linux/net/ipv4/fib_trie.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *
   4 *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
   5 *     & Swedish University of Agricultural Sciences.
   6 *
   7 *   Jens Laas <jens.laas@data.slu.se> Swedish University of
   8 *     Agricultural Sciences.
   9 *
  10 *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
  11 *
  12 * This work is based on the LPC-trie which is originally described in:
  13 *
  14 * An experimental study of compression methods for dynamic tries
  15 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
  16 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
  17 *
  18 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
  19 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
  20 *
  21 * Code from fib_hash has been reused which includes the following header:
  22 *
  23 * INET         An implementation of the TCP/IP protocol suite for the LINUX
  24 *              operating system.  INET is implemented using the  BSD Socket
  25 *              interface as the means of communication with the user level.
  26 *
  27 *              IPv4 FIB: lookup engine and maintenance routines.
  28 *
  29 * Authors:     Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
  30 *
  31 * Substantial contributions to this work comes from:
  32 *
  33 *              David S. Miller, <davem@davemloft.net>
  34 *              Stephen Hemminger <shemminger@osdl.org>
  35 *              Paul E. McKenney <paulmck@us.ibm.com>
  36 *              Patrick McHardy <kaber@trash.net>
  37 */
  38
  39#define VERSION "0.409"
  40
  41#include <linux/cache.h>
  42#include <linux/uaccess.h>
  43#include <linux/bitops.h>
  44#include <linux/types.h>
  45#include <linux/kernel.h>
  46#include <linux/mm.h>
  47#include <linux/string.h>
  48#include <linux/socket.h>
  49#include <linux/sockios.h>
  50#include <linux/errno.h>
  51#include <linux/in.h>
  52#include <linux/inet.h>
  53#include <linux/inetdevice.h>
  54#include <linux/netdevice.h>
  55#include <linux/if_arp.h>
  56#include <linux/proc_fs.h>
  57#include <linux/rcupdate.h>
  58#include <linux/skbuff.h>
  59#include <linux/netlink.h>
  60#include <linux/init.h>
  61#include <linux/list.h>
  62#include <linux/slab.h>
  63#include <linux/export.h>
  64#include <linux/vmalloc.h>
  65#include <linux/notifier.h>
  66#include <net/net_namespace.h>
  67#include <net/ip.h>
  68#include <net/protocol.h>
  69#include <net/route.h>
  70#include <net/tcp.h>
  71#include <net/sock.h>
  72#include <net/ip_fib.h>
  73#include <net/fib_notifier.h>
  74#include <trace/events/fib.h>
  75#include "fib_lookup.h"
  76
  77static int call_fib_entry_notifier(struct notifier_block *nb,
  78                                   enum fib_event_type event_type, u32 dst,
  79                                   int dst_len, struct fib_alias *fa,
  80                                   struct netlink_ext_ack *extack)
  81{
  82        struct fib_entry_notifier_info info = {
  83                .info.extack = extack,
  84                .dst = dst,
  85                .dst_len = dst_len,
  86                .fi = fa->fa_info,
  87                .tos = fa->fa_tos,
  88                .type = fa->fa_type,
  89                .tb_id = fa->tb_id,
  90        };
  91        return call_fib4_notifier(nb, event_type, &info.info);
  92}
  93
  94static int call_fib_entry_notifiers(struct net *net,
  95                                    enum fib_event_type event_type, u32 dst,
  96                                    int dst_len, struct fib_alias *fa,
  97                                    struct netlink_ext_ack *extack)
  98{
  99        struct fib_entry_notifier_info info = {
 100                .info.extack = extack,
 101                .dst = dst,
 102                .dst_len = dst_len,
 103                .fi = fa->fa_info,
 104                .tos = fa->fa_tos,
 105                .type = fa->fa_type,
 106                .tb_id = fa->tb_id,
 107        };
 108        return call_fib4_notifiers(net, event_type, &info.info);
 109}
 110
 111#define MAX_STAT_DEPTH 32
 112
 113#define KEYLENGTH       (8*sizeof(t_key))
 114#define KEY_MAX         ((t_key)~0)
 115
 116typedef unsigned int t_key;
 117
 118#define IS_TRIE(n)      ((n)->pos >= KEYLENGTH)
 119#define IS_TNODE(n)     ((n)->bits)
 120#define IS_LEAF(n)      (!(n)->bits)
 121
 122struct key_vector {
 123        t_key key;
 124        unsigned char pos;              /* 2log(KEYLENGTH) bits needed */
 125        unsigned char bits;             /* 2log(KEYLENGTH) bits needed */
 126        unsigned char slen;
 127        union {
 128                /* This list pointer if valid if (pos | bits) == 0 (LEAF) */
 129                struct hlist_head leaf;
 130                /* This array is valid if (pos | bits) > 0 (TNODE) */
 131                struct key_vector __rcu *tnode[0];
 132        };
 133};
 134
 135struct tnode {
 136        struct rcu_head rcu;
 137        t_key empty_children;           /* KEYLENGTH bits needed */
 138        t_key full_children;            /* KEYLENGTH bits needed */
 139        struct key_vector __rcu *parent;
 140        struct key_vector kv[1];
 141#define tn_bits kv[0].bits
 142};
 143
 144#define TNODE_SIZE(n)   offsetof(struct tnode, kv[0].tnode[n])
 145#define LEAF_SIZE       TNODE_SIZE(1)
 146
 147#ifdef CONFIG_IP_FIB_TRIE_STATS
 148struct trie_use_stats {
 149        unsigned int gets;
 150        unsigned int backtrack;
 151        unsigned int semantic_match_passed;
 152        unsigned int semantic_match_miss;
 153        unsigned int null_node_hit;
 154        unsigned int resize_node_skipped;
 155};
 156#endif
 157
 158struct trie_stat {
 159        unsigned int totdepth;
 160        unsigned int maxdepth;
 161        unsigned int tnodes;
 162        unsigned int leaves;
 163        unsigned int nullpointers;
 164        unsigned int prefixes;
 165        unsigned int nodesizes[MAX_STAT_DEPTH];
 166};
 167
 168struct trie {
 169        struct key_vector kv[1];
 170#ifdef CONFIG_IP_FIB_TRIE_STATS
 171        struct trie_use_stats __percpu *stats;
 172#endif
 173};
 174
 175static struct key_vector *resize(struct trie *t, struct key_vector *tn);
 176static unsigned int tnode_free_size;
 177
 178/*
 179 * synchronize_rcu after call_rcu for outstanding dirty memory; it should be
 180 * especially useful before resizing the root node with PREEMPT_NONE configs;
 181 * the value was obtained experimentally, aiming to avoid visible slowdown.
 182 */
 183unsigned int sysctl_fib_sync_mem = 512 * 1024;
 184unsigned int sysctl_fib_sync_mem_min = 64 * 1024;
 185unsigned int sysctl_fib_sync_mem_max = 64 * 1024 * 1024;
 186
 187static struct kmem_cache *fn_alias_kmem __ro_after_init;
 188static struct kmem_cache *trie_leaf_kmem __ro_after_init;
 189
 190static inline struct tnode *tn_info(struct key_vector *kv)
 191{
 192        return container_of(kv, struct tnode, kv[0]);
 193}
 194
 195/* caller must hold RTNL */
 196#define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
 197#define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
 198
 199/* caller must hold RCU read lock or RTNL */
 200#define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
 201#define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
 202
 203/* wrapper for rcu_assign_pointer */
 204static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
 205{
 206        if (n)
 207                rcu_assign_pointer(tn_info(n)->parent, tp);
 208}
 209
 210#define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
 211
 212/* This provides us with the number of children in this node, in the case of a
 213 * leaf this will return 0 meaning none of the children are accessible.
 214 */
 215static inline unsigned long child_length(const struct key_vector *tn)
 216{
 217        return (1ul << tn->bits) & ~(1ul);
 218}
 219
 220#define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
 221
 222static inline unsigned long get_index(t_key key, struct key_vector *kv)
 223{
 224        unsigned long index = key ^ kv->key;
 225
 226        if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
 227                return 0;
 228
 229        return index >> kv->pos;
 230}
 231
 232/* To understand this stuff, an understanding of keys and all their bits is
 233 * necessary. Every node in the trie has a key associated with it, but not
 234 * all of the bits in that key are significant.
 235 *
 236 * Consider a node 'n' and its parent 'tp'.
 237 *
 238 * If n is a leaf, every bit in its key is significant. Its presence is
 239 * necessitated by path compression, since during a tree traversal (when
 240 * searching for a leaf - unless we are doing an insertion) we will completely
 241 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
 242 * a potentially successful search, that we have indeed been walking the
 243 * correct key path.
 244 *
 245 * Note that we can never "miss" the correct key in the tree if present by
 246 * following the wrong path. Path compression ensures that segments of the key
 247 * that are the same for all keys with a given prefix are skipped, but the
 248 * skipped part *is* identical for each node in the subtrie below the skipped
 249 * bit! trie_insert() in this implementation takes care of that.
 250 *
 251 * if n is an internal node - a 'tnode' here, the various parts of its key
 252 * have many different meanings.
 253 *
 254 * Example:
 255 * _________________________________________________________________
 256 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
 257 * -----------------------------------------------------------------
 258 *  31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16
 259 *
 260 * _________________________________________________________________
 261 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
 262 * -----------------------------------------------------------------
 263 *  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
 264 *
 265 * tp->pos = 22
 266 * tp->bits = 3
 267 * n->pos = 13
 268 * n->bits = 4
 269 *
 270 * First, let's just ignore the bits that come before the parent tp, that is
 271 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
 272 * point we do not use them for anything.
 273 *
 274 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
 275 * index into the parent's child array. That is, they will be used to find
 276 * 'n' among tp's children.
 277 *
 278 * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
 279 * for the node n.
 280 *
 281 * All the bits we have seen so far are significant to the node n. The rest
 282 * of the bits are really not needed or indeed known in n->key.
 283 *
 284 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
 285 * n's child array, and will of course be different for each child.
 286 *
 287 * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
 288 * at this point.
 289 */
 290
 291static const int halve_threshold = 25;
 292static const int inflate_threshold = 50;
 293static const int halve_threshold_root = 15;
 294static const int inflate_threshold_root = 30;
 295
 296static void __alias_free_mem(struct rcu_head *head)
 297{
 298        struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
 299        kmem_cache_free(fn_alias_kmem, fa);
 300}
 301
 302static inline void alias_free_mem_rcu(struct fib_alias *fa)
 303{
 304        call_rcu(&fa->rcu, __alias_free_mem);
 305}
 306
 307#define TNODE_KMALLOC_MAX \
 308        ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
 309#define TNODE_VMALLOC_MAX \
 310        ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
 311
 312static void __node_free_rcu(struct rcu_head *head)
 313{
 314        struct tnode *n = container_of(head, struct tnode, rcu);
 315
 316        if (!n->tn_bits)
 317                kmem_cache_free(trie_leaf_kmem, n);
 318        else
 319                kvfree(n);
 320}
 321
 322#define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
 323
 324static struct tnode *tnode_alloc(int bits)
 325{
 326        size_t size;
 327
 328        /* verify bits is within bounds */
 329        if (bits > TNODE_VMALLOC_MAX)
 330                return NULL;
 331
 332        /* determine size and verify it is non-zero and didn't overflow */
 333        size = TNODE_SIZE(1ul << bits);
 334
 335        if (size <= PAGE_SIZE)
 336                return kzalloc(size, GFP_KERNEL);
 337        else
 338                return vzalloc(size);
 339}
 340
 341static inline void empty_child_inc(struct key_vector *n)
 342{
 343        tn_info(n)->empty_children++;
 344
 345        if (!tn_info(n)->empty_children)
 346                tn_info(n)->full_children++;
 347}
 348
 349static inline void empty_child_dec(struct key_vector *n)
 350{
 351        if (!tn_info(n)->empty_children)
 352                tn_info(n)->full_children--;
 353
 354        tn_info(n)->empty_children--;
 355}
 356
 357static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
 358{
 359        struct key_vector *l;
 360        struct tnode *kv;
 361
 362        kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
 363        if (!kv)
 364                return NULL;
 365
 366        /* initialize key vector */
 367        l = kv->kv;
 368        l->key = key;
 369        l->pos = 0;
 370        l->bits = 0;
 371        l->slen = fa->fa_slen;
 372
 373        /* link leaf to fib alias */
 374        INIT_HLIST_HEAD(&l->leaf);
 375        hlist_add_head(&fa->fa_list, &l->leaf);
 376
 377        return l;
 378}
 379
 380static struct key_vector *tnode_new(t_key key, int pos, int bits)
 381{
 382        unsigned int shift = pos + bits;
 383        struct key_vector *tn;
 384        struct tnode *tnode;
 385
 386        /* verify bits and pos their msb bits clear and values are valid */
 387        BUG_ON(!bits || (shift > KEYLENGTH));
 388
 389        tnode = tnode_alloc(bits);
 390        if (!tnode)
 391                return NULL;
 392
 393        pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
 394                 sizeof(struct key_vector *) << bits);
 395
 396        if (bits == KEYLENGTH)
 397                tnode->full_children = 1;
 398        else
 399                tnode->empty_children = 1ul << bits;
 400
 401        tn = tnode->kv;
 402        tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
 403        tn->pos = pos;
 404        tn->bits = bits;
 405        tn->slen = pos;
 406
 407        return tn;
 408}
 409
 410/* Check whether a tnode 'n' is "full", i.e. it is an internal node
 411 * and no bits are skipped. See discussion in dyntree paper p. 6
 412 */
 413static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
 414{
 415        return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
 416}
 417
 418/* Add a child at position i overwriting the old value.
 419 * Update the value of full_children and empty_children.
 420 */
 421static void put_child(struct key_vector *tn, unsigned long i,
 422                      struct key_vector *n)
 423{
 424        struct key_vector *chi = get_child(tn, i);
 425        int isfull, wasfull;
 426
 427        BUG_ON(i >= child_length(tn));
 428
 429        /* update emptyChildren, overflow into fullChildren */
 430        if (!n && chi)
 431                empty_child_inc(tn);
 432        if (n && !chi)
 433                empty_child_dec(tn);
 434
 435        /* update fullChildren */
 436        wasfull = tnode_full(tn, chi);
 437        isfull = tnode_full(tn, n);
 438
 439        if (wasfull && !isfull)
 440                tn_info(tn)->full_children--;
 441        else if (!wasfull && isfull)
 442                tn_info(tn)->full_children++;
 443
 444        if (n && (tn->slen < n->slen))
 445                tn->slen = n->slen;
 446
 447        rcu_assign_pointer(tn->tnode[i], n);
 448}
 449
 450static void update_children(struct key_vector *tn)
 451{
 452        unsigned long i;
 453
 454        /* update all of the child parent pointers */
 455        for (i = child_length(tn); i;) {
 456                struct key_vector *inode = get_child(tn, --i);
 457
 458                if (!inode)
 459                        continue;
 460
 461                /* Either update the children of a tnode that
 462                 * already belongs to us or update the child
 463                 * to point to ourselves.
 464                 */
 465                if (node_parent(inode) == tn)
 466                        update_children(inode);
 467                else
 468                        node_set_parent(inode, tn);
 469        }
 470}
 471
 472static inline void put_child_root(struct key_vector *tp, t_key key,
 473                                  struct key_vector *n)
 474{
 475        if (IS_TRIE(tp))
 476                rcu_assign_pointer(tp->tnode[0], n);
 477        else
 478                put_child(tp, get_index(key, tp), n);
 479}
 480
 481static inline void tnode_free_init(struct key_vector *tn)
 482{
 483        tn_info(tn)->rcu.next = NULL;
 484}
 485
 486static inline void tnode_free_append(struct key_vector *tn,
 487                                     struct key_vector *n)
 488{
 489        tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
 490        tn_info(tn)->rcu.next = &tn_info(n)->rcu;
 491}
 492
 493static void tnode_free(struct key_vector *tn)
 494{
 495        struct callback_head *head = &tn_info(tn)->rcu;
 496
 497        while (head) {
 498                head = head->next;
 499                tnode_free_size += TNODE_SIZE(1ul << tn->bits);
 500                node_free(tn);
 501
 502                tn = container_of(head, struct tnode, rcu)->kv;
 503        }
 504
 505        if (tnode_free_size >= sysctl_fib_sync_mem) {
 506                tnode_free_size = 0;
 507                synchronize_rcu();
 508        }
 509}
 510
 511static struct key_vector *replace(struct trie *t,
 512                                  struct key_vector *oldtnode,
 513                                  struct key_vector *tn)
 514{
 515        struct key_vector *tp = node_parent(oldtnode);
 516        unsigned long i;
 517
 518        /* setup the parent pointer out of and back into this node */
 519        NODE_INIT_PARENT(tn, tp);
 520        put_child_root(tp, tn->key, tn);
 521
 522        /* update all of the child parent pointers */
 523        update_children(tn);
 524
 525        /* all pointers should be clean so we are done */
 526        tnode_free(oldtnode);
 527
 528        /* resize children now that oldtnode is freed */
 529        for (i = child_length(tn); i;) {
 530                struct key_vector *inode = get_child(tn, --i);
 531
 532                /* resize child node */
 533                if (tnode_full(tn, inode))
 534                        tn = resize(t, inode);
 535        }
 536
 537        return tp;
 538}
 539
 540static struct key_vector *inflate(struct trie *t,
 541                                  struct key_vector *oldtnode)
 542{
 543        struct key_vector *tn;
 544        unsigned long i;
 545        t_key m;
 546
 547        pr_debug("In inflate\n");
 548
 549        tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
 550        if (!tn)
 551                goto notnode;
 552
 553        /* prepare oldtnode to be freed */
 554        tnode_free_init(oldtnode);
 555
 556        /* Assemble all of the pointers in our cluster, in this case that
 557         * represents all of the pointers out of our allocated nodes that
 558         * point to existing tnodes and the links between our allocated
 559         * nodes.
 560         */
 561        for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
 562                struct key_vector *inode = get_child(oldtnode, --i);
 563                struct key_vector *node0, *node1;
 564                unsigned long j, k;
 565
 566                /* An empty child */
 567                if (!inode)
 568                        continue;
 569
 570                /* A leaf or an internal node with skipped bits */
 571                if (!tnode_full(oldtnode, inode)) {
 572                        put_child(tn, get_index(inode->key, tn), inode);
 573                        continue;
 574                }
 575
 576                /* drop the node in the old tnode free list */
 577                tnode_free_append(oldtnode, inode);
 578
 579                /* An internal node with two children */
 580                if (inode->bits == 1) {
 581                        put_child(tn, 2 * i + 1, get_child(inode, 1));
 582                        put_child(tn, 2 * i, get_child(inode, 0));
 583                        continue;
 584                }
 585
 586                /* We will replace this node 'inode' with two new
 587                 * ones, 'node0' and 'node1', each with half of the
 588                 * original children. The two new nodes will have
 589                 * a position one bit further down the key and this
 590                 * means that the "significant" part of their keys
 591                 * (see the discussion near the top of this file)
 592                 * will differ by one bit, which will be "0" in
 593                 * node0's key and "1" in node1's key. Since we are
 594                 * moving the key position by one step, the bit that
 595                 * we are moving away from - the bit at position
 596                 * (tn->pos) - is the one that will differ between
 597                 * node0 and node1. So... we synthesize that bit in the
 598                 * two new keys.
 599                 */
 600                node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
 601                if (!node1)
 602                        goto nomem;
 603                node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
 604
 605                tnode_free_append(tn, node1);
 606                if (!node0)
 607                        goto nomem;
 608                tnode_free_append(tn, node0);
 609
 610                /* populate child pointers in new nodes */
 611                for (k = child_length(inode), j = k / 2; j;) {
 612                        put_child(node1, --j, get_child(inode, --k));
 613                        put_child(node0, j, get_child(inode, j));
 614                        put_child(node1, --j, get_child(inode, --k));
 615                        put_child(node0, j, get_child(inode, j));
 616                }
 617
 618                /* link new nodes to parent */
 619                NODE_INIT_PARENT(node1, tn);
 620                NODE_INIT_PARENT(node0, tn);
 621
 622                /* link parent to nodes */
 623                put_child(tn, 2 * i + 1, node1);
 624                put_child(tn, 2 * i, node0);
 625        }
 626
 627        /* setup the parent pointers into and out of this node */
 628        return replace(t, oldtnode, tn);
 629nomem:
 630        /* all pointers should be clean so we are done */
 631        tnode_free(tn);
 632notnode:
 633        return NULL;
 634}
 635
 636static struct key_vector *halve(struct trie *t,
 637                                struct key_vector *oldtnode)
 638{
 639        struct key_vector *tn;
 640        unsigned long i;
 641
 642        pr_debug("In halve\n");
 643
 644        tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
 645        if (!tn)
 646                goto notnode;
 647
 648        /* prepare oldtnode to be freed */
 649        tnode_free_init(oldtnode);
 650
 651        /* Assemble all of the pointers in our cluster, in this case that
 652         * represents all of the pointers out of our allocated nodes that
 653         * point to existing tnodes and the links between our allocated
 654         * nodes.
 655         */
 656        for (i = child_length(oldtnode); i;) {
 657                struct key_vector *node1 = get_child(oldtnode, --i);
 658                struct key_vector *node0 = get_child(oldtnode, --i);
 659                struct key_vector *inode;
 660
 661                /* At least one of the children is empty */
 662                if (!node1 || !node0) {
 663                        put_child(tn, i / 2, node1 ? : node0);
 664                        continue;
 665                }
 666
 667                /* Two nonempty children */
 668                inode = tnode_new(node0->key, oldtnode->pos, 1);
 669                if (!inode)
 670                        goto nomem;
 671                tnode_free_append(tn, inode);
 672
 673                /* initialize pointers out of node */
 674                put_child(inode, 1, node1);
 675                put_child(inode, 0, node0);
 676                NODE_INIT_PARENT(inode, tn);
 677
 678                /* link parent to node */
 679                put_child(tn, i / 2, inode);
 680        }
 681
 682        /* setup the parent pointers into and out of this node */
 683        return replace(t, oldtnode, tn);
 684nomem:
 685        /* all pointers should be clean so we are done */
 686        tnode_free(tn);
 687notnode:
 688        return NULL;
 689}
 690
 691static struct key_vector *collapse(struct trie *t,
 692                                   struct key_vector *oldtnode)
 693{
 694        struct key_vector *n, *tp;
 695        unsigned long i;
 696
 697        /* scan the tnode looking for that one child that might still exist */
 698        for (n = NULL, i = child_length(oldtnode); !n && i;)
 699                n = get_child(oldtnode, --i);
 700
 701        /* compress one level */
 702        tp = node_parent(oldtnode);
 703        put_child_root(tp, oldtnode->key, n);
 704        node_set_parent(n, tp);
 705
 706        /* drop dead node */
 707        node_free(oldtnode);
 708
 709        return tp;
 710}
 711
 712static unsigned char update_suffix(struct key_vector *tn)
 713{
 714        unsigned char slen = tn->pos;
 715        unsigned long stride, i;
 716        unsigned char slen_max;
 717
 718        /* only vector 0 can have a suffix length greater than or equal to
 719         * tn->pos + tn->bits, the second highest node will have a suffix
 720         * length at most of tn->pos + tn->bits - 1
 721         */
 722        slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen);
 723
 724        /* search though the list of children looking for nodes that might
 725         * have a suffix greater than the one we currently have.  This is
 726         * why we start with a stride of 2 since a stride of 1 would
 727         * represent the nodes with suffix length equal to tn->pos
 728         */
 729        for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
 730                struct key_vector *n = get_child(tn, i);
 731
 732                if (!n || (n->slen <= slen))
 733                        continue;
 734
 735                /* update stride and slen based on new value */
 736                stride <<= (n->slen - slen);
 737                slen = n->slen;
 738                i &= ~(stride - 1);
 739
 740                /* stop searching if we have hit the maximum possible value */
 741                if (slen >= slen_max)
 742                        break;
 743        }
 744
 745        tn->slen = slen;
 746
 747        return slen;
 748}
 749
 750/* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
 751 * the Helsinki University of Technology and Matti Tikkanen of Nokia
 752 * Telecommunications, page 6:
 753 * "A node is doubled if the ratio of non-empty children to all
 754 * children in the *doubled* node is at least 'high'."
 755 *
 756 * 'high' in this instance is the variable 'inflate_threshold'. It
 757 * is expressed as a percentage, so we multiply it with
 758 * child_length() and instead of multiplying by 2 (since the
 759 * child array will be doubled by inflate()) and multiplying
 760 * the left-hand side by 100 (to handle the percentage thing) we
 761 * multiply the left-hand side by 50.
 762 *
 763 * The left-hand side may look a bit weird: child_length(tn)
 764 * - tn->empty_children is of course the number of non-null children
 765 * in the current node. tn->full_children is the number of "full"
 766 * children, that is non-null tnodes with a skip value of 0.
 767 * All of those will be doubled in the resulting inflated tnode, so
 768 * we just count them one extra time here.
 769 *
 770 * A clearer way to write this would be:
 771 *
 772 * to_be_doubled = tn->full_children;
 773 * not_to_be_doubled = child_length(tn) - tn->empty_children -
 774 *     tn->full_children;
 775 *
 776 * new_child_length = child_length(tn) * 2;
 777 *
 778 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
 779 *      new_child_length;
 780 * if (new_fill_factor >= inflate_threshold)
 781 *
 782 * ...and so on, tho it would mess up the while () loop.
 783 *
 784 * anyway,
 785 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
 786 *      inflate_threshold
 787 *
 788 * avoid a division:
 789 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
 790 *      inflate_threshold * new_child_length
 791 *
 792 * expand not_to_be_doubled and to_be_doubled, and shorten:
 793 * 100 * (child_length(tn) - tn->empty_children +
 794 *    tn->full_children) >= inflate_threshold * new_child_length
 795 *
 796 * expand new_child_length:
 797 * 100 * (child_length(tn) - tn->empty_children +
 798 *    tn->full_children) >=
 799 *      inflate_threshold * child_length(tn) * 2
 800 *
 801 * shorten again:
 802 * 50 * (tn->full_children + child_length(tn) -
 803 *    tn->empty_children) >= inflate_threshold *
 804 *    child_length(tn)
 805 *
 806 */
 807static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
 808{
 809        unsigned long used = child_length(tn);
 810        unsigned long threshold = used;
 811
 812        /* Keep root node larger */
 813        threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
 814        used -= tn_info(tn)->empty_children;
 815        used += tn_info(tn)->full_children;
 816
 817        /* if bits == KEYLENGTH then pos = 0, and will fail below */
 818
 819        return (used > 1) && tn->pos && ((50 * used) >= threshold);
 820}
 821
 822static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
 823{
 824        unsigned long used = child_length(tn);
 825        unsigned long threshold = used;
 826
 827        /* Keep root node larger */
 828        threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
 829        used -= tn_info(tn)->empty_children;
 830
 831        /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
 832
 833        return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
 834}
 835
 836static inline bool should_collapse(struct key_vector *tn)
 837{
 838        unsigned long used = child_length(tn);
 839
 840        used -= tn_info(tn)->empty_children;
 841
 842        /* account for bits == KEYLENGTH case */
 843        if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
 844                used -= KEY_MAX;
 845
 846        /* One child or none, time to drop us from the trie */
 847        return used < 2;
 848}
 849
 850#define MAX_WORK 10
 851static struct key_vector *resize(struct trie *t, struct key_vector *tn)
 852{
 853#ifdef CONFIG_IP_FIB_TRIE_STATS
 854        struct trie_use_stats __percpu *stats = t->stats;
 855#endif
 856        struct key_vector *tp = node_parent(tn);
 857        unsigned long cindex = get_index(tn->key, tp);
 858        int max_work = MAX_WORK;
 859
 860        pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
 861                 tn, inflate_threshold, halve_threshold);
 862
 863        /* track the tnode via the pointer from the parent instead of
 864         * doing it ourselves.  This way we can let RCU fully do its
 865         * thing without us interfering
 866         */
 867        BUG_ON(tn != get_child(tp, cindex));
 868
 869        /* Double as long as the resulting node has a number of
 870         * nonempty nodes that are above the threshold.
 871         */
 872        while (should_inflate(tp, tn) && max_work) {
 873                tp = inflate(t, tn);
 874                if (!tp) {
 875#ifdef CONFIG_IP_FIB_TRIE_STATS
 876                        this_cpu_inc(stats->resize_node_skipped);
 877#endif
 878                        break;
 879                }
 880
 881                max_work--;
 882                tn = get_child(tp, cindex);
 883        }
 884
 885        /* update parent in case inflate failed */
 886        tp = node_parent(tn);
 887
 888        /* Return if at least one inflate is run */
 889        if (max_work != MAX_WORK)
 890                return tp;
 891
 892        /* Halve as long as the number of empty children in this
 893         * node is above threshold.
 894         */
 895        while (should_halve(tp, tn) && max_work) {
 896                tp = halve(t, tn);
 897                if (!tp) {
 898#ifdef CONFIG_IP_FIB_TRIE_STATS
 899                        this_cpu_inc(stats->resize_node_skipped);
 900#endif
 901                        break;
 902                }
 903
 904                max_work--;
 905                tn = get_child(tp, cindex);
 906        }
 907
 908        /* Only one child remains */
 909        if (should_collapse(tn))
 910                return collapse(t, tn);
 911
 912        /* update parent in case halve failed */
 913        return node_parent(tn);
 914}
 915
 916static void node_pull_suffix(struct key_vector *tn, unsigned char slen)
 917{
 918        unsigned char node_slen = tn->slen;
 919
 920        while ((node_slen > tn->pos) && (node_slen > slen)) {
 921                slen = update_suffix(tn);
 922                if (node_slen == slen)
 923                        break;
 924
 925                tn = node_parent(tn);
 926                node_slen = tn->slen;
 927        }
 928}
 929
 930static void node_push_suffix(struct key_vector *tn, unsigned char slen)
 931{
 932        while (tn->slen < slen) {
 933                tn->slen = slen;
 934                tn = node_parent(tn);
 935        }
 936}
 937
 938/* rcu_read_lock needs to be hold by caller from readside */
 939static struct key_vector *fib_find_node(struct trie *t,
 940                                        struct key_vector **tp, u32 key)
 941{
 942        struct key_vector *pn, *n = t->kv;
 943        unsigned long index = 0;
 944
 945        do {
 946                pn = n;
 947                n = get_child_rcu(n, index);
 948
 949                if (!n)
 950                        break;
 951
 952                index = get_cindex(key, n);
 953
 954                /* This bit of code is a bit tricky but it combines multiple
 955                 * checks into a single check.  The prefix consists of the
 956                 * prefix plus zeros for the bits in the cindex. The index
 957                 * is the difference between the key and this value.  From
 958                 * this we can actually derive several pieces of data.
 959                 *   if (index >= (1ul << bits))
 960                 *     we have a mismatch in skip bits and failed
 961                 *   else
 962                 *     we know the value is cindex
 963                 *
 964                 * This check is safe even if bits == KEYLENGTH due to the
 965                 * fact that we can only allocate a node with 32 bits if a
 966                 * long is greater than 32 bits.
 967                 */
 968                if (index >= (1ul << n->bits)) {
 969                        n = NULL;
 970                        break;
 971                }
 972
 973                /* keep searching until we find a perfect match leaf or NULL */
 974        } while (IS_TNODE(n));
 975
 976        *tp = pn;
 977
 978        return n;
 979}
 980
 981/* Return the first fib alias matching TOS with
 982 * priority less than or equal to PRIO.
 983 */
 984static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
 985                                        u8 tos, u32 prio, u32 tb_id)
 986{
 987        struct fib_alias *fa;
 988
 989        if (!fah)
 990                return NULL;
 991
 992        hlist_for_each_entry(fa, fah, fa_list) {
 993                if (fa->fa_slen < slen)
 994                        continue;
 995                if (fa->fa_slen != slen)
 996                        break;
 997                if (fa->tb_id > tb_id)
 998                        continue;
 999                if (fa->tb_id != tb_id)
1000                        break;
1001                if (fa->fa_tos > tos)
1002                        continue;
1003                if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
1004                        return fa;
1005        }
1006
1007        return NULL;
1008}
1009
1010static void trie_rebalance(struct trie *t, struct key_vector *tn)
1011{
1012        while (!IS_TRIE(tn))
1013                tn = resize(t, tn);
1014}
1015
1016static int fib_insert_node(struct trie *t, struct key_vector *tp,
1017                           struct fib_alias *new, t_key key)
1018{
1019        struct key_vector *n, *l;
1020
1021        l = leaf_new(key, new);
1022        if (!l)
1023                goto noleaf;
1024
1025        /* retrieve child from parent node */
1026        n = get_child(tp, get_index(key, tp));
1027
1028        /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1029         *
1030         *  Add a new tnode here
1031         *  first tnode need some special handling
1032         *  leaves us in position for handling as case 3
1033         */
1034        if (n) {
1035                struct key_vector *tn;
1036
1037                tn = tnode_new(key, __fls(key ^ n->key), 1);
1038                if (!tn)
1039                        goto notnode;
1040
1041                /* initialize routes out of node */
1042                NODE_INIT_PARENT(tn, tp);
1043                put_child(tn, get_index(key, tn) ^ 1, n);
1044
1045                /* start adding routes into the node */
1046                put_child_root(tp, key, tn);
1047                node_set_parent(n, tn);
1048
1049                /* parent now has a NULL spot where the leaf can go */
1050                tp = tn;
1051        }
1052
1053        /* Case 3: n is NULL, and will just insert a new leaf */
1054        node_push_suffix(tp, new->fa_slen);
1055        NODE_INIT_PARENT(l, tp);
1056        put_child_root(tp, key, l);
1057        trie_rebalance(t, tp);
1058
1059        return 0;
1060notnode:
1061        node_free(l);
1062noleaf:
1063        return -ENOMEM;
1064}
1065
1066/* fib notifier for ADD is sent before calling fib_insert_alias with
1067 * the expectation that the only possible failure ENOMEM
1068 */
1069static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1070                            struct key_vector *l, struct fib_alias *new,
1071                            struct fib_alias *fa, t_key key)
1072{
1073        if (!l)
1074                return fib_insert_node(t, tp, new, key);
1075
1076        if (fa) {
1077                hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1078        } else {
1079                struct fib_alias *last;
1080
1081                hlist_for_each_entry(last, &l->leaf, fa_list) {
1082                        if (new->fa_slen < last->fa_slen)
1083                                break;
1084                        if ((new->fa_slen == last->fa_slen) &&
1085                            (new->tb_id > last->tb_id))
1086                                break;
1087                        fa = last;
1088                }
1089
1090                if (fa)
1091                        hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1092                else
1093                        hlist_add_head_rcu(&new->fa_list, &l->leaf);
1094        }
1095
1096        /* if we added to the tail node then we need to update slen */
1097        if (l->slen < new->fa_slen) {
1098                l->slen = new->fa_slen;
1099                node_push_suffix(tp, new->fa_slen);
1100        }
1101
1102        return 0;
1103}
1104
1105static bool fib_valid_key_len(u32 key, u8 plen, struct netlink_ext_ack *extack)
1106{
1107        if (plen > KEYLENGTH) {
1108                NL_SET_ERR_MSG(extack, "Invalid prefix length");
1109                return false;
1110        }
1111
1112        if ((plen < KEYLENGTH) && (key << plen)) {
1113                NL_SET_ERR_MSG(extack,
1114                               "Invalid prefix for given prefix length");
1115                return false;
1116        }
1117
1118        return true;
1119}
1120
1121/* Caller must hold RTNL. */
1122int fib_table_insert(struct net *net, struct fib_table *tb,
1123                     struct fib_config *cfg, struct netlink_ext_ack *extack)
1124{
1125        enum fib_event_type event = FIB_EVENT_ENTRY_ADD;
1126        struct trie *t = (struct trie *)tb->tb_data;
1127        struct fib_alias *fa, *new_fa;
1128        struct key_vector *l, *tp;
1129        u16 nlflags = NLM_F_EXCL;
1130        struct fib_info *fi;
1131        u8 plen = cfg->fc_dst_len;
1132        u8 slen = KEYLENGTH - plen;
1133        u8 tos = cfg->fc_tos;
1134        u32 key;
1135        int err;
1136
1137        key = ntohl(cfg->fc_dst);
1138
1139        if (!fib_valid_key_len(key, plen, extack))
1140                return -EINVAL;
1141
1142        pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1143
1144        fi = fib_create_info(cfg, extack);
1145        if (IS_ERR(fi)) {
1146                err = PTR_ERR(fi);
1147                goto err;
1148        }
1149
1150        l = fib_find_node(t, &tp, key);
1151        fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
1152                                tb->tb_id) : NULL;
1153
1154        /* Now fa, if non-NULL, points to the first fib alias
1155         * with the same keys [prefix,tos,priority], if such key already
1156         * exists or to the node before which we will insert new one.
1157         *
1158         * If fa is NULL, we will need to allocate a new one and
1159         * insert to the tail of the section matching the suffix length
1160         * of the new alias.
1161         */
1162
1163        if (fa && fa->fa_tos == tos &&
1164            fa->fa_info->fib_priority == fi->fib_priority) {
1165                struct fib_alias *fa_first, *fa_match;
1166
1167                err = -EEXIST;
1168                if (cfg->fc_nlflags & NLM_F_EXCL)
1169                        goto out;
1170
1171                nlflags &= ~NLM_F_EXCL;
1172
1173                /* We have 2 goals:
1174                 * 1. Find exact match for type, scope, fib_info to avoid
1175                 * duplicate routes
1176                 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1177                 */
1178                fa_match = NULL;
1179                fa_first = fa;
1180                hlist_for_each_entry_from(fa, fa_list) {
1181                        if ((fa->fa_slen != slen) ||
1182                            (fa->tb_id != tb->tb_id) ||
1183                            (fa->fa_tos != tos))
1184                                break;
1185                        if (fa->fa_info->fib_priority != fi->fib_priority)
1186                                break;
1187                        if (fa->fa_type == cfg->fc_type &&
1188                            fa->fa_info == fi) {
1189                                fa_match = fa;
1190                                break;
1191                        }
1192                }
1193
1194                if (cfg->fc_nlflags & NLM_F_REPLACE) {
1195                        struct fib_info *fi_drop;
1196                        u8 state;
1197
1198                        nlflags |= NLM_F_REPLACE;
1199                        fa = fa_first;
1200                        if (fa_match) {
1201                                if (fa == fa_match)
1202                                        err = 0;
1203                                goto out;
1204                        }
1205                        err = -ENOBUFS;
1206                        new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1207                        if (!new_fa)
1208                                goto out;
1209
1210                        fi_drop = fa->fa_info;
1211                        new_fa->fa_tos = fa->fa_tos;
1212                        new_fa->fa_info = fi;
1213                        new_fa->fa_type = cfg->fc_type;
1214                        state = fa->fa_state;
1215                        new_fa->fa_state = state & ~FA_S_ACCESSED;
1216                        new_fa->fa_slen = fa->fa_slen;
1217                        new_fa->tb_id = tb->tb_id;
1218                        new_fa->fa_default = -1;
1219
1220                        err = call_fib_entry_notifiers(net,
1221                                                       FIB_EVENT_ENTRY_REPLACE,
1222                                                       key, plen, new_fa,
1223                                                       extack);
1224                        if (err)
1225                                goto out_free_new_fa;
1226
1227                        rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1228                                  tb->tb_id, &cfg->fc_nlinfo, nlflags);
1229
1230                        hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1231
1232                        alias_free_mem_rcu(fa);
1233
1234                        fib_release_info(fi_drop);
1235                        if (state & FA_S_ACCESSED)
1236                                rt_cache_flush(cfg->fc_nlinfo.nl_net);
1237
1238                        goto succeeded;
1239                }
1240                /* Error if we find a perfect match which
1241                 * uses the same scope, type, and nexthop
1242                 * information.
1243                 */
1244                if (fa_match)
1245                        goto out;
1246
1247                if (cfg->fc_nlflags & NLM_F_APPEND) {
1248                        event = FIB_EVENT_ENTRY_APPEND;
1249                        nlflags |= NLM_F_APPEND;
1250                } else {
1251                        fa = fa_first;
1252                }
1253        }
1254        err = -ENOENT;
1255        if (!(cfg->fc_nlflags & NLM_F_CREATE))
1256                goto out;
1257
1258        nlflags |= NLM_F_CREATE;
1259        err = -ENOBUFS;
1260        new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1261        if (!new_fa)
1262                goto out;
1263
1264        new_fa->fa_info = fi;
1265        new_fa->fa_tos = tos;
1266        new_fa->fa_type = cfg->fc_type;
1267        new_fa->fa_state = 0;
1268        new_fa->fa_slen = slen;
1269        new_fa->tb_id = tb->tb_id;
1270        new_fa->fa_default = -1;
1271
1272        err = call_fib_entry_notifiers(net, event, key, plen, new_fa, extack);
1273        if (err)
1274                goto out_free_new_fa;
1275
1276        /* Insert new entry to the list. */
1277        err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1278        if (err)
1279                goto out_fib_notif;
1280
1281        if (!plen)
1282                tb->tb_num_default++;
1283
1284        rt_cache_flush(cfg->fc_nlinfo.nl_net);
1285        rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1286                  &cfg->fc_nlinfo, nlflags);
1287succeeded:
1288        return 0;
1289
1290out_fib_notif:
1291        /* notifier was sent that entry would be added to trie, but
1292         * the add failed and need to recover. Only failure for
1293         * fib_insert_alias is ENOMEM.
1294         */
1295        NL_SET_ERR_MSG(extack, "Failed to insert route into trie");
1296        call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key,
1297                                 plen, new_fa, NULL);
1298out_free_new_fa:
1299        kmem_cache_free(fn_alias_kmem, new_fa);
1300out:
1301        fib_release_info(fi);
1302err:
1303        return err;
1304}
1305
1306static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1307{
1308        t_key prefix = n->key;
1309
1310        return (key ^ prefix) & (prefix | -prefix);
1311}
1312
1313/* should be called with rcu_read_lock */
1314int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1315                     struct fib_result *res, int fib_flags)
1316{
1317        struct trie *t = (struct trie *) tb->tb_data;
1318#ifdef CONFIG_IP_FIB_TRIE_STATS
1319        struct trie_use_stats __percpu *stats = t->stats;
1320#endif
1321        const t_key key = ntohl(flp->daddr);
1322        struct key_vector *n, *pn;
1323        struct fib_alias *fa;
1324        unsigned long index;
1325        t_key cindex;
1326
1327        pn = t->kv;
1328        cindex = 0;
1329
1330        n = get_child_rcu(pn, cindex);
1331        if (!n) {
1332                trace_fib_table_lookup(tb->tb_id, flp, NULL, -EAGAIN);
1333                return -EAGAIN;
1334        }
1335
1336#ifdef CONFIG_IP_FIB_TRIE_STATS
1337        this_cpu_inc(stats->gets);
1338#endif
1339
1340        /* Step 1: Travel to the longest prefix match in the trie */
1341        for (;;) {
1342                index = get_cindex(key, n);
1343
1344                /* This bit of code is a bit tricky but it combines multiple
1345                 * checks into a single check.  The prefix consists of the
1346                 * prefix plus zeros for the "bits" in the prefix. The index
1347                 * is the difference between the key and this value.  From
1348                 * this we can actually derive several pieces of data.
1349                 *   if (index >= (1ul << bits))
1350                 *     we have a mismatch in skip bits and failed
1351                 *   else
1352                 *     we know the value is cindex
1353                 *
1354                 * This check is safe even if bits == KEYLENGTH due to the
1355                 * fact that we can only allocate a node with 32 bits if a
1356                 * long is greater than 32 bits.
1357                 */
1358                if (index >= (1ul << n->bits))
1359                        break;
1360
1361                /* we have found a leaf. Prefixes have already been compared */
1362                if (IS_LEAF(n))
1363                        goto found;
1364
1365                /* only record pn and cindex if we are going to be chopping
1366                 * bits later.  Otherwise we are just wasting cycles.
1367                 */
1368                if (n->slen > n->pos) {
1369                        pn = n;
1370                        cindex = index;
1371                }
1372
1373                n = get_child_rcu(n, index);
1374                if (unlikely(!n))
1375                        goto backtrace;
1376        }
1377
1378        /* Step 2: Sort out leaves and begin backtracing for longest prefix */
1379        for (;;) {
1380                /* record the pointer where our next node pointer is stored */
1381                struct key_vector __rcu **cptr = n->tnode;
1382
1383                /* This test verifies that none of the bits that differ
1384                 * between the key and the prefix exist in the region of
1385                 * the lsb and higher in the prefix.
1386                 */
1387                if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1388                        goto backtrace;
1389
1390                /* exit out and process leaf */
1391                if (unlikely(IS_LEAF(n)))
1392                        break;
1393
1394                /* Don't bother recording parent info.  Since we are in
1395                 * prefix match mode we will have to come back to wherever
1396                 * we started this traversal anyway
1397                 */
1398
1399                while ((n = rcu_dereference(*cptr)) == NULL) {
1400backtrace:
1401#ifdef CONFIG_IP_FIB_TRIE_STATS
1402                        if (!n)
1403                                this_cpu_inc(stats->null_node_hit);
1404#endif
1405                        /* If we are at cindex 0 there are no more bits for
1406                         * us to strip at this level so we must ascend back
1407                         * up one level to see if there are any more bits to
1408                         * be stripped there.
1409                         */
1410                        while (!cindex) {
1411                                t_key pkey = pn->key;
1412
1413                                /* If we don't have a parent then there is
1414                                 * nothing for us to do as we do not have any
1415                                 * further nodes to parse.
1416                                 */
1417                                if (IS_TRIE(pn)) {
1418                                        trace_fib_table_lookup(tb->tb_id, flp,
1419                                                               NULL, -EAGAIN);
1420                                        return -EAGAIN;
1421                                }
1422#ifdef CONFIG_IP_FIB_TRIE_STATS
1423                                this_cpu_inc(stats->backtrack);
1424#endif
1425                                /* Get Child's index */
1426                                pn = node_parent_rcu(pn);
1427                                cindex = get_index(pkey, pn);
1428                        }
1429
1430                        /* strip the least significant bit from the cindex */
1431                        cindex &= cindex - 1;
1432
1433                        /* grab pointer for next child node */
1434                        cptr = &pn->tnode[cindex];
1435                }
1436        }
1437
1438found:
1439        /* this line carries forward the xor from earlier in the function */
1440        index = key ^ n->key;
1441
1442        /* Step 3: Process the leaf, if that fails fall back to backtracing */
1443        hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1444                struct fib_info *fi = fa->fa_info;
1445                int nhsel, err;
1446
1447                if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
1448                        if (index >= (1ul << fa->fa_slen))
1449                                continue;
1450                }
1451                if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1452                        continue;
1453                if (fi->fib_dead)
1454                        continue;
1455                if (fa->fa_info->fib_scope < flp->flowi4_scope)
1456                        continue;
1457                fib_alias_accessed(fa);
1458                err = fib_props[fa->fa_type].error;
1459                if (unlikely(err < 0)) {
1460out_reject:
1461#ifdef CONFIG_IP_FIB_TRIE_STATS
1462                        this_cpu_inc(stats->semantic_match_passed);
1463#endif
1464                        trace_fib_table_lookup(tb->tb_id, flp, NULL, err);
1465                        return err;
1466                }
1467                if (fi->fib_flags & RTNH_F_DEAD)
1468                        continue;
1469
1470                if (unlikely(fi->nh && nexthop_is_blackhole(fi->nh))) {
1471                        err = fib_props[RTN_BLACKHOLE].error;
1472                        goto out_reject;
1473                }
1474
1475                for (nhsel = 0; nhsel < fib_info_num_path(fi); nhsel++) {
1476                        struct fib_nh_common *nhc = fib_info_nhc(fi, nhsel);
1477
1478                        if (nhc->nhc_flags & RTNH_F_DEAD)
1479                                continue;
1480                        if (ip_ignore_linkdown(nhc->nhc_dev) &&
1481                            nhc->nhc_flags & RTNH_F_LINKDOWN &&
1482                            !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
1483                                continue;
1484                        if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) {
1485                                if (flp->flowi4_oif &&
1486                                    flp->flowi4_oif != nhc->nhc_oif)
1487                                        continue;
1488                        }
1489
1490                        if (!(fib_flags & FIB_LOOKUP_NOREF))
1491                                refcount_inc(&fi->fib_clntref);
1492
1493                        res->prefix = htonl(n->key);
1494                        res->prefixlen = KEYLENGTH - fa->fa_slen;
1495                        res->nh_sel = nhsel;
1496                        res->nhc = nhc;
1497                        res->type = fa->fa_type;
1498                        res->scope = fi->fib_scope;
1499                        res->fi = fi;
1500                        res->table = tb;
1501                        res->fa_head = &n->leaf;
1502#ifdef CONFIG_IP_FIB_TRIE_STATS
1503                        this_cpu_inc(stats->semantic_match_passed);
1504#endif
1505                        trace_fib_table_lookup(tb->tb_id, flp, nhc, err);
1506
1507                        return err;
1508                }
1509        }
1510#ifdef CONFIG_IP_FIB_TRIE_STATS
1511        this_cpu_inc(stats->semantic_match_miss);
1512#endif
1513        goto backtrace;
1514}
1515EXPORT_SYMBOL_GPL(fib_table_lookup);
1516
1517static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1518                             struct key_vector *l, struct fib_alias *old)
1519{
1520        /* record the location of the previous list_info entry */
1521        struct hlist_node **pprev = old->fa_list.pprev;
1522        struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1523
1524        /* remove the fib_alias from the list */
1525        hlist_del_rcu(&old->fa_list);
1526
1527        /* if we emptied the list this leaf will be freed and we can sort
1528         * out parent suffix lengths as a part of trie_rebalance
1529         */
1530        if (hlist_empty(&l->leaf)) {
1531                if (tp->slen == l->slen)
1532                        node_pull_suffix(tp, tp->pos);
1533                put_child_root(tp, l->key, NULL);
1534                node_free(l);
1535                trie_rebalance(t, tp);
1536                return;
1537        }
1538
1539        /* only access fa if it is pointing at the last valid hlist_node */
1540        if (*pprev)
1541                return;
1542
1543        /* update the trie with the latest suffix length */
1544        l->slen = fa->fa_slen;
1545        node_pull_suffix(tp, fa->fa_slen);
1546}
1547
1548/* Caller must hold RTNL. */
1549int fib_table_delete(struct net *net, struct fib_table *tb,
1550                     struct fib_config *cfg, struct netlink_ext_ack *extack)
1551{
1552        struct trie *t = (struct trie *) tb->tb_data;
1553        struct fib_alias *fa, *fa_to_delete;
1554        struct key_vector *l, *tp;
1555        u8 plen = cfg->fc_dst_len;
1556        u8 slen = KEYLENGTH - plen;
1557        u8 tos = cfg->fc_tos;
1558        u32 key;
1559
1560        key = ntohl(cfg->fc_dst);
1561
1562        if (!fib_valid_key_len(key, plen, extack))
1563                return -EINVAL;
1564
1565        l = fib_find_node(t, &tp, key);
1566        if (!l)
1567                return -ESRCH;
1568
1569        fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
1570        if (!fa)
1571                return -ESRCH;
1572
1573        pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1574
1575        fa_to_delete = NULL;
1576        hlist_for_each_entry_from(fa, fa_list) {
1577                struct fib_info *fi = fa->fa_info;
1578
1579                if ((fa->fa_slen != slen) ||
1580                    (fa->tb_id != tb->tb_id) ||
1581                    (fa->fa_tos != tos))
1582                        break;
1583
1584                if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1585                    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1586                     fa->fa_info->fib_scope == cfg->fc_scope) &&
1587                    (!cfg->fc_prefsrc ||
1588                     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1589                    (!cfg->fc_protocol ||
1590                     fi->fib_protocol == cfg->fc_protocol) &&
1591                    fib_nh_match(cfg, fi, extack) == 0 &&
1592                    fib_metrics_match(cfg, fi)) {
1593                        fa_to_delete = fa;
1594                        break;
1595                }
1596        }
1597
1598        if (!fa_to_delete)
1599                return -ESRCH;
1600
1601        call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key, plen,
1602                                 fa_to_delete, extack);
1603        rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1604                  &cfg->fc_nlinfo, 0);
1605
1606        if (!plen)
1607                tb->tb_num_default--;
1608
1609        fib_remove_alias(t, tp, l, fa_to_delete);
1610
1611        if (fa_to_delete->fa_state & FA_S_ACCESSED)
1612                rt_cache_flush(cfg->fc_nlinfo.nl_net);
1613
1614        fib_release_info(fa_to_delete->fa_info);
1615        alias_free_mem_rcu(fa_to_delete);
1616        return 0;
1617}
1618
1619/* Scan for the next leaf starting at the provided key value */
1620static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1621{
1622        struct key_vector *pn, *n = *tn;
1623        unsigned long cindex;
1624
1625        /* this loop is meant to try and find the key in the trie */
1626        do {
1627                /* record parent and next child index */
1628                pn = n;
1629                cindex = (key > pn->key) ? get_index(key, pn) : 0;
1630
1631                if (cindex >> pn->bits)
1632                        break;
1633
1634                /* descend into the next child */
1635                n = get_child_rcu(pn, cindex++);
1636                if (!n)
1637                        break;
1638
1639                /* guarantee forward progress on the keys */
1640                if (IS_LEAF(n) && (n->key >= key))
1641                        goto found;
1642        } while (IS_TNODE(n));
1643
1644        /* this loop will search for the next leaf with a greater key */
1645        while (!IS_TRIE(pn)) {
1646                /* if we exhausted the parent node we will need to climb */
1647                if (cindex >= (1ul << pn->bits)) {
1648                        t_key pkey = pn->key;
1649
1650                        pn = node_parent_rcu(pn);
1651                        cindex = get_index(pkey, pn) + 1;
1652                        continue;
1653                }
1654
1655                /* grab the next available node */
1656                n = get_child_rcu(pn, cindex++);
1657                if (!n)
1658                        continue;
1659
1660                /* no need to compare keys since we bumped the index */
1661                if (IS_LEAF(n))
1662                        goto found;
1663
1664                /* Rescan start scanning in new node */
1665                pn = n;
1666                cindex = 0;
1667        }
1668
1669        *tn = pn;
1670        return NULL; /* Root of trie */
1671found:
1672        /* if we are at the limit for keys just return NULL for the tnode */
1673        *tn = pn;
1674        return n;
1675}
1676
1677static void fib_trie_free(struct fib_table *tb)
1678{
1679        struct trie *t = (struct trie *)tb->tb_data;
1680        struct key_vector *pn = t->kv;
1681        unsigned long cindex = 1;
1682        struct hlist_node *tmp;
1683        struct fib_alias *fa;
1684
1685        /* walk trie in reverse order and free everything */
1686        for (;;) {
1687                struct key_vector *n;
1688
1689                if (!(cindex--)) {
1690                        t_key pkey = pn->key;
1691
1692                        if (IS_TRIE(pn))
1693                                break;
1694
1695                        n = pn;
1696                        pn = node_parent(pn);
1697
1698                        /* drop emptied tnode */
1699                        put_child_root(pn, n->key, NULL);
1700                        node_free(n);
1701
1702                        cindex = get_index(pkey, pn);
1703
1704                        continue;
1705                }
1706
1707                /* grab the next available node */
1708                n = get_child(pn, cindex);
1709                if (!n)
1710                        continue;
1711
1712                if (IS_TNODE(n)) {
1713                        /* record pn and cindex for leaf walking */
1714                        pn = n;
1715                        cindex = 1ul << n->bits;
1716
1717                        continue;
1718                }
1719
1720                hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1721                        hlist_del_rcu(&fa->fa_list);
1722                        alias_free_mem_rcu(fa);
1723                }
1724
1725                put_child_root(pn, n->key, NULL);
1726                node_free(n);
1727        }
1728
1729#ifdef CONFIG_IP_FIB_TRIE_STATS
1730        free_percpu(t->stats);
1731#endif
1732        kfree(tb);
1733}
1734
1735struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1736{
1737        struct trie *ot = (struct trie *)oldtb->tb_data;
1738        struct key_vector *l, *tp = ot->kv;
1739        struct fib_table *local_tb;
1740        struct fib_alias *fa;
1741        struct trie *lt;
1742        t_key key = 0;
1743
1744        if (oldtb->tb_data == oldtb->__data)
1745                return oldtb;
1746
1747        local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1748        if (!local_tb)
1749                return NULL;
1750
1751        lt = (struct trie *)local_tb->tb_data;
1752
1753        while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1754                struct key_vector *local_l = NULL, *local_tp;
1755
1756                hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1757                        struct fib_alias *new_fa;
1758
1759                        if (local_tb->tb_id != fa->tb_id)
1760                                continue;
1761
1762                        /* clone fa for new local table */
1763                        new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1764                        if (!new_fa)
1765                                goto out;
1766
1767                        memcpy(new_fa, fa, sizeof(*fa));
1768
1769                        /* insert clone into table */
1770                        if (!local_l)
1771                                local_l = fib_find_node(lt, &local_tp, l->key);
1772
1773                        if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1774                                             NULL, l->key)) {
1775                                kmem_cache_free(fn_alias_kmem, new_fa);
1776                                goto out;
1777                        }
1778                }
1779
1780                /* stop loop if key wrapped back to 0 */
1781                key = l->key + 1;
1782                if (key < l->key)
1783                        break;
1784        }
1785
1786        return local_tb;
1787out:
1788        fib_trie_free(local_tb);
1789
1790        return NULL;
1791}
1792
1793/* Caller must hold RTNL */
1794void fib_table_flush_external(struct fib_table *tb)
1795{
1796        struct trie *t = (struct trie *)tb->tb_data;
1797        struct key_vector *pn = t->kv;
1798        unsigned long cindex = 1;
1799        struct hlist_node *tmp;
1800        struct fib_alias *fa;
1801
1802        /* walk trie in reverse order */
1803        for (;;) {
1804                unsigned char slen = 0;
1805                struct key_vector *n;
1806
1807                if (!(cindex--)) {
1808                        t_key pkey = pn->key;
1809
1810                        /* cannot resize the trie vector */
1811                        if (IS_TRIE(pn))
1812                                break;
1813
1814                        /* update the suffix to address pulled leaves */
1815                        if (pn->slen > pn->pos)
1816                                update_suffix(pn);
1817
1818                        /* resize completed node */
1819                        pn = resize(t, pn);
1820                        cindex = get_index(pkey, pn);
1821
1822                        continue;
1823                }
1824
1825                /* grab the next available node */
1826                n = get_child(pn, cindex);
1827                if (!n)
1828                        continue;
1829
1830                if (IS_TNODE(n)) {
1831                        /* record pn and cindex for leaf walking */
1832                        pn = n;
1833                        cindex = 1ul << n->bits;
1834
1835                        continue;
1836                }
1837
1838                hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1839                        /* if alias was cloned to local then we just
1840                         * need to remove the local copy from main
1841                         */
1842                        if (tb->tb_id != fa->tb_id) {
1843                                hlist_del_rcu(&fa->fa_list);
1844                                alias_free_mem_rcu(fa);
1845                                continue;
1846                        }
1847
1848                        /* record local slen */
1849                        slen = fa->fa_slen;
1850                }
1851
1852                /* update leaf slen */
1853                n->slen = slen;
1854
1855                if (hlist_empty(&n->leaf)) {
1856                        put_child_root(pn, n->key, NULL);
1857                        node_free(n);
1858                }
1859        }
1860}
1861
1862/* Caller must hold RTNL. */
1863int fib_table_flush(struct net *net, struct fib_table *tb, bool flush_all)
1864{
1865        struct trie *t = (struct trie *)tb->tb_data;
1866        struct key_vector *pn = t->kv;
1867        unsigned long cindex = 1;
1868        struct hlist_node *tmp;
1869        struct fib_alias *fa;
1870        int found = 0;
1871
1872        /* walk trie in reverse order */
1873        for (;;) {
1874                unsigned char slen = 0;
1875                struct key_vector *n;
1876
1877                if (!(cindex--)) {
1878                        t_key pkey = pn->key;
1879
1880                        /* cannot resize the trie vector */
1881                        if (IS_TRIE(pn))
1882                                break;
1883
1884                        /* update the suffix to address pulled leaves */
1885                        if (pn->slen > pn->pos)
1886                                update_suffix(pn);
1887
1888                        /* resize completed node */
1889                        pn = resize(t, pn);
1890                        cindex = get_index(pkey, pn);
1891
1892                        continue;
1893                }
1894
1895                /* grab the next available node */
1896                n = get_child(pn, cindex);
1897                if (!n)
1898                        continue;
1899
1900                if (IS_TNODE(n)) {
1901                        /* record pn and cindex for leaf walking */
1902                        pn = n;
1903                        cindex = 1ul << n->bits;
1904
1905                        continue;
1906                }
1907
1908                hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1909                        struct fib_info *fi = fa->fa_info;
1910
1911                        if (!fi || tb->tb_id != fa->tb_id ||
1912                            (!(fi->fib_flags & RTNH_F_DEAD) &&
1913                             !fib_props[fa->fa_type].error)) {
1914                                slen = fa->fa_slen;
1915                                continue;
1916                        }
1917
1918                        /* Do not flush error routes if network namespace is
1919                         * not being dismantled
1920                         */
1921                        if (!flush_all && fib_props[fa->fa_type].error) {
1922                                slen = fa->fa_slen;
1923                                continue;
1924                        }
1925
1926                        call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL,
1927                                                 n->key,
1928                                                 KEYLENGTH - fa->fa_slen, fa,
1929                                                 NULL);
1930                        hlist_del_rcu(&fa->fa_list);
1931                        fib_release_info(fa->fa_info);
1932                        alias_free_mem_rcu(fa);
1933                        found++;
1934                }
1935
1936                /* update leaf slen */
1937                n->slen = slen;
1938
1939                if (hlist_empty(&n->leaf)) {
1940                        put_child_root(pn, n->key, NULL);
1941                        node_free(n);
1942                }
1943        }
1944
1945        pr_debug("trie_flush found=%d\n", found);
1946        return found;
1947}
1948
1949/* derived from fib_trie_free */
1950static void __fib_info_notify_update(struct net *net, struct fib_table *tb,
1951                                     struct nl_info *info)
1952{
1953        struct trie *t = (struct trie *)tb->tb_data;
1954        struct key_vector *pn = t->kv;
1955        unsigned long cindex = 1;
1956        struct fib_alias *fa;
1957
1958        for (;;) {
1959                struct key_vector *n;
1960
1961                if (!(cindex--)) {
1962                        t_key pkey = pn->key;
1963
1964                        if (IS_TRIE(pn))
1965                                break;
1966
1967                        pn = node_parent(pn);
1968                        cindex = get_index(pkey, pn);
1969                        continue;
1970                }
1971
1972                /* grab the next available node */
1973                n = get_child(pn, cindex);
1974                if (!n)
1975                        continue;
1976
1977                if (IS_TNODE(n)) {
1978                        /* record pn and cindex for leaf walking */
1979                        pn = n;
1980                        cindex = 1ul << n->bits;
1981
1982                        continue;
1983                }
1984
1985                hlist_for_each_entry(fa, &n->leaf, fa_list) {
1986                        struct fib_info *fi = fa->fa_info;
1987
1988                        if (!fi || !fi->nh_updated || fa->tb_id != tb->tb_id)
1989                                continue;
1990
1991                        rtmsg_fib(RTM_NEWROUTE, htonl(n->key), fa,
1992                                  KEYLENGTH - fa->fa_slen, tb->tb_id,
1993                                  info, NLM_F_REPLACE);
1994
1995                        /* call_fib_entry_notifiers will be removed when
1996                         * in-kernel notifier is implemented and supported
1997                         * for nexthop objects
1998                         */
1999                        call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE,
2000                                                 n->key,
2001                                                 KEYLENGTH - fa->fa_slen, fa,
2002                                                 NULL);
2003                }
2004        }
2005}
2006
2007void fib_info_notify_update(struct net *net, struct nl_info *info)
2008{
2009        unsigned int h;
2010
2011        for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2012                struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2013                struct fib_table *tb;
2014
2015                hlist_for_each_entry_rcu(tb, head, tb_hlist)
2016                        __fib_info_notify_update(net, tb, info);
2017        }
2018}
2019
2020static int fib_leaf_notify(struct key_vector *l, struct fib_table *tb,
2021                           struct notifier_block *nb,
2022                           struct netlink_ext_ack *extack)
2023{
2024        struct fib_alias *fa;
2025        int err;
2026
2027        hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2028                struct fib_info *fi = fa->fa_info;
2029
2030                if (!fi)
2031                        continue;
2032
2033                /* local and main table can share the same trie,
2034                 * so don't notify twice for the same entry.
2035                 */
2036                if (tb->tb_id != fa->tb_id)
2037                        continue;
2038
2039                err = call_fib_entry_notifier(nb, FIB_EVENT_ENTRY_ADD, l->key,
2040                                              KEYLENGTH - fa->fa_slen,
2041                                              fa, extack);
2042                if (err)
2043                        return err;
2044        }
2045        return 0;
2046}
2047
2048static int fib_table_notify(struct fib_table *tb, struct notifier_block *nb,
2049                            struct netlink_ext_ack *extack)
2050{
2051        struct trie *t = (struct trie *)tb->tb_data;
2052        struct key_vector *l, *tp = t->kv;
2053        t_key key = 0;
2054        int err;
2055
2056        while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2057                err = fib_leaf_notify(l, tb, nb, extack);
2058                if (err)
2059                        return err;
2060
2061                key = l->key + 1;
2062                /* stop in case of wrap around */
2063                if (key < l->key)
2064                        break;
2065        }
2066        return 0;
2067}
2068
2069int fib_notify(struct net *net, struct notifier_block *nb,
2070               struct netlink_ext_ack *extack)
2071{
2072        unsigned int h;
2073        int err;
2074
2075        for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2076                struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2077                struct fib_table *tb;
2078
2079                hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2080                        err = fib_table_notify(tb, nb, extack);
2081                        if (err)
2082                                return err;
2083                }
2084        }
2085        return 0;
2086}
2087
2088static void __trie_free_rcu(struct rcu_head *head)
2089{
2090        struct fib_table *tb = container_of(head, struct fib_table, rcu);
2091#ifdef CONFIG_IP_FIB_TRIE_STATS
2092        struct trie *t = (struct trie *)tb->tb_data;
2093
2094        if (tb->tb_data == tb->__data)
2095                free_percpu(t->stats);
2096#endif /* CONFIG_IP_FIB_TRIE_STATS */
2097        kfree(tb);
2098}
2099
2100void fib_free_table(struct fib_table *tb)
2101{
2102        call_rcu(&tb->rcu, __trie_free_rcu);
2103}
2104
2105static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
2106                             struct sk_buff *skb, struct netlink_callback *cb,
2107                             struct fib_dump_filter *filter)
2108{
2109        unsigned int flags = NLM_F_MULTI;
2110        __be32 xkey = htonl(l->key);
2111        int i, s_i, i_fa, s_fa, err;
2112        struct fib_alias *fa;
2113
2114        if (filter->filter_set ||
2115            !filter->dump_exceptions || !filter->dump_routes)
2116                flags |= NLM_F_DUMP_FILTERED;
2117
2118        s_i = cb->args[4];
2119        s_fa = cb->args[5];
2120        i = 0;
2121
2122        /* rcu_read_lock is hold by caller */
2123        hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2124                struct fib_info *fi = fa->fa_info;
2125
2126                if (i < s_i)
2127                        goto next;
2128
2129                i_fa = 0;
2130
2131                if (tb->tb_id != fa->tb_id)
2132                        goto next;
2133
2134                if (filter->filter_set) {
2135                        if (filter->rt_type && fa->fa_type != filter->rt_type)
2136                                goto next;
2137
2138                        if ((filter->protocol &&
2139                             fi->fib_protocol != filter->protocol))
2140                                goto next;
2141
2142                        if (filter->dev &&
2143                            !fib_info_nh_uses_dev(fi, filter->dev))
2144                                goto next;
2145                }
2146
2147                if (filter->dump_routes) {
2148                        if (!s_fa) {
2149                                err = fib_dump_info(skb,
2150                                                    NETLINK_CB(cb->skb).portid,
2151                                                    cb->nlh->nlmsg_seq,
2152                                                    RTM_NEWROUTE,
2153                                                    tb->tb_id, fa->fa_type,
2154                                                    xkey,
2155                                                    KEYLENGTH - fa->fa_slen,
2156                                                    fa->fa_tos, fi, flags);
2157                                if (err < 0)
2158                                        goto stop;
2159                        }
2160
2161                        i_fa++;
2162                }
2163
2164                if (filter->dump_exceptions) {
2165                        err = fib_dump_info_fnhe(skb, cb, tb->tb_id, fi,
2166                                                 &i_fa, s_fa, flags);
2167                        if (err < 0)
2168                                goto stop;
2169                }
2170
2171next:
2172                i++;
2173        }
2174
2175        cb->args[4] = i;
2176        return skb->len;
2177
2178stop:
2179        cb->args[4] = i;
2180        cb->args[5] = i_fa;
2181        return err;
2182}
2183
2184/* rcu_read_lock needs to be hold by caller from readside */
2185int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
2186                   struct netlink_callback *cb, struct fib_dump_filter *filter)
2187{
2188        struct trie *t = (struct trie *)tb->tb_data;
2189        struct key_vector *l, *tp = t->kv;
2190        /* Dump starting at last key.
2191         * Note: 0.0.0.0/0 (ie default) is first key.
2192         */
2193        int count = cb->args[2];
2194        t_key key = cb->args[3];
2195
2196        /* First time here, count and key are both always 0. Count > 0
2197         * and key == 0 means the dump has wrapped around and we are done.
2198         */
2199        if (count && !key)
2200                return skb->len;
2201
2202        while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2203                int err;
2204
2205                err = fn_trie_dump_leaf(l, tb, skb, cb, filter);
2206                if (err < 0) {
2207                        cb->args[3] = key;
2208                        cb->args[2] = count;
2209                        return err;
2210                }
2211
2212                ++count;
2213                key = l->key + 1;
2214
2215                memset(&cb->args[4], 0,
2216                       sizeof(cb->args) - 4*sizeof(cb->args[0]));
2217
2218                /* stop loop if key wrapped back to 0 */
2219                if (key < l->key)
2220                        break;
2221        }
2222
2223        cb->args[3] = key;
2224        cb->args[2] = count;
2225
2226        return skb->len;
2227}
2228
2229void __init fib_trie_init(void)
2230{
2231        fn_alias_kmem = kmem_cache_create("ip_fib_alias",
2232                                          sizeof(struct fib_alias),
2233                                          0, SLAB_PANIC, NULL);
2234
2235        trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
2236                                           LEAF_SIZE,
2237                                           0, SLAB_PANIC, NULL);
2238}
2239
2240struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
2241{
2242        struct fib_table *tb;
2243        struct trie *t;
2244        size_t sz = sizeof(*tb);
2245
2246        if (!alias)
2247                sz += sizeof(struct trie);
2248
2249        tb = kzalloc(sz, GFP_KERNEL);
2250        if (!tb)
2251                return NULL;
2252
2253        tb->tb_id = id;
2254        tb->tb_num_default = 0;
2255        tb->tb_data = (alias ? alias->__data : tb->__data);
2256
2257        if (alias)
2258                return tb;
2259
2260        t = (struct trie *) tb->tb_data;
2261        t->kv[0].pos = KEYLENGTH;
2262        t->kv[0].slen = KEYLENGTH;
2263#ifdef CONFIG_IP_FIB_TRIE_STATS
2264        t->stats = alloc_percpu(struct trie_use_stats);
2265        if (!t->stats) {
2266                kfree(tb);
2267                tb = NULL;
2268        }
2269#endif
2270
2271        return tb;
2272}
2273
2274#ifdef CONFIG_PROC_FS
2275/* Depth first Trie walk iterator */
2276struct fib_trie_iter {
2277        struct seq_net_private p;
2278        struct fib_table *tb;
2279        struct key_vector *tnode;
2280        unsigned int index;
2281        unsigned int depth;
2282};
2283
2284static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2285{
2286        unsigned long cindex = iter->index;
2287        struct key_vector *pn = iter->tnode;
2288        t_key pkey;
2289
2290        pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2291                 iter->tnode, iter->index, iter->depth);
2292
2293        while (!IS_TRIE(pn)) {
2294                while (cindex < child_length(pn)) {
2295                        struct key_vector *n = get_child_rcu(pn, cindex++);
2296
2297                        if (!n)
2298                                continue;
2299
2300                        if (IS_LEAF(n)) {
2301                                iter->tnode = pn;
2302                                iter->index = cindex;
2303                        } else {
2304                                /* push down one level */
2305                                iter->tnode = n;
2306                                iter->index = 0;
2307                                ++iter->depth;
2308                        }
2309
2310                        return n;
2311                }
2312
2313                /* Current node exhausted, pop back up */
2314                pkey = pn->key;
2315                pn = node_parent_rcu(pn);
2316                cindex = get_index(pkey, pn) + 1;
2317                --iter->depth;
2318        }
2319
2320        /* record root node so further searches know we are done */
2321        iter->tnode = pn;
2322        iter->index = 0;
2323
2324        return NULL;
2325}
2326
2327static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2328                                             struct trie *t)
2329{
2330        struct key_vector *n, *pn;
2331
2332        if (!t)
2333                return NULL;
2334
2335        pn = t->kv;
2336        n = rcu_dereference(pn->tnode[0]);
2337        if (!n)
2338                return NULL;
2339
2340        if (IS_TNODE(n)) {
2341                iter->tnode = n;
2342                iter->index = 0;
2343                iter->depth = 1;
2344        } else {
2345                iter->tnode = pn;
2346                iter->index = 0;
2347                iter->depth = 0;
2348        }
2349
2350        return n;
2351}
2352
2353static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2354{
2355        struct key_vector *n;
2356        struct fib_trie_iter iter;
2357
2358        memset(s, 0, sizeof(*s));
2359
2360        rcu_read_lock();
2361        for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2362                if (IS_LEAF(n)) {
2363                        struct fib_alias *fa;
2364
2365                        s->leaves++;
2366                        s->totdepth += iter.depth;
2367                        if (iter.depth > s->maxdepth)
2368                                s->maxdepth = iter.depth;
2369
2370                        hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2371                                ++s->prefixes;
2372                } else {
2373                        s->tnodes++;
2374                        if (n->bits < MAX_STAT_DEPTH)
2375                                s->nodesizes[n->bits]++;
2376                        s->nullpointers += tn_info(n)->empty_children;
2377                }
2378        }
2379        rcu_read_unlock();
2380}
2381
2382/*
2383 *      This outputs /proc/net/fib_triestats
2384 */
2385static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2386{
2387        unsigned int i, max, pointers, bytes, avdepth;
2388
2389        if (stat->leaves)
2390                avdepth = stat->totdepth*100 / stat->leaves;
2391        else
2392                avdepth = 0;
2393
2394        seq_printf(seq, "\tAver depth:     %u.%02d\n",
2395                   avdepth / 100, avdepth % 100);
2396        seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
2397
2398        seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
2399        bytes = LEAF_SIZE * stat->leaves;
2400
2401        seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
2402        bytes += sizeof(struct fib_alias) * stat->prefixes;
2403
2404        seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2405        bytes += TNODE_SIZE(0) * stat->tnodes;
2406
2407        max = MAX_STAT_DEPTH;
2408        while (max > 0 && stat->nodesizes[max-1] == 0)
2409                max--;
2410
2411        pointers = 0;
2412        for (i = 1; i < max; i++)
2413                if (stat->nodesizes[i] != 0) {
2414                        seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2415                        pointers += (1<<i) * stat->nodesizes[i];
2416                }
2417        seq_putc(seq, '\n');
2418        seq_printf(seq, "\tPointers: %u\n", pointers);
2419
2420        bytes += sizeof(struct key_vector *) * pointers;
2421        seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2422        seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2423}
2424
2425#ifdef CONFIG_IP_FIB_TRIE_STATS
2426static void trie_show_usage(struct seq_file *seq,
2427                            const struct trie_use_stats __percpu *stats)
2428{
2429        struct trie_use_stats s = { 0 };
2430        int cpu;
2431
2432        /* loop through all of the CPUs and gather up the stats */
2433        for_each_possible_cpu(cpu) {
2434                const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2435
2436                s.gets += pcpu->gets;
2437                s.backtrack += pcpu->backtrack;
2438                s.semantic_match_passed += pcpu->semantic_match_passed;
2439                s.semantic_match_miss += pcpu->semantic_match_miss;
2440                s.null_node_hit += pcpu->null_node_hit;
2441                s.resize_node_skipped += pcpu->resize_node_skipped;
2442        }
2443
2444        seq_printf(seq, "\nCounters:\n---------\n");
2445        seq_printf(seq, "gets = %u\n", s.gets);
2446        seq_printf(seq, "backtracks = %u\n", s.backtrack);
2447        seq_printf(seq, "semantic match passed = %u\n",
2448                   s.semantic_match_passed);
2449        seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2450        seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2451        seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2452}
2453#endif /*  CONFIG_IP_FIB_TRIE_STATS */
2454
2455static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2456{
2457        if (tb->tb_id == RT_TABLE_LOCAL)
2458                seq_puts(seq, "Local:\n");
2459        else if (tb->tb_id == RT_TABLE_MAIN)
2460                seq_puts(seq, "Main:\n");
2461        else
2462                seq_printf(seq, "Id %d:\n", tb->tb_id);
2463}
2464
2465
2466static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2467{
2468        struct net *net = (struct net *)seq->private;
2469        unsigned int h;
2470
2471        seq_printf(seq,
2472                   "Basic info: size of leaf:"
2473                   " %zd bytes, size of tnode: %zd bytes.\n",
2474                   LEAF_SIZE, TNODE_SIZE(0));
2475
2476        for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2477                struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2478                struct fib_table *tb;
2479
2480                hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2481                        struct trie *t = (struct trie *) tb->tb_data;
2482                        struct trie_stat stat;
2483
2484                        if (!t)
2485                                continue;
2486
2487                        fib_table_print(seq, tb);
2488
2489                        trie_collect_stats(t, &stat);
2490                        trie_show_stats(seq, &stat);
2491#ifdef CONFIG_IP_FIB_TRIE_STATS
2492                        trie_show_usage(seq, t->stats);
2493#endif
2494                }
2495        }
2496
2497        return 0;
2498}
2499
2500static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2501{
2502        struct fib_trie_iter *iter = seq->private;
2503        struct net *net = seq_file_net(seq);
2504        loff_t idx = 0;
2505        unsigned int h;
2506
2507        for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2508                struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2509                struct fib_table *tb;
2510
2511                hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2512                        struct key_vector *n;
2513
2514                        for (n = fib_trie_get_first(iter,
2515                                                    (struct trie *) tb->tb_data);
2516                             n; n = fib_trie_get_next(iter))
2517                                if (pos == idx++) {
2518                                        iter->tb = tb;
2519                                        return n;
2520                                }
2521                }
2522        }
2523
2524        return NULL;
2525}
2526
2527static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2528        __acquires(RCU)
2529{
2530        rcu_read_lock();
2531        return fib_trie_get_idx(seq, *pos);
2532}
2533
2534static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2535{
2536        struct fib_trie_iter *iter = seq->private;
2537        struct net *net = seq_file_net(seq);
2538        struct fib_table *tb = iter->tb;
2539        struct hlist_node *tb_node;
2540        unsigned int h;
2541        struct key_vector *n;
2542
2543        ++*pos;
2544        /* next node in same table */
2545        n = fib_trie_get_next(iter);
2546        if (n)
2547                return n;
2548
2549        /* walk rest of this hash chain */
2550        h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2551        while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2552                tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2553                n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2554                if (n)
2555                        goto found;
2556        }
2557
2558        /* new hash chain */
2559        while (++h < FIB_TABLE_HASHSZ) {
2560                struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2561                hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2562                        n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2563                        if (n)
2564                                goto found;
2565                }
2566        }
2567        return NULL;
2568
2569found:
2570        iter->tb = tb;
2571        return n;
2572}
2573
2574static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2575        __releases(RCU)
2576{
2577        rcu_read_unlock();
2578}
2579
2580static void seq_indent(struct seq_file *seq, int n)
2581{
2582        while (n-- > 0)
2583                seq_puts(seq, "   ");
2584}
2585
2586static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2587{
2588        switch (s) {
2589        case RT_SCOPE_UNIVERSE: return "universe";
2590        case RT_SCOPE_SITE:     return "site";
2591        case RT_SCOPE_LINK:     return "link";
2592        case RT_SCOPE_HOST:     return "host";
2593        case RT_SCOPE_NOWHERE:  return "nowhere";
2594        default:
2595                snprintf(buf, len, "scope=%d", s);
2596                return buf;
2597        }
2598}
2599
2600static const char *const rtn_type_names[__RTN_MAX] = {
2601        [RTN_UNSPEC] = "UNSPEC",
2602        [RTN_UNICAST] = "UNICAST",
2603        [RTN_LOCAL] = "LOCAL",
2604        [RTN_BROADCAST] = "BROADCAST",
2605        [RTN_ANYCAST] = "ANYCAST",
2606        [RTN_MULTICAST] = "MULTICAST",
2607        [RTN_BLACKHOLE] = "BLACKHOLE",
2608        [RTN_UNREACHABLE] = "UNREACHABLE",
2609        [RTN_PROHIBIT] = "PROHIBIT",
2610        [RTN_THROW] = "THROW",
2611        [RTN_NAT] = "NAT",
2612        [RTN_XRESOLVE] = "XRESOLVE",
2613};
2614
2615static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2616{
2617        if (t < __RTN_MAX && rtn_type_names[t])
2618                return rtn_type_names[t];
2619        snprintf(buf, len, "type %u", t);
2620        return buf;
2621}
2622
2623/* Pretty print the trie */
2624static int fib_trie_seq_show(struct seq_file *seq, void *v)
2625{
2626        const struct fib_trie_iter *iter = seq->private;
2627        struct key_vector *n = v;
2628
2629        if (IS_TRIE(node_parent_rcu(n)))
2630                fib_table_print(seq, iter->tb);
2631
2632        if (IS_TNODE(n)) {
2633                __be32 prf = htonl(n->key);
2634
2635                seq_indent(seq, iter->depth-1);
2636                seq_printf(seq, "  +-- %pI4/%zu %u %u %u\n",
2637                           &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2638                           tn_info(n)->full_children,
2639                           tn_info(n)->empty_children);
2640        } else {
2641                __be32 val = htonl(n->key);
2642                struct fib_alias *fa;
2643
2644                seq_indent(seq, iter->depth);
2645                seq_printf(seq, "  |-- %pI4\n", &val);
2646
2647                hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2648                        char buf1[32], buf2[32];
2649
2650                        seq_indent(seq, iter->depth + 1);
2651                        seq_printf(seq, "  /%zu %s %s",
2652                                   KEYLENGTH - fa->fa_slen,
2653                                   rtn_scope(buf1, sizeof(buf1),
2654                                             fa->fa_info->fib_scope),
2655                                   rtn_type(buf2, sizeof(buf2),
2656                                            fa->fa_type));
2657                        if (fa->fa_tos)
2658                                seq_printf(seq, " tos=%d", fa->fa_tos);
2659                        seq_putc(seq, '\n');
2660                }
2661        }
2662
2663        return 0;
2664}
2665
2666static const struct seq_operations fib_trie_seq_ops = {
2667        .start  = fib_trie_seq_start,
2668        .next   = fib_trie_seq_next,
2669        .stop   = fib_trie_seq_stop,
2670        .show   = fib_trie_seq_show,
2671};
2672
2673struct fib_route_iter {
2674        struct seq_net_private p;
2675        struct fib_table *main_tb;
2676        struct key_vector *tnode;
2677        loff_t  pos;
2678        t_key   key;
2679};
2680
2681static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2682                                            loff_t pos)
2683{
2684        struct key_vector *l, **tp = &iter->tnode;
2685        t_key key;
2686
2687        /* use cached location of previously found key */
2688        if (iter->pos > 0 && pos >= iter->pos) {
2689                key = iter->key;
2690        } else {
2691                iter->pos = 1;
2692                key = 0;
2693        }
2694
2695        pos -= iter->pos;
2696
2697        while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) {
2698                key = l->key + 1;
2699                iter->pos++;
2700                l = NULL;
2701
2702                /* handle unlikely case of a key wrap */
2703                if (!key)
2704                        break;
2705        }
2706
2707        if (l)
2708                iter->key = l->key;     /* remember it */
2709        else
2710                iter->pos = 0;          /* forget it */
2711
2712        return l;
2713}
2714
2715static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2716        __acquires(RCU)
2717{
2718        struct fib_route_iter *iter = seq->private;
2719        struct fib_table *tb;
2720        struct trie *t;
2721
2722        rcu_read_lock();
2723
2724        tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2725        if (!tb)
2726                return NULL;
2727
2728        iter->main_tb = tb;
2729        t = (struct trie *)tb->tb_data;
2730        iter->tnode = t->kv;
2731
2732        if (*pos != 0)
2733                return fib_route_get_idx(iter, *pos);
2734
2735        iter->pos = 0;
2736        iter->key = KEY_MAX;
2737
2738        return SEQ_START_TOKEN;
2739}
2740
2741static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2742{
2743        struct fib_route_iter *iter = seq->private;
2744        struct key_vector *l = NULL;
2745        t_key key = iter->key + 1;
2746
2747        ++*pos;
2748
2749        /* only allow key of 0 for start of sequence */
2750        if ((v == SEQ_START_TOKEN) || key)
2751                l = leaf_walk_rcu(&iter->tnode, key);
2752
2753        if (l) {
2754                iter->key = l->key;
2755                iter->pos++;
2756        } else {
2757                iter->pos = 0;
2758        }
2759
2760        return l;
2761}
2762
2763static void fib_route_seq_stop(struct seq_file *seq, void *v)
2764        __releases(RCU)
2765{
2766        rcu_read_unlock();
2767}
2768
2769static unsigned int fib_flag_trans(int type, __be32 mask, struct fib_info *fi)
2770{
2771        unsigned int flags = 0;
2772
2773        if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2774                flags = RTF_REJECT;
2775        if (fi) {
2776                const struct fib_nh_common *nhc = fib_info_nhc(fi, 0);
2777
2778                if (nhc->nhc_gw.ipv4)
2779                        flags |= RTF_GATEWAY;
2780        }
2781        if (mask == htonl(0xFFFFFFFF))
2782                flags |= RTF_HOST;
2783        flags |= RTF_UP;
2784        return flags;
2785}
2786
2787/*
2788 *      This outputs /proc/net/route.
2789 *      The format of the file is not supposed to be changed
2790 *      and needs to be same as fib_hash output to avoid breaking
2791 *      legacy utilities
2792 */
2793static int fib_route_seq_show(struct seq_file *seq, void *v)
2794{
2795        struct fib_route_iter *iter = seq->private;
2796        struct fib_table *tb = iter->main_tb;
2797        struct fib_alias *fa;
2798        struct key_vector *l = v;
2799        __be32 prefix;
2800
2801        if (v == SEQ_START_TOKEN) {
2802                seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2803                           "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2804                           "\tWindow\tIRTT");
2805                return 0;
2806        }
2807
2808        prefix = htonl(l->key);
2809
2810        hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2811                struct fib_info *fi = fa->fa_info;
2812                __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2813                unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2814
2815                if ((fa->fa_type == RTN_BROADCAST) ||
2816                    (fa->fa_type == RTN_MULTICAST))
2817                        continue;
2818
2819                if (fa->tb_id != tb->tb_id)
2820                        continue;
2821
2822                seq_setwidth(seq, 127);
2823
2824                if (fi) {
2825                        struct fib_nh_common *nhc = fib_info_nhc(fi, 0);
2826                        __be32 gw = 0;
2827
2828                        if (nhc->nhc_gw_family == AF_INET)
2829                                gw = nhc->nhc_gw.ipv4;
2830
2831                        seq_printf(seq,
2832                                   "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2833                                   "%d\t%08X\t%d\t%u\t%u",
2834                                   nhc->nhc_dev ? nhc->nhc_dev->name : "*",
2835                                   prefix, gw, flags, 0, 0,
2836                                   fi->fib_priority,
2837                                   mask,
2838                                   (fi->fib_advmss ?
2839                                    fi->fib_advmss + 40 : 0),
2840                                   fi->fib_window,
2841                                   fi->fib_rtt >> 3);
2842                } else {
2843                        seq_printf(seq,
2844                                   "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2845                                   "%d\t%08X\t%d\t%u\t%u",
2846                                   prefix, 0, flags, 0, 0, 0,
2847                                   mask, 0, 0, 0);
2848                }
2849                seq_pad(seq, '\n');
2850        }
2851
2852        return 0;
2853}
2854
2855static const struct seq_operations fib_route_seq_ops = {
2856        .start  = fib_route_seq_start,
2857        .next   = fib_route_seq_next,
2858        .stop   = fib_route_seq_stop,
2859        .show   = fib_route_seq_show,
2860};
2861
2862int __net_init fib_proc_init(struct net *net)
2863{
2864        if (!proc_create_net("fib_trie", 0444, net->proc_net, &fib_trie_seq_ops,
2865                        sizeof(struct fib_trie_iter)))
2866                goto out1;
2867
2868        if (!proc_create_net_single("fib_triestat", 0444, net->proc_net,
2869                        fib_triestat_seq_show, NULL))
2870                goto out2;
2871
2872        if (!proc_create_net("route", 0444, net->proc_net, &fib_route_seq_ops,
2873                        sizeof(struct fib_route_iter)))
2874                goto out3;
2875
2876        return 0;
2877
2878out3:
2879        remove_proc_entry("fib_triestat", net->proc_net);
2880out2:
2881        remove_proc_entry("fib_trie", net->proc_net);
2882out1:
2883        return -ENOMEM;
2884}
2885
2886void __net_exit fib_proc_exit(struct net *net)
2887{
2888        remove_proc_entry("fib_trie", net->proc_net);
2889        remove_proc_entry("fib_triestat", net->proc_net);
2890        remove_proc_entry("route", net->proc_net);
2891}
2892
2893#endif /* CONFIG_PROC_FS */
2894