linux/net/rds/ib_recv.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2006, 2019 Oracle and/or its affiliates. All rights reserved.
   3 *
   4 * This software is available to you under a choice of one of two
   5 * licenses.  You may choose to be licensed under the terms of the GNU
   6 * General Public License (GPL) Version 2, available from the file
   7 * COPYING in the main directory of this source tree, or the
   8 * OpenIB.org BSD license below:
   9 *
  10 *     Redistribution and use in source and binary forms, with or
  11 *     without modification, are permitted provided that the following
  12 *     conditions are met:
  13 *
  14 *      - Redistributions of source code must retain the above
  15 *        copyright notice, this list of conditions and the following
  16 *        disclaimer.
  17 *
  18 *      - Redistributions in binary form must reproduce the above
  19 *        copyright notice, this list of conditions and the following
  20 *        disclaimer in the documentation and/or other materials
  21 *        provided with the distribution.
  22 *
  23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30 * SOFTWARE.
  31 *
  32 */
  33#include <linux/kernel.h>
  34#include <linux/slab.h>
  35#include <linux/pci.h>
  36#include <linux/dma-mapping.h>
  37#include <rdma/rdma_cm.h>
  38
  39#include "rds_single_path.h"
  40#include "rds.h"
  41#include "ib.h"
  42
  43static struct kmem_cache *rds_ib_incoming_slab;
  44static struct kmem_cache *rds_ib_frag_slab;
  45static atomic_t rds_ib_allocation = ATOMIC_INIT(0);
  46
  47void rds_ib_recv_init_ring(struct rds_ib_connection *ic)
  48{
  49        struct rds_ib_recv_work *recv;
  50        u32 i;
  51
  52        for (i = 0, recv = ic->i_recvs; i < ic->i_recv_ring.w_nr; i++, recv++) {
  53                struct ib_sge *sge;
  54
  55                recv->r_ibinc = NULL;
  56                recv->r_frag = NULL;
  57
  58                recv->r_wr.next = NULL;
  59                recv->r_wr.wr_id = i;
  60                recv->r_wr.sg_list = recv->r_sge;
  61                recv->r_wr.num_sge = RDS_IB_RECV_SGE;
  62
  63                sge = &recv->r_sge[0];
  64                sge->addr = ic->i_recv_hdrs_dma[i];
  65                sge->length = sizeof(struct rds_header);
  66                sge->lkey = ic->i_pd->local_dma_lkey;
  67
  68                sge = &recv->r_sge[1];
  69                sge->addr = 0;
  70                sge->length = RDS_FRAG_SIZE;
  71                sge->lkey = ic->i_pd->local_dma_lkey;
  72        }
  73}
  74
  75/*
  76 * The entire 'from' list, including the from element itself, is put on
  77 * to the tail of the 'to' list.
  78 */
  79static void list_splice_entire_tail(struct list_head *from,
  80                                    struct list_head *to)
  81{
  82        struct list_head *from_last = from->prev;
  83
  84        list_splice_tail(from_last, to);
  85        list_add_tail(from_last, to);
  86}
  87
  88static void rds_ib_cache_xfer_to_ready(struct rds_ib_refill_cache *cache)
  89{
  90        struct list_head *tmp;
  91
  92        tmp = xchg(&cache->xfer, NULL);
  93        if (tmp) {
  94                if (cache->ready)
  95                        list_splice_entire_tail(tmp, cache->ready);
  96                else
  97                        cache->ready = tmp;
  98        }
  99}
 100
 101static int rds_ib_recv_alloc_cache(struct rds_ib_refill_cache *cache, gfp_t gfp)
 102{
 103        struct rds_ib_cache_head *head;
 104        int cpu;
 105
 106        cache->percpu = alloc_percpu_gfp(struct rds_ib_cache_head, gfp);
 107        if (!cache->percpu)
 108               return -ENOMEM;
 109
 110        for_each_possible_cpu(cpu) {
 111                head = per_cpu_ptr(cache->percpu, cpu);
 112                head->first = NULL;
 113                head->count = 0;
 114        }
 115        cache->xfer = NULL;
 116        cache->ready = NULL;
 117
 118        return 0;
 119}
 120
 121int rds_ib_recv_alloc_caches(struct rds_ib_connection *ic, gfp_t gfp)
 122{
 123        int ret;
 124
 125        ret = rds_ib_recv_alloc_cache(&ic->i_cache_incs, gfp);
 126        if (!ret) {
 127                ret = rds_ib_recv_alloc_cache(&ic->i_cache_frags, gfp);
 128                if (ret)
 129                        free_percpu(ic->i_cache_incs.percpu);
 130        }
 131
 132        return ret;
 133}
 134
 135static void rds_ib_cache_splice_all_lists(struct rds_ib_refill_cache *cache,
 136                                          struct list_head *caller_list)
 137{
 138        struct rds_ib_cache_head *head;
 139        int cpu;
 140
 141        for_each_possible_cpu(cpu) {
 142                head = per_cpu_ptr(cache->percpu, cpu);
 143                if (head->first) {
 144                        list_splice_entire_tail(head->first, caller_list);
 145                        head->first = NULL;
 146                }
 147        }
 148
 149        if (cache->ready) {
 150                list_splice_entire_tail(cache->ready, caller_list);
 151                cache->ready = NULL;
 152        }
 153}
 154
 155void rds_ib_recv_free_caches(struct rds_ib_connection *ic)
 156{
 157        struct rds_ib_incoming *inc;
 158        struct rds_ib_incoming *inc_tmp;
 159        struct rds_page_frag *frag;
 160        struct rds_page_frag *frag_tmp;
 161        LIST_HEAD(list);
 162
 163        rds_ib_cache_xfer_to_ready(&ic->i_cache_incs);
 164        rds_ib_cache_splice_all_lists(&ic->i_cache_incs, &list);
 165        free_percpu(ic->i_cache_incs.percpu);
 166
 167        list_for_each_entry_safe(inc, inc_tmp, &list, ii_cache_entry) {
 168                list_del(&inc->ii_cache_entry);
 169                WARN_ON(!list_empty(&inc->ii_frags));
 170                kmem_cache_free(rds_ib_incoming_slab, inc);
 171                atomic_dec(&rds_ib_allocation);
 172        }
 173
 174        rds_ib_cache_xfer_to_ready(&ic->i_cache_frags);
 175        rds_ib_cache_splice_all_lists(&ic->i_cache_frags, &list);
 176        free_percpu(ic->i_cache_frags.percpu);
 177
 178        list_for_each_entry_safe(frag, frag_tmp, &list, f_cache_entry) {
 179                list_del(&frag->f_cache_entry);
 180                WARN_ON(!list_empty(&frag->f_item));
 181                kmem_cache_free(rds_ib_frag_slab, frag);
 182        }
 183}
 184
 185/* fwd decl */
 186static void rds_ib_recv_cache_put(struct list_head *new_item,
 187                                  struct rds_ib_refill_cache *cache);
 188static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache);
 189
 190
 191/* Recycle frag and attached recv buffer f_sg */
 192static void rds_ib_frag_free(struct rds_ib_connection *ic,
 193                             struct rds_page_frag *frag)
 194{
 195        rdsdebug("frag %p page %p\n", frag, sg_page(&frag->f_sg));
 196
 197        rds_ib_recv_cache_put(&frag->f_cache_entry, &ic->i_cache_frags);
 198        atomic_add(RDS_FRAG_SIZE / SZ_1K, &ic->i_cache_allocs);
 199        rds_ib_stats_add(s_ib_recv_added_to_cache, RDS_FRAG_SIZE);
 200}
 201
 202/* Recycle inc after freeing attached frags */
 203void rds_ib_inc_free(struct rds_incoming *inc)
 204{
 205        struct rds_ib_incoming *ibinc;
 206        struct rds_page_frag *frag;
 207        struct rds_page_frag *pos;
 208        struct rds_ib_connection *ic = inc->i_conn->c_transport_data;
 209
 210        ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
 211
 212        /* Free attached frags */
 213        list_for_each_entry_safe(frag, pos, &ibinc->ii_frags, f_item) {
 214                list_del_init(&frag->f_item);
 215                rds_ib_frag_free(ic, frag);
 216        }
 217        BUG_ON(!list_empty(&ibinc->ii_frags));
 218
 219        rdsdebug("freeing ibinc %p inc %p\n", ibinc, inc);
 220        rds_ib_recv_cache_put(&ibinc->ii_cache_entry, &ic->i_cache_incs);
 221}
 222
 223static void rds_ib_recv_clear_one(struct rds_ib_connection *ic,
 224                                  struct rds_ib_recv_work *recv)
 225{
 226        if (recv->r_ibinc) {
 227                rds_inc_put(&recv->r_ibinc->ii_inc);
 228                recv->r_ibinc = NULL;
 229        }
 230        if (recv->r_frag) {
 231                ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1, DMA_FROM_DEVICE);
 232                rds_ib_frag_free(ic, recv->r_frag);
 233                recv->r_frag = NULL;
 234        }
 235}
 236
 237void rds_ib_recv_clear_ring(struct rds_ib_connection *ic)
 238{
 239        u32 i;
 240
 241        for (i = 0; i < ic->i_recv_ring.w_nr; i++)
 242                rds_ib_recv_clear_one(ic, &ic->i_recvs[i]);
 243}
 244
 245static struct rds_ib_incoming *rds_ib_refill_one_inc(struct rds_ib_connection *ic,
 246                                                     gfp_t slab_mask)
 247{
 248        struct rds_ib_incoming *ibinc;
 249        struct list_head *cache_item;
 250        int avail_allocs;
 251
 252        cache_item = rds_ib_recv_cache_get(&ic->i_cache_incs);
 253        if (cache_item) {
 254                ibinc = container_of(cache_item, struct rds_ib_incoming, ii_cache_entry);
 255        } else {
 256                avail_allocs = atomic_add_unless(&rds_ib_allocation,
 257                                                 1, rds_ib_sysctl_max_recv_allocation);
 258                if (!avail_allocs) {
 259                        rds_ib_stats_inc(s_ib_rx_alloc_limit);
 260                        return NULL;
 261                }
 262                ibinc = kmem_cache_alloc(rds_ib_incoming_slab, slab_mask);
 263                if (!ibinc) {
 264                        atomic_dec(&rds_ib_allocation);
 265                        return NULL;
 266                }
 267                rds_ib_stats_inc(s_ib_rx_total_incs);
 268        }
 269        INIT_LIST_HEAD(&ibinc->ii_frags);
 270        rds_inc_init(&ibinc->ii_inc, ic->conn, &ic->conn->c_faddr);
 271
 272        return ibinc;
 273}
 274
 275static struct rds_page_frag *rds_ib_refill_one_frag(struct rds_ib_connection *ic,
 276                                                    gfp_t slab_mask, gfp_t page_mask)
 277{
 278        struct rds_page_frag *frag;
 279        struct list_head *cache_item;
 280        int ret;
 281
 282        cache_item = rds_ib_recv_cache_get(&ic->i_cache_frags);
 283        if (cache_item) {
 284                frag = container_of(cache_item, struct rds_page_frag, f_cache_entry);
 285                atomic_sub(RDS_FRAG_SIZE / SZ_1K, &ic->i_cache_allocs);
 286                rds_ib_stats_add(s_ib_recv_added_to_cache, RDS_FRAG_SIZE);
 287        } else {
 288                frag = kmem_cache_alloc(rds_ib_frag_slab, slab_mask);
 289                if (!frag)
 290                        return NULL;
 291
 292                sg_init_table(&frag->f_sg, 1);
 293                ret = rds_page_remainder_alloc(&frag->f_sg,
 294                                               RDS_FRAG_SIZE, page_mask);
 295                if (ret) {
 296                        kmem_cache_free(rds_ib_frag_slab, frag);
 297                        return NULL;
 298                }
 299                rds_ib_stats_inc(s_ib_rx_total_frags);
 300        }
 301
 302        INIT_LIST_HEAD(&frag->f_item);
 303
 304        return frag;
 305}
 306
 307static int rds_ib_recv_refill_one(struct rds_connection *conn,
 308                                  struct rds_ib_recv_work *recv, gfp_t gfp)
 309{
 310        struct rds_ib_connection *ic = conn->c_transport_data;
 311        struct ib_sge *sge;
 312        int ret = -ENOMEM;
 313        gfp_t slab_mask = GFP_NOWAIT;
 314        gfp_t page_mask = GFP_NOWAIT;
 315
 316        if (gfp & __GFP_DIRECT_RECLAIM) {
 317                slab_mask = GFP_KERNEL;
 318                page_mask = GFP_HIGHUSER;
 319        }
 320
 321        if (!ic->i_cache_incs.ready)
 322                rds_ib_cache_xfer_to_ready(&ic->i_cache_incs);
 323        if (!ic->i_cache_frags.ready)
 324                rds_ib_cache_xfer_to_ready(&ic->i_cache_frags);
 325
 326        /*
 327         * ibinc was taken from recv if recv contained the start of a message.
 328         * recvs that were continuations will still have this allocated.
 329         */
 330        if (!recv->r_ibinc) {
 331                recv->r_ibinc = rds_ib_refill_one_inc(ic, slab_mask);
 332                if (!recv->r_ibinc)
 333                        goto out;
 334        }
 335
 336        WARN_ON(recv->r_frag); /* leak! */
 337        recv->r_frag = rds_ib_refill_one_frag(ic, slab_mask, page_mask);
 338        if (!recv->r_frag)
 339                goto out;
 340
 341        ret = ib_dma_map_sg(ic->i_cm_id->device, &recv->r_frag->f_sg,
 342                            1, DMA_FROM_DEVICE);
 343        WARN_ON(ret != 1);
 344
 345        sge = &recv->r_sge[0];
 346        sge->addr = ic->i_recv_hdrs_dma[recv - ic->i_recvs];
 347        sge->length = sizeof(struct rds_header);
 348
 349        sge = &recv->r_sge[1];
 350        sge->addr = sg_dma_address(&recv->r_frag->f_sg);
 351        sge->length = sg_dma_len(&recv->r_frag->f_sg);
 352
 353        ret = 0;
 354out:
 355        return ret;
 356}
 357
 358static int acquire_refill(struct rds_connection *conn)
 359{
 360        return test_and_set_bit(RDS_RECV_REFILL, &conn->c_flags) == 0;
 361}
 362
 363static void release_refill(struct rds_connection *conn)
 364{
 365        clear_bit(RDS_RECV_REFILL, &conn->c_flags);
 366
 367        /* We don't use wait_on_bit()/wake_up_bit() because our waking is in a
 368         * hot path and finding waiters is very rare.  We don't want to walk
 369         * the system-wide hashed waitqueue buckets in the fast path only to
 370         * almost never find waiters.
 371         */
 372        if (waitqueue_active(&conn->c_waitq))
 373                wake_up_all(&conn->c_waitq);
 374}
 375
 376/*
 377 * This tries to allocate and post unused work requests after making sure that
 378 * they have all the allocations they need to queue received fragments into
 379 * sockets.
 380 */
 381void rds_ib_recv_refill(struct rds_connection *conn, int prefill, gfp_t gfp)
 382{
 383        struct rds_ib_connection *ic = conn->c_transport_data;
 384        struct rds_ib_recv_work *recv;
 385        unsigned int posted = 0;
 386        int ret = 0;
 387        bool can_wait = !!(gfp & __GFP_DIRECT_RECLAIM);
 388        bool must_wake = false;
 389        u32 pos;
 390
 391        /* the goal here is to just make sure that someone, somewhere
 392         * is posting buffers.  If we can't get the refill lock,
 393         * let them do their thing
 394         */
 395        if (!acquire_refill(conn))
 396                return;
 397
 398        while ((prefill || rds_conn_up(conn)) &&
 399               rds_ib_ring_alloc(&ic->i_recv_ring, 1, &pos)) {
 400                if (pos >= ic->i_recv_ring.w_nr) {
 401                        printk(KERN_NOTICE "Argh - ring alloc returned pos=%u\n",
 402                                        pos);
 403                        break;
 404                }
 405
 406                recv = &ic->i_recvs[pos];
 407                ret = rds_ib_recv_refill_one(conn, recv, gfp);
 408                if (ret) {
 409                        must_wake = true;
 410                        break;
 411                }
 412
 413                rdsdebug("recv %p ibinc %p page %p addr %lu\n", recv,
 414                         recv->r_ibinc, sg_page(&recv->r_frag->f_sg),
 415                         (long)sg_dma_address(&recv->r_frag->f_sg));
 416
 417                /* XXX when can this fail? */
 418                ret = ib_post_recv(ic->i_cm_id->qp, &recv->r_wr, NULL);
 419                if (ret) {
 420                        rds_ib_conn_error(conn, "recv post on "
 421                               "%pI6c returned %d, disconnecting and "
 422                               "reconnecting\n", &conn->c_faddr,
 423                               ret);
 424                        break;
 425                }
 426
 427                posted++;
 428
 429                if ((posted > 128 && need_resched()) || posted > 8192) {
 430                        must_wake = true;
 431                        break;
 432                }
 433        }
 434
 435        /* We're doing flow control - update the window. */
 436        if (ic->i_flowctl && posted)
 437                rds_ib_advertise_credits(conn, posted);
 438
 439        if (ret)
 440                rds_ib_ring_unalloc(&ic->i_recv_ring, 1);
 441
 442        release_refill(conn);
 443
 444        /* if we're called from the softirq handler, we'll be GFP_NOWAIT.
 445         * in this case the ring being low is going to lead to more interrupts
 446         * and we can safely let the softirq code take care of it unless the
 447         * ring is completely empty.
 448         *
 449         * if we're called from krdsd, we'll be GFP_KERNEL.  In this case
 450         * we might have raced with the softirq code while we had the refill
 451         * lock held.  Use rds_ib_ring_low() instead of ring_empty to decide
 452         * if we should requeue.
 453         */
 454        if (rds_conn_up(conn) &&
 455            (must_wake ||
 456            (can_wait && rds_ib_ring_low(&ic->i_recv_ring)) ||
 457            rds_ib_ring_empty(&ic->i_recv_ring))) {
 458                queue_delayed_work(rds_wq, &conn->c_recv_w, 1);
 459        }
 460        if (can_wait)
 461                cond_resched();
 462}
 463
 464/*
 465 * We want to recycle several types of recv allocations, like incs and frags.
 466 * To use this, the *_free() function passes in the ptr to a list_head within
 467 * the recyclee, as well as the cache to put it on.
 468 *
 469 * First, we put the memory on a percpu list. When this reaches a certain size,
 470 * We move it to an intermediate non-percpu list in a lockless manner, with some
 471 * xchg/compxchg wizardry.
 472 *
 473 * N.B. Instead of a list_head as the anchor, we use a single pointer, which can
 474 * be NULL and xchg'd. The list is actually empty when the pointer is NULL, and
 475 * list_empty() will return true with one element is actually present.
 476 */
 477static void rds_ib_recv_cache_put(struct list_head *new_item,
 478                                 struct rds_ib_refill_cache *cache)
 479{
 480        unsigned long flags;
 481        struct list_head *old, *chpfirst;
 482
 483        local_irq_save(flags);
 484
 485        chpfirst = __this_cpu_read(cache->percpu->first);
 486        if (!chpfirst)
 487                INIT_LIST_HEAD(new_item);
 488        else /* put on front */
 489                list_add_tail(new_item, chpfirst);
 490
 491        __this_cpu_write(cache->percpu->first, new_item);
 492        __this_cpu_inc(cache->percpu->count);
 493
 494        if (__this_cpu_read(cache->percpu->count) < RDS_IB_RECYCLE_BATCH_COUNT)
 495                goto end;
 496
 497        /*
 498         * Return our per-cpu first list to the cache's xfer by atomically
 499         * grabbing the current xfer list, appending it to our per-cpu list,
 500         * and then atomically returning that entire list back to the
 501         * cache's xfer list as long as it's still empty.
 502         */
 503        do {
 504                old = xchg(&cache->xfer, NULL);
 505                if (old)
 506                        list_splice_entire_tail(old, chpfirst);
 507                old = cmpxchg(&cache->xfer, NULL, chpfirst);
 508        } while (old);
 509
 510
 511        __this_cpu_write(cache->percpu->first, NULL);
 512        __this_cpu_write(cache->percpu->count, 0);
 513end:
 514        local_irq_restore(flags);
 515}
 516
 517static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache)
 518{
 519        struct list_head *head = cache->ready;
 520
 521        if (head) {
 522                if (!list_empty(head)) {
 523                        cache->ready = head->next;
 524                        list_del_init(head);
 525                } else
 526                        cache->ready = NULL;
 527        }
 528
 529        return head;
 530}
 531
 532int rds_ib_inc_copy_to_user(struct rds_incoming *inc, struct iov_iter *to)
 533{
 534        struct rds_ib_incoming *ibinc;
 535        struct rds_page_frag *frag;
 536        unsigned long to_copy;
 537        unsigned long frag_off = 0;
 538        int copied = 0;
 539        int ret;
 540        u32 len;
 541
 542        ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
 543        frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
 544        len = be32_to_cpu(inc->i_hdr.h_len);
 545
 546        while (iov_iter_count(to) && copied < len) {
 547                if (frag_off == RDS_FRAG_SIZE) {
 548                        frag = list_entry(frag->f_item.next,
 549                                          struct rds_page_frag, f_item);
 550                        frag_off = 0;
 551                }
 552                to_copy = min_t(unsigned long, iov_iter_count(to),
 553                                RDS_FRAG_SIZE - frag_off);
 554                to_copy = min_t(unsigned long, to_copy, len - copied);
 555
 556                /* XXX needs + offset for multiple recvs per page */
 557                rds_stats_add(s_copy_to_user, to_copy);
 558                ret = copy_page_to_iter(sg_page(&frag->f_sg),
 559                                        frag->f_sg.offset + frag_off,
 560                                        to_copy,
 561                                        to);
 562                if (ret != to_copy)
 563                        return -EFAULT;
 564
 565                frag_off += to_copy;
 566                copied += to_copy;
 567        }
 568
 569        return copied;
 570}
 571
 572/* ic starts out kzalloc()ed */
 573void rds_ib_recv_init_ack(struct rds_ib_connection *ic)
 574{
 575        struct ib_send_wr *wr = &ic->i_ack_wr;
 576        struct ib_sge *sge = &ic->i_ack_sge;
 577
 578        sge->addr = ic->i_ack_dma;
 579        sge->length = sizeof(struct rds_header);
 580        sge->lkey = ic->i_pd->local_dma_lkey;
 581
 582        wr->sg_list = sge;
 583        wr->num_sge = 1;
 584        wr->opcode = IB_WR_SEND;
 585        wr->wr_id = RDS_IB_ACK_WR_ID;
 586        wr->send_flags = IB_SEND_SIGNALED | IB_SEND_SOLICITED;
 587}
 588
 589/*
 590 * You'd think that with reliable IB connections you wouldn't need to ack
 591 * messages that have been received.  The problem is that IB hardware generates
 592 * an ack message before it has DMAed the message into memory.  This creates a
 593 * potential message loss if the HCA is disabled for any reason between when it
 594 * sends the ack and before the message is DMAed and processed.  This is only a
 595 * potential issue if another HCA is available for fail-over.
 596 *
 597 * When the remote host receives our ack they'll free the sent message from
 598 * their send queue.  To decrease the latency of this we always send an ack
 599 * immediately after we've received messages.
 600 *
 601 * For simplicity, we only have one ack in flight at a time.  This puts
 602 * pressure on senders to have deep enough send queues to absorb the latency of
 603 * a single ack frame being in flight.  This might not be good enough.
 604 *
 605 * This is implemented by have a long-lived send_wr and sge which point to a
 606 * statically allocated ack frame.  This ack wr does not fall under the ring
 607 * accounting that the tx and rx wrs do.  The QP attribute specifically makes
 608 * room for it beyond the ring size.  Send completion notices its special
 609 * wr_id and avoids working with the ring in that case.
 610 */
 611#ifndef KERNEL_HAS_ATOMIC64
 612void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq, int ack_required)
 613{
 614        unsigned long flags;
 615
 616        spin_lock_irqsave(&ic->i_ack_lock, flags);
 617        ic->i_ack_next = seq;
 618        if (ack_required)
 619                set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
 620        spin_unlock_irqrestore(&ic->i_ack_lock, flags);
 621}
 622
 623static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
 624{
 625        unsigned long flags;
 626        u64 seq;
 627
 628        clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
 629
 630        spin_lock_irqsave(&ic->i_ack_lock, flags);
 631        seq = ic->i_ack_next;
 632        spin_unlock_irqrestore(&ic->i_ack_lock, flags);
 633
 634        return seq;
 635}
 636#else
 637void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq, int ack_required)
 638{
 639        atomic64_set(&ic->i_ack_next, seq);
 640        if (ack_required) {
 641                smp_mb__before_atomic();
 642                set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
 643        }
 644}
 645
 646static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
 647{
 648        clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
 649        smp_mb__after_atomic();
 650
 651        return atomic64_read(&ic->i_ack_next);
 652}
 653#endif
 654
 655
 656static void rds_ib_send_ack(struct rds_ib_connection *ic, unsigned int adv_credits)
 657{
 658        struct rds_header *hdr = ic->i_ack;
 659        u64 seq;
 660        int ret;
 661
 662        seq = rds_ib_get_ack(ic);
 663
 664        rdsdebug("send_ack: ic %p ack %llu\n", ic, (unsigned long long) seq);
 665        rds_message_populate_header(hdr, 0, 0, 0);
 666        hdr->h_ack = cpu_to_be64(seq);
 667        hdr->h_credit = adv_credits;
 668        rds_message_make_checksum(hdr);
 669        ic->i_ack_queued = jiffies;
 670
 671        ret = ib_post_send(ic->i_cm_id->qp, &ic->i_ack_wr, NULL);
 672        if (unlikely(ret)) {
 673                /* Failed to send. Release the WR, and
 674                 * force another ACK.
 675                 */
 676                clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
 677                set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
 678
 679                rds_ib_stats_inc(s_ib_ack_send_failure);
 680
 681                rds_ib_conn_error(ic->conn, "sending ack failed\n");
 682        } else
 683                rds_ib_stats_inc(s_ib_ack_sent);
 684}
 685
 686/*
 687 * There are 3 ways of getting acknowledgements to the peer:
 688 *  1.  We call rds_ib_attempt_ack from the recv completion handler
 689 *      to send an ACK-only frame.
 690 *      However, there can be only one such frame in the send queue
 691 *      at any time, so we may have to postpone it.
 692 *  2.  When another (data) packet is transmitted while there's
 693 *      an ACK in the queue, we piggyback the ACK sequence number
 694 *      on the data packet.
 695 *  3.  If the ACK WR is done sending, we get called from the
 696 *      send queue completion handler, and check whether there's
 697 *      another ACK pending (postponed because the WR was on the
 698 *      queue). If so, we transmit it.
 699 *
 700 * We maintain 2 variables:
 701 *  -   i_ack_flags, which keeps track of whether the ACK WR
 702 *      is currently in the send queue or not (IB_ACK_IN_FLIGHT)
 703 *  -   i_ack_next, which is the last sequence number we received
 704 *
 705 * Potentially, send queue and receive queue handlers can run concurrently.
 706 * It would be nice to not have to use a spinlock to synchronize things,
 707 * but the one problem that rules this out is that 64bit updates are
 708 * not atomic on all platforms. Things would be a lot simpler if
 709 * we had atomic64 or maybe cmpxchg64 everywhere.
 710 *
 711 * Reconnecting complicates this picture just slightly. When we
 712 * reconnect, we may be seeing duplicate packets. The peer
 713 * is retransmitting them, because it hasn't seen an ACK for
 714 * them. It is important that we ACK these.
 715 *
 716 * ACK mitigation adds a header flag "ACK_REQUIRED"; any packet with
 717 * this flag set *MUST* be acknowledged immediately.
 718 */
 719
 720/*
 721 * When we get here, we're called from the recv queue handler.
 722 * Check whether we ought to transmit an ACK.
 723 */
 724void rds_ib_attempt_ack(struct rds_ib_connection *ic)
 725{
 726        unsigned int adv_credits;
 727
 728        if (!test_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
 729                return;
 730
 731        if (test_and_set_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags)) {
 732                rds_ib_stats_inc(s_ib_ack_send_delayed);
 733                return;
 734        }
 735
 736        /* Can we get a send credit? */
 737        if (!rds_ib_send_grab_credits(ic, 1, &adv_credits, 0, RDS_MAX_ADV_CREDIT)) {
 738                rds_ib_stats_inc(s_ib_tx_throttle);
 739                clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
 740                return;
 741        }
 742
 743        clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
 744        rds_ib_send_ack(ic, adv_credits);
 745}
 746
 747/*
 748 * We get here from the send completion handler, when the
 749 * adapter tells us the ACK frame was sent.
 750 */
 751void rds_ib_ack_send_complete(struct rds_ib_connection *ic)
 752{
 753        clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
 754        rds_ib_attempt_ack(ic);
 755}
 756
 757/*
 758 * This is called by the regular xmit code when it wants to piggyback
 759 * an ACK on an outgoing frame.
 760 */
 761u64 rds_ib_piggyb_ack(struct rds_ib_connection *ic)
 762{
 763        if (test_and_clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
 764                rds_ib_stats_inc(s_ib_ack_send_piggybacked);
 765        return rds_ib_get_ack(ic);
 766}
 767
 768/*
 769 * It's kind of lame that we're copying from the posted receive pages into
 770 * long-lived bitmaps.  We could have posted the bitmaps and rdma written into
 771 * them.  But receiving new congestion bitmaps should be a *rare* event, so
 772 * hopefully we won't need to invest that complexity in making it more
 773 * efficient.  By copying we can share a simpler core with TCP which has to
 774 * copy.
 775 */
 776static void rds_ib_cong_recv(struct rds_connection *conn,
 777                              struct rds_ib_incoming *ibinc)
 778{
 779        struct rds_cong_map *map;
 780        unsigned int map_off;
 781        unsigned int map_page;
 782        struct rds_page_frag *frag;
 783        unsigned long frag_off;
 784        unsigned long to_copy;
 785        unsigned long copied;
 786        __le64 uncongested = 0;
 787        void *addr;
 788
 789        /* catch completely corrupt packets */
 790        if (be32_to_cpu(ibinc->ii_inc.i_hdr.h_len) != RDS_CONG_MAP_BYTES)
 791                return;
 792
 793        map = conn->c_fcong;
 794        map_page = 0;
 795        map_off = 0;
 796
 797        frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
 798        frag_off = 0;
 799
 800        copied = 0;
 801
 802        while (copied < RDS_CONG_MAP_BYTES) {
 803                __le64 *src, *dst;
 804                unsigned int k;
 805
 806                to_copy = min(RDS_FRAG_SIZE - frag_off, PAGE_SIZE - map_off);
 807                BUG_ON(to_copy & 7); /* Must be 64bit aligned. */
 808
 809                addr = kmap_atomic(sg_page(&frag->f_sg));
 810
 811                src = addr + frag->f_sg.offset + frag_off;
 812                dst = (void *)map->m_page_addrs[map_page] + map_off;
 813                for (k = 0; k < to_copy; k += 8) {
 814                        /* Record ports that became uncongested, ie
 815                         * bits that changed from 0 to 1. */
 816                        uncongested |= ~(*src) & *dst;
 817                        *dst++ = *src++;
 818                }
 819                kunmap_atomic(addr);
 820
 821                copied += to_copy;
 822
 823                map_off += to_copy;
 824                if (map_off == PAGE_SIZE) {
 825                        map_off = 0;
 826                        map_page++;
 827                }
 828
 829                frag_off += to_copy;
 830                if (frag_off == RDS_FRAG_SIZE) {
 831                        frag = list_entry(frag->f_item.next,
 832                                          struct rds_page_frag, f_item);
 833                        frag_off = 0;
 834                }
 835        }
 836
 837        /* the congestion map is in little endian order */
 838        rds_cong_map_updated(map, le64_to_cpu(uncongested));
 839}
 840
 841static void rds_ib_process_recv(struct rds_connection *conn,
 842                                struct rds_ib_recv_work *recv, u32 data_len,
 843                                struct rds_ib_ack_state *state)
 844{
 845        struct rds_ib_connection *ic = conn->c_transport_data;
 846        struct rds_ib_incoming *ibinc = ic->i_ibinc;
 847        struct rds_header *ihdr, *hdr;
 848
 849        /* XXX shut down the connection if port 0,0 are seen? */
 850
 851        rdsdebug("ic %p ibinc %p recv %p byte len %u\n", ic, ibinc, recv,
 852                 data_len);
 853
 854        if (data_len < sizeof(struct rds_header)) {
 855                rds_ib_conn_error(conn, "incoming message "
 856                       "from %pI6c didn't include a "
 857                       "header, disconnecting and "
 858                       "reconnecting\n",
 859                       &conn->c_faddr);
 860                return;
 861        }
 862        data_len -= sizeof(struct rds_header);
 863
 864        ihdr = ic->i_recv_hdrs[recv - ic->i_recvs];
 865
 866        /* Validate the checksum. */
 867        if (!rds_message_verify_checksum(ihdr)) {
 868                rds_ib_conn_error(conn, "incoming message "
 869                       "from %pI6c has corrupted header - "
 870                       "forcing a reconnect\n",
 871                       &conn->c_faddr);
 872                rds_stats_inc(s_recv_drop_bad_checksum);
 873                return;
 874        }
 875
 876        /* Process the ACK sequence which comes with every packet */
 877        state->ack_recv = be64_to_cpu(ihdr->h_ack);
 878        state->ack_recv_valid = 1;
 879
 880        /* Process the credits update if there was one */
 881        if (ihdr->h_credit)
 882                rds_ib_send_add_credits(conn, ihdr->h_credit);
 883
 884        if (ihdr->h_sport == 0 && ihdr->h_dport == 0 && data_len == 0) {
 885                /* This is an ACK-only packet. The fact that it gets
 886                 * special treatment here is that historically, ACKs
 887                 * were rather special beasts.
 888                 */
 889                rds_ib_stats_inc(s_ib_ack_received);
 890
 891                /*
 892                 * Usually the frags make their way on to incs and are then freed as
 893                 * the inc is freed.  We don't go that route, so we have to drop the
 894                 * page ref ourselves.  We can't just leave the page on the recv
 895                 * because that confuses the dma mapping of pages and each recv's use
 896                 * of a partial page.
 897                 *
 898                 * FIXME: Fold this into the code path below.
 899                 */
 900                rds_ib_frag_free(ic, recv->r_frag);
 901                recv->r_frag = NULL;
 902                return;
 903        }
 904
 905        /*
 906         * If we don't already have an inc on the connection then this
 907         * fragment has a header and starts a message.. copy its header
 908         * into the inc and save the inc so we can hang upcoming fragments
 909         * off its list.
 910         */
 911        if (!ibinc) {
 912                ibinc = recv->r_ibinc;
 913                recv->r_ibinc = NULL;
 914                ic->i_ibinc = ibinc;
 915
 916                hdr = &ibinc->ii_inc.i_hdr;
 917                ibinc->ii_inc.i_rx_lat_trace[RDS_MSG_RX_HDR] =
 918                                local_clock();
 919                memcpy(hdr, ihdr, sizeof(*hdr));
 920                ic->i_recv_data_rem = be32_to_cpu(hdr->h_len);
 921                ibinc->ii_inc.i_rx_lat_trace[RDS_MSG_RX_START] =
 922                                local_clock();
 923
 924                rdsdebug("ic %p ibinc %p rem %u flag 0x%x\n", ic, ibinc,
 925                         ic->i_recv_data_rem, hdr->h_flags);
 926        } else {
 927                hdr = &ibinc->ii_inc.i_hdr;
 928                /* We can't just use memcmp here; fragments of a
 929                 * single message may carry different ACKs */
 930                if (hdr->h_sequence != ihdr->h_sequence ||
 931                    hdr->h_len != ihdr->h_len ||
 932                    hdr->h_sport != ihdr->h_sport ||
 933                    hdr->h_dport != ihdr->h_dport) {
 934                        rds_ib_conn_error(conn,
 935                                "fragment header mismatch; forcing reconnect\n");
 936                        return;
 937                }
 938        }
 939
 940        list_add_tail(&recv->r_frag->f_item, &ibinc->ii_frags);
 941        recv->r_frag = NULL;
 942
 943        if (ic->i_recv_data_rem > RDS_FRAG_SIZE)
 944                ic->i_recv_data_rem -= RDS_FRAG_SIZE;
 945        else {
 946                ic->i_recv_data_rem = 0;
 947                ic->i_ibinc = NULL;
 948
 949                if (ibinc->ii_inc.i_hdr.h_flags == RDS_FLAG_CONG_BITMAP) {
 950                        rds_ib_cong_recv(conn, ibinc);
 951                } else {
 952                        rds_recv_incoming(conn, &conn->c_faddr, &conn->c_laddr,
 953                                          &ibinc->ii_inc, GFP_ATOMIC);
 954                        state->ack_next = be64_to_cpu(hdr->h_sequence);
 955                        state->ack_next_valid = 1;
 956                }
 957
 958                /* Evaluate the ACK_REQUIRED flag *after* we received
 959                 * the complete frame, and after bumping the next_rx
 960                 * sequence. */
 961                if (hdr->h_flags & RDS_FLAG_ACK_REQUIRED) {
 962                        rds_stats_inc(s_recv_ack_required);
 963                        state->ack_required = 1;
 964                }
 965
 966                rds_inc_put(&ibinc->ii_inc);
 967        }
 968}
 969
 970void rds_ib_recv_cqe_handler(struct rds_ib_connection *ic,
 971                             struct ib_wc *wc,
 972                             struct rds_ib_ack_state *state)
 973{
 974        struct rds_connection *conn = ic->conn;
 975        struct rds_ib_recv_work *recv;
 976
 977        rdsdebug("wc wr_id 0x%llx status %u (%s) byte_len %u imm_data %u\n",
 978                 (unsigned long long)wc->wr_id, wc->status,
 979                 ib_wc_status_msg(wc->status), wc->byte_len,
 980                 be32_to_cpu(wc->ex.imm_data));
 981
 982        rds_ib_stats_inc(s_ib_rx_cq_event);
 983        recv = &ic->i_recvs[rds_ib_ring_oldest(&ic->i_recv_ring)];
 984        ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1,
 985                        DMA_FROM_DEVICE);
 986
 987        /* Also process recvs in connecting state because it is possible
 988         * to get a recv completion _before_ the rdmacm ESTABLISHED
 989         * event is processed.
 990         */
 991        if (wc->status == IB_WC_SUCCESS) {
 992                rds_ib_process_recv(conn, recv, wc->byte_len, state);
 993        } else {
 994                /* We expect errors as the qp is drained during shutdown */
 995                if (rds_conn_up(conn) || rds_conn_connecting(conn))
 996                        rds_ib_conn_error(conn, "recv completion on <%pI6c,%pI6c, %d> had status %u (%s), vendor err 0x%x, disconnecting and reconnecting\n",
 997                                          &conn->c_laddr, &conn->c_faddr,
 998                                          conn->c_tos, wc->status,
 999                                          ib_wc_status_msg(wc->status),
1000                                          wc->vendor_err);
1001        }
1002
1003        /* rds_ib_process_recv() doesn't always consume the frag, and
1004         * we might not have called it at all if the wc didn't indicate
1005         * success. We already unmapped the frag's pages, though, and
1006         * the following rds_ib_ring_free() call tells the refill path
1007         * that it will not find an allocated frag here. Make sure we
1008         * keep that promise by freeing a frag that's still on the ring.
1009         */
1010        if (recv->r_frag) {
1011                rds_ib_frag_free(ic, recv->r_frag);
1012                recv->r_frag = NULL;
1013        }
1014        rds_ib_ring_free(&ic->i_recv_ring, 1);
1015
1016        /* If we ever end up with a really empty receive ring, we're
1017         * in deep trouble, as the sender will definitely see RNR
1018         * timeouts. */
1019        if (rds_ib_ring_empty(&ic->i_recv_ring))
1020                rds_ib_stats_inc(s_ib_rx_ring_empty);
1021
1022        if (rds_ib_ring_low(&ic->i_recv_ring)) {
1023                rds_ib_recv_refill(conn, 0, GFP_NOWAIT);
1024                rds_ib_stats_inc(s_ib_rx_refill_from_cq);
1025        }
1026}
1027
1028int rds_ib_recv_path(struct rds_conn_path *cp)
1029{
1030        struct rds_connection *conn = cp->cp_conn;
1031        struct rds_ib_connection *ic = conn->c_transport_data;
1032
1033        rdsdebug("conn %p\n", conn);
1034        if (rds_conn_up(conn)) {
1035                rds_ib_attempt_ack(ic);
1036                rds_ib_recv_refill(conn, 0, GFP_KERNEL);
1037                rds_ib_stats_inc(s_ib_rx_refill_from_thread);
1038        }
1039
1040        return 0;
1041}
1042
1043int rds_ib_recv_init(void)
1044{
1045        struct sysinfo si;
1046        int ret = -ENOMEM;
1047
1048        /* Default to 30% of all available RAM for recv memory */
1049        si_meminfo(&si);
1050        rds_ib_sysctl_max_recv_allocation = si.totalram / 3 * PAGE_SIZE / RDS_FRAG_SIZE;
1051
1052        rds_ib_incoming_slab =
1053                kmem_cache_create_usercopy("rds_ib_incoming",
1054                                           sizeof(struct rds_ib_incoming),
1055                                           0, SLAB_HWCACHE_ALIGN,
1056                                           offsetof(struct rds_ib_incoming,
1057                                                    ii_inc.i_usercopy),
1058                                           sizeof(struct rds_inc_usercopy),
1059                                           NULL);
1060        if (!rds_ib_incoming_slab)
1061                goto out;
1062
1063        rds_ib_frag_slab = kmem_cache_create("rds_ib_frag",
1064                                        sizeof(struct rds_page_frag),
1065                                        0, SLAB_HWCACHE_ALIGN, NULL);
1066        if (!rds_ib_frag_slab) {
1067                kmem_cache_destroy(rds_ib_incoming_slab);
1068                rds_ib_incoming_slab = NULL;
1069        } else
1070                ret = 0;
1071out:
1072        return ret;
1073}
1074
1075void rds_ib_recv_exit(void)
1076{
1077        WARN_ON(atomic_read(&rds_ib_allocation));
1078
1079        kmem_cache_destroy(rds_ib_incoming_slab);
1080        kmem_cache_destroy(rds_ib_frag_slab);
1081}
1082