linux/mm/migrate.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Memory Migration functionality - linux/mm/migrate.c
   4 *
   5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
   6 *
   7 * Page migration was first developed in the context of the memory hotplug
   8 * project. The main authors of the migration code are:
   9 *
  10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
  11 * Hirokazu Takahashi <taka@valinux.co.jp>
  12 * Dave Hansen <haveblue@us.ibm.com>
  13 * Christoph Lameter
  14 */
  15
  16#include <linux/migrate.h>
  17#include <linux/export.h>
  18#include <linux/swap.h>
  19#include <linux/swapops.h>
  20#include <linux/pagemap.h>
  21#include <linux/buffer_head.h>
  22#include <linux/mm_inline.h>
  23#include <linux/nsproxy.h>
  24#include <linux/pagevec.h>
  25#include <linux/ksm.h>
  26#include <linux/rmap.h>
  27#include <linux/topology.h>
  28#include <linux/cpu.h>
  29#include <linux/cpuset.h>
  30#include <linux/writeback.h>
  31#include <linux/mempolicy.h>
  32#include <linux/vmalloc.h>
  33#include <linux/security.h>
  34#include <linux/backing-dev.h>
  35#include <linux/compaction.h>
  36#include <linux/syscalls.h>
  37#include <linux/compat.h>
  38#include <linux/hugetlb.h>
  39#include <linux/hugetlb_cgroup.h>
  40#include <linux/gfp.h>
  41#include <linux/pagewalk.h>
  42#include <linux/pfn_t.h>
  43#include <linux/memremap.h>
  44#include <linux/userfaultfd_k.h>
  45#include <linux/balloon_compaction.h>
  46#include <linux/mmu_notifier.h>
  47#include <linux/page_idle.h>
  48#include <linux/page_owner.h>
  49#include <linux/sched/mm.h>
  50#include <linux/ptrace.h>
  51
  52#include <asm/tlbflush.h>
  53
  54#define CREATE_TRACE_POINTS
  55#include <trace/events/migrate.h>
  56
  57#include "internal.h"
  58
  59/*
  60 * migrate_prep() needs to be called before we start compiling a list of pages
  61 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
  62 * undesirable, use migrate_prep_local()
  63 */
  64int migrate_prep(void)
  65{
  66        /*
  67         * Clear the LRU lists so pages can be isolated.
  68         * Note that pages may be moved off the LRU after we have
  69         * drained them. Those pages will fail to migrate like other
  70         * pages that may be busy.
  71         */
  72        lru_add_drain_all();
  73
  74        return 0;
  75}
  76
  77/* Do the necessary work of migrate_prep but not if it involves other CPUs */
  78int migrate_prep_local(void)
  79{
  80        lru_add_drain();
  81
  82        return 0;
  83}
  84
  85int isolate_movable_page(struct page *page, isolate_mode_t mode)
  86{
  87        struct address_space *mapping;
  88
  89        /*
  90         * Avoid burning cycles with pages that are yet under __free_pages(),
  91         * or just got freed under us.
  92         *
  93         * In case we 'win' a race for a movable page being freed under us and
  94         * raise its refcount preventing __free_pages() from doing its job
  95         * the put_page() at the end of this block will take care of
  96         * release this page, thus avoiding a nasty leakage.
  97         */
  98        if (unlikely(!get_page_unless_zero(page)))
  99                goto out;
 100
 101        /*
 102         * Check PageMovable before holding a PG_lock because page's owner
 103         * assumes anybody doesn't touch PG_lock of newly allocated page
 104         * so unconditionally grabbing the lock ruins page's owner side.
 105         */
 106        if (unlikely(!__PageMovable(page)))
 107                goto out_putpage;
 108        /*
 109         * As movable pages are not isolated from LRU lists, concurrent
 110         * compaction threads can race against page migration functions
 111         * as well as race against the releasing a page.
 112         *
 113         * In order to avoid having an already isolated movable page
 114         * being (wrongly) re-isolated while it is under migration,
 115         * or to avoid attempting to isolate pages being released,
 116         * lets be sure we have the page lock
 117         * before proceeding with the movable page isolation steps.
 118         */
 119        if (unlikely(!trylock_page(page)))
 120                goto out_putpage;
 121
 122        if (!PageMovable(page) || PageIsolated(page))
 123                goto out_no_isolated;
 124
 125        mapping = page_mapping(page);
 126        VM_BUG_ON_PAGE(!mapping, page);
 127
 128        if (!mapping->a_ops->isolate_page(page, mode))
 129                goto out_no_isolated;
 130
 131        /* Driver shouldn't use PG_isolated bit of page->flags */
 132        WARN_ON_ONCE(PageIsolated(page));
 133        __SetPageIsolated(page);
 134        unlock_page(page);
 135
 136        return 0;
 137
 138out_no_isolated:
 139        unlock_page(page);
 140out_putpage:
 141        put_page(page);
 142out:
 143        return -EBUSY;
 144}
 145
 146/* It should be called on page which is PG_movable */
 147void putback_movable_page(struct page *page)
 148{
 149        struct address_space *mapping;
 150
 151        VM_BUG_ON_PAGE(!PageLocked(page), page);
 152        VM_BUG_ON_PAGE(!PageMovable(page), page);
 153        VM_BUG_ON_PAGE(!PageIsolated(page), page);
 154
 155        mapping = page_mapping(page);
 156        mapping->a_ops->putback_page(page);
 157        __ClearPageIsolated(page);
 158}
 159
 160/*
 161 * Put previously isolated pages back onto the appropriate lists
 162 * from where they were once taken off for compaction/migration.
 163 *
 164 * This function shall be used whenever the isolated pageset has been
 165 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
 166 * and isolate_huge_page().
 167 */
 168void putback_movable_pages(struct list_head *l)
 169{
 170        struct page *page;
 171        struct page *page2;
 172
 173        list_for_each_entry_safe(page, page2, l, lru) {
 174                if (unlikely(PageHuge(page))) {
 175                        putback_active_hugepage(page);
 176                        continue;
 177                }
 178                list_del(&page->lru);
 179                /*
 180                 * We isolated non-lru movable page so here we can use
 181                 * __PageMovable because LRU page's mapping cannot have
 182                 * PAGE_MAPPING_MOVABLE.
 183                 */
 184                if (unlikely(__PageMovable(page))) {
 185                        VM_BUG_ON_PAGE(!PageIsolated(page), page);
 186                        lock_page(page);
 187                        if (PageMovable(page))
 188                                putback_movable_page(page);
 189                        else
 190                                __ClearPageIsolated(page);
 191                        unlock_page(page);
 192                        put_page(page);
 193                } else {
 194                        mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
 195                                        page_is_file_cache(page), -hpage_nr_pages(page));
 196                        putback_lru_page(page);
 197                }
 198        }
 199}
 200
 201/*
 202 * Restore a potential migration pte to a working pte entry
 203 */
 204static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
 205                                 unsigned long addr, void *old)
 206{
 207        struct page_vma_mapped_walk pvmw = {
 208                .page = old,
 209                .vma = vma,
 210                .address = addr,
 211                .flags = PVMW_SYNC | PVMW_MIGRATION,
 212        };
 213        struct page *new;
 214        pte_t pte;
 215        swp_entry_t entry;
 216
 217        VM_BUG_ON_PAGE(PageTail(page), page);
 218        while (page_vma_mapped_walk(&pvmw)) {
 219                if (PageKsm(page))
 220                        new = page;
 221                else
 222                        new = page - pvmw.page->index +
 223                                linear_page_index(vma, pvmw.address);
 224
 225#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
 226                /* PMD-mapped THP migration entry */
 227                if (!pvmw.pte) {
 228                        VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
 229                        remove_migration_pmd(&pvmw, new);
 230                        continue;
 231                }
 232#endif
 233
 234                get_page(new);
 235                pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
 236                if (pte_swp_soft_dirty(*pvmw.pte))
 237                        pte = pte_mksoft_dirty(pte);
 238
 239                /*
 240                 * Recheck VMA as permissions can change since migration started
 241                 */
 242                entry = pte_to_swp_entry(*pvmw.pte);
 243                if (is_write_migration_entry(entry))
 244                        pte = maybe_mkwrite(pte, vma);
 245
 246                if (unlikely(is_zone_device_page(new))) {
 247                        if (is_device_private_page(new)) {
 248                                entry = make_device_private_entry(new, pte_write(pte));
 249                                pte = swp_entry_to_pte(entry);
 250                        }
 251                }
 252
 253#ifdef CONFIG_HUGETLB_PAGE
 254                if (PageHuge(new)) {
 255                        pte = pte_mkhuge(pte);
 256                        pte = arch_make_huge_pte(pte, vma, new, 0);
 257                        set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
 258                        if (PageAnon(new))
 259                                hugepage_add_anon_rmap(new, vma, pvmw.address);
 260                        else
 261                                page_dup_rmap(new, true);
 262                } else
 263#endif
 264                {
 265                        set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
 266
 267                        if (PageAnon(new))
 268                                page_add_anon_rmap(new, vma, pvmw.address, false);
 269                        else
 270                                page_add_file_rmap(new, false);
 271                }
 272                if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
 273                        mlock_vma_page(new);
 274
 275                if (PageTransHuge(page) && PageMlocked(page))
 276                        clear_page_mlock(page);
 277
 278                /* No need to invalidate - it was non-present before */
 279                update_mmu_cache(vma, pvmw.address, pvmw.pte);
 280        }
 281
 282        return true;
 283}
 284
 285/*
 286 * Get rid of all migration entries and replace them by
 287 * references to the indicated page.
 288 */
 289void remove_migration_ptes(struct page *old, struct page *new, bool locked)
 290{
 291        struct rmap_walk_control rwc = {
 292                .rmap_one = remove_migration_pte,
 293                .arg = old,
 294        };
 295
 296        if (locked)
 297                rmap_walk_locked(new, &rwc);
 298        else
 299                rmap_walk(new, &rwc);
 300}
 301
 302/*
 303 * Something used the pte of a page under migration. We need to
 304 * get to the page and wait until migration is finished.
 305 * When we return from this function the fault will be retried.
 306 */
 307void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
 308                                spinlock_t *ptl)
 309{
 310        pte_t pte;
 311        swp_entry_t entry;
 312        struct page *page;
 313
 314        spin_lock(ptl);
 315        pte = *ptep;
 316        if (!is_swap_pte(pte))
 317                goto out;
 318
 319        entry = pte_to_swp_entry(pte);
 320        if (!is_migration_entry(entry))
 321                goto out;
 322
 323        page = migration_entry_to_page(entry);
 324
 325        /*
 326         * Once page cache replacement of page migration started, page_count
 327         * is zero; but we must not call put_and_wait_on_page_locked() without
 328         * a ref. Use get_page_unless_zero(), and just fault again if it fails.
 329         */
 330        if (!get_page_unless_zero(page))
 331                goto out;
 332        pte_unmap_unlock(ptep, ptl);
 333        put_and_wait_on_page_locked(page);
 334        return;
 335out:
 336        pte_unmap_unlock(ptep, ptl);
 337}
 338
 339void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
 340                                unsigned long address)
 341{
 342        spinlock_t *ptl = pte_lockptr(mm, pmd);
 343        pte_t *ptep = pte_offset_map(pmd, address);
 344        __migration_entry_wait(mm, ptep, ptl);
 345}
 346
 347void migration_entry_wait_huge(struct vm_area_struct *vma,
 348                struct mm_struct *mm, pte_t *pte)
 349{
 350        spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
 351        __migration_entry_wait(mm, pte, ptl);
 352}
 353
 354#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
 355void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
 356{
 357        spinlock_t *ptl;
 358        struct page *page;
 359
 360        ptl = pmd_lock(mm, pmd);
 361        if (!is_pmd_migration_entry(*pmd))
 362                goto unlock;
 363        page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
 364        if (!get_page_unless_zero(page))
 365                goto unlock;
 366        spin_unlock(ptl);
 367        put_and_wait_on_page_locked(page);
 368        return;
 369unlock:
 370        spin_unlock(ptl);
 371}
 372#endif
 373
 374static int expected_page_refs(struct address_space *mapping, struct page *page)
 375{
 376        int expected_count = 1;
 377
 378        /*
 379         * Device public or private pages have an extra refcount as they are
 380         * ZONE_DEVICE pages.
 381         */
 382        expected_count += is_device_private_page(page);
 383        if (mapping)
 384                expected_count += hpage_nr_pages(page) + page_has_private(page);
 385
 386        return expected_count;
 387}
 388
 389/*
 390 * Replace the page in the mapping.
 391 *
 392 * The number of remaining references must be:
 393 * 1 for anonymous pages without a mapping
 394 * 2 for pages with a mapping
 395 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
 396 */
 397int migrate_page_move_mapping(struct address_space *mapping,
 398                struct page *newpage, struct page *page, int extra_count)
 399{
 400        XA_STATE(xas, &mapping->i_pages, page_index(page));
 401        struct zone *oldzone, *newzone;
 402        int dirty;
 403        int expected_count = expected_page_refs(mapping, page) + extra_count;
 404
 405        if (!mapping) {
 406                /* Anonymous page without mapping */
 407                if (page_count(page) != expected_count)
 408                        return -EAGAIN;
 409
 410                /* No turning back from here */
 411                newpage->index = page->index;
 412                newpage->mapping = page->mapping;
 413                if (PageSwapBacked(page))
 414                        __SetPageSwapBacked(newpage);
 415
 416                return MIGRATEPAGE_SUCCESS;
 417        }
 418
 419        oldzone = page_zone(page);
 420        newzone = page_zone(newpage);
 421
 422        xas_lock_irq(&xas);
 423        if (page_count(page) != expected_count || xas_load(&xas) != page) {
 424                xas_unlock_irq(&xas);
 425                return -EAGAIN;
 426        }
 427
 428        if (!page_ref_freeze(page, expected_count)) {
 429                xas_unlock_irq(&xas);
 430                return -EAGAIN;
 431        }
 432
 433        /*
 434         * Now we know that no one else is looking at the page:
 435         * no turning back from here.
 436         */
 437        newpage->index = page->index;
 438        newpage->mapping = page->mapping;
 439        page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
 440        if (PageSwapBacked(page)) {
 441                __SetPageSwapBacked(newpage);
 442                if (PageSwapCache(page)) {
 443                        SetPageSwapCache(newpage);
 444                        set_page_private(newpage, page_private(page));
 445                }
 446        } else {
 447                VM_BUG_ON_PAGE(PageSwapCache(page), page);
 448        }
 449
 450        /* Move dirty while page refs frozen and newpage not yet exposed */
 451        dirty = PageDirty(page);
 452        if (dirty) {
 453                ClearPageDirty(page);
 454                SetPageDirty(newpage);
 455        }
 456
 457        xas_store(&xas, newpage);
 458        if (PageTransHuge(page)) {
 459                int i;
 460
 461                for (i = 1; i < HPAGE_PMD_NR; i++) {
 462                        xas_next(&xas);
 463                        xas_store(&xas, newpage);
 464                }
 465        }
 466
 467        /*
 468         * Drop cache reference from old page by unfreezing
 469         * to one less reference.
 470         * We know this isn't the last reference.
 471         */
 472        page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
 473
 474        xas_unlock(&xas);
 475        /* Leave irq disabled to prevent preemption while updating stats */
 476
 477        /*
 478         * If moved to a different zone then also account
 479         * the page for that zone. Other VM counters will be
 480         * taken care of when we establish references to the
 481         * new page and drop references to the old page.
 482         *
 483         * Note that anonymous pages are accounted for
 484         * via NR_FILE_PAGES and NR_ANON_MAPPED if they
 485         * are mapped to swap space.
 486         */
 487        if (newzone != oldzone) {
 488                __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
 489                __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
 490                if (PageSwapBacked(page) && !PageSwapCache(page)) {
 491                        __dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
 492                        __inc_node_state(newzone->zone_pgdat, NR_SHMEM);
 493                }
 494                if (dirty && mapping_cap_account_dirty(mapping)) {
 495                        __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
 496                        __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
 497                        __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
 498                        __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
 499                }
 500        }
 501        local_irq_enable();
 502
 503        return MIGRATEPAGE_SUCCESS;
 504}
 505EXPORT_SYMBOL(migrate_page_move_mapping);
 506
 507/*
 508 * The expected number of remaining references is the same as that
 509 * of migrate_page_move_mapping().
 510 */
 511int migrate_huge_page_move_mapping(struct address_space *mapping,
 512                                   struct page *newpage, struct page *page)
 513{
 514        XA_STATE(xas, &mapping->i_pages, page_index(page));
 515        int expected_count;
 516
 517        xas_lock_irq(&xas);
 518        expected_count = 2 + page_has_private(page);
 519        if (page_count(page) != expected_count || xas_load(&xas) != page) {
 520                xas_unlock_irq(&xas);
 521                return -EAGAIN;
 522        }
 523
 524        if (!page_ref_freeze(page, expected_count)) {
 525                xas_unlock_irq(&xas);
 526                return -EAGAIN;
 527        }
 528
 529        newpage->index = page->index;
 530        newpage->mapping = page->mapping;
 531
 532        get_page(newpage);
 533
 534        xas_store(&xas, newpage);
 535
 536        page_ref_unfreeze(page, expected_count - 1);
 537
 538        xas_unlock_irq(&xas);
 539
 540        return MIGRATEPAGE_SUCCESS;
 541}
 542
 543/*
 544 * Gigantic pages are so large that we do not guarantee that page++ pointer
 545 * arithmetic will work across the entire page.  We need something more
 546 * specialized.
 547 */
 548static void __copy_gigantic_page(struct page *dst, struct page *src,
 549                                int nr_pages)
 550{
 551        int i;
 552        struct page *dst_base = dst;
 553        struct page *src_base = src;
 554
 555        for (i = 0; i < nr_pages; ) {
 556                cond_resched();
 557                copy_highpage(dst, src);
 558
 559                i++;
 560                dst = mem_map_next(dst, dst_base, i);
 561                src = mem_map_next(src, src_base, i);
 562        }
 563}
 564
 565static void copy_huge_page(struct page *dst, struct page *src)
 566{
 567        int i;
 568        int nr_pages;
 569
 570        if (PageHuge(src)) {
 571                /* hugetlbfs page */
 572                struct hstate *h = page_hstate(src);
 573                nr_pages = pages_per_huge_page(h);
 574
 575                if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
 576                        __copy_gigantic_page(dst, src, nr_pages);
 577                        return;
 578                }
 579        } else {
 580                /* thp page */
 581                BUG_ON(!PageTransHuge(src));
 582                nr_pages = hpage_nr_pages(src);
 583        }
 584
 585        for (i = 0; i < nr_pages; i++) {
 586                cond_resched();
 587                copy_highpage(dst + i, src + i);
 588        }
 589}
 590
 591/*
 592 * Copy the page to its new location
 593 */
 594void migrate_page_states(struct page *newpage, struct page *page)
 595{
 596        int cpupid;
 597
 598        if (PageError(page))
 599                SetPageError(newpage);
 600        if (PageReferenced(page))
 601                SetPageReferenced(newpage);
 602        if (PageUptodate(page))
 603                SetPageUptodate(newpage);
 604        if (TestClearPageActive(page)) {
 605                VM_BUG_ON_PAGE(PageUnevictable(page), page);
 606                SetPageActive(newpage);
 607        } else if (TestClearPageUnevictable(page))
 608                SetPageUnevictable(newpage);
 609        if (PageWorkingset(page))
 610                SetPageWorkingset(newpage);
 611        if (PageChecked(page))
 612                SetPageChecked(newpage);
 613        if (PageMappedToDisk(page))
 614                SetPageMappedToDisk(newpage);
 615
 616        /* Move dirty on pages not done by migrate_page_move_mapping() */
 617        if (PageDirty(page))
 618                SetPageDirty(newpage);
 619
 620        if (page_is_young(page))
 621                set_page_young(newpage);
 622        if (page_is_idle(page))
 623                set_page_idle(newpage);
 624
 625        /*
 626         * Copy NUMA information to the new page, to prevent over-eager
 627         * future migrations of this same page.
 628         */
 629        cpupid = page_cpupid_xchg_last(page, -1);
 630        page_cpupid_xchg_last(newpage, cpupid);
 631
 632        ksm_migrate_page(newpage, page);
 633        /*
 634         * Please do not reorder this without considering how mm/ksm.c's
 635         * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
 636         */
 637        if (PageSwapCache(page))
 638                ClearPageSwapCache(page);
 639        ClearPagePrivate(page);
 640        set_page_private(page, 0);
 641
 642        /*
 643         * If any waiters have accumulated on the new page then
 644         * wake them up.
 645         */
 646        if (PageWriteback(newpage))
 647                end_page_writeback(newpage);
 648
 649        copy_page_owner(page, newpage);
 650
 651        mem_cgroup_migrate(page, newpage);
 652}
 653EXPORT_SYMBOL(migrate_page_states);
 654
 655void migrate_page_copy(struct page *newpage, struct page *page)
 656{
 657        if (PageHuge(page) || PageTransHuge(page))
 658                copy_huge_page(newpage, page);
 659        else
 660                copy_highpage(newpage, page);
 661
 662        migrate_page_states(newpage, page);
 663}
 664EXPORT_SYMBOL(migrate_page_copy);
 665
 666/************************************************************
 667 *                    Migration functions
 668 ***********************************************************/
 669
 670/*
 671 * Common logic to directly migrate a single LRU page suitable for
 672 * pages that do not use PagePrivate/PagePrivate2.
 673 *
 674 * Pages are locked upon entry and exit.
 675 */
 676int migrate_page(struct address_space *mapping,
 677                struct page *newpage, struct page *page,
 678                enum migrate_mode mode)
 679{
 680        int rc;
 681
 682        BUG_ON(PageWriteback(page));    /* Writeback must be complete */
 683
 684        rc = migrate_page_move_mapping(mapping, newpage, page, 0);
 685
 686        if (rc != MIGRATEPAGE_SUCCESS)
 687                return rc;
 688
 689        if (mode != MIGRATE_SYNC_NO_COPY)
 690                migrate_page_copy(newpage, page);
 691        else
 692                migrate_page_states(newpage, page);
 693        return MIGRATEPAGE_SUCCESS;
 694}
 695EXPORT_SYMBOL(migrate_page);
 696
 697#ifdef CONFIG_BLOCK
 698/* Returns true if all buffers are successfully locked */
 699static bool buffer_migrate_lock_buffers(struct buffer_head *head,
 700                                                        enum migrate_mode mode)
 701{
 702        struct buffer_head *bh = head;
 703
 704        /* Simple case, sync compaction */
 705        if (mode != MIGRATE_ASYNC) {
 706                do {
 707                        lock_buffer(bh);
 708                        bh = bh->b_this_page;
 709
 710                } while (bh != head);
 711
 712                return true;
 713        }
 714
 715        /* async case, we cannot block on lock_buffer so use trylock_buffer */
 716        do {
 717                if (!trylock_buffer(bh)) {
 718                        /*
 719                         * We failed to lock the buffer and cannot stall in
 720                         * async migration. Release the taken locks
 721                         */
 722                        struct buffer_head *failed_bh = bh;
 723                        bh = head;
 724                        while (bh != failed_bh) {
 725                                unlock_buffer(bh);
 726                                bh = bh->b_this_page;
 727                        }
 728                        return false;
 729                }
 730
 731                bh = bh->b_this_page;
 732        } while (bh != head);
 733        return true;
 734}
 735
 736static int __buffer_migrate_page(struct address_space *mapping,
 737                struct page *newpage, struct page *page, enum migrate_mode mode,
 738                bool check_refs)
 739{
 740        struct buffer_head *bh, *head;
 741        int rc;
 742        int expected_count;
 743
 744        if (!page_has_buffers(page))
 745                return migrate_page(mapping, newpage, page, mode);
 746
 747        /* Check whether page does not have extra refs before we do more work */
 748        expected_count = expected_page_refs(mapping, page);
 749        if (page_count(page) != expected_count)
 750                return -EAGAIN;
 751
 752        head = page_buffers(page);
 753        if (!buffer_migrate_lock_buffers(head, mode))
 754                return -EAGAIN;
 755
 756        if (check_refs) {
 757                bool busy;
 758                bool invalidated = false;
 759
 760recheck_buffers:
 761                busy = false;
 762                spin_lock(&mapping->private_lock);
 763                bh = head;
 764                do {
 765                        if (atomic_read(&bh->b_count)) {
 766                                busy = true;
 767                                break;
 768                        }
 769                        bh = bh->b_this_page;
 770                } while (bh != head);
 771                if (busy) {
 772                        if (invalidated) {
 773                                rc = -EAGAIN;
 774                                goto unlock_buffers;
 775                        }
 776                        spin_unlock(&mapping->private_lock);
 777                        invalidate_bh_lrus();
 778                        invalidated = true;
 779                        goto recheck_buffers;
 780                }
 781        }
 782
 783        rc = migrate_page_move_mapping(mapping, newpage, page, 0);
 784        if (rc != MIGRATEPAGE_SUCCESS)
 785                goto unlock_buffers;
 786
 787        ClearPagePrivate(page);
 788        set_page_private(newpage, page_private(page));
 789        set_page_private(page, 0);
 790        put_page(page);
 791        get_page(newpage);
 792
 793        bh = head;
 794        do {
 795                set_bh_page(bh, newpage, bh_offset(bh));
 796                bh = bh->b_this_page;
 797
 798        } while (bh != head);
 799
 800        SetPagePrivate(newpage);
 801
 802        if (mode != MIGRATE_SYNC_NO_COPY)
 803                migrate_page_copy(newpage, page);
 804        else
 805                migrate_page_states(newpage, page);
 806
 807        rc = MIGRATEPAGE_SUCCESS;
 808unlock_buffers:
 809        if (check_refs)
 810                spin_unlock(&mapping->private_lock);
 811        bh = head;
 812        do {
 813                unlock_buffer(bh);
 814                bh = bh->b_this_page;
 815
 816        } while (bh != head);
 817
 818        return rc;
 819}
 820
 821/*
 822 * Migration function for pages with buffers. This function can only be used
 823 * if the underlying filesystem guarantees that no other references to "page"
 824 * exist. For example attached buffer heads are accessed only under page lock.
 825 */
 826int buffer_migrate_page(struct address_space *mapping,
 827                struct page *newpage, struct page *page, enum migrate_mode mode)
 828{
 829        return __buffer_migrate_page(mapping, newpage, page, mode, false);
 830}
 831EXPORT_SYMBOL(buffer_migrate_page);
 832
 833/*
 834 * Same as above except that this variant is more careful and checks that there
 835 * are also no buffer head references. This function is the right one for
 836 * mappings where buffer heads are directly looked up and referenced (such as
 837 * block device mappings).
 838 */
 839int buffer_migrate_page_norefs(struct address_space *mapping,
 840                struct page *newpage, struct page *page, enum migrate_mode mode)
 841{
 842        return __buffer_migrate_page(mapping, newpage, page, mode, true);
 843}
 844#endif
 845
 846/*
 847 * Writeback a page to clean the dirty state
 848 */
 849static int writeout(struct address_space *mapping, struct page *page)
 850{
 851        struct writeback_control wbc = {
 852                .sync_mode = WB_SYNC_NONE,
 853                .nr_to_write = 1,
 854                .range_start = 0,
 855                .range_end = LLONG_MAX,
 856                .for_reclaim = 1
 857        };
 858        int rc;
 859
 860        if (!mapping->a_ops->writepage)
 861                /* No write method for the address space */
 862                return -EINVAL;
 863
 864        if (!clear_page_dirty_for_io(page))
 865                /* Someone else already triggered a write */
 866                return -EAGAIN;
 867
 868        /*
 869         * A dirty page may imply that the underlying filesystem has
 870         * the page on some queue. So the page must be clean for
 871         * migration. Writeout may mean we loose the lock and the
 872         * page state is no longer what we checked for earlier.
 873         * At this point we know that the migration attempt cannot
 874         * be successful.
 875         */
 876        remove_migration_ptes(page, page, false);
 877
 878        rc = mapping->a_ops->writepage(page, &wbc);
 879
 880        if (rc != AOP_WRITEPAGE_ACTIVATE)
 881                /* unlocked. Relock */
 882                lock_page(page);
 883
 884        return (rc < 0) ? -EIO : -EAGAIN;
 885}
 886
 887/*
 888 * Default handling if a filesystem does not provide a migration function.
 889 */
 890static int fallback_migrate_page(struct address_space *mapping,
 891        struct page *newpage, struct page *page, enum migrate_mode mode)
 892{
 893        if (PageDirty(page)) {
 894                /* Only writeback pages in full synchronous migration */
 895                switch (mode) {
 896                case MIGRATE_SYNC:
 897                case MIGRATE_SYNC_NO_COPY:
 898                        break;
 899                default:
 900                        return -EBUSY;
 901                }
 902                return writeout(mapping, page);
 903        }
 904
 905        /*
 906         * Buffers may be managed in a filesystem specific way.
 907         * We must have no buffers or drop them.
 908         */
 909        if (page_has_private(page) &&
 910            !try_to_release_page(page, GFP_KERNEL))
 911                return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
 912
 913        return migrate_page(mapping, newpage, page, mode);
 914}
 915
 916/*
 917 * Move a page to a newly allocated page
 918 * The page is locked and all ptes have been successfully removed.
 919 *
 920 * The new page will have replaced the old page if this function
 921 * is successful.
 922 *
 923 * Return value:
 924 *   < 0 - error code
 925 *  MIGRATEPAGE_SUCCESS - success
 926 */
 927static int move_to_new_page(struct page *newpage, struct page *page,
 928                                enum migrate_mode mode)
 929{
 930        struct address_space *mapping;
 931        int rc = -EAGAIN;
 932        bool is_lru = !__PageMovable(page);
 933
 934        VM_BUG_ON_PAGE(!PageLocked(page), page);
 935        VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
 936
 937        mapping = page_mapping(page);
 938
 939        if (likely(is_lru)) {
 940                if (!mapping)
 941                        rc = migrate_page(mapping, newpage, page, mode);
 942                else if (mapping->a_ops->migratepage)
 943                        /*
 944                         * Most pages have a mapping and most filesystems
 945                         * provide a migratepage callback. Anonymous pages
 946                         * are part of swap space which also has its own
 947                         * migratepage callback. This is the most common path
 948                         * for page migration.
 949                         */
 950                        rc = mapping->a_ops->migratepage(mapping, newpage,
 951                                                        page, mode);
 952                else
 953                        rc = fallback_migrate_page(mapping, newpage,
 954                                                        page, mode);
 955        } else {
 956                /*
 957                 * In case of non-lru page, it could be released after
 958                 * isolation step. In that case, we shouldn't try migration.
 959                 */
 960                VM_BUG_ON_PAGE(!PageIsolated(page), page);
 961                if (!PageMovable(page)) {
 962                        rc = MIGRATEPAGE_SUCCESS;
 963                        __ClearPageIsolated(page);
 964                        goto out;
 965                }
 966
 967                rc = mapping->a_ops->migratepage(mapping, newpage,
 968                                                page, mode);
 969                WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
 970                        !PageIsolated(page));
 971        }
 972
 973        /*
 974         * When successful, old pagecache page->mapping must be cleared before
 975         * page is freed; but stats require that PageAnon be left as PageAnon.
 976         */
 977        if (rc == MIGRATEPAGE_SUCCESS) {
 978                if (__PageMovable(page)) {
 979                        VM_BUG_ON_PAGE(!PageIsolated(page), page);
 980
 981                        /*
 982                         * We clear PG_movable under page_lock so any compactor
 983                         * cannot try to migrate this page.
 984                         */
 985                        __ClearPageIsolated(page);
 986                }
 987
 988                /*
 989                 * Anonymous and movable page->mapping will be cleard by
 990                 * free_pages_prepare so don't reset it here for keeping
 991                 * the type to work PageAnon, for example.
 992                 */
 993                if (!PageMappingFlags(page))
 994                        page->mapping = NULL;
 995
 996                if (likely(!is_zone_device_page(newpage)))
 997                        flush_dcache_page(newpage);
 998
 999        }
1000out:
1001        return rc;
1002}
1003
1004static int __unmap_and_move(struct page *page, struct page *newpage,
1005                                int force, enum migrate_mode mode)
1006{
1007        int rc = -EAGAIN;
1008        int page_was_mapped = 0;
1009        struct anon_vma *anon_vma = NULL;
1010        bool is_lru = !__PageMovable(page);
1011
1012        if (!trylock_page(page)) {
1013                if (!force || mode == MIGRATE_ASYNC)
1014                        goto out;
1015
1016                /*
1017                 * It's not safe for direct compaction to call lock_page.
1018                 * For example, during page readahead pages are added locked
1019                 * to the LRU. Later, when the IO completes the pages are
1020                 * marked uptodate and unlocked. However, the queueing
1021                 * could be merging multiple pages for one bio (e.g.
1022                 * mpage_readpages). If an allocation happens for the
1023                 * second or third page, the process can end up locking
1024                 * the same page twice and deadlocking. Rather than
1025                 * trying to be clever about what pages can be locked,
1026                 * avoid the use of lock_page for direct compaction
1027                 * altogether.
1028                 */
1029                if (current->flags & PF_MEMALLOC)
1030                        goto out;
1031
1032                lock_page(page);
1033        }
1034
1035        if (PageWriteback(page)) {
1036                /*
1037                 * Only in the case of a full synchronous migration is it
1038                 * necessary to wait for PageWriteback. In the async case,
1039                 * the retry loop is too short and in the sync-light case,
1040                 * the overhead of stalling is too much
1041                 */
1042                switch (mode) {
1043                case MIGRATE_SYNC:
1044                case MIGRATE_SYNC_NO_COPY:
1045                        break;
1046                default:
1047                        rc = -EBUSY;
1048                        goto out_unlock;
1049                }
1050                if (!force)
1051                        goto out_unlock;
1052                wait_on_page_writeback(page);
1053        }
1054
1055        /*
1056         * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1057         * we cannot notice that anon_vma is freed while we migrates a page.
1058         * This get_anon_vma() delays freeing anon_vma pointer until the end
1059         * of migration. File cache pages are no problem because of page_lock()
1060         * File Caches may use write_page() or lock_page() in migration, then,
1061         * just care Anon page here.
1062         *
1063         * Only page_get_anon_vma() understands the subtleties of
1064         * getting a hold on an anon_vma from outside one of its mms.
1065         * But if we cannot get anon_vma, then we won't need it anyway,
1066         * because that implies that the anon page is no longer mapped
1067         * (and cannot be remapped so long as we hold the page lock).
1068         */
1069        if (PageAnon(page) && !PageKsm(page))
1070                anon_vma = page_get_anon_vma(page);
1071
1072        /*
1073         * Block others from accessing the new page when we get around to
1074         * establishing additional references. We are usually the only one
1075         * holding a reference to newpage at this point. We used to have a BUG
1076         * here if trylock_page(newpage) fails, but would like to allow for
1077         * cases where there might be a race with the previous use of newpage.
1078         * This is much like races on refcount of oldpage: just don't BUG().
1079         */
1080        if (unlikely(!trylock_page(newpage)))
1081                goto out_unlock;
1082
1083        if (unlikely(!is_lru)) {
1084                rc = move_to_new_page(newpage, page, mode);
1085                goto out_unlock_both;
1086        }
1087
1088        /*
1089         * Corner case handling:
1090         * 1. When a new swap-cache page is read into, it is added to the LRU
1091         * and treated as swapcache but it has no rmap yet.
1092         * Calling try_to_unmap() against a page->mapping==NULL page will
1093         * trigger a BUG.  So handle it here.
1094         * 2. An orphaned page (see truncate_complete_page) might have
1095         * fs-private metadata. The page can be picked up due to memory
1096         * offlining.  Everywhere else except page reclaim, the page is
1097         * invisible to the vm, so the page can not be migrated.  So try to
1098         * free the metadata, so the page can be freed.
1099         */
1100        if (!page->mapping) {
1101                VM_BUG_ON_PAGE(PageAnon(page), page);
1102                if (page_has_private(page)) {
1103                        try_to_free_buffers(page);
1104                        goto out_unlock_both;
1105                }
1106        } else if (page_mapped(page)) {
1107                /* Establish migration ptes */
1108                VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1109                                page);
1110                try_to_unmap(page,
1111                        TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1112                page_was_mapped = 1;
1113        }
1114
1115        if (!page_mapped(page))
1116                rc = move_to_new_page(newpage, page, mode);
1117
1118        if (page_was_mapped)
1119                remove_migration_ptes(page,
1120                        rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1121
1122out_unlock_both:
1123        unlock_page(newpage);
1124out_unlock:
1125        /* Drop an anon_vma reference if we took one */
1126        if (anon_vma)
1127                put_anon_vma(anon_vma);
1128        unlock_page(page);
1129out:
1130        /*
1131         * If migration is successful, decrease refcount of the newpage
1132         * which will not free the page because new page owner increased
1133         * refcounter. As well, if it is LRU page, add the page to LRU
1134         * list in here. Use the old state of the isolated source page to
1135         * determine if we migrated a LRU page. newpage was already unlocked
1136         * and possibly modified by its owner - don't rely on the page
1137         * state.
1138         */
1139        if (rc == MIGRATEPAGE_SUCCESS) {
1140                if (unlikely(!is_lru))
1141                        put_page(newpage);
1142                else
1143                        putback_lru_page(newpage);
1144        }
1145
1146        return rc;
1147}
1148
1149/*
1150 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
1151 * around it.
1152 */
1153#if defined(CONFIG_ARM) && \
1154        defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700
1155#define ICE_noinline noinline
1156#else
1157#define ICE_noinline
1158#endif
1159
1160/*
1161 * Obtain the lock on page, remove all ptes and migrate the page
1162 * to the newly allocated page in newpage.
1163 */
1164static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1165                                   free_page_t put_new_page,
1166                                   unsigned long private, struct page *page,
1167                                   int force, enum migrate_mode mode,
1168                                   enum migrate_reason reason)
1169{
1170        int rc = MIGRATEPAGE_SUCCESS;
1171        struct page *newpage = NULL;
1172
1173        if (!thp_migration_supported() && PageTransHuge(page))
1174                return -ENOMEM;
1175
1176        if (page_count(page) == 1) {
1177                /* page was freed from under us. So we are done. */
1178                ClearPageActive(page);
1179                ClearPageUnevictable(page);
1180                if (unlikely(__PageMovable(page))) {
1181                        lock_page(page);
1182                        if (!PageMovable(page))
1183                                __ClearPageIsolated(page);
1184                        unlock_page(page);
1185                }
1186                goto out;
1187        }
1188
1189        newpage = get_new_page(page, private);
1190        if (!newpage)
1191                return -ENOMEM;
1192
1193        rc = __unmap_and_move(page, newpage, force, mode);
1194        if (rc == MIGRATEPAGE_SUCCESS)
1195                set_page_owner_migrate_reason(newpage, reason);
1196
1197out:
1198        if (rc != -EAGAIN) {
1199                /*
1200                 * A page that has been migrated has all references
1201                 * removed and will be freed. A page that has not been
1202                 * migrated will have kepts its references and be
1203                 * restored.
1204                 */
1205                list_del(&page->lru);
1206
1207                /*
1208                 * Compaction can migrate also non-LRU pages which are
1209                 * not accounted to NR_ISOLATED_*. They can be recognized
1210                 * as __PageMovable
1211                 */
1212                if (likely(!__PageMovable(page)))
1213                        mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1214                                        page_is_file_cache(page), -hpage_nr_pages(page));
1215        }
1216
1217        /*
1218         * If migration is successful, releases reference grabbed during
1219         * isolation. Otherwise, restore the page to right list unless
1220         * we want to retry.
1221         */
1222        if (rc == MIGRATEPAGE_SUCCESS) {
1223                put_page(page);
1224                if (reason == MR_MEMORY_FAILURE) {
1225                        /*
1226                         * Set PG_HWPoison on just freed page
1227                         * intentionally. Although it's rather weird,
1228                         * it's how HWPoison flag works at the moment.
1229                         */
1230                        if (set_hwpoison_free_buddy_page(page))
1231                                num_poisoned_pages_inc();
1232                }
1233        } else {
1234                if (rc != -EAGAIN) {
1235                        if (likely(!__PageMovable(page))) {
1236                                putback_lru_page(page);
1237                                goto put_new;
1238                        }
1239
1240                        lock_page(page);
1241                        if (PageMovable(page))
1242                                putback_movable_page(page);
1243                        else
1244                                __ClearPageIsolated(page);
1245                        unlock_page(page);
1246                        put_page(page);
1247                }
1248put_new:
1249                if (put_new_page)
1250                        put_new_page(newpage, private);
1251                else
1252                        put_page(newpage);
1253        }
1254
1255        return rc;
1256}
1257
1258/*
1259 * Counterpart of unmap_and_move_page() for hugepage migration.
1260 *
1261 * This function doesn't wait the completion of hugepage I/O
1262 * because there is no race between I/O and migration for hugepage.
1263 * Note that currently hugepage I/O occurs only in direct I/O
1264 * where no lock is held and PG_writeback is irrelevant,
1265 * and writeback status of all subpages are counted in the reference
1266 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1267 * under direct I/O, the reference of the head page is 512 and a bit more.)
1268 * This means that when we try to migrate hugepage whose subpages are
1269 * doing direct I/O, some references remain after try_to_unmap() and
1270 * hugepage migration fails without data corruption.
1271 *
1272 * There is also no race when direct I/O is issued on the page under migration,
1273 * because then pte is replaced with migration swap entry and direct I/O code
1274 * will wait in the page fault for migration to complete.
1275 */
1276static int unmap_and_move_huge_page(new_page_t get_new_page,
1277                                free_page_t put_new_page, unsigned long private,
1278                                struct page *hpage, int force,
1279                                enum migrate_mode mode, int reason)
1280{
1281        int rc = -EAGAIN;
1282        int page_was_mapped = 0;
1283        struct page *new_hpage;
1284        struct anon_vma *anon_vma = NULL;
1285
1286        /*
1287         * Migratability of hugepages depends on architectures and their size.
1288         * This check is necessary because some callers of hugepage migration
1289         * like soft offline and memory hotremove don't walk through page
1290         * tables or check whether the hugepage is pmd-based or not before
1291         * kicking migration.
1292         */
1293        if (!hugepage_migration_supported(page_hstate(hpage))) {
1294                putback_active_hugepage(hpage);
1295                return -ENOSYS;
1296        }
1297
1298        new_hpage = get_new_page(hpage, private);
1299        if (!new_hpage)
1300                return -ENOMEM;
1301
1302        if (!trylock_page(hpage)) {
1303                if (!force)
1304                        goto out;
1305                switch (mode) {
1306                case MIGRATE_SYNC:
1307                case MIGRATE_SYNC_NO_COPY:
1308                        break;
1309                default:
1310                        goto out;
1311                }
1312                lock_page(hpage);
1313        }
1314
1315        /*
1316         * Check for pages which are in the process of being freed.  Without
1317         * page_mapping() set, hugetlbfs specific move page routine will not
1318         * be called and we could leak usage counts for subpools.
1319         */
1320        if (page_private(hpage) && !page_mapping(hpage)) {
1321                rc = -EBUSY;
1322                goto out_unlock;
1323        }
1324
1325        if (PageAnon(hpage))
1326                anon_vma = page_get_anon_vma(hpage);
1327
1328        if (unlikely(!trylock_page(new_hpage)))
1329                goto put_anon;
1330
1331        if (page_mapped(hpage)) {
1332                try_to_unmap(hpage,
1333                        TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1334                page_was_mapped = 1;
1335        }
1336
1337        if (!page_mapped(hpage))
1338                rc = move_to_new_page(new_hpage, hpage, mode);
1339
1340        if (page_was_mapped)
1341                remove_migration_ptes(hpage,
1342                        rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1343
1344        unlock_page(new_hpage);
1345
1346put_anon:
1347        if (anon_vma)
1348                put_anon_vma(anon_vma);
1349
1350        if (rc == MIGRATEPAGE_SUCCESS) {
1351                move_hugetlb_state(hpage, new_hpage, reason);
1352                put_new_page = NULL;
1353        }
1354
1355out_unlock:
1356        unlock_page(hpage);
1357out:
1358        if (rc != -EAGAIN)
1359                putback_active_hugepage(hpage);
1360
1361        /*
1362         * If migration was not successful and there's a freeing callback, use
1363         * it.  Otherwise, put_page() will drop the reference grabbed during
1364         * isolation.
1365         */
1366        if (put_new_page)
1367                put_new_page(new_hpage, private);
1368        else
1369                putback_active_hugepage(new_hpage);
1370
1371        return rc;
1372}
1373
1374/*
1375 * migrate_pages - migrate the pages specified in a list, to the free pages
1376 *                 supplied as the target for the page migration
1377 *
1378 * @from:               The list of pages to be migrated.
1379 * @get_new_page:       The function used to allocate free pages to be used
1380 *                      as the target of the page migration.
1381 * @put_new_page:       The function used to free target pages if migration
1382 *                      fails, or NULL if no special handling is necessary.
1383 * @private:            Private data to be passed on to get_new_page()
1384 * @mode:               The migration mode that specifies the constraints for
1385 *                      page migration, if any.
1386 * @reason:             The reason for page migration.
1387 *
1388 * The function returns after 10 attempts or if no pages are movable any more
1389 * because the list has become empty or no retryable pages exist any more.
1390 * The caller should call putback_movable_pages() to return pages to the LRU
1391 * or free list only if ret != 0.
1392 *
1393 * Returns the number of pages that were not migrated, or an error code.
1394 */
1395int migrate_pages(struct list_head *from, new_page_t get_new_page,
1396                free_page_t put_new_page, unsigned long private,
1397                enum migrate_mode mode, int reason)
1398{
1399        int retry = 1;
1400        int nr_failed = 0;
1401        int nr_succeeded = 0;
1402        int pass = 0;
1403        struct page *page;
1404        struct page *page2;
1405        int swapwrite = current->flags & PF_SWAPWRITE;
1406        int rc;
1407
1408        if (!swapwrite)
1409                current->flags |= PF_SWAPWRITE;
1410
1411        for(pass = 0; pass < 10 && retry; pass++) {
1412                retry = 0;
1413
1414                list_for_each_entry_safe(page, page2, from, lru) {
1415retry:
1416                        cond_resched();
1417
1418                        if (PageHuge(page))
1419                                rc = unmap_and_move_huge_page(get_new_page,
1420                                                put_new_page, private, page,
1421                                                pass > 2, mode, reason);
1422                        else
1423                                rc = unmap_and_move(get_new_page, put_new_page,
1424                                                private, page, pass > 2, mode,
1425                                                reason);
1426
1427                        switch(rc) {
1428                        case -ENOMEM:
1429                                /*
1430                                 * THP migration might be unsupported or the
1431                                 * allocation could've failed so we should
1432                                 * retry on the same page with the THP split
1433                                 * to base pages.
1434                                 *
1435                                 * Head page is retried immediately and tail
1436                                 * pages are added to the tail of the list so
1437                                 * we encounter them after the rest of the list
1438                                 * is processed.
1439                                 */
1440                                if (PageTransHuge(page) && !PageHuge(page)) {
1441                                        lock_page(page);
1442                                        rc = split_huge_page_to_list(page, from);
1443                                        unlock_page(page);
1444                                        if (!rc) {
1445                                                list_safe_reset_next(page, page2, lru);
1446                                                goto retry;
1447                                        }
1448                                }
1449                                nr_failed++;
1450                                goto out;
1451                        case -EAGAIN:
1452                                retry++;
1453                                break;
1454                        case MIGRATEPAGE_SUCCESS:
1455                                nr_succeeded++;
1456                                break;
1457                        default:
1458                                /*
1459                                 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1460                                 * unlike -EAGAIN case, the failed page is
1461                                 * removed from migration page list and not
1462                                 * retried in the next outer loop.
1463                                 */
1464                                nr_failed++;
1465                                break;
1466                        }
1467                }
1468        }
1469        nr_failed += retry;
1470        rc = nr_failed;
1471out:
1472        if (nr_succeeded)
1473                count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1474        if (nr_failed)
1475                count_vm_events(PGMIGRATE_FAIL, nr_failed);
1476        trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1477
1478        if (!swapwrite)
1479                current->flags &= ~PF_SWAPWRITE;
1480
1481        return rc;
1482}
1483
1484#ifdef CONFIG_NUMA
1485
1486static int store_status(int __user *status, int start, int value, int nr)
1487{
1488        while (nr-- > 0) {
1489                if (put_user(value, status + start))
1490                        return -EFAULT;
1491                start++;
1492        }
1493
1494        return 0;
1495}
1496
1497static int do_move_pages_to_node(struct mm_struct *mm,
1498                struct list_head *pagelist, int node)
1499{
1500        int err;
1501
1502        if (list_empty(pagelist))
1503                return 0;
1504
1505        err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1506                        MIGRATE_SYNC, MR_SYSCALL);
1507        if (err)
1508                putback_movable_pages(pagelist);
1509        return err;
1510}
1511
1512/*
1513 * Resolves the given address to a struct page, isolates it from the LRU and
1514 * puts it to the given pagelist.
1515 * Returns:
1516 *     errno - if the page cannot be found/isolated
1517 *     0 - when it doesn't have to be migrated because it is already on the
1518 *         target node
1519 *     1 - when it has been queued
1520 */
1521static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1522                int node, struct list_head *pagelist, bool migrate_all)
1523{
1524        struct vm_area_struct *vma;
1525        struct page *page;
1526        unsigned int follflags;
1527        int err;
1528
1529        down_read(&mm->mmap_sem);
1530        err = -EFAULT;
1531        vma = find_vma(mm, addr);
1532        if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1533                goto out;
1534
1535        /* FOLL_DUMP to ignore special (like zero) pages */
1536        follflags = FOLL_GET | FOLL_DUMP;
1537        page = follow_page(vma, addr, follflags);
1538
1539        err = PTR_ERR(page);
1540        if (IS_ERR(page))
1541                goto out;
1542
1543        err = -ENOENT;
1544        if (!page)
1545                goto out;
1546
1547        err = 0;
1548        if (page_to_nid(page) == node)
1549                goto out_putpage;
1550
1551        err = -EACCES;
1552        if (page_mapcount(page) > 1 && !migrate_all)
1553                goto out_putpage;
1554
1555        if (PageHuge(page)) {
1556                if (PageHead(page)) {
1557                        isolate_huge_page(page, pagelist);
1558                        err = 1;
1559                }
1560        } else {
1561                struct page *head;
1562
1563                head = compound_head(page);
1564                err = isolate_lru_page(head);
1565                if (err)
1566                        goto out_putpage;
1567
1568                err = 1;
1569                list_add_tail(&head->lru, pagelist);
1570                mod_node_page_state(page_pgdat(head),
1571                        NR_ISOLATED_ANON + page_is_file_cache(head),
1572                        hpage_nr_pages(head));
1573        }
1574out_putpage:
1575        /*
1576         * Either remove the duplicate refcount from
1577         * isolate_lru_page() or drop the page ref if it was
1578         * not isolated.
1579         */
1580        put_page(page);
1581out:
1582        up_read(&mm->mmap_sem);
1583        return err;
1584}
1585
1586/*
1587 * Migrate an array of page address onto an array of nodes and fill
1588 * the corresponding array of status.
1589 */
1590static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1591                         unsigned long nr_pages,
1592                         const void __user * __user *pages,
1593                         const int __user *nodes,
1594                         int __user *status, int flags)
1595{
1596        int current_node = NUMA_NO_NODE;
1597        LIST_HEAD(pagelist);
1598        int start, i;
1599        int err = 0, err1;
1600
1601        migrate_prep();
1602
1603        for (i = start = 0; i < nr_pages; i++) {
1604                const void __user *p;
1605                unsigned long addr;
1606                int node;
1607
1608                err = -EFAULT;
1609                if (get_user(p, pages + i))
1610                        goto out_flush;
1611                if (get_user(node, nodes + i))
1612                        goto out_flush;
1613                addr = (unsigned long)untagged_addr(p);
1614
1615                err = -ENODEV;
1616                if (node < 0 || node >= MAX_NUMNODES)
1617                        goto out_flush;
1618                if (!node_state(node, N_MEMORY))
1619                        goto out_flush;
1620
1621                err = -EACCES;
1622                if (!node_isset(node, task_nodes))
1623                        goto out_flush;
1624
1625                if (current_node == NUMA_NO_NODE) {
1626                        current_node = node;
1627                        start = i;
1628                } else if (node != current_node) {
1629                        err = do_move_pages_to_node(mm, &pagelist, current_node);
1630                        if (err)
1631                                goto out;
1632                        err = store_status(status, start, current_node, i - start);
1633                        if (err)
1634                                goto out;
1635                        start = i;
1636                        current_node = node;
1637                }
1638
1639                /*
1640                 * Errors in the page lookup or isolation are not fatal and we simply
1641                 * report them via status
1642                 */
1643                err = add_page_for_migration(mm, addr, current_node,
1644                                &pagelist, flags & MPOL_MF_MOVE_ALL);
1645
1646                if (!err) {
1647                        /* The page is already on the target node */
1648                        err = store_status(status, i, current_node, 1);
1649                        if (err)
1650                                goto out_flush;
1651                        continue;
1652                } else if (err > 0) {
1653                        /* The page is successfully queued for migration */
1654                        continue;
1655                }
1656
1657                err = store_status(status, i, err, 1);
1658                if (err)
1659                        goto out_flush;
1660
1661                err = do_move_pages_to_node(mm, &pagelist, current_node);
1662                if (err)
1663                        goto out;
1664                if (i > start) {
1665                        err = store_status(status, start, current_node, i - start);
1666                        if (err)
1667                                goto out;
1668                }
1669                current_node = NUMA_NO_NODE;
1670        }
1671out_flush:
1672        if (list_empty(&pagelist))
1673                return err;
1674
1675        /* Make sure we do not overwrite the existing error */
1676        err1 = do_move_pages_to_node(mm, &pagelist, current_node);
1677        if (!err1)
1678                err1 = store_status(status, start, current_node, i - start);
1679        if (!err)
1680                err = err1;
1681out:
1682        return err;
1683}
1684
1685/*
1686 * Determine the nodes of an array of pages and store it in an array of status.
1687 */
1688static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1689                                const void __user **pages, int *status)
1690{
1691        unsigned long i;
1692
1693        down_read(&mm->mmap_sem);
1694
1695        for (i = 0; i < nr_pages; i++) {
1696                unsigned long addr = (unsigned long)(*pages);
1697                struct vm_area_struct *vma;
1698                struct page *page;
1699                int err = -EFAULT;
1700
1701                vma = find_vma(mm, addr);
1702                if (!vma || addr < vma->vm_start)
1703                        goto set_status;
1704
1705                /* FOLL_DUMP to ignore special (like zero) pages */
1706                page = follow_page(vma, addr, FOLL_DUMP);
1707
1708                err = PTR_ERR(page);
1709                if (IS_ERR(page))
1710                        goto set_status;
1711
1712                err = page ? page_to_nid(page) : -ENOENT;
1713set_status:
1714                *status = err;
1715
1716                pages++;
1717                status++;
1718        }
1719
1720        up_read(&mm->mmap_sem);
1721}
1722
1723/*
1724 * Determine the nodes of a user array of pages and store it in
1725 * a user array of status.
1726 */
1727static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1728                         const void __user * __user *pages,
1729                         int __user *status)
1730{
1731#define DO_PAGES_STAT_CHUNK_NR 16
1732        const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1733        int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1734
1735        while (nr_pages) {
1736                unsigned long chunk_nr;
1737
1738                chunk_nr = nr_pages;
1739                if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1740                        chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1741
1742                if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1743                        break;
1744
1745                do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1746
1747                if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1748                        break;
1749
1750                pages += chunk_nr;
1751                status += chunk_nr;
1752                nr_pages -= chunk_nr;
1753        }
1754        return nr_pages ? -EFAULT : 0;
1755}
1756
1757/*
1758 * Move a list of pages in the address space of the currently executing
1759 * process.
1760 */
1761static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1762                             const void __user * __user *pages,
1763                             const int __user *nodes,
1764                             int __user *status, int flags)
1765{
1766        struct task_struct *task;
1767        struct mm_struct *mm;
1768        int err;
1769        nodemask_t task_nodes;
1770
1771        /* Check flags */
1772        if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1773                return -EINVAL;
1774
1775        if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1776                return -EPERM;
1777
1778        /* Find the mm_struct */
1779        rcu_read_lock();
1780        task = pid ? find_task_by_vpid(pid) : current;
1781        if (!task) {
1782                rcu_read_unlock();
1783                return -ESRCH;
1784        }
1785        get_task_struct(task);
1786
1787        /*
1788         * Check if this process has the right to modify the specified
1789         * process. Use the regular "ptrace_may_access()" checks.
1790         */
1791        if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1792                rcu_read_unlock();
1793                err = -EPERM;
1794                goto out;
1795        }
1796        rcu_read_unlock();
1797
1798        err = security_task_movememory(task);
1799        if (err)
1800                goto out;
1801
1802        task_nodes = cpuset_mems_allowed(task);
1803        mm = get_task_mm(task);
1804        put_task_struct(task);
1805
1806        if (!mm)
1807                return -EINVAL;
1808
1809        if (nodes)
1810                err = do_pages_move(mm, task_nodes, nr_pages, pages,
1811                                    nodes, status, flags);
1812        else
1813                err = do_pages_stat(mm, nr_pages, pages, status);
1814
1815        mmput(mm);
1816        return err;
1817
1818out:
1819        put_task_struct(task);
1820        return err;
1821}
1822
1823SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1824                const void __user * __user *, pages,
1825                const int __user *, nodes,
1826                int __user *, status, int, flags)
1827{
1828        return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1829}
1830
1831#ifdef CONFIG_COMPAT
1832COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1833                       compat_uptr_t __user *, pages32,
1834                       const int __user *, nodes,
1835                       int __user *, status,
1836                       int, flags)
1837{
1838        const void __user * __user *pages;
1839        int i;
1840
1841        pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1842        for (i = 0; i < nr_pages; i++) {
1843                compat_uptr_t p;
1844
1845                if (get_user(p, pages32 + i) ||
1846                        put_user(compat_ptr(p), pages + i))
1847                        return -EFAULT;
1848        }
1849        return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1850}
1851#endif /* CONFIG_COMPAT */
1852
1853#ifdef CONFIG_NUMA_BALANCING
1854/*
1855 * Returns true if this is a safe migration target node for misplaced NUMA
1856 * pages. Currently it only checks the watermarks which crude
1857 */
1858static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1859                                   unsigned long nr_migrate_pages)
1860{
1861        int z;
1862
1863        for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1864                struct zone *zone = pgdat->node_zones + z;
1865
1866                if (!populated_zone(zone))
1867                        continue;
1868
1869                /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1870                if (!zone_watermark_ok(zone, 0,
1871                                       high_wmark_pages(zone) +
1872                                       nr_migrate_pages,
1873                                       ZONE_MOVABLE, 0))
1874                        continue;
1875                return true;
1876        }
1877        return false;
1878}
1879
1880static struct page *alloc_misplaced_dst_page(struct page *page,
1881                                           unsigned long data)
1882{
1883        int nid = (int) data;
1884        struct page *newpage;
1885
1886        newpage = __alloc_pages_node(nid,
1887                                         (GFP_HIGHUSER_MOVABLE |
1888                                          __GFP_THISNODE | __GFP_NOMEMALLOC |
1889                                          __GFP_NORETRY | __GFP_NOWARN) &
1890                                         ~__GFP_RECLAIM, 0);
1891
1892        return newpage;
1893}
1894
1895static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1896{
1897        int page_lru;
1898
1899        VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1900
1901        /* Avoid migrating to a node that is nearly full */
1902        if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
1903                return 0;
1904
1905        if (isolate_lru_page(page))
1906                return 0;
1907
1908        /*
1909         * migrate_misplaced_transhuge_page() skips page migration's usual
1910         * check on page_count(), so we must do it here, now that the page
1911         * has been isolated: a GUP pin, or any other pin, prevents migration.
1912         * The expected page count is 3: 1 for page's mapcount and 1 for the
1913         * caller's pin and 1 for the reference taken by isolate_lru_page().
1914         */
1915        if (PageTransHuge(page) && page_count(page) != 3) {
1916                putback_lru_page(page);
1917                return 0;
1918        }
1919
1920        page_lru = page_is_file_cache(page);
1921        mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1922                                hpage_nr_pages(page));
1923
1924        /*
1925         * Isolating the page has taken another reference, so the
1926         * caller's reference can be safely dropped without the page
1927         * disappearing underneath us during migration.
1928         */
1929        put_page(page);
1930        return 1;
1931}
1932
1933bool pmd_trans_migrating(pmd_t pmd)
1934{
1935        struct page *page = pmd_page(pmd);
1936        return PageLocked(page);
1937}
1938
1939/*
1940 * Attempt to migrate a misplaced page to the specified destination
1941 * node. Caller is expected to have an elevated reference count on
1942 * the page that will be dropped by this function before returning.
1943 */
1944int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1945                           int node)
1946{
1947        pg_data_t *pgdat = NODE_DATA(node);
1948        int isolated;
1949        int nr_remaining;
1950        LIST_HEAD(migratepages);
1951
1952        /*
1953         * Don't migrate file pages that are mapped in multiple processes
1954         * with execute permissions as they are probably shared libraries.
1955         */
1956        if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1957            (vma->vm_flags & VM_EXEC))
1958                goto out;
1959
1960        /*
1961         * Also do not migrate dirty pages as not all filesystems can move
1962         * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
1963         */
1964        if (page_is_file_cache(page) && PageDirty(page))
1965                goto out;
1966
1967        isolated = numamigrate_isolate_page(pgdat, page);
1968        if (!isolated)
1969                goto out;
1970
1971        list_add(&page->lru, &migratepages);
1972        nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1973                                     NULL, node, MIGRATE_ASYNC,
1974                                     MR_NUMA_MISPLACED);
1975        if (nr_remaining) {
1976                if (!list_empty(&migratepages)) {
1977                        list_del(&page->lru);
1978                        dec_node_page_state(page, NR_ISOLATED_ANON +
1979                                        page_is_file_cache(page));
1980                        putback_lru_page(page);
1981                }
1982                isolated = 0;
1983        } else
1984                count_vm_numa_event(NUMA_PAGE_MIGRATE);
1985        BUG_ON(!list_empty(&migratepages));
1986        return isolated;
1987
1988out:
1989        put_page(page);
1990        return 0;
1991}
1992#endif /* CONFIG_NUMA_BALANCING */
1993
1994#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1995/*
1996 * Migrates a THP to a given target node. page must be locked and is unlocked
1997 * before returning.
1998 */
1999int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2000                                struct vm_area_struct *vma,
2001                                pmd_t *pmd, pmd_t entry,
2002                                unsigned long address,
2003                                struct page *page, int node)
2004{
2005        spinlock_t *ptl;
2006        pg_data_t *pgdat = NODE_DATA(node);
2007        int isolated = 0;
2008        struct page *new_page = NULL;
2009        int page_lru = page_is_file_cache(page);
2010        unsigned long start = address & HPAGE_PMD_MASK;
2011
2012        new_page = alloc_pages_node(node,
2013                (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2014                HPAGE_PMD_ORDER);
2015        if (!new_page)
2016                goto out_fail;
2017        prep_transhuge_page(new_page);
2018
2019        isolated = numamigrate_isolate_page(pgdat, page);
2020        if (!isolated) {
2021                put_page(new_page);
2022                goto out_fail;
2023        }
2024
2025        /* Prepare a page as a migration target */
2026        __SetPageLocked(new_page);
2027        if (PageSwapBacked(page))
2028                __SetPageSwapBacked(new_page);
2029
2030        /* anon mapping, we can simply copy page->mapping to the new page: */
2031        new_page->mapping = page->mapping;
2032        new_page->index = page->index;
2033        /* flush the cache before copying using the kernel virtual address */
2034        flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2035        migrate_page_copy(new_page, page);
2036        WARN_ON(PageLRU(new_page));
2037
2038        /* Recheck the target PMD */
2039        ptl = pmd_lock(mm, pmd);
2040        if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2041                spin_unlock(ptl);
2042
2043                /* Reverse changes made by migrate_page_copy() */
2044                if (TestClearPageActive(new_page))
2045                        SetPageActive(page);
2046                if (TestClearPageUnevictable(new_page))
2047                        SetPageUnevictable(page);
2048
2049                unlock_page(new_page);
2050                put_page(new_page);             /* Free it */
2051
2052                /* Retake the callers reference and putback on LRU */
2053                get_page(page);
2054                putback_lru_page(page);
2055                mod_node_page_state(page_pgdat(page),
2056                         NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2057
2058                goto out_unlock;
2059        }
2060
2061        entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2062        entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2063
2064        /*
2065         * Overwrite the old entry under pagetable lock and establish
2066         * the new PTE. Any parallel GUP will either observe the old
2067         * page blocking on the page lock, block on the page table
2068         * lock or observe the new page. The SetPageUptodate on the
2069         * new page and page_add_new_anon_rmap guarantee the copy is
2070         * visible before the pagetable update.
2071         */
2072        page_add_anon_rmap(new_page, vma, start, true);
2073        /*
2074         * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2075         * has already been flushed globally.  So no TLB can be currently
2076         * caching this non present pmd mapping.  There's no need to clear the
2077         * pmd before doing set_pmd_at(), nor to flush the TLB after
2078         * set_pmd_at().  Clearing the pmd here would introduce a race
2079         * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2080         * mmap_sem for reading.  If the pmd is set to NULL at any given time,
2081         * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2082         * pmd.
2083         */
2084        set_pmd_at(mm, start, pmd, entry);
2085        update_mmu_cache_pmd(vma, address, &entry);
2086
2087        page_ref_unfreeze(page, 2);
2088        mlock_migrate_page(new_page, page);
2089        page_remove_rmap(page, true);
2090        set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2091
2092        spin_unlock(ptl);
2093
2094        /* Take an "isolate" reference and put new page on the LRU. */
2095        get_page(new_page);
2096        putback_lru_page(new_page);
2097
2098        unlock_page(new_page);
2099        unlock_page(page);
2100        put_page(page);                 /* Drop the rmap reference */
2101        put_page(page);                 /* Drop the LRU isolation reference */
2102
2103        count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2104        count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2105
2106        mod_node_page_state(page_pgdat(page),
2107                        NR_ISOLATED_ANON + page_lru,
2108                        -HPAGE_PMD_NR);
2109        return isolated;
2110
2111out_fail:
2112        count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2113        ptl = pmd_lock(mm, pmd);
2114        if (pmd_same(*pmd, entry)) {
2115                entry = pmd_modify(entry, vma->vm_page_prot);
2116                set_pmd_at(mm, start, pmd, entry);
2117                update_mmu_cache_pmd(vma, address, &entry);
2118        }
2119        spin_unlock(ptl);
2120
2121out_unlock:
2122        unlock_page(page);
2123        put_page(page);
2124        return 0;
2125}
2126#endif /* CONFIG_NUMA_BALANCING */
2127
2128#endif /* CONFIG_NUMA */
2129
2130#ifdef CONFIG_DEVICE_PRIVATE
2131static int migrate_vma_collect_hole(unsigned long start,
2132                                    unsigned long end,
2133                                    struct mm_walk *walk)
2134{
2135        struct migrate_vma *migrate = walk->private;
2136        unsigned long addr;
2137
2138        for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2139                migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2140                migrate->dst[migrate->npages] = 0;
2141                migrate->npages++;
2142                migrate->cpages++;
2143        }
2144
2145        return 0;
2146}
2147
2148static int migrate_vma_collect_skip(unsigned long start,
2149                                    unsigned long end,
2150                                    struct mm_walk *walk)
2151{
2152        struct migrate_vma *migrate = walk->private;
2153        unsigned long addr;
2154
2155        for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2156                migrate->dst[migrate->npages] = 0;
2157                migrate->src[migrate->npages++] = 0;
2158        }
2159
2160        return 0;
2161}
2162
2163static int migrate_vma_collect_pmd(pmd_t *pmdp,
2164                                   unsigned long start,
2165                                   unsigned long end,
2166                                   struct mm_walk *walk)
2167{
2168        struct migrate_vma *migrate = walk->private;
2169        struct vm_area_struct *vma = walk->vma;
2170        struct mm_struct *mm = vma->vm_mm;
2171        unsigned long addr = start, unmapped = 0;
2172        spinlock_t *ptl;
2173        pte_t *ptep;
2174
2175again:
2176        if (pmd_none(*pmdp))
2177                return migrate_vma_collect_hole(start, end, walk);
2178
2179        if (pmd_trans_huge(*pmdp)) {
2180                struct page *page;
2181
2182                ptl = pmd_lock(mm, pmdp);
2183                if (unlikely(!pmd_trans_huge(*pmdp))) {
2184                        spin_unlock(ptl);
2185                        goto again;
2186                }
2187
2188                page = pmd_page(*pmdp);
2189                if (is_huge_zero_page(page)) {
2190                        spin_unlock(ptl);
2191                        split_huge_pmd(vma, pmdp, addr);
2192                        if (pmd_trans_unstable(pmdp))
2193                                return migrate_vma_collect_skip(start, end,
2194                                                                walk);
2195                } else {
2196                        int ret;
2197
2198                        get_page(page);
2199                        spin_unlock(ptl);
2200                        if (unlikely(!trylock_page(page)))
2201                                return migrate_vma_collect_skip(start, end,
2202                                                                walk);
2203                        ret = split_huge_page(page);
2204                        unlock_page(page);
2205                        put_page(page);
2206                        if (ret)
2207                                return migrate_vma_collect_skip(start, end,
2208                                                                walk);
2209                        if (pmd_none(*pmdp))
2210                                return migrate_vma_collect_hole(start, end,
2211                                                                walk);
2212                }
2213        }
2214
2215        if (unlikely(pmd_bad(*pmdp)))
2216                return migrate_vma_collect_skip(start, end, walk);
2217
2218        ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2219        arch_enter_lazy_mmu_mode();
2220
2221        for (; addr < end; addr += PAGE_SIZE, ptep++) {
2222                unsigned long mpfn, pfn;
2223                struct page *page;
2224                swp_entry_t entry;
2225                pte_t pte;
2226
2227                pte = *ptep;
2228
2229                if (pte_none(pte)) {
2230                        mpfn = MIGRATE_PFN_MIGRATE;
2231                        migrate->cpages++;
2232                        goto next;
2233                }
2234
2235                if (!pte_present(pte)) {
2236                        mpfn = 0;
2237
2238                        /*
2239                         * Only care about unaddressable device page special
2240                         * page table entry. Other special swap entries are not
2241                         * migratable, and we ignore regular swapped page.
2242                         */
2243                        entry = pte_to_swp_entry(pte);
2244                        if (!is_device_private_entry(entry))
2245                                goto next;
2246
2247                        page = device_private_entry_to_page(entry);
2248                        mpfn = migrate_pfn(page_to_pfn(page)) |
2249                                        MIGRATE_PFN_MIGRATE;
2250                        if (is_write_device_private_entry(entry))
2251                                mpfn |= MIGRATE_PFN_WRITE;
2252                } else {
2253                        pfn = pte_pfn(pte);
2254                        if (is_zero_pfn(pfn)) {
2255                                mpfn = MIGRATE_PFN_MIGRATE;
2256                                migrate->cpages++;
2257                                goto next;
2258                        }
2259                        page = vm_normal_page(migrate->vma, addr, pte);
2260                        mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2261                        mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2262                }
2263
2264                /* FIXME support THP */
2265                if (!page || !page->mapping || PageTransCompound(page)) {
2266                        mpfn = 0;
2267                        goto next;
2268                }
2269
2270                /*
2271                 * By getting a reference on the page we pin it and that blocks
2272                 * any kind of migration. Side effect is that it "freezes" the
2273                 * pte.
2274                 *
2275                 * We drop this reference after isolating the page from the lru
2276                 * for non device page (device page are not on the lru and thus
2277                 * can't be dropped from it).
2278                 */
2279                get_page(page);
2280                migrate->cpages++;
2281
2282                /*
2283                 * Optimize for the common case where page is only mapped once
2284                 * in one process. If we can lock the page, then we can safely
2285                 * set up a special migration page table entry now.
2286                 */
2287                if (trylock_page(page)) {
2288                        pte_t swp_pte;
2289
2290                        mpfn |= MIGRATE_PFN_LOCKED;
2291                        ptep_get_and_clear(mm, addr, ptep);
2292
2293                        /* Setup special migration page table entry */
2294                        entry = make_migration_entry(page, mpfn &
2295                                                     MIGRATE_PFN_WRITE);
2296                        swp_pte = swp_entry_to_pte(entry);
2297                        if (pte_soft_dirty(pte))
2298                                swp_pte = pte_swp_mksoft_dirty(swp_pte);
2299                        set_pte_at(mm, addr, ptep, swp_pte);
2300
2301                        /*
2302                         * This is like regular unmap: we remove the rmap and
2303                         * drop page refcount. Page won't be freed, as we took
2304                         * a reference just above.
2305                         */
2306                        page_remove_rmap(page, false);
2307                        put_page(page);
2308
2309                        if (pte_present(pte))
2310                                unmapped++;
2311                }
2312
2313next:
2314                migrate->dst[migrate->npages] = 0;
2315                migrate->src[migrate->npages++] = mpfn;
2316        }
2317        arch_leave_lazy_mmu_mode();
2318        pte_unmap_unlock(ptep - 1, ptl);
2319
2320        /* Only flush the TLB if we actually modified any entries */
2321        if (unmapped)
2322                flush_tlb_range(walk->vma, start, end);
2323
2324        return 0;
2325}
2326
2327static const struct mm_walk_ops migrate_vma_walk_ops = {
2328        .pmd_entry              = migrate_vma_collect_pmd,
2329        .pte_hole               = migrate_vma_collect_hole,
2330};
2331
2332/*
2333 * migrate_vma_collect() - collect pages over a range of virtual addresses
2334 * @migrate: migrate struct containing all migration information
2335 *
2336 * This will walk the CPU page table. For each virtual address backed by a
2337 * valid page, it updates the src array and takes a reference on the page, in
2338 * order to pin the page until we lock it and unmap it.
2339 */
2340static void migrate_vma_collect(struct migrate_vma *migrate)
2341{
2342        struct mmu_notifier_range range;
2343
2344        mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL,
2345                        migrate->vma->vm_mm, migrate->start, migrate->end);
2346        mmu_notifier_invalidate_range_start(&range);
2347
2348        walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2349                        &migrate_vma_walk_ops, migrate);
2350
2351        mmu_notifier_invalidate_range_end(&range);
2352        migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2353}
2354
2355/*
2356 * migrate_vma_check_page() - check if page is pinned or not
2357 * @page: struct page to check
2358 *
2359 * Pinned pages cannot be migrated. This is the same test as in
2360 * migrate_page_move_mapping(), except that here we allow migration of a
2361 * ZONE_DEVICE page.
2362 */
2363static bool migrate_vma_check_page(struct page *page)
2364{
2365        /*
2366         * One extra ref because caller holds an extra reference, either from
2367         * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2368         * a device page.
2369         */
2370        int extra = 1;
2371
2372        /*
2373         * FIXME support THP (transparent huge page), it is bit more complex to
2374         * check them than regular pages, because they can be mapped with a pmd
2375         * or with a pte (split pte mapping).
2376         */
2377        if (PageCompound(page))
2378                return false;
2379
2380        /* Page from ZONE_DEVICE have one extra reference */
2381        if (is_zone_device_page(page)) {
2382                /*
2383                 * Private page can never be pin as they have no valid pte and
2384                 * GUP will fail for those. Yet if there is a pending migration
2385                 * a thread might try to wait on the pte migration entry and
2386                 * will bump the page reference count. Sadly there is no way to
2387                 * differentiate a regular pin from migration wait. Hence to
2388                 * avoid 2 racing thread trying to migrate back to CPU to enter
2389                 * infinite loop (one stoping migration because the other is
2390                 * waiting on pte migration entry). We always return true here.
2391                 *
2392                 * FIXME proper solution is to rework migration_entry_wait() so
2393                 * it does not need to take a reference on page.
2394                 */
2395                return is_device_private_page(page);
2396        }
2397
2398        /* For file back page */
2399        if (page_mapping(page))
2400                extra += 1 + page_has_private(page);
2401
2402        if ((page_count(page) - extra) > page_mapcount(page))
2403                return false;
2404
2405        return true;
2406}
2407
2408/*
2409 * migrate_vma_prepare() - lock pages and isolate them from the lru
2410 * @migrate: migrate struct containing all migration information
2411 *
2412 * This locks pages that have been collected by migrate_vma_collect(). Once each
2413 * page is locked it is isolated from the lru (for non-device pages). Finally,
2414 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2415 * migrated by concurrent kernel threads.
2416 */
2417static void migrate_vma_prepare(struct migrate_vma *migrate)
2418{
2419        const unsigned long npages = migrate->npages;
2420        const unsigned long start = migrate->start;
2421        unsigned long addr, i, restore = 0;
2422        bool allow_drain = true;
2423
2424        lru_add_drain();
2425
2426        for (i = 0; (i < npages) && migrate->cpages; i++) {
2427                struct page *page = migrate_pfn_to_page(migrate->src[i]);
2428                bool remap = true;
2429
2430                if (!page)
2431                        continue;
2432
2433                if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2434                        /*
2435                         * Because we are migrating several pages there can be
2436                         * a deadlock between 2 concurrent migration where each
2437                         * are waiting on each other page lock.
2438                         *
2439                         * Make migrate_vma() a best effort thing and backoff
2440                         * for any page we can not lock right away.
2441                         */
2442                        if (!trylock_page(page)) {
2443                                migrate->src[i] = 0;
2444                                migrate->cpages--;
2445                                put_page(page);
2446                                continue;
2447                        }
2448                        remap = false;
2449                        migrate->src[i] |= MIGRATE_PFN_LOCKED;
2450                }
2451
2452                /* ZONE_DEVICE pages are not on LRU */
2453                if (!is_zone_device_page(page)) {
2454                        if (!PageLRU(page) && allow_drain) {
2455                                /* Drain CPU's pagevec */
2456                                lru_add_drain_all();
2457                                allow_drain = false;
2458                        }
2459
2460                        if (isolate_lru_page(page)) {
2461                                if (remap) {
2462                                        migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2463                                        migrate->cpages--;
2464                                        restore++;
2465                                } else {
2466                                        migrate->src[i] = 0;
2467                                        unlock_page(page);
2468                                        migrate->cpages--;
2469                                        put_page(page);
2470                                }
2471                                continue;
2472                        }
2473
2474                        /* Drop the reference we took in collect */
2475                        put_page(page);
2476                }
2477
2478                if (!migrate_vma_check_page(page)) {
2479                        if (remap) {
2480                                migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2481                                migrate->cpages--;
2482                                restore++;
2483
2484                                if (!is_zone_device_page(page)) {
2485                                        get_page(page);
2486                                        putback_lru_page(page);
2487                                }
2488                        } else {
2489                                migrate->src[i] = 0;
2490                                unlock_page(page);
2491                                migrate->cpages--;
2492
2493                                if (!is_zone_device_page(page))
2494                                        putback_lru_page(page);
2495                                else
2496                                        put_page(page);
2497                        }
2498                }
2499        }
2500
2501        for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2502                struct page *page = migrate_pfn_to_page(migrate->src[i]);
2503
2504                if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2505                        continue;
2506
2507                remove_migration_pte(page, migrate->vma, addr, page);
2508
2509                migrate->src[i] = 0;
2510                unlock_page(page);
2511                put_page(page);
2512                restore--;
2513        }
2514}
2515
2516/*
2517 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2518 * @migrate: migrate struct containing all migration information
2519 *
2520 * Replace page mapping (CPU page table pte) with a special migration pte entry
2521 * and check again if it has been pinned. Pinned pages are restored because we
2522 * cannot migrate them.
2523 *
2524 * This is the last step before we call the device driver callback to allocate
2525 * destination memory and copy contents of original page over to new page.
2526 */
2527static void migrate_vma_unmap(struct migrate_vma *migrate)
2528{
2529        int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2530        const unsigned long npages = migrate->npages;
2531        const unsigned long start = migrate->start;
2532        unsigned long addr, i, restore = 0;
2533
2534        for (i = 0; i < npages; i++) {
2535                struct page *page = migrate_pfn_to_page(migrate->src[i]);
2536
2537                if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2538                        continue;
2539
2540                if (page_mapped(page)) {
2541                        try_to_unmap(page, flags);
2542                        if (page_mapped(page))
2543                                goto restore;
2544                }
2545
2546                if (migrate_vma_check_page(page))
2547                        continue;
2548
2549restore:
2550                migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2551                migrate->cpages--;
2552                restore++;
2553        }
2554
2555        for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2556                struct page *page = migrate_pfn_to_page(migrate->src[i]);
2557
2558                if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2559                        continue;
2560
2561                remove_migration_ptes(page, page, false);
2562
2563                migrate->src[i] = 0;
2564                unlock_page(page);
2565                restore--;
2566
2567                if (is_zone_device_page(page))
2568                        put_page(page);
2569                else
2570                        putback_lru_page(page);
2571        }
2572}
2573
2574/**
2575 * migrate_vma_setup() - prepare to migrate a range of memory
2576 * @args: contains the vma, start, and and pfns arrays for the migration
2577 *
2578 * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2579 * without an error.
2580 *
2581 * Prepare to migrate a range of memory virtual address range by collecting all
2582 * the pages backing each virtual address in the range, saving them inside the
2583 * src array.  Then lock those pages and unmap them. Once the pages are locked
2584 * and unmapped, check whether each page is pinned or not.  Pages that aren't
2585 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2586 * corresponding src array entry.  Then restores any pages that are pinned, by
2587 * remapping and unlocking those pages.
2588 *
2589 * The caller should then allocate destination memory and copy source memory to
2590 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2591 * flag set).  Once these are allocated and copied, the caller must update each
2592 * corresponding entry in the dst array with the pfn value of the destination
2593 * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2594 * (destination pages must have their struct pages locked, via lock_page()).
2595 *
2596 * Note that the caller does not have to migrate all the pages that are marked
2597 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2598 * device memory to system memory.  If the caller cannot migrate a device page
2599 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2600 * consequences for the userspace process, so it must be avoided if at all
2601 * possible.
2602 *
2603 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2604 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2605 * allowing the caller to allocate device memory for those unback virtual
2606 * address.  For this the caller simply has to allocate device memory and
2607 * properly set the destination entry like for regular migration.  Note that
2608 * this can still fails and thus inside the device driver must check if the
2609 * migration was successful for those entries after calling migrate_vma_pages()
2610 * just like for regular migration.
2611 *
2612 * After that, the callers must call migrate_vma_pages() to go over each entry
2613 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2614 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2615 * then migrate_vma_pages() to migrate struct page information from the source
2616 * struct page to the destination struct page.  If it fails to migrate the
2617 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2618 * src array.
2619 *
2620 * At this point all successfully migrated pages have an entry in the src
2621 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2622 * array entry with MIGRATE_PFN_VALID flag set.
2623 *
2624 * Once migrate_vma_pages() returns the caller may inspect which pages were
2625 * successfully migrated, and which were not.  Successfully migrated pages will
2626 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2627 *
2628 * It is safe to update device page table after migrate_vma_pages() because
2629 * both destination and source page are still locked, and the mmap_sem is held
2630 * in read mode (hence no one can unmap the range being migrated).
2631 *
2632 * Once the caller is done cleaning up things and updating its page table (if it
2633 * chose to do so, this is not an obligation) it finally calls
2634 * migrate_vma_finalize() to update the CPU page table to point to new pages
2635 * for successfully migrated pages or otherwise restore the CPU page table to
2636 * point to the original source pages.
2637 */
2638int migrate_vma_setup(struct migrate_vma *args)
2639{
2640        long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2641
2642        args->start &= PAGE_MASK;
2643        args->end &= PAGE_MASK;
2644        if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2645            (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2646                return -EINVAL;
2647        if (nr_pages <= 0)
2648                return -EINVAL;
2649        if (args->start < args->vma->vm_start ||
2650            args->start >= args->vma->vm_end)
2651                return -EINVAL;
2652        if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2653                return -EINVAL;
2654        if (!args->src || !args->dst)
2655                return -EINVAL;
2656
2657        memset(args->src, 0, sizeof(*args->src) * nr_pages);
2658        args->cpages = 0;
2659        args->npages = 0;
2660
2661        migrate_vma_collect(args);
2662
2663        if (args->cpages)
2664                migrate_vma_prepare(args);
2665        if (args->cpages)
2666                migrate_vma_unmap(args);
2667
2668        /*
2669         * At this point pages are locked and unmapped, and thus they have
2670         * stable content and can safely be copied to destination memory that
2671         * is allocated by the drivers.
2672         */
2673        return 0;
2674
2675}
2676EXPORT_SYMBOL(migrate_vma_setup);
2677
2678static void migrate_vma_insert_page(struct migrate_vma *migrate,
2679                                    unsigned long addr,
2680                                    struct page *page,
2681                                    unsigned long *src,
2682                                    unsigned long *dst)
2683{
2684        struct vm_area_struct *vma = migrate->vma;
2685        struct mm_struct *mm = vma->vm_mm;
2686        struct mem_cgroup *memcg;
2687        bool flush = false;
2688        spinlock_t *ptl;
2689        pte_t entry;
2690        pgd_t *pgdp;
2691        p4d_t *p4dp;
2692        pud_t *pudp;
2693        pmd_t *pmdp;
2694        pte_t *ptep;
2695
2696        /* Only allow populating anonymous memory */
2697        if (!vma_is_anonymous(vma))
2698                goto abort;
2699
2700        pgdp = pgd_offset(mm, addr);
2701        p4dp = p4d_alloc(mm, pgdp, addr);
2702        if (!p4dp)
2703                goto abort;
2704        pudp = pud_alloc(mm, p4dp, addr);
2705        if (!pudp)
2706                goto abort;
2707        pmdp = pmd_alloc(mm, pudp, addr);
2708        if (!pmdp)
2709                goto abort;
2710
2711        if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2712                goto abort;
2713
2714        /*
2715         * Use pte_alloc() instead of pte_alloc_map().  We can't run
2716         * pte_offset_map() on pmds where a huge pmd might be created
2717         * from a different thread.
2718         *
2719         * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2720         * parallel threads are excluded by other means.
2721         *
2722         * Here we only have down_read(mmap_sem).
2723         */
2724        if (pte_alloc(mm, pmdp))
2725                goto abort;
2726
2727        /* See the comment in pte_alloc_one_map() */
2728        if (unlikely(pmd_trans_unstable(pmdp)))
2729                goto abort;
2730
2731        if (unlikely(anon_vma_prepare(vma)))
2732                goto abort;
2733        if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2734                goto abort;
2735
2736        /*
2737         * The memory barrier inside __SetPageUptodate makes sure that
2738         * preceding stores to the page contents become visible before
2739         * the set_pte_at() write.
2740         */
2741        __SetPageUptodate(page);
2742
2743        if (is_zone_device_page(page)) {
2744                if (is_device_private_page(page)) {
2745                        swp_entry_t swp_entry;
2746
2747                        swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2748                        entry = swp_entry_to_pte(swp_entry);
2749                }
2750        } else {
2751                entry = mk_pte(page, vma->vm_page_prot);
2752                if (vma->vm_flags & VM_WRITE)
2753                        entry = pte_mkwrite(pte_mkdirty(entry));
2754        }
2755
2756        ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2757
2758        if (pte_present(*ptep)) {
2759                unsigned long pfn = pte_pfn(*ptep);
2760
2761                if (!is_zero_pfn(pfn)) {
2762                        pte_unmap_unlock(ptep, ptl);
2763                        mem_cgroup_cancel_charge(page, memcg, false);
2764                        goto abort;
2765                }
2766                flush = true;
2767        } else if (!pte_none(*ptep)) {
2768                pte_unmap_unlock(ptep, ptl);
2769                mem_cgroup_cancel_charge(page, memcg, false);
2770                goto abort;
2771        }
2772
2773        /*
2774         * Check for usefaultfd but do not deliver the fault. Instead,
2775         * just back off.
2776         */
2777        if (userfaultfd_missing(vma)) {
2778                pte_unmap_unlock(ptep, ptl);
2779                mem_cgroup_cancel_charge(page, memcg, false);
2780                goto abort;
2781        }
2782
2783        inc_mm_counter(mm, MM_ANONPAGES);
2784        page_add_new_anon_rmap(page, vma, addr, false);
2785        mem_cgroup_commit_charge(page, memcg, false, false);
2786        if (!is_zone_device_page(page))
2787                lru_cache_add_active_or_unevictable(page, vma);
2788        get_page(page);
2789
2790        if (flush) {
2791                flush_cache_page(vma, addr, pte_pfn(*ptep));
2792                ptep_clear_flush_notify(vma, addr, ptep);
2793                set_pte_at_notify(mm, addr, ptep, entry);
2794                update_mmu_cache(vma, addr, ptep);
2795        } else {
2796                /* No need to invalidate - it was non-present before */
2797                set_pte_at(mm, addr, ptep, entry);
2798                update_mmu_cache(vma, addr, ptep);
2799        }
2800
2801        pte_unmap_unlock(ptep, ptl);
2802        *src = MIGRATE_PFN_MIGRATE;
2803        return;
2804
2805abort:
2806        *src &= ~MIGRATE_PFN_MIGRATE;
2807}
2808
2809/**
2810 * migrate_vma_pages() - migrate meta-data from src page to dst page
2811 * @migrate: migrate struct containing all migration information
2812 *
2813 * This migrates struct page meta-data from source struct page to destination
2814 * struct page. This effectively finishes the migration from source page to the
2815 * destination page.
2816 */
2817void migrate_vma_pages(struct migrate_vma *migrate)
2818{
2819        const unsigned long npages = migrate->npages;
2820        const unsigned long start = migrate->start;
2821        struct mmu_notifier_range range;
2822        unsigned long addr, i;
2823        bool notified = false;
2824
2825        for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2826                struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2827                struct page *page = migrate_pfn_to_page(migrate->src[i]);
2828                struct address_space *mapping;
2829                int r;
2830
2831                if (!newpage) {
2832                        migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2833                        continue;
2834                }
2835
2836                if (!page) {
2837                        if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
2838                                continue;
2839                        }
2840                        if (!notified) {
2841                                notified = true;
2842
2843                                mmu_notifier_range_init(&range,
2844                                                        MMU_NOTIFY_CLEAR, 0,
2845                                                        NULL,
2846                                                        migrate->vma->vm_mm,
2847                                                        addr, migrate->end);
2848                                mmu_notifier_invalidate_range_start(&range);
2849                        }
2850                        migrate_vma_insert_page(migrate, addr, newpage,
2851                                                &migrate->src[i],
2852                                                &migrate->dst[i]);
2853                        continue;
2854                }
2855
2856                mapping = page_mapping(page);
2857
2858                if (is_zone_device_page(newpage)) {
2859                        if (is_device_private_page(newpage)) {
2860                                /*
2861                                 * For now only support private anonymous when
2862                                 * migrating to un-addressable device memory.
2863                                 */
2864                                if (mapping) {
2865                                        migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2866                                        continue;
2867                                }
2868                        } else {
2869                                /*
2870                                 * Other types of ZONE_DEVICE page are not
2871                                 * supported.
2872                                 */
2873                                migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2874                                continue;
2875                        }
2876                }
2877
2878                r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2879                if (r != MIGRATEPAGE_SUCCESS)
2880                        migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2881        }
2882
2883        /*
2884         * No need to double call mmu_notifier->invalidate_range() callback as
2885         * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2886         * did already call it.
2887         */
2888        if (notified)
2889                mmu_notifier_invalidate_range_only_end(&range);
2890}
2891EXPORT_SYMBOL(migrate_vma_pages);
2892
2893/**
2894 * migrate_vma_finalize() - restore CPU page table entry
2895 * @migrate: migrate struct containing all migration information
2896 *
2897 * This replaces the special migration pte entry with either a mapping to the
2898 * new page if migration was successful for that page, or to the original page
2899 * otherwise.
2900 *
2901 * This also unlocks the pages and puts them back on the lru, or drops the extra
2902 * refcount, for device pages.
2903 */
2904void migrate_vma_finalize(struct migrate_vma *migrate)
2905{
2906        const unsigned long npages = migrate->npages;
2907        unsigned long i;
2908
2909        for (i = 0; i < npages; i++) {
2910                struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2911                struct page *page = migrate_pfn_to_page(migrate->src[i]);
2912
2913                if (!page) {
2914                        if (newpage) {
2915                                unlock_page(newpage);
2916                                put_page(newpage);
2917                        }
2918                        continue;
2919                }
2920
2921                if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2922                        if (newpage) {
2923                                unlock_page(newpage);
2924                                put_page(newpage);
2925                        }
2926                        newpage = page;
2927                }
2928
2929                remove_migration_ptes(page, newpage, false);
2930                unlock_page(page);
2931                migrate->cpages--;
2932
2933                if (is_zone_device_page(page))
2934                        put_page(page);
2935                else
2936                        putback_lru_page(page);
2937
2938                if (newpage != page) {
2939                        unlock_page(newpage);
2940                        if (is_zone_device_page(newpage))
2941                                put_page(newpage);
2942                        else
2943                                putback_lru_page(newpage);
2944                }
2945        }
2946}
2947EXPORT_SYMBOL(migrate_vma_finalize);
2948#endif /* CONFIG_DEVICE_PRIVATE */
2949