linux/net/openvswitch/actions.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (c) 2007-2017 Nicira, Inc.
   4 */
   5
   6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   7
   8#include <linux/skbuff.h>
   9#include <linux/in.h>
  10#include <linux/ip.h>
  11#include <linux/openvswitch.h>
  12#include <linux/netfilter_ipv6.h>
  13#include <linux/sctp.h>
  14#include <linux/tcp.h>
  15#include <linux/udp.h>
  16#include <linux/in6.h>
  17#include <linux/if_arp.h>
  18#include <linux/if_vlan.h>
  19
  20#include <net/dst.h>
  21#include <net/ip.h>
  22#include <net/ipv6.h>
  23#include <net/ip6_fib.h>
  24#include <net/checksum.h>
  25#include <net/dsfield.h>
  26#include <net/mpls.h>
  27#include <net/sctp/checksum.h>
  28
  29#include "datapath.h"
  30#include "flow.h"
  31#include "conntrack.h"
  32#include "vport.h"
  33#include "flow_netlink.h"
  34
  35struct deferred_action {
  36        struct sk_buff *skb;
  37        const struct nlattr *actions;
  38        int actions_len;
  39
  40        /* Store pkt_key clone when creating deferred action. */
  41        struct sw_flow_key pkt_key;
  42};
  43
  44#define MAX_L2_LEN      (VLAN_ETH_HLEN + 3 * MPLS_HLEN)
  45struct ovs_frag_data {
  46        unsigned long dst;
  47        struct vport *vport;
  48        struct ovs_skb_cb cb;
  49        __be16 inner_protocol;
  50        u16 network_offset;     /* valid only for MPLS */
  51        u16 vlan_tci;
  52        __be16 vlan_proto;
  53        unsigned int l2_len;
  54        u8 mac_proto;
  55        u8 l2_data[MAX_L2_LEN];
  56};
  57
  58static DEFINE_PER_CPU(struct ovs_frag_data, ovs_frag_data_storage);
  59
  60#define DEFERRED_ACTION_FIFO_SIZE 10
  61#define OVS_RECURSION_LIMIT 5
  62#define OVS_DEFERRED_ACTION_THRESHOLD (OVS_RECURSION_LIMIT - 2)
  63struct action_fifo {
  64        int head;
  65        int tail;
  66        /* Deferred action fifo queue storage. */
  67        struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE];
  68};
  69
  70struct action_flow_keys {
  71        struct sw_flow_key key[OVS_DEFERRED_ACTION_THRESHOLD];
  72};
  73
  74static struct action_fifo __percpu *action_fifos;
  75static struct action_flow_keys __percpu *flow_keys;
  76static DEFINE_PER_CPU(int, exec_actions_level);
  77
  78/* Make a clone of the 'key', using the pre-allocated percpu 'flow_keys'
  79 * space. Return NULL if out of key spaces.
  80 */
  81static struct sw_flow_key *clone_key(const struct sw_flow_key *key_)
  82{
  83        struct action_flow_keys *keys = this_cpu_ptr(flow_keys);
  84        int level = this_cpu_read(exec_actions_level);
  85        struct sw_flow_key *key = NULL;
  86
  87        if (level <= OVS_DEFERRED_ACTION_THRESHOLD) {
  88                key = &keys->key[level - 1];
  89                *key = *key_;
  90        }
  91
  92        return key;
  93}
  94
  95static void action_fifo_init(struct action_fifo *fifo)
  96{
  97        fifo->head = 0;
  98        fifo->tail = 0;
  99}
 100
 101static bool action_fifo_is_empty(const struct action_fifo *fifo)
 102{
 103        return (fifo->head == fifo->tail);
 104}
 105
 106static struct deferred_action *action_fifo_get(struct action_fifo *fifo)
 107{
 108        if (action_fifo_is_empty(fifo))
 109                return NULL;
 110
 111        return &fifo->fifo[fifo->tail++];
 112}
 113
 114static struct deferred_action *action_fifo_put(struct action_fifo *fifo)
 115{
 116        if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1)
 117                return NULL;
 118
 119        return &fifo->fifo[fifo->head++];
 120}
 121
 122/* Return true if fifo is not full */
 123static struct deferred_action *add_deferred_actions(struct sk_buff *skb,
 124                                    const struct sw_flow_key *key,
 125                                    const struct nlattr *actions,
 126                                    const int actions_len)
 127{
 128        struct action_fifo *fifo;
 129        struct deferred_action *da;
 130
 131        fifo = this_cpu_ptr(action_fifos);
 132        da = action_fifo_put(fifo);
 133        if (da) {
 134                da->skb = skb;
 135                da->actions = actions;
 136                da->actions_len = actions_len;
 137                da->pkt_key = *key;
 138        }
 139
 140        return da;
 141}
 142
 143static void invalidate_flow_key(struct sw_flow_key *key)
 144{
 145        key->mac_proto |= SW_FLOW_KEY_INVALID;
 146}
 147
 148static bool is_flow_key_valid(const struct sw_flow_key *key)
 149{
 150        return !(key->mac_proto & SW_FLOW_KEY_INVALID);
 151}
 152
 153static int clone_execute(struct datapath *dp, struct sk_buff *skb,
 154                         struct sw_flow_key *key,
 155                         u32 recirc_id,
 156                         const struct nlattr *actions, int len,
 157                         bool last, bool clone_flow_key);
 158
 159static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
 160                              struct sw_flow_key *key,
 161                              const struct nlattr *attr, int len);
 162
 163static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key,
 164                     const struct ovs_action_push_mpls *mpls)
 165{
 166        int err;
 167
 168        err = skb_mpls_push(skb, mpls->mpls_lse, mpls->mpls_ethertype,
 169                            skb->mac_len,
 170                            ovs_key_mac_proto(key) == MAC_PROTO_ETHERNET);
 171        if (err)
 172                return err;
 173
 174        invalidate_flow_key(key);
 175        return 0;
 176}
 177
 178static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key,
 179                    const __be16 ethertype)
 180{
 181        int err;
 182
 183        err = skb_mpls_pop(skb, ethertype, skb->mac_len,
 184                           ovs_key_mac_proto(key) == MAC_PROTO_ETHERNET);
 185        if (err)
 186                return err;
 187
 188        invalidate_flow_key(key);
 189        return 0;
 190}
 191
 192static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key,
 193                    const __be32 *mpls_lse, const __be32 *mask)
 194{
 195        struct mpls_shim_hdr *stack;
 196        __be32 lse;
 197        int err;
 198
 199        stack = mpls_hdr(skb);
 200        lse = OVS_MASKED(stack->label_stack_entry, *mpls_lse, *mask);
 201        err = skb_mpls_update_lse(skb, lse);
 202        if (err)
 203                return err;
 204
 205        flow_key->mpls.lse[0] = lse;
 206        return 0;
 207}
 208
 209static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key)
 210{
 211        int err;
 212
 213        err = skb_vlan_pop(skb);
 214        if (skb_vlan_tag_present(skb)) {
 215                invalidate_flow_key(key);
 216        } else {
 217                key->eth.vlan.tci = 0;
 218                key->eth.vlan.tpid = 0;
 219        }
 220        return err;
 221}
 222
 223static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key,
 224                     const struct ovs_action_push_vlan *vlan)
 225{
 226        if (skb_vlan_tag_present(skb)) {
 227                invalidate_flow_key(key);
 228        } else {
 229                key->eth.vlan.tci = vlan->vlan_tci;
 230                key->eth.vlan.tpid = vlan->vlan_tpid;
 231        }
 232        return skb_vlan_push(skb, vlan->vlan_tpid,
 233                             ntohs(vlan->vlan_tci) & ~VLAN_CFI_MASK);
 234}
 235
 236/* 'src' is already properly masked. */
 237static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_)
 238{
 239        u16 *dst = (u16 *)dst_;
 240        const u16 *src = (const u16 *)src_;
 241        const u16 *mask = (const u16 *)mask_;
 242
 243        OVS_SET_MASKED(dst[0], src[0], mask[0]);
 244        OVS_SET_MASKED(dst[1], src[1], mask[1]);
 245        OVS_SET_MASKED(dst[2], src[2], mask[2]);
 246}
 247
 248static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key,
 249                        const struct ovs_key_ethernet *key,
 250                        const struct ovs_key_ethernet *mask)
 251{
 252        int err;
 253
 254        err = skb_ensure_writable(skb, ETH_HLEN);
 255        if (unlikely(err))
 256                return err;
 257
 258        skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
 259
 260        ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src,
 261                               mask->eth_src);
 262        ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst,
 263                               mask->eth_dst);
 264
 265        skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
 266
 267        ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source);
 268        ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest);
 269        return 0;
 270}
 271
 272/* pop_eth does not support VLAN packets as this action is never called
 273 * for them.
 274 */
 275static int pop_eth(struct sk_buff *skb, struct sw_flow_key *key)
 276{
 277        skb_pull_rcsum(skb, ETH_HLEN);
 278        skb_reset_mac_header(skb);
 279        skb_reset_mac_len(skb);
 280
 281        /* safe right before invalidate_flow_key */
 282        key->mac_proto = MAC_PROTO_NONE;
 283        invalidate_flow_key(key);
 284        return 0;
 285}
 286
 287static int push_eth(struct sk_buff *skb, struct sw_flow_key *key,
 288                    const struct ovs_action_push_eth *ethh)
 289{
 290        struct ethhdr *hdr;
 291
 292        /* Add the new Ethernet header */
 293        if (skb_cow_head(skb, ETH_HLEN) < 0)
 294                return -ENOMEM;
 295
 296        skb_push(skb, ETH_HLEN);
 297        skb_reset_mac_header(skb);
 298        skb_reset_mac_len(skb);
 299
 300        hdr = eth_hdr(skb);
 301        ether_addr_copy(hdr->h_source, ethh->addresses.eth_src);
 302        ether_addr_copy(hdr->h_dest, ethh->addresses.eth_dst);
 303        hdr->h_proto = skb->protocol;
 304
 305        skb_postpush_rcsum(skb, hdr, ETH_HLEN);
 306
 307        /* safe right before invalidate_flow_key */
 308        key->mac_proto = MAC_PROTO_ETHERNET;
 309        invalidate_flow_key(key);
 310        return 0;
 311}
 312
 313static int push_nsh(struct sk_buff *skb, struct sw_flow_key *key,
 314                    const struct nshhdr *nh)
 315{
 316        int err;
 317
 318        err = nsh_push(skb, nh);
 319        if (err)
 320                return err;
 321
 322        /* safe right before invalidate_flow_key */
 323        key->mac_proto = MAC_PROTO_NONE;
 324        invalidate_flow_key(key);
 325        return 0;
 326}
 327
 328static int pop_nsh(struct sk_buff *skb, struct sw_flow_key *key)
 329{
 330        int err;
 331
 332        err = nsh_pop(skb);
 333        if (err)
 334                return err;
 335
 336        /* safe right before invalidate_flow_key */
 337        if (skb->protocol == htons(ETH_P_TEB))
 338                key->mac_proto = MAC_PROTO_ETHERNET;
 339        else
 340                key->mac_proto = MAC_PROTO_NONE;
 341        invalidate_flow_key(key);
 342        return 0;
 343}
 344
 345static void update_ip_l4_checksum(struct sk_buff *skb, struct iphdr *nh,
 346                                  __be32 addr, __be32 new_addr)
 347{
 348        int transport_len = skb->len - skb_transport_offset(skb);
 349
 350        if (nh->frag_off & htons(IP_OFFSET))
 351                return;
 352
 353        if (nh->protocol == IPPROTO_TCP) {
 354                if (likely(transport_len >= sizeof(struct tcphdr)))
 355                        inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb,
 356                                                 addr, new_addr, true);
 357        } else if (nh->protocol == IPPROTO_UDP) {
 358                if (likely(transport_len >= sizeof(struct udphdr))) {
 359                        struct udphdr *uh = udp_hdr(skb);
 360
 361                        if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
 362                                inet_proto_csum_replace4(&uh->check, skb,
 363                                                         addr, new_addr, true);
 364                                if (!uh->check)
 365                                        uh->check = CSUM_MANGLED_0;
 366                        }
 367                }
 368        }
 369}
 370
 371static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh,
 372                        __be32 *addr, __be32 new_addr)
 373{
 374        update_ip_l4_checksum(skb, nh, *addr, new_addr);
 375        csum_replace4(&nh->check, *addr, new_addr);
 376        skb_clear_hash(skb);
 377        *addr = new_addr;
 378}
 379
 380static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto,
 381                                 __be32 addr[4], const __be32 new_addr[4])
 382{
 383        int transport_len = skb->len - skb_transport_offset(skb);
 384
 385        if (l4_proto == NEXTHDR_TCP) {
 386                if (likely(transport_len >= sizeof(struct tcphdr)))
 387                        inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb,
 388                                                  addr, new_addr, true);
 389        } else if (l4_proto == NEXTHDR_UDP) {
 390                if (likely(transport_len >= sizeof(struct udphdr))) {
 391                        struct udphdr *uh = udp_hdr(skb);
 392
 393                        if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
 394                                inet_proto_csum_replace16(&uh->check, skb,
 395                                                          addr, new_addr, true);
 396                                if (!uh->check)
 397                                        uh->check = CSUM_MANGLED_0;
 398                        }
 399                }
 400        } else if (l4_proto == NEXTHDR_ICMP) {
 401                if (likely(transport_len >= sizeof(struct icmp6hdr)))
 402                        inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum,
 403                                                  skb, addr, new_addr, true);
 404        }
 405}
 406
 407static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4],
 408                           const __be32 mask[4], __be32 masked[4])
 409{
 410        masked[0] = OVS_MASKED(old[0], addr[0], mask[0]);
 411        masked[1] = OVS_MASKED(old[1], addr[1], mask[1]);
 412        masked[2] = OVS_MASKED(old[2], addr[2], mask[2]);
 413        masked[3] = OVS_MASKED(old[3], addr[3], mask[3]);
 414}
 415
 416static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto,
 417                          __be32 addr[4], const __be32 new_addr[4],
 418                          bool recalculate_csum)
 419{
 420        if (recalculate_csum)
 421                update_ipv6_checksum(skb, l4_proto, addr, new_addr);
 422
 423        skb_clear_hash(skb);
 424        memcpy(addr, new_addr, sizeof(__be32[4]));
 425}
 426
 427static void set_ipv6_fl(struct ipv6hdr *nh, u32 fl, u32 mask)
 428{
 429        /* Bits 21-24 are always unmasked, so this retains their values. */
 430        OVS_SET_MASKED(nh->flow_lbl[0], (u8)(fl >> 16), (u8)(mask >> 16));
 431        OVS_SET_MASKED(nh->flow_lbl[1], (u8)(fl >> 8), (u8)(mask >> 8));
 432        OVS_SET_MASKED(nh->flow_lbl[2], (u8)fl, (u8)mask);
 433}
 434
 435static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl,
 436                       u8 mask)
 437{
 438        new_ttl = OVS_MASKED(nh->ttl, new_ttl, mask);
 439
 440        csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8));
 441        nh->ttl = new_ttl;
 442}
 443
 444static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key,
 445                    const struct ovs_key_ipv4 *key,
 446                    const struct ovs_key_ipv4 *mask)
 447{
 448        struct iphdr *nh;
 449        __be32 new_addr;
 450        int err;
 451
 452        err = skb_ensure_writable(skb, skb_network_offset(skb) +
 453                                  sizeof(struct iphdr));
 454        if (unlikely(err))
 455                return err;
 456
 457        nh = ip_hdr(skb);
 458
 459        /* Setting an IP addresses is typically only a side effect of
 460         * matching on them in the current userspace implementation, so it
 461         * makes sense to check if the value actually changed.
 462         */
 463        if (mask->ipv4_src) {
 464                new_addr = OVS_MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src);
 465
 466                if (unlikely(new_addr != nh->saddr)) {
 467                        set_ip_addr(skb, nh, &nh->saddr, new_addr);
 468                        flow_key->ipv4.addr.src = new_addr;
 469                }
 470        }
 471        if (mask->ipv4_dst) {
 472                new_addr = OVS_MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst);
 473
 474                if (unlikely(new_addr != nh->daddr)) {
 475                        set_ip_addr(skb, nh, &nh->daddr, new_addr);
 476                        flow_key->ipv4.addr.dst = new_addr;
 477                }
 478        }
 479        if (mask->ipv4_tos) {
 480                ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos);
 481                flow_key->ip.tos = nh->tos;
 482        }
 483        if (mask->ipv4_ttl) {
 484                set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl);
 485                flow_key->ip.ttl = nh->ttl;
 486        }
 487
 488        return 0;
 489}
 490
 491static bool is_ipv6_mask_nonzero(const __be32 addr[4])
 492{
 493        return !!(addr[0] | addr[1] | addr[2] | addr[3]);
 494}
 495
 496static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key,
 497                    const struct ovs_key_ipv6 *key,
 498                    const struct ovs_key_ipv6 *mask)
 499{
 500        struct ipv6hdr *nh;
 501        int err;
 502
 503        err = skb_ensure_writable(skb, skb_network_offset(skb) +
 504                                  sizeof(struct ipv6hdr));
 505        if (unlikely(err))
 506                return err;
 507
 508        nh = ipv6_hdr(skb);
 509
 510        /* Setting an IP addresses is typically only a side effect of
 511         * matching on them in the current userspace implementation, so it
 512         * makes sense to check if the value actually changed.
 513         */
 514        if (is_ipv6_mask_nonzero(mask->ipv6_src)) {
 515                __be32 *saddr = (__be32 *)&nh->saddr;
 516                __be32 masked[4];
 517
 518                mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked);
 519
 520                if (unlikely(memcmp(saddr, masked, sizeof(masked)))) {
 521                        set_ipv6_addr(skb, flow_key->ip.proto, saddr, masked,
 522                                      true);
 523                        memcpy(&flow_key->ipv6.addr.src, masked,
 524                               sizeof(flow_key->ipv6.addr.src));
 525                }
 526        }
 527        if (is_ipv6_mask_nonzero(mask->ipv6_dst)) {
 528                unsigned int offset = 0;
 529                int flags = IP6_FH_F_SKIP_RH;
 530                bool recalc_csum = true;
 531                __be32 *daddr = (__be32 *)&nh->daddr;
 532                __be32 masked[4];
 533
 534                mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked);
 535
 536                if (unlikely(memcmp(daddr, masked, sizeof(masked)))) {
 537                        if (ipv6_ext_hdr(nh->nexthdr))
 538                                recalc_csum = (ipv6_find_hdr(skb, &offset,
 539                                                             NEXTHDR_ROUTING,
 540                                                             NULL, &flags)
 541                                               != NEXTHDR_ROUTING);
 542
 543                        set_ipv6_addr(skb, flow_key->ip.proto, daddr, masked,
 544                                      recalc_csum);
 545                        memcpy(&flow_key->ipv6.addr.dst, masked,
 546                               sizeof(flow_key->ipv6.addr.dst));
 547                }
 548        }
 549        if (mask->ipv6_tclass) {
 550                ipv6_change_dsfield(nh, ~mask->ipv6_tclass, key->ipv6_tclass);
 551                flow_key->ip.tos = ipv6_get_dsfield(nh);
 552        }
 553        if (mask->ipv6_label) {
 554                set_ipv6_fl(nh, ntohl(key->ipv6_label),
 555                            ntohl(mask->ipv6_label));
 556                flow_key->ipv6.label =
 557                    *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
 558        }
 559        if (mask->ipv6_hlimit) {
 560                OVS_SET_MASKED(nh->hop_limit, key->ipv6_hlimit,
 561                               mask->ipv6_hlimit);
 562                flow_key->ip.ttl = nh->hop_limit;
 563        }
 564        return 0;
 565}
 566
 567static int set_nsh(struct sk_buff *skb, struct sw_flow_key *flow_key,
 568                   const struct nlattr *a)
 569{
 570        struct nshhdr *nh;
 571        size_t length;
 572        int err;
 573        u8 flags;
 574        u8 ttl;
 575        int i;
 576
 577        struct ovs_key_nsh key;
 578        struct ovs_key_nsh mask;
 579
 580        err = nsh_key_from_nlattr(a, &key, &mask);
 581        if (err)
 582                return err;
 583
 584        /* Make sure the NSH base header is there */
 585        if (!pskb_may_pull(skb, skb_network_offset(skb) + NSH_BASE_HDR_LEN))
 586                return -ENOMEM;
 587
 588        nh = nsh_hdr(skb);
 589        length = nsh_hdr_len(nh);
 590
 591        /* Make sure the whole NSH header is there */
 592        err = skb_ensure_writable(skb, skb_network_offset(skb) +
 593                                       length);
 594        if (unlikely(err))
 595                return err;
 596
 597        nh = nsh_hdr(skb);
 598        skb_postpull_rcsum(skb, nh, length);
 599        flags = nsh_get_flags(nh);
 600        flags = OVS_MASKED(flags, key.base.flags, mask.base.flags);
 601        flow_key->nsh.base.flags = flags;
 602        ttl = nsh_get_ttl(nh);
 603        ttl = OVS_MASKED(ttl, key.base.ttl, mask.base.ttl);
 604        flow_key->nsh.base.ttl = ttl;
 605        nsh_set_flags_and_ttl(nh, flags, ttl);
 606        nh->path_hdr = OVS_MASKED(nh->path_hdr, key.base.path_hdr,
 607                                  mask.base.path_hdr);
 608        flow_key->nsh.base.path_hdr = nh->path_hdr;
 609        switch (nh->mdtype) {
 610        case NSH_M_TYPE1:
 611                for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++) {
 612                        nh->md1.context[i] =
 613                            OVS_MASKED(nh->md1.context[i], key.context[i],
 614                                       mask.context[i]);
 615                }
 616                memcpy(flow_key->nsh.context, nh->md1.context,
 617                       sizeof(nh->md1.context));
 618                break;
 619        case NSH_M_TYPE2:
 620                memset(flow_key->nsh.context, 0,
 621                       sizeof(flow_key->nsh.context));
 622                break;
 623        default:
 624                return -EINVAL;
 625        }
 626        skb_postpush_rcsum(skb, nh, length);
 627        return 0;
 628}
 629
 630/* Must follow skb_ensure_writable() since that can move the skb data. */
 631static void set_tp_port(struct sk_buff *skb, __be16 *port,
 632                        __be16 new_port, __sum16 *check)
 633{
 634        inet_proto_csum_replace2(check, skb, *port, new_port, false);
 635        *port = new_port;
 636}
 637
 638static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key,
 639                   const struct ovs_key_udp *key,
 640                   const struct ovs_key_udp *mask)
 641{
 642        struct udphdr *uh;
 643        __be16 src, dst;
 644        int err;
 645
 646        err = skb_ensure_writable(skb, skb_transport_offset(skb) +
 647                                  sizeof(struct udphdr));
 648        if (unlikely(err))
 649                return err;
 650
 651        uh = udp_hdr(skb);
 652        /* Either of the masks is non-zero, so do not bother checking them. */
 653        src = OVS_MASKED(uh->source, key->udp_src, mask->udp_src);
 654        dst = OVS_MASKED(uh->dest, key->udp_dst, mask->udp_dst);
 655
 656        if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) {
 657                if (likely(src != uh->source)) {
 658                        set_tp_port(skb, &uh->source, src, &uh->check);
 659                        flow_key->tp.src = src;
 660                }
 661                if (likely(dst != uh->dest)) {
 662                        set_tp_port(skb, &uh->dest, dst, &uh->check);
 663                        flow_key->tp.dst = dst;
 664                }
 665
 666                if (unlikely(!uh->check))
 667                        uh->check = CSUM_MANGLED_0;
 668        } else {
 669                uh->source = src;
 670                uh->dest = dst;
 671                flow_key->tp.src = src;
 672                flow_key->tp.dst = dst;
 673        }
 674
 675        skb_clear_hash(skb);
 676
 677        return 0;
 678}
 679
 680static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key,
 681                   const struct ovs_key_tcp *key,
 682                   const struct ovs_key_tcp *mask)
 683{
 684        struct tcphdr *th;
 685        __be16 src, dst;
 686        int err;
 687
 688        err = skb_ensure_writable(skb, skb_transport_offset(skb) +
 689                                  sizeof(struct tcphdr));
 690        if (unlikely(err))
 691                return err;
 692
 693        th = tcp_hdr(skb);
 694        src = OVS_MASKED(th->source, key->tcp_src, mask->tcp_src);
 695        if (likely(src != th->source)) {
 696                set_tp_port(skb, &th->source, src, &th->check);
 697                flow_key->tp.src = src;
 698        }
 699        dst = OVS_MASKED(th->dest, key->tcp_dst, mask->tcp_dst);
 700        if (likely(dst != th->dest)) {
 701                set_tp_port(skb, &th->dest, dst, &th->check);
 702                flow_key->tp.dst = dst;
 703        }
 704        skb_clear_hash(skb);
 705
 706        return 0;
 707}
 708
 709static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key,
 710                    const struct ovs_key_sctp *key,
 711                    const struct ovs_key_sctp *mask)
 712{
 713        unsigned int sctphoff = skb_transport_offset(skb);
 714        struct sctphdr *sh;
 715        __le32 old_correct_csum, new_csum, old_csum;
 716        int err;
 717
 718        err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr));
 719        if (unlikely(err))
 720                return err;
 721
 722        sh = sctp_hdr(skb);
 723        old_csum = sh->checksum;
 724        old_correct_csum = sctp_compute_cksum(skb, sctphoff);
 725
 726        sh->source = OVS_MASKED(sh->source, key->sctp_src, mask->sctp_src);
 727        sh->dest = OVS_MASKED(sh->dest, key->sctp_dst, mask->sctp_dst);
 728
 729        new_csum = sctp_compute_cksum(skb, sctphoff);
 730
 731        /* Carry any checksum errors through. */
 732        sh->checksum = old_csum ^ old_correct_csum ^ new_csum;
 733
 734        skb_clear_hash(skb);
 735        flow_key->tp.src = sh->source;
 736        flow_key->tp.dst = sh->dest;
 737
 738        return 0;
 739}
 740
 741static int ovs_vport_output(struct net *net, struct sock *sk, struct sk_buff *skb)
 742{
 743        struct ovs_frag_data *data = this_cpu_ptr(&ovs_frag_data_storage);
 744        struct vport *vport = data->vport;
 745
 746        if (skb_cow_head(skb, data->l2_len) < 0) {
 747                kfree_skb(skb);
 748                return -ENOMEM;
 749        }
 750
 751        __skb_dst_copy(skb, data->dst);
 752        *OVS_CB(skb) = data->cb;
 753        skb->inner_protocol = data->inner_protocol;
 754        if (data->vlan_tci & VLAN_CFI_MASK)
 755                __vlan_hwaccel_put_tag(skb, data->vlan_proto, data->vlan_tci & ~VLAN_CFI_MASK);
 756        else
 757                __vlan_hwaccel_clear_tag(skb);
 758
 759        /* Reconstruct the MAC header.  */
 760        skb_push(skb, data->l2_len);
 761        memcpy(skb->data, &data->l2_data, data->l2_len);
 762        skb_postpush_rcsum(skb, skb->data, data->l2_len);
 763        skb_reset_mac_header(skb);
 764
 765        if (eth_p_mpls(skb->protocol)) {
 766                skb->inner_network_header = skb->network_header;
 767                skb_set_network_header(skb, data->network_offset);
 768                skb_reset_mac_len(skb);
 769        }
 770
 771        ovs_vport_send(vport, skb, data->mac_proto);
 772        return 0;
 773}
 774
 775static unsigned int
 776ovs_dst_get_mtu(const struct dst_entry *dst)
 777{
 778        return dst->dev->mtu;
 779}
 780
 781static struct dst_ops ovs_dst_ops = {
 782        .family = AF_UNSPEC,
 783        .mtu = ovs_dst_get_mtu,
 784};
 785
 786/* prepare_frag() is called once per (larger-than-MTU) frame; its inverse is
 787 * ovs_vport_output(), which is called once per fragmented packet.
 788 */
 789static void prepare_frag(struct vport *vport, struct sk_buff *skb,
 790                         u16 orig_network_offset, u8 mac_proto)
 791{
 792        unsigned int hlen = skb_network_offset(skb);
 793        struct ovs_frag_data *data;
 794
 795        data = this_cpu_ptr(&ovs_frag_data_storage);
 796        data->dst = skb->_skb_refdst;
 797        data->vport = vport;
 798        data->cb = *OVS_CB(skb);
 799        data->inner_protocol = skb->inner_protocol;
 800        data->network_offset = orig_network_offset;
 801        if (skb_vlan_tag_present(skb))
 802                data->vlan_tci = skb_vlan_tag_get(skb) | VLAN_CFI_MASK;
 803        else
 804                data->vlan_tci = 0;
 805        data->vlan_proto = skb->vlan_proto;
 806        data->mac_proto = mac_proto;
 807        data->l2_len = hlen;
 808        memcpy(&data->l2_data, skb->data, hlen);
 809
 810        memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
 811        skb_pull(skb, hlen);
 812}
 813
 814static void ovs_fragment(struct net *net, struct vport *vport,
 815                         struct sk_buff *skb, u16 mru,
 816                         struct sw_flow_key *key)
 817{
 818        u16 orig_network_offset = 0;
 819
 820        if (eth_p_mpls(skb->protocol)) {
 821                orig_network_offset = skb_network_offset(skb);
 822                skb->network_header = skb->inner_network_header;
 823        }
 824
 825        if (skb_network_offset(skb) > MAX_L2_LEN) {
 826                OVS_NLERR(1, "L2 header too long to fragment");
 827                goto err;
 828        }
 829
 830        if (key->eth.type == htons(ETH_P_IP)) {
 831                struct dst_entry ovs_dst;
 832                unsigned long orig_dst;
 833
 834                prepare_frag(vport, skb, orig_network_offset,
 835                             ovs_key_mac_proto(key));
 836                dst_init(&ovs_dst, &ovs_dst_ops, NULL, 1,
 837                         DST_OBSOLETE_NONE, DST_NOCOUNT);
 838                ovs_dst.dev = vport->dev;
 839
 840                orig_dst = skb->_skb_refdst;
 841                skb_dst_set_noref(skb, &ovs_dst);
 842                IPCB(skb)->frag_max_size = mru;
 843
 844                ip_do_fragment(net, skb->sk, skb, ovs_vport_output);
 845                refdst_drop(orig_dst);
 846        } else if (key->eth.type == htons(ETH_P_IPV6)) {
 847                const struct nf_ipv6_ops *v6ops = nf_get_ipv6_ops();
 848                unsigned long orig_dst;
 849                struct rt6_info ovs_rt;
 850
 851                if (!v6ops)
 852                        goto err;
 853
 854                prepare_frag(vport, skb, orig_network_offset,
 855                             ovs_key_mac_proto(key));
 856                memset(&ovs_rt, 0, sizeof(ovs_rt));
 857                dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 1,
 858                         DST_OBSOLETE_NONE, DST_NOCOUNT);
 859                ovs_rt.dst.dev = vport->dev;
 860
 861                orig_dst = skb->_skb_refdst;
 862                skb_dst_set_noref(skb, &ovs_rt.dst);
 863                IP6CB(skb)->frag_max_size = mru;
 864
 865                v6ops->fragment(net, skb->sk, skb, ovs_vport_output);
 866                refdst_drop(orig_dst);
 867        } else {
 868                WARN_ONCE(1, "Failed fragment ->%s: eth=%04x, MRU=%d, MTU=%d.",
 869                          ovs_vport_name(vport), ntohs(key->eth.type), mru,
 870                          vport->dev->mtu);
 871                goto err;
 872        }
 873
 874        return;
 875err:
 876        kfree_skb(skb);
 877}
 878
 879static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port,
 880                      struct sw_flow_key *key)
 881{
 882        struct vport *vport = ovs_vport_rcu(dp, out_port);
 883
 884        if (likely(vport)) {
 885                u16 mru = OVS_CB(skb)->mru;
 886                u32 cutlen = OVS_CB(skb)->cutlen;
 887
 888                if (unlikely(cutlen > 0)) {
 889                        if (skb->len - cutlen > ovs_mac_header_len(key))
 890                                pskb_trim(skb, skb->len - cutlen);
 891                        else
 892                                pskb_trim(skb, ovs_mac_header_len(key));
 893                }
 894
 895                if (likely(!mru ||
 896                           (skb->len <= mru + vport->dev->hard_header_len))) {
 897                        ovs_vport_send(vport, skb, ovs_key_mac_proto(key));
 898                } else if (mru <= vport->dev->mtu) {
 899                        struct net *net = read_pnet(&dp->net);
 900
 901                        ovs_fragment(net, vport, skb, mru, key);
 902                } else {
 903                        kfree_skb(skb);
 904                }
 905        } else {
 906                kfree_skb(skb);
 907        }
 908}
 909
 910static int output_userspace(struct datapath *dp, struct sk_buff *skb,
 911                            struct sw_flow_key *key, const struct nlattr *attr,
 912                            const struct nlattr *actions, int actions_len,
 913                            uint32_t cutlen)
 914{
 915        struct dp_upcall_info upcall;
 916        const struct nlattr *a;
 917        int rem;
 918
 919        memset(&upcall, 0, sizeof(upcall));
 920        upcall.cmd = OVS_PACKET_CMD_ACTION;
 921        upcall.mru = OVS_CB(skb)->mru;
 922
 923        for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
 924                 a = nla_next(a, &rem)) {
 925                switch (nla_type(a)) {
 926                case OVS_USERSPACE_ATTR_USERDATA:
 927                        upcall.userdata = a;
 928                        break;
 929
 930                case OVS_USERSPACE_ATTR_PID:
 931                        upcall.portid = nla_get_u32(a);
 932                        break;
 933
 934                case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: {
 935                        /* Get out tunnel info. */
 936                        struct vport *vport;
 937
 938                        vport = ovs_vport_rcu(dp, nla_get_u32(a));
 939                        if (vport) {
 940                                int err;
 941
 942                                err = dev_fill_metadata_dst(vport->dev, skb);
 943                                if (!err)
 944                                        upcall.egress_tun_info = skb_tunnel_info(skb);
 945                        }
 946
 947                        break;
 948                }
 949
 950                case OVS_USERSPACE_ATTR_ACTIONS: {
 951                        /* Include actions. */
 952                        upcall.actions = actions;
 953                        upcall.actions_len = actions_len;
 954                        break;
 955                }
 956
 957                } /* End of switch. */
 958        }
 959
 960        return ovs_dp_upcall(dp, skb, key, &upcall, cutlen);
 961}
 962
 963/* When 'last' is true, sample() should always consume the 'skb'.
 964 * Otherwise, sample() should keep 'skb' intact regardless what
 965 * actions are executed within sample().
 966 */
 967static int sample(struct datapath *dp, struct sk_buff *skb,
 968                  struct sw_flow_key *key, const struct nlattr *attr,
 969                  bool last)
 970{
 971        struct nlattr *actions;
 972        struct nlattr *sample_arg;
 973        int rem = nla_len(attr);
 974        const struct sample_arg *arg;
 975        bool clone_flow_key;
 976
 977        /* The first action is always 'OVS_SAMPLE_ATTR_ARG'. */
 978        sample_arg = nla_data(attr);
 979        arg = nla_data(sample_arg);
 980        actions = nla_next(sample_arg, &rem);
 981
 982        if ((arg->probability != U32_MAX) &&
 983            (!arg->probability || prandom_u32() > arg->probability)) {
 984                if (last)
 985                        consume_skb(skb);
 986                return 0;
 987        }
 988
 989        clone_flow_key = !arg->exec;
 990        return clone_execute(dp, skb, key, 0, actions, rem, last,
 991                             clone_flow_key);
 992}
 993
 994/* When 'last' is true, clone() should always consume the 'skb'.
 995 * Otherwise, clone() should keep 'skb' intact regardless what
 996 * actions are executed within clone().
 997 */
 998static int clone(struct datapath *dp, struct sk_buff *skb,
 999                 struct sw_flow_key *key, const struct nlattr *attr,
1000                 bool last)
1001{
1002        struct nlattr *actions;
1003        struct nlattr *clone_arg;
1004        int rem = nla_len(attr);
1005        bool dont_clone_flow_key;
1006
1007        /* The first action is always 'OVS_CLONE_ATTR_ARG'. */
1008        clone_arg = nla_data(attr);
1009        dont_clone_flow_key = nla_get_u32(clone_arg);
1010        actions = nla_next(clone_arg, &rem);
1011
1012        return clone_execute(dp, skb, key, 0, actions, rem, last,
1013                             !dont_clone_flow_key);
1014}
1015
1016static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key,
1017                         const struct nlattr *attr)
1018{
1019        struct ovs_action_hash *hash_act = nla_data(attr);
1020        u32 hash = 0;
1021
1022        /* OVS_HASH_ALG_L4 is the only possible hash algorithm.  */
1023        hash = skb_get_hash(skb);
1024        hash = jhash_1word(hash, hash_act->hash_basis);
1025        if (!hash)
1026                hash = 0x1;
1027
1028        key->ovs_flow_hash = hash;
1029}
1030
1031static int execute_set_action(struct sk_buff *skb,
1032                              struct sw_flow_key *flow_key,
1033                              const struct nlattr *a)
1034{
1035        /* Only tunnel set execution is supported without a mask. */
1036        if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) {
1037                struct ovs_tunnel_info *tun = nla_data(a);
1038
1039                skb_dst_drop(skb);
1040                dst_hold((struct dst_entry *)tun->tun_dst);
1041                skb_dst_set(skb, (struct dst_entry *)tun->tun_dst);
1042                return 0;
1043        }
1044
1045        return -EINVAL;
1046}
1047
1048/* Mask is at the midpoint of the data. */
1049#define get_mask(a, type) ((const type)nla_data(a) + 1)
1050
1051static int execute_masked_set_action(struct sk_buff *skb,
1052                                     struct sw_flow_key *flow_key,
1053                                     const struct nlattr *a)
1054{
1055        int err = 0;
1056
1057        switch (nla_type(a)) {
1058        case OVS_KEY_ATTR_PRIORITY:
1059                OVS_SET_MASKED(skb->priority, nla_get_u32(a),
1060                               *get_mask(a, u32 *));
1061                flow_key->phy.priority = skb->priority;
1062                break;
1063
1064        case OVS_KEY_ATTR_SKB_MARK:
1065                OVS_SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *));
1066                flow_key->phy.skb_mark = skb->mark;
1067                break;
1068
1069        case OVS_KEY_ATTR_TUNNEL_INFO:
1070                /* Masked data not supported for tunnel. */
1071                err = -EINVAL;
1072                break;
1073
1074        case OVS_KEY_ATTR_ETHERNET:
1075                err = set_eth_addr(skb, flow_key, nla_data(a),
1076                                   get_mask(a, struct ovs_key_ethernet *));
1077                break;
1078
1079        case OVS_KEY_ATTR_NSH:
1080                err = set_nsh(skb, flow_key, a);
1081                break;
1082
1083        case OVS_KEY_ATTR_IPV4:
1084                err = set_ipv4(skb, flow_key, nla_data(a),
1085                               get_mask(a, struct ovs_key_ipv4 *));
1086                break;
1087
1088        case OVS_KEY_ATTR_IPV6:
1089                err = set_ipv6(skb, flow_key, nla_data(a),
1090                               get_mask(a, struct ovs_key_ipv6 *));
1091                break;
1092
1093        case OVS_KEY_ATTR_TCP:
1094                err = set_tcp(skb, flow_key, nla_data(a),
1095                              get_mask(a, struct ovs_key_tcp *));
1096                break;
1097
1098        case OVS_KEY_ATTR_UDP:
1099                err = set_udp(skb, flow_key, nla_data(a),
1100                              get_mask(a, struct ovs_key_udp *));
1101                break;
1102
1103        case OVS_KEY_ATTR_SCTP:
1104                err = set_sctp(skb, flow_key, nla_data(a),
1105                               get_mask(a, struct ovs_key_sctp *));
1106                break;
1107
1108        case OVS_KEY_ATTR_MPLS:
1109                err = set_mpls(skb, flow_key, nla_data(a), get_mask(a,
1110                                                                    __be32 *));
1111                break;
1112
1113        case OVS_KEY_ATTR_CT_STATE:
1114        case OVS_KEY_ATTR_CT_ZONE:
1115        case OVS_KEY_ATTR_CT_MARK:
1116        case OVS_KEY_ATTR_CT_LABELS:
1117        case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4:
1118        case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6:
1119                err = -EINVAL;
1120                break;
1121        }
1122
1123        return err;
1124}
1125
1126static int execute_recirc(struct datapath *dp, struct sk_buff *skb,
1127                          struct sw_flow_key *key,
1128                          const struct nlattr *a, bool last)
1129{
1130        u32 recirc_id;
1131
1132        if (!is_flow_key_valid(key)) {
1133                int err;
1134
1135                err = ovs_flow_key_update(skb, key);
1136                if (err)
1137                        return err;
1138        }
1139        BUG_ON(!is_flow_key_valid(key));
1140
1141        recirc_id = nla_get_u32(a);
1142        return clone_execute(dp, skb, key, recirc_id, NULL, 0, last, true);
1143}
1144
1145static int execute_check_pkt_len(struct datapath *dp, struct sk_buff *skb,
1146                                 struct sw_flow_key *key,
1147                                 const struct nlattr *attr, bool last)
1148{
1149        const struct nlattr *actions, *cpl_arg;
1150        const struct check_pkt_len_arg *arg;
1151        int rem = nla_len(attr);
1152        bool clone_flow_key;
1153
1154        /* The first netlink attribute in 'attr' is always
1155         * 'OVS_CHECK_PKT_LEN_ATTR_ARG'.
1156         */
1157        cpl_arg = nla_data(attr);
1158        arg = nla_data(cpl_arg);
1159
1160        if (skb->len <= arg->pkt_len) {
1161                /* Second netlink attribute in 'attr' is always
1162                 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL'.
1163                 */
1164                actions = nla_next(cpl_arg, &rem);
1165                clone_flow_key = !arg->exec_for_lesser_equal;
1166        } else {
1167                /* Third netlink attribute in 'attr' is always
1168                 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER'.
1169                 */
1170                actions = nla_next(cpl_arg, &rem);
1171                actions = nla_next(actions, &rem);
1172                clone_flow_key = !arg->exec_for_greater;
1173        }
1174
1175        return clone_execute(dp, skb, key, 0, nla_data(actions),
1176                             nla_len(actions), last, clone_flow_key);
1177}
1178
1179/* Execute a list of actions against 'skb'. */
1180static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
1181                              struct sw_flow_key *key,
1182                              const struct nlattr *attr, int len)
1183{
1184        const struct nlattr *a;
1185        int rem;
1186
1187        for (a = attr, rem = len; rem > 0;
1188             a = nla_next(a, &rem)) {
1189                int err = 0;
1190
1191                switch (nla_type(a)) {
1192                case OVS_ACTION_ATTR_OUTPUT: {
1193                        int port = nla_get_u32(a);
1194                        struct sk_buff *clone;
1195
1196                        /* Every output action needs a separate clone
1197                         * of 'skb', In case the output action is the
1198                         * last action, cloning can be avoided.
1199                         */
1200                        if (nla_is_last(a, rem)) {
1201                                do_output(dp, skb, port, key);
1202                                /* 'skb' has been used for output.
1203                                 */
1204                                return 0;
1205                        }
1206
1207                        clone = skb_clone(skb, GFP_ATOMIC);
1208                        if (clone)
1209                                do_output(dp, clone, port, key);
1210                        OVS_CB(skb)->cutlen = 0;
1211                        break;
1212                }
1213
1214                case OVS_ACTION_ATTR_TRUNC: {
1215                        struct ovs_action_trunc *trunc = nla_data(a);
1216
1217                        if (skb->len > trunc->max_len)
1218                                OVS_CB(skb)->cutlen = skb->len - trunc->max_len;
1219                        break;
1220                }
1221
1222                case OVS_ACTION_ATTR_USERSPACE:
1223                        output_userspace(dp, skb, key, a, attr,
1224                                                     len, OVS_CB(skb)->cutlen);
1225                        OVS_CB(skb)->cutlen = 0;
1226                        break;
1227
1228                case OVS_ACTION_ATTR_HASH:
1229                        execute_hash(skb, key, a);
1230                        break;
1231
1232                case OVS_ACTION_ATTR_PUSH_MPLS:
1233                        err = push_mpls(skb, key, nla_data(a));
1234                        break;
1235
1236                case OVS_ACTION_ATTR_POP_MPLS:
1237                        err = pop_mpls(skb, key, nla_get_be16(a));
1238                        break;
1239
1240                case OVS_ACTION_ATTR_PUSH_VLAN:
1241                        err = push_vlan(skb, key, nla_data(a));
1242                        break;
1243
1244                case OVS_ACTION_ATTR_POP_VLAN:
1245                        err = pop_vlan(skb, key);
1246                        break;
1247
1248                case OVS_ACTION_ATTR_RECIRC: {
1249                        bool last = nla_is_last(a, rem);
1250
1251                        err = execute_recirc(dp, skb, key, a, last);
1252                        if (last) {
1253                                /* If this is the last action, the skb has
1254                                 * been consumed or freed.
1255                                 * Return immediately.
1256                                 */
1257                                return err;
1258                        }
1259                        break;
1260                }
1261
1262                case OVS_ACTION_ATTR_SET:
1263                        err = execute_set_action(skb, key, nla_data(a));
1264                        break;
1265
1266                case OVS_ACTION_ATTR_SET_MASKED:
1267                case OVS_ACTION_ATTR_SET_TO_MASKED:
1268                        err = execute_masked_set_action(skb, key, nla_data(a));
1269                        break;
1270
1271                case OVS_ACTION_ATTR_SAMPLE: {
1272                        bool last = nla_is_last(a, rem);
1273
1274                        err = sample(dp, skb, key, a, last);
1275                        if (last)
1276                                return err;
1277
1278                        break;
1279                }
1280
1281                case OVS_ACTION_ATTR_CT:
1282                        if (!is_flow_key_valid(key)) {
1283                                err = ovs_flow_key_update(skb, key);
1284                                if (err)
1285                                        return err;
1286                        }
1287
1288                        err = ovs_ct_execute(ovs_dp_get_net(dp), skb, key,
1289                                             nla_data(a));
1290
1291                        /* Hide stolen IP fragments from user space. */
1292                        if (err)
1293                                return err == -EINPROGRESS ? 0 : err;
1294                        break;
1295
1296                case OVS_ACTION_ATTR_CT_CLEAR:
1297                        err = ovs_ct_clear(skb, key);
1298                        break;
1299
1300                case OVS_ACTION_ATTR_PUSH_ETH:
1301                        err = push_eth(skb, key, nla_data(a));
1302                        break;
1303
1304                case OVS_ACTION_ATTR_POP_ETH:
1305                        err = pop_eth(skb, key);
1306                        break;
1307
1308                case OVS_ACTION_ATTR_PUSH_NSH: {
1309                        u8 buffer[NSH_HDR_MAX_LEN];
1310                        struct nshhdr *nh = (struct nshhdr *)buffer;
1311
1312                        err = nsh_hdr_from_nlattr(nla_data(a), nh,
1313                                                  NSH_HDR_MAX_LEN);
1314                        if (unlikely(err))
1315                                break;
1316                        err = push_nsh(skb, key, nh);
1317                        break;
1318                }
1319
1320                case OVS_ACTION_ATTR_POP_NSH:
1321                        err = pop_nsh(skb, key);
1322                        break;
1323
1324                case OVS_ACTION_ATTR_METER:
1325                        if (ovs_meter_execute(dp, skb, key, nla_get_u32(a))) {
1326                                consume_skb(skb);
1327                                return 0;
1328                        }
1329                        break;
1330
1331                case OVS_ACTION_ATTR_CLONE: {
1332                        bool last = nla_is_last(a, rem);
1333
1334                        err = clone(dp, skb, key, a, last);
1335                        if (last)
1336                                return err;
1337
1338                        break;
1339                }
1340
1341                case OVS_ACTION_ATTR_CHECK_PKT_LEN: {
1342                        bool last = nla_is_last(a, rem);
1343
1344                        err = execute_check_pkt_len(dp, skb, key, a, last);
1345                        if (last)
1346                                return err;
1347
1348                        break;
1349                }
1350                }
1351
1352                if (unlikely(err)) {
1353                        kfree_skb(skb);
1354                        return err;
1355                }
1356        }
1357
1358        consume_skb(skb);
1359        return 0;
1360}
1361
1362/* Execute the actions on the clone of the packet. The effect of the
1363 * execution does not affect the original 'skb' nor the original 'key'.
1364 *
1365 * The execution may be deferred in case the actions can not be executed
1366 * immediately.
1367 */
1368static int clone_execute(struct datapath *dp, struct sk_buff *skb,
1369                         struct sw_flow_key *key, u32 recirc_id,
1370                         const struct nlattr *actions, int len,
1371                         bool last, bool clone_flow_key)
1372{
1373        struct deferred_action *da;
1374        struct sw_flow_key *clone;
1375
1376        skb = last ? skb : skb_clone(skb, GFP_ATOMIC);
1377        if (!skb) {
1378                /* Out of memory, skip this action.
1379                 */
1380                return 0;
1381        }
1382
1383        /* When clone_flow_key is false, the 'key' will not be change
1384         * by the actions, then the 'key' can be used directly.
1385         * Otherwise, try to clone key from the next recursion level of
1386         * 'flow_keys'. If clone is successful, execute the actions
1387         * without deferring.
1388         */
1389        clone = clone_flow_key ? clone_key(key) : key;
1390        if (clone) {
1391                int err = 0;
1392
1393                if (actions) { /* Sample action */
1394                        if (clone_flow_key)
1395                                __this_cpu_inc(exec_actions_level);
1396
1397                        err = do_execute_actions(dp, skb, clone,
1398                                                 actions, len);
1399
1400                        if (clone_flow_key)
1401                                __this_cpu_dec(exec_actions_level);
1402                } else { /* Recirc action */
1403                        clone->recirc_id = recirc_id;
1404                        ovs_dp_process_packet(skb, clone);
1405                }
1406                return err;
1407        }
1408
1409        /* Out of 'flow_keys' space. Defer actions */
1410        da = add_deferred_actions(skb, key, actions, len);
1411        if (da) {
1412                if (!actions) { /* Recirc action */
1413                        key = &da->pkt_key;
1414                        key->recirc_id = recirc_id;
1415                }
1416        } else {
1417                /* Out of per CPU action FIFO space. Drop the 'skb' and
1418                 * log an error.
1419                 */
1420                kfree_skb(skb);
1421
1422                if (net_ratelimit()) {
1423                        if (actions) { /* Sample action */
1424                                pr_warn("%s: deferred action limit reached, drop sample action\n",
1425                                        ovs_dp_name(dp));
1426                        } else {  /* Recirc action */
1427                                pr_warn("%s: deferred action limit reached, drop recirc action\n",
1428                                        ovs_dp_name(dp));
1429                        }
1430                }
1431        }
1432        return 0;
1433}
1434
1435static void process_deferred_actions(struct datapath *dp)
1436{
1437        struct action_fifo *fifo = this_cpu_ptr(action_fifos);
1438
1439        /* Do not touch the FIFO in case there is no deferred actions. */
1440        if (action_fifo_is_empty(fifo))
1441                return;
1442
1443        /* Finishing executing all deferred actions. */
1444        do {
1445                struct deferred_action *da = action_fifo_get(fifo);
1446                struct sk_buff *skb = da->skb;
1447                struct sw_flow_key *key = &da->pkt_key;
1448                const struct nlattr *actions = da->actions;
1449                int actions_len = da->actions_len;
1450
1451                if (actions)
1452                        do_execute_actions(dp, skb, key, actions, actions_len);
1453                else
1454                        ovs_dp_process_packet(skb, key);
1455        } while (!action_fifo_is_empty(fifo));
1456
1457        /* Reset FIFO for the next packet.  */
1458        action_fifo_init(fifo);
1459}
1460
1461/* Execute a list of actions against 'skb'. */
1462int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb,
1463                        const struct sw_flow_actions *acts,
1464                        struct sw_flow_key *key)
1465{
1466        int err, level;
1467
1468        level = __this_cpu_inc_return(exec_actions_level);
1469        if (unlikely(level > OVS_RECURSION_LIMIT)) {
1470                net_crit_ratelimited("ovs: recursion limit reached on datapath %s, probable configuration error\n",
1471                                     ovs_dp_name(dp));
1472                kfree_skb(skb);
1473                err = -ENETDOWN;
1474                goto out;
1475        }
1476
1477        OVS_CB(skb)->acts_origlen = acts->orig_len;
1478        err = do_execute_actions(dp, skb, key,
1479                                 acts->actions, acts->actions_len);
1480
1481        if (level == 1)
1482                process_deferred_actions(dp);
1483
1484out:
1485        __this_cpu_dec(exec_actions_level);
1486        return err;
1487}
1488
1489int action_fifos_init(void)
1490{
1491        action_fifos = alloc_percpu(struct action_fifo);
1492        if (!action_fifos)
1493                return -ENOMEM;
1494
1495        flow_keys = alloc_percpu(struct action_flow_keys);
1496        if (!flow_keys) {
1497                free_percpu(action_fifos);
1498                return -ENOMEM;
1499        }
1500
1501        return 0;
1502}
1503
1504void action_fifos_exit(void)
1505{
1506        free_percpu(action_fifos);
1507        free_percpu(flow_keys);
1508}
1509