linux/net/core/filter.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Linux Socket Filter - Kernel level socket filtering
   4 *
   5 * Based on the design of the Berkeley Packet Filter. The new
   6 * internal format has been designed by PLUMgrid:
   7 *
   8 *      Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
   9 *
  10 * Authors:
  11 *
  12 *      Jay Schulist <jschlst@samba.org>
  13 *      Alexei Starovoitov <ast@plumgrid.com>
  14 *      Daniel Borkmann <dborkman@redhat.com>
  15 *
  16 * Andi Kleen - Fix a few bad bugs and races.
  17 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
  18 */
  19
  20#include <linux/module.h>
  21#include <linux/types.h>
  22#include <linux/mm.h>
  23#include <linux/fcntl.h>
  24#include <linux/socket.h>
  25#include <linux/sock_diag.h>
  26#include <linux/in.h>
  27#include <linux/inet.h>
  28#include <linux/netdevice.h>
  29#include <linux/if_packet.h>
  30#include <linux/if_arp.h>
  31#include <linux/gfp.h>
  32#include <net/inet_common.h>
  33#include <net/ip.h>
  34#include <net/protocol.h>
  35#include <net/netlink.h>
  36#include <linux/skbuff.h>
  37#include <linux/skmsg.h>
  38#include <net/sock.h>
  39#include <net/flow_dissector.h>
  40#include <linux/errno.h>
  41#include <linux/timer.h>
  42#include <linux/uaccess.h>
  43#include <asm/unaligned.h>
  44#include <asm/cmpxchg.h>
  45#include <linux/filter.h>
  46#include <linux/ratelimit.h>
  47#include <linux/seccomp.h>
  48#include <linux/if_vlan.h>
  49#include <linux/bpf.h>
  50#include <net/sch_generic.h>
  51#include <net/cls_cgroup.h>
  52#include <net/dst_metadata.h>
  53#include <net/dst.h>
  54#include <net/sock_reuseport.h>
  55#include <net/busy_poll.h>
  56#include <net/tcp.h>
  57#include <net/xfrm.h>
  58#include <net/udp.h>
  59#include <linux/bpf_trace.h>
  60#include <net/xdp_sock.h>
  61#include <linux/inetdevice.h>
  62#include <net/inet_hashtables.h>
  63#include <net/inet6_hashtables.h>
  64#include <net/ip_fib.h>
  65#include <net/nexthop.h>
  66#include <net/flow.h>
  67#include <net/arp.h>
  68#include <net/ipv6.h>
  69#include <net/net_namespace.h>
  70#include <linux/seg6_local.h>
  71#include <net/seg6.h>
  72#include <net/seg6_local.h>
  73#include <net/lwtunnel.h>
  74#include <net/ipv6_stubs.h>
  75#include <net/bpf_sk_storage.h>
  76
  77/**
  78 *      sk_filter_trim_cap - run a packet through a socket filter
  79 *      @sk: sock associated with &sk_buff
  80 *      @skb: buffer to filter
  81 *      @cap: limit on how short the eBPF program may trim the packet
  82 *
  83 * Run the eBPF program and then cut skb->data to correct size returned by
  84 * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
  85 * than pkt_len we keep whole skb->data. This is the socket level
  86 * wrapper to BPF_PROG_RUN. It returns 0 if the packet should
  87 * be accepted or -EPERM if the packet should be tossed.
  88 *
  89 */
  90int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
  91{
  92        int err;
  93        struct sk_filter *filter;
  94
  95        /*
  96         * If the skb was allocated from pfmemalloc reserves, only
  97         * allow SOCK_MEMALLOC sockets to use it as this socket is
  98         * helping free memory
  99         */
 100        if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
 101                NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
 102                return -ENOMEM;
 103        }
 104        err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
 105        if (err)
 106                return err;
 107
 108        err = security_sock_rcv_skb(sk, skb);
 109        if (err)
 110                return err;
 111
 112        rcu_read_lock();
 113        filter = rcu_dereference(sk->sk_filter);
 114        if (filter) {
 115                struct sock *save_sk = skb->sk;
 116                unsigned int pkt_len;
 117
 118                skb->sk = sk;
 119                pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
 120                skb->sk = save_sk;
 121                err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
 122        }
 123        rcu_read_unlock();
 124
 125        return err;
 126}
 127EXPORT_SYMBOL(sk_filter_trim_cap);
 128
 129BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
 130{
 131        return skb_get_poff(skb);
 132}
 133
 134BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
 135{
 136        struct nlattr *nla;
 137
 138        if (skb_is_nonlinear(skb))
 139                return 0;
 140
 141        if (skb->len < sizeof(struct nlattr))
 142                return 0;
 143
 144        if (a > skb->len - sizeof(struct nlattr))
 145                return 0;
 146
 147        nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
 148        if (nla)
 149                return (void *) nla - (void *) skb->data;
 150
 151        return 0;
 152}
 153
 154BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
 155{
 156        struct nlattr *nla;
 157
 158        if (skb_is_nonlinear(skb))
 159                return 0;
 160
 161        if (skb->len < sizeof(struct nlattr))
 162                return 0;
 163
 164        if (a > skb->len - sizeof(struct nlattr))
 165                return 0;
 166
 167        nla = (struct nlattr *) &skb->data[a];
 168        if (nla->nla_len > skb->len - a)
 169                return 0;
 170
 171        nla = nla_find_nested(nla, x);
 172        if (nla)
 173                return (void *) nla - (void *) skb->data;
 174
 175        return 0;
 176}
 177
 178BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
 179           data, int, headlen, int, offset)
 180{
 181        u8 tmp, *ptr;
 182        const int len = sizeof(tmp);
 183
 184        if (offset >= 0) {
 185                if (headlen - offset >= len)
 186                        return *(u8 *)(data + offset);
 187                if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
 188                        return tmp;
 189        } else {
 190                ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
 191                if (likely(ptr))
 192                        return *(u8 *)ptr;
 193        }
 194
 195        return -EFAULT;
 196}
 197
 198BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
 199           int, offset)
 200{
 201        return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
 202                                         offset);
 203}
 204
 205BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
 206           data, int, headlen, int, offset)
 207{
 208        u16 tmp, *ptr;
 209        const int len = sizeof(tmp);
 210
 211        if (offset >= 0) {
 212                if (headlen - offset >= len)
 213                        return get_unaligned_be16(data + offset);
 214                if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
 215                        return be16_to_cpu(tmp);
 216        } else {
 217                ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
 218                if (likely(ptr))
 219                        return get_unaligned_be16(ptr);
 220        }
 221
 222        return -EFAULT;
 223}
 224
 225BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
 226           int, offset)
 227{
 228        return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
 229                                          offset);
 230}
 231
 232BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
 233           data, int, headlen, int, offset)
 234{
 235        u32 tmp, *ptr;
 236        const int len = sizeof(tmp);
 237
 238        if (likely(offset >= 0)) {
 239                if (headlen - offset >= len)
 240                        return get_unaligned_be32(data + offset);
 241                if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
 242                        return be32_to_cpu(tmp);
 243        } else {
 244                ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
 245                if (likely(ptr))
 246                        return get_unaligned_be32(ptr);
 247        }
 248
 249        return -EFAULT;
 250}
 251
 252BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
 253           int, offset)
 254{
 255        return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
 256                                          offset);
 257}
 258
 259BPF_CALL_0(bpf_get_raw_cpu_id)
 260{
 261        return raw_smp_processor_id();
 262}
 263
 264static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
 265        .func           = bpf_get_raw_cpu_id,
 266        .gpl_only       = false,
 267        .ret_type       = RET_INTEGER,
 268};
 269
 270static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
 271                              struct bpf_insn *insn_buf)
 272{
 273        struct bpf_insn *insn = insn_buf;
 274
 275        switch (skb_field) {
 276        case SKF_AD_MARK:
 277                BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
 278
 279                *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
 280                                      offsetof(struct sk_buff, mark));
 281                break;
 282
 283        case SKF_AD_PKTTYPE:
 284                *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
 285                *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
 286#ifdef __BIG_ENDIAN_BITFIELD
 287                *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
 288#endif
 289                break;
 290
 291        case SKF_AD_QUEUE:
 292                BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2);
 293
 294                *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
 295                                      offsetof(struct sk_buff, queue_mapping));
 296                break;
 297
 298        case SKF_AD_VLAN_TAG:
 299                BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
 300
 301                /* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
 302                *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
 303                                      offsetof(struct sk_buff, vlan_tci));
 304                break;
 305        case SKF_AD_VLAN_TAG_PRESENT:
 306                *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_VLAN_PRESENT_OFFSET());
 307                if (PKT_VLAN_PRESENT_BIT)
 308                        *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, PKT_VLAN_PRESENT_BIT);
 309                if (PKT_VLAN_PRESENT_BIT < 7)
 310                        *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
 311                break;
 312        }
 313
 314        return insn - insn_buf;
 315}
 316
 317static bool convert_bpf_extensions(struct sock_filter *fp,
 318                                   struct bpf_insn **insnp)
 319{
 320        struct bpf_insn *insn = *insnp;
 321        u32 cnt;
 322
 323        switch (fp->k) {
 324        case SKF_AD_OFF + SKF_AD_PROTOCOL:
 325                BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2);
 326
 327                /* A = *(u16 *) (CTX + offsetof(protocol)) */
 328                *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
 329                                      offsetof(struct sk_buff, protocol));
 330                /* A = ntohs(A) [emitting a nop or swap16] */
 331                *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
 332                break;
 333
 334        case SKF_AD_OFF + SKF_AD_PKTTYPE:
 335                cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
 336                insn += cnt - 1;
 337                break;
 338
 339        case SKF_AD_OFF + SKF_AD_IFINDEX:
 340        case SKF_AD_OFF + SKF_AD_HATYPE:
 341                BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
 342                BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
 343
 344                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
 345                                      BPF_REG_TMP, BPF_REG_CTX,
 346                                      offsetof(struct sk_buff, dev));
 347                /* if (tmp != 0) goto pc + 1 */
 348                *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
 349                *insn++ = BPF_EXIT_INSN();
 350                if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
 351                        *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
 352                                            offsetof(struct net_device, ifindex));
 353                else
 354                        *insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
 355                                            offsetof(struct net_device, type));
 356                break;
 357
 358        case SKF_AD_OFF + SKF_AD_MARK:
 359                cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
 360                insn += cnt - 1;
 361                break;
 362
 363        case SKF_AD_OFF + SKF_AD_RXHASH:
 364                BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
 365
 366                *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
 367                                    offsetof(struct sk_buff, hash));
 368                break;
 369
 370        case SKF_AD_OFF + SKF_AD_QUEUE:
 371                cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
 372                insn += cnt - 1;
 373                break;
 374
 375        case SKF_AD_OFF + SKF_AD_VLAN_TAG:
 376                cnt = convert_skb_access(SKF_AD_VLAN_TAG,
 377                                         BPF_REG_A, BPF_REG_CTX, insn);
 378                insn += cnt - 1;
 379                break;
 380
 381        case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
 382                cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
 383                                         BPF_REG_A, BPF_REG_CTX, insn);
 384                insn += cnt - 1;
 385                break;
 386
 387        case SKF_AD_OFF + SKF_AD_VLAN_TPID:
 388                BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2);
 389
 390                /* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
 391                *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
 392                                      offsetof(struct sk_buff, vlan_proto));
 393                /* A = ntohs(A) [emitting a nop or swap16] */
 394                *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
 395                break;
 396
 397        case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
 398        case SKF_AD_OFF + SKF_AD_NLATTR:
 399        case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
 400        case SKF_AD_OFF + SKF_AD_CPU:
 401        case SKF_AD_OFF + SKF_AD_RANDOM:
 402                /* arg1 = CTX */
 403                *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
 404                /* arg2 = A */
 405                *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
 406                /* arg3 = X */
 407                *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
 408                /* Emit call(arg1=CTX, arg2=A, arg3=X) */
 409                switch (fp->k) {
 410                case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
 411                        *insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
 412                        break;
 413                case SKF_AD_OFF + SKF_AD_NLATTR:
 414                        *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
 415                        break;
 416                case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
 417                        *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
 418                        break;
 419                case SKF_AD_OFF + SKF_AD_CPU:
 420                        *insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
 421                        break;
 422                case SKF_AD_OFF + SKF_AD_RANDOM:
 423                        *insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
 424                        bpf_user_rnd_init_once();
 425                        break;
 426                }
 427                break;
 428
 429        case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
 430                /* A ^= X */
 431                *insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
 432                break;
 433
 434        default:
 435                /* This is just a dummy call to avoid letting the compiler
 436                 * evict __bpf_call_base() as an optimization. Placed here
 437                 * where no-one bothers.
 438                 */
 439                BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
 440                return false;
 441        }
 442
 443        *insnp = insn;
 444        return true;
 445}
 446
 447static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
 448{
 449        const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
 450        int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
 451        bool endian = BPF_SIZE(fp->code) == BPF_H ||
 452                      BPF_SIZE(fp->code) == BPF_W;
 453        bool indirect = BPF_MODE(fp->code) == BPF_IND;
 454        const int ip_align = NET_IP_ALIGN;
 455        struct bpf_insn *insn = *insnp;
 456        int offset = fp->k;
 457
 458        if (!indirect &&
 459            ((unaligned_ok && offset >= 0) ||
 460             (!unaligned_ok && offset >= 0 &&
 461              offset + ip_align >= 0 &&
 462              offset + ip_align % size == 0))) {
 463                bool ldx_off_ok = offset <= S16_MAX;
 464
 465                *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
 466                if (offset)
 467                        *insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
 468                *insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
 469                                      size, 2 + endian + (!ldx_off_ok * 2));
 470                if (ldx_off_ok) {
 471                        *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
 472                                              BPF_REG_D, offset);
 473                } else {
 474                        *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
 475                        *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
 476                        *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
 477                                              BPF_REG_TMP, 0);
 478                }
 479                if (endian)
 480                        *insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
 481                *insn++ = BPF_JMP_A(8);
 482        }
 483
 484        *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
 485        *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
 486        *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
 487        if (!indirect) {
 488                *insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
 489        } else {
 490                *insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
 491                if (fp->k)
 492                        *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
 493        }
 494
 495        switch (BPF_SIZE(fp->code)) {
 496        case BPF_B:
 497                *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
 498                break;
 499        case BPF_H:
 500                *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
 501                break;
 502        case BPF_W:
 503                *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
 504                break;
 505        default:
 506                return false;
 507        }
 508
 509        *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
 510        *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
 511        *insn   = BPF_EXIT_INSN();
 512
 513        *insnp = insn;
 514        return true;
 515}
 516
 517/**
 518 *      bpf_convert_filter - convert filter program
 519 *      @prog: the user passed filter program
 520 *      @len: the length of the user passed filter program
 521 *      @new_prog: allocated 'struct bpf_prog' or NULL
 522 *      @new_len: pointer to store length of converted program
 523 *      @seen_ld_abs: bool whether we've seen ld_abs/ind
 524 *
 525 * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
 526 * style extended BPF (eBPF).
 527 * Conversion workflow:
 528 *
 529 * 1) First pass for calculating the new program length:
 530 *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
 531 *
 532 * 2) 2nd pass to remap in two passes: 1st pass finds new
 533 *    jump offsets, 2nd pass remapping:
 534 *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
 535 */
 536static int bpf_convert_filter(struct sock_filter *prog, int len,
 537                              struct bpf_prog *new_prog, int *new_len,
 538                              bool *seen_ld_abs)
 539{
 540        int new_flen = 0, pass = 0, target, i, stack_off;
 541        struct bpf_insn *new_insn, *first_insn = NULL;
 542        struct sock_filter *fp;
 543        int *addrs = NULL;
 544        u8 bpf_src;
 545
 546        BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
 547        BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
 548
 549        if (len <= 0 || len > BPF_MAXINSNS)
 550                return -EINVAL;
 551
 552        if (new_prog) {
 553                first_insn = new_prog->insnsi;
 554                addrs = kcalloc(len, sizeof(*addrs),
 555                                GFP_KERNEL | __GFP_NOWARN);
 556                if (!addrs)
 557                        return -ENOMEM;
 558        }
 559
 560do_pass:
 561        new_insn = first_insn;
 562        fp = prog;
 563
 564        /* Classic BPF related prologue emission. */
 565        if (new_prog) {
 566                /* Classic BPF expects A and X to be reset first. These need
 567                 * to be guaranteed to be the first two instructions.
 568                 */
 569                *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
 570                *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
 571
 572                /* All programs must keep CTX in callee saved BPF_REG_CTX.
 573                 * In eBPF case it's done by the compiler, here we need to
 574                 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
 575                 */
 576                *new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
 577                if (*seen_ld_abs) {
 578                        /* For packet access in classic BPF, cache skb->data
 579                         * in callee-saved BPF R8 and skb->len - skb->data_len
 580                         * (headlen) in BPF R9. Since classic BPF is read-only
 581                         * on CTX, we only need to cache it once.
 582                         */
 583                        *new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
 584                                                  BPF_REG_D, BPF_REG_CTX,
 585                                                  offsetof(struct sk_buff, data));
 586                        *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
 587                                                  offsetof(struct sk_buff, len));
 588                        *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
 589                                                  offsetof(struct sk_buff, data_len));
 590                        *new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
 591                }
 592        } else {
 593                new_insn += 3;
 594        }
 595
 596        for (i = 0; i < len; fp++, i++) {
 597                struct bpf_insn tmp_insns[32] = { };
 598                struct bpf_insn *insn = tmp_insns;
 599
 600                if (addrs)
 601                        addrs[i] = new_insn - first_insn;
 602
 603                switch (fp->code) {
 604                /* All arithmetic insns and skb loads map as-is. */
 605                case BPF_ALU | BPF_ADD | BPF_X:
 606                case BPF_ALU | BPF_ADD | BPF_K:
 607                case BPF_ALU | BPF_SUB | BPF_X:
 608                case BPF_ALU | BPF_SUB | BPF_K:
 609                case BPF_ALU | BPF_AND | BPF_X:
 610                case BPF_ALU | BPF_AND | BPF_K:
 611                case BPF_ALU | BPF_OR | BPF_X:
 612                case BPF_ALU | BPF_OR | BPF_K:
 613                case BPF_ALU | BPF_LSH | BPF_X:
 614                case BPF_ALU | BPF_LSH | BPF_K:
 615                case BPF_ALU | BPF_RSH | BPF_X:
 616                case BPF_ALU | BPF_RSH | BPF_K:
 617                case BPF_ALU | BPF_XOR | BPF_X:
 618                case BPF_ALU | BPF_XOR | BPF_K:
 619                case BPF_ALU | BPF_MUL | BPF_X:
 620                case BPF_ALU | BPF_MUL | BPF_K:
 621                case BPF_ALU | BPF_DIV | BPF_X:
 622                case BPF_ALU | BPF_DIV | BPF_K:
 623                case BPF_ALU | BPF_MOD | BPF_X:
 624                case BPF_ALU | BPF_MOD | BPF_K:
 625                case BPF_ALU | BPF_NEG:
 626                case BPF_LD | BPF_ABS | BPF_W:
 627                case BPF_LD | BPF_ABS | BPF_H:
 628                case BPF_LD | BPF_ABS | BPF_B:
 629                case BPF_LD | BPF_IND | BPF_W:
 630                case BPF_LD | BPF_IND | BPF_H:
 631                case BPF_LD | BPF_IND | BPF_B:
 632                        /* Check for overloaded BPF extension and
 633                         * directly convert it if found, otherwise
 634                         * just move on with mapping.
 635                         */
 636                        if (BPF_CLASS(fp->code) == BPF_LD &&
 637                            BPF_MODE(fp->code) == BPF_ABS &&
 638                            convert_bpf_extensions(fp, &insn))
 639                                break;
 640                        if (BPF_CLASS(fp->code) == BPF_LD &&
 641                            convert_bpf_ld_abs(fp, &insn)) {
 642                                *seen_ld_abs = true;
 643                                break;
 644                        }
 645
 646                        if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
 647                            fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
 648                                *insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
 649                                /* Error with exception code on div/mod by 0.
 650                                 * For cBPF programs, this was always return 0.
 651                                 */
 652                                *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
 653                                *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
 654                                *insn++ = BPF_EXIT_INSN();
 655                        }
 656
 657                        *insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
 658                        break;
 659
 660                /* Jump transformation cannot use BPF block macros
 661                 * everywhere as offset calculation and target updates
 662                 * require a bit more work than the rest, i.e. jump
 663                 * opcodes map as-is, but offsets need adjustment.
 664                 */
 665
 666#define BPF_EMIT_JMP                                                    \
 667        do {                                                            \
 668                const s32 off_min = S16_MIN, off_max = S16_MAX;         \
 669                s32 off;                                                \
 670                                                                        \
 671                if (target >= len || target < 0)                        \
 672                        goto err;                                       \
 673                off = addrs ? addrs[target] - addrs[i] - 1 : 0;         \
 674                /* Adjust pc relative offset for 2nd or 3rd insn. */    \
 675                off -= insn - tmp_insns;                                \
 676                /* Reject anything not fitting into insn->off. */       \
 677                if (off < off_min || off > off_max)                     \
 678                        goto err;                                       \
 679                insn->off = off;                                        \
 680        } while (0)
 681
 682                case BPF_JMP | BPF_JA:
 683                        target = i + fp->k + 1;
 684                        insn->code = fp->code;
 685                        BPF_EMIT_JMP;
 686                        break;
 687
 688                case BPF_JMP | BPF_JEQ | BPF_K:
 689                case BPF_JMP | BPF_JEQ | BPF_X:
 690                case BPF_JMP | BPF_JSET | BPF_K:
 691                case BPF_JMP | BPF_JSET | BPF_X:
 692                case BPF_JMP | BPF_JGT | BPF_K:
 693                case BPF_JMP | BPF_JGT | BPF_X:
 694                case BPF_JMP | BPF_JGE | BPF_K:
 695                case BPF_JMP | BPF_JGE | BPF_X:
 696                        if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
 697                                /* BPF immediates are signed, zero extend
 698                                 * immediate into tmp register and use it
 699                                 * in compare insn.
 700                                 */
 701                                *insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
 702
 703                                insn->dst_reg = BPF_REG_A;
 704                                insn->src_reg = BPF_REG_TMP;
 705                                bpf_src = BPF_X;
 706                        } else {
 707                                insn->dst_reg = BPF_REG_A;
 708                                insn->imm = fp->k;
 709                                bpf_src = BPF_SRC(fp->code);
 710                                insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
 711                        }
 712
 713                        /* Common case where 'jump_false' is next insn. */
 714                        if (fp->jf == 0) {
 715                                insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
 716                                target = i + fp->jt + 1;
 717                                BPF_EMIT_JMP;
 718                                break;
 719                        }
 720
 721                        /* Convert some jumps when 'jump_true' is next insn. */
 722                        if (fp->jt == 0) {
 723                                switch (BPF_OP(fp->code)) {
 724                                case BPF_JEQ:
 725                                        insn->code = BPF_JMP | BPF_JNE | bpf_src;
 726                                        break;
 727                                case BPF_JGT:
 728                                        insn->code = BPF_JMP | BPF_JLE | bpf_src;
 729                                        break;
 730                                case BPF_JGE:
 731                                        insn->code = BPF_JMP | BPF_JLT | bpf_src;
 732                                        break;
 733                                default:
 734                                        goto jmp_rest;
 735                                }
 736
 737                                target = i + fp->jf + 1;
 738                                BPF_EMIT_JMP;
 739                                break;
 740                        }
 741jmp_rest:
 742                        /* Other jumps are mapped into two insns: Jxx and JA. */
 743                        target = i + fp->jt + 1;
 744                        insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
 745                        BPF_EMIT_JMP;
 746                        insn++;
 747
 748                        insn->code = BPF_JMP | BPF_JA;
 749                        target = i + fp->jf + 1;
 750                        BPF_EMIT_JMP;
 751                        break;
 752
 753                /* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
 754                case BPF_LDX | BPF_MSH | BPF_B: {
 755                        struct sock_filter tmp = {
 756                                .code   = BPF_LD | BPF_ABS | BPF_B,
 757                                .k      = fp->k,
 758                        };
 759
 760                        *seen_ld_abs = true;
 761
 762                        /* X = A */
 763                        *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
 764                        /* A = BPF_R0 = *(u8 *) (skb->data + K) */
 765                        convert_bpf_ld_abs(&tmp, &insn);
 766                        insn++;
 767                        /* A &= 0xf */
 768                        *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
 769                        /* A <<= 2 */
 770                        *insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
 771                        /* tmp = X */
 772                        *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
 773                        /* X = A */
 774                        *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
 775                        /* A = tmp */
 776                        *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
 777                        break;
 778                }
 779                /* RET_K is remaped into 2 insns. RET_A case doesn't need an
 780                 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
 781                 */
 782                case BPF_RET | BPF_A:
 783                case BPF_RET | BPF_K:
 784                        if (BPF_RVAL(fp->code) == BPF_K)
 785                                *insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
 786                                                        0, fp->k);
 787                        *insn = BPF_EXIT_INSN();
 788                        break;
 789
 790                /* Store to stack. */
 791                case BPF_ST:
 792                case BPF_STX:
 793                        stack_off = fp->k * 4  + 4;
 794                        *insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
 795                                            BPF_ST ? BPF_REG_A : BPF_REG_X,
 796                                            -stack_off);
 797                        /* check_load_and_stores() verifies that classic BPF can
 798                         * load from stack only after write, so tracking
 799                         * stack_depth for ST|STX insns is enough
 800                         */
 801                        if (new_prog && new_prog->aux->stack_depth < stack_off)
 802                                new_prog->aux->stack_depth = stack_off;
 803                        break;
 804
 805                /* Load from stack. */
 806                case BPF_LD | BPF_MEM:
 807                case BPF_LDX | BPF_MEM:
 808                        stack_off = fp->k * 4  + 4;
 809                        *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
 810                                            BPF_REG_A : BPF_REG_X, BPF_REG_FP,
 811                                            -stack_off);
 812                        break;
 813
 814                /* A = K or X = K */
 815                case BPF_LD | BPF_IMM:
 816                case BPF_LDX | BPF_IMM:
 817                        *insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
 818                                              BPF_REG_A : BPF_REG_X, fp->k);
 819                        break;
 820
 821                /* X = A */
 822                case BPF_MISC | BPF_TAX:
 823                        *insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
 824                        break;
 825
 826                /* A = X */
 827                case BPF_MISC | BPF_TXA:
 828                        *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
 829                        break;
 830
 831                /* A = skb->len or X = skb->len */
 832                case BPF_LD | BPF_W | BPF_LEN:
 833                case BPF_LDX | BPF_W | BPF_LEN:
 834                        *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
 835                                            BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
 836                                            offsetof(struct sk_buff, len));
 837                        break;
 838
 839                /* Access seccomp_data fields. */
 840                case BPF_LDX | BPF_ABS | BPF_W:
 841                        /* A = *(u32 *) (ctx + K) */
 842                        *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
 843                        break;
 844
 845                /* Unknown instruction. */
 846                default:
 847                        goto err;
 848                }
 849
 850                insn++;
 851                if (new_prog)
 852                        memcpy(new_insn, tmp_insns,
 853                               sizeof(*insn) * (insn - tmp_insns));
 854                new_insn += insn - tmp_insns;
 855        }
 856
 857        if (!new_prog) {
 858                /* Only calculating new length. */
 859                *new_len = new_insn - first_insn;
 860                if (*seen_ld_abs)
 861                        *new_len += 4; /* Prologue bits. */
 862                return 0;
 863        }
 864
 865        pass++;
 866        if (new_flen != new_insn - first_insn) {
 867                new_flen = new_insn - first_insn;
 868                if (pass > 2)
 869                        goto err;
 870                goto do_pass;
 871        }
 872
 873        kfree(addrs);
 874        BUG_ON(*new_len != new_flen);
 875        return 0;
 876err:
 877        kfree(addrs);
 878        return -EINVAL;
 879}
 880
 881/* Security:
 882 *
 883 * As we dont want to clear mem[] array for each packet going through
 884 * __bpf_prog_run(), we check that filter loaded by user never try to read
 885 * a cell if not previously written, and we check all branches to be sure
 886 * a malicious user doesn't try to abuse us.
 887 */
 888static int check_load_and_stores(const struct sock_filter *filter, int flen)
 889{
 890        u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
 891        int pc, ret = 0;
 892
 893        BUILD_BUG_ON(BPF_MEMWORDS > 16);
 894
 895        masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
 896        if (!masks)
 897                return -ENOMEM;
 898
 899        memset(masks, 0xff, flen * sizeof(*masks));
 900
 901        for (pc = 0; pc < flen; pc++) {
 902                memvalid &= masks[pc];
 903
 904                switch (filter[pc].code) {
 905                case BPF_ST:
 906                case BPF_STX:
 907                        memvalid |= (1 << filter[pc].k);
 908                        break;
 909                case BPF_LD | BPF_MEM:
 910                case BPF_LDX | BPF_MEM:
 911                        if (!(memvalid & (1 << filter[pc].k))) {
 912                                ret = -EINVAL;
 913                                goto error;
 914                        }
 915                        break;
 916                case BPF_JMP | BPF_JA:
 917                        /* A jump must set masks on target */
 918                        masks[pc + 1 + filter[pc].k] &= memvalid;
 919                        memvalid = ~0;
 920                        break;
 921                case BPF_JMP | BPF_JEQ | BPF_K:
 922                case BPF_JMP | BPF_JEQ | BPF_X:
 923                case BPF_JMP | BPF_JGE | BPF_K:
 924                case BPF_JMP | BPF_JGE | BPF_X:
 925                case BPF_JMP | BPF_JGT | BPF_K:
 926                case BPF_JMP | BPF_JGT | BPF_X:
 927                case BPF_JMP | BPF_JSET | BPF_K:
 928                case BPF_JMP | BPF_JSET | BPF_X:
 929                        /* A jump must set masks on targets */
 930                        masks[pc + 1 + filter[pc].jt] &= memvalid;
 931                        masks[pc + 1 + filter[pc].jf] &= memvalid;
 932                        memvalid = ~0;
 933                        break;
 934                }
 935        }
 936error:
 937        kfree(masks);
 938        return ret;
 939}
 940
 941static bool chk_code_allowed(u16 code_to_probe)
 942{
 943        static const bool codes[] = {
 944                /* 32 bit ALU operations */
 945                [BPF_ALU | BPF_ADD | BPF_K] = true,
 946                [BPF_ALU | BPF_ADD | BPF_X] = true,
 947                [BPF_ALU | BPF_SUB | BPF_K] = true,
 948                [BPF_ALU | BPF_SUB | BPF_X] = true,
 949                [BPF_ALU | BPF_MUL | BPF_K] = true,
 950                [BPF_ALU | BPF_MUL | BPF_X] = true,
 951                [BPF_ALU | BPF_DIV | BPF_K] = true,
 952                [BPF_ALU | BPF_DIV | BPF_X] = true,
 953                [BPF_ALU | BPF_MOD | BPF_K] = true,
 954                [BPF_ALU | BPF_MOD | BPF_X] = true,
 955                [BPF_ALU | BPF_AND | BPF_K] = true,
 956                [BPF_ALU | BPF_AND | BPF_X] = true,
 957                [BPF_ALU | BPF_OR | BPF_K] = true,
 958                [BPF_ALU | BPF_OR | BPF_X] = true,
 959                [BPF_ALU | BPF_XOR | BPF_K] = true,
 960                [BPF_ALU | BPF_XOR | BPF_X] = true,
 961                [BPF_ALU | BPF_LSH | BPF_K] = true,
 962                [BPF_ALU | BPF_LSH | BPF_X] = true,
 963                [BPF_ALU | BPF_RSH | BPF_K] = true,
 964                [BPF_ALU | BPF_RSH | BPF_X] = true,
 965                [BPF_ALU | BPF_NEG] = true,
 966                /* Load instructions */
 967                [BPF_LD | BPF_W | BPF_ABS] = true,
 968                [BPF_LD | BPF_H | BPF_ABS] = true,
 969                [BPF_LD | BPF_B | BPF_ABS] = true,
 970                [BPF_LD | BPF_W | BPF_LEN] = true,
 971                [BPF_LD | BPF_W | BPF_IND] = true,
 972                [BPF_LD | BPF_H | BPF_IND] = true,
 973                [BPF_LD | BPF_B | BPF_IND] = true,
 974                [BPF_LD | BPF_IMM] = true,
 975                [BPF_LD | BPF_MEM] = true,
 976                [BPF_LDX | BPF_W | BPF_LEN] = true,
 977                [BPF_LDX | BPF_B | BPF_MSH] = true,
 978                [BPF_LDX | BPF_IMM] = true,
 979                [BPF_LDX | BPF_MEM] = true,
 980                /* Store instructions */
 981                [BPF_ST] = true,
 982                [BPF_STX] = true,
 983                /* Misc instructions */
 984                [BPF_MISC | BPF_TAX] = true,
 985                [BPF_MISC | BPF_TXA] = true,
 986                /* Return instructions */
 987                [BPF_RET | BPF_K] = true,
 988                [BPF_RET | BPF_A] = true,
 989                /* Jump instructions */
 990                [BPF_JMP | BPF_JA] = true,
 991                [BPF_JMP | BPF_JEQ | BPF_K] = true,
 992                [BPF_JMP | BPF_JEQ | BPF_X] = true,
 993                [BPF_JMP | BPF_JGE | BPF_K] = true,
 994                [BPF_JMP | BPF_JGE | BPF_X] = true,
 995                [BPF_JMP | BPF_JGT | BPF_K] = true,
 996                [BPF_JMP | BPF_JGT | BPF_X] = true,
 997                [BPF_JMP | BPF_JSET | BPF_K] = true,
 998                [BPF_JMP | BPF_JSET | BPF_X] = true,
 999        };
1000
1001        if (code_to_probe >= ARRAY_SIZE(codes))
1002                return false;
1003
1004        return codes[code_to_probe];
1005}
1006
1007static bool bpf_check_basics_ok(const struct sock_filter *filter,
1008                                unsigned int flen)
1009{
1010        if (filter == NULL)
1011                return false;
1012        if (flen == 0 || flen > BPF_MAXINSNS)
1013                return false;
1014
1015        return true;
1016}
1017
1018/**
1019 *      bpf_check_classic - verify socket filter code
1020 *      @filter: filter to verify
1021 *      @flen: length of filter
1022 *
1023 * Check the user's filter code. If we let some ugly
1024 * filter code slip through kaboom! The filter must contain
1025 * no references or jumps that are out of range, no illegal
1026 * instructions, and must end with a RET instruction.
1027 *
1028 * All jumps are forward as they are not signed.
1029 *
1030 * Returns 0 if the rule set is legal or -EINVAL if not.
1031 */
1032static int bpf_check_classic(const struct sock_filter *filter,
1033                             unsigned int flen)
1034{
1035        bool anc_found;
1036        int pc;
1037
1038        /* Check the filter code now */
1039        for (pc = 0; pc < flen; pc++) {
1040                const struct sock_filter *ftest = &filter[pc];
1041
1042                /* May we actually operate on this code? */
1043                if (!chk_code_allowed(ftest->code))
1044                        return -EINVAL;
1045
1046                /* Some instructions need special checks */
1047                switch (ftest->code) {
1048                case BPF_ALU | BPF_DIV | BPF_K:
1049                case BPF_ALU | BPF_MOD | BPF_K:
1050                        /* Check for division by zero */
1051                        if (ftest->k == 0)
1052                                return -EINVAL;
1053                        break;
1054                case BPF_ALU | BPF_LSH | BPF_K:
1055                case BPF_ALU | BPF_RSH | BPF_K:
1056                        if (ftest->k >= 32)
1057                                return -EINVAL;
1058                        break;
1059                case BPF_LD | BPF_MEM:
1060                case BPF_LDX | BPF_MEM:
1061                case BPF_ST:
1062                case BPF_STX:
1063                        /* Check for invalid memory addresses */
1064                        if (ftest->k >= BPF_MEMWORDS)
1065                                return -EINVAL;
1066                        break;
1067                case BPF_JMP | BPF_JA:
1068                        /* Note, the large ftest->k might cause loops.
1069                         * Compare this with conditional jumps below,
1070                         * where offsets are limited. --ANK (981016)
1071                         */
1072                        if (ftest->k >= (unsigned int)(flen - pc - 1))
1073                                return -EINVAL;
1074                        break;
1075                case BPF_JMP | BPF_JEQ | BPF_K:
1076                case BPF_JMP | BPF_JEQ | BPF_X:
1077                case BPF_JMP | BPF_JGE | BPF_K:
1078                case BPF_JMP | BPF_JGE | BPF_X:
1079                case BPF_JMP | BPF_JGT | BPF_K:
1080                case BPF_JMP | BPF_JGT | BPF_X:
1081                case BPF_JMP | BPF_JSET | BPF_K:
1082                case BPF_JMP | BPF_JSET | BPF_X:
1083                        /* Both conditionals must be safe */
1084                        if (pc + ftest->jt + 1 >= flen ||
1085                            pc + ftest->jf + 1 >= flen)
1086                                return -EINVAL;
1087                        break;
1088                case BPF_LD | BPF_W | BPF_ABS:
1089                case BPF_LD | BPF_H | BPF_ABS:
1090                case BPF_LD | BPF_B | BPF_ABS:
1091                        anc_found = false;
1092                        if (bpf_anc_helper(ftest) & BPF_ANC)
1093                                anc_found = true;
1094                        /* Ancillary operation unknown or unsupported */
1095                        if (anc_found == false && ftest->k >= SKF_AD_OFF)
1096                                return -EINVAL;
1097                }
1098        }
1099
1100        /* Last instruction must be a RET code */
1101        switch (filter[flen - 1].code) {
1102        case BPF_RET | BPF_K:
1103        case BPF_RET | BPF_A:
1104                return check_load_and_stores(filter, flen);
1105        }
1106
1107        return -EINVAL;
1108}
1109
1110static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1111                                      const struct sock_fprog *fprog)
1112{
1113        unsigned int fsize = bpf_classic_proglen(fprog);
1114        struct sock_fprog_kern *fkprog;
1115
1116        fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1117        if (!fp->orig_prog)
1118                return -ENOMEM;
1119
1120        fkprog = fp->orig_prog;
1121        fkprog->len = fprog->len;
1122
1123        fkprog->filter = kmemdup(fp->insns, fsize,
1124                                 GFP_KERNEL | __GFP_NOWARN);
1125        if (!fkprog->filter) {
1126                kfree(fp->orig_prog);
1127                return -ENOMEM;
1128        }
1129
1130        return 0;
1131}
1132
1133static void bpf_release_orig_filter(struct bpf_prog *fp)
1134{
1135        struct sock_fprog_kern *fprog = fp->orig_prog;
1136
1137        if (fprog) {
1138                kfree(fprog->filter);
1139                kfree(fprog);
1140        }
1141}
1142
1143static void __bpf_prog_release(struct bpf_prog *prog)
1144{
1145        if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1146                bpf_prog_put(prog);
1147        } else {
1148                bpf_release_orig_filter(prog);
1149                bpf_prog_free(prog);
1150        }
1151}
1152
1153static void __sk_filter_release(struct sk_filter *fp)
1154{
1155        __bpf_prog_release(fp->prog);
1156        kfree(fp);
1157}
1158
1159/**
1160 *      sk_filter_release_rcu - Release a socket filter by rcu_head
1161 *      @rcu: rcu_head that contains the sk_filter to free
1162 */
1163static void sk_filter_release_rcu(struct rcu_head *rcu)
1164{
1165        struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1166
1167        __sk_filter_release(fp);
1168}
1169
1170/**
1171 *      sk_filter_release - release a socket filter
1172 *      @fp: filter to remove
1173 *
1174 *      Remove a filter from a socket and release its resources.
1175 */
1176static void sk_filter_release(struct sk_filter *fp)
1177{
1178        if (refcount_dec_and_test(&fp->refcnt))
1179                call_rcu(&fp->rcu, sk_filter_release_rcu);
1180}
1181
1182void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1183{
1184        u32 filter_size = bpf_prog_size(fp->prog->len);
1185
1186        atomic_sub(filter_size, &sk->sk_omem_alloc);
1187        sk_filter_release(fp);
1188}
1189
1190/* try to charge the socket memory if there is space available
1191 * return true on success
1192 */
1193static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1194{
1195        u32 filter_size = bpf_prog_size(fp->prog->len);
1196
1197        /* same check as in sock_kmalloc() */
1198        if (filter_size <= sysctl_optmem_max &&
1199            atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
1200                atomic_add(filter_size, &sk->sk_omem_alloc);
1201                return true;
1202        }
1203        return false;
1204}
1205
1206bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1207{
1208        if (!refcount_inc_not_zero(&fp->refcnt))
1209                return false;
1210
1211        if (!__sk_filter_charge(sk, fp)) {
1212                sk_filter_release(fp);
1213                return false;
1214        }
1215        return true;
1216}
1217
1218static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1219{
1220        struct sock_filter *old_prog;
1221        struct bpf_prog *old_fp;
1222        int err, new_len, old_len = fp->len;
1223        bool seen_ld_abs = false;
1224
1225        /* We are free to overwrite insns et al right here as it
1226         * won't be used at this point in time anymore internally
1227         * after the migration to the internal BPF instruction
1228         * representation.
1229         */
1230        BUILD_BUG_ON(sizeof(struct sock_filter) !=
1231                     sizeof(struct bpf_insn));
1232
1233        /* Conversion cannot happen on overlapping memory areas,
1234         * so we need to keep the user BPF around until the 2nd
1235         * pass. At this time, the user BPF is stored in fp->insns.
1236         */
1237        old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1238                           GFP_KERNEL | __GFP_NOWARN);
1239        if (!old_prog) {
1240                err = -ENOMEM;
1241                goto out_err;
1242        }
1243
1244        /* 1st pass: calculate the new program length. */
1245        err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1246                                 &seen_ld_abs);
1247        if (err)
1248                goto out_err_free;
1249
1250        /* Expand fp for appending the new filter representation. */
1251        old_fp = fp;
1252        fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1253        if (!fp) {
1254                /* The old_fp is still around in case we couldn't
1255                 * allocate new memory, so uncharge on that one.
1256                 */
1257                fp = old_fp;
1258                err = -ENOMEM;
1259                goto out_err_free;
1260        }
1261
1262        fp->len = new_len;
1263
1264        /* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1265        err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1266                                 &seen_ld_abs);
1267        if (err)
1268                /* 2nd bpf_convert_filter() can fail only if it fails
1269                 * to allocate memory, remapping must succeed. Note,
1270                 * that at this time old_fp has already been released
1271                 * by krealloc().
1272                 */
1273                goto out_err_free;
1274
1275        fp = bpf_prog_select_runtime(fp, &err);
1276        if (err)
1277                goto out_err_free;
1278
1279        kfree(old_prog);
1280        return fp;
1281
1282out_err_free:
1283        kfree(old_prog);
1284out_err:
1285        __bpf_prog_release(fp);
1286        return ERR_PTR(err);
1287}
1288
1289static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1290                                           bpf_aux_classic_check_t trans)
1291{
1292        int err;
1293
1294        fp->bpf_func = NULL;
1295        fp->jited = 0;
1296
1297        err = bpf_check_classic(fp->insns, fp->len);
1298        if (err) {
1299                __bpf_prog_release(fp);
1300                return ERR_PTR(err);
1301        }
1302
1303        /* There might be additional checks and transformations
1304         * needed on classic filters, f.e. in case of seccomp.
1305         */
1306        if (trans) {
1307                err = trans(fp->insns, fp->len);
1308                if (err) {
1309                        __bpf_prog_release(fp);
1310                        return ERR_PTR(err);
1311                }
1312        }
1313
1314        /* Probe if we can JIT compile the filter and if so, do
1315         * the compilation of the filter.
1316         */
1317        bpf_jit_compile(fp);
1318
1319        /* JIT compiler couldn't process this filter, so do the
1320         * internal BPF translation for the optimized interpreter.
1321         */
1322        if (!fp->jited)
1323                fp = bpf_migrate_filter(fp);
1324
1325        return fp;
1326}
1327
1328/**
1329 *      bpf_prog_create - create an unattached filter
1330 *      @pfp: the unattached filter that is created
1331 *      @fprog: the filter program
1332 *
1333 * Create a filter independent of any socket. We first run some
1334 * sanity checks on it to make sure it does not explode on us later.
1335 * If an error occurs or there is insufficient memory for the filter
1336 * a negative errno code is returned. On success the return is zero.
1337 */
1338int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1339{
1340        unsigned int fsize = bpf_classic_proglen(fprog);
1341        struct bpf_prog *fp;
1342
1343        /* Make sure new filter is there and in the right amounts. */
1344        if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1345                return -EINVAL;
1346
1347        fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1348        if (!fp)
1349                return -ENOMEM;
1350
1351        memcpy(fp->insns, fprog->filter, fsize);
1352
1353        fp->len = fprog->len;
1354        /* Since unattached filters are not copied back to user
1355         * space through sk_get_filter(), we do not need to hold
1356         * a copy here, and can spare us the work.
1357         */
1358        fp->orig_prog = NULL;
1359
1360        /* bpf_prepare_filter() already takes care of freeing
1361         * memory in case something goes wrong.
1362         */
1363        fp = bpf_prepare_filter(fp, NULL);
1364        if (IS_ERR(fp))
1365                return PTR_ERR(fp);
1366
1367        *pfp = fp;
1368        return 0;
1369}
1370EXPORT_SYMBOL_GPL(bpf_prog_create);
1371
1372/**
1373 *      bpf_prog_create_from_user - create an unattached filter from user buffer
1374 *      @pfp: the unattached filter that is created
1375 *      @fprog: the filter program
1376 *      @trans: post-classic verifier transformation handler
1377 *      @save_orig: save classic BPF program
1378 *
1379 * This function effectively does the same as bpf_prog_create(), only
1380 * that it builds up its insns buffer from user space provided buffer.
1381 * It also allows for passing a bpf_aux_classic_check_t handler.
1382 */
1383int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1384                              bpf_aux_classic_check_t trans, bool save_orig)
1385{
1386        unsigned int fsize = bpf_classic_proglen(fprog);
1387        struct bpf_prog *fp;
1388        int err;
1389
1390        /* Make sure new filter is there and in the right amounts. */
1391        if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1392                return -EINVAL;
1393
1394        fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1395        if (!fp)
1396                return -ENOMEM;
1397
1398        if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1399                __bpf_prog_free(fp);
1400                return -EFAULT;
1401        }
1402
1403        fp->len = fprog->len;
1404        fp->orig_prog = NULL;
1405
1406        if (save_orig) {
1407                err = bpf_prog_store_orig_filter(fp, fprog);
1408                if (err) {
1409                        __bpf_prog_free(fp);
1410                        return -ENOMEM;
1411                }
1412        }
1413
1414        /* bpf_prepare_filter() already takes care of freeing
1415         * memory in case something goes wrong.
1416         */
1417        fp = bpf_prepare_filter(fp, trans);
1418        if (IS_ERR(fp))
1419                return PTR_ERR(fp);
1420
1421        *pfp = fp;
1422        return 0;
1423}
1424EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1425
1426void bpf_prog_destroy(struct bpf_prog *fp)
1427{
1428        __bpf_prog_release(fp);
1429}
1430EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1431
1432static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1433{
1434        struct sk_filter *fp, *old_fp;
1435
1436        fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1437        if (!fp)
1438                return -ENOMEM;
1439
1440        fp->prog = prog;
1441
1442        if (!__sk_filter_charge(sk, fp)) {
1443                kfree(fp);
1444                return -ENOMEM;
1445        }
1446        refcount_set(&fp->refcnt, 1);
1447
1448        old_fp = rcu_dereference_protected(sk->sk_filter,
1449                                           lockdep_sock_is_held(sk));
1450        rcu_assign_pointer(sk->sk_filter, fp);
1451
1452        if (old_fp)
1453                sk_filter_uncharge(sk, old_fp);
1454
1455        return 0;
1456}
1457
1458static
1459struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1460{
1461        unsigned int fsize = bpf_classic_proglen(fprog);
1462        struct bpf_prog *prog;
1463        int err;
1464
1465        if (sock_flag(sk, SOCK_FILTER_LOCKED))
1466                return ERR_PTR(-EPERM);
1467
1468        /* Make sure new filter is there and in the right amounts. */
1469        if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1470                return ERR_PTR(-EINVAL);
1471
1472        prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1473        if (!prog)
1474                return ERR_PTR(-ENOMEM);
1475
1476        if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1477                __bpf_prog_free(prog);
1478                return ERR_PTR(-EFAULT);
1479        }
1480
1481        prog->len = fprog->len;
1482
1483        err = bpf_prog_store_orig_filter(prog, fprog);
1484        if (err) {
1485                __bpf_prog_free(prog);
1486                return ERR_PTR(-ENOMEM);
1487        }
1488
1489        /* bpf_prepare_filter() already takes care of freeing
1490         * memory in case something goes wrong.
1491         */
1492        return bpf_prepare_filter(prog, NULL);
1493}
1494
1495/**
1496 *      sk_attach_filter - attach a socket filter
1497 *      @fprog: the filter program
1498 *      @sk: the socket to use
1499 *
1500 * Attach the user's filter code. We first run some sanity checks on
1501 * it to make sure it does not explode on us later. If an error
1502 * occurs or there is insufficient memory for the filter a negative
1503 * errno code is returned. On success the return is zero.
1504 */
1505int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1506{
1507        struct bpf_prog *prog = __get_filter(fprog, sk);
1508        int err;
1509
1510        if (IS_ERR(prog))
1511                return PTR_ERR(prog);
1512
1513        err = __sk_attach_prog(prog, sk);
1514        if (err < 0) {
1515                __bpf_prog_release(prog);
1516                return err;
1517        }
1518
1519        return 0;
1520}
1521EXPORT_SYMBOL_GPL(sk_attach_filter);
1522
1523int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1524{
1525        struct bpf_prog *prog = __get_filter(fprog, sk);
1526        int err;
1527
1528        if (IS_ERR(prog))
1529                return PTR_ERR(prog);
1530
1531        if (bpf_prog_size(prog->len) > sysctl_optmem_max)
1532                err = -ENOMEM;
1533        else
1534                err = reuseport_attach_prog(sk, prog);
1535
1536        if (err)
1537                __bpf_prog_release(prog);
1538
1539        return err;
1540}
1541
1542static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1543{
1544        if (sock_flag(sk, SOCK_FILTER_LOCKED))
1545                return ERR_PTR(-EPERM);
1546
1547        return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1548}
1549
1550int sk_attach_bpf(u32 ufd, struct sock *sk)
1551{
1552        struct bpf_prog *prog = __get_bpf(ufd, sk);
1553        int err;
1554
1555        if (IS_ERR(prog))
1556                return PTR_ERR(prog);
1557
1558        err = __sk_attach_prog(prog, sk);
1559        if (err < 0) {
1560                bpf_prog_put(prog);
1561                return err;
1562        }
1563
1564        return 0;
1565}
1566
1567int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1568{
1569        struct bpf_prog *prog;
1570        int err;
1571
1572        if (sock_flag(sk, SOCK_FILTER_LOCKED))
1573                return -EPERM;
1574
1575        prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1576        if (IS_ERR(prog) && PTR_ERR(prog) == -EINVAL)
1577                prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1578        if (IS_ERR(prog))
1579                return PTR_ERR(prog);
1580
1581        if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1582                /* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1583                 * bpf prog (e.g. sockmap).  It depends on the
1584                 * limitation imposed by bpf_prog_load().
1585                 * Hence, sysctl_optmem_max is not checked.
1586                 */
1587                if ((sk->sk_type != SOCK_STREAM &&
1588                     sk->sk_type != SOCK_DGRAM) ||
1589                    (sk->sk_protocol != IPPROTO_UDP &&
1590                     sk->sk_protocol != IPPROTO_TCP) ||
1591                    (sk->sk_family != AF_INET &&
1592                     sk->sk_family != AF_INET6)) {
1593                        err = -ENOTSUPP;
1594                        goto err_prog_put;
1595                }
1596        } else {
1597                /* BPF_PROG_TYPE_SOCKET_FILTER */
1598                if (bpf_prog_size(prog->len) > sysctl_optmem_max) {
1599                        err = -ENOMEM;
1600                        goto err_prog_put;
1601                }
1602        }
1603
1604        err = reuseport_attach_prog(sk, prog);
1605err_prog_put:
1606        if (err)
1607                bpf_prog_put(prog);
1608
1609        return err;
1610}
1611
1612void sk_reuseport_prog_free(struct bpf_prog *prog)
1613{
1614        if (!prog)
1615                return;
1616
1617        if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1618                bpf_prog_put(prog);
1619        else
1620                bpf_prog_destroy(prog);
1621}
1622
1623struct bpf_scratchpad {
1624        union {
1625                __be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1626                u8     buff[MAX_BPF_STACK];
1627        };
1628};
1629
1630static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1631
1632static inline int __bpf_try_make_writable(struct sk_buff *skb,
1633                                          unsigned int write_len)
1634{
1635        return skb_ensure_writable(skb, write_len);
1636}
1637
1638static inline int bpf_try_make_writable(struct sk_buff *skb,
1639                                        unsigned int write_len)
1640{
1641        int err = __bpf_try_make_writable(skb, write_len);
1642
1643        bpf_compute_data_pointers(skb);
1644        return err;
1645}
1646
1647static int bpf_try_make_head_writable(struct sk_buff *skb)
1648{
1649        return bpf_try_make_writable(skb, skb_headlen(skb));
1650}
1651
1652static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1653{
1654        if (skb_at_tc_ingress(skb))
1655                skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1656}
1657
1658static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1659{
1660        if (skb_at_tc_ingress(skb))
1661                skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1662}
1663
1664BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1665           const void *, from, u32, len, u64, flags)
1666{
1667        void *ptr;
1668
1669        if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1670                return -EINVAL;
1671        if (unlikely(offset > 0xffff))
1672                return -EFAULT;
1673        if (unlikely(bpf_try_make_writable(skb, offset + len)))
1674                return -EFAULT;
1675
1676        ptr = skb->data + offset;
1677        if (flags & BPF_F_RECOMPUTE_CSUM)
1678                __skb_postpull_rcsum(skb, ptr, len, offset);
1679
1680        memcpy(ptr, from, len);
1681
1682        if (flags & BPF_F_RECOMPUTE_CSUM)
1683                __skb_postpush_rcsum(skb, ptr, len, offset);
1684        if (flags & BPF_F_INVALIDATE_HASH)
1685                skb_clear_hash(skb);
1686
1687        return 0;
1688}
1689
1690static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1691        .func           = bpf_skb_store_bytes,
1692        .gpl_only       = false,
1693        .ret_type       = RET_INTEGER,
1694        .arg1_type      = ARG_PTR_TO_CTX,
1695        .arg2_type      = ARG_ANYTHING,
1696        .arg3_type      = ARG_PTR_TO_MEM,
1697        .arg4_type      = ARG_CONST_SIZE,
1698        .arg5_type      = ARG_ANYTHING,
1699};
1700
1701BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1702           void *, to, u32, len)
1703{
1704        void *ptr;
1705
1706        if (unlikely(offset > 0xffff))
1707                goto err_clear;
1708
1709        ptr = skb_header_pointer(skb, offset, len, to);
1710        if (unlikely(!ptr))
1711                goto err_clear;
1712        if (ptr != to)
1713                memcpy(to, ptr, len);
1714
1715        return 0;
1716err_clear:
1717        memset(to, 0, len);
1718        return -EFAULT;
1719}
1720
1721static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1722        .func           = bpf_skb_load_bytes,
1723        .gpl_only       = false,
1724        .ret_type       = RET_INTEGER,
1725        .arg1_type      = ARG_PTR_TO_CTX,
1726        .arg2_type      = ARG_ANYTHING,
1727        .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1728        .arg4_type      = ARG_CONST_SIZE,
1729};
1730
1731BPF_CALL_4(bpf_flow_dissector_load_bytes,
1732           const struct bpf_flow_dissector *, ctx, u32, offset,
1733           void *, to, u32, len)
1734{
1735        void *ptr;
1736
1737        if (unlikely(offset > 0xffff))
1738                goto err_clear;
1739
1740        if (unlikely(!ctx->skb))
1741                goto err_clear;
1742
1743        ptr = skb_header_pointer(ctx->skb, offset, len, to);
1744        if (unlikely(!ptr))
1745                goto err_clear;
1746        if (ptr != to)
1747                memcpy(to, ptr, len);
1748
1749        return 0;
1750err_clear:
1751        memset(to, 0, len);
1752        return -EFAULT;
1753}
1754
1755static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1756        .func           = bpf_flow_dissector_load_bytes,
1757        .gpl_only       = false,
1758        .ret_type       = RET_INTEGER,
1759        .arg1_type      = ARG_PTR_TO_CTX,
1760        .arg2_type      = ARG_ANYTHING,
1761        .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1762        .arg4_type      = ARG_CONST_SIZE,
1763};
1764
1765BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1766           u32, offset, void *, to, u32, len, u32, start_header)
1767{
1768        u8 *end = skb_tail_pointer(skb);
1769        u8 *net = skb_network_header(skb);
1770        u8 *mac = skb_mac_header(skb);
1771        u8 *ptr;
1772
1773        if (unlikely(offset > 0xffff || len > (end - mac)))
1774                goto err_clear;
1775
1776        switch (start_header) {
1777        case BPF_HDR_START_MAC:
1778                ptr = mac + offset;
1779                break;
1780        case BPF_HDR_START_NET:
1781                ptr = net + offset;
1782                break;
1783        default:
1784                goto err_clear;
1785        }
1786
1787        if (likely(ptr >= mac && ptr + len <= end)) {
1788                memcpy(to, ptr, len);
1789                return 0;
1790        }
1791
1792err_clear:
1793        memset(to, 0, len);
1794        return -EFAULT;
1795}
1796
1797static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1798        .func           = bpf_skb_load_bytes_relative,
1799        .gpl_only       = false,
1800        .ret_type       = RET_INTEGER,
1801        .arg1_type      = ARG_PTR_TO_CTX,
1802        .arg2_type      = ARG_ANYTHING,
1803        .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1804        .arg4_type      = ARG_CONST_SIZE,
1805        .arg5_type      = ARG_ANYTHING,
1806};
1807
1808BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1809{
1810        /* Idea is the following: should the needed direct read/write
1811         * test fail during runtime, we can pull in more data and redo
1812         * again, since implicitly, we invalidate previous checks here.
1813         *
1814         * Or, since we know how much we need to make read/writeable,
1815         * this can be done once at the program beginning for direct
1816         * access case. By this we overcome limitations of only current
1817         * headroom being accessible.
1818         */
1819        return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1820}
1821
1822static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1823        .func           = bpf_skb_pull_data,
1824        .gpl_only       = false,
1825        .ret_type       = RET_INTEGER,
1826        .arg1_type      = ARG_PTR_TO_CTX,
1827        .arg2_type      = ARG_ANYTHING,
1828};
1829
1830BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1831{
1832        return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1833}
1834
1835static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1836        .func           = bpf_sk_fullsock,
1837        .gpl_only       = false,
1838        .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
1839        .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
1840};
1841
1842static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1843                                           unsigned int write_len)
1844{
1845        int err = __bpf_try_make_writable(skb, write_len);
1846
1847        bpf_compute_data_end_sk_skb(skb);
1848        return err;
1849}
1850
1851BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1852{
1853        /* Idea is the following: should the needed direct read/write
1854         * test fail during runtime, we can pull in more data and redo
1855         * again, since implicitly, we invalidate previous checks here.
1856         *
1857         * Or, since we know how much we need to make read/writeable,
1858         * this can be done once at the program beginning for direct
1859         * access case. By this we overcome limitations of only current
1860         * headroom being accessible.
1861         */
1862        return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1863}
1864
1865static const struct bpf_func_proto sk_skb_pull_data_proto = {
1866        .func           = sk_skb_pull_data,
1867        .gpl_only       = false,
1868        .ret_type       = RET_INTEGER,
1869        .arg1_type      = ARG_PTR_TO_CTX,
1870        .arg2_type      = ARG_ANYTHING,
1871};
1872
1873BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1874           u64, from, u64, to, u64, flags)
1875{
1876        __sum16 *ptr;
1877
1878        if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1879                return -EINVAL;
1880        if (unlikely(offset > 0xffff || offset & 1))
1881                return -EFAULT;
1882        if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1883                return -EFAULT;
1884
1885        ptr = (__sum16 *)(skb->data + offset);
1886        switch (flags & BPF_F_HDR_FIELD_MASK) {
1887        case 0:
1888                if (unlikely(from != 0))
1889                        return -EINVAL;
1890
1891                csum_replace_by_diff(ptr, to);
1892                break;
1893        case 2:
1894                csum_replace2(ptr, from, to);
1895                break;
1896        case 4:
1897                csum_replace4(ptr, from, to);
1898                break;
1899        default:
1900                return -EINVAL;
1901        }
1902
1903        return 0;
1904}
1905
1906static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1907        .func           = bpf_l3_csum_replace,
1908        .gpl_only       = false,
1909        .ret_type       = RET_INTEGER,
1910        .arg1_type      = ARG_PTR_TO_CTX,
1911        .arg2_type      = ARG_ANYTHING,
1912        .arg3_type      = ARG_ANYTHING,
1913        .arg4_type      = ARG_ANYTHING,
1914        .arg5_type      = ARG_ANYTHING,
1915};
1916
1917BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1918           u64, from, u64, to, u64, flags)
1919{
1920        bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1921        bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1922        bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1923        __sum16 *ptr;
1924
1925        if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1926                               BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1927                return -EINVAL;
1928        if (unlikely(offset > 0xffff || offset & 1))
1929                return -EFAULT;
1930        if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1931                return -EFAULT;
1932
1933        ptr = (__sum16 *)(skb->data + offset);
1934        if (is_mmzero && !do_mforce && !*ptr)
1935                return 0;
1936
1937        switch (flags & BPF_F_HDR_FIELD_MASK) {
1938        case 0:
1939                if (unlikely(from != 0))
1940                        return -EINVAL;
1941
1942                inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1943                break;
1944        case 2:
1945                inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1946                break;
1947        case 4:
1948                inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1949                break;
1950        default:
1951                return -EINVAL;
1952        }
1953
1954        if (is_mmzero && !*ptr)
1955                *ptr = CSUM_MANGLED_0;
1956        return 0;
1957}
1958
1959static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1960        .func           = bpf_l4_csum_replace,
1961        .gpl_only       = false,
1962        .ret_type       = RET_INTEGER,
1963        .arg1_type      = ARG_PTR_TO_CTX,
1964        .arg2_type      = ARG_ANYTHING,
1965        .arg3_type      = ARG_ANYTHING,
1966        .arg4_type      = ARG_ANYTHING,
1967        .arg5_type      = ARG_ANYTHING,
1968};
1969
1970BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
1971           __be32 *, to, u32, to_size, __wsum, seed)
1972{
1973        struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1974        u32 diff_size = from_size + to_size;
1975        int i, j = 0;
1976
1977        /* This is quite flexible, some examples:
1978         *
1979         * from_size == 0, to_size > 0,  seed := csum --> pushing data
1980         * from_size > 0,  to_size == 0, seed := csum --> pulling data
1981         * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
1982         *
1983         * Even for diffing, from_size and to_size don't need to be equal.
1984         */
1985        if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
1986                     diff_size > sizeof(sp->diff)))
1987                return -EINVAL;
1988
1989        for (i = 0; i < from_size / sizeof(__be32); i++, j++)
1990                sp->diff[j] = ~from[i];
1991        for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
1992                sp->diff[j] = to[i];
1993
1994        return csum_partial(sp->diff, diff_size, seed);
1995}
1996
1997static const struct bpf_func_proto bpf_csum_diff_proto = {
1998        .func           = bpf_csum_diff,
1999        .gpl_only       = false,
2000        .pkt_access     = true,
2001        .ret_type       = RET_INTEGER,
2002        .arg1_type      = ARG_PTR_TO_MEM_OR_NULL,
2003        .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
2004        .arg3_type      = ARG_PTR_TO_MEM_OR_NULL,
2005        .arg4_type      = ARG_CONST_SIZE_OR_ZERO,
2006        .arg5_type      = ARG_ANYTHING,
2007};
2008
2009BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2010{
2011        /* The interface is to be used in combination with bpf_csum_diff()
2012         * for direct packet writes. csum rotation for alignment as well
2013         * as emulating csum_sub() can be done from the eBPF program.
2014         */
2015        if (skb->ip_summed == CHECKSUM_COMPLETE)
2016                return (skb->csum = csum_add(skb->csum, csum));
2017
2018        return -ENOTSUPP;
2019}
2020
2021static const struct bpf_func_proto bpf_csum_update_proto = {
2022        .func           = bpf_csum_update,
2023        .gpl_only       = false,
2024        .ret_type       = RET_INTEGER,
2025        .arg1_type      = ARG_PTR_TO_CTX,
2026        .arg2_type      = ARG_ANYTHING,
2027};
2028
2029static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2030{
2031        return dev_forward_skb(dev, skb);
2032}
2033
2034static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2035                                      struct sk_buff *skb)
2036{
2037        int ret = ____dev_forward_skb(dev, skb);
2038
2039        if (likely(!ret)) {
2040                skb->dev = dev;
2041                ret = netif_rx(skb);
2042        }
2043
2044        return ret;
2045}
2046
2047static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2048{
2049        int ret;
2050
2051        if (dev_xmit_recursion()) {
2052                net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2053                kfree_skb(skb);
2054                return -ENETDOWN;
2055        }
2056
2057        skb->dev = dev;
2058        skb->tstamp = 0;
2059
2060        dev_xmit_recursion_inc();
2061        ret = dev_queue_xmit(skb);
2062        dev_xmit_recursion_dec();
2063
2064        return ret;
2065}
2066
2067static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2068                                 u32 flags)
2069{
2070        unsigned int mlen = skb_network_offset(skb);
2071
2072        if (mlen) {
2073                __skb_pull(skb, mlen);
2074
2075                /* At ingress, the mac header has already been pulled once.
2076                 * At egress, skb_pospull_rcsum has to be done in case that
2077                 * the skb is originated from ingress (i.e. a forwarded skb)
2078                 * to ensure that rcsum starts at net header.
2079                 */
2080                if (!skb_at_tc_ingress(skb))
2081                        skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2082        }
2083        skb_pop_mac_header(skb);
2084        skb_reset_mac_len(skb);
2085        return flags & BPF_F_INGRESS ?
2086               __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2087}
2088
2089static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2090                                 u32 flags)
2091{
2092        /* Verify that a link layer header is carried */
2093        if (unlikely(skb->mac_header >= skb->network_header)) {
2094                kfree_skb(skb);
2095                return -ERANGE;
2096        }
2097
2098        bpf_push_mac_rcsum(skb);
2099        return flags & BPF_F_INGRESS ?
2100               __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2101}
2102
2103static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2104                          u32 flags)
2105{
2106        if (dev_is_mac_header_xmit(dev))
2107                return __bpf_redirect_common(skb, dev, flags);
2108        else
2109                return __bpf_redirect_no_mac(skb, dev, flags);
2110}
2111
2112BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2113{
2114        struct net_device *dev;
2115        struct sk_buff *clone;
2116        int ret;
2117
2118        if (unlikely(flags & ~(BPF_F_INGRESS)))
2119                return -EINVAL;
2120
2121        dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2122        if (unlikely(!dev))
2123                return -EINVAL;
2124
2125        clone = skb_clone(skb, GFP_ATOMIC);
2126        if (unlikely(!clone))
2127                return -ENOMEM;
2128
2129        /* For direct write, we need to keep the invariant that the skbs
2130         * we're dealing with need to be uncloned. Should uncloning fail
2131         * here, we need to free the just generated clone to unclone once
2132         * again.
2133         */
2134        ret = bpf_try_make_head_writable(skb);
2135        if (unlikely(ret)) {
2136                kfree_skb(clone);
2137                return -ENOMEM;
2138        }
2139
2140        return __bpf_redirect(clone, dev, flags);
2141}
2142
2143static const struct bpf_func_proto bpf_clone_redirect_proto = {
2144        .func           = bpf_clone_redirect,
2145        .gpl_only       = false,
2146        .ret_type       = RET_INTEGER,
2147        .arg1_type      = ARG_PTR_TO_CTX,
2148        .arg2_type      = ARG_ANYTHING,
2149        .arg3_type      = ARG_ANYTHING,
2150};
2151
2152DEFINE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
2153EXPORT_PER_CPU_SYMBOL_GPL(bpf_redirect_info);
2154
2155BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2156{
2157        struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2158
2159        if (unlikely(flags & ~(BPF_F_INGRESS)))
2160                return TC_ACT_SHOT;
2161
2162        ri->flags = flags;
2163        ri->tgt_index = ifindex;
2164
2165        return TC_ACT_REDIRECT;
2166}
2167
2168int skb_do_redirect(struct sk_buff *skb)
2169{
2170        struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2171        struct net_device *dev;
2172
2173        dev = dev_get_by_index_rcu(dev_net(skb->dev), ri->tgt_index);
2174        ri->tgt_index = 0;
2175        if (unlikely(!dev)) {
2176                kfree_skb(skb);
2177                return -EINVAL;
2178        }
2179
2180        return __bpf_redirect(skb, dev, ri->flags);
2181}
2182
2183static const struct bpf_func_proto bpf_redirect_proto = {
2184        .func           = bpf_redirect,
2185        .gpl_only       = false,
2186        .ret_type       = RET_INTEGER,
2187        .arg1_type      = ARG_ANYTHING,
2188        .arg2_type      = ARG_ANYTHING,
2189};
2190
2191BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2192{
2193        msg->apply_bytes = bytes;
2194        return 0;
2195}
2196
2197static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2198        .func           = bpf_msg_apply_bytes,
2199        .gpl_only       = false,
2200        .ret_type       = RET_INTEGER,
2201        .arg1_type      = ARG_PTR_TO_CTX,
2202        .arg2_type      = ARG_ANYTHING,
2203};
2204
2205BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2206{
2207        msg->cork_bytes = bytes;
2208        return 0;
2209}
2210
2211static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2212        .func           = bpf_msg_cork_bytes,
2213        .gpl_only       = false,
2214        .ret_type       = RET_INTEGER,
2215        .arg1_type      = ARG_PTR_TO_CTX,
2216        .arg2_type      = ARG_ANYTHING,
2217};
2218
2219BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2220           u32, end, u64, flags)
2221{
2222        u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2223        u32 first_sge, last_sge, i, shift, bytes_sg_total;
2224        struct scatterlist *sge;
2225        u8 *raw, *to, *from;
2226        struct page *page;
2227
2228        if (unlikely(flags || end <= start))
2229                return -EINVAL;
2230
2231        /* First find the starting scatterlist element */
2232        i = msg->sg.start;
2233        do {
2234                offset += len;
2235                len = sk_msg_elem(msg, i)->length;
2236                if (start < offset + len)
2237                        break;
2238                sk_msg_iter_var_next(i);
2239        } while (i != msg->sg.end);
2240
2241        if (unlikely(start >= offset + len))
2242                return -EINVAL;
2243
2244        first_sge = i;
2245        /* The start may point into the sg element so we need to also
2246         * account for the headroom.
2247         */
2248        bytes_sg_total = start - offset + bytes;
2249        if (!test_bit(i, &msg->sg.copy) && bytes_sg_total <= len)
2250                goto out;
2251
2252        /* At this point we need to linearize multiple scatterlist
2253         * elements or a single shared page. Either way we need to
2254         * copy into a linear buffer exclusively owned by BPF. Then
2255         * place the buffer in the scatterlist and fixup the original
2256         * entries by removing the entries now in the linear buffer
2257         * and shifting the remaining entries. For now we do not try
2258         * to copy partial entries to avoid complexity of running out
2259         * of sg_entry slots. The downside is reading a single byte
2260         * will copy the entire sg entry.
2261         */
2262        do {
2263                copy += sk_msg_elem(msg, i)->length;
2264                sk_msg_iter_var_next(i);
2265                if (bytes_sg_total <= copy)
2266                        break;
2267        } while (i != msg->sg.end);
2268        last_sge = i;
2269
2270        if (unlikely(bytes_sg_total > copy))
2271                return -EINVAL;
2272
2273        page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2274                           get_order(copy));
2275        if (unlikely(!page))
2276                return -ENOMEM;
2277
2278        raw = page_address(page);
2279        i = first_sge;
2280        do {
2281                sge = sk_msg_elem(msg, i);
2282                from = sg_virt(sge);
2283                len = sge->length;
2284                to = raw + poffset;
2285
2286                memcpy(to, from, len);
2287                poffset += len;
2288                sge->length = 0;
2289                put_page(sg_page(sge));
2290
2291                sk_msg_iter_var_next(i);
2292        } while (i != last_sge);
2293
2294        sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2295
2296        /* To repair sg ring we need to shift entries. If we only
2297         * had a single entry though we can just replace it and
2298         * be done. Otherwise walk the ring and shift the entries.
2299         */
2300        WARN_ON_ONCE(last_sge == first_sge);
2301        shift = last_sge > first_sge ?
2302                last_sge - first_sge - 1 :
2303                NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
2304        if (!shift)
2305                goto out;
2306
2307        i = first_sge;
2308        sk_msg_iter_var_next(i);
2309        do {
2310                u32 move_from;
2311
2312                if (i + shift >= NR_MSG_FRAG_IDS)
2313                        move_from = i + shift - NR_MSG_FRAG_IDS;
2314                else
2315                        move_from = i + shift;
2316                if (move_from == msg->sg.end)
2317                        break;
2318
2319                msg->sg.data[i] = msg->sg.data[move_from];
2320                msg->sg.data[move_from].length = 0;
2321                msg->sg.data[move_from].page_link = 0;
2322                msg->sg.data[move_from].offset = 0;
2323                sk_msg_iter_var_next(i);
2324        } while (1);
2325
2326        msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2327                      msg->sg.end - shift + NR_MSG_FRAG_IDS :
2328                      msg->sg.end - shift;
2329out:
2330        msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2331        msg->data_end = msg->data + bytes;
2332        return 0;
2333}
2334
2335static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2336        .func           = bpf_msg_pull_data,
2337        .gpl_only       = false,
2338        .ret_type       = RET_INTEGER,
2339        .arg1_type      = ARG_PTR_TO_CTX,
2340        .arg2_type      = ARG_ANYTHING,
2341        .arg3_type      = ARG_ANYTHING,
2342        .arg4_type      = ARG_ANYTHING,
2343};
2344
2345BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2346           u32, len, u64, flags)
2347{
2348        struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2349        u32 new, i = 0, l = 0, space, copy = 0, offset = 0;
2350        u8 *raw, *to, *from;
2351        struct page *page;
2352
2353        if (unlikely(flags))
2354                return -EINVAL;
2355
2356        /* First find the starting scatterlist element */
2357        i = msg->sg.start;
2358        do {
2359                offset += l;
2360                l = sk_msg_elem(msg, i)->length;
2361
2362                if (start < offset + l)
2363                        break;
2364                sk_msg_iter_var_next(i);
2365        } while (i != msg->sg.end);
2366
2367        if (start >= offset + l)
2368                return -EINVAL;
2369
2370        space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2371
2372        /* If no space available will fallback to copy, we need at
2373         * least one scatterlist elem available to push data into
2374         * when start aligns to the beginning of an element or two
2375         * when it falls inside an element. We handle the start equals
2376         * offset case because its the common case for inserting a
2377         * header.
2378         */
2379        if (!space || (space == 1 && start != offset))
2380                copy = msg->sg.data[i].length;
2381
2382        page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2383                           get_order(copy + len));
2384        if (unlikely(!page))
2385                return -ENOMEM;
2386
2387        if (copy) {
2388                int front, back;
2389
2390                raw = page_address(page);
2391
2392                psge = sk_msg_elem(msg, i);
2393                front = start - offset;
2394                back = psge->length - front;
2395                from = sg_virt(psge);
2396
2397                if (front)
2398                        memcpy(raw, from, front);
2399
2400                if (back) {
2401                        from += front;
2402                        to = raw + front + len;
2403
2404                        memcpy(to, from, back);
2405                }
2406
2407                put_page(sg_page(psge));
2408        } else if (start - offset) {
2409                psge = sk_msg_elem(msg, i);
2410                rsge = sk_msg_elem_cpy(msg, i);
2411
2412                psge->length = start - offset;
2413                rsge.length -= psge->length;
2414                rsge.offset += start;
2415
2416                sk_msg_iter_var_next(i);
2417                sg_unmark_end(psge);
2418                sg_unmark_end(&rsge);
2419                sk_msg_iter_next(msg, end);
2420        }
2421
2422        /* Slot(s) to place newly allocated data */
2423        new = i;
2424
2425        /* Shift one or two slots as needed */
2426        if (!copy) {
2427                sge = sk_msg_elem_cpy(msg, i);
2428
2429                sk_msg_iter_var_next(i);
2430                sg_unmark_end(&sge);
2431                sk_msg_iter_next(msg, end);
2432
2433                nsge = sk_msg_elem_cpy(msg, i);
2434                if (rsge.length) {
2435                        sk_msg_iter_var_next(i);
2436                        nnsge = sk_msg_elem_cpy(msg, i);
2437                }
2438
2439                while (i != msg->sg.end) {
2440                        msg->sg.data[i] = sge;
2441                        sge = nsge;
2442                        sk_msg_iter_var_next(i);
2443                        if (rsge.length) {
2444                                nsge = nnsge;
2445                                nnsge = sk_msg_elem_cpy(msg, i);
2446                        } else {
2447                                nsge = sk_msg_elem_cpy(msg, i);
2448                        }
2449                }
2450        }
2451
2452        /* Place newly allocated data buffer */
2453        sk_mem_charge(msg->sk, len);
2454        msg->sg.size += len;
2455        __clear_bit(new, &msg->sg.copy);
2456        sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2457        if (rsge.length) {
2458                get_page(sg_page(&rsge));
2459                sk_msg_iter_var_next(new);
2460                msg->sg.data[new] = rsge;
2461        }
2462
2463        sk_msg_compute_data_pointers(msg);
2464        return 0;
2465}
2466
2467static const struct bpf_func_proto bpf_msg_push_data_proto = {
2468        .func           = bpf_msg_push_data,
2469        .gpl_only       = false,
2470        .ret_type       = RET_INTEGER,
2471        .arg1_type      = ARG_PTR_TO_CTX,
2472        .arg2_type      = ARG_ANYTHING,
2473        .arg3_type      = ARG_ANYTHING,
2474        .arg4_type      = ARG_ANYTHING,
2475};
2476
2477static void sk_msg_shift_left(struct sk_msg *msg, int i)
2478{
2479        int prev;
2480
2481        do {
2482                prev = i;
2483                sk_msg_iter_var_next(i);
2484                msg->sg.data[prev] = msg->sg.data[i];
2485        } while (i != msg->sg.end);
2486
2487        sk_msg_iter_prev(msg, end);
2488}
2489
2490static void sk_msg_shift_right(struct sk_msg *msg, int i)
2491{
2492        struct scatterlist tmp, sge;
2493
2494        sk_msg_iter_next(msg, end);
2495        sge = sk_msg_elem_cpy(msg, i);
2496        sk_msg_iter_var_next(i);
2497        tmp = sk_msg_elem_cpy(msg, i);
2498
2499        while (i != msg->sg.end) {
2500                msg->sg.data[i] = sge;
2501                sk_msg_iter_var_next(i);
2502                sge = tmp;
2503                tmp = sk_msg_elem_cpy(msg, i);
2504        }
2505}
2506
2507BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2508           u32, len, u64, flags)
2509{
2510        u32 i = 0, l = 0, space, offset = 0;
2511        u64 last = start + len;
2512        int pop;
2513
2514        if (unlikely(flags))
2515                return -EINVAL;
2516
2517        /* First find the starting scatterlist element */
2518        i = msg->sg.start;
2519        do {
2520                offset += l;
2521                l = sk_msg_elem(msg, i)->length;
2522
2523                if (start < offset + l)
2524                        break;
2525                sk_msg_iter_var_next(i);
2526        } while (i != msg->sg.end);
2527
2528        /* Bounds checks: start and pop must be inside message */
2529        if (start >= offset + l || last >= msg->sg.size)
2530                return -EINVAL;
2531
2532        space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2533
2534        pop = len;
2535        /* --------------| offset
2536         * -| start      |-------- len -------|
2537         *
2538         *  |----- a ----|-------- pop -------|----- b ----|
2539         *  |______________________________________________| length
2540         *
2541         *
2542         * a:   region at front of scatter element to save
2543         * b:   region at back of scatter element to save when length > A + pop
2544         * pop: region to pop from element, same as input 'pop' here will be
2545         *      decremented below per iteration.
2546         *
2547         * Two top-level cases to handle when start != offset, first B is non
2548         * zero and second B is zero corresponding to when a pop includes more
2549         * than one element.
2550         *
2551         * Then if B is non-zero AND there is no space allocate space and
2552         * compact A, B regions into page. If there is space shift ring to
2553         * the rigth free'ing the next element in ring to place B, leaving
2554         * A untouched except to reduce length.
2555         */
2556        if (start != offset) {
2557                struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
2558                int a = start;
2559                int b = sge->length - pop - a;
2560
2561                sk_msg_iter_var_next(i);
2562
2563                if (pop < sge->length - a) {
2564                        if (space) {
2565                                sge->length = a;
2566                                sk_msg_shift_right(msg, i);
2567                                nsge = sk_msg_elem(msg, i);
2568                                get_page(sg_page(sge));
2569                                sg_set_page(nsge,
2570                                            sg_page(sge),
2571                                            b, sge->offset + pop + a);
2572                        } else {
2573                                struct page *page, *orig;
2574                                u8 *to, *from;
2575
2576                                page = alloc_pages(__GFP_NOWARN |
2577                                                   __GFP_COMP   | GFP_ATOMIC,
2578                                                   get_order(a + b));
2579                                if (unlikely(!page))
2580                                        return -ENOMEM;
2581
2582                                sge->length = a;
2583                                orig = sg_page(sge);
2584                                from = sg_virt(sge);
2585                                to = page_address(page);
2586                                memcpy(to, from, a);
2587                                memcpy(to + a, from + a + pop, b);
2588                                sg_set_page(sge, page, a + b, 0);
2589                                put_page(orig);
2590                        }
2591                        pop = 0;
2592                } else if (pop >= sge->length - a) {
2593                        sge->length = a;
2594                        pop -= (sge->length - a);
2595                }
2596        }
2597
2598        /* From above the current layout _must_ be as follows,
2599         *
2600         * -| offset
2601         * -| start
2602         *
2603         *  |---- pop ---|---------------- b ------------|
2604         *  |____________________________________________| length
2605         *
2606         * Offset and start of the current msg elem are equal because in the
2607         * previous case we handled offset != start and either consumed the
2608         * entire element and advanced to the next element OR pop == 0.
2609         *
2610         * Two cases to handle here are first pop is less than the length
2611         * leaving some remainder b above. Simply adjust the element's layout
2612         * in this case. Or pop >= length of the element so that b = 0. In this
2613         * case advance to next element decrementing pop.
2614         */
2615        while (pop) {
2616                struct scatterlist *sge = sk_msg_elem(msg, i);
2617
2618                if (pop < sge->length) {
2619                        sge->length -= pop;
2620                        sge->offset += pop;
2621                        pop = 0;
2622                } else {
2623                        pop -= sge->length;
2624                        sk_msg_shift_left(msg, i);
2625                }
2626                sk_msg_iter_var_next(i);
2627        }
2628
2629        sk_mem_uncharge(msg->sk, len - pop);
2630        msg->sg.size -= (len - pop);
2631        sk_msg_compute_data_pointers(msg);
2632        return 0;
2633}
2634
2635static const struct bpf_func_proto bpf_msg_pop_data_proto = {
2636        .func           = bpf_msg_pop_data,
2637        .gpl_only       = false,
2638        .ret_type       = RET_INTEGER,
2639        .arg1_type      = ARG_PTR_TO_CTX,
2640        .arg2_type      = ARG_ANYTHING,
2641        .arg3_type      = ARG_ANYTHING,
2642        .arg4_type      = ARG_ANYTHING,
2643};
2644
2645BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
2646{
2647        return task_get_classid(skb);
2648}
2649
2650static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
2651        .func           = bpf_get_cgroup_classid,
2652        .gpl_only       = false,
2653        .ret_type       = RET_INTEGER,
2654        .arg1_type      = ARG_PTR_TO_CTX,
2655};
2656
2657BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
2658{
2659        return dst_tclassid(skb);
2660}
2661
2662static const struct bpf_func_proto bpf_get_route_realm_proto = {
2663        .func           = bpf_get_route_realm,
2664        .gpl_only       = false,
2665        .ret_type       = RET_INTEGER,
2666        .arg1_type      = ARG_PTR_TO_CTX,
2667};
2668
2669BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
2670{
2671        /* If skb_clear_hash() was called due to mangling, we can
2672         * trigger SW recalculation here. Later access to hash
2673         * can then use the inline skb->hash via context directly
2674         * instead of calling this helper again.
2675         */
2676        return skb_get_hash(skb);
2677}
2678
2679static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
2680        .func           = bpf_get_hash_recalc,
2681        .gpl_only       = false,
2682        .ret_type       = RET_INTEGER,
2683        .arg1_type      = ARG_PTR_TO_CTX,
2684};
2685
2686BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
2687{
2688        /* After all direct packet write, this can be used once for
2689         * triggering a lazy recalc on next skb_get_hash() invocation.
2690         */
2691        skb_clear_hash(skb);
2692        return 0;
2693}
2694
2695static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
2696        .func           = bpf_set_hash_invalid,
2697        .gpl_only       = false,
2698        .ret_type       = RET_INTEGER,
2699        .arg1_type      = ARG_PTR_TO_CTX,
2700};
2701
2702BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
2703{
2704        /* Set user specified hash as L4(+), so that it gets returned
2705         * on skb_get_hash() call unless BPF prog later on triggers a
2706         * skb_clear_hash().
2707         */
2708        __skb_set_sw_hash(skb, hash, true);
2709        return 0;
2710}
2711
2712static const struct bpf_func_proto bpf_set_hash_proto = {
2713        .func           = bpf_set_hash,
2714        .gpl_only       = false,
2715        .ret_type       = RET_INTEGER,
2716        .arg1_type      = ARG_PTR_TO_CTX,
2717        .arg2_type      = ARG_ANYTHING,
2718};
2719
2720BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
2721           u16, vlan_tci)
2722{
2723        int ret;
2724
2725        if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
2726                     vlan_proto != htons(ETH_P_8021AD)))
2727                vlan_proto = htons(ETH_P_8021Q);
2728
2729        bpf_push_mac_rcsum(skb);
2730        ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
2731        bpf_pull_mac_rcsum(skb);
2732
2733        bpf_compute_data_pointers(skb);
2734        return ret;
2735}
2736
2737static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
2738        .func           = bpf_skb_vlan_push,
2739        .gpl_only       = false,
2740        .ret_type       = RET_INTEGER,
2741        .arg1_type      = ARG_PTR_TO_CTX,
2742        .arg2_type      = ARG_ANYTHING,
2743        .arg3_type      = ARG_ANYTHING,
2744};
2745
2746BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
2747{
2748        int ret;
2749
2750        bpf_push_mac_rcsum(skb);
2751        ret = skb_vlan_pop(skb);
2752        bpf_pull_mac_rcsum(skb);
2753
2754        bpf_compute_data_pointers(skb);
2755        return ret;
2756}
2757
2758static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
2759        .func           = bpf_skb_vlan_pop,
2760        .gpl_only       = false,
2761        .ret_type       = RET_INTEGER,
2762        .arg1_type      = ARG_PTR_TO_CTX,
2763};
2764
2765static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
2766{
2767        /* Caller already did skb_cow() with len as headroom,
2768         * so no need to do it here.
2769         */
2770        skb_push(skb, len);
2771        memmove(skb->data, skb->data + len, off);
2772        memset(skb->data + off, 0, len);
2773
2774        /* No skb_postpush_rcsum(skb, skb->data + off, len)
2775         * needed here as it does not change the skb->csum
2776         * result for checksum complete when summing over
2777         * zeroed blocks.
2778         */
2779        return 0;
2780}
2781
2782static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
2783{
2784        /* skb_ensure_writable() is not needed here, as we're
2785         * already working on an uncloned skb.
2786         */
2787        if (unlikely(!pskb_may_pull(skb, off + len)))
2788                return -ENOMEM;
2789
2790        skb_postpull_rcsum(skb, skb->data + off, len);
2791        memmove(skb->data + len, skb->data, off);
2792        __skb_pull(skb, len);
2793
2794        return 0;
2795}
2796
2797static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
2798{
2799        bool trans_same = skb->transport_header == skb->network_header;
2800        int ret;
2801
2802        /* There's no need for __skb_push()/__skb_pull() pair to
2803         * get to the start of the mac header as we're guaranteed
2804         * to always start from here under eBPF.
2805         */
2806        ret = bpf_skb_generic_push(skb, off, len);
2807        if (likely(!ret)) {
2808                skb->mac_header -= len;
2809                skb->network_header -= len;
2810                if (trans_same)
2811                        skb->transport_header = skb->network_header;
2812        }
2813
2814        return ret;
2815}
2816
2817static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
2818{
2819        bool trans_same = skb->transport_header == skb->network_header;
2820        int ret;
2821
2822        /* Same here, __skb_push()/__skb_pull() pair not needed. */
2823        ret = bpf_skb_generic_pop(skb, off, len);
2824        if (likely(!ret)) {
2825                skb->mac_header += len;
2826                skb->network_header += len;
2827                if (trans_same)
2828                        skb->transport_header = skb->network_header;
2829        }
2830
2831        return ret;
2832}
2833
2834static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
2835{
2836        const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
2837        u32 off = skb_mac_header_len(skb);
2838        int ret;
2839
2840        if (skb_is_gso(skb) && !skb_is_gso_tcp(skb))
2841                return -ENOTSUPP;
2842
2843        ret = skb_cow(skb, len_diff);
2844        if (unlikely(ret < 0))
2845                return ret;
2846
2847        ret = bpf_skb_net_hdr_push(skb, off, len_diff);
2848        if (unlikely(ret < 0))
2849                return ret;
2850
2851        if (skb_is_gso(skb)) {
2852                struct skb_shared_info *shinfo = skb_shinfo(skb);
2853
2854                /* SKB_GSO_TCPV4 needs to be changed into
2855                 * SKB_GSO_TCPV6.
2856                 */
2857                if (shinfo->gso_type & SKB_GSO_TCPV4) {
2858                        shinfo->gso_type &= ~SKB_GSO_TCPV4;
2859                        shinfo->gso_type |=  SKB_GSO_TCPV6;
2860                }
2861
2862                /* Due to IPv6 header, MSS needs to be downgraded. */
2863                skb_decrease_gso_size(shinfo, len_diff);
2864                /* Header must be checked, and gso_segs recomputed. */
2865                shinfo->gso_type |= SKB_GSO_DODGY;
2866                shinfo->gso_segs = 0;
2867        }
2868
2869        skb->protocol = htons(ETH_P_IPV6);
2870        skb_clear_hash(skb);
2871
2872        return 0;
2873}
2874
2875static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
2876{
2877        const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
2878        u32 off = skb_mac_header_len(skb);
2879        int ret;
2880
2881        if (skb_is_gso(skb) && !skb_is_gso_tcp(skb))
2882                return -ENOTSUPP;
2883
2884        ret = skb_unclone(skb, GFP_ATOMIC);
2885        if (unlikely(ret < 0))
2886                return ret;
2887
2888        ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
2889        if (unlikely(ret < 0))
2890                return ret;
2891
2892        if (skb_is_gso(skb)) {
2893                struct skb_shared_info *shinfo = skb_shinfo(skb);
2894
2895                /* SKB_GSO_TCPV6 needs to be changed into
2896                 * SKB_GSO_TCPV4.
2897                 */
2898                if (shinfo->gso_type & SKB_GSO_TCPV6) {
2899                        shinfo->gso_type &= ~SKB_GSO_TCPV6;
2900                        shinfo->gso_type |=  SKB_GSO_TCPV4;
2901                }
2902
2903                /* Due to IPv4 header, MSS can be upgraded. */
2904                skb_increase_gso_size(shinfo, len_diff);
2905                /* Header must be checked, and gso_segs recomputed. */
2906                shinfo->gso_type |= SKB_GSO_DODGY;
2907                shinfo->gso_segs = 0;
2908        }
2909
2910        skb->protocol = htons(ETH_P_IP);
2911        skb_clear_hash(skb);
2912
2913        return 0;
2914}
2915
2916static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
2917{
2918        __be16 from_proto = skb->protocol;
2919
2920        if (from_proto == htons(ETH_P_IP) &&
2921              to_proto == htons(ETH_P_IPV6))
2922                return bpf_skb_proto_4_to_6(skb);
2923
2924        if (from_proto == htons(ETH_P_IPV6) &&
2925              to_proto == htons(ETH_P_IP))
2926                return bpf_skb_proto_6_to_4(skb);
2927
2928        return -ENOTSUPP;
2929}
2930
2931BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
2932           u64, flags)
2933{
2934        int ret;
2935
2936        if (unlikely(flags))
2937                return -EINVAL;
2938
2939        /* General idea is that this helper does the basic groundwork
2940         * needed for changing the protocol, and eBPF program fills the
2941         * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
2942         * and other helpers, rather than passing a raw buffer here.
2943         *
2944         * The rationale is to keep this minimal and without a need to
2945         * deal with raw packet data. F.e. even if we would pass buffers
2946         * here, the program still needs to call the bpf_lX_csum_replace()
2947         * helpers anyway. Plus, this way we keep also separation of
2948         * concerns, since f.e. bpf_skb_store_bytes() should only take
2949         * care of stores.
2950         *
2951         * Currently, additional options and extension header space are
2952         * not supported, but flags register is reserved so we can adapt
2953         * that. For offloads, we mark packet as dodgy, so that headers
2954         * need to be verified first.
2955         */
2956        ret = bpf_skb_proto_xlat(skb, proto);
2957        bpf_compute_data_pointers(skb);
2958        return ret;
2959}
2960
2961static const struct bpf_func_proto bpf_skb_change_proto_proto = {
2962        .func           = bpf_skb_change_proto,
2963        .gpl_only       = false,
2964        .ret_type       = RET_INTEGER,
2965        .arg1_type      = ARG_PTR_TO_CTX,
2966        .arg2_type      = ARG_ANYTHING,
2967        .arg3_type      = ARG_ANYTHING,
2968};
2969
2970BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
2971{
2972        /* We only allow a restricted subset to be changed for now. */
2973        if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
2974                     !skb_pkt_type_ok(pkt_type)))
2975                return -EINVAL;
2976
2977        skb->pkt_type = pkt_type;
2978        return 0;
2979}
2980
2981static const struct bpf_func_proto bpf_skb_change_type_proto = {
2982        .func           = bpf_skb_change_type,
2983        .gpl_only       = false,
2984        .ret_type       = RET_INTEGER,
2985        .arg1_type      = ARG_PTR_TO_CTX,
2986        .arg2_type      = ARG_ANYTHING,
2987};
2988
2989static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
2990{
2991        switch (skb->protocol) {
2992        case htons(ETH_P_IP):
2993                return sizeof(struct iphdr);
2994        case htons(ETH_P_IPV6):
2995                return sizeof(struct ipv6hdr);
2996        default:
2997                return ~0U;
2998        }
2999}
3000
3001#define BPF_F_ADJ_ROOM_ENCAP_L3_MASK    (BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3002                                         BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3003
3004#define BPF_F_ADJ_ROOM_MASK             (BPF_F_ADJ_ROOM_FIXED_GSO | \
3005                                         BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3006                                         BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3007                                         BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3008                                         BPF_F_ADJ_ROOM_ENCAP_L2( \
3009                                          BPF_ADJ_ROOM_ENCAP_L2_MASK))
3010
3011static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3012                            u64 flags)
3013{
3014        u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3015        bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3016        u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3017        unsigned int gso_type = SKB_GSO_DODGY;
3018        int ret;
3019
3020        if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3021                /* udp gso_size delineates datagrams, only allow if fixed */
3022                if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3023                    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3024                        return -ENOTSUPP;
3025        }
3026
3027        ret = skb_cow_head(skb, len_diff);
3028        if (unlikely(ret < 0))
3029                return ret;
3030
3031        if (encap) {
3032                if (skb->protocol != htons(ETH_P_IP) &&
3033                    skb->protocol != htons(ETH_P_IPV6))
3034                        return -ENOTSUPP;
3035
3036                if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3037                    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3038                        return -EINVAL;
3039
3040                if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3041                    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3042                        return -EINVAL;
3043
3044                if (skb->encapsulation)
3045                        return -EALREADY;
3046
3047                mac_len = skb->network_header - skb->mac_header;
3048                inner_net = skb->network_header;
3049                if (inner_mac_len > len_diff)
3050                        return -EINVAL;
3051                inner_trans = skb->transport_header;
3052        }
3053
3054        ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3055        if (unlikely(ret < 0))
3056                return ret;
3057
3058        if (encap) {
3059                skb->inner_mac_header = inner_net - inner_mac_len;
3060                skb->inner_network_header = inner_net;
3061                skb->inner_transport_header = inner_trans;
3062                skb_set_inner_protocol(skb, skb->protocol);
3063
3064                skb->encapsulation = 1;
3065                skb_set_network_header(skb, mac_len);
3066
3067                if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3068                        gso_type |= SKB_GSO_UDP_TUNNEL;
3069                else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3070                        gso_type |= SKB_GSO_GRE;
3071                else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3072                        gso_type |= SKB_GSO_IPXIP6;
3073                else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3074                        gso_type |= SKB_GSO_IPXIP4;
3075
3076                if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3077                    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3078                        int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3079                                        sizeof(struct ipv6hdr) :
3080                                        sizeof(struct iphdr);
3081
3082                        skb_set_transport_header(skb, mac_len + nh_len);
3083                }
3084
3085                /* Match skb->protocol to new outer l3 protocol */
3086                if (skb->protocol == htons(ETH_P_IP) &&
3087                    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3088                        skb->protocol = htons(ETH_P_IPV6);
3089                else if (skb->protocol == htons(ETH_P_IPV6) &&
3090                         flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3091                        skb->protocol = htons(ETH_P_IP);
3092        }
3093
3094        if (skb_is_gso(skb)) {
3095                struct skb_shared_info *shinfo = skb_shinfo(skb);
3096
3097                /* Due to header grow, MSS needs to be downgraded. */
3098                if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3099                        skb_decrease_gso_size(shinfo, len_diff);
3100
3101                /* Header must be checked, and gso_segs recomputed. */
3102                shinfo->gso_type |= gso_type;
3103                shinfo->gso_segs = 0;
3104        }
3105
3106        return 0;
3107}
3108
3109static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3110                              u64 flags)
3111{
3112        int ret;
3113
3114        if (flags & ~BPF_F_ADJ_ROOM_FIXED_GSO)
3115                return -EINVAL;
3116
3117        if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3118                /* udp gso_size delineates datagrams, only allow if fixed */
3119                if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3120                    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3121                        return -ENOTSUPP;
3122        }
3123
3124        ret = skb_unclone(skb, GFP_ATOMIC);
3125        if (unlikely(ret < 0))
3126                return ret;
3127
3128        ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3129        if (unlikely(ret < 0))
3130                return ret;
3131
3132        if (skb_is_gso(skb)) {
3133                struct skb_shared_info *shinfo = skb_shinfo(skb);
3134
3135                /* Due to header shrink, MSS can be upgraded. */
3136                if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3137                        skb_increase_gso_size(shinfo, len_diff);
3138
3139                /* Header must be checked, and gso_segs recomputed. */
3140                shinfo->gso_type |= SKB_GSO_DODGY;
3141                shinfo->gso_segs = 0;
3142        }
3143
3144        return 0;
3145}
3146
3147static u32 __bpf_skb_max_len(const struct sk_buff *skb)
3148{
3149        return skb->dev ? skb->dev->mtu + skb->dev->hard_header_len :
3150                          SKB_MAX_ALLOC;
3151}
3152
3153BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3154           u32, mode, u64, flags)
3155{
3156        u32 len_cur, len_diff_abs = abs(len_diff);
3157        u32 len_min = bpf_skb_net_base_len(skb);
3158        u32 len_max = __bpf_skb_max_len(skb);
3159        __be16 proto = skb->protocol;
3160        bool shrink = len_diff < 0;
3161        u32 off;
3162        int ret;
3163
3164        if (unlikely(flags & ~BPF_F_ADJ_ROOM_MASK))
3165                return -EINVAL;
3166        if (unlikely(len_diff_abs > 0xfffU))
3167                return -EFAULT;
3168        if (unlikely(proto != htons(ETH_P_IP) &&
3169                     proto != htons(ETH_P_IPV6)))
3170                return -ENOTSUPP;
3171
3172        off = skb_mac_header_len(skb);
3173        switch (mode) {
3174        case BPF_ADJ_ROOM_NET:
3175                off += bpf_skb_net_base_len(skb);
3176                break;
3177        case BPF_ADJ_ROOM_MAC:
3178                break;
3179        default:
3180                return -ENOTSUPP;
3181        }
3182
3183        len_cur = skb->len - skb_network_offset(skb);
3184        if ((shrink && (len_diff_abs >= len_cur ||
3185                        len_cur - len_diff_abs < len_min)) ||
3186            (!shrink && (skb->len + len_diff_abs > len_max &&
3187                         !skb_is_gso(skb))))
3188                return -ENOTSUPP;
3189
3190        ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3191                       bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3192
3193        bpf_compute_data_pointers(skb);
3194        return ret;
3195}
3196
3197static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3198        .func           = bpf_skb_adjust_room,
3199        .gpl_only       = false,
3200        .ret_type       = RET_INTEGER,
3201        .arg1_type      = ARG_PTR_TO_CTX,
3202        .arg2_type      = ARG_ANYTHING,
3203        .arg3_type      = ARG_ANYTHING,
3204        .arg4_type      = ARG_ANYTHING,
3205};
3206
3207static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3208{
3209        u32 min_len = skb_network_offset(skb);
3210
3211        if (skb_transport_header_was_set(skb))
3212                min_len = skb_transport_offset(skb);
3213        if (skb->ip_summed == CHECKSUM_PARTIAL)
3214                min_len = skb_checksum_start_offset(skb) +
3215                          skb->csum_offset + sizeof(__sum16);
3216        return min_len;
3217}
3218
3219static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3220{
3221        unsigned int old_len = skb->len;
3222        int ret;
3223
3224        ret = __skb_grow_rcsum(skb, new_len);
3225        if (!ret)
3226                memset(skb->data + old_len, 0, new_len - old_len);
3227        return ret;
3228}
3229
3230static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3231{
3232        return __skb_trim_rcsum(skb, new_len);
3233}
3234
3235static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3236                                        u64 flags)
3237{
3238        u32 max_len = __bpf_skb_max_len(skb);
3239        u32 min_len = __bpf_skb_min_len(skb);
3240        int ret;
3241
3242        if (unlikely(flags || new_len > max_len || new_len < min_len))
3243                return -EINVAL;
3244        if (skb->encapsulation)
3245                return -ENOTSUPP;
3246
3247        /* The basic idea of this helper is that it's performing the
3248         * needed work to either grow or trim an skb, and eBPF program
3249         * rewrites the rest via helpers like bpf_skb_store_bytes(),
3250         * bpf_lX_csum_replace() and others rather than passing a raw
3251         * buffer here. This one is a slow path helper and intended
3252         * for replies with control messages.
3253         *
3254         * Like in bpf_skb_change_proto(), we want to keep this rather
3255         * minimal and without protocol specifics so that we are able
3256         * to separate concerns as in bpf_skb_store_bytes() should only
3257         * be the one responsible for writing buffers.
3258         *
3259         * It's really expected to be a slow path operation here for
3260         * control message replies, so we're implicitly linearizing,
3261         * uncloning and drop offloads from the skb by this.
3262         */
3263        ret = __bpf_try_make_writable(skb, skb->len);
3264        if (!ret) {
3265                if (new_len > skb->len)
3266                        ret = bpf_skb_grow_rcsum(skb, new_len);
3267                else if (new_len < skb->len)
3268                        ret = bpf_skb_trim_rcsum(skb, new_len);
3269                if (!ret && skb_is_gso(skb))
3270                        skb_gso_reset(skb);
3271        }
3272        return ret;
3273}
3274
3275BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3276           u64, flags)
3277{
3278        int ret = __bpf_skb_change_tail(skb, new_len, flags);
3279
3280        bpf_compute_data_pointers(skb);
3281        return ret;
3282}
3283
3284static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3285        .func           = bpf_skb_change_tail,
3286        .gpl_only       = false,
3287        .ret_type       = RET_INTEGER,
3288        .arg1_type      = ARG_PTR_TO_CTX,
3289        .arg2_type      = ARG_ANYTHING,
3290        .arg3_type      = ARG_ANYTHING,
3291};
3292
3293BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3294           u64, flags)
3295{
3296        int ret = __bpf_skb_change_tail(skb, new_len, flags);
3297
3298        bpf_compute_data_end_sk_skb(skb);
3299        return ret;
3300}
3301
3302static const struct bpf_func_proto sk_skb_change_tail_proto = {
3303        .func           = sk_skb_change_tail,
3304        .gpl_only       = false,
3305        .ret_type       = RET_INTEGER,
3306        .arg1_type      = ARG_PTR_TO_CTX,
3307        .arg2_type      = ARG_ANYTHING,
3308        .arg3_type      = ARG_ANYTHING,
3309};
3310
3311static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3312                                        u64 flags)
3313{
3314        u32 max_len = __bpf_skb_max_len(skb);
3315        u32 new_len = skb->len + head_room;
3316        int ret;
3317
3318        if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3319                     new_len < skb->len))
3320                return -EINVAL;
3321
3322        ret = skb_cow(skb, head_room);
3323        if (likely(!ret)) {
3324                /* Idea for this helper is that we currently only
3325                 * allow to expand on mac header. This means that
3326                 * skb->protocol network header, etc, stay as is.
3327                 * Compared to bpf_skb_change_tail(), we're more
3328                 * flexible due to not needing to linearize or
3329                 * reset GSO. Intention for this helper is to be
3330                 * used by an L3 skb that needs to push mac header
3331                 * for redirection into L2 device.
3332                 */
3333                __skb_push(skb, head_room);
3334                memset(skb->data, 0, head_room);
3335                skb_reset_mac_header(skb);
3336        }
3337
3338        return ret;
3339}
3340
3341BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3342           u64, flags)
3343{
3344        int ret = __bpf_skb_change_head(skb, head_room, flags);
3345
3346        bpf_compute_data_pointers(skb);
3347        return ret;
3348}
3349
3350static const struct bpf_func_proto bpf_skb_change_head_proto = {
3351        .func           = bpf_skb_change_head,
3352        .gpl_only       = false,
3353        .ret_type       = RET_INTEGER,
3354        .arg1_type      = ARG_PTR_TO_CTX,
3355        .arg2_type      = ARG_ANYTHING,
3356        .arg3_type      = ARG_ANYTHING,
3357};
3358
3359BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3360           u64, flags)
3361{
3362        int ret = __bpf_skb_change_head(skb, head_room, flags);
3363
3364        bpf_compute_data_end_sk_skb(skb);
3365        return ret;
3366}
3367
3368static const struct bpf_func_proto sk_skb_change_head_proto = {
3369        .func           = sk_skb_change_head,
3370        .gpl_only       = false,
3371        .ret_type       = RET_INTEGER,
3372        .arg1_type      = ARG_PTR_TO_CTX,
3373        .arg2_type      = ARG_ANYTHING,
3374        .arg3_type      = ARG_ANYTHING,
3375};
3376static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3377{
3378        return xdp_data_meta_unsupported(xdp) ? 0 :
3379               xdp->data - xdp->data_meta;
3380}
3381
3382BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3383{
3384        void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3385        unsigned long metalen = xdp_get_metalen(xdp);
3386        void *data_start = xdp_frame_end + metalen;
3387        void *data = xdp->data + offset;
3388
3389        if (unlikely(data < data_start ||
3390                     data > xdp->data_end - ETH_HLEN))
3391                return -EINVAL;
3392
3393        if (metalen)
3394                memmove(xdp->data_meta + offset,
3395                        xdp->data_meta, metalen);
3396        xdp->data_meta += offset;
3397        xdp->data = data;
3398
3399        return 0;
3400}
3401
3402static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3403        .func           = bpf_xdp_adjust_head,
3404        .gpl_only       = false,
3405        .ret_type       = RET_INTEGER,
3406        .arg1_type      = ARG_PTR_TO_CTX,
3407        .arg2_type      = ARG_ANYTHING,
3408};
3409
3410BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
3411{
3412        void *data_end = xdp->data_end + offset;
3413
3414        /* only shrinking is allowed for now. */
3415        if (unlikely(offset >= 0))
3416                return -EINVAL;
3417
3418        if (unlikely(data_end < xdp->data + ETH_HLEN))
3419                return -EINVAL;
3420
3421        xdp->data_end = data_end;
3422
3423        return 0;
3424}
3425
3426static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
3427        .func           = bpf_xdp_adjust_tail,
3428        .gpl_only       = false,
3429        .ret_type       = RET_INTEGER,
3430        .arg1_type      = ARG_PTR_TO_CTX,
3431        .arg2_type      = ARG_ANYTHING,
3432};
3433
3434BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
3435{
3436        void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3437        void *meta = xdp->data_meta + offset;
3438        unsigned long metalen = xdp->data - meta;
3439
3440        if (xdp_data_meta_unsupported(xdp))
3441                return -ENOTSUPP;
3442        if (unlikely(meta < xdp_frame_end ||
3443                     meta > xdp->data))
3444                return -EINVAL;
3445        if (unlikely((metalen & (sizeof(__u32) - 1)) ||
3446                     (metalen > 32)))
3447                return -EACCES;
3448
3449        xdp->data_meta = meta;
3450
3451        return 0;
3452}
3453
3454static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
3455        .func           = bpf_xdp_adjust_meta,
3456        .gpl_only       = false,
3457        .ret_type       = RET_INTEGER,
3458        .arg1_type      = ARG_PTR_TO_CTX,
3459        .arg2_type      = ARG_ANYTHING,
3460};
3461
3462static int __bpf_tx_xdp(struct net_device *dev,
3463                        struct bpf_map *map,
3464                        struct xdp_buff *xdp,
3465                        u32 index)
3466{
3467        struct xdp_frame *xdpf;
3468        int err, sent;
3469
3470        if (!dev->netdev_ops->ndo_xdp_xmit) {
3471                return -EOPNOTSUPP;
3472        }
3473
3474        err = xdp_ok_fwd_dev(dev, xdp->data_end - xdp->data);
3475        if (unlikely(err))
3476                return err;
3477
3478        xdpf = convert_to_xdp_frame(xdp);
3479        if (unlikely(!xdpf))
3480                return -EOVERFLOW;
3481
3482        sent = dev->netdev_ops->ndo_xdp_xmit(dev, 1, &xdpf, XDP_XMIT_FLUSH);
3483        if (sent <= 0)
3484                return sent;
3485        return 0;
3486}
3487
3488static noinline int
3489xdp_do_redirect_slow(struct net_device *dev, struct xdp_buff *xdp,
3490                     struct bpf_prog *xdp_prog, struct bpf_redirect_info *ri)
3491{
3492        struct net_device *fwd;
3493        u32 index = ri->tgt_index;
3494        int err;
3495
3496        fwd = dev_get_by_index_rcu(dev_net(dev), index);
3497        ri->tgt_index = 0;
3498        if (unlikely(!fwd)) {
3499                err = -EINVAL;
3500                goto err;
3501        }
3502
3503        err = __bpf_tx_xdp(fwd, NULL, xdp, 0);
3504        if (unlikely(err))
3505                goto err;
3506
3507        _trace_xdp_redirect(dev, xdp_prog, index);
3508        return 0;
3509err:
3510        _trace_xdp_redirect_err(dev, xdp_prog, index, err);
3511        return err;
3512}
3513
3514static int __bpf_tx_xdp_map(struct net_device *dev_rx, void *fwd,
3515                            struct bpf_map *map,
3516                            struct xdp_buff *xdp,
3517                            u32 index)
3518{
3519        int err;
3520
3521        switch (map->map_type) {
3522        case BPF_MAP_TYPE_DEVMAP:
3523        case BPF_MAP_TYPE_DEVMAP_HASH: {
3524                struct bpf_dtab_netdev *dst = fwd;
3525
3526                err = dev_map_enqueue(dst, xdp, dev_rx);
3527                if (unlikely(err))
3528                        return err;
3529                break;
3530        }
3531        case BPF_MAP_TYPE_CPUMAP: {
3532                struct bpf_cpu_map_entry *rcpu = fwd;
3533
3534                err = cpu_map_enqueue(rcpu, xdp, dev_rx);
3535                if (unlikely(err))
3536                        return err;
3537                break;
3538        }
3539        case BPF_MAP_TYPE_XSKMAP: {
3540                struct xdp_sock *xs = fwd;
3541
3542                err = __xsk_map_redirect(map, xdp, xs);
3543                return err;
3544        }
3545        default:
3546                break;
3547        }
3548        return 0;
3549}
3550
3551void xdp_do_flush_map(void)
3552{
3553        struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3554        struct bpf_map *map = ri->map_to_flush;
3555
3556        ri->map_to_flush = NULL;
3557        if (map) {
3558                switch (map->map_type) {
3559                case BPF_MAP_TYPE_DEVMAP:
3560                case BPF_MAP_TYPE_DEVMAP_HASH:
3561                        __dev_map_flush(map);
3562                        break;
3563                case BPF_MAP_TYPE_CPUMAP:
3564                        __cpu_map_flush(map);
3565                        break;
3566                case BPF_MAP_TYPE_XSKMAP:
3567                        __xsk_map_flush(map);
3568                        break;
3569                default:
3570                        break;
3571                }
3572        }
3573}
3574EXPORT_SYMBOL_GPL(xdp_do_flush_map);
3575
3576static inline void *__xdp_map_lookup_elem(struct bpf_map *map, u32 index)
3577{
3578        switch (map->map_type) {
3579        case BPF_MAP_TYPE_DEVMAP:
3580                return __dev_map_lookup_elem(map, index);
3581        case BPF_MAP_TYPE_DEVMAP_HASH:
3582                return __dev_map_hash_lookup_elem(map, index);
3583        case BPF_MAP_TYPE_CPUMAP:
3584                return __cpu_map_lookup_elem(map, index);
3585        case BPF_MAP_TYPE_XSKMAP:
3586                return __xsk_map_lookup_elem(map, index);
3587        default:
3588                return NULL;
3589        }
3590}
3591
3592void bpf_clear_redirect_map(struct bpf_map *map)
3593{
3594        struct bpf_redirect_info *ri;
3595        int cpu;
3596
3597        for_each_possible_cpu(cpu) {
3598                ri = per_cpu_ptr(&bpf_redirect_info, cpu);
3599                /* Avoid polluting remote cacheline due to writes if
3600                 * not needed. Once we pass this test, we need the
3601                 * cmpxchg() to make sure it hasn't been changed in
3602                 * the meantime by remote CPU.
3603                 */
3604                if (unlikely(READ_ONCE(ri->map) == map))
3605                        cmpxchg(&ri->map, map, NULL);
3606        }
3607}
3608
3609static int xdp_do_redirect_map(struct net_device *dev, struct xdp_buff *xdp,
3610                               struct bpf_prog *xdp_prog, struct bpf_map *map,
3611                               struct bpf_redirect_info *ri)
3612{
3613        u32 index = ri->tgt_index;
3614        void *fwd = ri->tgt_value;
3615        int err;
3616
3617        ri->tgt_index = 0;
3618        ri->tgt_value = NULL;
3619        WRITE_ONCE(ri->map, NULL);
3620
3621        if (ri->map_to_flush && unlikely(ri->map_to_flush != map))
3622                xdp_do_flush_map();
3623
3624        err = __bpf_tx_xdp_map(dev, fwd, map, xdp, index);
3625        if (unlikely(err))
3626                goto err;
3627
3628        ri->map_to_flush = map;
3629        _trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
3630        return 0;
3631err:
3632        _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
3633        return err;
3634}
3635
3636int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
3637                    struct bpf_prog *xdp_prog)
3638{
3639        struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3640        struct bpf_map *map = READ_ONCE(ri->map);
3641
3642        if (likely(map))
3643                return xdp_do_redirect_map(dev, xdp, xdp_prog, map, ri);
3644
3645        return xdp_do_redirect_slow(dev, xdp, xdp_prog, ri);
3646}
3647EXPORT_SYMBOL_GPL(xdp_do_redirect);
3648
3649static int xdp_do_generic_redirect_map(struct net_device *dev,
3650                                       struct sk_buff *skb,
3651                                       struct xdp_buff *xdp,
3652                                       struct bpf_prog *xdp_prog,
3653                                       struct bpf_map *map)
3654{
3655        struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3656        u32 index = ri->tgt_index;
3657        void *fwd = ri->tgt_value;
3658        int err = 0;
3659
3660        ri->tgt_index = 0;
3661        ri->tgt_value = NULL;
3662        WRITE_ONCE(ri->map, NULL);
3663
3664        if (map->map_type == BPF_MAP_TYPE_DEVMAP ||
3665            map->map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
3666                struct bpf_dtab_netdev *dst = fwd;
3667
3668                err = dev_map_generic_redirect(dst, skb, xdp_prog);
3669                if (unlikely(err))
3670                        goto err;
3671        } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
3672                struct xdp_sock *xs = fwd;
3673
3674                err = xsk_generic_rcv(xs, xdp);
3675                if (err)
3676                        goto err;
3677                consume_skb(skb);
3678        } else {
3679                /* TODO: Handle BPF_MAP_TYPE_CPUMAP */
3680                err = -EBADRQC;
3681                goto err;
3682        }
3683
3684        _trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
3685        return 0;
3686err:
3687        _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
3688        return err;
3689}
3690
3691int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
3692                            struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
3693{
3694        struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3695        struct bpf_map *map = READ_ONCE(ri->map);
3696        u32 index = ri->tgt_index;
3697        struct net_device *fwd;
3698        int err = 0;
3699
3700        if (map)
3701                return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog,
3702                                                   map);
3703        ri->tgt_index = 0;
3704        fwd = dev_get_by_index_rcu(dev_net(dev), index);
3705        if (unlikely(!fwd)) {
3706                err = -EINVAL;
3707                goto err;
3708        }
3709
3710        err = xdp_ok_fwd_dev(fwd, skb->len);
3711        if (unlikely(err))
3712                goto err;
3713
3714        skb->dev = fwd;
3715        _trace_xdp_redirect(dev, xdp_prog, index);
3716        generic_xdp_tx(skb, xdp_prog);
3717        return 0;
3718err:
3719        _trace_xdp_redirect_err(dev, xdp_prog, index, err);
3720        return err;
3721}
3722EXPORT_SYMBOL_GPL(xdp_do_generic_redirect);
3723
3724BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
3725{
3726        struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3727
3728        if (unlikely(flags))
3729                return XDP_ABORTED;
3730
3731        ri->flags = flags;
3732        ri->tgt_index = ifindex;
3733        ri->tgt_value = NULL;
3734        WRITE_ONCE(ri->map, NULL);
3735
3736        return XDP_REDIRECT;
3737}
3738
3739static const struct bpf_func_proto bpf_xdp_redirect_proto = {
3740        .func           = bpf_xdp_redirect,
3741        .gpl_only       = false,
3742        .ret_type       = RET_INTEGER,
3743        .arg1_type      = ARG_ANYTHING,
3744        .arg2_type      = ARG_ANYTHING,
3745};
3746
3747BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u32, ifindex,
3748           u64, flags)
3749{
3750        struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3751
3752        /* Lower bits of the flags are used as return code on lookup failure */
3753        if (unlikely(flags > XDP_TX))
3754                return XDP_ABORTED;
3755
3756        ri->tgt_value = __xdp_map_lookup_elem(map, ifindex);
3757        if (unlikely(!ri->tgt_value)) {
3758                /* If the lookup fails we want to clear out the state in the
3759                 * redirect_info struct completely, so that if an eBPF program
3760                 * performs multiple lookups, the last one always takes
3761                 * precedence.
3762                 */
3763                WRITE_ONCE(ri->map, NULL);
3764                return flags;
3765        }
3766
3767        ri->flags = flags;
3768        ri->tgt_index = ifindex;
3769        WRITE_ONCE(ri->map, map);
3770
3771        return XDP_REDIRECT;
3772}
3773
3774static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
3775        .func           = bpf_xdp_redirect_map,
3776        .gpl_only       = false,
3777        .ret_type       = RET_INTEGER,
3778        .arg1_type      = ARG_CONST_MAP_PTR,
3779        .arg2_type      = ARG_ANYTHING,
3780        .arg3_type      = ARG_ANYTHING,
3781};
3782
3783static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
3784                                  unsigned long off, unsigned long len)
3785{
3786        void *ptr = skb_header_pointer(skb, off, len, dst_buff);
3787
3788        if (unlikely(!ptr))
3789                return len;
3790        if (ptr != dst_buff)
3791                memcpy(dst_buff, ptr, len);
3792
3793        return 0;
3794}
3795
3796BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
3797           u64, flags, void *, meta, u64, meta_size)
3798{
3799        u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
3800
3801        if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
3802                return -EINVAL;
3803        if (unlikely(!skb || skb_size > skb->len))
3804                return -EFAULT;
3805
3806        return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
3807                                bpf_skb_copy);
3808}
3809
3810static const struct bpf_func_proto bpf_skb_event_output_proto = {
3811        .func           = bpf_skb_event_output,
3812        .gpl_only       = true,
3813        .ret_type       = RET_INTEGER,
3814        .arg1_type      = ARG_PTR_TO_CTX,
3815        .arg2_type      = ARG_CONST_MAP_PTR,
3816        .arg3_type      = ARG_ANYTHING,
3817        .arg4_type      = ARG_PTR_TO_MEM,
3818        .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
3819};
3820
3821static int bpf_skb_output_btf_ids[5];
3822const struct bpf_func_proto bpf_skb_output_proto = {
3823        .func           = bpf_skb_event_output,
3824        .gpl_only       = true,
3825        .ret_type       = RET_INTEGER,
3826        .arg1_type      = ARG_PTR_TO_BTF_ID,
3827        .arg2_type      = ARG_CONST_MAP_PTR,
3828        .arg3_type      = ARG_ANYTHING,
3829        .arg4_type      = ARG_PTR_TO_MEM,
3830        .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
3831        .btf_id         = bpf_skb_output_btf_ids,
3832};
3833
3834static unsigned short bpf_tunnel_key_af(u64 flags)
3835{
3836        return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
3837}
3838
3839BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
3840           u32, size, u64, flags)
3841{
3842        const struct ip_tunnel_info *info = skb_tunnel_info(skb);
3843        u8 compat[sizeof(struct bpf_tunnel_key)];
3844        void *to_orig = to;
3845        int err;
3846
3847        if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6)))) {
3848                err = -EINVAL;
3849                goto err_clear;
3850        }
3851        if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
3852                err = -EPROTO;
3853                goto err_clear;
3854        }
3855        if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
3856                err = -EINVAL;
3857                switch (size) {
3858                case offsetof(struct bpf_tunnel_key, tunnel_label):
3859                case offsetof(struct bpf_tunnel_key, tunnel_ext):
3860                        goto set_compat;
3861                case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
3862                        /* Fixup deprecated structure layouts here, so we have
3863                         * a common path later on.
3864                         */
3865                        if (ip_tunnel_info_af(info) != AF_INET)
3866                                goto err_clear;
3867set_compat:
3868                        to = (struct bpf_tunnel_key *)compat;
3869                        break;
3870                default:
3871                        goto err_clear;
3872                }
3873        }
3874
3875        to->tunnel_id = be64_to_cpu(info->key.tun_id);
3876        to->tunnel_tos = info->key.tos;
3877        to->tunnel_ttl = info->key.ttl;
3878        to->tunnel_ext = 0;
3879
3880        if (flags & BPF_F_TUNINFO_IPV6) {
3881                memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
3882                       sizeof(to->remote_ipv6));
3883                to->tunnel_label = be32_to_cpu(info->key.label);
3884        } else {
3885                to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
3886                memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
3887                to->tunnel_label = 0;
3888        }
3889
3890        if (unlikely(size != sizeof(struct bpf_tunnel_key)))
3891                memcpy(to_orig, to, size);
3892
3893        return 0;
3894err_clear:
3895        memset(to_orig, 0, size);
3896        return err;
3897}
3898
3899static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
3900        .func           = bpf_skb_get_tunnel_key,
3901        .gpl_only       = false,
3902        .ret_type       = RET_INTEGER,
3903        .arg1_type      = ARG_PTR_TO_CTX,
3904        .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
3905        .arg3_type      = ARG_CONST_SIZE,
3906        .arg4_type      = ARG_ANYTHING,
3907};
3908
3909BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
3910{
3911        const struct ip_tunnel_info *info = skb_tunnel_info(skb);
3912        int err;
3913
3914        if (unlikely(!info ||
3915                     !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
3916                err = -ENOENT;
3917                goto err_clear;
3918        }
3919        if (unlikely(size < info->options_len)) {
3920                err = -ENOMEM;
3921                goto err_clear;
3922        }
3923
3924        ip_tunnel_info_opts_get(to, info);
3925        if (size > info->options_len)
3926                memset(to + info->options_len, 0, size - info->options_len);
3927
3928        return info->options_len;
3929err_clear:
3930        memset(to, 0, size);
3931        return err;
3932}
3933
3934static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
3935        .func           = bpf_skb_get_tunnel_opt,
3936        .gpl_only       = false,
3937        .ret_type       = RET_INTEGER,
3938        .arg1_type      = ARG_PTR_TO_CTX,
3939        .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
3940        .arg3_type      = ARG_CONST_SIZE,
3941};
3942
3943static struct metadata_dst __percpu *md_dst;
3944
3945BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
3946           const struct bpf_tunnel_key *, from, u32, size, u64, flags)
3947{
3948        struct metadata_dst *md = this_cpu_ptr(md_dst);
3949        u8 compat[sizeof(struct bpf_tunnel_key)];
3950        struct ip_tunnel_info *info;
3951
3952        if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
3953                               BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER)))
3954                return -EINVAL;
3955        if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
3956                switch (size) {
3957                case offsetof(struct bpf_tunnel_key, tunnel_label):
3958                case offsetof(struct bpf_tunnel_key, tunnel_ext):
3959                case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
3960                        /* Fixup deprecated structure layouts here, so we have
3961                         * a common path later on.
3962                         */
3963                        memcpy(compat, from, size);
3964                        memset(compat + size, 0, sizeof(compat) - size);
3965                        from = (const struct bpf_tunnel_key *) compat;
3966                        break;
3967                default:
3968                        return -EINVAL;
3969                }
3970        }
3971        if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
3972                     from->tunnel_ext))
3973                return -EINVAL;
3974
3975        skb_dst_drop(skb);
3976        dst_hold((struct dst_entry *) md);
3977        skb_dst_set(skb, (struct dst_entry *) md);
3978
3979        info = &md->u.tun_info;
3980        memset(info, 0, sizeof(*info));
3981        info->mode = IP_TUNNEL_INFO_TX;
3982
3983        info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
3984        if (flags & BPF_F_DONT_FRAGMENT)
3985                info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
3986        if (flags & BPF_F_ZERO_CSUM_TX)
3987                info->key.tun_flags &= ~TUNNEL_CSUM;
3988        if (flags & BPF_F_SEQ_NUMBER)
3989                info->key.tun_flags |= TUNNEL_SEQ;
3990
3991        info->key.tun_id = cpu_to_be64(from->tunnel_id);
3992        info->key.tos = from->tunnel_tos;
3993        info->key.ttl = from->tunnel_ttl;
3994
3995        if (flags & BPF_F_TUNINFO_IPV6) {
3996                info->mode |= IP_TUNNEL_INFO_IPV6;
3997                memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
3998                       sizeof(from->remote_ipv6));
3999                info->key.label = cpu_to_be32(from->tunnel_label) &
4000                                  IPV6_FLOWLABEL_MASK;
4001        } else {
4002                info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
4003        }
4004
4005        return 0;
4006}
4007
4008static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
4009        .func           = bpf_skb_set_tunnel_key,
4010        .gpl_only       = false,
4011        .ret_type       = RET_INTEGER,
4012        .arg1_type      = ARG_PTR_TO_CTX,
4013        .arg2_type      = ARG_PTR_TO_MEM,
4014        .arg3_type      = ARG_CONST_SIZE,
4015        .arg4_type      = ARG_ANYTHING,
4016};
4017
4018BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
4019           const u8 *, from, u32, size)
4020{
4021        struct ip_tunnel_info *info = skb_tunnel_info(skb);
4022        const struct metadata_dst *md = this_cpu_ptr(md_dst);
4023
4024        if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
4025                return -EINVAL;
4026        if (unlikely(size > IP_TUNNEL_OPTS_MAX))
4027                return -ENOMEM;
4028
4029        ip_tunnel_info_opts_set(info, from, size, TUNNEL_OPTIONS_PRESENT);
4030
4031        return 0;
4032}
4033
4034static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
4035        .func           = bpf_skb_set_tunnel_opt,
4036        .gpl_only       = false,
4037        .ret_type       = RET_INTEGER,
4038        .arg1_type      = ARG_PTR_TO_CTX,
4039        .arg2_type      = ARG_PTR_TO_MEM,
4040        .arg3_type      = ARG_CONST_SIZE,
4041};
4042
4043static const struct bpf_func_proto *
4044bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
4045{
4046        if (!md_dst) {
4047                struct metadata_dst __percpu *tmp;
4048
4049                tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
4050                                                METADATA_IP_TUNNEL,
4051                                                GFP_KERNEL);
4052                if (!tmp)
4053                        return NULL;
4054                if (cmpxchg(&md_dst, NULL, tmp))
4055                        metadata_dst_free_percpu(tmp);
4056        }
4057
4058        switch (which) {
4059        case BPF_FUNC_skb_set_tunnel_key:
4060                return &bpf_skb_set_tunnel_key_proto;
4061        case BPF_FUNC_skb_set_tunnel_opt:
4062                return &bpf_skb_set_tunnel_opt_proto;
4063        default:
4064                return NULL;
4065        }
4066}
4067
4068BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
4069           u32, idx)
4070{
4071        struct bpf_array *array = container_of(map, struct bpf_array, map);
4072        struct cgroup *cgrp;
4073        struct sock *sk;
4074
4075        sk = skb_to_full_sk(skb);
4076        if (!sk || !sk_fullsock(sk))
4077                return -ENOENT;
4078        if (unlikely(idx >= array->map.max_entries))
4079                return -E2BIG;
4080
4081        cgrp = READ_ONCE(array->ptrs[idx]);
4082        if (unlikely(!cgrp))
4083                return -EAGAIN;
4084
4085        return sk_under_cgroup_hierarchy(sk, cgrp);
4086}
4087
4088static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
4089        .func           = bpf_skb_under_cgroup,
4090        .gpl_only       = false,
4091        .ret_type       = RET_INTEGER,
4092        .arg1_type      = ARG_PTR_TO_CTX,
4093        .arg2_type      = ARG_CONST_MAP_PTR,
4094        .arg3_type      = ARG_ANYTHING,
4095};
4096
4097#ifdef CONFIG_SOCK_CGROUP_DATA
4098BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
4099{
4100        struct sock *sk = skb_to_full_sk(skb);
4101        struct cgroup *cgrp;
4102
4103        if (!sk || !sk_fullsock(sk))
4104                return 0;
4105
4106        cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4107        return cgroup_id(cgrp);
4108}
4109
4110static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
4111        .func           = bpf_skb_cgroup_id,
4112        .gpl_only       = false,
4113        .ret_type       = RET_INTEGER,
4114        .arg1_type      = ARG_PTR_TO_CTX,
4115};
4116
4117BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
4118           ancestor_level)
4119{
4120        struct sock *sk = skb_to_full_sk(skb);
4121        struct cgroup *ancestor;
4122        struct cgroup *cgrp;
4123
4124        if (!sk || !sk_fullsock(sk))
4125                return 0;
4126
4127        cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4128        ancestor = cgroup_ancestor(cgrp, ancestor_level);
4129        if (!ancestor)
4130                return 0;
4131
4132        return cgroup_id(ancestor);
4133}
4134
4135static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
4136        .func           = bpf_skb_ancestor_cgroup_id,
4137        .gpl_only       = false,
4138        .ret_type       = RET_INTEGER,
4139        .arg1_type      = ARG_PTR_TO_CTX,
4140        .arg2_type      = ARG_ANYTHING,
4141};
4142#endif
4143
4144static unsigned long bpf_xdp_copy(void *dst_buff, const void *src_buff,
4145                                  unsigned long off, unsigned long len)
4146{
4147        memcpy(dst_buff, src_buff + off, len);
4148        return 0;
4149}
4150
4151BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
4152           u64, flags, void *, meta, u64, meta_size)
4153{
4154        u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4155
4156        if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4157                return -EINVAL;
4158        if (unlikely(xdp_size > (unsigned long)(xdp->data_end - xdp->data)))
4159                return -EFAULT;
4160
4161        return bpf_event_output(map, flags, meta, meta_size, xdp->data,
4162                                xdp_size, bpf_xdp_copy);
4163}
4164
4165static const struct bpf_func_proto bpf_xdp_event_output_proto = {
4166        .func           = bpf_xdp_event_output,
4167        .gpl_only       = true,
4168        .ret_type       = RET_INTEGER,
4169        .arg1_type      = ARG_PTR_TO_CTX,
4170        .arg2_type      = ARG_CONST_MAP_PTR,
4171        .arg3_type      = ARG_ANYTHING,
4172        .arg4_type      = ARG_PTR_TO_MEM,
4173        .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4174};
4175
4176BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
4177{
4178        return skb->sk ? sock_gen_cookie(skb->sk) : 0;
4179}
4180
4181static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
4182        .func           = bpf_get_socket_cookie,
4183        .gpl_only       = false,
4184        .ret_type       = RET_INTEGER,
4185        .arg1_type      = ARG_PTR_TO_CTX,
4186};
4187
4188BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4189{
4190        return sock_gen_cookie(ctx->sk);
4191}
4192
4193static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
4194        .func           = bpf_get_socket_cookie_sock_addr,
4195        .gpl_only       = false,
4196        .ret_type       = RET_INTEGER,
4197        .arg1_type      = ARG_PTR_TO_CTX,
4198};
4199
4200BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
4201{
4202        return sock_gen_cookie(ctx->sk);
4203}
4204
4205static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
4206        .func           = bpf_get_socket_cookie_sock_ops,
4207        .gpl_only       = false,
4208        .ret_type       = RET_INTEGER,
4209        .arg1_type      = ARG_PTR_TO_CTX,
4210};
4211
4212BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
4213{
4214        struct sock *sk = sk_to_full_sk(skb->sk);
4215        kuid_t kuid;
4216
4217        if (!sk || !sk_fullsock(sk))
4218                return overflowuid;
4219        kuid = sock_net_uid(sock_net(sk), sk);
4220        return from_kuid_munged(sock_net(sk)->user_ns, kuid);
4221}
4222
4223static const struct bpf_func_proto bpf_get_socket_uid_proto = {
4224        .func           = bpf_get_socket_uid,
4225        .gpl_only       = false,
4226        .ret_type       = RET_INTEGER,
4227        .arg1_type      = ARG_PTR_TO_CTX,
4228};
4229
4230BPF_CALL_5(bpf_sockopt_event_output, struct bpf_sock_ops_kern *, bpf_sock,
4231           struct bpf_map *, map, u64, flags, void *, data, u64, size)
4232{
4233        if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
4234                return -EINVAL;
4235
4236        return bpf_event_output(map, flags, data, size, NULL, 0, NULL);
4237}
4238
4239static const struct bpf_func_proto bpf_sockopt_event_output_proto =  {
4240        .func           = bpf_sockopt_event_output,
4241        .gpl_only       = true,
4242        .ret_type       = RET_INTEGER,
4243        .arg1_type      = ARG_PTR_TO_CTX,
4244        .arg2_type      = ARG_CONST_MAP_PTR,
4245        .arg3_type      = ARG_ANYTHING,
4246        .arg4_type      = ARG_PTR_TO_MEM,
4247        .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4248};
4249
4250BPF_CALL_5(bpf_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
4251           int, level, int, optname, char *, optval, int, optlen)
4252{
4253        struct sock *sk = bpf_sock->sk;
4254        int ret = 0;
4255        int val;
4256
4257        if (!sk_fullsock(sk))
4258                return -EINVAL;
4259
4260        if (level == SOL_SOCKET) {
4261                if (optlen != sizeof(int))
4262                        return -EINVAL;
4263                val = *((int *)optval);
4264
4265                /* Only some socketops are supported */
4266                switch (optname) {
4267                case SO_RCVBUF:
4268                        val = min_t(u32, val, sysctl_rmem_max);
4269                        sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
4270                        WRITE_ONCE(sk->sk_rcvbuf,
4271                                   max_t(int, val * 2, SOCK_MIN_RCVBUF));
4272                        break;
4273                case SO_SNDBUF:
4274                        val = min_t(u32, val, sysctl_wmem_max);
4275                        sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
4276                        WRITE_ONCE(sk->sk_sndbuf,
4277                                   max_t(int, val * 2, SOCK_MIN_SNDBUF));
4278                        break;
4279                case SO_MAX_PACING_RATE: /* 32bit version */
4280                        if (val != ~0U)
4281                                cmpxchg(&sk->sk_pacing_status,
4282                                        SK_PACING_NONE,
4283                                        SK_PACING_NEEDED);
4284                        sk->sk_max_pacing_rate = (val == ~0U) ? ~0UL : val;
4285                        sk->sk_pacing_rate = min(sk->sk_pacing_rate,
4286                                                 sk->sk_max_pacing_rate);
4287                        break;
4288                case SO_PRIORITY:
4289                        sk->sk_priority = val;
4290                        break;
4291                case SO_RCVLOWAT:
4292                        if (val < 0)
4293                                val = INT_MAX;
4294                        WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
4295                        break;
4296                case SO_MARK:
4297                        if (sk->sk_mark != val) {
4298                                sk->sk_mark = val;
4299                                sk_dst_reset(sk);
4300                        }
4301                        break;
4302                default:
4303                        ret = -EINVAL;
4304                }
4305#ifdef CONFIG_INET
4306        } else if (level == SOL_IP) {
4307                if (optlen != sizeof(int) || sk->sk_family != AF_INET)
4308                        return -EINVAL;
4309
4310                val = *((int *)optval);
4311                /* Only some options are supported */
4312                switch (optname) {
4313                case IP_TOS:
4314                        if (val < -1 || val > 0xff) {
4315                                ret = -EINVAL;
4316                        } else {
4317                                struct inet_sock *inet = inet_sk(sk);
4318
4319                                if (val == -1)
4320                                        val = 0;
4321                                inet->tos = val;
4322                        }
4323                        break;
4324                default:
4325                        ret = -EINVAL;
4326                }
4327#if IS_ENABLED(CONFIG_IPV6)
4328        } else if (level == SOL_IPV6) {
4329                if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
4330                        return -EINVAL;
4331
4332                val = *((int *)optval);
4333                /* Only some options are supported */
4334                switch (optname) {
4335                case IPV6_TCLASS:
4336                        if (val < -1 || val > 0xff) {
4337                                ret = -EINVAL;
4338                        } else {
4339                                struct ipv6_pinfo *np = inet6_sk(sk);
4340
4341                                if (val == -1)
4342                                        val = 0;
4343                                np->tclass = val;
4344                        }
4345                        break;
4346                default:
4347                        ret = -EINVAL;
4348                }
4349#endif
4350        } else if (level == SOL_TCP &&
4351                   sk->sk_prot->setsockopt == tcp_setsockopt) {
4352                if (optname == TCP_CONGESTION) {
4353                        char name[TCP_CA_NAME_MAX];
4354                        bool reinit = bpf_sock->op > BPF_SOCK_OPS_NEEDS_ECN;
4355
4356                        strncpy(name, optval, min_t(long, optlen,
4357                                                    TCP_CA_NAME_MAX-1));
4358                        name[TCP_CA_NAME_MAX-1] = 0;
4359                        ret = tcp_set_congestion_control(sk, name, false,
4360                                                         reinit, true);
4361                } else {
4362                        struct tcp_sock *tp = tcp_sk(sk);
4363
4364                        if (optlen != sizeof(int))
4365                                return -EINVAL;
4366
4367                        val = *((int *)optval);
4368                        /* Only some options are supported */
4369                        switch (optname) {
4370                        case TCP_BPF_IW:
4371                                if (val <= 0 || tp->data_segs_out > tp->syn_data)
4372                                        ret = -EINVAL;
4373                                else
4374                                        tp->snd_cwnd = val;
4375                                break;
4376                        case TCP_BPF_SNDCWND_CLAMP:
4377                                if (val <= 0) {
4378                                        ret = -EINVAL;
4379                                } else {
4380                                        tp->snd_cwnd_clamp = val;
4381                                        tp->snd_ssthresh = val;
4382                                }
4383                                break;
4384                        case TCP_SAVE_SYN:
4385                                if (val < 0 || val > 1)
4386                                        ret = -EINVAL;
4387                                else
4388                                        tp->save_syn = val;
4389                                break;
4390                        default:
4391                                ret = -EINVAL;
4392                        }
4393                }
4394#endif
4395        } else {
4396                ret = -EINVAL;
4397        }
4398        return ret;
4399}
4400
4401static const struct bpf_func_proto bpf_setsockopt_proto = {
4402        .func           = bpf_setsockopt,
4403        .gpl_only       = false,
4404        .ret_type       = RET_INTEGER,
4405        .arg1_type      = ARG_PTR_TO_CTX,
4406        .arg2_type      = ARG_ANYTHING,
4407        .arg3_type      = ARG_ANYTHING,
4408        .arg4_type      = ARG_PTR_TO_MEM,
4409        .arg5_type      = ARG_CONST_SIZE,
4410};
4411
4412BPF_CALL_5(bpf_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
4413           int, level, int, optname, char *, optval, int, optlen)
4414{
4415        struct sock *sk = bpf_sock->sk;
4416
4417        if (!sk_fullsock(sk))
4418                goto err_clear;
4419#ifdef CONFIG_INET
4420        if (level == SOL_TCP && sk->sk_prot->getsockopt == tcp_getsockopt) {
4421                struct inet_connection_sock *icsk;
4422                struct tcp_sock *tp;
4423
4424                switch (optname) {
4425                case TCP_CONGESTION:
4426                        icsk = inet_csk(sk);
4427
4428                        if (!icsk->icsk_ca_ops || optlen <= 1)
4429                                goto err_clear;
4430                        strncpy(optval, icsk->icsk_ca_ops->name, optlen);
4431                        optval[optlen - 1] = 0;
4432                        break;
4433                case TCP_SAVED_SYN:
4434                        tp = tcp_sk(sk);
4435
4436                        if (optlen <= 0 || !tp->saved_syn ||
4437                            optlen > tp->saved_syn[0])
4438                                goto err_clear;
4439                        memcpy(optval, tp->saved_syn + 1, optlen);
4440                        break;
4441                default:
4442                        goto err_clear;
4443                }
4444        } else if (level == SOL_IP) {
4445                struct inet_sock *inet = inet_sk(sk);
4446
4447                if (optlen != sizeof(int) || sk->sk_family != AF_INET)
4448                        goto err_clear;
4449
4450                /* Only some options are supported */
4451                switch (optname) {
4452                case IP_TOS:
4453                        *((int *)optval) = (int)inet->tos;
4454                        break;
4455                default:
4456                        goto err_clear;
4457                }
4458#if IS_ENABLED(CONFIG_IPV6)
4459        } else if (level == SOL_IPV6) {
4460                struct ipv6_pinfo *np = inet6_sk(sk);
4461
4462                if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
4463                        goto err_clear;
4464
4465                /* Only some options are supported */
4466                switch (optname) {
4467                case IPV6_TCLASS:
4468                        *((int *)optval) = (int)np->tclass;
4469                        break;
4470                default:
4471                        goto err_clear;
4472                }
4473#endif
4474        } else {
4475                goto err_clear;
4476        }
4477        return 0;
4478#endif
4479err_clear:
4480        memset(optval, 0, optlen);
4481        return -EINVAL;
4482}
4483
4484static const struct bpf_func_proto bpf_getsockopt_proto = {
4485        .func           = bpf_getsockopt,
4486        .gpl_only       = false,
4487        .ret_type       = RET_INTEGER,
4488        .arg1_type      = ARG_PTR_TO_CTX,
4489        .arg2_type      = ARG_ANYTHING,
4490        .arg3_type      = ARG_ANYTHING,
4491        .arg4_type      = ARG_PTR_TO_UNINIT_MEM,
4492        .arg5_type      = ARG_CONST_SIZE,
4493};
4494
4495BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
4496           int, argval)
4497{
4498        struct sock *sk = bpf_sock->sk;
4499        int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
4500
4501        if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
4502                return -EINVAL;
4503
4504        tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
4505
4506        return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
4507}
4508
4509static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
4510        .func           = bpf_sock_ops_cb_flags_set,
4511        .gpl_only       = false,
4512        .ret_type       = RET_INTEGER,
4513        .arg1_type      = ARG_PTR_TO_CTX,
4514        .arg2_type      = ARG_ANYTHING,
4515};
4516
4517const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
4518EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
4519
4520BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
4521           int, addr_len)
4522{
4523#ifdef CONFIG_INET
4524        struct sock *sk = ctx->sk;
4525        int err;
4526
4527        /* Binding to port can be expensive so it's prohibited in the helper.
4528         * Only binding to IP is supported.
4529         */
4530        err = -EINVAL;
4531        if (addr_len < offsetofend(struct sockaddr, sa_family))
4532                return err;
4533        if (addr->sa_family == AF_INET) {
4534                if (addr_len < sizeof(struct sockaddr_in))
4535                        return err;
4536                if (((struct sockaddr_in *)addr)->sin_port != htons(0))
4537                        return err;
4538                return __inet_bind(sk, addr, addr_len, true, false);
4539#if IS_ENABLED(CONFIG_IPV6)
4540        } else if (addr->sa_family == AF_INET6) {
4541                if (addr_len < SIN6_LEN_RFC2133)
4542                        return err;
4543                if (((struct sockaddr_in6 *)addr)->sin6_port != htons(0))
4544                        return err;
4545                /* ipv6_bpf_stub cannot be NULL, since it's called from
4546                 * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
4547                 */
4548                return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, true, false);
4549#endif /* CONFIG_IPV6 */
4550        }
4551#endif /* CONFIG_INET */
4552
4553        return -EAFNOSUPPORT;
4554}
4555
4556static const struct bpf_func_proto bpf_bind_proto = {
4557        .func           = bpf_bind,
4558        .gpl_only       = false,
4559        .ret_type       = RET_INTEGER,
4560        .arg1_type      = ARG_PTR_TO_CTX,
4561        .arg2_type      = ARG_PTR_TO_MEM,
4562        .arg3_type      = ARG_CONST_SIZE,
4563};
4564
4565#ifdef CONFIG_XFRM
4566BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
4567           struct bpf_xfrm_state *, to, u32, size, u64, flags)
4568{
4569        const struct sec_path *sp = skb_sec_path(skb);
4570        const struct xfrm_state *x;
4571
4572        if (!sp || unlikely(index >= sp->len || flags))
4573                goto err_clear;
4574
4575        x = sp->xvec[index];
4576
4577        if (unlikely(size != sizeof(struct bpf_xfrm_state)))
4578                goto err_clear;
4579
4580        to->reqid = x->props.reqid;
4581        to->spi = x->id.spi;
4582        to->family = x->props.family;
4583        to->ext = 0;
4584
4585        if (to->family == AF_INET6) {
4586                memcpy(to->remote_ipv6, x->props.saddr.a6,
4587                       sizeof(to->remote_ipv6));
4588        } else {
4589                to->remote_ipv4 = x->props.saddr.a4;
4590                memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4591        }
4592
4593        return 0;
4594err_clear:
4595        memset(to, 0, size);
4596        return -EINVAL;
4597}
4598
4599static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
4600        .func           = bpf_skb_get_xfrm_state,
4601        .gpl_only       = false,
4602        .ret_type       = RET_INTEGER,
4603        .arg1_type      = ARG_PTR_TO_CTX,
4604        .arg2_type      = ARG_ANYTHING,
4605        .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
4606        .arg4_type      = ARG_CONST_SIZE,
4607        .arg5_type      = ARG_ANYTHING,
4608};
4609#endif
4610
4611#if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
4612static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params,
4613                                  const struct neighbour *neigh,
4614                                  const struct net_device *dev)
4615{
4616        memcpy(params->dmac, neigh->ha, ETH_ALEN);
4617        memcpy(params->smac, dev->dev_addr, ETH_ALEN);
4618        params->h_vlan_TCI = 0;
4619        params->h_vlan_proto = 0;
4620        params->ifindex = dev->ifindex;
4621
4622        return 0;
4623}
4624#endif
4625
4626#if IS_ENABLED(CONFIG_INET)
4627static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
4628                               u32 flags, bool check_mtu)
4629{
4630        struct fib_nh_common *nhc;
4631        struct in_device *in_dev;
4632        struct neighbour *neigh;
4633        struct net_device *dev;
4634        struct fib_result res;
4635        struct flowi4 fl4;
4636        int err;
4637        u32 mtu;
4638
4639        dev = dev_get_by_index_rcu(net, params->ifindex);
4640        if (unlikely(!dev))
4641                return -ENODEV;
4642
4643        /* verify forwarding is enabled on this interface */
4644        in_dev = __in_dev_get_rcu(dev);
4645        if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
4646                return BPF_FIB_LKUP_RET_FWD_DISABLED;
4647
4648        if (flags & BPF_FIB_LOOKUP_OUTPUT) {
4649                fl4.flowi4_iif = 1;
4650                fl4.flowi4_oif = params->ifindex;
4651        } else {
4652                fl4.flowi4_iif = params->ifindex;
4653                fl4.flowi4_oif = 0;
4654        }
4655        fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
4656        fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
4657        fl4.flowi4_flags = 0;
4658
4659        fl4.flowi4_proto = params->l4_protocol;
4660        fl4.daddr = params->ipv4_dst;
4661        fl4.saddr = params->ipv4_src;
4662        fl4.fl4_sport = params->sport;
4663        fl4.fl4_dport = params->dport;
4664
4665        if (flags & BPF_FIB_LOOKUP_DIRECT) {
4666                u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
4667                struct fib_table *tb;
4668
4669                tb = fib_get_table(net, tbid);
4670                if (unlikely(!tb))
4671                        return BPF_FIB_LKUP_RET_NOT_FWDED;
4672
4673                err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
4674        } else {
4675                fl4.flowi4_mark = 0;
4676                fl4.flowi4_secid = 0;
4677                fl4.flowi4_tun_key.tun_id = 0;
4678                fl4.flowi4_uid = sock_net_uid(net, NULL);
4679
4680                err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
4681        }
4682
4683        if (err) {
4684                /* map fib lookup errors to RTN_ type */
4685                if (err == -EINVAL)
4686                        return BPF_FIB_LKUP_RET_BLACKHOLE;
4687                if (err == -EHOSTUNREACH)
4688                        return BPF_FIB_LKUP_RET_UNREACHABLE;
4689                if (err == -EACCES)
4690                        return BPF_FIB_LKUP_RET_PROHIBIT;
4691
4692                return BPF_FIB_LKUP_RET_NOT_FWDED;
4693        }
4694
4695        if (res.type != RTN_UNICAST)
4696                return BPF_FIB_LKUP_RET_NOT_FWDED;
4697
4698        if (fib_info_num_path(res.fi) > 1)
4699                fib_select_path(net, &res, &fl4, NULL);
4700
4701        if (check_mtu) {
4702                mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
4703                if (params->tot_len > mtu)
4704                        return BPF_FIB_LKUP_RET_FRAG_NEEDED;
4705        }
4706
4707        nhc = res.nhc;
4708
4709        /* do not handle lwt encaps right now */
4710        if (nhc->nhc_lwtstate)
4711                return BPF_FIB_LKUP_RET_UNSUPP_LWT;
4712
4713        dev = nhc->nhc_dev;
4714
4715        params->rt_metric = res.fi->fib_priority;
4716
4717        /* xdp and cls_bpf programs are run in RCU-bh so
4718         * rcu_read_lock_bh is not needed here
4719         */
4720        if (likely(nhc->nhc_gw_family != AF_INET6)) {
4721                if (nhc->nhc_gw_family)
4722                        params->ipv4_dst = nhc->nhc_gw.ipv4;
4723
4724                neigh = __ipv4_neigh_lookup_noref(dev,
4725                                                 (__force u32)params->ipv4_dst);
4726        } else {
4727                struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
4728
4729                params->family = AF_INET6;
4730                *dst = nhc->nhc_gw.ipv6;
4731                neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
4732        }
4733
4734        if (!neigh)
4735                return BPF_FIB_LKUP_RET_NO_NEIGH;
4736
4737        return bpf_fib_set_fwd_params(params, neigh, dev);
4738}
4739#endif
4740
4741#if IS_ENABLED(CONFIG_IPV6)
4742static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
4743                               u32 flags, bool check_mtu)
4744{
4745        struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
4746        struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
4747        struct fib6_result res = {};
4748        struct neighbour *neigh;
4749        struct net_device *dev;
4750        struct inet6_dev *idev;
4751        struct flowi6 fl6;
4752        int strict = 0;
4753        int oif, err;
4754        u32 mtu;
4755
4756        /* link local addresses are never forwarded */
4757        if (rt6_need_strict(dst) || rt6_need_strict(src))
4758                return BPF_FIB_LKUP_RET_NOT_FWDED;
4759
4760        dev = dev_get_by_index_rcu(net, params->ifindex);
4761        if (unlikely(!dev))
4762                return -ENODEV;
4763
4764        idev = __in6_dev_get_safely(dev);
4765        if (unlikely(!idev || !idev->cnf.forwarding))
4766                return BPF_FIB_LKUP_RET_FWD_DISABLED;
4767
4768        if (flags & BPF_FIB_LOOKUP_OUTPUT) {
4769                fl6.flowi6_iif = 1;
4770                oif = fl6.flowi6_oif = params->ifindex;
4771        } else {
4772                oif = fl6.flowi6_iif = params->ifindex;
4773                fl6.flowi6_oif = 0;
4774                strict = RT6_LOOKUP_F_HAS_SADDR;
4775        }
4776        fl6.flowlabel = params->flowinfo;
4777        fl6.flowi6_scope = 0;
4778        fl6.flowi6_flags = 0;
4779        fl6.mp_hash = 0;
4780
4781        fl6.flowi6_proto = params->l4_protocol;
4782        fl6.daddr = *dst;
4783        fl6.saddr = *src;
4784        fl6.fl6_sport = params->sport;
4785        fl6.fl6_dport = params->dport;
4786
4787        if (flags & BPF_FIB_LOOKUP_DIRECT) {
4788                u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
4789                struct fib6_table *tb;
4790
4791                tb = ipv6_stub->fib6_get_table(net, tbid);
4792                if (unlikely(!tb))
4793                        return BPF_FIB_LKUP_RET_NOT_FWDED;
4794
4795                err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
4796                                                   strict);
4797        } else {
4798                fl6.flowi6_mark = 0;
4799                fl6.flowi6_secid = 0;
4800                fl6.flowi6_tun_key.tun_id = 0;
4801                fl6.flowi6_uid = sock_net_uid(net, NULL);
4802
4803                err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
4804        }
4805
4806        if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
4807                     res.f6i == net->ipv6.fib6_null_entry))
4808                return BPF_FIB_LKUP_RET_NOT_FWDED;
4809
4810        switch (res.fib6_type) {
4811        /* only unicast is forwarded */
4812        case RTN_UNICAST:
4813                break;
4814        case RTN_BLACKHOLE:
4815                return BPF_FIB_LKUP_RET_BLACKHOLE;
4816        case RTN_UNREACHABLE:
4817                return BPF_FIB_LKUP_RET_UNREACHABLE;
4818        case RTN_PROHIBIT:
4819                return BPF_FIB_LKUP_RET_PROHIBIT;
4820        default:
4821                return BPF_FIB_LKUP_RET_NOT_FWDED;
4822        }
4823
4824        ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
4825                                    fl6.flowi6_oif != 0, NULL, strict);
4826
4827        if (check_mtu) {
4828                mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
4829                if (params->tot_len > mtu)
4830                        return BPF_FIB_LKUP_RET_FRAG_NEEDED;
4831        }
4832
4833        if (res.nh->fib_nh_lws)
4834                return BPF_FIB_LKUP_RET_UNSUPP_LWT;
4835
4836        if (res.nh->fib_nh_gw_family)
4837                *dst = res.nh->fib_nh_gw6;
4838
4839        dev = res.nh->fib_nh_dev;
4840        params->rt_metric = res.f6i->fib6_metric;
4841
4842        /* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
4843         * not needed here.
4844         */
4845        neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
4846        if (!neigh)
4847                return BPF_FIB_LKUP_RET_NO_NEIGH;
4848
4849        return bpf_fib_set_fwd_params(params, neigh, dev);
4850}
4851#endif
4852
4853BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
4854           struct bpf_fib_lookup *, params, int, plen, u32, flags)
4855{
4856        if (plen < sizeof(*params))
4857                return -EINVAL;
4858
4859        if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
4860                return -EINVAL;
4861
4862        switch (params->family) {
4863#if IS_ENABLED(CONFIG_INET)
4864        case AF_INET:
4865                return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
4866                                           flags, true);
4867#endif
4868#if IS_ENABLED(CONFIG_IPV6)
4869        case AF_INET6:
4870                return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
4871                                           flags, true);
4872#endif
4873        }
4874        return -EAFNOSUPPORT;
4875}
4876
4877static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
4878        .func           = bpf_xdp_fib_lookup,
4879        .gpl_only       = true,
4880        .ret_type       = RET_INTEGER,
4881        .arg1_type      = ARG_PTR_TO_CTX,
4882        .arg2_type      = ARG_PTR_TO_MEM,
4883        .arg3_type      = ARG_CONST_SIZE,
4884        .arg4_type      = ARG_ANYTHING,
4885};
4886
4887BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
4888           struct bpf_fib_lookup *, params, int, plen, u32, flags)
4889{
4890        struct net *net = dev_net(skb->dev);
4891        int rc = -EAFNOSUPPORT;
4892
4893        if (plen < sizeof(*params))
4894                return -EINVAL;
4895
4896        if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
4897                return -EINVAL;
4898
4899        switch (params->family) {
4900#if IS_ENABLED(CONFIG_INET)
4901        case AF_INET:
4902                rc = bpf_ipv4_fib_lookup(net, params, flags, false);
4903                break;
4904#endif
4905#if IS_ENABLED(CONFIG_IPV6)
4906        case AF_INET6:
4907                rc = bpf_ipv6_fib_lookup(net, params, flags, false);
4908                break;
4909#endif
4910        }
4911
4912        if (!rc) {
4913                struct net_device *dev;
4914
4915                dev = dev_get_by_index_rcu(net, params->ifindex);
4916                if (!is_skb_forwardable(dev, skb))
4917                        rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
4918        }
4919
4920        return rc;
4921}
4922
4923static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
4924        .func           = bpf_skb_fib_lookup,
4925        .gpl_only       = true,
4926        .ret_type       = RET_INTEGER,
4927        .arg1_type      = ARG_PTR_TO_CTX,
4928        .arg2_type      = ARG_PTR_TO_MEM,
4929        .arg3_type      = ARG_CONST_SIZE,
4930        .arg4_type      = ARG_ANYTHING,
4931};
4932
4933#if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
4934static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
4935{
4936        int err;
4937        struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
4938
4939        if (!seg6_validate_srh(srh, len))
4940                return -EINVAL;
4941
4942        switch (type) {
4943        case BPF_LWT_ENCAP_SEG6_INLINE:
4944                if (skb->protocol != htons(ETH_P_IPV6))
4945                        return -EBADMSG;
4946
4947                err = seg6_do_srh_inline(skb, srh);
4948                break;
4949        case BPF_LWT_ENCAP_SEG6:
4950                skb_reset_inner_headers(skb);
4951                skb->encapsulation = 1;
4952                err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
4953                break;
4954        default:
4955                return -EINVAL;
4956        }
4957
4958        bpf_compute_data_pointers(skb);
4959        if (err)
4960                return err;
4961
4962        ipv6_hdr(skb)->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
4963        skb_set_transport_header(skb, sizeof(struct ipv6hdr));
4964
4965        return seg6_lookup_nexthop(skb, NULL, 0);
4966}
4967#endif /* CONFIG_IPV6_SEG6_BPF */
4968
4969#if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
4970static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
4971                             bool ingress)
4972{
4973        return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
4974}
4975#endif
4976
4977BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
4978           u32, len)
4979{
4980        switch (type) {
4981#if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
4982        case BPF_LWT_ENCAP_SEG6:
4983        case BPF_LWT_ENCAP_SEG6_INLINE:
4984                return bpf_push_seg6_encap(skb, type, hdr, len);
4985#endif
4986#if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
4987        case BPF_LWT_ENCAP_IP:
4988                return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
4989#endif
4990        default:
4991                return -EINVAL;
4992        }
4993}
4994
4995BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
4996           void *, hdr, u32, len)
4997{
4998        switch (type) {
4999#if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
5000        case BPF_LWT_ENCAP_IP:
5001                return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
5002#endif
5003        default:
5004                return -EINVAL;
5005        }
5006}
5007
5008static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
5009        .func           = bpf_lwt_in_push_encap,
5010        .gpl_only       = false,
5011        .ret_type       = RET_INTEGER,
5012        .arg1_type      = ARG_PTR_TO_CTX,
5013        .arg2_type      = ARG_ANYTHING,
5014        .arg3_type      = ARG_PTR_TO_MEM,
5015        .arg4_type      = ARG_CONST_SIZE
5016};
5017
5018static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
5019        .func           = bpf_lwt_xmit_push_encap,
5020        .gpl_only       = false,
5021        .ret_type       = RET_INTEGER,
5022        .arg1_type      = ARG_PTR_TO_CTX,
5023        .arg2_type      = ARG_ANYTHING,
5024        .arg3_type      = ARG_PTR_TO_MEM,
5025        .arg4_type      = ARG_CONST_SIZE
5026};
5027
5028#if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5029BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
5030           const void *, from, u32, len)
5031{
5032        struct seg6_bpf_srh_state *srh_state =
5033                this_cpu_ptr(&seg6_bpf_srh_states);
5034        struct ipv6_sr_hdr *srh = srh_state->srh;
5035        void *srh_tlvs, *srh_end, *ptr;
5036        int srhoff = 0;
5037
5038        if (srh == NULL)
5039                return -EINVAL;
5040
5041        srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
5042        srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
5043
5044        ptr = skb->data + offset;
5045        if (ptr >= srh_tlvs && ptr + len <= srh_end)
5046                srh_state->valid = false;
5047        else if (ptr < (void *)&srh->flags ||
5048                 ptr + len > (void *)&srh->segments)
5049                return -EFAULT;
5050
5051        if (unlikely(bpf_try_make_writable(skb, offset + len)))
5052                return -EFAULT;
5053        if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
5054                return -EINVAL;
5055        srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5056
5057        memcpy(skb->data + offset, from, len);
5058        return 0;
5059}
5060
5061static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
5062        .func           = bpf_lwt_seg6_store_bytes,
5063        .gpl_only       = false,
5064        .ret_type       = RET_INTEGER,
5065        .arg1_type      = ARG_PTR_TO_CTX,
5066        .arg2_type      = ARG_ANYTHING,
5067        .arg3_type      = ARG_PTR_TO_MEM,
5068        .arg4_type      = ARG_CONST_SIZE
5069};
5070
5071static void bpf_update_srh_state(struct sk_buff *skb)
5072{
5073        struct seg6_bpf_srh_state *srh_state =
5074                this_cpu_ptr(&seg6_bpf_srh_states);
5075        int srhoff = 0;
5076
5077        if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
5078                srh_state->srh = NULL;
5079        } else {
5080                srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5081                srh_state->hdrlen = srh_state->srh->hdrlen << 3;
5082                srh_state->valid = true;
5083        }
5084}
5085
5086BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
5087           u32, action, void *, param, u32, param_len)
5088{
5089        struct seg6_bpf_srh_state *srh_state =
5090                this_cpu_ptr(&seg6_bpf_srh_states);
5091        int hdroff = 0;
5092        int err;
5093
5094        switch (action) {
5095        case SEG6_LOCAL_ACTION_END_X:
5096                if (!seg6_bpf_has_valid_srh(skb))
5097                        return -EBADMSG;
5098                if (param_len != sizeof(struct in6_addr))
5099                        return -EINVAL;
5100                return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
5101        case SEG6_LOCAL_ACTION_END_T:
5102                if (!seg6_bpf_has_valid_srh(skb))
5103                        return -EBADMSG;
5104                if (param_len != sizeof(int))
5105                        return -EINVAL;
5106                return seg6_lookup_nexthop(skb, NULL, *(int *)param);
5107        case SEG6_LOCAL_ACTION_END_DT6:
5108                if (!seg6_bpf_has_valid_srh(skb))
5109                        return -EBADMSG;
5110                if (param_len != sizeof(int))
5111                        return -EINVAL;
5112
5113                if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
5114                        return -EBADMSG;
5115                if (!pskb_pull(skb, hdroff))
5116                        return -EBADMSG;
5117
5118                skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
5119                skb_reset_network_header(skb);
5120                skb_reset_transport_header(skb);
5121                skb->encapsulation = 0;
5122
5123                bpf_compute_data_pointers(skb);
5124                bpf_update_srh_state(skb);
5125                return seg6_lookup_nexthop(skb, NULL, *(int *)param);
5126        case SEG6_LOCAL_ACTION_END_B6:
5127                if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
5128                        return -EBADMSG;
5129                err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
5130                                          param, param_len);
5131                if (!err)
5132                        bpf_update_srh_state(skb);
5133
5134                return err;
5135        case SEG6_LOCAL_ACTION_END_B6_ENCAP:
5136                if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
5137                        return -EBADMSG;
5138                err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
5139                                          param, param_len);
5140                if (!err)
5141                        bpf_update_srh_state(skb);
5142
5143                return err;
5144        default:
5145                return -EINVAL;
5146        }
5147}
5148
5149static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
5150        .func           = bpf_lwt_seg6_action,
5151        .gpl_only       = false,
5152        .ret_type       = RET_INTEGER,
5153        .arg1_type      = ARG_PTR_TO_CTX,
5154        .arg2_type      = ARG_ANYTHING,
5155        .arg3_type      = ARG_PTR_TO_MEM,
5156        .arg4_type      = ARG_CONST_SIZE
5157};
5158
5159BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
5160           s32, len)
5161{
5162        struct seg6_bpf_srh_state *srh_state =
5163                this_cpu_ptr(&seg6_bpf_srh_states);
5164        struct ipv6_sr_hdr *srh = srh_state->srh;
5165        void *srh_end, *srh_tlvs, *ptr;
5166        struct ipv6hdr *hdr;
5167        int srhoff = 0;
5168        int ret;
5169
5170        if (unlikely(srh == NULL))
5171                return -EINVAL;
5172
5173        srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
5174                        ((srh->first_segment + 1) << 4));
5175        srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
5176                        srh_state->hdrlen);
5177        ptr = skb->data + offset;
5178
5179        if (unlikely(ptr < srh_tlvs || ptr > srh_end))
5180                return -EFAULT;
5181        if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
5182                return -EFAULT;
5183
5184        if (len > 0) {
5185                ret = skb_cow_head(skb, len);
5186                if (unlikely(ret < 0))
5187                        return ret;
5188
5189                ret = bpf_skb_net_hdr_push(skb, offset, len);
5190        } else {
5191                ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
5192        }
5193
5194        bpf_compute_data_pointers(skb);
5195        if (unlikely(ret < 0))
5196                return ret;
5197
5198        hdr = (struct ipv6hdr *)skb->data;
5199        hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
5200
5201        if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
5202                return -EINVAL;
5203        srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5204        srh_state->hdrlen += len;
5205        srh_state->valid = false;
5206        return 0;
5207}
5208
5209static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
5210        .func           = bpf_lwt_seg6_adjust_srh,
5211        .gpl_only       = false,
5212        .ret_type       = RET_INTEGER,
5213        .arg1_type      = ARG_PTR_TO_CTX,
5214        .arg2_type      = ARG_ANYTHING,
5215        .arg3_type      = ARG_ANYTHING,
5216};
5217#endif /* CONFIG_IPV6_SEG6_BPF */
5218
5219#ifdef CONFIG_INET
5220static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
5221                              int dif, int sdif, u8 family, u8 proto)
5222{
5223        bool refcounted = false;
5224        struct sock *sk = NULL;
5225
5226        if (family == AF_INET) {
5227                __be32 src4 = tuple->ipv4.saddr;
5228                __be32 dst4 = tuple->ipv4.daddr;
5229
5230                if (proto == IPPROTO_TCP)
5231                        sk = __inet_lookup(net, &tcp_hashinfo, NULL, 0,
5232                                           src4, tuple->ipv4.sport,
5233                                           dst4, tuple->ipv4.dport,
5234                                           dif, sdif, &refcounted);
5235                else
5236                        sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
5237                                               dst4, tuple->ipv4.dport,
5238                                               dif, sdif, &udp_table, NULL);
5239#if IS_ENABLED(CONFIG_IPV6)
5240        } else {
5241                struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
5242                struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
5243
5244                if (proto == IPPROTO_TCP)
5245                        sk = __inet6_lookup(net, &tcp_hashinfo, NULL, 0,
5246                                            src6, tuple->ipv6.sport,
5247                                            dst6, ntohs(tuple->ipv6.dport),
5248                                            dif, sdif, &refcounted);
5249                else if (likely(ipv6_bpf_stub))
5250                        sk = ipv6_bpf_stub->udp6_lib_lookup(net,
5251                                                            src6, tuple->ipv6.sport,
5252                                                            dst6, tuple->ipv6.dport,
5253                                                            dif, sdif,
5254                                                            &udp_table, NULL);
5255#endif
5256        }
5257
5258        if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
5259                WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
5260                sk = NULL;
5261        }
5262        return sk;
5263}
5264
5265/* bpf_skc_lookup performs the core lookup for different types of sockets,
5266 * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
5267 * Returns the socket as an 'unsigned long' to simplify the casting in the
5268 * callers to satisfy BPF_CALL declarations.
5269 */
5270static struct sock *
5271__bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5272                 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
5273                 u64 flags)
5274{
5275        struct sock *sk = NULL;
5276        u8 family = AF_UNSPEC;
5277        struct net *net;
5278        int sdif;
5279
5280        if (len == sizeof(tuple->ipv4))
5281                family = AF_INET;
5282        else if (len == sizeof(tuple->ipv6))
5283                family = AF_INET6;
5284        else
5285                return NULL;
5286
5287        if (unlikely(family == AF_UNSPEC || flags ||
5288                     !((s32)netns_id < 0 || netns_id <= S32_MAX)))
5289                goto out;
5290
5291        if (family == AF_INET)
5292                sdif = inet_sdif(skb);
5293        else
5294                sdif = inet6_sdif(skb);
5295
5296        if ((s32)netns_id < 0) {
5297                net = caller_net;
5298                sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
5299        } else {
5300                net = get_net_ns_by_id(caller_net, netns_id);
5301                if (unlikely(!net))
5302                        goto out;
5303                sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
5304                put_net(net);
5305        }
5306
5307out:
5308        return sk;
5309}
5310
5311static struct sock *
5312__bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5313                struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
5314                u64 flags)
5315{
5316        struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
5317                                           ifindex, proto, netns_id, flags);
5318
5319        if (sk) {
5320                sk = sk_to_full_sk(sk);
5321                if (!sk_fullsock(sk)) {
5322                        sock_gen_put(sk);
5323                        return NULL;
5324                }
5325        }
5326
5327        return sk;
5328}
5329
5330static struct sock *
5331bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5332               u8 proto, u64 netns_id, u64 flags)
5333{
5334        struct net *caller_net;
5335        int ifindex;
5336
5337        if (skb->dev) {
5338                caller_net = dev_net(skb->dev);
5339                ifindex = skb->dev->ifindex;
5340        } else {
5341                caller_net = sock_net(skb->sk);
5342                ifindex = 0;
5343        }
5344
5345        return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
5346                                netns_id, flags);
5347}
5348
5349static struct sock *
5350bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5351              u8 proto, u64 netns_id, u64 flags)
5352{
5353        struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
5354                                         flags);
5355
5356        if (sk) {
5357                sk = sk_to_full_sk(sk);
5358                if (!sk_fullsock(sk)) {
5359                        sock_gen_put(sk);
5360                        return NULL;
5361                }
5362        }
5363
5364        return sk;
5365}
5366
5367BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
5368           struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5369{
5370        return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
5371                                             netns_id, flags);
5372}
5373
5374static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
5375        .func           = bpf_skc_lookup_tcp,
5376        .gpl_only       = false,
5377        .pkt_access     = true,
5378        .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
5379        .arg1_type      = ARG_PTR_TO_CTX,
5380        .arg2_type      = ARG_PTR_TO_MEM,
5381        .arg3_type      = ARG_CONST_SIZE,
5382        .arg4_type      = ARG_ANYTHING,
5383        .arg5_type      = ARG_ANYTHING,
5384};
5385
5386BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
5387           struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5388{
5389        return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
5390                                            netns_id, flags);
5391}
5392
5393static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
5394        .func           = bpf_sk_lookup_tcp,
5395        .gpl_only       = false,
5396        .pkt_access     = true,
5397        .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
5398        .arg1_type      = ARG_PTR_TO_CTX,
5399        .arg2_type      = ARG_PTR_TO_MEM,
5400        .arg3_type      = ARG_CONST_SIZE,
5401        .arg4_type      = ARG_ANYTHING,
5402        .arg5_type      = ARG_ANYTHING,
5403};
5404
5405BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
5406           struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5407{
5408        return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
5409                                            netns_id, flags);
5410}
5411
5412static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
5413        .func           = bpf_sk_lookup_udp,
5414        .gpl_only       = false,
5415        .pkt_access     = true,
5416        .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
5417        .arg1_type      = ARG_PTR_TO_CTX,
5418        .arg2_type      = ARG_PTR_TO_MEM,
5419        .arg3_type      = ARG_CONST_SIZE,
5420        .arg4_type      = ARG_ANYTHING,
5421        .arg5_type      = ARG_ANYTHING,
5422};
5423
5424BPF_CALL_1(bpf_sk_release, struct sock *, sk)
5425{
5426        /* Only full sockets have sk->sk_flags. */
5427        if (!sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE))
5428                sock_gen_put(sk);
5429        return 0;
5430}
5431
5432static const struct bpf_func_proto bpf_sk_release_proto = {
5433        .func           = bpf_sk_release,
5434        .gpl_only       = false,
5435        .ret_type       = RET_INTEGER,
5436        .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
5437};
5438
5439BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
5440           struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
5441{
5442        struct net *caller_net = dev_net(ctx->rxq->dev);
5443        int ifindex = ctx->rxq->dev->ifindex;
5444
5445        return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
5446                                              ifindex, IPPROTO_UDP, netns_id,
5447                                              flags);
5448}
5449
5450static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
5451        .func           = bpf_xdp_sk_lookup_udp,
5452        .gpl_only       = false,
5453        .pkt_access     = true,
5454        .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
5455        .arg1_type      = ARG_PTR_TO_CTX,
5456        .arg2_type      = ARG_PTR_TO_MEM,
5457        .arg3_type      = ARG_CONST_SIZE,
5458        .arg4_type      = ARG_ANYTHING,
5459        .arg5_type      = ARG_ANYTHING,
5460};
5461
5462BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
5463           struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
5464{
5465        struct net *caller_net = dev_net(ctx->rxq->dev);
5466        int ifindex = ctx->rxq->dev->ifindex;
5467
5468        return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
5469                                               ifindex, IPPROTO_TCP, netns_id,
5470                                               flags);
5471}
5472
5473static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
5474        .func           = bpf_xdp_skc_lookup_tcp,
5475        .gpl_only       = false,
5476        .pkt_access     = true,
5477        .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
5478        .arg1_type      = ARG_PTR_TO_CTX,
5479        .arg2_type      = ARG_PTR_TO_MEM,
5480        .arg3_type      = ARG_CONST_SIZE,
5481        .arg4_type      = ARG_ANYTHING,
5482        .arg5_type      = ARG_ANYTHING,
5483};
5484
5485BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
5486           struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
5487{
5488        struct net *caller_net = dev_net(ctx->rxq->dev);
5489        int ifindex = ctx->rxq->dev->ifindex;
5490
5491        return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
5492                                              ifindex, IPPROTO_TCP, netns_id,
5493                                              flags);
5494}
5495
5496static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
5497        .func           = bpf_xdp_sk_lookup_tcp,
5498        .gpl_only       = false,
5499        .pkt_access     = true,
5500        .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
5501        .arg1_type      = ARG_PTR_TO_CTX,
5502        .arg2_type      = ARG_PTR_TO_MEM,
5503        .arg3_type      = ARG_CONST_SIZE,
5504        .arg4_type      = ARG_ANYTHING,
5505        .arg5_type      = ARG_ANYTHING,
5506};
5507
5508BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
5509           struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5510{
5511        return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
5512                                               sock_net(ctx->sk), 0,
5513                                               IPPROTO_TCP, netns_id, flags);
5514}
5515
5516static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
5517        .func           = bpf_sock_addr_skc_lookup_tcp,
5518        .gpl_only       = false,
5519        .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
5520        .arg1_type      = ARG_PTR_TO_CTX,
5521        .arg2_type      = ARG_PTR_TO_MEM,
5522        .arg3_type      = ARG_CONST_SIZE,
5523        .arg4_type      = ARG_ANYTHING,
5524        .arg5_type      = ARG_ANYTHING,
5525};
5526
5527BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
5528           struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5529{
5530        return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
5531                                              sock_net(ctx->sk), 0, IPPROTO_TCP,
5532                                              netns_id, flags);
5533}
5534
5535static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
5536        .func           = bpf_sock_addr_sk_lookup_tcp,
5537        .gpl_only       = false,
5538        .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
5539        .arg1_type      = ARG_PTR_TO_CTX,
5540        .arg2_type      = ARG_PTR_TO_MEM,
5541        .arg3_type      = ARG_CONST_SIZE,
5542        .arg4_type      = ARG_ANYTHING,
5543        .arg5_type      = ARG_ANYTHING,
5544};
5545
5546BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
5547           struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5548{
5549        return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
5550                                              sock_net(ctx->sk), 0, IPPROTO_UDP,
5551                                              netns_id, flags);
5552}
5553
5554static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
5555        .func           = bpf_sock_addr_sk_lookup_udp,
5556        .gpl_only       = false,
5557        .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
5558        .arg1_type      = ARG_PTR_TO_CTX,
5559        .arg2_type      = ARG_PTR_TO_MEM,
5560        .arg3_type      = ARG_CONST_SIZE,
5561        .arg4_type      = ARG_ANYTHING,
5562        .arg5_type      = ARG_ANYTHING,
5563};
5564
5565bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
5566                                  struct bpf_insn_access_aux *info)
5567{
5568        if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
5569                                          icsk_retransmits))
5570                return false;
5571
5572        if (off % size != 0)
5573                return false;
5574
5575        switch (off) {
5576        case offsetof(struct bpf_tcp_sock, bytes_received):
5577        case offsetof(struct bpf_tcp_sock, bytes_acked):
5578                return size == sizeof(__u64);
5579        default:
5580                return size == sizeof(__u32);
5581        }
5582}
5583
5584u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
5585                                    const struct bpf_insn *si,
5586                                    struct bpf_insn *insn_buf,
5587                                    struct bpf_prog *prog, u32 *target_size)
5588{
5589        struct bpf_insn *insn = insn_buf;
5590
5591#define BPF_TCP_SOCK_GET_COMMON(FIELD)                                  \
5592        do {                                                            \
5593                BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) >     \
5594                             sizeof_field(struct bpf_tcp_sock, FIELD)); \
5595                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
5596                                      si->dst_reg, si->src_reg,         \
5597                                      offsetof(struct tcp_sock, FIELD)); \
5598        } while (0)
5599
5600#define BPF_INET_SOCK_GET_COMMON(FIELD)                                 \
5601        do {                                                            \
5602                BUILD_BUG_ON(sizeof_field(struct inet_connection_sock,  \
5603                                          FIELD) >                      \
5604                             sizeof_field(struct bpf_tcp_sock, FIELD)); \
5605                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                 \
5606                                        struct inet_connection_sock,    \
5607                                        FIELD),                         \
5608                                      si->dst_reg, si->src_reg,         \
5609                                      offsetof(                         \
5610                                        struct inet_connection_sock,    \
5611                                        FIELD));                        \
5612        } while (0)
5613
5614        if (insn > insn_buf)
5615                return insn - insn_buf;
5616
5617        switch (si->off) {
5618        case offsetof(struct bpf_tcp_sock, rtt_min):
5619                BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
5620                             sizeof(struct minmax));
5621                BUILD_BUG_ON(sizeof(struct minmax) <
5622                             sizeof(struct minmax_sample));
5623
5624                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5625                                      offsetof(struct tcp_sock, rtt_min) +
5626                                      offsetof(struct minmax_sample, v));
5627                break;
5628        case offsetof(struct bpf_tcp_sock, snd_cwnd):
5629                BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
5630                break;
5631        case offsetof(struct bpf_tcp_sock, srtt_us):
5632                BPF_TCP_SOCK_GET_COMMON(srtt_us);
5633                break;
5634        case offsetof(struct bpf_tcp_sock, snd_ssthresh):
5635                BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
5636                break;
5637        case offsetof(struct bpf_tcp_sock, rcv_nxt):
5638                BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
5639                break;
5640        case offsetof(struct bpf_tcp_sock, snd_nxt):
5641                BPF_TCP_SOCK_GET_COMMON(snd_nxt);
5642                break;
5643        case offsetof(struct bpf_tcp_sock, snd_una):
5644                BPF_TCP_SOCK_GET_COMMON(snd_una);
5645                break;
5646        case offsetof(struct bpf_tcp_sock, mss_cache):
5647                BPF_TCP_SOCK_GET_COMMON(mss_cache);
5648                break;
5649        case offsetof(struct bpf_tcp_sock, ecn_flags):
5650                BPF_TCP_SOCK_GET_COMMON(ecn_flags);
5651                break;
5652        case offsetof(struct bpf_tcp_sock, rate_delivered):
5653                BPF_TCP_SOCK_GET_COMMON(rate_delivered);
5654                break;
5655        case offsetof(struct bpf_tcp_sock, rate_interval_us):
5656                BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
5657                break;
5658        case offsetof(struct bpf_tcp_sock, packets_out):
5659                BPF_TCP_SOCK_GET_COMMON(packets_out);
5660                break;
5661        case offsetof(struct bpf_tcp_sock, retrans_out):
5662                BPF_TCP_SOCK_GET_COMMON(retrans_out);
5663                break;
5664        case offsetof(struct bpf_tcp_sock, total_retrans):
5665                BPF_TCP_SOCK_GET_COMMON(total_retrans);
5666                break;
5667        case offsetof(struct bpf_tcp_sock, segs_in):
5668                BPF_TCP_SOCK_GET_COMMON(segs_in);
5669                break;
5670        case offsetof(struct bpf_tcp_sock, data_segs_in):
5671                BPF_TCP_SOCK_GET_COMMON(data_segs_in);
5672                break;
5673        case offsetof(struct bpf_tcp_sock, segs_out):
5674                BPF_TCP_SOCK_GET_COMMON(segs_out);
5675                break;
5676        case offsetof(struct bpf_tcp_sock, data_segs_out):
5677                BPF_TCP_SOCK_GET_COMMON(data_segs_out);
5678                break;
5679        case offsetof(struct bpf_tcp_sock, lost_out):
5680                BPF_TCP_SOCK_GET_COMMON(lost_out);
5681                break;
5682        case offsetof(struct bpf_tcp_sock, sacked_out):
5683                BPF_TCP_SOCK_GET_COMMON(sacked_out);
5684                break;
5685        case offsetof(struct bpf_tcp_sock, bytes_received):
5686                BPF_TCP_SOCK_GET_COMMON(bytes_received);
5687                break;
5688        case offsetof(struct bpf_tcp_sock, bytes_acked):
5689                BPF_TCP_SOCK_GET_COMMON(bytes_acked);
5690                break;
5691        case offsetof(struct bpf_tcp_sock, dsack_dups):
5692                BPF_TCP_SOCK_GET_COMMON(dsack_dups);
5693                break;
5694        case offsetof(struct bpf_tcp_sock, delivered):
5695                BPF_TCP_SOCK_GET_COMMON(delivered);
5696                break;
5697        case offsetof(struct bpf_tcp_sock, delivered_ce):
5698                BPF_TCP_SOCK_GET_COMMON(delivered_ce);
5699                break;
5700        case offsetof(struct bpf_tcp_sock, icsk_retransmits):
5701                BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
5702                break;
5703        }
5704
5705        return insn - insn_buf;
5706}
5707
5708BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
5709{
5710        if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
5711                return (unsigned long)sk;
5712
5713        return (unsigned long)NULL;
5714}
5715
5716const struct bpf_func_proto bpf_tcp_sock_proto = {
5717        .func           = bpf_tcp_sock,
5718        .gpl_only       = false,
5719        .ret_type       = RET_PTR_TO_TCP_SOCK_OR_NULL,
5720        .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
5721};
5722
5723BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
5724{
5725        sk = sk_to_full_sk(sk);
5726
5727        if (sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
5728                return (unsigned long)sk;
5729
5730        return (unsigned long)NULL;
5731}
5732
5733static const struct bpf_func_proto bpf_get_listener_sock_proto = {
5734        .func           = bpf_get_listener_sock,
5735        .gpl_only       = false,
5736        .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
5737        .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
5738};
5739
5740BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
5741{
5742        unsigned int iphdr_len;
5743
5744        if (skb->protocol == cpu_to_be16(ETH_P_IP))
5745                iphdr_len = sizeof(struct iphdr);
5746        else if (skb->protocol == cpu_to_be16(ETH_P_IPV6))
5747                iphdr_len = sizeof(struct ipv6hdr);
5748        else
5749                return 0;
5750
5751        if (skb_headlen(skb) < iphdr_len)
5752                return 0;
5753
5754        if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
5755                return 0;
5756
5757        return INET_ECN_set_ce(skb);
5758}
5759
5760bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
5761                                  struct bpf_insn_access_aux *info)
5762{
5763        if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
5764                return false;
5765
5766        if (off % size != 0)
5767                return false;
5768
5769        switch (off) {
5770        default:
5771                return size == sizeof(__u32);
5772        }
5773}
5774
5775u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
5776                                    const struct bpf_insn *si,
5777                                    struct bpf_insn *insn_buf,
5778                                    struct bpf_prog *prog, u32 *target_size)
5779{
5780        struct bpf_insn *insn = insn_buf;
5781
5782#define BPF_XDP_SOCK_GET(FIELD)                                         \
5783        do {                                                            \
5784                BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) >     \
5785                             sizeof_field(struct bpf_xdp_sock, FIELD)); \
5786                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
5787                                      si->dst_reg, si->src_reg,         \
5788                                      offsetof(struct xdp_sock, FIELD)); \
5789        } while (0)
5790
5791        switch (si->off) {
5792        case offsetof(struct bpf_xdp_sock, queue_id):
5793                BPF_XDP_SOCK_GET(queue_id);
5794                break;
5795        }
5796
5797        return insn - insn_buf;
5798}
5799
5800static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
5801        .func           = bpf_skb_ecn_set_ce,
5802        .gpl_only       = false,
5803        .ret_type       = RET_INTEGER,
5804        .arg1_type      = ARG_PTR_TO_CTX,
5805};
5806
5807BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
5808           struct tcphdr *, th, u32, th_len)
5809{
5810#ifdef CONFIG_SYN_COOKIES
5811        u32 cookie;
5812        int ret;
5813
5814        if (unlikely(th_len < sizeof(*th)))
5815                return -EINVAL;
5816
5817        /* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
5818        if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
5819                return -EINVAL;
5820
5821        if (!sock_net(sk)->ipv4.sysctl_tcp_syncookies)
5822                return -EINVAL;
5823
5824        if (!th->ack || th->rst || th->syn)
5825                return -ENOENT;
5826
5827        if (tcp_synq_no_recent_overflow(sk))
5828                return -ENOENT;
5829
5830        cookie = ntohl(th->ack_seq) - 1;
5831
5832        switch (sk->sk_family) {
5833        case AF_INET:
5834                if (unlikely(iph_len < sizeof(struct iphdr)))
5835                        return -EINVAL;
5836
5837                ret = __cookie_v4_check((struct iphdr *)iph, th, cookie);
5838                break;
5839
5840#if IS_BUILTIN(CONFIG_IPV6)
5841        case AF_INET6:
5842                if (unlikely(iph_len < sizeof(struct ipv6hdr)))
5843                        return -EINVAL;
5844
5845                ret = __cookie_v6_check((struct ipv6hdr *)iph, th, cookie);
5846                break;
5847#endif /* CONFIG_IPV6 */
5848
5849        default:
5850                return -EPROTONOSUPPORT;
5851        }
5852
5853        if (ret > 0)
5854                return 0;
5855
5856        return -ENOENT;
5857#else
5858        return -ENOTSUPP;
5859#endif
5860}
5861
5862static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
5863        .func           = bpf_tcp_check_syncookie,
5864        .gpl_only       = true,
5865        .pkt_access     = true,
5866        .ret_type       = RET_INTEGER,
5867        .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
5868        .arg2_type      = ARG_PTR_TO_MEM,
5869        .arg3_type      = ARG_CONST_SIZE,
5870        .arg4_type      = ARG_PTR_TO_MEM,
5871        .arg5_type      = ARG_CONST_SIZE,
5872};
5873
5874BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
5875           struct tcphdr *, th, u32, th_len)
5876{
5877#ifdef CONFIG_SYN_COOKIES
5878        u32 cookie;
5879        u16 mss;
5880
5881        if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
5882                return -EINVAL;
5883
5884        if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
5885                return -EINVAL;
5886
5887        if (!sock_net(sk)->ipv4.sysctl_tcp_syncookies)
5888                return -ENOENT;
5889
5890        if (!th->syn || th->ack || th->fin || th->rst)
5891                return -EINVAL;
5892
5893        if (unlikely(iph_len < sizeof(struct iphdr)))
5894                return -EINVAL;
5895
5896        /* Both struct iphdr and struct ipv6hdr have the version field at the
5897         * same offset so we can cast to the shorter header (struct iphdr).
5898         */
5899        switch (((struct iphdr *)iph)->version) {
5900        case 4:
5901                if (sk->sk_family == AF_INET6 && sk->sk_ipv6only)
5902                        return -EINVAL;
5903
5904                mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
5905                break;
5906
5907#if IS_BUILTIN(CONFIG_IPV6)
5908        case 6:
5909                if (unlikely(iph_len < sizeof(struct ipv6hdr)))
5910                        return -EINVAL;
5911
5912                if (sk->sk_family != AF_INET6)
5913                        return -EINVAL;
5914
5915                mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
5916                break;
5917#endif /* CONFIG_IPV6 */
5918
5919        default:
5920                return -EPROTONOSUPPORT;
5921        }
5922        if (mss == 0)
5923                return -ENOENT;
5924
5925        return cookie | ((u64)mss << 32);
5926#else
5927        return -EOPNOTSUPP;
5928#endif /* CONFIG_SYN_COOKIES */
5929}
5930
5931static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
5932        .func           = bpf_tcp_gen_syncookie,
5933        .gpl_only       = true, /* __cookie_v*_init_sequence() is GPL */
5934        .pkt_access     = true,
5935        .ret_type       = RET_INTEGER,
5936        .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
5937        .arg2_type      = ARG_PTR_TO_MEM,
5938        .arg3_type      = ARG_CONST_SIZE,
5939        .arg4_type      = ARG_PTR_TO_MEM,
5940        .arg5_type      = ARG_CONST_SIZE,
5941};
5942
5943#endif /* CONFIG_INET */
5944
5945bool bpf_helper_changes_pkt_data(void *func)
5946{
5947        if (func == bpf_skb_vlan_push ||
5948            func == bpf_skb_vlan_pop ||
5949            func == bpf_skb_store_bytes ||
5950            func == bpf_skb_change_proto ||
5951            func == bpf_skb_change_head ||
5952            func == sk_skb_change_head ||
5953            func == bpf_skb_change_tail ||
5954            func == sk_skb_change_tail ||
5955            func == bpf_skb_adjust_room ||
5956            func == bpf_skb_pull_data ||
5957            func == sk_skb_pull_data ||
5958            func == bpf_clone_redirect ||
5959            func == bpf_l3_csum_replace ||
5960            func == bpf_l4_csum_replace ||
5961            func == bpf_xdp_adjust_head ||
5962            func == bpf_xdp_adjust_meta ||
5963            func == bpf_msg_pull_data ||
5964            func == bpf_msg_push_data ||
5965            func == bpf_msg_pop_data ||
5966            func == bpf_xdp_adjust_tail ||
5967#if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5968            func == bpf_lwt_seg6_store_bytes ||
5969            func == bpf_lwt_seg6_adjust_srh ||
5970            func == bpf_lwt_seg6_action ||
5971#endif
5972            func == bpf_lwt_in_push_encap ||
5973            func == bpf_lwt_xmit_push_encap)
5974                return true;
5975
5976        return false;
5977}
5978
5979static const struct bpf_func_proto *
5980bpf_base_func_proto(enum bpf_func_id func_id)
5981{
5982        switch (func_id) {
5983        case BPF_FUNC_map_lookup_elem:
5984                return &bpf_map_lookup_elem_proto;
5985        case BPF_FUNC_map_update_elem:
5986                return &bpf_map_update_elem_proto;
5987        case BPF_FUNC_map_delete_elem:
5988                return &bpf_map_delete_elem_proto;
5989        case BPF_FUNC_map_push_elem:
5990                return &bpf_map_push_elem_proto;
5991        case BPF_FUNC_map_pop_elem:
5992                return &bpf_map_pop_elem_proto;
5993        case BPF_FUNC_map_peek_elem:
5994                return &bpf_map_peek_elem_proto;
5995        case BPF_FUNC_get_prandom_u32:
5996                return &bpf_get_prandom_u32_proto;
5997        case BPF_FUNC_get_smp_processor_id:
5998                return &bpf_get_raw_smp_processor_id_proto;
5999        case BPF_FUNC_get_numa_node_id:
6000                return &bpf_get_numa_node_id_proto;
6001        case BPF_FUNC_tail_call:
6002                return &bpf_tail_call_proto;
6003        case BPF_FUNC_ktime_get_ns:
6004                return &bpf_ktime_get_ns_proto;
6005        default:
6006                break;
6007        }
6008
6009        if (!capable(CAP_SYS_ADMIN))
6010                return NULL;
6011
6012        switch (func_id) {
6013        case BPF_FUNC_spin_lock:
6014                return &bpf_spin_lock_proto;
6015        case BPF_FUNC_spin_unlock:
6016                return &bpf_spin_unlock_proto;
6017        case BPF_FUNC_trace_printk:
6018                return bpf_get_trace_printk_proto();
6019        default:
6020                return NULL;
6021        }
6022}
6023
6024static const struct bpf_func_proto *
6025sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6026{
6027        switch (func_id) {
6028        /* inet and inet6 sockets are created in a process
6029         * context so there is always a valid uid/gid
6030         */
6031        case BPF_FUNC_get_current_uid_gid:
6032                return &bpf_get_current_uid_gid_proto;
6033        case BPF_FUNC_get_local_storage:
6034                return &bpf_get_local_storage_proto;
6035        default:
6036                return bpf_base_func_proto(func_id);
6037        }
6038}
6039
6040static const struct bpf_func_proto *
6041sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6042{
6043        switch (func_id) {
6044        /* inet and inet6 sockets are created in a process
6045         * context so there is always a valid uid/gid
6046         */
6047        case BPF_FUNC_get_current_uid_gid:
6048                return &bpf_get_current_uid_gid_proto;
6049        case BPF_FUNC_bind:
6050                switch (prog->expected_attach_type) {
6051                case BPF_CGROUP_INET4_CONNECT:
6052                case BPF_CGROUP_INET6_CONNECT:
6053                        return &bpf_bind_proto;
6054                default:
6055                        return NULL;
6056                }
6057        case BPF_FUNC_get_socket_cookie:
6058                return &bpf_get_socket_cookie_sock_addr_proto;
6059        case BPF_FUNC_get_local_storage:
6060                return &bpf_get_local_storage_proto;
6061#ifdef CONFIG_INET
6062        case BPF_FUNC_sk_lookup_tcp:
6063                return &bpf_sock_addr_sk_lookup_tcp_proto;
6064        case BPF_FUNC_sk_lookup_udp:
6065                return &bpf_sock_addr_sk_lookup_udp_proto;
6066        case BPF_FUNC_sk_release:
6067                return &bpf_sk_release_proto;
6068        case BPF_FUNC_skc_lookup_tcp:
6069                return &bpf_sock_addr_skc_lookup_tcp_proto;
6070#endif /* CONFIG_INET */
6071        case BPF_FUNC_sk_storage_get:
6072                return &bpf_sk_storage_get_proto;
6073        case BPF_FUNC_sk_storage_delete:
6074                return &bpf_sk_storage_delete_proto;
6075        default:
6076                return bpf_base_func_proto(func_id);
6077        }
6078}
6079
6080static const struct bpf_func_proto *
6081sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6082{
6083        switch (func_id) {
6084        case BPF_FUNC_skb_load_bytes:
6085                return &bpf_skb_load_bytes_proto;
6086        case BPF_FUNC_skb_load_bytes_relative:
6087                return &bpf_skb_load_bytes_relative_proto;
6088        case BPF_FUNC_get_socket_cookie:
6089                return &bpf_get_socket_cookie_proto;
6090        case BPF_FUNC_get_socket_uid:
6091                return &bpf_get_socket_uid_proto;
6092        case BPF_FUNC_perf_event_output:
6093                return &bpf_skb_event_output_proto;
6094        default:
6095                return bpf_base_func_proto(func_id);
6096        }
6097}
6098
6099const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
6100const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
6101
6102static const struct bpf_func_proto *
6103cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6104{
6105        switch (func_id) {
6106        case BPF_FUNC_get_local_storage:
6107                return &bpf_get_local_storage_proto;
6108        case BPF_FUNC_sk_fullsock:
6109                return &bpf_sk_fullsock_proto;
6110        case BPF_FUNC_sk_storage_get:
6111                return &bpf_sk_storage_get_proto;
6112        case BPF_FUNC_sk_storage_delete:
6113                return &bpf_sk_storage_delete_proto;
6114        case BPF_FUNC_perf_event_output:
6115                return &bpf_skb_event_output_proto;
6116#ifdef CONFIG_SOCK_CGROUP_DATA
6117        case BPF_FUNC_skb_cgroup_id:
6118                return &bpf_skb_cgroup_id_proto;
6119#endif
6120#ifdef CONFIG_INET
6121        case BPF_FUNC_tcp_sock:
6122                return &bpf_tcp_sock_proto;
6123        case BPF_FUNC_get_listener_sock:
6124                return &bpf_get_listener_sock_proto;
6125        case BPF_FUNC_skb_ecn_set_ce:
6126                return &bpf_skb_ecn_set_ce_proto;
6127#endif
6128        default:
6129                return sk_filter_func_proto(func_id, prog);
6130        }
6131}
6132
6133static const struct bpf_func_proto *
6134tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6135{
6136        switch (func_id) {
6137        case BPF_FUNC_skb_store_bytes:
6138                return &bpf_skb_store_bytes_proto;
6139        case BPF_FUNC_skb_load_bytes:
6140                return &bpf_skb_load_bytes_proto;
6141        case BPF_FUNC_skb_load_bytes_relative:
6142                return &bpf_skb_load_bytes_relative_proto;
6143        case BPF_FUNC_skb_pull_data:
6144                return &bpf_skb_pull_data_proto;
6145        case BPF_FUNC_csum_diff:
6146                return &bpf_csum_diff_proto;
6147        case BPF_FUNC_csum_update:
6148                return &bpf_csum_update_proto;
6149        case BPF_FUNC_l3_csum_replace:
6150                return &bpf_l3_csum_replace_proto;
6151        case BPF_FUNC_l4_csum_replace:
6152                return &bpf_l4_csum_replace_proto;
6153        case BPF_FUNC_clone_redirect:
6154                return &bpf_clone_redirect_proto;
6155        case BPF_FUNC_get_cgroup_classid:
6156                return &bpf_get_cgroup_classid_proto;
6157        case BPF_FUNC_skb_vlan_push:
6158                return &bpf_skb_vlan_push_proto;
6159        case BPF_FUNC_skb_vlan_pop:
6160                return &bpf_skb_vlan_pop_proto;
6161        case BPF_FUNC_skb_change_proto:
6162                return &bpf_skb_change_proto_proto;
6163        case BPF_FUNC_skb_change_type:
6164                return &bpf_skb_change_type_proto;
6165        case BPF_FUNC_skb_adjust_room:
6166                return &bpf_skb_adjust_room_proto;
6167        case BPF_FUNC_skb_change_tail:
6168                return &bpf_skb_change_tail_proto;
6169        case BPF_FUNC_skb_get_tunnel_key:
6170                return &bpf_skb_get_tunnel_key_proto;
6171        case BPF_FUNC_skb_set_tunnel_key:
6172                return bpf_get_skb_set_tunnel_proto(func_id);
6173        case BPF_FUNC_skb_get_tunnel_opt:
6174                return &bpf_skb_get_tunnel_opt_proto;
6175        case BPF_FUNC_skb_set_tunnel_opt:
6176                return bpf_get_skb_set_tunnel_proto(func_id);
6177        case BPF_FUNC_redirect:
6178                return &bpf_redirect_proto;
6179        case BPF_FUNC_get_route_realm:
6180                return &bpf_get_route_realm_proto;
6181        case BPF_FUNC_get_hash_recalc:
6182                return &bpf_get_hash_recalc_proto;
6183        case BPF_FUNC_set_hash_invalid:
6184                return &bpf_set_hash_invalid_proto;
6185        case BPF_FUNC_set_hash:
6186                return &bpf_set_hash_proto;
6187        case BPF_FUNC_perf_event_output:
6188                return &bpf_skb_event_output_proto;
6189        case BPF_FUNC_get_smp_processor_id:
6190                return &bpf_get_smp_processor_id_proto;
6191        case BPF_FUNC_skb_under_cgroup:
6192                return &bpf_skb_under_cgroup_proto;
6193        case BPF_FUNC_get_socket_cookie:
6194                return &bpf_get_socket_cookie_proto;
6195        case BPF_FUNC_get_socket_uid:
6196                return &bpf_get_socket_uid_proto;
6197        case BPF_FUNC_fib_lookup:
6198                return &bpf_skb_fib_lookup_proto;
6199        case BPF_FUNC_sk_fullsock:
6200                return &bpf_sk_fullsock_proto;
6201        case BPF_FUNC_sk_storage_get:
6202                return &bpf_sk_storage_get_proto;
6203        case BPF_FUNC_sk_storage_delete:
6204                return &bpf_sk_storage_delete_proto;
6205#ifdef CONFIG_XFRM
6206        case BPF_FUNC_skb_get_xfrm_state:
6207                return &bpf_skb_get_xfrm_state_proto;
6208#endif
6209#ifdef CONFIG_SOCK_CGROUP_DATA
6210        case BPF_FUNC_skb_cgroup_id:
6211                return &bpf_skb_cgroup_id_proto;
6212        case BPF_FUNC_skb_ancestor_cgroup_id:
6213                return &bpf_skb_ancestor_cgroup_id_proto;
6214#endif
6215#ifdef CONFIG_INET
6216        case BPF_FUNC_sk_lookup_tcp:
6217                return &bpf_sk_lookup_tcp_proto;
6218        case BPF_FUNC_sk_lookup_udp:
6219                return &bpf_sk_lookup_udp_proto;
6220        case BPF_FUNC_sk_release:
6221                return &bpf_sk_release_proto;
6222        case BPF_FUNC_tcp_sock:
6223                return &bpf_tcp_sock_proto;
6224        case BPF_FUNC_get_listener_sock:
6225                return &bpf_get_listener_sock_proto;
6226        case BPF_FUNC_skc_lookup_tcp:
6227                return &bpf_skc_lookup_tcp_proto;
6228        case BPF_FUNC_tcp_check_syncookie:
6229                return &bpf_tcp_check_syncookie_proto;
6230        case BPF_FUNC_skb_ecn_set_ce:
6231                return &bpf_skb_ecn_set_ce_proto;
6232        case BPF_FUNC_tcp_gen_syncookie:
6233                return &bpf_tcp_gen_syncookie_proto;
6234#endif
6235        default:
6236                return bpf_base_func_proto(func_id);
6237        }
6238}
6239
6240static const struct bpf_func_proto *
6241xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6242{
6243        switch (func_id) {
6244        case BPF_FUNC_perf_event_output:
6245                return &bpf_xdp_event_output_proto;
6246        case BPF_FUNC_get_smp_processor_id:
6247                return &bpf_get_smp_processor_id_proto;
6248        case BPF_FUNC_csum_diff:
6249                return &bpf_csum_diff_proto;
6250        case BPF_FUNC_xdp_adjust_head:
6251                return &bpf_xdp_adjust_head_proto;
6252        case BPF_FUNC_xdp_adjust_meta:
6253                return &bpf_xdp_adjust_meta_proto;
6254        case BPF_FUNC_redirect:
6255                return &bpf_xdp_redirect_proto;
6256        case BPF_FUNC_redirect_map:
6257                return &bpf_xdp_redirect_map_proto;
6258        case BPF_FUNC_xdp_adjust_tail:
6259                return &bpf_xdp_adjust_tail_proto;
6260        case BPF_FUNC_fib_lookup:
6261                return &bpf_xdp_fib_lookup_proto;
6262#ifdef CONFIG_INET
6263        case BPF_FUNC_sk_lookup_udp:
6264                return &bpf_xdp_sk_lookup_udp_proto;
6265        case BPF_FUNC_sk_lookup_tcp:
6266                return &bpf_xdp_sk_lookup_tcp_proto;
6267        case BPF_FUNC_sk_release:
6268                return &bpf_sk_release_proto;
6269        case BPF_FUNC_skc_lookup_tcp:
6270                return &bpf_xdp_skc_lookup_tcp_proto;
6271        case BPF_FUNC_tcp_check_syncookie:
6272                return &bpf_tcp_check_syncookie_proto;
6273        case BPF_FUNC_tcp_gen_syncookie:
6274                return &bpf_tcp_gen_syncookie_proto;
6275#endif
6276        default:
6277                return bpf_base_func_proto(func_id);
6278        }
6279}
6280
6281const struct bpf_func_proto bpf_sock_map_update_proto __weak;
6282const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
6283
6284static const struct bpf_func_proto *
6285sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6286{
6287        switch (func_id) {
6288        case BPF_FUNC_setsockopt:
6289                return &bpf_setsockopt_proto;
6290        case BPF_FUNC_getsockopt:
6291                return &bpf_getsockopt_proto;
6292        case BPF_FUNC_sock_ops_cb_flags_set:
6293                return &bpf_sock_ops_cb_flags_set_proto;
6294        case BPF_FUNC_sock_map_update:
6295                return &bpf_sock_map_update_proto;
6296        case BPF_FUNC_sock_hash_update:
6297                return &bpf_sock_hash_update_proto;
6298        case BPF_FUNC_get_socket_cookie:
6299                return &bpf_get_socket_cookie_sock_ops_proto;
6300        case BPF_FUNC_get_local_storage:
6301                return &bpf_get_local_storage_proto;
6302        case BPF_FUNC_perf_event_output:
6303                return &bpf_sockopt_event_output_proto;
6304        case BPF_FUNC_sk_storage_get:
6305                return &bpf_sk_storage_get_proto;
6306        case BPF_FUNC_sk_storage_delete:
6307                return &bpf_sk_storage_delete_proto;
6308#ifdef CONFIG_INET
6309        case BPF_FUNC_tcp_sock:
6310                return &bpf_tcp_sock_proto;
6311#endif /* CONFIG_INET */
6312        default:
6313                return bpf_base_func_proto(func_id);
6314        }
6315}
6316
6317const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
6318const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
6319
6320static const struct bpf_func_proto *
6321sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6322{
6323        switch (func_id) {
6324        case BPF_FUNC_msg_redirect_map:
6325                return &bpf_msg_redirect_map_proto;
6326        case BPF_FUNC_msg_redirect_hash:
6327                return &bpf_msg_redirect_hash_proto;
6328        case BPF_FUNC_msg_apply_bytes:
6329                return &bpf_msg_apply_bytes_proto;
6330        case BPF_FUNC_msg_cork_bytes:
6331                return &bpf_msg_cork_bytes_proto;
6332        case BPF_FUNC_msg_pull_data:
6333                return &bpf_msg_pull_data_proto;
6334        case BPF_FUNC_msg_push_data:
6335                return &bpf_msg_push_data_proto;
6336        case BPF_FUNC_msg_pop_data:
6337                return &bpf_msg_pop_data_proto;
6338        default:
6339                return bpf_base_func_proto(func_id);
6340        }
6341}
6342
6343const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
6344const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
6345
6346static const struct bpf_func_proto *
6347sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6348{
6349        switch (func_id) {
6350        case BPF_FUNC_skb_store_bytes:
6351                return &bpf_skb_store_bytes_proto;
6352        case BPF_FUNC_skb_load_bytes:
6353                return &bpf_skb_load_bytes_proto;
6354        case BPF_FUNC_skb_pull_data:
6355                return &sk_skb_pull_data_proto;
6356        case BPF_FUNC_skb_change_tail:
6357                return &sk_skb_change_tail_proto;
6358        case BPF_FUNC_skb_change_head:
6359                return &sk_skb_change_head_proto;
6360        case BPF_FUNC_get_socket_cookie:
6361                return &bpf_get_socket_cookie_proto;
6362        case BPF_FUNC_get_socket_uid:
6363                return &bpf_get_socket_uid_proto;
6364        case BPF_FUNC_sk_redirect_map:
6365                return &bpf_sk_redirect_map_proto;
6366        case BPF_FUNC_sk_redirect_hash:
6367                return &bpf_sk_redirect_hash_proto;
6368        case BPF_FUNC_perf_event_output:
6369                return &bpf_skb_event_output_proto;
6370#ifdef CONFIG_INET
6371        case BPF_FUNC_sk_lookup_tcp:
6372                return &bpf_sk_lookup_tcp_proto;
6373        case BPF_FUNC_sk_lookup_udp:
6374                return &bpf_sk_lookup_udp_proto;
6375        case BPF_FUNC_sk_release:
6376                return &bpf_sk_release_proto;
6377        case BPF_FUNC_skc_lookup_tcp:
6378                return &bpf_skc_lookup_tcp_proto;
6379#endif
6380        default:
6381                return bpf_base_func_proto(func_id);
6382        }
6383}
6384
6385static const struct bpf_func_proto *
6386flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6387{
6388        switch (func_id) {
6389        case BPF_FUNC_skb_load_bytes:
6390                return &bpf_flow_dissector_load_bytes_proto;
6391        default:
6392                return bpf_base_func_proto(func_id);
6393        }
6394}
6395
6396static const struct bpf_func_proto *
6397lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6398{
6399        switch (func_id) {
6400        case BPF_FUNC_skb_load_bytes:
6401                return &bpf_skb_load_bytes_proto;
6402        case BPF_FUNC_skb_pull_data:
6403                return &bpf_skb_pull_data_proto;
6404        case BPF_FUNC_csum_diff:
6405                return &bpf_csum_diff_proto;
6406        case BPF_FUNC_get_cgroup_classid:
6407                return &bpf_get_cgroup_classid_proto;
6408        case BPF_FUNC_get_route_realm:
6409                return &bpf_get_route_realm_proto;
6410        case BPF_FUNC_get_hash_recalc:
6411                return &bpf_get_hash_recalc_proto;
6412        case BPF_FUNC_perf_event_output:
6413                return &bpf_skb_event_output_proto;
6414        case BPF_FUNC_get_smp_processor_id:
6415                return &bpf_get_smp_processor_id_proto;
6416        case BPF_FUNC_skb_under_cgroup:
6417                return &bpf_skb_under_cgroup_proto;
6418        default:
6419                return bpf_base_func_proto(func_id);
6420        }
6421}
6422
6423static const struct bpf_func_proto *
6424lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6425{
6426        switch (func_id) {
6427        case BPF_FUNC_lwt_push_encap:
6428                return &bpf_lwt_in_push_encap_proto;
6429        default:
6430                return lwt_out_func_proto(func_id, prog);
6431        }
6432}
6433
6434static const struct bpf_func_proto *
6435lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6436{
6437        switch (func_id) {
6438        case BPF_FUNC_skb_get_tunnel_key:
6439                return &bpf_skb_get_tunnel_key_proto;
6440        case BPF_FUNC_skb_set_tunnel_key:
6441                return bpf_get_skb_set_tunnel_proto(func_id);
6442        case BPF_FUNC_skb_get_tunnel_opt:
6443                return &bpf_skb_get_tunnel_opt_proto;
6444        case BPF_FUNC_skb_set_tunnel_opt:
6445                return bpf_get_skb_set_tunnel_proto(func_id);
6446        case BPF_FUNC_redirect:
6447                return &bpf_redirect_proto;
6448        case BPF_FUNC_clone_redirect:
6449                return &bpf_clone_redirect_proto;
6450        case BPF_FUNC_skb_change_tail:
6451                return &bpf_skb_change_tail_proto;
6452        case BPF_FUNC_skb_change_head:
6453                return &bpf_skb_change_head_proto;
6454        case BPF_FUNC_skb_store_bytes:
6455                return &bpf_skb_store_bytes_proto;
6456        case BPF_FUNC_csum_update:
6457                return &bpf_csum_update_proto;
6458        case BPF_FUNC_l3_csum_replace:
6459                return &bpf_l3_csum_replace_proto;
6460        case BPF_FUNC_l4_csum_replace:
6461                return &bpf_l4_csum_replace_proto;
6462        case BPF_FUNC_set_hash_invalid:
6463                return &bpf_set_hash_invalid_proto;
6464        case BPF_FUNC_lwt_push_encap:
6465                return &bpf_lwt_xmit_push_encap_proto;
6466        default:
6467                return lwt_out_func_proto(func_id, prog);
6468        }
6469}
6470
6471static const struct bpf_func_proto *
6472lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6473{
6474        switch (func_id) {
6475#if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6476        case BPF_FUNC_lwt_seg6_store_bytes:
6477                return &bpf_lwt_seg6_store_bytes_proto;
6478        case BPF_FUNC_lwt_seg6_action:
6479                return &bpf_lwt_seg6_action_proto;
6480        case BPF_FUNC_lwt_seg6_adjust_srh:
6481                return &bpf_lwt_seg6_adjust_srh_proto;
6482#endif
6483        default:
6484                return lwt_out_func_proto(func_id, prog);
6485        }
6486}
6487
6488static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
6489                                    const struct bpf_prog *prog,
6490                                    struct bpf_insn_access_aux *info)
6491{
6492        const int size_default = sizeof(__u32);
6493
6494        if (off < 0 || off >= sizeof(struct __sk_buff))
6495                return false;
6496
6497        /* The verifier guarantees that size > 0. */
6498        if (off % size != 0)
6499                return false;
6500
6501        switch (off) {
6502        case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
6503                if (off + size > offsetofend(struct __sk_buff, cb[4]))
6504                        return false;
6505                break;
6506        case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
6507        case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
6508        case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
6509        case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
6510        case bpf_ctx_range(struct __sk_buff, data):
6511        case bpf_ctx_range(struct __sk_buff, data_meta):
6512        case bpf_ctx_range(struct __sk_buff, data_end):
6513                if (size != size_default)
6514                        return false;
6515                break;
6516        case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
6517                return false;
6518        case bpf_ctx_range(struct __sk_buff, tstamp):
6519                if (size != sizeof(__u64))
6520                        return false;
6521                break;
6522        case offsetof(struct __sk_buff, sk):
6523                if (type == BPF_WRITE || size != sizeof(__u64))
6524                        return false;
6525                info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
6526                break;
6527        default:
6528                /* Only narrow read access allowed for now. */
6529                if (type == BPF_WRITE) {
6530                        if (size != size_default)
6531                                return false;
6532                } else {
6533                        bpf_ctx_record_field_size(info, size_default);
6534                        if (!bpf_ctx_narrow_access_ok(off, size, size_default))
6535                                return false;
6536                }
6537        }
6538
6539        return true;
6540}
6541
6542static bool sk_filter_is_valid_access(int off, int size,
6543                                      enum bpf_access_type type,
6544                                      const struct bpf_prog *prog,
6545                                      struct bpf_insn_access_aux *info)
6546{
6547        switch (off) {
6548        case bpf_ctx_range(struct __sk_buff, tc_classid):
6549        case bpf_ctx_range(struct __sk_buff, data):
6550        case bpf_ctx_range(struct __sk_buff, data_meta):
6551        case bpf_ctx_range(struct __sk_buff, data_end):
6552        case bpf_ctx_range_till(struct __sk_buff, family, local_port):
6553        case bpf_ctx_range(struct __sk_buff, tstamp):
6554        case bpf_ctx_range(struct __sk_buff, wire_len):
6555                return false;
6556        }
6557
6558        if (type == BPF_WRITE) {
6559                switch (off) {
6560                case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
6561                        break;
6562                default:
6563                        return false;
6564                }
6565        }
6566
6567        return bpf_skb_is_valid_access(off, size, type, prog, info);
6568}
6569
6570static bool cg_skb_is_valid_access(int off, int size,
6571                                   enum bpf_access_type type,
6572                                   const struct bpf_prog *prog,
6573                                   struct bpf_insn_access_aux *info)
6574{
6575        switch (off) {
6576        case bpf_ctx_range(struct __sk_buff, tc_classid):
6577        case bpf_ctx_range(struct __sk_buff, data_meta):
6578        case bpf_ctx_range(struct __sk_buff, wire_len):
6579                return false;
6580        case bpf_ctx_range(struct __sk_buff, data):
6581        case bpf_ctx_range(struct __sk_buff, data_end):
6582                if (!capable(CAP_SYS_ADMIN))
6583                        return false;
6584                break;
6585        }
6586
6587        if (type == BPF_WRITE) {
6588                switch (off) {
6589                case bpf_ctx_range(struct __sk_buff, mark):
6590                case bpf_ctx_range(struct __sk_buff, priority):
6591                case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
6592                        break;
6593                case bpf_ctx_range(struct __sk_buff, tstamp):
6594                        if (!capable(CAP_SYS_ADMIN))
6595                                return false;
6596                        break;
6597                default:
6598                        return false;
6599                }
6600        }
6601
6602        switch (off) {
6603        case bpf_ctx_range(struct __sk_buff, data):
6604                info->reg_type = PTR_TO_PACKET;
6605                break;
6606        case bpf_ctx_range(struct __sk_buff, data_end):
6607                info->reg_type = PTR_TO_PACKET_END;
6608                break;
6609        }
6610
6611        return bpf_skb_is_valid_access(off, size, type, prog, info);
6612}
6613
6614static bool lwt_is_valid_access(int off, int size,
6615                                enum bpf_access_type type,
6616                                const struct bpf_prog *prog,
6617                                struct bpf_insn_access_aux *info)
6618{
6619        switch (off) {
6620        case bpf_ctx_range(struct __sk_buff, tc_classid):
6621        case bpf_ctx_range_till(struct __sk_buff, family, local_port):
6622        case bpf_ctx_range(struct __sk_buff, data_meta):
6623        case bpf_ctx_range(struct __sk_buff, tstamp):
6624        case bpf_ctx_range(struct __sk_buff, wire_len):
6625                return false;
6626        }
6627
6628        if (type == BPF_WRITE) {
6629                switch (off) {
6630                case bpf_ctx_range(struct __sk_buff, mark):
6631                case bpf_ctx_range(struct __sk_buff, priority):
6632                case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
6633                        break;
6634                default:
6635                        return false;
6636                }
6637        }
6638
6639        switch (off) {
6640        case bpf_ctx_range(struct __sk_buff, data):
6641                info->reg_type = PTR_TO_PACKET;
6642                break;
6643        case bpf_ctx_range(struct __sk_buff, data_end):
6644                info->reg_type = PTR_TO_PACKET_END;
6645                break;
6646        }
6647
6648        return bpf_skb_is_valid_access(off, size, type, prog, info);
6649}
6650
6651/* Attach type specific accesses */
6652static bool __sock_filter_check_attach_type(int off,
6653                                            enum bpf_access_type access_type,
6654                                            enum bpf_attach_type attach_type)
6655{
6656        switch (off) {
6657        case offsetof(struct bpf_sock, bound_dev_if):
6658        case offsetof(struct bpf_sock, mark):
6659        case offsetof(struct bpf_sock, priority):
6660                switch (attach_type) {
6661                case BPF_CGROUP_INET_SOCK_CREATE:
6662                        goto full_access;
6663                default:
6664                        return false;
6665                }
6666        case bpf_ctx_range(struct bpf_sock, src_ip4):
6667                switch (attach_type) {
6668                case BPF_CGROUP_INET4_POST_BIND:
6669                        goto read_only;
6670                default:
6671                        return false;
6672                }
6673        case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
6674                switch (attach_type) {
6675                case BPF_CGROUP_INET6_POST_BIND:
6676                        goto read_only;
6677                default:
6678                        return false;
6679                }
6680        case bpf_ctx_range(struct bpf_sock, src_port):
6681                switch (attach_type) {
6682                case BPF_CGROUP_INET4_POST_BIND:
6683                case BPF_CGROUP_INET6_POST_BIND:
6684                        goto read_only;
6685                default:
6686                        return false;
6687                }
6688        }
6689read_only:
6690        return access_type == BPF_READ;
6691full_access:
6692        return true;
6693}
6694
6695bool bpf_sock_common_is_valid_access(int off, int size,
6696                                     enum bpf_access_type type,
6697                                     struct bpf_insn_access_aux *info)
6698{
6699        switch (off) {
6700        case bpf_ctx_range_till(struct bpf_sock, type, priority):
6701                return false;
6702        default:
6703                return bpf_sock_is_valid_access(off, size, type, info);
6704        }
6705}
6706
6707bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6708                              struct bpf_insn_access_aux *info)
6709{
6710        const int size_default = sizeof(__u32);
6711
6712        if (off < 0 || off >= sizeof(struct bpf_sock))
6713                return false;
6714        if (off % size != 0)
6715                return false;
6716
6717        switch (off) {
6718        case offsetof(struct bpf_sock, state):
6719        case offsetof(struct bpf_sock, family):
6720        case offsetof(struct bpf_sock, type):
6721        case offsetof(struct bpf_sock, protocol):
6722        case offsetof(struct bpf_sock, dst_port):
6723        case offsetof(struct bpf_sock, src_port):
6724        case bpf_ctx_range(struct bpf_sock, src_ip4):
6725        case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
6726        case bpf_ctx_range(struct bpf_sock, dst_ip4):
6727        case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
6728                bpf_ctx_record_field_size(info, size_default);
6729                return bpf_ctx_narrow_access_ok(off, size, size_default);
6730        }
6731
6732        return size == size_default;
6733}
6734
6735static bool sock_filter_is_valid_access(int off, int size,
6736                                        enum bpf_access_type type,
6737                                        const struct bpf_prog *prog,
6738                                        struct bpf_insn_access_aux *info)
6739{
6740        if (!bpf_sock_is_valid_access(off, size, type, info))
6741                return false;
6742        return __sock_filter_check_attach_type(off, type,
6743                                               prog->expected_attach_type);
6744}
6745
6746static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
6747                             const struct bpf_prog *prog)
6748{
6749        /* Neither direct read nor direct write requires any preliminary
6750         * action.
6751         */
6752        return 0;
6753}
6754
6755static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
6756                                const struct bpf_prog *prog, int drop_verdict)
6757{
6758        struct bpf_insn *insn = insn_buf;
6759
6760        if (!direct_write)
6761                return 0;
6762
6763        /* if (!skb->cloned)
6764         *       goto start;
6765         *
6766         * (Fast-path, otherwise approximation that we might be
6767         *  a clone, do the rest in helper.)
6768         */
6769        *insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET());
6770        *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
6771        *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
6772
6773        /* ret = bpf_skb_pull_data(skb, 0); */
6774        *insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
6775        *insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
6776        *insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
6777                               BPF_FUNC_skb_pull_data);
6778        /* if (!ret)
6779         *      goto restore;
6780         * return TC_ACT_SHOT;
6781         */
6782        *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
6783        *insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
6784        *insn++ = BPF_EXIT_INSN();
6785
6786        /* restore: */
6787        *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
6788        /* start: */
6789        *insn++ = prog->insnsi[0];
6790
6791        return insn - insn_buf;
6792}
6793
6794static int bpf_gen_ld_abs(const struct bpf_insn *orig,
6795                          struct bpf_insn *insn_buf)
6796{
6797        bool indirect = BPF_MODE(orig->code) == BPF_IND;
6798        struct bpf_insn *insn = insn_buf;
6799
6800        /* We're guaranteed here that CTX is in R6. */
6801        *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
6802        if (!indirect) {
6803                *insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
6804        } else {
6805                *insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
6806                if (orig->imm)
6807                        *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
6808        }
6809
6810        switch (BPF_SIZE(orig->code)) {
6811        case BPF_B:
6812                *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
6813                break;
6814        case BPF_H:
6815                *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
6816                break;
6817        case BPF_W:
6818                *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
6819                break;
6820        }
6821
6822        *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
6823        *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
6824        *insn++ = BPF_EXIT_INSN();
6825
6826        return insn - insn_buf;
6827}
6828
6829static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
6830                               const struct bpf_prog *prog)
6831{
6832        return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
6833}
6834
6835static bool tc_cls_act_is_valid_access(int off, int size,
6836                                       enum bpf_access_type type,
6837                                       const struct bpf_prog *prog,
6838                                       struct bpf_insn_access_aux *info)
6839{
6840        if (type == BPF_WRITE) {
6841                switch (off) {
6842                case bpf_ctx_range(struct __sk_buff, mark):
6843                case bpf_ctx_range(struct __sk_buff, tc_index):
6844                case bpf_ctx_range(struct __sk_buff, priority):
6845                case bpf_ctx_range(struct __sk_buff, tc_classid):
6846                case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
6847                case bpf_ctx_range(struct __sk_buff, tstamp):
6848                case bpf_ctx_range(struct __sk_buff, queue_mapping):
6849                        break;
6850                default:
6851                        return false;
6852                }
6853        }
6854
6855        switch (off) {
6856        case bpf_ctx_range(struct __sk_buff, data):
6857                info->reg_type = PTR_TO_PACKET;
6858                break;
6859        case bpf_ctx_range(struct __sk_buff, data_meta):
6860                info->reg_type = PTR_TO_PACKET_META;
6861                break;
6862        case bpf_ctx_range(struct __sk_buff, data_end):
6863                info->reg_type = PTR_TO_PACKET_END;
6864                break;
6865        case bpf_ctx_range_till(struct __sk_buff, family, local_port):
6866                return false;
6867        }
6868
6869        return bpf_skb_is_valid_access(off, size, type, prog, info);
6870}
6871
6872static bool __is_valid_xdp_access(int off, int size)
6873{
6874        if (off < 0 || off >= sizeof(struct xdp_md))
6875                return false;
6876        if (off % size != 0)
6877                return false;
6878        if (size != sizeof(__u32))
6879                return false;
6880
6881        return true;
6882}
6883
6884static bool xdp_is_valid_access(int off, int size,
6885                                enum bpf_access_type type,
6886                                const struct bpf_prog *prog,
6887                                struct bpf_insn_access_aux *info)
6888{
6889        if (type == BPF_WRITE) {
6890                if (bpf_prog_is_dev_bound(prog->aux)) {
6891                        switch (off) {
6892                        case offsetof(struct xdp_md, rx_queue_index):
6893                                return __is_valid_xdp_access(off, size);
6894                        }
6895                }
6896                return false;
6897        }
6898
6899        switch (off) {
6900        case offsetof(struct xdp_md, data):
6901                info->reg_type = PTR_TO_PACKET;
6902                break;
6903        case offsetof(struct xdp_md, data_meta):
6904                info->reg_type = PTR_TO_PACKET_META;
6905                break;
6906        case offsetof(struct xdp_md, data_end):
6907                info->reg_type = PTR_TO_PACKET_END;
6908                break;
6909        }
6910
6911        return __is_valid_xdp_access(off, size);
6912}
6913
6914void bpf_warn_invalid_xdp_action(u32 act)
6915{
6916        const u32 act_max = XDP_REDIRECT;
6917
6918        WARN_ONCE(1, "%s XDP return value %u, expect packet loss!\n",
6919                  act > act_max ? "Illegal" : "Driver unsupported",
6920                  act);
6921}
6922EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
6923
6924static bool sock_addr_is_valid_access(int off, int size,
6925                                      enum bpf_access_type type,
6926                                      const struct bpf_prog *prog,
6927                                      struct bpf_insn_access_aux *info)
6928{
6929        const int size_default = sizeof(__u32);
6930
6931        if (off < 0 || off >= sizeof(struct bpf_sock_addr))
6932                return false;
6933        if (off % size != 0)
6934                return false;
6935
6936        /* Disallow access to IPv6 fields from IPv4 contex and vise
6937         * versa.
6938         */
6939        switch (off) {
6940        case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
6941                switch (prog->expected_attach_type) {
6942                case BPF_CGROUP_INET4_BIND:
6943                case BPF_CGROUP_INET4_CONNECT:
6944                case BPF_CGROUP_UDP4_SENDMSG:
6945                case BPF_CGROUP_UDP4_RECVMSG:
6946                        break;
6947                default:
6948                        return false;
6949                }
6950                break;
6951        case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
6952                switch (prog->expected_attach_type) {
6953                case BPF_CGROUP_INET6_BIND:
6954                case BPF_CGROUP_INET6_CONNECT:
6955                case BPF_CGROUP_UDP6_SENDMSG:
6956                case BPF_CGROUP_UDP6_RECVMSG:
6957                        break;
6958                default:
6959                        return false;
6960                }
6961                break;
6962        case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
6963                switch (prog->expected_attach_type) {
6964                case BPF_CGROUP_UDP4_SENDMSG:
6965                        break;
6966                default:
6967                        return false;
6968                }
6969                break;
6970        case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
6971                                msg_src_ip6[3]):
6972                switch (prog->expected_attach_type) {
6973                case BPF_CGROUP_UDP6_SENDMSG:
6974                        break;
6975                default:
6976                        return false;
6977                }
6978                break;
6979        }
6980
6981        switch (off) {
6982        case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
6983        case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
6984        case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
6985        case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
6986                                msg_src_ip6[3]):
6987                if (type == BPF_READ) {
6988                        bpf_ctx_record_field_size(info, size_default);
6989
6990                        if (bpf_ctx_wide_access_ok(off, size,
6991                                                   struct bpf_sock_addr,
6992                                                   user_ip6))
6993                                return true;
6994
6995                        if (bpf_ctx_wide_access_ok(off, size,
6996                                                   struct bpf_sock_addr,
6997                                                   msg_src_ip6))
6998                                return true;
6999
7000                        if (!bpf_ctx_narrow_access_ok(off, size, size_default))
7001                                return false;
7002                } else {
7003                        if (bpf_ctx_wide_access_ok(off, size,
7004                                                   struct bpf_sock_addr,
7005                                                   user_ip6))
7006                                return true;
7007
7008                        if (bpf_ctx_wide_access_ok(off, size,
7009                                                   struct bpf_sock_addr,
7010                                                   msg_src_ip6))
7011                                return true;
7012
7013                        if (size != size_default)
7014                                return false;
7015                }
7016                break;
7017        case bpf_ctx_range(struct bpf_sock_addr, user_port):
7018                if (size != size_default)
7019                        return false;
7020                break;
7021        case offsetof(struct bpf_sock_addr, sk):
7022                if (type != BPF_READ)
7023                        return false;
7024                if (size != sizeof(__u64))
7025                        return false;
7026                info->reg_type = PTR_TO_SOCKET;
7027                break;
7028        default:
7029                if (type == BPF_READ) {
7030                        if (size != size_default)
7031                                return false;
7032                } else {
7033                        return false;
7034                }
7035        }
7036
7037        return true;
7038}
7039
7040static bool sock_ops_is_valid_access(int off, int size,
7041                                     enum bpf_access_type type,
7042                                     const struct bpf_prog *prog,
7043                                     struct bpf_insn_access_aux *info)
7044{
7045        const int size_default = sizeof(__u32);
7046
7047        if (off < 0 || off >= sizeof(struct bpf_sock_ops))
7048                return false;
7049
7050        /* The verifier guarantees that size > 0. */
7051        if (off % size != 0)
7052                return false;
7053
7054        if (type == BPF_WRITE) {
7055                switch (off) {
7056                case offsetof(struct bpf_sock_ops, reply):
7057                case offsetof(struct bpf_sock_ops, sk_txhash):
7058                        if (size != size_default)
7059                                return false;
7060                        break;
7061                default:
7062                        return false;
7063                }
7064        } else {
7065                switch (off) {
7066                case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
7067                                        bytes_acked):
7068                        if (size != sizeof(__u64))
7069                                return false;
7070                        break;
7071                case offsetof(struct bpf_sock_ops, sk):
7072                        if (size != sizeof(__u64))
7073                                return false;
7074                        info->reg_type = PTR_TO_SOCKET_OR_NULL;
7075                        break;
7076                default:
7077                        if (size != size_default)
7078                                return false;
7079                        break;
7080                }
7081        }
7082
7083        return true;
7084}
7085
7086static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
7087                           const struct bpf_prog *prog)
7088{
7089        return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
7090}
7091
7092static bool sk_skb_is_valid_access(int off, int size,
7093                                   enum bpf_access_type type,
7094                                   const struct bpf_prog *prog,
7095                                   struct bpf_insn_access_aux *info)
7096{
7097        switch (off) {
7098        case bpf_ctx_range(struct __sk_buff, tc_classid):
7099        case bpf_ctx_range(struct __sk_buff, data_meta):
7100        case bpf_ctx_range(struct __sk_buff, tstamp):
7101        case bpf_ctx_range(struct __sk_buff, wire_len):
7102                return false;
7103        }
7104
7105        if (type == BPF_WRITE) {
7106                switch (off) {
7107                case bpf_ctx_range(struct __sk_buff, tc_index):
7108                case bpf_ctx_range(struct __sk_buff, priority):
7109                        break;
7110                default:
7111                        return false;
7112                }
7113        }
7114
7115        switch (off) {
7116        case bpf_ctx_range(struct __sk_buff, mark):
7117                return false;
7118        case bpf_ctx_range(struct __sk_buff, data):
7119                info->reg_type = PTR_TO_PACKET;
7120                break;
7121        case bpf_ctx_range(struct __sk_buff, data_end):
7122                info->reg_type = PTR_TO_PACKET_END;
7123                break;
7124        }
7125
7126        return bpf_skb_is_valid_access(off, size, type, prog, info);
7127}
7128
7129static bool sk_msg_is_valid_access(int off, int size,
7130                                   enum bpf_access_type type,
7131                                   const struct bpf_prog *prog,
7132                                   struct bpf_insn_access_aux *info)
7133{
7134        if (type == BPF_WRITE)
7135                return false;
7136
7137        if (off % size != 0)
7138                return false;
7139
7140        switch (off) {
7141        case offsetof(struct sk_msg_md, data):
7142                info->reg_type = PTR_TO_PACKET;
7143                if (size != sizeof(__u64))
7144                        return false;
7145                break;
7146        case offsetof(struct sk_msg_md, data_end):
7147                info->reg_type = PTR_TO_PACKET_END;
7148                if (size != sizeof(__u64))
7149                        return false;
7150                break;
7151        case bpf_ctx_range(struct sk_msg_md, family):
7152        case bpf_ctx_range(struct sk_msg_md, remote_ip4):
7153        case bpf_ctx_range(struct sk_msg_md, local_ip4):
7154        case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
7155        case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
7156        case bpf_ctx_range(struct sk_msg_md, remote_port):
7157        case bpf_ctx_range(struct sk_msg_md, local_port):
7158        case bpf_ctx_range(struct sk_msg_md, size):
7159                if (size != sizeof(__u32))
7160                        return false;
7161                break;
7162        default:
7163                return false;
7164        }
7165        return true;
7166}
7167
7168static bool flow_dissector_is_valid_access(int off, int size,
7169                                           enum bpf_access_type type,
7170                                           const struct bpf_prog *prog,
7171                                           struct bpf_insn_access_aux *info)
7172{
7173        const int size_default = sizeof(__u32);
7174
7175        if (off < 0 || off >= sizeof(struct __sk_buff))
7176                return false;
7177
7178        if (type == BPF_WRITE)
7179                return false;
7180
7181        switch (off) {
7182        case bpf_ctx_range(struct __sk_buff, data):
7183                if (size != size_default)
7184                        return false;
7185                info->reg_type = PTR_TO_PACKET;
7186                return true;
7187        case bpf_ctx_range(struct __sk_buff, data_end):
7188                if (size != size_default)
7189                        return false;
7190                info->reg_type = PTR_TO_PACKET_END;
7191                return true;
7192        case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
7193                if (size != sizeof(__u64))
7194                        return false;
7195                info->reg_type = PTR_TO_FLOW_KEYS;
7196                return true;
7197        default:
7198                return false;
7199        }
7200}
7201
7202static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
7203                                             const struct bpf_insn *si,
7204                                             struct bpf_insn *insn_buf,
7205                                             struct bpf_prog *prog,
7206                                             u32 *target_size)
7207
7208{
7209        struct bpf_insn *insn = insn_buf;
7210
7211        switch (si->off) {
7212        case offsetof(struct __sk_buff, data):
7213                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
7214                                      si->dst_reg, si->src_reg,
7215                                      offsetof(struct bpf_flow_dissector, data));
7216                break;
7217
7218        case offsetof(struct __sk_buff, data_end):
7219                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
7220                                      si->dst_reg, si->src_reg,
7221                                      offsetof(struct bpf_flow_dissector, data_end));
7222                break;
7223
7224        case offsetof(struct __sk_buff, flow_keys):
7225                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
7226                                      si->dst_reg, si->src_reg,
7227                                      offsetof(struct bpf_flow_dissector, flow_keys));
7228                break;
7229        }
7230
7231        return insn - insn_buf;
7232}
7233
7234static u32 bpf_convert_ctx_access(enum bpf_access_type type,
7235                                  const struct bpf_insn *si,
7236                                  struct bpf_insn *insn_buf,
7237                                  struct bpf_prog *prog, u32 *target_size)
7238{
7239        struct bpf_insn *insn = insn_buf;
7240        int off;
7241
7242        switch (si->off) {
7243        case offsetof(struct __sk_buff, len):
7244                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7245                                      bpf_target_off(struct sk_buff, len, 4,
7246                                                     target_size));
7247                break;
7248
7249        case offsetof(struct __sk_buff, protocol):
7250                *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
7251                                      bpf_target_off(struct sk_buff, protocol, 2,
7252                                                     target_size));
7253                break;
7254
7255        case offsetof(struct __sk_buff, vlan_proto):
7256                *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
7257                                      bpf_target_off(struct sk_buff, vlan_proto, 2,
7258                                                     target_size));
7259                break;
7260
7261        case offsetof(struct __sk_buff, priority):
7262                if (type == BPF_WRITE)
7263                        *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
7264                                              bpf_target_off(struct sk_buff, priority, 4,
7265                                                             target_size));
7266                else
7267                        *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7268                                              bpf_target_off(struct sk_buff, priority, 4,
7269                                                             target_size));
7270                break;
7271
7272        case offsetof(struct __sk_buff, ingress_ifindex):
7273                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7274                                      bpf_target_off(struct sk_buff, skb_iif, 4,
7275                                                     target_size));
7276                break;
7277
7278        case offsetof(struct __sk_buff, ifindex):
7279                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
7280                                      si->dst_reg, si->src_reg,
7281                                      offsetof(struct sk_buff, dev));
7282                *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
7283                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7284                                      bpf_target_off(struct net_device, ifindex, 4,
7285                                                     target_size));
7286                break;
7287
7288        case offsetof(struct __sk_buff, hash):
7289                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7290                                      bpf_target_off(struct sk_buff, hash, 4,
7291                                                     target_size));
7292                break;
7293
7294        case offsetof(struct __sk_buff, mark):
7295                if (type == BPF_WRITE)
7296                        *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
7297                                              bpf_target_off(struct sk_buff, mark, 4,
7298                                                             target_size));
7299                else
7300                        *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7301                                              bpf_target_off(struct sk_buff, mark, 4,
7302                                                             target_size));
7303                break;
7304
7305        case offsetof(struct __sk_buff, pkt_type):
7306                *target_size = 1;
7307                *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
7308                                      PKT_TYPE_OFFSET());
7309                *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
7310#ifdef __BIG_ENDIAN_BITFIELD
7311                *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
7312#endif
7313                break;
7314
7315        case offsetof(struct __sk_buff, queue_mapping):
7316                if (type == BPF_WRITE) {
7317                        *insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
7318                        *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
7319                                              bpf_target_off(struct sk_buff,
7320                                                             queue_mapping,
7321                                                             2, target_size));
7322                } else {
7323                        *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
7324                                              bpf_target_off(struct sk_buff,
7325                                                             queue_mapping,
7326                                                             2, target_size));
7327                }
7328                break;
7329
7330        case offsetof(struct __sk_buff, vlan_present):
7331                *target_size = 1;
7332                *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
7333                                      PKT_VLAN_PRESENT_OFFSET());
7334                if (PKT_VLAN_PRESENT_BIT)
7335                        *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, PKT_VLAN_PRESENT_BIT);
7336                if (PKT_VLAN_PRESENT_BIT < 7)
7337                        *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, 1);
7338                break;
7339
7340        case offsetof(struct __sk_buff, vlan_tci):
7341                *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
7342                                      bpf_target_off(struct sk_buff, vlan_tci, 2,
7343                                                     target_size));
7344                break;
7345
7346        case offsetof(struct __sk_buff, cb[0]) ...
7347             offsetofend(struct __sk_buff, cb[4]) - 1:
7348                BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20);
7349                BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
7350                              offsetof(struct qdisc_skb_cb, data)) %
7351                             sizeof(__u64));
7352
7353                prog->cb_access = 1;
7354                off  = si->off;
7355                off -= offsetof(struct __sk_buff, cb[0]);
7356                off += offsetof(struct sk_buff, cb);
7357                off += offsetof(struct qdisc_skb_cb, data);
7358                if (type == BPF_WRITE)
7359                        *insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
7360                                              si->src_reg, off);
7361                else
7362                        *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
7363                                              si->src_reg, off);
7364                break;
7365
7366        case offsetof(struct __sk_buff, tc_classid):
7367                BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2);
7368
7369                off  = si->off;
7370                off -= offsetof(struct __sk_buff, tc_classid);
7371                off += offsetof(struct sk_buff, cb);
7372                off += offsetof(struct qdisc_skb_cb, tc_classid);
7373                *target_size = 2;
7374                if (type == BPF_WRITE)
7375                        *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
7376                                              si->src_reg, off);
7377                else
7378                        *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
7379                                              si->src_reg, off);
7380                break;
7381
7382        case offsetof(struct __sk_buff, data):
7383                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
7384                                      si->dst_reg, si->src_reg,
7385                                      offsetof(struct sk_buff, data));
7386                break;
7387
7388        case offsetof(struct __sk_buff, data_meta):
7389                off  = si->off;
7390                off -= offsetof(struct __sk_buff, data_meta);
7391                off += offsetof(struct sk_buff, cb);
7392                off += offsetof(struct bpf_skb_data_end, data_meta);
7393                *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
7394                                      si->src_reg, off);
7395                break;
7396
7397        case offsetof(struct __sk_buff, data_end):
7398                off  = si->off;
7399                off -= offsetof(struct __sk_buff, data_end);
7400                off += offsetof(struct sk_buff, cb);
7401                off += offsetof(struct bpf_skb_data_end, data_end);
7402                *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
7403                                      si->src_reg, off);
7404                break;
7405
7406        case offsetof(struct __sk_buff, tc_index):
7407#ifdef CONFIG_NET_SCHED
7408                if (type == BPF_WRITE)
7409                        *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
7410                                              bpf_target_off(struct sk_buff, tc_index, 2,
7411                                                             target_size));
7412                else
7413                        *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
7414                                              bpf_target_off(struct sk_buff, tc_index, 2,
7415                                                             target_size));
7416#else
7417                *target_size = 2;
7418                if (type == BPF_WRITE)
7419                        *insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
7420                else
7421                        *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
7422#endif
7423                break;
7424
7425        case offsetof(struct __sk_buff, napi_id):
7426#if defined(CONFIG_NET_RX_BUSY_POLL)
7427                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7428                                      bpf_target_off(struct sk_buff, napi_id, 4,
7429                                                     target_size));
7430                *insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
7431                *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
7432#else
7433                *target_size = 4;
7434                *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
7435#endif
7436                break;
7437        case offsetof(struct __sk_buff, family):
7438                BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
7439
7440                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7441                                      si->dst_reg, si->src_reg,
7442                                      offsetof(struct sk_buff, sk));
7443                *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
7444                                      bpf_target_off(struct sock_common,
7445                                                     skc_family,
7446                                                     2, target_size));
7447                break;
7448        case offsetof(struct __sk_buff, remote_ip4):
7449                BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
7450
7451                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7452                                      si->dst_reg, si->src_reg,
7453                                      offsetof(struct sk_buff, sk));
7454                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7455                                      bpf_target_off(struct sock_common,
7456                                                     skc_daddr,
7457                                                     4, target_size));
7458                break;
7459        case offsetof(struct __sk_buff, local_ip4):
7460                BUILD_BUG_ON(sizeof_field(struct sock_common,
7461                                          skc_rcv_saddr) != 4);
7462
7463                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7464                                      si->dst_reg, si->src_reg,
7465                                      offsetof(struct sk_buff, sk));
7466                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7467                                      bpf_target_off(struct sock_common,
7468                                                     skc_rcv_saddr,
7469                                                     4, target_size));
7470                break;
7471        case offsetof(struct __sk_buff, remote_ip6[0]) ...
7472             offsetof(struct __sk_buff, remote_ip6[3]):
7473#if IS_ENABLED(CONFIG_IPV6)
7474                BUILD_BUG_ON(sizeof_field(struct sock_common,
7475                                          skc_v6_daddr.s6_addr32[0]) != 4);
7476
7477                off = si->off;
7478                off -= offsetof(struct __sk_buff, remote_ip6[0]);
7479
7480                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7481                                      si->dst_reg, si->src_reg,
7482                                      offsetof(struct sk_buff, sk));
7483                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7484                                      offsetof(struct sock_common,
7485                                               skc_v6_daddr.s6_addr32[0]) +
7486                                      off);
7487#else
7488                *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
7489#endif
7490                break;
7491        case offsetof(struct __sk_buff, local_ip6[0]) ...
7492             offsetof(struct __sk_buff, local_ip6[3]):
7493#if IS_ENABLED(CONFIG_IPV6)
7494                BUILD_BUG_ON(sizeof_field(struct sock_common,
7495                                          skc_v6_rcv_saddr.s6_addr32[0]) != 4);
7496
7497                off = si->off;
7498                off -= offsetof(struct __sk_buff, local_ip6[0]);
7499
7500                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7501                                      si->dst_reg, si->src_reg,
7502                                      offsetof(struct sk_buff, sk));
7503                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7504                                      offsetof(struct sock_common,
7505                                               skc_v6_rcv_saddr.s6_addr32[0]) +
7506                                      off);
7507#else
7508                *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
7509#endif
7510                break;
7511
7512        case offsetof(struct __sk_buff, remote_port):
7513                BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
7514
7515                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7516                                      si->dst_reg, si->src_reg,
7517                                      offsetof(struct sk_buff, sk));
7518                *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
7519                                      bpf_target_off(struct sock_common,
7520                                                     skc_dport,
7521                                                     2, target_size));
7522#ifndef __BIG_ENDIAN_BITFIELD
7523                *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
7524#endif
7525                break;
7526
7527        case offsetof(struct __sk_buff, local_port):
7528                BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
7529
7530                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7531                                      si->dst_reg, si->src_reg,
7532                                      offsetof(struct sk_buff, sk));
7533                *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
7534                                      bpf_target_off(struct sock_common,
7535                                                     skc_num, 2, target_size));
7536                break;
7537
7538        case offsetof(struct __sk_buff, tstamp):
7539                BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8);
7540
7541                if (type == BPF_WRITE)
7542                        *insn++ = BPF_STX_MEM(BPF_DW,
7543                                              si->dst_reg, si->src_reg,
7544                                              bpf_target_off(struct sk_buff,
7545                                                             tstamp, 8,
7546                                                             target_size));
7547                else
7548                        *insn++ = BPF_LDX_MEM(BPF_DW,
7549                                              si->dst_reg, si->src_reg,
7550                                              bpf_target_off(struct sk_buff,
7551                                                             tstamp, 8,
7552                                                             target_size));
7553                break;
7554
7555        case offsetof(struct __sk_buff, gso_segs):
7556                /* si->dst_reg = skb_shinfo(SKB); */
7557#ifdef NET_SKBUFF_DATA_USES_OFFSET
7558                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
7559                                      BPF_REG_AX, si->src_reg,
7560                                      offsetof(struct sk_buff, end));
7561                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
7562                                      si->dst_reg, si->src_reg,
7563                                      offsetof(struct sk_buff, head));
7564                *insn++ = BPF_ALU64_REG(BPF_ADD, si->dst_reg, BPF_REG_AX);
7565#else
7566                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
7567                                      si->dst_reg, si->src_reg,
7568                                      offsetof(struct sk_buff, end));
7569#endif
7570                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
7571                                      si->dst_reg, si->dst_reg,
7572                                      bpf_target_off(struct skb_shared_info,
7573                                                     gso_segs, 2,
7574                                                     target_size));
7575                break;
7576        case offsetof(struct __sk_buff, wire_len):
7577                BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4);
7578
7579                off = si->off;
7580                off -= offsetof(struct __sk_buff, wire_len);
7581                off += offsetof(struct sk_buff, cb);
7582                off += offsetof(struct qdisc_skb_cb, pkt_len);
7583                *target_size = 4;
7584                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
7585                break;
7586
7587        case offsetof(struct __sk_buff, sk):
7588                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7589                                      si->dst_reg, si->src_reg,
7590                                      offsetof(struct sk_buff, sk));
7591                break;
7592        }
7593
7594        return insn - insn_buf;
7595}
7596
7597u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
7598                                const struct bpf_insn *si,
7599                                struct bpf_insn *insn_buf,
7600                                struct bpf_prog *prog, u32 *target_size)
7601{
7602        struct bpf_insn *insn = insn_buf;
7603        int off;
7604
7605        switch (si->off) {
7606        case offsetof(struct bpf_sock, bound_dev_if):
7607                BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4);
7608
7609                if (type == BPF_WRITE)
7610                        *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
7611                                        offsetof(struct sock, sk_bound_dev_if));
7612                else
7613                        *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7614                                      offsetof(struct sock, sk_bound_dev_if));
7615                break;
7616
7617        case offsetof(struct bpf_sock, mark):
7618                BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4);
7619
7620                if (type == BPF_WRITE)
7621                        *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
7622                                        offsetof(struct sock, sk_mark));
7623                else
7624                        *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7625                                      offsetof(struct sock, sk_mark));
7626                break;
7627
7628        case offsetof(struct bpf_sock, priority):
7629                BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4);
7630
7631                if (type == BPF_WRITE)
7632                        *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
7633                                        offsetof(struct sock, sk_priority));
7634                else
7635                        *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7636                                      offsetof(struct sock, sk_priority));
7637                break;
7638
7639        case offsetof(struct bpf_sock, family):
7640                *insn++ = BPF_LDX_MEM(
7641                        BPF_FIELD_SIZEOF(struct sock_common, skc_family),
7642                        si->dst_reg, si->src_reg,
7643                        bpf_target_off(struct sock_common,
7644                                       skc_family,
7645                                       sizeof_field(struct sock_common,
7646                                                    skc_family),
7647                                       target_size));
7648                break;
7649
7650        case offsetof(struct bpf_sock, type):
7651                BUILD_BUG_ON(HWEIGHT32(SK_FL_TYPE_MASK) != BITS_PER_BYTE * 2);
7652                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7653                                      offsetof(struct sock, __sk_flags_offset));
7654                *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_TYPE_MASK);
7655                *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_TYPE_SHIFT);
7656                *target_size = 2;
7657                break;
7658
7659        case offsetof(struct bpf_sock, protocol):
7660                BUILD_BUG_ON(HWEIGHT32(SK_FL_PROTO_MASK) != BITS_PER_BYTE);
7661                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7662                                      offsetof(struct sock, __sk_flags_offset));
7663                *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_PROTO_MASK);
7664                *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_PROTO_SHIFT);
7665                *target_size = 1;
7666                break;
7667
7668        case offsetof(struct bpf_sock, src_ip4):
7669                *insn++ = BPF_LDX_MEM(
7670                        BPF_SIZE(si->code), si->dst_reg, si->src_reg,
7671                        bpf_target_off(struct sock_common, skc_rcv_saddr,
7672                                       sizeof_field(struct sock_common,
7673                                                    skc_rcv_saddr),
7674                                       target_size));
7675                break;
7676
7677        case offsetof(struct bpf_sock, dst_ip4):
7678                *insn++ = BPF_LDX_MEM(
7679                        BPF_SIZE(si->code), si->dst_reg, si->src_reg,
7680                        bpf_target_off(struct sock_common, skc_daddr,
7681                                       sizeof_field(struct sock_common,
7682                                                    skc_daddr),
7683                                       target_size));
7684                break;
7685
7686        case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
7687#if IS_ENABLED(CONFIG_IPV6)
7688                off = si->off;
7689                off -= offsetof(struct bpf_sock, src_ip6[0]);
7690                *insn++ = BPF_LDX_MEM(
7691                        BPF_SIZE(si->code), si->dst_reg, si->src_reg,
7692                        bpf_target_off(
7693                                struct sock_common,
7694                                skc_v6_rcv_saddr.s6_addr32[0],
7695                                sizeof_field(struct sock_common,
7696                                             skc_v6_rcv_saddr.s6_addr32[0]),
7697                                target_size) + off);
7698#else
7699                (void)off;
7700                *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
7701#endif
7702                break;
7703
7704        case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
7705#if IS_ENABLED(CONFIG_IPV6)
7706                off = si->off;
7707                off -= offsetof(struct bpf_sock, dst_ip6[0]);
7708                *insn++ = BPF_LDX_MEM(
7709                        BPF_SIZE(si->code), si->dst_reg, si->src_reg,
7710                        bpf_target_off(struct sock_common,
7711                                       skc_v6_daddr.s6_addr32[0],
7712                                       sizeof_field(struct sock_common,
7713                                                    skc_v6_daddr.s6_addr32[0]),
7714                                       target_size) + off);
7715#else
7716                *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
7717                *target_size = 4;
7718#endif
7719                break;
7720
7721        case offsetof(struct bpf_sock, src_port):
7722                *insn++ = BPF_LDX_MEM(
7723                        BPF_FIELD_SIZEOF(struct sock_common, skc_num),
7724                        si->dst_reg, si->src_reg,
7725                        bpf_target_off(struct sock_common, skc_num,
7726                                       sizeof_field(struct sock_common,
7727                                                    skc_num),
7728                                       target_size));
7729                break;
7730
7731        case offsetof(struct bpf_sock, dst_port):
7732                *insn++ = BPF_LDX_MEM(
7733                        BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
7734                        si->dst_reg, si->src_reg,
7735                        bpf_target_off(struct sock_common, skc_dport,
7736                                       sizeof_field(struct sock_common,
7737                                                    skc_dport),
7738                                       target_size));
7739                break;
7740
7741        case offsetof(struct bpf_sock, state):
7742                *insn++ = BPF_LDX_MEM(
7743                        BPF_FIELD_SIZEOF(struct sock_common, skc_state),
7744                        si->dst_reg, si->src_reg,
7745                        bpf_target_off(struct sock_common, skc_state,
7746                                       sizeof_field(struct sock_common,
7747                                                    skc_state),
7748                                       target_size));
7749                break;
7750        }
7751
7752        return insn - insn_buf;
7753}
7754
7755static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
7756                                         const struct bpf_insn *si,
7757                                         struct bpf_insn *insn_buf,
7758                                         struct bpf_prog *prog, u32 *target_size)
7759{
7760        struct bpf_insn *insn = insn_buf;
7761
7762        switch (si->off) {
7763        case offsetof(struct __sk_buff, ifindex):
7764                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
7765                                      si->dst_reg, si->src_reg,
7766                                      offsetof(struct sk_buff, dev));
7767                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7768                                      bpf_target_off(struct net_device, ifindex, 4,
7769                                                     target_size));
7770                break;
7771        default:
7772                return bpf_convert_ctx_access(type, si, insn_buf, prog,
7773                                              target_size);
7774        }
7775
7776        return insn - insn_buf;
7777}
7778
7779static u32 xdp_convert_ctx_access(enum bpf_access_type type,
7780                                  const struct bpf_insn *si,
7781                                  struct bpf_insn *insn_buf,
7782                                  struct bpf_prog *prog, u32 *target_size)
7783{
7784        struct bpf_insn *insn = insn_buf;
7785
7786        switch (si->off) {
7787        case offsetof(struct xdp_md, data):
7788                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
7789                                      si->dst_reg, si->src_reg,
7790                                      offsetof(struct xdp_buff, data));
7791                break;
7792        case offsetof(struct xdp_md, data_meta):
7793                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
7794                                      si->dst_reg, si->src_reg,
7795                                      offsetof(struct xdp_buff, data_meta));
7796                break;
7797        case offsetof(struct xdp_md, data_end):
7798                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
7799                                      si->dst_reg, si->src_reg,
7800                                      offsetof(struct xdp_buff, data_end));
7801                break;
7802        case offsetof(struct xdp_md, ingress_ifindex):
7803                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
7804                                      si->dst_reg, si->src_reg,
7805                                      offsetof(struct xdp_buff, rxq));
7806                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
7807                                      si->dst_reg, si->dst_reg,
7808                                      offsetof(struct xdp_rxq_info, dev));
7809                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7810                                      offsetof(struct net_device, ifindex));
7811                break;
7812        case offsetof(struct xdp_md, rx_queue_index):
7813                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
7814                                      si->dst_reg, si->src_reg,
7815                                      offsetof(struct xdp_buff, rxq));
7816                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7817                                      offsetof(struct xdp_rxq_info,
7818                                               queue_index));
7819                break;
7820        }
7821
7822        return insn - insn_buf;
7823}
7824
7825/* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
7826 * context Structure, F is Field in context structure that contains a pointer
7827 * to Nested Structure of type NS that has the field NF.
7828 *
7829 * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
7830 * sure that SIZE is not greater than actual size of S.F.NF.
7831 *
7832 * If offset OFF is provided, the load happens from that offset relative to
7833 * offset of NF.
7834 */
7835#define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)          \
7836        do {                                                                   \
7837                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
7838                                      si->src_reg, offsetof(S, F));            \
7839                *insn++ = BPF_LDX_MEM(                                         \
7840                        SIZE, si->dst_reg, si->dst_reg,                        \
7841                        bpf_target_off(NS, NF, sizeof_field(NS, NF),           \
7842                                       target_size)                            \
7843                                + OFF);                                        \
7844        } while (0)
7845
7846#define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)                              \
7847        SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,                     \
7848                                             BPF_FIELD_SIZEOF(NS, NF), 0)
7849
7850/* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
7851 * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
7852 *
7853 * In addition it uses Temporary Field TF (member of struct S) as the 3rd
7854 * "register" since two registers available in convert_ctx_access are not
7855 * enough: we can't override neither SRC, since it contains value to store, nor
7856 * DST since it contains pointer to context that may be used by later
7857 * instructions. But we need a temporary place to save pointer to nested
7858 * structure whose field we want to store to.
7859 */
7860#define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF)          \
7861        do {                                                                   \
7862                int tmp_reg = BPF_REG_9;                                       \
7863                if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)          \
7864                        --tmp_reg;                                             \
7865                if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)          \
7866                        --tmp_reg;                                             \
7867                *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,            \
7868                                      offsetof(S, TF));                        \
7869                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,         \
7870                                      si->dst_reg, offsetof(S, F));            \
7871                *insn++ = BPF_STX_MEM(SIZE, tmp_reg, si->src_reg,              \
7872                        bpf_target_off(NS, NF, sizeof_field(NS, NF),           \
7873                                       target_size)                            \
7874                                + OFF);                                        \
7875                *insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,            \
7876                                      offsetof(S, TF));                        \
7877        } while (0)
7878
7879#define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
7880                                                      TF)                      \
7881        do {                                                                   \
7882                if (type == BPF_WRITE) {                                       \
7883                        SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE,   \
7884                                                         OFF, TF);             \
7885                } else {                                                       \
7886                        SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(                  \
7887                                S, NS, F, NF, SIZE, OFF);  \
7888                }                                                              \
7889        } while (0)
7890
7891#define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF)                 \
7892        SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(                         \
7893                S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
7894
7895static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
7896                                        const struct bpf_insn *si,
7897                                        struct bpf_insn *insn_buf,
7898                                        struct bpf_prog *prog, u32 *target_size)
7899{
7900        struct bpf_insn *insn = insn_buf;
7901        int off;
7902
7903        switch (si->off) {
7904        case offsetof(struct bpf_sock_addr, user_family):
7905                SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
7906                                            struct sockaddr, uaddr, sa_family);
7907                break;
7908
7909        case offsetof(struct bpf_sock_addr, user_ip4):
7910                SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
7911                        struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
7912                        sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
7913                break;
7914
7915        case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
7916                off = si->off;
7917                off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
7918                SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
7919                        struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
7920                        sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
7921                        tmp_reg);
7922                break;
7923
7924        case offsetof(struct bpf_sock_addr, user_port):
7925                /* To get port we need to know sa_family first and then treat
7926                 * sockaddr as either sockaddr_in or sockaddr_in6.
7927                 * Though we can simplify since port field has same offset and
7928                 * size in both structures.
7929                 * Here we check this invariant and use just one of the
7930                 * structures if it's true.
7931                 */
7932                BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
7933                             offsetof(struct sockaddr_in6, sin6_port));
7934                BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) !=
7935                             sizeof_field(struct sockaddr_in6, sin6_port));
7936                SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(struct bpf_sock_addr_kern,
7937                                                     struct sockaddr_in6, uaddr,
7938                                                     sin6_port, tmp_reg);
7939                break;
7940
7941        case offsetof(struct bpf_sock_addr, family):
7942                SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
7943                                            struct sock, sk, sk_family);
7944                break;
7945
7946        case offsetof(struct bpf_sock_addr, type):
7947                SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(
7948                        struct bpf_sock_addr_kern, struct sock, sk,
7949                        __sk_flags_offset, BPF_W, 0);
7950                *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_TYPE_MASK);
7951                *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_TYPE_SHIFT);
7952                break;
7953
7954        case offsetof(struct bpf_sock_addr, protocol):
7955                SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(
7956                        struct bpf_sock_addr_kern, struct sock, sk,
7957                        __sk_flags_offset, BPF_W, 0);
7958                *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_PROTO_MASK);
7959                *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg,
7960                                        SK_FL_PROTO_SHIFT);
7961                break;
7962
7963        case offsetof(struct bpf_sock_addr, msg_src_ip4):
7964                /* Treat t_ctx as struct in_addr for msg_src_ip4. */
7965                SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
7966                        struct bpf_sock_addr_kern, struct in_addr, t_ctx,
7967                        s_addr, BPF_SIZE(si->code), 0, tmp_reg);
7968                break;
7969
7970        case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
7971                                msg_src_ip6[3]):
7972                off = si->off;
7973                off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
7974                /* Treat t_ctx as struct in6_addr for msg_src_ip6. */
7975                SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
7976                        struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
7977                        s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
7978                break;
7979        case offsetof(struct bpf_sock_addr, sk):
7980                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
7981                                      si->dst_reg, si->src_reg,
7982                                      offsetof(struct bpf_sock_addr_kern, sk));
7983                break;
7984        }
7985
7986        return insn - insn_buf;
7987}
7988
7989static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
7990                                       const struct bpf_insn *si,
7991                                       struct bpf_insn *insn_buf,
7992                                       struct bpf_prog *prog,
7993                                       u32 *target_size)
7994{
7995        struct bpf_insn *insn = insn_buf;
7996        int off;
7997
7998/* Helper macro for adding read access to tcp_sock or sock fields. */
7999#define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)                         \
8000        do {                                                                  \
8001                BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >                   \
8002                             sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
8003                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
8004                                                struct bpf_sock_ops_kern,     \
8005                                                is_fullsock),                 \
8006                                      si->dst_reg, si->src_reg,               \
8007                                      offsetof(struct bpf_sock_ops_kern,      \
8008                                               is_fullsock));                 \
8009                *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 2);            \
8010                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
8011                                                struct bpf_sock_ops_kern, sk),\
8012                                      si->dst_reg, si->src_reg,               \
8013                                      offsetof(struct bpf_sock_ops_kern, sk));\
8014                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,                   \
8015                                                       OBJ_FIELD),            \
8016                                      si->dst_reg, si->dst_reg,               \
8017                                      offsetof(OBJ, OBJ_FIELD));              \
8018        } while (0)
8019
8020#define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
8021                SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
8022
8023/* Helper macro for adding write access to tcp_sock or sock fields.
8024 * The macro is called with two registers, dst_reg which contains a pointer
8025 * to ctx (context) and src_reg which contains the value that should be
8026 * stored. However, we need an additional register since we cannot overwrite
8027 * dst_reg because it may be used later in the program.
8028 * Instead we "borrow" one of the other register. We first save its value
8029 * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
8030 * it at the end of the macro.
8031 */
8032#define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)                         \
8033        do {                                                                  \
8034                int reg = BPF_REG_9;                                          \
8035                BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >                   \
8036                             sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
8037                if (si->dst_reg == reg || si->src_reg == reg)                 \
8038                        reg--;                                                \
8039                if (si->dst_reg == reg || si->src_reg == reg)                 \
8040                        reg--;                                                \
8041                *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,               \
8042                                      offsetof(struct bpf_sock_ops_kern,      \
8043                                               temp));                        \
8044                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
8045                                                struct bpf_sock_ops_kern,     \
8046                                                is_fullsock),                 \
8047                                      reg, si->dst_reg,                       \
8048                                      offsetof(struct bpf_sock_ops_kern,      \
8049                                               is_fullsock));                 \
8050                *insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);                    \
8051                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
8052                                                struct bpf_sock_ops_kern, sk),\
8053                                      reg, si->dst_reg,                       \
8054                                      offsetof(struct bpf_sock_ops_kern, sk));\
8055                *insn++ = BPF_STX_MEM(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD),       \
8056                                      reg, si->src_reg,                       \
8057                                      offsetof(OBJ, OBJ_FIELD));              \
8058                *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,               \
8059                                      offsetof(struct bpf_sock_ops_kern,      \
8060                                               temp));                        \
8061        } while (0)
8062
8063#define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)            \
8064        do {                                                                  \
8065                if (TYPE == BPF_WRITE)                                        \
8066                        SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);        \
8067                else                                                          \
8068                        SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);        \
8069        } while (0)
8070
8071        if (insn > insn_buf)
8072                return insn - insn_buf;
8073
8074        switch (si->off) {
8075        case offsetof(struct bpf_sock_ops, op) ...
8076             offsetof(struct bpf_sock_ops, replylong[3]):
8077                BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, op) !=
8078                             sizeof_field(struct bpf_sock_ops_kern, op));
8079                BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) !=
8080                             sizeof_field(struct bpf_sock_ops_kern, reply));
8081                BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) !=
8082                             sizeof_field(struct bpf_sock_ops_kern, replylong));
8083                off = si->off;
8084                off -= offsetof(struct bpf_sock_ops, op);
8085                off += offsetof(struct bpf_sock_ops_kern, op);
8086                if (type == BPF_WRITE)
8087                        *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8088                                              off);
8089                else
8090                        *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8091                                              off);
8092                break;
8093
8094        case offsetof(struct bpf_sock_ops, family):
8095                BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
8096
8097                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8098                                              struct bpf_sock_ops_kern, sk),
8099                                      si->dst_reg, si->src_reg,
8100                                      offsetof(struct bpf_sock_ops_kern, sk));
8101                *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8102                                      offsetof(struct sock_common, skc_family));
8103                break;
8104
8105        case offsetof(struct bpf_sock_ops, remote_ip4):
8106                BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
8107
8108                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8109                                                struct bpf_sock_ops_kern, sk),
8110                                      si->dst_reg, si->src_reg,
8111                                      offsetof(struct bpf_sock_ops_kern, sk));
8112                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8113                                      offsetof(struct sock_common, skc_daddr));
8114                break;
8115
8116        case offsetof(struct bpf_sock_ops, local_ip4):
8117                BUILD_BUG_ON(sizeof_field(struct sock_common,
8118                                          skc_rcv_saddr) != 4);
8119
8120                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8121                                              struct bpf_sock_ops_kern, sk),
8122                                      si->dst_reg, si->src_reg,
8123                                      offsetof(struct bpf_sock_ops_kern, sk));
8124                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8125                                      offsetof(struct sock_common,
8126                                               skc_rcv_saddr));
8127                break;
8128
8129        case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
8130             offsetof(struct bpf_sock_ops, remote_ip6[3]):
8131#if IS_ENABLED(CONFIG_IPV6)
8132                BUILD_BUG_ON(sizeof_field(struct sock_common,
8133                                          skc_v6_daddr.s6_addr32[0]) != 4);
8134
8135                off = si->off;
8136                off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
8137                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8138                                                struct bpf_sock_ops_kern, sk),
8139                                      si->dst_reg, si->src_reg,
8140                                      offsetof(struct bpf_sock_ops_kern, sk));
8141                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8142                                      offsetof(struct sock_common,
8143                                               skc_v6_daddr.s6_addr32[0]) +
8144                                      off);
8145#else
8146                *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8147#endif
8148                break;
8149
8150        case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
8151             offsetof(struct bpf_sock_ops, local_ip6[3]):
8152#if IS_ENABLED(CONFIG_IPV6)
8153                BUILD_BUG_ON(sizeof_field(struct sock_common,
8154                                          skc_v6_rcv_saddr.s6_addr32[0]) != 4);
8155
8156                off = si->off;
8157                off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
8158                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8159                                                struct bpf_sock_ops_kern, sk),
8160                                      si->dst_reg, si->src_reg,
8161                                      offsetof(struct bpf_sock_ops_kern, sk));
8162                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8163                                      offsetof(struct sock_common,
8164                                               skc_v6_rcv_saddr.s6_addr32[0]) +
8165                                      off);
8166#else
8167                *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8168#endif
8169                break;
8170
8171        case offsetof(struct bpf_sock_ops, remote_port):
8172                BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
8173
8174                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8175                                                struct bpf_sock_ops_kern, sk),
8176                                      si->dst_reg, si->src_reg,
8177                                      offsetof(struct bpf_sock_ops_kern, sk));
8178                *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8179                                      offsetof(struct sock_common, skc_dport));
8180#ifndef __BIG_ENDIAN_BITFIELD
8181                *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
8182#endif
8183                break;
8184
8185        case offsetof(struct bpf_sock_ops, local_port):
8186                BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
8187
8188                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8189                                                struct bpf_sock_ops_kern, sk),
8190                                      si->dst_reg, si->src_reg,
8191                                      offsetof(struct bpf_sock_ops_kern, sk));
8192                *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8193                                      offsetof(struct sock_common, skc_num));
8194                break;
8195
8196        case offsetof(struct bpf_sock_ops, is_fullsock):
8197                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8198                                                struct bpf_sock_ops_kern,
8199                                                is_fullsock),
8200                                      si->dst_reg, si->src_reg,
8201                                      offsetof(struct bpf_sock_ops_kern,
8202                                               is_fullsock));
8203                break;
8204
8205        case offsetof(struct bpf_sock_ops, state):
8206                BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1);
8207
8208                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8209                                                struct bpf_sock_ops_kern, sk),
8210                                      si->dst_reg, si->src_reg,
8211                                      offsetof(struct bpf_sock_ops_kern, sk));
8212                *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
8213                                      offsetof(struct sock_common, skc_state));
8214                break;
8215
8216        case offsetof(struct bpf_sock_ops, rtt_min):
8217                BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
8218                             sizeof(struct minmax));
8219                BUILD_BUG_ON(sizeof(struct minmax) <
8220                             sizeof(struct minmax_sample));
8221
8222                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8223                                                struct bpf_sock_ops_kern, sk),
8224                                      si->dst_reg, si->src_reg,
8225                                      offsetof(struct bpf_sock_ops_kern, sk));
8226                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8227                                      offsetof(struct tcp_sock, rtt_min) +
8228                                      sizeof_field(struct minmax_sample, t));
8229                break;
8230
8231        case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
8232                SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
8233                                   struct tcp_sock);
8234                break;
8235
8236        case offsetof(struct bpf_sock_ops, sk_txhash):
8237                SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
8238                                          struct sock, type);
8239                break;
8240        case offsetof(struct bpf_sock_ops, snd_cwnd):
8241                SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
8242                break;
8243        case offsetof(struct bpf_sock_ops, srtt_us):
8244                SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
8245                break;
8246        case offsetof(struct bpf_sock_ops, snd_ssthresh):
8247                SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
8248                break;
8249        case offsetof(struct bpf_sock_ops, rcv_nxt):
8250                SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
8251                break;
8252        case offsetof(struct bpf_sock_ops, snd_nxt):
8253                SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
8254                break;
8255        case offsetof(struct bpf_sock_ops, snd_una):
8256                SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
8257                break;
8258        case offsetof(struct bpf_sock_ops, mss_cache):
8259                SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
8260                break;
8261        case offsetof(struct bpf_sock_ops, ecn_flags):
8262                SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
8263                break;
8264        case offsetof(struct bpf_sock_ops, rate_delivered):
8265                SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
8266                break;
8267        case offsetof(struct bpf_sock_ops, rate_interval_us):
8268                SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
8269                break;
8270        case offsetof(struct bpf_sock_ops, packets_out):
8271                SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
8272                break;
8273        case offsetof(struct bpf_sock_ops, retrans_out):
8274                SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
8275                break;
8276        case offsetof(struct bpf_sock_ops, total_retrans):
8277                SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
8278                break;
8279        case offsetof(struct bpf_sock_ops, segs_in):
8280                SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
8281                break;
8282        case offsetof(struct bpf_sock_ops, data_segs_in):
8283                SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
8284                break;
8285        case offsetof(struct bpf_sock_ops, segs_out):
8286                SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
8287                break;
8288        case offsetof(struct bpf_sock_ops, data_segs_out):
8289                SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
8290                break;
8291        case offsetof(struct bpf_sock_ops, lost_out):
8292                SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
8293                break;
8294        case offsetof(struct bpf_sock_ops, sacked_out):
8295                SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
8296                break;
8297        case offsetof(struct bpf_sock_ops, bytes_received):
8298                SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
8299                break;
8300        case offsetof(struct bpf_sock_ops, bytes_acked):
8301                SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
8302                break;
8303        case offsetof(struct bpf_sock_ops, sk):
8304                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8305                                                struct bpf_sock_ops_kern,
8306                                                is_fullsock),
8307                                      si->dst_reg, si->src_reg,
8308                                      offsetof(struct bpf_sock_ops_kern,
8309                                               is_fullsock));
8310                *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
8311                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8312                                                struct bpf_sock_ops_kern, sk),
8313                                      si->dst_reg, si->src_reg,
8314                                      offsetof(struct bpf_sock_ops_kern, sk));
8315                break;
8316        }
8317        return insn - insn_buf;
8318}
8319
8320static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
8321                                     const struct bpf_insn *si,
8322                                     struct bpf_insn *insn_buf,
8323                                     struct bpf_prog *prog, u32 *target_size)
8324{
8325        struct bpf_insn *insn = insn_buf;
8326        int off;
8327
8328        switch (si->off) {
8329        case offsetof(struct __sk_buff, data_end):
8330                off  = si->off;
8331                off -= offsetof(struct __sk_buff, data_end);
8332                off += offsetof(struct sk_buff, cb);
8333                off += offsetof(struct tcp_skb_cb, bpf.data_end);
8334                *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
8335                                      si->src_reg, off);
8336                break;
8337        default:
8338                return bpf_convert_ctx_access(type, si, insn_buf, prog,
8339                                              target_size);
8340        }
8341
8342        return insn - insn_buf;
8343}
8344
8345static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
8346                                     const struct bpf_insn *si,
8347                                     struct bpf_insn *insn_buf,
8348                                     struct bpf_prog *prog, u32 *target_size)
8349{
8350        struct bpf_insn *insn = insn_buf;
8351#if IS_ENABLED(CONFIG_IPV6)
8352        int off;
8353#endif
8354
8355        /* convert ctx uses the fact sg element is first in struct */
8356        BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
8357
8358        switch (si->off) {
8359        case offsetof(struct sk_msg_md, data):
8360                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
8361                                      si->dst_reg, si->src_reg,
8362                                      offsetof(struct sk_msg, data));
8363                break;
8364        case offsetof(struct sk_msg_md, data_end):
8365                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
8366                                      si->dst_reg, si->src_reg,
8367                                      offsetof(struct sk_msg, data_end));
8368                break;
8369        case offsetof(struct sk_msg_md, family):
8370                BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
8371
8372                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8373                                              struct sk_msg, sk),
8374                                      si->dst_reg, si->src_reg,
8375                                      offsetof(struct sk_msg, sk));
8376                *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8377                                      offsetof(struct sock_common, skc_family));
8378                break;
8379
8380        case offsetof(struct sk_msg_md, remote_ip4):
8381                BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
8382
8383                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8384                                                struct sk_msg, sk),
8385                                      si->dst_reg, si->src_reg,
8386                                      offsetof(struct sk_msg, sk));
8387                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8388                                      offsetof(struct sock_common, skc_daddr));
8389                break;
8390
8391        case offsetof(struct sk_msg_md, local_ip4):
8392                BUILD_BUG_ON(sizeof_field(struct sock_common,
8393                                          skc_rcv_saddr) != 4);
8394
8395                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8396                                              struct sk_msg, sk),
8397                                      si->dst_reg, si->src_reg,
8398                                      offsetof(struct sk_msg, sk));
8399                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8400                                      offsetof(struct sock_common,
8401                                               skc_rcv_saddr));
8402                break;
8403
8404        case offsetof(struct sk_msg_md, remote_ip6[0]) ...
8405             offsetof(struct sk_msg_md, remote_ip6[3]):
8406#if IS_ENABLED(CONFIG_IPV6)
8407                BUILD_BUG_ON(sizeof_field(struct sock_common,
8408                                          skc_v6_daddr.s6_addr32[0]) != 4);
8409
8410                off = si->off;
8411                off -= offsetof(struct sk_msg_md, remote_ip6[0]);
8412                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8413                                                struct sk_msg, sk),
8414                                      si->dst_reg, si->src_reg,
8415                                      offsetof(struct sk_msg, sk));
8416                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8417                                      offsetof(struct sock_common,
8418                                               skc_v6_daddr.s6_addr32[0]) +
8419                                      off);
8420#else
8421                *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8422#endif
8423                break;
8424
8425        case offsetof(struct sk_msg_md, local_ip6[0]) ...
8426             offsetof(struct sk_msg_md, local_ip6[3]):
8427#if IS_ENABLED(CONFIG_IPV6)
8428                BUILD_BUG_ON(sizeof_field(struct sock_common,
8429                                          skc_v6_rcv_saddr.s6_addr32[0]) != 4);
8430
8431                off = si->off;
8432                off -= offsetof(struct sk_msg_md, local_ip6[0]);
8433                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8434                                                struct sk_msg, sk),
8435                                      si->dst_reg, si->src_reg,
8436                                      offsetof(struct sk_msg, sk));
8437                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8438                                      offsetof(struct sock_common,
8439                                               skc_v6_rcv_saddr.s6_addr32[0]) +
8440                                      off);
8441#else
8442                *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8443#endif
8444                break;
8445
8446        case offsetof(struct sk_msg_md, remote_port):
8447                BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
8448
8449                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8450                                                struct sk_msg, sk),
8451                                      si->dst_reg, si->src_reg,
8452                                      offsetof(struct sk_msg, sk));
8453                *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8454                                      offsetof(struct sock_common, skc_dport));
8455#ifndef __BIG_ENDIAN_BITFIELD
8456                *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
8457#endif
8458                break;
8459
8460        case offsetof(struct sk_msg_md, local_port):
8461                BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
8462
8463                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8464                                                struct sk_msg, sk),
8465                                      si->dst_reg, si->src_reg,
8466                                      offsetof(struct sk_msg, sk));
8467                *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8468                                      offsetof(struct sock_common, skc_num));
8469                break;
8470
8471        case offsetof(struct sk_msg_md, size):
8472                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
8473                                      si->dst_reg, si->src_reg,
8474                                      offsetof(struct sk_msg_sg, size));
8475                break;
8476        }
8477
8478        return insn - insn_buf;
8479}
8480
8481const struct bpf_verifier_ops sk_filter_verifier_ops = {
8482        .get_func_proto         = sk_filter_func_proto,
8483        .is_valid_access        = sk_filter_is_valid_access,
8484        .convert_ctx_access     = bpf_convert_ctx_access,
8485        .gen_ld_abs             = bpf_gen_ld_abs,
8486};
8487
8488const struct bpf_prog_ops sk_filter_prog_ops = {
8489        .test_run               = bpf_prog_test_run_skb,
8490};
8491
8492const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
8493        .get_func_proto         = tc_cls_act_func_proto,
8494        .is_valid_access        = tc_cls_act_is_valid_access,
8495        .convert_ctx_access     = tc_cls_act_convert_ctx_access,
8496        .gen_prologue           = tc_cls_act_prologue,
8497        .gen_ld_abs             = bpf_gen_ld_abs,
8498};
8499
8500const struct bpf_prog_ops tc_cls_act_prog_ops = {
8501        .test_run               = bpf_prog_test_run_skb,
8502};
8503
8504const struct bpf_verifier_ops xdp_verifier_ops = {
8505        .get_func_proto         = xdp_func_proto,
8506        .is_valid_access        = xdp_is_valid_access,
8507        .convert_ctx_access     = xdp_convert_ctx_access,
8508        .gen_prologue           = bpf_noop_prologue,
8509};
8510
8511const struct bpf_prog_ops xdp_prog_ops = {
8512        .test_run               = bpf_prog_test_run_xdp,
8513};
8514
8515const struct bpf_verifier_ops cg_skb_verifier_ops = {
8516        .get_func_proto         = cg_skb_func_proto,
8517        .is_valid_access        = cg_skb_is_valid_access,
8518        .convert_ctx_access     = bpf_convert_ctx_access,
8519};
8520
8521const struct bpf_prog_ops cg_skb_prog_ops = {
8522        .test_run               = bpf_prog_test_run_skb,
8523};
8524
8525const struct bpf_verifier_ops lwt_in_verifier_ops = {
8526        .get_func_proto         = lwt_in_func_proto,
8527        .is_valid_access        = lwt_is_valid_access,
8528        .convert_ctx_access     = bpf_convert_ctx_access,
8529};
8530
8531const struct bpf_prog_ops lwt_in_prog_ops = {
8532        .test_run               = bpf_prog_test_run_skb,
8533};
8534
8535const struct bpf_verifier_ops lwt_out_verifier_ops = {
8536        .get_func_proto         = lwt_out_func_proto,
8537        .is_valid_access        = lwt_is_valid_access,
8538        .convert_ctx_access     = bpf_convert_ctx_access,
8539};
8540
8541const struct bpf_prog_ops lwt_out_prog_ops = {
8542        .test_run               = bpf_prog_test_run_skb,
8543};
8544
8545const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
8546        .get_func_proto         = lwt_xmit_func_proto,
8547        .is_valid_access        = lwt_is_valid_access,
8548        .convert_ctx_access     = bpf_convert_ctx_access,
8549        .gen_prologue           = tc_cls_act_prologue,
8550};
8551
8552const struct bpf_prog_ops lwt_xmit_prog_ops = {
8553        .test_run               = bpf_prog_test_run_skb,
8554};
8555
8556const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
8557        .get_func_proto         = lwt_seg6local_func_proto,
8558        .is_valid_access        = lwt_is_valid_access,
8559        .convert_ctx_access     = bpf_convert_ctx_access,
8560};
8561
8562const struct bpf_prog_ops lwt_seg6local_prog_ops = {
8563        .test_run               = bpf_prog_test_run_skb,
8564};
8565
8566const struct bpf_verifier_ops cg_sock_verifier_ops = {
8567        .get_func_proto         = sock_filter_func_proto,
8568        .is_valid_access        = sock_filter_is_valid_access,
8569        .convert_ctx_access     = bpf_sock_convert_ctx_access,
8570};
8571
8572const struct bpf_prog_ops cg_sock_prog_ops = {
8573};
8574
8575const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
8576        .get_func_proto         = sock_addr_func_proto,
8577        .is_valid_access        = sock_addr_is_valid_access,
8578        .convert_ctx_access     = sock_addr_convert_ctx_access,
8579};
8580
8581const struct bpf_prog_ops cg_sock_addr_prog_ops = {
8582};
8583
8584const struct bpf_verifier_ops sock_ops_verifier_ops = {
8585        .get_func_proto         = sock_ops_func_proto,
8586        .is_valid_access        = sock_ops_is_valid_access,
8587        .convert_ctx_access     = sock_ops_convert_ctx_access,
8588};
8589
8590const struct bpf_prog_ops sock_ops_prog_ops = {
8591};
8592
8593const struct bpf_verifier_ops sk_skb_verifier_ops = {
8594        .get_func_proto         = sk_skb_func_proto,
8595        .is_valid_access        = sk_skb_is_valid_access,
8596        .convert_ctx_access     = sk_skb_convert_ctx_access,
8597        .gen_prologue           = sk_skb_prologue,
8598};
8599
8600const struct bpf_prog_ops sk_skb_prog_ops = {
8601};
8602
8603const struct bpf_verifier_ops sk_msg_verifier_ops = {
8604        .get_func_proto         = sk_msg_func_proto,
8605        .is_valid_access        = sk_msg_is_valid_access,
8606        .convert_ctx_access     = sk_msg_convert_ctx_access,
8607        .gen_prologue           = bpf_noop_prologue,
8608};
8609
8610const struct bpf_prog_ops sk_msg_prog_ops = {
8611};
8612
8613const struct bpf_verifier_ops flow_dissector_verifier_ops = {
8614        .get_func_proto         = flow_dissector_func_proto,
8615        .is_valid_access        = flow_dissector_is_valid_access,
8616        .convert_ctx_access     = flow_dissector_convert_ctx_access,
8617};
8618
8619const struct bpf_prog_ops flow_dissector_prog_ops = {
8620        .test_run               = bpf_prog_test_run_flow_dissector,
8621};
8622
8623int sk_detach_filter(struct sock *sk)
8624{
8625        int ret = -ENOENT;
8626        struct sk_filter *filter;
8627
8628        if (sock_flag(sk, SOCK_FILTER_LOCKED))
8629                return -EPERM;
8630
8631        filter = rcu_dereference_protected(sk->sk_filter,
8632                                           lockdep_sock_is_held(sk));
8633        if (filter) {
8634                RCU_INIT_POINTER(sk->sk_filter, NULL);
8635                sk_filter_uncharge(sk, filter);
8636                ret = 0;
8637        }
8638
8639        return ret;
8640}
8641EXPORT_SYMBOL_GPL(sk_detach_filter);
8642
8643int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
8644                  unsigned int len)
8645{
8646        struct sock_fprog_kern *fprog;
8647        struct sk_filter *filter;
8648        int ret = 0;
8649
8650        lock_sock(sk);
8651        filter = rcu_dereference_protected(sk->sk_filter,
8652                                           lockdep_sock_is_held(sk));
8653        if (!filter)
8654                goto out;
8655
8656        /* We're copying the filter that has been originally attached,
8657         * so no conversion/decode needed anymore. eBPF programs that
8658         * have no original program cannot be dumped through this.
8659         */
8660        ret = -EACCES;
8661        fprog = filter->prog->orig_prog;
8662        if (!fprog)
8663                goto out;
8664
8665        ret = fprog->len;
8666        if (!len)
8667                /* User space only enquires number of filter blocks. */
8668                goto out;
8669
8670        ret = -EINVAL;
8671        if (len < fprog->len)
8672                goto out;
8673
8674        ret = -EFAULT;
8675        if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
8676                goto out;
8677
8678        /* Instead of bytes, the API requests to return the number
8679         * of filter blocks.
8680         */
8681        ret = fprog->len;
8682out:
8683        release_sock(sk);
8684        return ret;
8685}
8686
8687#ifdef CONFIG_INET
8688static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
8689                                    struct sock_reuseport *reuse,
8690                                    struct sock *sk, struct sk_buff *skb,
8691                                    u32 hash)
8692{
8693        reuse_kern->skb = skb;
8694        reuse_kern->sk = sk;
8695        reuse_kern->selected_sk = NULL;
8696        reuse_kern->data_end = skb->data + skb_headlen(skb);
8697        reuse_kern->hash = hash;
8698        reuse_kern->reuseport_id = reuse->reuseport_id;
8699        reuse_kern->bind_inany = reuse->bind_inany;
8700}
8701
8702struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
8703                                  struct bpf_prog *prog, struct sk_buff *skb,
8704                                  u32 hash)
8705{
8706        struct sk_reuseport_kern reuse_kern;
8707        enum sk_action action;
8708
8709        bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, hash);
8710        action = BPF_PROG_RUN(prog, &reuse_kern);
8711
8712        if (action == SK_PASS)
8713                return reuse_kern.selected_sk;
8714        else
8715                return ERR_PTR(-ECONNREFUSED);
8716}
8717
8718BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
8719           struct bpf_map *, map, void *, key, u32, flags)
8720{
8721        struct sock_reuseport *reuse;
8722        struct sock *selected_sk;
8723
8724        selected_sk = map->ops->map_lookup_elem(map, key);
8725        if (!selected_sk)
8726                return -ENOENT;
8727
8728        reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
8729        if (!reuse)
8730                /* selected_sk is unhashed (e.g. by close()) after the
8731                 * above map_lookup_elem().  Treat selected_sk has already
8732                 * been removed from the map.
8733                 */
8734                return -ENOENT;
8735
8736        if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
8737                struct sock *sk;
8738
8739                if (unlikely(!reuse_kern->reuseport_id))
8740                        /* There is a small race between adding the
8741                         * sk to the map and setting the
8742                         * reuse_kern->reuseport_id.
8743                         * Treat it as the sk has not been added to
8744                         * the bpf map yet.
8745                         */
8746                        return -ENOENT;
8747
8748                sk = reuse_kern->sk;
8749                if (sk->sk_protocol != selected_sk->sk_protocol)
8750                        return -EPROTOTYPE;
8751                else if (sk->sk_family != selected_sk->sk_family)
8752                        return -EAFNOSUPPORT;
8753
8754                /* Catch all. Likely bound to a different sockaddr. */
8755                return -EBADFD;
8756        }
8757
8758        reuse_kern->selected_sk = selected_sk;
8759
8760        return 0;
8761}
8762
8763static const struct bpf_func_proto sk_select_reuseport_proto = {
8764        .func           = sk_select_reuseport,
8765        .gpl_only       = false,
8766        .ret_type       = RET_INTEGER,
8767        .arg1_type      = ARG_PTR_TO_CTX,
8768        .arg2_type      = ARG_CONST_MAP_PTR,
8769        .arg3_type      = ARG_PTR_TO_MAP_KEY,
8770        .arg4_type      = ARG_ANYTHING,
8771};
8772
8773BPF_CALL_4(sk_reuseport_load_bytes,
8774           const struct sk_reuseport_kern *, reuse_kern, u32, offset,
8775           void *, to, u32, len)
8776{
8777        return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
8778}
8779
8780static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
8781        .func           = sk_reuseport_load_bytes,
8782        .gpl_only       = false,
8783        .ret_type       = RET_INTEGER,
8784        .arg1_type      = ARG_PTR_TO_CTX,
8785        .arg2_type      = ARG_ANYTHING,
8786        .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
8787        .arg4_type      = ARG_CONST_SIZE,
8788};
8789
8790BPF_CALL_5(sk_reuseport_load_bytes_relative,
8791           const struct sk_reuseport_kern *, reuse_kern, u32, offset,
8792           void *, to, u32, len, u32, start_header)
8793{
8794        return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
8795                                               len, start_header);
8796}
8797
8798static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
8799        .func           = sk_reuseport_load_bytes_relative,
8800        .gpl_only       = false,
8801        .ret_type       = RET_INTEGER,
8802        .arg1_type      = ARG_PTR_TO_CTX,
8803        .arg2_type      = ARG_ANYTHING,
8804        .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
8805        .arg4_type      = ARG_CONST_SIZE,
8806        .arg5_type      = ARG_ANYTHING,
8807};
8808
8809static const struct bpf_func_proto *
8810sk_reuseport_func_proto(enum bpf_func_id func_id,
8811                        const struct bpf_prog *prog)
8812{
8813        switch (func_id) {
8814        case BPF_FUNC_sk_select_reuseport:
8815                return &sk_select_reuseport_proto;
8816        case BPF_FUNC_skb_load_bytes:
8817                return &sk_reuseport_load_bytes_proto;
8818        case BPF_FUNC_skb_load_bytes_relative:
8819                return &sk_reuseport_load_bytes_relative_proto;
8820        default:
8821                return bpf_base_func_proto(func_id);
8822        }
8823}
8824
8825static bool
8826sk_reuseport_is_valid_access(int off, int size,
8827                             enum bpf_access_type type,
8828                             const struct bpf_prog *prog,
8829                             struct bpf_insn_access_aux *info)
8830{
8831        const u32 size_default = sizeof(__u32);
8832
8833        if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
8834            off % size || type != BPF_READ)
8835                return false;
8836
8837        switch (off) {
8838        case offsetof(struct sk_reuseport_md, data):
8839                info->reg_type = PTR_TO_PACKET;
8840                return size == sizeof(__u64);
8841
8842        case offsetof(struct sk_reuseport_md, data_end):
8843                info->reg_type = PTR_TO_PACKET_END;
8844                return size == sizeof(__u64);
8845
8846        case offsetof(struct sk_reuseport_md, hash):
8847                return size == size_default;
8848
8849        /* Fields that allow narrowing */
8850        case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
8851                if (size < sizeof_field(struct sk_buff, protocol))
8852                        return false;
8853                /* fall through */
8854        case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
8855        case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
8856        case bpf_ctx_range(struct sk_reuseport_md, len):
8857                bpf_ctx_record_field_size(info, size_default);
8858                return bpf_ctx_narrow_access_ok(off, size, size_default);
8859
8860        default:
8861                return false;
8862        }
8863}
8864
8865#define SK_REUSEPORT_LOAD_FIELD(F) ({                                   \
8866        *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
8867                              si->dst_reg, si->src_reg,                 \
8868                              bpf_target_off(struct sk_reuseport_kern, F, \
8869                                             sizeof_field(struct sk_reuseport_kern, F), \
8870                                             target_size));             \
8871        })
8872
8873#define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD)                          \
8874        SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,           \
8875                                    struct sk_buff,                     \
8876                                    skb,                                \
8877                                    SKB_FIELD)
8878
8879#define SK_REUSEPORT_LOAD_SK_FIELD_SIZE_OFF(SK_FIELD, BPF_SIZE, EXTRA_OFF) \
8880        SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(struct sk_reuseport_kern,  \
8881                                             struct sock,               \
8882                                             sk,                        \
8883                                             SK_FIELD, BPF_SIZE, EXTRA_OFF)
8884
8885static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
8886                                           const struct bpf_insn *si,
8887                                           struct bpf_insn *insn_buf,
8888                                           struct bpf_prog *prog,
8889                                           u32 *target_size)
8890{
8891        struct bpf_insn *insn = insn_buf;
8892
8893        switch (si->off) {
8894        case offsetof(struct sk_reuseport_md, data):
8895                SK_REUSEPORT_LOAD_SKB_FIELD(data);
8896                break;
8897
8898        case offsetof(struct sk_reuseport_md, len):
8899                SK_REUSEPORT_LOAD_SKB_FIELD(len);
8900                break;
8901
8902        case offsetof(struct sk_reuseport_md, eth_protocol):
8903                SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
8904                break;
8905
8906        case offsetof(struct sk_reuseport_md, ip_protocol):
8907                BUILD_BUG_ON(HWEIGHT32(SK_FL_PROTO_MASK) != BITS_PER_BYTE);
8908                SK_REUSEPORT_LOAD_SK_FIELD_SIZE_OFF(__sk_flags_offset,
8909                                                    BPF_W, 0);
8910                *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_PROTO_MASK);
8911                *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg,
8912                                        SK_FL_PROTO_SHIFT);
8913                /* SK_FL_PROTO_MASK and SK_FL_PROTO_SHIFT are endian
8914                 * aware.  No further narrowing or masking is needed.
8915                 */
8916                *target_size = 1;
8917                break;
8918
8919        case offsetof(struct sk_reuseport_md, data_end):
8920                SK_REUSEPORT_LOAD_FIELD(data_end);
8921                break;
8922
8923        case offsetof(struct sk_reuseport_md, hash):
8924                SK_REUSEPORT_LOAD_FIELD(hash);
8925                break;
8926
8927        case offsetof(struct sk_reuseport_md, bind_inany):
8928                SK_REUSEPORT_LOAD_FIELD(bind_inany);
8929                break;
8930        }
8931
8932        return insn - insn_buf;
8933}
8934
8935const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
8936        .get_func_proto         = sk_reuseport_func_proto,
8937        .is_valid_access        = sk_reuseport_is_valid_access,
8938        .convert_ctx_access     = sk_reuseport_convert_ctx_access,
8939};
8940
8941const struct bpf_prog_ops sk_reuseport_prog_ops = {
8942};
8943#endif /* CONFIG_INET */
8944