linux/mm/khugepaged.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   3
   4#include <linux/mm.h>
   5#include <linux/sched.h>
   6#include <linux/sched/mm.h>
   7#include <linux/sched/coredump.h>
   8#include <linux/mmu_notifier.h>
   9#include <linux/rmap.h>
  10#include <linux/swap.h>
  11#include <linux/mm_inline.h>
  12#include <linux/kthread.h>
  13#include <linux/khugepaged.h>
  14#include <linux/freezer.h>
  15#include <linux/mman.h>
  16#include <linux/hashtable.h>
  17#include <linux/userfaultfd_k.h>
  18#include <linux/page_idle.h>
  19#include <linux/swapops.h>
  20#include <linux/shmem_fs.h>
  21
  22#include <asm/tlb.h>
  23#include <asm/pgalloc.h>
  24#include "internal.h"
  25
  26enum scan_result {
  27        SCAN_FAIL,
  28        SCAN_SUCCEED,
  29        SCAN_PMD_NULL,
  30        SCAN_EXCEED_NONE_PTE,
  31        SCAN_PTE_NON_PRESENT,
  32        SCAN_PAGE_RO,
  33        SCAN_LACK_REFERENCED_PAGE,
  34        SCAN_PAGE_NULL,
  35        SCAN_SCAN_ABORT,
  36        SCAN_PAGE_COUNT,
  37        SCAN_PAGE_LRU,
  38        SCAN_PAGE_LOCK,
  39        SCAN_PAGE_ANON,
  40        SCAN_PAGE_COMPOUND,
  41        SCAN_ANY_PROCESS,
  42        SCAN_VMA_NULL,
  43        SCAN_VMA_CHECK,
  44        SCAN_ADDRESS_RANGE,
  45        SCAN_SWAP_CACHE_PAGE,
  46        SCAN_DEL_PAGE_LRU,
  47        SCAN_ALLOC_HUGE_PAGE_FAIL,
  48        SCAN_CGROUP_CHARGE_FAIL,
  49        SCAN_EXCEED_SWAP_PTE,
  50        SCAN_TRUNCATED,
  51        SCAN_PAGE_HAS_PRIVATE,
  52};
  53
  54#define CREATE_TRACE_POINTS
  55#include <trace/events/huge_memory.h>
  56
  57/* default scan 8*512 pte (or vmas) every 30 second */
  58static unsigned int khugepaged_pages_to_scan __read_mostly;
  59static unsigned int khugepaged_pages_collapsed;
  60static unsigned int khugepaged_full_scans;
  61static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
  62/* during fragmentation poll the hugepage allocator once every minute */
  63static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
  64static unsigned long khugepaged_sleep_expire;
  65static DEFINE_SPINLOCK(khugepaged_mm_lock);
  66static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
  67/*
  68 * default collapse hugepages if there is at least one pte mapped like
  69 * it would have happened if the vma was large enough during page
  70 * fault.
  71 */
  72static unsigned int khugepaged_max_ptes_none __read_mostly;
  73static unsigned int khugepaged_max_ptes_swap __read_mostly;
  74
  75#define MM_SLOTS_HASH_BITS 10
  76static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
  77
  78static struct kmem_cache *mm_slot_cache __read_mostly;
  79
  80#define MAX_PTE_MAPPED_THP 8
  81
  82/**
  83 * struct mm_slot - hash lookup from mm to mm_slot
  84 * @hash: hash collision list
  85 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
  86 * @mm: the mm that this information is valid for
  87 */
  88struct mm_slot {
  89        struct hlist_node hash;
  90        struct list_head mm_node;
  91        struct mm_struct *mm;
  92
  93        /* pte-mapped THP in this mm */
  94        int nr_pte_mapped_thp;
  95        unsigned long pte_mapped_thp[MAX_PTE_MAPPED_THP];
  96};
  97
  98/**
  99 * struct khugepaged_scan - cursor for scanning
 100 * @mm_head: the head of the mm list to scan
 101 * @mm_slot: the current mm_slot we are scanning
 102 * @address: the next address inside that to be scanned
 103 *
 104 * There is only the one khugepaged_scan instance of this cursor structure.
 105 */
 106struct khugepaged_scan {
 107        struct list_head mm_head;
 108        struct mm_slot *mm_slot;
 109        unsigned long address;
 110};
 111
 112static struct khugepaged_scan khugepaged_scan = {
 113        .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
 114};
 115
 116#ifdef CONFIG_SYSFS
 117static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
 118                                         struct kobj_attribute *attr,
 119                                         char *buf)
 120{
 121        return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
 122}
 123
 124static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
 125                                          struct kobj_attribute *attr,
 126                                          const char *buf, size_t count)
 127{
 128        unsigned long msecs;
 129        int err;
 130
 131        err = kstrtoul(buf, 10, &msecs);
 132        if (err || msecs > UINT_MAX)
 133                return -EINVAL;
 134
 135        khugepaged_scan_sleep_millisecs = msecs;
 136        khugepaged_sleep_expire = 0;
 137        wake_up_interruptible(&khugepaged_wait);
 138
 139        return count;
 140}
 141static struct kobj_attribute scan_sleep_millisecs_attr =
 142        __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
 143               scan_sleep_millisecs_store);
 144
 145static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
 146                                          struct kobj_attribute *attr,
 147                                          char *buf)
 148{
 149        return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
 150}
 151
 152static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
 153                                           struct kobj_attribute *attr,
 154                                           const char *buf, size_t count)
 155{
 156        unsigned long msecs;
 157        int err;
 158
 159        err = kstrtoul(buf, 10, &msecs);
 160        if (err || msecs > UINT_MAX)
 161                return -EINVAL;
 162
 163        khugepaged_alloc_sleep_millisecs = msecs;
 164        khugepaged_sleep_expire = 0;
 165        wake_up_interruptible(&khugepaged_wait);
 166
 167        return count;
 168}
 169static struct kobj_attribute alloc_sleep_millisecs_attr =
 170        __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
 171               alloc_sleep_millisecs_store);
 172
 173static ssize_t pages_to_scan_show(struct kobject *kobj,
 174                                  struct kobj_attribute *attr,
 175                                  char *buf)
 176{
 177        return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
 178}
 179static ssize_t pages_to_scan_store(struct kobject *kobj,
 180                                   struct kobj_attribute *attr,
 181                                   const char *buf, size_t count)
 182{
 183        int err;
 184        unsigned long pages;
 185
 186        err = kstrtoul(buf, 10, &pages);
 187        if (err || !pages || pages > UINT_MAX)
 188                return -EINVAL;
 189
 190        khugepaged_pages_to_scan = pages;
 191
 192        return count;
 193}
 194static struct kobj_attribute pages_to_scan_attr =
 195        __ATTR(pages_to_scan, 0644, pages_to_scan_show,
 196               pages_to_scan_store);
 197
 198static ssize_t pages_collapsed_show(struct kobject *kobj,
 199                                    struct kobj_attribute *attr,
 200                                    char *buf)
 201{
 202        return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
 203}
 204static struct kobj_attribute pages_collapsed_attr =
 205        __ATTR_RO(pages_collapsed);
 206
 207static ssize_t full_scans_show(struct kobject *kobj,
 208                               struct kobj_attribute *attr,
 209                               char *buf)
 210{
 211        return sprintf(buf, "%u\n", khugepaged_full_scans);
 212}
 213static struct kobj_attribute full_scans_attr =
 214        __ATTR_RO(full_scans);
 215
 216static ssize_t khugepaged_defrag_show(struct kobject *kobj,
 217                                      struct kobj_attribute *attr, char *buf)
 218{
 219        return single_hugepage_flag_show(kobj, attr, buf,
 220                                TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
 221}
 222static ssize_t khugepaged_defrag_store(struct kobject *kobj,
 223                                       struct kobj_attribute *attr,
 224                                       const char *buf, size_t count)
 225{
 226        return single_hugepage_flag_store(kobj, attr, buf, count,
 227                                 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
 228}
 229static struct kobj_attribute khugepaged_defrag_attr =
 230        __ATTR(defrag, 0644, khugepaged_defrag_show,
 231               khugepaged_defrag_store);
 232
 233/*
 234 * max_ptes_none controls if khugepaged should collapse hugepages over
 235 * any unmapped ptes in turn potentially increasing the memory
 236 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
 237 * reduce the available free memory in the system as it
 238 * runs. Increasing max_ptes_none will instead potentially reduce the
 239 * free memory in the system during the khugepaged scan.
 240 */
 241static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
 242                                             struct kobj_attribute *attr,
 243                                             char *buf)
 244{
 245        return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
 246}
 247static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
 248                                              struct kobj_attribute *attr,
 249                                              const char *buf, size_t count)
 250{
 251        int err;
 252        unsigned long max_ptes_none;
 253
 254        err = kstrtoul(buf, 10, &max_ptes_none);
 255        if (err || max_ptes_none > HPAGE_PMD_NR-1)
 256                return -EINVAL;
 257
 258        khugepaged_max_ptes_none = max_ptes_none;
 259
 260        return count;
 261}
 262static struct kobj_attribute khugepaged_max_ptes_none_attr =
 263        __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
 264               khugepaged_max_ptes_none_store);
 265
 266static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj,
 267                                             struct kobj_attribute *attr,
 268                                             char *buf)
 269{
 270        return sprintf(buf, "%u\n", khugepaged_max_ptes_swap);
 271}
 272
 273static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj,
 274                                              struct kobj_attribute *attr,
 275                                              const char *buf, size_t count)
 276{
 277        int err;
 278        unsigned long max_ptes_swap;
 279
 280        err  = kstrtoul(buf, 10, &max_ptes_swap);
 281        if (err || max_ptes_swap > HPAGE_PMD_NR-1)
 282                return -EINVAL;
 283
 284        khugepaged_max_ptes_swap = max_ptes_swap;
 285
 286        return count;
 287}
 288
 289static struct kobj_attribute khugepaged_max_ptes_swap_attr =
 290        __ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show,
 291               khugepaged_max_ptes_swap_store);
 292
 293static struct attribute *khugepaged_attr[] = {
 294        &khugepaged_defrag_attr.attr,
 295        &khugepaged_max_ptes_none_attr.attr,
 296        &pages_to_scan_attr.attr,
 297        &pages_collapsed_attr.attr,
 298        &full_scans_attr.attr,
 299        &scan_sleep_millisecs_attr.attr,
 300        &alloc_sleep_millisecs_attr.attr,
 301        &khugepaged_max_ptes_swap_attr.attr,
 302        NULL,
 303};
 304
 305struct attribute_group khugepaged_attr_group = {
 306        .attrs = khugepaged_attr,
 307        .name = "khugepaged",
 308};
 309#endif /* CONFIG_SYSFS */
 310
 311#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
 312
 313int hugepage_madvise(struct vm_area_struct *vma,
 314                     unsigned long *vm_flags, int advice)
 315{
 316        switch (advice) {
 317        case MADV_HUGEPAGE:
 318#ifdef CONFIG_S390
 319                /*
 320                 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
 321                 * can't handle this properly after s390_enable_sie, so we simply
 322                 * ignore the madvise to prevent qemu from causing a SIGSEGV.
 323                 */
 324                if (mm_has_pgste(vma->vm_mm))
 325                        return 0;
 326#endif
 327                *vm_flags &= ~VM_NOHUGEPAGE;
 328                *vm_flags |= VM_HUGEPAGE;
 329                /*
 330                 * If the vma become good for khugepaged to scan,
 331                 * register it here without waiting a page fault that
 332                 * may not happen any time soon.
 333                 */
 334                if (!(*vm_flags & VM_NO_KHUGEPAGED) &&
 335                                khugepaged_enter_vma_merge(vma, *vm_flags))
 336                        return -ENOMEM;
 337                break;
 338        case MADV_NOHUGEPAGE:
 339                *vm_flags &= ~VM_HUGEPAGE;
 340                *vm_flags |= VM_NOHUGEPAGE;
 341                /*
 342                 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
 343                 * this vma even if we leave the mm registered in khugepaged if
 344                 * it got registered before VM_NOHUGEPAGE was set.
 345                 */
 346                break;
 347        }
 348
 349        return 0;
 350}
 351
 352int __init khugepaged_init(void)
 353{
 354        mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
 355                                          sizeof(struct mm_slot),
 356                                          __alignof__(struct mm_slot), 0, NULL);
 357        if (!mm_slot_cache)
 358                return -ENOMEM;
 359
 360        khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
 361        khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
 362        khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
 363
 364        return 0;
 365}
 366
 367void __init khugepaged_destroy(void)
 368{
 369        kmem_cache_destroy(mm_slot_cache);
 370}
 371
 372static inline struct mm_slot *alloc_mm_slot(void)
 373{
 374        if (!mm_slot_cache)     /* initialization failed */
 375                return NULL;
 376        return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
 377}
 378
 379static inline void free_mm_slot(struct mm_slot *mm_slot)
 380{
 381        kmem_cache_free(mm_slot_cache, mm_slot);
 382}
 383
 384static struct mm_slot *get_mm_slot(struct mm_struct *mm)
 385{
 386        struct mm_slot *mm_slot;
 387
 388        hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
 389                if (mm == mm_slot->mm)
 390                        return mm_slot;
 391
 392        return NULL;
 393}
 394
 395static void insert_to_mm_slots_hash(struct mm_struct *mm,
 396                                    struct mm_slot *mm_slot)
 397{
 398        mm_slot->mm = mm;
 399        hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
 400}
 401
 402static inline int khugepaged_test_exit(struct mm_struct *mm)
 403{
 404        return atomic_read(&mm->mm_users) == 0;
 405}
 406
 407static bool hugepage_vma_check(struct vm_area_struct *vma,
 408                               unsigned long vm_flags)
 409{
 410        if ((!(vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
 411            (vm_flags & VM_NOHUGEPAGE) ||
 412            test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
 413                return false;
 414
 415        if (shmem_file(vma->vm_file) ||
 416            (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) &&
 417             vma->vm_file &&
 418             (vm_flags & VM_DENYWRITE))) {
 419                if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
 420                        return false;
 421                return IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) - vma->vm_pgoff,
 422                                HPAGE_PMD_NR);
 423        }
 424        if (!vma->anon_vma || vma->vm_ops)
 425                return false;
 426        if (is_vma_temporary_stack(vma))
 427                return false;
 428        return !(vm_flags & VM_NO_KHUGEPAGED);
 429}
 430
 431int __khugepaged_enter(struct mm_struct *mm)
 432{
 433        struct mm_slot *mm_slot;
 434        int wakeup;
 435
 436        mm_slot = alloc_mm_slot();
 437        if (!mm_slot)
 438                return -ENOMEM;
 439
 440        /* __khugepaged_exit() must not run from under us */
 441        VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
 442        if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
 443                free_mm_slot(mm_slot);
 444                return 0;
 445        }
 446
 447        spin_lock(&khugepaged_mm_lock);
 448        insert_to_mm_slots_hash(mm, mm_slot);
 449        /*
 450         * Insert just behind the scanning cursor, to let the area settle
 451         * down a little.
 452         */
 453        wakeup = list_empty(&khugepaged_scan.mm_head);
 454        list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
 455        spin_unlock(&khugepaged_mm_lock);
 456
 457        mmgrab(mm);
 458        if (wakeup)
 459                wake_up_interruptible(&khugepaged_wait);
 460
 461        return 0;
 462}
 463
 464int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
 465                               unsigned long vm_flags)
 466{
 467        unsigned long hstart, hend;
 468
 469        /*
 470         * khugepaged only supports read-only files for non-shmem files.
 471         * khugepaged does not yet work on special mappings. And
 472         * file-private shmem THP is not supported.
 473         */
 474        if (!hugepage_vma_check(vma, vm_flags))
 475                return 0;
 476
 477        hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
 478        hend = vma->vm_end & HPAGE_PMD_MASK;
 479        if (hstart < hend)
 480                return khugepaged_enter(vma, vm_flags);
 481        return 0;
 482}
 483
 484void __khugepaged_exit(struct mm_struct *mm)
 485{
 486        struct mm_slot *mm_slot;
 487        int free = 0;
 488
 489        spin_lock(&khugepaged_mm_lock);
 490        mm_slot = get_mm_slot(mm);
 491        if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
 492                hash_del(&mm_slot->hash);
 493                list_del(&mm_slot->mm_node);
 494                free = 1;
 495        }
 496        spin_unlock(&khugepaged_mm_lock);
 497
 498        if (free) {
 499                clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
 500                free_mm_slot(mm_slot);
 501                mmdrop(mm);
 502        } else if (mm_slot) {
 503                /*
 504                 * This is required to serialize against
 505                 * khugepaged_test_exit() (which is guaranteed to run
 506                 * under mmap sem read mode). Stop here (after we
 507                 * return all pagetables will be destroyed) until
 508                 * khugepaged has finished working on the pagetables
 509                 * under the mmap_sem.
 510                 */
 511                down_write(&mm->mmap_sem);
 512                up_write(&mm->mmap_sem);
 513        }
 514}
 515
 516static void release_pte_page(struct page *page)
 517{
 518        dec_node_page_state(page, NR_ISOLATED_ANON + page_is_file_cache(page));
 519        unlock_page(page);
 520        putback_lru_page(page);
 521}
 522
 523static void release_pte_pages(pte_t *pte, pte_t *_pte)
 524{
 525        while (--_pte >= pte) {
 526                pte_t pteval = *_pte;
 527                if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
 528                        release_pte_page(pte_page(pteval));
 529        }
 530}
 531
 532static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
 533                                        unsigned long address,
 534                                        pte_t *pte)
 535{
 536        struct page *page = NULL;
 537        pte_t *_pte;
 538        int none_or_zero = 0, result = 0, referenced = 0;
 539        bool writable = false;
 540
 541        for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
 542             _pte++, address += PAGE_SIZE) {
 543                pte_t pteval = *_pte;
 544                if (pte_none(pteval) || (pte_present(pteval) &&
 545                                is_zero_pfn(pte_pfn(pteval)))) {
 546                        if (!userfaultfd_armed(vma) &&
 547                            ++none_or_zero <= khugepaged_max_ptes_none) {
 548                                continue;
 549                        } else {
 550                                result = SCAN_EXCEED_NONE_PTE;
 551                                goto out;
 552                        }
 553                }
 554                if (!pte_present(pteval)) {
 555                        result = SCAN_PTE_NON_PRESENT;
 556                        goto out;
 557                }
 558                page = vm_normal_page(vma, address, pteval);
 559                if (unlikely(!page)) {
 560                        result = SCAN_PAGE_NULL;
 561                        goto out;
 562                }
 563
 564                /* TODO: teach khugepaged to collapse THP mapped with pte */
 565                if (PageCompound(page)) {
 566                        result = SCAN_PAGE_COMPOUND;
 567                        goto out;
 568                }
 569
 570                VM_BUG_ON_PAGE(!PageAnon(page), page);
 571
 572                /*
 573                 * We can do it before isolate_lru_page because the
 574                 * page can't be freed from under us. NOTE: PG_lock
 575                 * is needed to serialize against split_huge_page
 576                 * when invoked from the VM.
 577                 */
 578                if (!trylock_page(page)) {
 579                        result = SCAN_PAGE_LOCK;
 580                        goto out;
 581                }
 582
 583                /*
 584                 * cannot use mapcount: can't collapse if there's a gup pin.
 585                 * The page must only be referenced by the scanned process
 586                 * and page swap cache.
 587                 */
 588                if (page_count(page) != 1 + PageSwapCache(page)) {
 589                        unlock_page(page);
 590                        result = SCAN_PAGE_COUNT;
 591                        goto out;
 592                }
 593                if (pte_write(pteval)) {
 594                        writable = true;
 595                } else {
 596                        if (PageSwapCache(page) &&
 597                            !reuse_swap_page(page, NULL)) {
 598                                unlock_page(page);
 599                                result = SCAN_SWAP_CACHE_PAGE;
 600                                goto out;
 601                        }
 602                        /*
 603                         * Page is not in the swap cache. It can be collapsed
 604                         * into a THP.
 605                         */
 606                }
 607
 608                /*
 609                 * Isolate the page to avoid collapsing an hugepage
 610                 * currently in use by the VM.
 611                 */
 612                if (isolate_lru_page(page)) {
 613                        unlock_page(page);
 614                        result = SCAN_DEL_PAGE_LRU;
 615                        goto out;
 616                }
 617                inc_node_page_state(page,
 618                                NR_ISOLATED_ANON + page_is_file_cache(page));
 619                VM_BUG_ON_PAGE(!PageLocked(page), page);
 620                VM_BUG_ON_PAGE(PageLRU(page), page);
 621
 622                /* There should be enough young pte to collapse the page */
 623                if (pte_young(pteval) ||
 624                    page_is_young(page) || PageReferenced(page) ||
 625                    mmu_notifier_test_young(vma->vm_mm, address))
 626                        referenced++;
 627        }
 628        if (likely(writable)) {
 629                if (likely(referenced)) {
 630                        result = SCAN_SUCCEED;
 631                        trace_mm_collapse_huge_page_isolate(page, none_or_zero,
 632                                                            referenced, writable, result);
 633                        return 1;
 634                }
 635        } else {
 636                result = SCAN_PAGE_RO;
 637        }
 638
 639out:
 640        release_pte_pages(pte, _pte);
 641        trace_mm_collapse_huge_page_isolate(page, none_or_zero,
 642                                            referenced, writable, result);
 643        return 0;
 644}
 645
 646static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
 647                                      struct vm_area_struct *vma,
 648                                      unsigned long address,
 649                                      spinlock_t *ptl)
 650{
 651        pte_t *_pte;
 652        for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
 653                                _pte++, page++, address += PAGE_SIZE) {
 654                pte_t pteval = *_pte;
 655                struct page *src_page;
 656
 657                if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
 658                        clear_user_highpage(page, address);
 659                        add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
 660                        if (is_zero_pfn(pte_pfn(pteval))) {
 661                                /*
 662                                 * ptl mostly unnecessary.
 663                                 */
 664                                spin_lock(ptl);
 665                                /*
 666                                 * paravirt calls inside pte_clear here are
 667                                 * superfluous.
 668                                 */
 669                                pte_clear(vma->vm_mm, address, _pte);
 670                                spin_unlock(ptl);
 671                        }
 672                } else {
 673                        src_page = pte_page(pteval);
 674                        copy_user_highpage(page, src_page, address, vma);
 675                        VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
 676                        release_pte_page(src_page);
 677                        /*
 678                         * ptl mostly unnecessary, but preempt has to
 679                         * be disabled to update the per-cpu stats
 680                         * inside page_remove_rmap().
 681                         */
 682                        spin_lock(ptl);
 683                        /*
 684                         * paravirt calls inside pte_clear here are
 685                         * superfluous.
 686                         */
 687                        pte_clear(vma->vm_mm, address, _pte);
 688                        page_remove_rmap(src_page, false);
 689                        spin_unlock(ptl);
 690                        free_page_and_swap_cache(src_page);
 691                }
 692        }
 693}
 694
 695static void khugepaged_alloc_sleep(void)
 696{
 697        DEFINE_WAIT(wait);
 698
 699        add_wait_queue(&khugepaged_wait, &wait);
 700        freezable_schedule_timeout_interruptible(
 701                msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
 702        remove_wait_queue(&khugepaged_wait, &wait);
 703}
 704
 705static int khugepaged_node_load[MAX_NUMNODES];
 706
 707static bool khugepaged_scan_abort(int nid)
 708{
 709        int i;
 710
 711        /*
 712         * If node_reclaim_mode is disabled, then no extra effort is made to
 713         * allocate memory locally.
 714         */
 715        if (!node_reclaim_mode)
 716                return false;
 717
 718        /* If there is a count for this node already, it must be acceptable */
 719        if (khugepaged_node_load[nid])
 720                return false;
 721
 722        for (i = 0; i < MAX_NUMNODES; i++) {
 723                if (!khugepaged_node_load[i])
 724                        continue;
 725                if (node_distance(nid, i) > node_reclaim_distance)
 726                        return true;
 727        }
 728        return false;
 729}
 730
 731/* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
 732static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
 733{
 734        return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
 735}
 736
 737#ifdef CONFIG_NUMA
 738static int khugepaged_find_target_node(void)
 739{
 740        static int last_khugepaged_target_node = NUMA_NO_NODE;
 741        int nid, target_node = 0, max_value = 0;
 742
 743        /* find first node with max normal pages hit */
 744        for (nid = 0; nid < MAX_NUMNODES; nid++)
 745                if (khugepaged_node_load[nid] > max_value) {
 746                        max_value = khugepaged_node_load[nid];
 747                        target_node = nid;
 748                }
 749
 750        /* do some balance if several nodes have the same hit record */
 751        if (target_node <= last_khugepaged_target_node)
 752                for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
 753                                nid++)
 754                        if (max_value == khugepaged_node_load[nid]) {
 755                                target_node = nid;
 756                                break;
 757                        }
 758
 759        last_khugepaged_target_node = target_node;
 760        return target_node;
 761}
 762
 763static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
 764{
 765        if (IS_ERR(*hpage)) {
 766                if (!*wait)
 767                        return false;
 768
 769                *wait = false;
 770                *hpage = NULL;
 771                khugepaged_alloc_sleep();
 772        } else if (*hpage) {
 773                put_page(*hpage);
 774                *hpage = NULL;
 775        }
 776
 777        return true;
 778}
 779
 780static struct page *
 781khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
 782{
 783        VM_BUG_ON_PAGE(*hpage, *hpage);
 784
 785        *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
 786        if (unlikely(!*hpage)) {
 787                count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
 788                *hpage = ERR_PTR(-ENOMEM);
 789                return NULL;
 790        }
 791
 792        prep_transhuge_page(*hpage);
 793        count_vm_event(THP_COLLAPSE_ALLOC);
 794        return *hpage;
 795}
 796#else
 797static int khugepaged_find_target_node(void)
 798{
 799        return 0;
 800}
 801
 802static inline struct page *alloc_khugepaged_hugepage(void)
 803{
 804        struct page *page;
 805
 806        page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
 807                           HPAGE_PMD_ORDER);
 808        if (page)
 809                prep_transhuge_page(page);
 810        return page;
 811}
 812
 813static struct page *khugepaged_alloc_hugepage(bool *wait)
 814{
 815        struct page *hpage;
 816
 817        do {
 818                hpage = alloc_khugepaged_hugepage();
 819                if (!hpage) {
 820                        count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
 821                        if (!*wait)
 822                                return NULL;
 823
 824                        *wait = false;
 825                        khugepaged_alloc_sleep();
 826                } else
 827                        count_vm_event(THP_COLLAPSE_ALLOC);
 828        } while (unlikely(!hpage) && likely(khugepaged_enabled()));
 829
 830        return hpage;
 831}
 832
 833static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
 834{
 835        if (!*hpage)
 836                *hpage = khugepaged_alloc_hugepage(wait);
 837
 838        if (unlikely(!*hpage))
 839                return false;
 840
 841        return true;
 842}
 843
 844static struct page *
 845khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
 846{
 847        VM_BUG_ON(!*hpage);
 848
 849        return  *hpage;
 850}
 851#endif
 852
 853/*
 854 * If mmap_sem temporarily dropped, revalidate vma
 855 * before taking mmap_sem.
 856 * Return 0 if succeeds, otherwise return none-zero
 857 * value (scan code).
 858 */
 859
 860static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
 861                struct vm_area_struct **vmap)
 862{
 863        struct vm_area_struct *vma;
 864        unsigned long hstart, hend;
 865
 866        if (unlikely(khugepaged_test_exit(mm)))
 867                return SCAN_ANY_PROCESS;
 868
 869        *vmap = vma = find_vma(mm, address);
 870        if (!vma)
 871                return SCAN_VMA_NULL;
 872
 873        hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
 874        hend = vma->vm_end & HPAGE_PMD_MASK;
 875        if (address < hstart || address + HPAGE_PMD_SIZE > hend)
 876                return SCAN_ADDRESS_RANGE;
 877        if (!hugepage_vma_check(vma, vma->vm_flags))
 878                return SCAN_VMA_CHECK;
 879        return 0;
 880}
 881
 882/*
 883 * Bring missing pages in from swap, to complete THP collapse.
 884 * Only done if khugepaged_scan_pmd believes it is worthwhile.
 885 *
 886 * Called and returns without pte mapped or spinlocks held,
 887 * but with mmap_sem held to protect against vma changes.
 888 */
 889
 890static bool __collapse_huge_page_swapin(struct mm_struct *mm,
 891                                        struct vm_area_struct *vma,
 892                                        unsigned long address, pmd_t *pmd,
 893                                        int referenced)
 894{
 895        int swapped_in = 0;
 896        vm_fault_t ret = 0;
 897        struct vm_fault vmf = {
 898                .vma = vma,
 899                .address = address,
 900                .flags = FAULT_FLAG_ALLOW_RETRY,
 901                .pmd = pmd,
 902                .pgoff = linear_page_index(vma, address),
 903        };
 904
 905        /* we only decide to swapin, if there is enough young ptes */
 906        if (referenced < HPAGE_PMD_NR/2) {
 907                trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
 908                return false;
 909        }
 910        vmf.pte = pte_offset_map(pmd, address);
 911        for (; vmf.address < address + HPAGE_PMD_NR*PAGE_SIZE;
 912                        vmf.pte++, vmf.address += PAGE_SIZE) {
 913                vmf.orig_pte = *vmf.pte;
 914                if (!is_swap_pte(vmf.orig_pte))
 915                        continue;
 916                swapped_in++;
 917                ret = do_swap_page(&vmf);
 918
 919                /* do_swap_page returns VM_FAULT_RETRY with released mmap_sem */
 920                if (ret & VM_FAULT_RETRY) {
 921                        down_read(&mm->mmap_sem);
 922                        if (hugepage_vma_revalidate(mm, address, &vmf.vma)) {
 923                                /* vma is no longer available, don't continue to swapin */
 924                                trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
 925                                return false;
 926                        }
 927                        /* check if the pmd is still valid */
 928                        if (mm_find_pmd(mm, address) != pmd) {
 929                                trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
 930                                return false;
 931                        }
 932                }
 933                if (ret & VM_FAULT_ERROR) {
 934                        trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
 935                        return false;
 936                }
 937                /* pte is unmapped now, we need to map it */
 938                vmf.pte = pte_offset_map(pmd, vmf.address);
 939        }
 940        vmf.pte--;
 941        pte_unmap(vmf.pte);
 942        trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1);
 943        return true;
 944}
 945
 946static void collapse_huge_page(struct mm_struct *mm,
 947                                   unsigned long address,
 948                                   struct page **hpage,
 949                                   int node, int referenced)
 950{
 951        pmd_t *pmd, _pmd;
 952        pte_t *pte;
 953        pgtable_t pgtable;
 954        struct page *new_page;
 955        spinlock_t *pmd_ptl, *pte_ptl;
 956        int isolated = 0, result = 0;
 957        struct mem_cgroup *memcg;
 958        struct vm_area_struct *vma;
 959        struct mmu_notifier_range range;
 960        gfp_t gfp;
 961
 962        VM_BUG_ON(address & ~HPAGE_PMD_MASK);
 963
 964        /* Only allocate from the target node */
 965        gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
 966
 967        /*
 968         * Before allocating the hugepage, release the mmap_sem read lock.
 969         * The allocation can take potentially a long time if it involves
 970         * sync compaction, and we do not need to hold the mmap_sem during
 971         * that. We will recheck the vma after taking it again in write mode.
 972         */
 973        up_read(&mm->mmap_sem);
 974        new_page = khugepaged_alloc_page(hpage, gfp, node);
 975        if (!new_page) {
 976                result = SCAN_ALLOC_HUGE_PAGE_FAIL;
 977                goto out_nolock;
 978        }
 979
 980        if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
 981                result = SCAN_CGROUP_CHARGE_FAIL;
 982                goto out_nolock;
 983        }
 984
 985        down_read(&mm->mmap_sem);
 986        result = hugepage_vma_revalidate(mm, address, &vma);
 987        if (result) {
 988                mem_cgroup_cancel_charge(new_page, memcg, true);
 989                up_read(&mm->mmap_sem);
 990                goto out_nolock;
 991        }
 992
 993        pmd = mm_find_pmd(mm, address);
 994        if (!pmd) {
 995                result = SCAN_PMD_NULL;
 996                mem_cgroup_cancel_charge(new_page, memcg, true);
 997                up_read(&mm->mmap_sem);
 998                goto out_nolock;
 999        }
1000
1001        /*
1002         * __collapse_huge_page_swapin always returns with mmap_sem locked.
1003         * If it fails, we release mmap_sem and jump out_nolock.
1004         * Continuing to collapse causes inconsistency.
1005         */
1006        if (!__collapse_huge_page_swapin(mm, vma, address, pmd, referenced)) {
1007                mem_cgroup_cancel_charge(new_page, memcg, true);
1008                up_read(&mm->mmap_sem);
1009                goto out_nolock;
1010        }
1011
1012        up_read(&mm->mmap_sem);
1013        /*
1014         * Prevent all access to pagetables with the exception of
1015         * gup_fast later handled by the ptep_clear_flush and the VM
1016         * handled by the anon_vma lock + PG_lock.
1017         */
1018        down_write(&mm->mmap_sem);
1019        result = SCAN_ANY_PROCESS;
1020        if (!mmget_still_valid(mm))
1021                goto out;
1022        result = hugepage_vma_revalidate(mm, address, &vma);
1023        if (result)
1024                goto out;
1025        /* check if the pmd is still valid */
1026        if (mm_find_pmd(mm, address) != pmd)
1027                goto out;
1028
1029        anon_vma_lock_write(vma->anon_vma);
1030
1031        mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
1032                                address, address + HPAGE_PMD_SIZE);
1033        mmu_notifier_invalidate_range_start(&range);
1034
1035        pte = pte_offset_map(pmd, address);
1036        pte_ptl = pte_lockptr(mm, pmd);
1037
1038        pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
1039        /*
1040         * After this gup_fast can't run anymore. This also removes
1041         * any huge TLB entry from the CPU so we won't allow
1042         * huge and small TLB entries for the same virtual address
1043         * to avoid the risk of CPU bugs in that area.
1044         */
1045        _pmd = pmdp_collapse_flush(vma, address, pmd);
1046        spin_unlock(pmd_ptl);
1047        mmu_notifier_invalidate_range_end(&range);
1048
1049        spin_lock(pte_ptl);
1050        isolated = __collapse_huge_page_isolate(vma, address, pte);
1051        spin_unlock(pte_ptl);
1052
1053        if (unlikely(!isolated)) {
1054                pte_unmap(pte);
1055                spin_lock(pmd_ptl);
1056                BUG_ON(!pmd_none(*pmd));
1057                /*
1058                 * We can only use set_pmd_at when establishing
1059                 * hugepmds and never for establishing regular pmds that
1060                 * points to regular pagetables. Use pmd_populate for that
1061                 */
1062                pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1063                spin_unlock(pmd_ptl);
1064                anon_vma_unlock_write(vma->anon_vma);
1065                result = SCAN_FAIL;
1066                goto out;
1067        }
1068
1069        /*
1070         * All pages are isolated and locked so anon_vma rmap
1071         * can't run anymore.
1072         */
1073        anon_vma_unlock_write(vma->anon_vma);
1074
1075        __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
1076        pte_unmap(pte);
1077        __SetPageUptodate(new_page);
1078        pgtable = pmd_pgtable(_pmd);
1079
1080        _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
1081        _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1082
1083        /*
1084         * spin_lock() below is not the equivalent of smp_wmb(), so
1085         * this is needed to avoid the copy_huge_page writes to become
1086         * visible after the set_pmd_at() write.
1087         */
1088        smp_wmb();
1089
1090        spin_lock(pmd_ptl);
1091        BUG_ON(!pmd_none(*pmd));
1092        page_add_new_anon_rmap(new_page, vma, address, true);
1093        mem_cgroup_commit_charge(new_page, memcg, false, true);
1094        count_memcg_events(memcg, THP_COLLAPSE_ALLOC, 1);
1095        lru_cache_add_active_or_unevictable(new_page, vma);
1096        pgtable_trans_huge_deposit(mm, pmd, pgtable);
1097        set_pmd_at(mm, address, pmd, _pmd);
1098        update_mmu_cache_pmd(vma, address, pmd);
1099        spin_unlock(pmd_ptl);
1100
1101        *hpage = NULL;
1102
1103        khugepaged_pages_collapsed++;
1104        result = SCAN_SUCCEED;
1105out_up_write:
1106        up_write(&mm->mmap_sem);
1107out_nolock:
1108        trace_mm_collapse_huge_page(mm, isolated, result);
1109        return;
1110out:
1111        mem_cgroup_cancel_charge(new_page, memcg, true);
1112        goto out_up_write;
1113}
1114
1115static int khugepaged_scan_pmd(struct mm_struct *mm,
1116                               struct vm_area_struct *vma,
1117                               unsigned long address,
1118                               struct page **hpage)
1119{
1120        pmd_t *pmd;
1121        pte_t *pte, *_pte;
1122        int ret = 0, none_or_zero = 0, result = 0, referenced = 0;
1123        struct page *page = NULL;
1124        unsigned long _address;
1125        spinlock_t *ptl;
1126        int node = NUMA_NO_NODE, unmapped = 0;
1127        bool writable = false;
1128
1129        VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1130
1131        pmd = mm_find_pmd(mm, address);
1132        if (!pmd) {
1133                result = SCAN_PMD_NULL;
1134                goto out;
1135        }
1136
1137        memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1138        pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1139        for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
1140             _pte++, _address += PAGE_SIZE) {
1141                pte_t pteval = *_pte;
1142                if (is_swap_pte(pteval)) {
1143                        if (++unmapped <= khugepaged_max_ptes_swap) {
1144                                continue;
1145                        } else {
1146                                result = SCAN_EXCEED_SWAP_PTE;
1147                                goto out_unmap;
1148                        }
1149                }
1150                if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
1151                        if (!userfaultfd_armed(vma) &&
1152                            ++none_or_zero <= khugepaged_max_ptes_none) {
1153                                continue;
1154                        } else {
1155                                result = SCAN_EXCEED_NONE_PTE;
1156                                goto out_unmap;
1157                        }
1158                }
1159                if (!pte_present(pteval)) {
1160                        result = SCAN_PTE_NON_PRESENT;
1161                        goto out_unmap;
1162                }
1163                if (pte_write(pteval))
1164                        writable = true;
1165
1166                page = vm_normal_page(vma, _address, pteval);
1167                if (unlikely(!page)) {
1168                        result = SCAN_PAGE_NULL;
1169                        goto out_unmap;
1170                }
1171
1172                /* TODO: teach khugepaged to collapse THP mapped with pte */
1173                if (PageCompound(page)) {
1174                        result = SCAN_PAGE_COMPOUND;
1175                        goto out_unmap;
1176                }
1177
1178                /*
1179                 * Record which node the original page is from and save this
1180                 * information to khugepaged_node_load[].
1181                 * Khupaged will allocate hugepage from the node has the max
1182                 * hit record.
1183                 */
1184                node = page_to_nid(page);
1185                if (khugepaged_scan_abort(node)) {
1186                        result = SCAN_SCAN_ABORT;
1187                        goto out_unmap;
1188                }
1189                khugepaged_node_load[node]++;
1190                if (!PageLRU(page)) {
1191                        result = SCAN_PAGE_LRU;
1192                        goto out_unmap;
1193                }
1194                if (PageLocked(page)) {
1195                        result = SCAN_PAGE_LOCK;
1196                        goto out_unmap;
1197                }
1198                if (!PageAnon(page)) {
1199                        result = SCAN_PAGE_ANON;
1200                        goto out_unmap;
1201                }
1202
1203                /*
1204                 * cannot use mapcount: can't collapse if there's a gup pin.
1205                 * The page must only be referenced by the scanned process
1206                 * and page swap cache.
1207                 */
1208                if (page_count(page) != 1 + PageSwapCache(page)) {
1209                        result = SCAN_PAGE_COUNT;
1210                        goto out_unmap;
1211                }
1212                if (pte_young(pteval) ||
1213                    page_is_young(page) || PageReferenced(page) ||
1214                    mmu_notifier_test_young(vma->vm_mm, address))
1215                        referenced++;
1216        }
1217        if (writable) {
1218                if (referenced) {
1219                        result = SCAN_SUCCEED;
1220                        ret = 1;
1221                } else {
1222                        result = SCAN_LACK_REFERENCED_PAGE;
1223                }
1224        } else {
1225                result = SCAN_PAGE_RO;
1226        }
1227out_unmap:
1228        pte_unmap_unlock(pte, ptl);
1229        if (ret) {
1230                node = khugepaged_find_target_node();
1231                /* collapse_huge_page will return with the mmap_sem released */
1232                collapse_huge_page(mm, address, hpage, node, referenced);
1233        }
1234out:
1235        trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
1236                                     none_or_zero, result, unmapped);
1237        return ret;
1238}
1239
1240static void collect_mm_slot(struct mm_slot *mm_slot)
1241{
1242        struct mm_struct *mm = mm_slot->mm;
1243
1244        lockdep_assert_held(&khugepaged_mm_lock);
1245
1246        if (khugepaged_test_exit(mm)) {
1247                /* free mm_slot */
1248                hash_del(&mm_slot->hash);
1249                list_del(&mm_slot->mm_node);
1250
1251                /*
1252                 * Not strictly needed because the mm exited already.
1253                 *
1254                 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1255                 */
1256
1257                /* khugepaged_mm_lock actually not necessary for the below */
1258                free_mm_slot(mm_slot);
1259                mmdrop(mm);
1260        }
1261}
1262
1263#if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
1264/*
1265 * Notify khugepaged that given addr of the mm is pte-mapped THP. Then
1266 * khugepaged should try to collapse the page table.
1267 */
1268static int khugepaged_add_pte_mapped_thp(struct mm_struct *mm,
1269                                         unsigned long addr)
1270{
1271        struct mm_slot *mm_slot;
1272
1273        VM_BUG_ON(addr & ~HPAGE_PMD_MASK);
1274
1275        spin_lock(&khugepaged_mm_lock);
1276        mm_slot = get_mm_slot(mm);
1277        if (likely(mm_slot && mm_slot->nr_pte_mapped_thp < MAX_PTE_MAPPED_THP))
1278                mm_slot->pte_mapped_thp[mm_slot->nr_pte_mapped_thp++] = addr;
1279        spin_unlock(&khugepaged_mm_lock);
1280        return 0;
1281}
1282
1283/**
1284 * Try to collapse a pte-mapped THP for mm at address haddr.
1285 *
1286 * This function checks whether all the PTEs in the PMD are pointing to the
1287 * right THP. If so, retract the page table so the THP can refault in with
1288 * as pmd-mapped.
1289 */
1290void collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr)
1291{
1292        unsigned long haddr = addr & HPAGE_PMD_MASK;
1293        struct vm_area_struct *vma = find_vma(mm, haddr);
1294        struct page *hpage = NULL;
1295        pte_t *start_pte, *pte;
1296        pmd_t *pmd, _pmd;
1297        spinlock_t *ptl;
1298        int count = 0;
1299        int i;
1300
1301        if (!vma || !vma->vm_file ||
1302            vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE)
1303                return;
1304
1305        /*
1306         * This vm_flags may not have VM_HUGEPAGE if the page was not
1307         * collapsed by this mm. But we can still collapse if the page is
1308         * the valid THP. Add extra VM_HUGEPAGE so hugepage_vma_check()
1309         * will not fail the vma for missing VM_HUGEPAGE
1310         */
1311        if (!hugepage_vma_check(vma, vma->vm_flags | VM_HUGEPAGE))
1312                return;
1313
1314        pmd = mm_find_pmd(mm, haddr);
1315        if (!pmd)
1316                return;
1317
1318        start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl);
1319
1320        /* step 1: check all mapped PTEs are to the right huge page */
1321        for (i = 0, addr = haddr, pte = start_pte;
1322             i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1323                struct page *page;
1324
1325                /* empty pte, skip */
1326                if (pte_none(*pte))
1327                        continue;
1328
1329                /* page swapped out, abort */
1330                if (!pte_present(*pte))
1331                        goto abort;
1332
1333                page = vm_normal_page(vma, addr, *pte);
1334
1335                if (!page || !PageCompound(page))
1336                        goto abort;
1337
1338                if (!hpage) {
1339                        hpage = compound_head(page);
1340                        /*
1341                         * The mapping of the THP should not change.
1342                         *
1343                         * Note that uprobe, debugger, or MAP_PRIVATE may
1344                         * change the page table, but the new page will
1345                         * not pass PageCompound() check.
1346                         */
1347                        if (WARN_ON(hpage->mapping != vma->vm_file->f_mapping))
1348                                goto abort;
1349                }
1350
1351                /*
1352                 * Confirm the page maps to the correct subpage.
1353                 *
1354                 * Note that uprobe, debugger, or MAP_PRIVATE may change
1355                 * the page table, but the new page will not pass
1356                 * PageCompound() check.
1357                 */
1358                if (WARN_ON(hpage + i != page))
1359                        goto abort;
1360                count++;
1361        }
1362
1363        /* step 2: adjust rmap */
1364        for (i = 0, addr = haddr, pte = start_pte;
1365             i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1366                struct page *page;
1367
1368                if (pte_none(*pte))
1369                        continue;
1370                page = vm_normal_page(vma, addr, *pte);
1371                page_remove_rmap(page, false);
1372        }
1373
1374        pte_unmap_unlock(start_pte, ptl);
1375
1376        /* step 3: set proper refcount and mm_counters. */
1377        if (hpage) {
1378                page_ref_sub(hpage, count);
1379                add_mm_counter(vma->vm_mm, mm_counter_file(hpage), -count);
1380        }
1381
1382        /* step 4: collapse pmd */
1383        ptl = pmd_lock(vma->vm_mm, pmd);
1384        _pmd = pmdp_collapse_flush(vma, addr, pmd);
1385        spin_unlock(ptl);
1386        mm_dec_nr_ptes(mm);
1387        pte_free(mm, pmd_pgtable(_pmd));
1388        return;
1389
1390abort:
1391        pte_unmap_unlock(start_pte, ptl);
1392}
1393
1394static int khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot)
1395{
1396        struct mm_struct *mm = mm_slot->mm;
1397        int i;
1398
1399        if (likely(mm_slot->nr_pte_mapped_thp == 0))
1400                return 0;
1401
1402        if (!down_write_trylock(&mm->mmap_sem))
1403                return -EBUSY;
1404
1405        if (unlikely(khugepaged_test_exit(mm)))
1406                goto out;
1407
1408        for (i = 0; i < mm_slot->nr_pte_mapped_thp; i++)
1409                collapse_pte_mapped_thp(mm, mm_slot->pte_mapped_thp[i]);
1410
1411out:
1412        mm_slot->nr_pte_mapped_thp = 0;
1413        up_write(&mm->mmap_sem);
1414        return 0;
1415}
1416
1417static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
1418{
1419        struct vm_area_struct *vma;
1420        unsigned long addr;
1421        pmd_t *pmd, _pmd;
1422
1423        i_mmap_lock_write(mapping);
1424        vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1425                /*
1426                 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that
1427                 * got written to. These VMAs are likely not worth investing
1428                 * down_write(mmap_sem) as PMD-mapping is likely to be split
1429                 * later.
1430                 *
1431                 * Not that vma->anon_vma check is racy: it can be set up after
1432                 * the check but before we took mmap_sem by the fault path.
1433                 * But page lock would prevent establishing any new ptes of the
1434                 * page, so we are safe.
1435                 *
1436                 * An alternative would be drop the check, but check that page
1437                 * table is clear before calling pmdp_collapse_flush() under
1438                 * ptl. It has higher chance to recover THP for the VMA, but
1439                 * has higher cost too.
1440                 */
1441                if (vma->anon_vma)
1442                        continue;
1443                addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1444                if (addr & ~HPAGE_PMD_MASK)
1445                        continue;
1446                if (vma->vm_end < addr + HPAGE_PMD_SIZE)
1447                        continue;
1448                pmd = mm_find_pmd(vma->vm_mm, addr);
1449                if (!pmd)
1450                        continue;
1451                /*
1452                 * We need exclusive mmap_sem to retract page table.
1453                 *
1454                 * We use trylock due to lock inversion: we need to acquire
1455                 * mmap_sem while holding page lock. Fault path does it in
1456                 * reverse order. Trylock is a way to avoid deadlock.
1457                 */
1458                if (down_write_trylock(&vma->vm_mm->mmap_sem)) {
1459                        spinlock_t *ptl = pmd_lock(vma->vm_mm, pmd);
1460                        /* assume page table is clear */
1461                        _pmd = pmdp_collapse_flush(vma, addr, pmd);
1462                        spin_unlock(ptl);
1463                        up_write(&vma->vm_mm->mmap_sem);
1464                        mm_dec_nr_ptes(vma->vm_mm);
1465                        pte_free(vma->vm_mm, pmd_pgtable(_pmd));
1466                } else {
1467                        /* Try again later */
1468                        khugepaged_add_pte_mapped_thp(vma->vm_mm, addr);
1469                }
1470        }
1471        i_mmap_unlock_write(mapping);
1472}
1473
1474/**
1475 * collapse_file - collapse filemap/tmpfs/shmem pages into huge one.
1476 *
1477 * Basic scheme is simple, details are more complex:
1478 *  - allocate and lock a new huge page;
1479 *  - scan page cache replacing old pages with the new one
1480 *    + swap/gup in pages if necessary;
1481 *    + fill in gaps;
1482 *    + keep old pages around in case rollback is required;
1483 *  - if replacing succeeds:
1484 *    + copy data over;
1485 *    + free old pages;
1486 *    + unlock huge page;
1487 *  - if replacing failed;
1488 *    + put all pages back and unfreeze them;
1489 *    + restore gaps in the page cache;
1490 *    + unlock and free huge page;
1491 */
1492static void collapse_file(struct mm_struct *mm,
1493                struct file *file, pgoff_t start,
1494                struct page **hpage, int node)
1495{
1496        struct address_space *mapping = file->f_mapping;
1497        gfp_t gfp;
1498        struct page *new_page;
1499        struct mem_cgroup *memcg;
1500        pgoff_t index, end = start + HPAGE_PMD_NR;
1501        LIST_HEAD(pagelist);
1502        XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER);
1503        int nr_none = 0, result = SCAN_SUCCEED;
1504        bool is_shmem = shmem_file(file);
1505
1506        VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem);
1507        VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
1508
1509        /* Only allocate from the target node */
1510        gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
1511
1512        new_page = khugepaged_alloc_page(hpage, gfp, node);
1513        if (!new_page) {
1514                result = SCAN_ALLOC_HUGE_PAGE_FAIL;
1515                goto out;
1516        }
1517
1518        if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
1519                result = SCAN_CGROUP_CHARGE_FAIL;
1520                goto out;
1521        }
1522
1523        /* This will be less messy when we use multi-index entries */
1524        do {
1525                xas_lock_irq(&xas);
1526                xas_create_range(&xas);
1527                if (!xas_error(&xas))
1528                        break;
1529                xas_unlock_irq(&xas);
1530                if (!xas_nomem(&xas, GFP_KERNEL)) {
1531                        mem_cgroup_cancel_charge(new_page, memcg, true);
1532                        result = SCAN_FAIL;
1533                        goto out;
1534                }
1535        } while (1);
1536
1537        __SetPageLocked(new_page);
1538        if (is_shmem)
1539                __SetPageSwapBacked(new_page);
1540        new_page->index = start;
1541        new_page->mapping = mapping;
1542
1543        /*
1544         * At this point the new_page is locked and not up-to-date.
1545         * It's safe to insert it into the page cache, because nobody would
1546         * be able to map it or use it in another way until we unlock it.
1547         */
1548
1549        xas_set(&xas, start);
1550        for (index = start; index < end; index++) {
1551                struct page *page = xas_next(&xas);
1552
1553                VM_BUG_ON(index != xas.xa_index);
1554                if (is_shmem) {
1555                        if (!page) {
1556                                /*
1557                                 * Stop if extent has been truncated or
1558                                 * hole-punched, and is now completely
1559                                 * empty.
1560                                 */
1561                                if (index == start) {
1562                                        if (!xas_next_entry(&xas, end - 1)) {
1563                                                result = SCAN_TRUNCATED;
1564                                                goto xa_locked;
1565                                        }
1566                                        xas_set(&xas, index);
1567                                }
1568                                if (!shmem_charge(mapping->host, 1)) {
1569                                        result = SCAN_FAIL;
1570                                        goto xa_locked;
1571                                }
1572                                xas_store(&xas, new_page);
1573                                nr_none++;
1574                                continue;
1575                        }
1576
1577                        if (xa_is_value(page) || !PageUptodate(page)) {
1578                                xas_unlock_irq(&xas);
1579                                /* swap in or instantiate fallocated page */
1580                                if (shmem_getpage(mapping->host, index, &page,
1581                                                  SGP_NOHUGE)) {
1582                                        result = SCAN_FAIL;
1583                                        goto xa_unlocked;
1584                                }
1585                        } else if (trylock_page(page)) {
1586                                get_page(page);
1587                                xas_unlock_irq(&xas);
1588                        } else {
1589                                result = SCAN_PAGE_LOCK;
1590                                goto xa_locked;
1591                        }
1592                } else {        /* !is_shmem */
1593                        if (!page || xa_is_value(page)) {
1594                                xas_unlock_irq(&xas);
1595                                page_cache_sync_readahead(mapping, &file->f_ra,
1596                                                          file, index,
1597                                                          PAGE_SIZE);
1598                                /* drain pagevecs to help isolate_lru_page() */
1599                                lru_add_drain();
1600                                page = find_lock_page(mapping, index);
1601                                if (unlikely(page == NULL)) {
1602                                        result = SCAN_FAIL;
1603                                        goto xa_unlocked;
1604                                }
1605                        } else if (PageDirty(page)) {
1606                                /*
1607                                 * khugepaged only works on read-only fd,
1608                                 * so this page is dirty because it hasn't
1609                                 * been flushed since first write. There
1610                                 * won't be new dirty pages.
1611                                 *
1612                                 * Trigger async flush here and hope the
1613                                 * writeback is done when khugepaged
1614                                 * revisits this page.
1615                                 *
1616                                 * This is a one-off situation. We are not
1617                                 * forcing writeback in loop.
1618                                 */
1619                                xas_unlock_irq(&xas);
1620                                filemap_flush(mapping);
1621                                result = SCAN_FAIL;
1622                                goto xa_unlocked;
1623                        } else if (trylock_page(page)) {
1624                                get_page(page);
1625                                xas_unlock_irq(&xas);
1626                        } else {
1627                                result = SCAN_PAGE_LOCK;
1628                                goto xa_locked;
1629                        }
1630                }
1631
1632                /*
1633                 * The page must be locked, so we can drop the i_pages lock
1634                 * without racing with truncate.
1635                 */
1636                VM_BUG_ON_PAGE(!PageLocked(page), page);
1637
1638                /* make sure the page is up to date */
1639                if (unlikely(!PageUptodate(page))) {
1640                        result = SCAN_FAIL;
1641                        goto out_unlock;
1642                }
1643
1644                /*
1645                 * If file was truncated then extended, or hole-punched, before
1646                 * we locked the first page, then a THP might be there already.
1647                 */
1648                if (PageTransCompound(page)) {
1649                        result = SCAN_PAGE_COMPOUND;
1650                        goto out_unlock;
1651                }
1652
1653                if (page_mapping(page) != mapping) {
1654                        result = SCAN_TRUNCATED;
1655                        goto out_unlock;
1656                }
1657
1658                if (!is_shmem && PageDirty(page)) {
1659                        /*
1660                         * khugepaged only works on read-only fd, so this
1661                         * page is dirty because it hasn't been flushed
1662                         * since first write.
1663                         */
1664                        result = SCAN_FAIL;
1665                        goto out_unlock;
1666                }
1667
1668                if (isolate_lru_page(page)) {
1669                        result = SCAN_DEL_PAGE_LRU;
1670                        goto out_unlock;
1671                }
1672
1673                if (page_has_private(page) &&
1674                    !try_to_release_page(page, GFP_KERNEL)) {
1675                        result = SCAN_PAGE_HAS_PRIVATE;
1676                        goto out_unlock;
1677                }
1678
1679                if (page_mapped(page))
1680                        unmap_mapping_pages(mapping, index, 1, false);
1681
1682                xas_lock_irq(&xas);
1683                xas_set(&xas, index);
1684
1685                VM_BUG_ON_PAGE(page != xas_load(&xas), page);
1686                VM_BUG_ON_PAGE(page_mapped(page), page);
1687
1688                /*
1689                 * The page is expected to have page_count() == 3:
1690                 *  - we hold a pin on it;
1691                 *  - one reference from page cache;
1692                 *  - one from isolate_lru_page;
1693                 */
1694                if (!page_ref_freeze(page, 3)) {
1695                        result = SCAN_PAGE_COUNT;
1696                        xas_unlock_irq(&xas);
1697                        putback_lru_page(page);
1698                        goto out_unlock;
1699                }
1700
1701                /*
1702                 * Add the page to the list to be able to undo the collapse if
1703                 * something go wrong.
1704                 */
1705                list_add_tail(&page->lru, &pagelist);
1706
1707                /* Finally, replace with the new page. */
1708                xas_store(&xas, new_page);
1709                continue;
1710out_unlock:
1711                unlock_page(page);
1712                put_page(page);
1713                goto xa_unlocked;
1714        }
1715
1716        if (is_shmem)
1717                __inc_node_page_state(new_page, NR_SHMEM_THPS);
1718        else {
1719                __inc_node_page_state(new_page, NR_FILE_THPS);
1720                filemap_nr_thps_inc(mapping);
1721        }
1722
1723        if (nr_none) {
1724                struct zone *zone = page_zone(new_page);
1725
1726                __mod_node_page_state(zone->zone_pgdat, NR_FILE_PAGES, nr_none);
1727                if (is_shmem)
1728                        __mod_node_page_state(zone->zone_pgdat,
1729                                              NR_SHMEM, nr_none);
1730        }
1731
1732xa_locked:
1733        xas_unlock_irq(&xas);
1734xa_unlocked:
1735
1736        if (result == SCAN_SUCCEED) {
1737                struct page *page, *tmp;
1738
1739                /*
1740                 * Replacing old pages with new one has succeeded, now we
1741                 * need to copy the content and free the old pages.
1742                 */
1743                index = start;
1744                list_for_each_entry_safe(page, tmp, &pagelist, lru) {
1745                        while (index < page->index) {
1746                                clear_highpage(new_page + (index % HPAGE_PMD_NR));
1747                                index++;
1748                        }
1749                        copy_highpage(new_page + (page->index % HPAGE_PMD_NR),
1750                                        page);
1751                        list_del(&page->lru);
1752                        page->mapping = NULL;
1753                        page_ref_unfreeze(page, 1);
1754                        ClearPageActive(page);
1755                        ClearPageUnevictable(page);
1756                        unlock_page(page);
1757                        put_page(page);
1758                        index++;
1759                }
1760                while (index < end) {
1761                        clear_highpage(new_page + (index % HPAGE_PMD_NR));
1762                        index++;
1763                }
1764
1765                SetPageUptodate(new_page);
1766                page_ref_add(new_page, HPAGE_PMD_NR - 1);
1767                mem_cgroup_commit_charge(new_page, memcg, false, true);
1768
1769                if (is_shmem) {
1770                        set_page_dirty(new_page);
1771                        lru_cache_add_anon(new_page);
1772                } else {
1773                        lru_cache_add_file(new_page);
1774                }
1775                count_memcg_events(memcg, THP_COLLAPSE_ALLOC, 1);
1776
1777                /*
1778                 * Remove pte page tables, so we can re-fault the page as huge.
1779                 */
1780                retract_page_tables(mapping, start);
1781                *hpage = NULL;
1782
1783                khugepaged_pages_collapsed++;
1784        } else {
1785                struct page *page;
1786
1787                /* Something went wrong: roll back page cache changes */
1788                xas_lock_irq(&xas);
1789                mapping->nrpages -= nr_none;
1790
1791                if (is_shmem)
1792                        shmem_uncharge(mapping->host, nr_none);
1793
1794                xas_set(&xas, start);
1795                xas_for_each(&xas, page, end - 1) {
1796                        page = list_first_entry_or_null(&pagelist,
1797                                        struct page, lru);
1798                        if (!page || xas.xa_index < page->index) {
1799                                if (!nr_none)
1800                                        break;
1801                                nr_none--;
1802                                /* Put holes back where they were */
1803                                xas_store(&xas, NULL);
1804                                continue;
1805                        }
1806
1807                        VM_BUG_ON_PAGE(page->index != xas.xa_index, page);
1808
1809                        /* Unfreeze the page. */
1810                        list_del(&page->lru);
1811                        page_ref_unfreeze(page, 2);
1812                        xas_store(&xas, page);
1813                        xas_pause(&xas);
1814                        xas_unlock_irq(&xas);
1815                        unlock_page(page);
1816                        putback_lru_page(page);
1817                        xas_lock_irq(&xas);
1818                }
1819                VM_BUG_ON(nr_none);
1820                xas_unlock_irq(&xas);
1821
1822                mem_cgroup_cancel_charge(new_page, memcg, true);
1823                new_page->mapping = NULL;
1824        }
1825
1826        unlock_page(new_page);
1827out:
1828        VM_BUG_ON(!list_empty(&pagelist));
1829        /* TODO: tracepoints */
1830}
1831
1832static void khugepaged_scan_file(struct mm_struct *mm,
1833                struct file *file, pgoff_t start, struct page **hpage)
1834{
1835        struct page *page = NULL;
1836        struct address_space *mapping = file->f_mapping;
1837        XA_STATE(xas, &mapping->i_pages, start);
1838        int present, swap;
1839        int node = NUMA_NO_NODE;
1840        int result = SCAN_SUCCEED;
1841
1842        present = 0;
1843        swap = 0;
1844        memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1845        rcu_read_lock();
1846        xas_for_each(&xas, page, start + HPAGE_PMD_NR - 1) {
1847                if (xas_retry(&xas, page))
1848                        continue;
1849
1850                if (xa_is_value(page)) {
1851                        if (++swap > khugepaged_max_ptes_swap) {
1852                                result = SCAN_EXCEED_SWAP_PTE;
1853                                break;
1854                        }
1855                        continue;
1856                }
1857
1858                if (PageTransCompound(page)) {
1859                        result = SCAN_PAGE_COMPOUND;
1860                        break;
1861                }
1862
1863                node = page_to_nid(page);
1864                if (khugepaged_scan_abort(node)) {
1865                        result = SCAN_SCAN_ABORT;
1866                        break;
1867                }
1868                khugepaged_node_load[node]++;
1869
1870                if (!PageLRU(page)) {
1871                        result = SCAN_PAGE_LRU;
1872                        break;
1873                }
1874
1875                if (page_count(page) !=
1876                    1 + page_mapcount(page) + page_has_private(page)) {
1877                        result = SCAN_PAGE_COUNT;
1878                        break;
1879                }
1880
1881                /*
1882                 * We probably should check if the page is referenced here, but
1883                 * nobody would transfer pte_young() to PageReferenced() for us.
1884                 * And rmap walk here is just too costly...
1885                 */
1886
1887                present++;
1888
1889                if (need_resched()) {
1890                        xas_pause(&xas);
1891                        cond_resched_rcu();
1892                }
1893        }
1894        rcu_read_unlock();
1895
1896        if (result == SCAN_SUCCEED) {
1897                if (present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
1898                        result = SCAN_EXCEED_NONE_PTE;
1899                } else {
1900                        node = khugepaged_find_target_node();
1901                        collapse_file(mm, file, start, hpage, node);
1902                }
1903        }
1904
1905        /* TODO: tracepoints */
1906}
1907#else
1908static void khugepaged_scan_file(struct mm_struct *mm,
1909                struct file *file, pgoff_t start, struct page **hpage)
1910{
1911        BUILD_BUG();
1912}
1913
1914static int khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot)
1915{
1916        return 0;
1917}
1918#endif
1919
1920static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
1921                                            struct page **hpage)
1922        __releases(&khugepaged_mm_lock)
1923        __acquires(&khugepaged_mm_lock)
1924{
1925        struct mm_slot *mm_slot;
1926        struct mm_struct *mm;
1927        struct vm_area_struct *vma;
1928        int progress = 0;
1929
1930        VM_BUG_ON(!pages);
1931        lockdep_assert_held(&khugepaged_mm_lock);
1932
1933        if (khugepaged_scan.mm_slot)
1934                mm_slot = khugepaged_scan.mm_slot;
1935        else {
1936                mm_slot = list_entry(khugepaged_scan.mm_head.next,
1937                                     struct mm_slot, mm_node);
1938                khugepaged_scan.address = 0;
1939                khugepaged_scan.mm_slot = mm_slot;
1940        }
1941        spin_unlock(&khugepaged_mm_lock);
1942        khugepaged_collapse_pte_mapped_thps(mm_slot);
1943
1944        mm = mm_slot->mm;
1945        /*
1946         * Don't wait for semaphore (to avoid long wait times).  Just move to
1947         * the next mm on the list.
1948         */
1949        vma = NULL;
1950        if (unlikely(!down_read_trylock(&mm->mmap_sem)))
1951                goto breakouterloop_mmap_sem;
1952        if (likely(!khugepaged_test_exit(mm)))
1953                vma = find_vma(mm, khugepaged_scan.address);
1954
1955        progress++;
1956        for (; vma; vma = vma->vm_next) {
1957                unsigned long hstart, hend;
1958
1959                cond_resched();
1960                if (unlikely(khugepaged_test_exit(mm))) {
1961                        progress++;
1962                        break;
1963                }
1964                if (!hugepage_vma_check(vma, vma->vm_flags)) {
1965skip:
1966                        progress++;
1967                        continue;
1968                }
1969                hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1970                hend = vma->vm_end & HPAGE_PMD_MASK;
1971                if (hstart >= hend)
1972                        goto skip;
1973                if (khugepaged_scan.address > hend)
1974                        goto skip;
1975                if (khugepaged_scan.address < hstart)
1976                        khugepaged_scan.address = hstart;
1977                VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
1978
1979                while (khugepaged_scan.address < hend) {
1980                        int ret;
1981                        cond_resched();
1982                        if (unlikely(khugepaged_test_exit(mm)))
1983                                goto breakouterloop;
1984
1985                        VM_BUG_ON(khugepaged_scan.address < hstart ||
1986                                  khugepaged_scan.address + HPAGE_PMD_SIZE >
1987                                  hend);
1988                        if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) {
1989                                struct file *file;
1990                                pgoff_t pgoff = linear_page_index(vma,
1991                                                khugepaged_scan.address);
1992
1993                                if (shmem_file(vma->vm_file)
1994                                    && !shmem_huge_enabled(vma))
1995                                        goto skip;
1996                                file = get_file(vma->vm_file);
1997                                up_read(&mm->mmap_sem);
1998                                ret = 1;
1999                                khugepaged_scan_file(mm, file, pgoff, hpage);
2000                                fput(file);
2001                        } else {
2002                                ret = khugepaged_scan_pmd(mm, vma,
2003                                                khugepaged_scan.address,
2004                                                hpage);
2005                        }
2006                        /* move to next address */
2007                        khugepaged_scan.address += HPAGE_PMD_SIZE;
2008                        progress += HPAGE_PMD_NR;
2009                        if (ret)
2010                                /* we released mmap_sem so break loop */
2011                                goto breakouterloop_mmap_sem;
2012                        if (progress >= pages)
2013                                goto breakouterloop;
2014                }
2015        }
2016breakouterloop:
2017        up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2018breakouterloop_mmap_sem:
2019
2020        spin_lock(&khugepaged_mm_lock);
2021        VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2022        /*
2023         * Release the current mm_slot if this mm is about to die, or
2024         * if we scanned all vmas of this mm.
2025         */
2026        if (khugepaged_test_exit(mm) || !vma) {
2027                /*
2028                 * Make sure that if mm_users is reaching zero while
2029                 * khugepaged runs here, khugepaged_exit will find
2030                 * mm_slot not pointing to the exiting mm.
2031                 */
2032                if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2033                        khugepaged_scan.mm_slot = list_entry(
2034                                mm_slot->mm_node.next,
2035                                struct mm_slot, mm_node);
2036                        khugepaged_scan.address = 0;
2037                } else {
2038                        khugepaged_scan.mm_slot = NULL;
2039                        khugepaged_full_scans++;
2040                }
2041
2042                collect_mm_slot(mm_slot);
2043        }
2044
2045        return progress;
2046}
2047
2048static int khugepaged_has_work(void)
2049{
2050        return !list_empty(&khugepaged_scan.mm_head) &&
2051                khugepaged_enabled();
2052}
2053
2054static int khugepaged_wait_event(void)
2055{
2056        return !list_empty(&khugepaged_scan.mm_head) ||
2057                kthread_should_stop();
2058}
2059
2060static void khugepaged_do_scan(void)
2061{
2062        struct page *hpage = NULL;
2063        unsigned int progress = 0, pass_through_head = 0;
2064        unsigned int pages = khugepaged_pages_to_scan;
2065        bool wait = true;
2066
2067        barrier(); /* write khugepaged_pages_to_scan to local stack */
2068
2069        while (progress < pages) {
2070                if (!khugepaged_prealloc_page(&hpage, &wait))
2071                        break;
2072
2073                cond_resched();
2074
2075                if (unlikely(kthread_should_stop() || try_to_freeze()))
2076                        break;
2077
2078                spin_lock(&khugepaged_mm_lock);
2079                if (!khugepaged_scan.mm_slot)
2080                        pass_through_head++;
2081                if (khugepaged_has_work() &&
2082                    pass_through_head < 2)
2083                        progress += khugepaged_scan_mm_slot(pages - progress,
2084                                                            &hpage);
2085                else
2086                        progress = pages;
2087                spin_unlock(&khugepaged_mm_lock);
2088        }
2089
2090        if (!IS_ERR_OR_NULL(hpage))
2091                put_page(hpage);
2092}
2093
2094static bool khugepaged_should_wakeup(void)
2095{
2096        return kthread_should_stop() ||
2097               time_after_eq(jiffies, khugepaged_sleep_expire);
2098}
2099
2100static void khugepaged_wait_work(void)
2101{
2102        if (khugepaged_has_work()) {
2103                const unsigned long scan_sleep_jiffies =
2104                        msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
2105
2106                if (!scan_sleep_jiffies)
2107                        return;
2108
2109                khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
2110                wait_event_freezable_timeout(khugepaged_wait,
2111                                             khugepaged_should_wakeup(),
2112                                             scan_sleep_jiffies);
2113                return;
2114        }
2115
2116        if (khugepaged_enabled())
2117                wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2118}
2119
2120static int khugepaged(void *none)
2121{
2122        struct mm_slot *mm_slot;
2123
2124        set_freezable();
2125        set_user_nice(current, MAX_NICE);
2126
2127        while (!kthread_should_stop()) {
2128                khugepaged_do_scan();
2129                khugepaged_wait_work();
2130        }
2131
2132        spin_lock(&khugepaged_mm_lock);
2133        mm_slot = khugepaged_scan.mm_slot;
2134        khugepaged_scan.mm_slot = NULL;
2135        if (mm_slot)
2136                collect_mm_slot(mm_slot);
2137        spin_unlock(&khugepaged_mm_lock);
2138        return 0;
2139}
2140
2141static void set_recommended_min_free_kbytes(void)
2142{
2143        struct zone *zone;
2144        int nr_zones = 0;
2145        unsigned long recommended_min;
2146
2147        for_each_populated_zone(zone) {
2148                /*
2149                 * We don't need to worry about fragmentation of
2150                 * ZONE_MOVABLE since it only has movable pages.
2151                 */
2152                if (zone_idx(zone) > gfp_zone(GFP_USER))
2153                        continue;
2154
2155                nr_zones++;
2156        }
2157
2158        /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
2159        recommended_min = pageblock_nr_pages * nr_zones * 2;
2160
2161        /*
2162         * Make sure that on average at least two pageblocks are almost free
2163         * of another type, one for a migratetype to fall back to and a
2164         * second to avoid subsequent fallbacks of other types There are 3
2165         * MIGRATE_TYPES we care about.
2166         */
2167        recommended_min += pageblock_nr_pages * nr_zones *
2168                           MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
2169
2170        /* don't ever allow to reserve more than 5% of the lowmem */
2171        recommended_min = min(recommended_min,
2172                              (unsigned long) nr_free_buffer_pages() / 20);
2173        recommended_min <<= (PAGE_SHIFT-10);
2174
2175        if (recommended_min > min_free_kbytes) {
2176                if (user_min_free_kbytes >= 0)
2177                        pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
2178                                min_free_kbytes, recommended_min);
2179
2180                min_free_kbytes = recommended_min;
2181        }
2182        setup_per_zone_wmarks();
2183}
2184
2185int start_stop_khugepaged(void)
2186{
2187        static struct task_struct *khugepaged_thread __read_mostly;
2188        static DEFINE_MUTEX(khugepaged_mutex);
2189        int err = 0;
2190
2191        mutex_lock(&khugepaged_mutex);
2192        if (khugepaged_enabled()) {
2193                if (!khugepaged_thread)
2194                        khugepaged_thread = kthread_run(khugepaged, NULL,
2195                                                        "khugepaged");
2196                if (IS_ERR(khugepaged_thread)) {
2197                        pr_err("khugepaged: kthread_run(khugepaged) failed\n");
2198                        err = PTR_ERR(khugepaged_thread);
2199                        khugepaged_thread = NULL;
2200                        goto fail;
2201                }
2202
2203                if (!list_empty(&khugepaged_scan.mm_head))
2204                        wake_up_interruptible(&khugepaged_wait);
2205
2206                set_recommended_min_free_kbytes();
2207        } else if (khugepaged_thread) {
2208                kthread_stop(khugepaged_thread);
2209                khugepaged_thread = NULL;
2210        }
2211fail:
2212        mutex_unlock(&khugepaged_mutex);
2213        return err;
2214}
2215