                return;
2244
2245        if (rq->curr == p) {
2246#ifdef CONFIG_SMP
2247                /*
2248                 * If our priority decreases while running, we
2249                 * may need to pull tasks to this runqueue.
2250                 */
2251                if (oldprio < p->prio)
2252                        rt_queue_pull_task(rq);
2253
2254                /*
2255                 * If there's a higher priority task waiting to run
2256                 * then reschedule.
2257                 */
2258                if (p->prio > rq->rt.highest_prio.curr)
2259                        resched_curr(rq);
2260#else
2261                /* For UP simply resched on drop of prio */
2262                if (oldprio < p->prio)
2263                        resched_curr(rq);
2264#endif /* CONFIG_SMP */
2265        } else {
2266                /*
2267                 * This task is not running, but if it is
2268                 * greater than the current running task
2269                 * then reschedule.
2270                 */
2271                if (p->prio < rq->curr->prio)
2272                        resched_curr(rq);
2273        }
2274}
2275
2276#ifdef CONFIG_POSIX_TIMERS
2277static void watchdog(struct rq *rq, struct task_struct *p)
2278{
2279        unsigned long soft, hard;
2280
2281        /* max may change after cur was read, this will be fixed next tick */
2282        soft = task_rlimit(p, RLIMIT_RTTIME);
2283        hard = task_rlimit_max(p, RLIMIT_RTTIME);
2284
2285        if (soft != RLIM_INFINITY) {
2286                unsigned long next;
2287
2288                if (p->rt.watchdog_stamp != jiffies) {
2289                        p->rt.timeout++;
2290                        p->rt.watchdog_stamp = jiffies;
2291                }
2292
2293                next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2294                if (p->rt.timeout > next) {
2295                        posix_cputimers_rt_watchdog(&p->posix_cputimers,
2296                                                    p->se.sum_exec_runtime);
2297                }
2298        }
2299}
2300#else
2301static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2302#endif
2303
2304/*
2305 * scheduler tick hitting a task of our scheduling class.
2306 *
2307 * NOTE: This function can be called remotely by the tick offload that
2308 * goes along full dynticks. Therefore no local assumption can be made
2309 * and everything must be accessed through the @rq and @curr passed in
2310 * parameters.
2311 */
2312static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2313{
2314        struct sched_rt_entity *rt_se = &p->rt;
2315
2316        update_curr_rt(rq);
2317        update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2318
2319        watchdog(rq, p);
2320
2321        /*
2322         * RR tasks need a special form of timeslice management.
2323         * FIFO tasks have no timeslices.
2324         */
2325        if (p->policy != SCHED_RR)
2326                return;
2327
2328        if (--p->rt.time_slice)
2329                return;
2330
2331        p->rt.time_slice = sched_rr_timeslice;
2332
2333        /*
2334         * Requeue to the end of queue if we (and all of our ancestors) are not
2335         * the only element on the queue
2336         */
2337        for_each_sched_rt_entity(rt_se) {
2338                if (rt_se->run_list.prev != rt_se->run_list.next) {
2339                        requeue_task_rt(rq, p, 0);
2340                        resched_curr(rq);
2341                        return;
2342                }
2343        }
2344}
2345
2346static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2347{
2348        /*
2349         * Time slice is 0 for SCHED_FIFO tasks
2350         */
2351        if (task->policy == SCHED_RR)
2352                return sched_rr_timeslice;
2353        else
2354                return 0;
2355}
2356
2357const struct sched_class rt_sched_class = {
2358        .next                   = &fair_sched_class,
2359        .enqueue_task           = enqueue_task_rt,
2360        .dequeue_task           = dequeue_task_rt,
2361        .yield_task             = yield_task_rt,
2362
2363        .check_preempt_curr     = check_preempt_curr_rt,
2364
2365        .pick_next_task         = pick_next_task_rt,
2366        .put_prev_task          = put_prev_task_rt,
2367        .set_next_task          = set_next_task_rt,
2368
2369#ifdef CONFIG_SMP
2370        .balance                = balance_rt,
2371        .select_task_rq         = select_task_rq_rt,
2372        .set_cpus_allowed       = set_cpus_allowed_common,
2373        .rq_online              = rq_online_rt,
2374        .rq_offline             = rq_offline_rt,
2375        .task_woken             = task_woken_rt,
2376        .switched_from          = switched_from_rt,
2377#endif
2378
2379        .task_tick              = task_tick_rt,
2380
2381        .get_rr_interval        = get_rr_interval_rt,
2382
2383        .prio_changed           = prio_changed_rt,
2384        .switched_to            = switched_to_rt,
2385
2386        .update_curr            = update_curr_rt,
2387
2388#ifdef CONFIG_UCLAMP_TASK
2389        .uclamp_enabled         = 1,
2390#endif
2391};
2392
2393#ifdef CONFIG_RT_GROUP_SCHED
2394/*
2395 * Ensure that the real time constraints are schedulable.
2396 */
2397static DEFINE_MUTEX(rt_constraints_mutex);
2398
2399/* Must be called with tasklist_lock held */
2400static inline int tg_has_rt_tasks(struct task_group *tg)
2401{
2402        struct task_struct *g, *p;
2403
2404        /*
2405         * Autogroups do not have RT tasks; see autogroup_create().
2406         */
2407        if (task_group_is_autogroup(tg))
2408                return 0;
2409
2410        for_each_process_thread(g, p) {
2411                if (rt_task(p) && task_group(p) == tg)
2412                        return 1;
2413        }
2414
2415        return 0;
2416}
2417
2418struct rt_schedulable_data {
2419        struct task_group *tg;
2420        u64 rt_period;
2421        u64 rt_runtime;
2422};
2423
2424static int tg_rt_schedulable(struct task_group *tg, void *data)
2425{
2426        struct rt_schedulable_data *d = data;
2427        struct task_group *child;
2428        unsigned long total, sum = 0;
2429        u64 period, runtime;
2430
2431        period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2432        runtime = tg->rt_bandwidth.rt_runtime;
2433
2434        if (tg == d->tg) {
2435                period = d->rt_period;
2436                runtime = d->rt_runtime;
2437        }
2438
2439        /*
2440         * Cannot have more runtime than the period.
2441         */
2442        if (runtime > period && runtime != RUNTIME_INF)
2443                return -EINVAL;
2444
2445        /*
2446         * Ensure we don't starve existing RT tasks.
2447         */
2448        if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
2449                return -EBUSY;
2450
2451        total = to_ratio(period, runtime);
2452
2453        /*
2454         * Nobody can have more than the global setting allows.
2455         */
2456        if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2457                return -EINVAL;
2458
2459        /*
2460         * The sum of our children's runtime should not exceed our own.
2461         */
2462        list_for_each_entry_rcu(child, &tg->children, siblings) {
2463                period = ktime_to_ns(child->rt_bandwidth.rt_period);
2464                runtime = child->rt_bandwidth.rt_runtime;
2465
2466                if (child == d->tg) {
2467                        period = d->rt_period;
2468                        runtime = d->rt_runtime;
2469                }
2470
2471                sum += to_ratio(period, runtime);
2472        }
2473
2474        if (sum > total)
2475                return -EINVAL;
2476
2477        return 0;
2478}
2479
2480static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2481{
2482        int ret;
2483
2484        struct rt_schedulable_data data = {
2485                .tg = tg,
2486                .rt_period = period,
2487                .rt_runtime = runtime,
2488        };
2489
2490        rcu_read_lock();
2491        ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2492        rcu_read_unlock();
2493
2494        return ret;
2495}
2496
2497static int tg_set_rt_bandwidth(struct task_group *tg,
2498                u64 rt_period, u64 rt_runtime)
2499{
2500        int i, err = 0;
2501
2502        /*
2503         * Disallowing the root group RT runtime is BAD, it would disallow the
2504         * kernel creating (and or operating) RT threads.
2505         */
2506        if (tg == &root_task_group && rt_runtime == 0)
2507                return -EINVAL;
2508
2509        /* No period doesn't make any sense. */
2510        if (rt_period == 0)
2511                return -EINVAL;
2512
2513        mutex_lock(&rt_constraints_mutex);
2514        read_lock(&tasklist_lock);
2515        err = __rt_schedulable(tg, rt_period, rt_runtime);
2516        if (err)
2517                goto unlock;
2518
2519        raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2520        tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2521        tg->rt_bandwidth.rt_runtime = rt_runtime;
2522
2523        for_each_possible_cpu(i) {
2524                struct rt_rq *rt_rq = tg->rt_rq[i];
2525
2526                raw_spin_lock(&rt_rq->rt_runtime_lock);
2527                rt_rq->rt_runtime = rt_runtime;
2528                raw_spin_unlock(&rt_rq->rt_runtime_lock);
2529        }
2530        raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2531unlock:
2532        read_unlock(&tasklist_lock);
2533        mutex_unlock(&rt_constraints_mutex);
2534
2535        return err;
2536}
2537
2538int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2539{
2540        u64 rt_runtime, rt_period;
2541
2542        rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2543        rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2544        if (rt_runtime_us < 0)
2545                rt_runtime = RUNTIME_INF;
2546        else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC)
2547                return -EINVAL;
2548
2549        return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2550}
2551
2552long sched_group_rt_runtime(struct task_group *tg)
2553{
2554        u64 rt_runtime_us;
2555
2556        if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2557                return -1;
2558
2559        rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2560        do_div(rt_runtime_us, NSEC_PER_USEC);
2561        return rt_runtime_us;
2562}
2563
2564int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2565{
2566        u64 rt_runtime, rt_period;
2567
2568        if (rt_period_us > U64_MAX / NSEC_PER_USEC)
2569                return -EINVAL;
2570
2571        rt_period = rt_period_us * NSEC_PER_USEC;
2572        rt_runtime = tg->rt_bandwidth.rt_runtime;
2573
2574        return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2575}
2576
2577long sched_group_rt_period(struct task_group *tg)
2578{
2579        u64 rt_period_us;
2580
2581        rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2582        do_div(rt_period_us, NSEC_PER_USEC);
2583        return rt_period_us;
2584}
2585
2586static int sched_rt_global_constraints(void)
2587{
2588        int ret = 0;
2589
2590        mutex_lock(&rt_constraints_mutex);
2591        read_lock(&tasklist_lock);
2592        ret = __rt_schedulable(NULL, 0, 0);
2593        read_unlock(&tasklist_lock);
2594        mutex_unlock(&rt_constraints_mutex);
2595
2596        return ret;
2597}
2598
2599int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2600{
2601        /* Don't accept realtime tasks when there is no way for them to run */
2602        if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2603                return 0;
2604
2605        return 1;
2606}
2607
2608#else /* !CONFIG_RT_GROUP_SCHED */
2609static int sched_rt_global_constraints(void)
2610{
2611        unsigned long flags;
2612        int i;
2613
2614        raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2615        for_each_possible_cpu(i) {
2616                struct rt_rq *rt_rq = &cpu_rq(i)->rt;
2617
2618                raw_spin_lock(&rt_rq->rt_runtime_lock);
2619                rt_rq->rt_runtime = global_rt_runtime();
2620                raw_spin_unlock(&rt_rq->rt_runtime_lock);
2621        }
2622        raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2623
2624        return 0;
2625}
2626#endif /* CONFIG_RT_GROUP_SCHED */
2627
2628static int sched_rt_global_validate(void)
2629{
2630        if (sysctl_sched_rt_period <= 0)
2631                return -EINVAL;
2632
2633        if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2634                (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
2635                return -EINVAL;
2636
2637        return 0;
2638}
2639
2640static void sched_rt_do_global(void)
2641{
2642        def_rt_bandwidth.rt_runtime = global_rt_runtime();
2643        def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
2644}
2645
2646int sched_rt_handler(struct ctl_table *table, int write,
2647                void __user *buffer, size_t *lenp,
2648                loff_t *ppos)
2649{
2650        int old_period, old_runtime;
2651        static DEFINE_MUTEX(mutex);
2652        int ret;
2653
2654        mutex_lock(&mutex);
2655        old_period = sysctl_sched_rt_period;
2656        old_runtime = sysctl_sched_rt_runtime;
2657
2658        ret = proc_dointvec(table, write, buffer, lenp, ppos);
2659
2660        if (!ret && write) {
2661                ret = sched_rt_global_validate();
2662                if (ret)
2663                        goto undo;
2664
2665                ret = sched_dl_global_validate();
2666                if (ret)
2667                        goto undo;
2668
2669                ret = sched_rt_global_constraints();
2670                if (ret)
2671                        goto undo;
2672
2673                sched_rt_do_global();
2674                sched_dl_do_global();
2675        }
2676        if (0) {
2677undo:
2678                sysctl_sched_rt_period = old_period;
2679                sysctl_sched_rt_runtime = old_runtime;
2680        }
2681        mutex_unlock(&mutex);
2682
2683        return ret;
2684}
2685
2686int sched_rr_handler(struct ctl_table *table, int write,
2687                void __user *buffer, size_t *lenp,
2688                loff_t *ppos)
2689{
2690        int ret;
2691        static DEFINE_MUTEX(mutex);
2692
2693        mutex_lock(&mutex);
2694        ret = proc_dointvec(table, write, buffer, lenp, ppos);
2695        /*
2696         * Make sure that internally we keep jiffies.
2697         * Also, writing zero resets the timeslice to default:
2698         */
2699        if (!ret && write) {
2700                sched_rr_timeslice =
2701                        sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
2702                        msecs_to_jiffies(sysctl_sched_rr_timeslice);
2703        }
2704        mutex_unlock(&mutex);
2705
2706        return ret;
2707}
2708
2709#ifdef CONFIG_SCHED_DEBUG
2710void print_rt_stats(struct seq_file *m, int cpu)
2711{
2712        rt_rq_iter_t iter;
2713        struct rt_rq *rt_rq;
2714
2715        rcu_read_lock();
2716        for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2717                print_rt_rq(m, cpu, rt_rq);
2718        rcu_read_unlock();
2719}
2720#endif /* CONFIG_SCHED_DEBUG */
2721