linux/net/socket.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * NET          An implementation of the SOCKET network access protocol.
   4 *
   5 * Version:     @(#)socket.c    1.1.93  18/02/95
   6 *
   7 * Authors:     Orest Zborowski, <obz@Kodak.COM>
   8 *              Ross Biro
   9 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10 *
  11 * Fixes:
  12 *              Anonymous       :       NOTSOCK/BADF cleanup. Error fix in
  13 *                                      shutdown()
  14 *              Alan Cox        :       verify_area() fixes
  15 *              Alan Cox        :       Removed DDI
  16 *              Jonathan Kamens :       SOCK_DGRAM reconnect bug
  17 *              Alan Cox        :       Moved a load of checks to the very
  18 *                                      top level.
  19 *              Alan Cox        :       Move address structures to/from user
  20 *                                      mode above the protocol layers.
  21 *              Rob Janssen     :       Allow 0 length sends.
  22 *              Alan Cox        :       Asynchronous I/O support (cribbed from the
  23 *                                      tty drivers).
  24 *              Niibe Yutaka    :       Asynchronous I/O for writes (4.4BSD style)
  25 *              Jeff Uphoff     :       Made max number of sockets command-line
  26 *                                      configurable.
  27 *              Matti Aarnio    :       Made the number of sockets dynamic,
  28 *                                      to be allocated when needed, and mr.
  29 *                                      Uphoff's max is used as max to be
  30 *                                      allowed to allocate.
  31 *              Linus           :       Argh. removed all the socket allocation
  32 *                                      altogether: it's in the inode now.
  33 *              Alan Cox        :       Made sock_alloc()/sock_release() public
  34 *                                      for NetROM and future kernel nfsd type
  35 *                                      stuff.
  36 *              Alan Cox        :       sendmsg/recvmsg basics.
  37 *              Tom Dyas        :       Export net symbols.
  38 *              Marcin Dalecki  :       Fixed problems with CONFIG_NET="n".
  39 *              Alan Cox        :       Added thread locking to sys_* calls
  40 *                                      for sockets. May have errors at the
  41 *                                      moment.
  42 *              Kevin Buhr      :       Fixed the dumb errors in the above.
  43 *              Andi Kleen      :       Some small cleanups, optimizations,
  44 *                                      and fixed a copy_from_user() bug.
  45 *              Tigran Aivazian :       sys_send(args) calls sys_sendto(args, NULL, 0)
  46 *              Tigran Aivazian :       Made listen(2) backlog sanity checks
  47 *                                      protocol-independent
  48 *
  49 *      This module is effectively the top level interface to the BSD socket
  50 *      paradigm.
  51 *
  52 *      Based upon Swansea University Computer Society NET3.039
  53 */
  54
  55#include <linux/mm.h>
  56#include <linux/socket.h>
  57#include <linux/file.h>
  58#include <linux/net.h>
  59#include <linux/interrupt.h>
  60#include <linux/thread_info.h>
  61#include <linux/rcupdate.h>
  62#include <linux/netdevice.h>
  63#include <linux/proc_fs.h>
  64#include <linux/seq_file.h>
  65#include <linux/mutex.h>
  66#include <linux/if_bridge.h>
  67#include <linux/if_frad.h>
  68#include <linux/if_vlan.h>
  69#include <linux/ptp_classify.h>
  70#include <linux/init.h>
  71#include <linux/poll.h>
  72#include <linux/cache.h>
  73#include <linux/module.h>
  74#include <linux/highmem.h>
  75#include <linux/mount.h>
  76#include <linux/pseudo_fs.h>
  77#include <linux/security.h>
  78#include <linux/syscalls.h>
  79#include <linux/compat.h>
  80#include <linux/kmod.h>
  81#include <linux/audit.h>
  82#include <linux/wireless.h>
  83#include <linux/nsproxy.h>
  84#include <linux/magic.h>
  85#include <linux/slab.h>
  86#include <linux/xattr.h>
  87#include <linux/nospec.h>
  88#include <linux/indirect_call_wrapper.h>
  89
  90#include <linux/uaccess.h>
  91#include <asm/unistd.h>
  92
  93#include <net/compat.h>
  94#include <net/wext.h>
  95#include <net/cls_cgroup.h>
  96
  97#include <net/sock.h>
  98#include <linux/netfilter.h>
  99
 100#include <linux/if_tun.h>
 101#include <linux/ipv6_route.h>
 102#include <linux/route.h>
 103#include <linux/termios.h>
 104#include <linux/sockios.h>
 105#include <net/busy_poll.h>
 106#include <linux/errqueue.h>
 107
 108#ifdef CONFIG_NET_RX_BUSY_POLL
 109unsigned int sysctl_net_busy_read __read_mostly;
 110unsigned int sysctl_net_busy_poll __read_mostly;
 111#endif
 112
 113static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
 114static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
 115static int sock_mmap(struct file *file, struct vm_area_struct *vma);
 116
 117static int sock_close(struct inode *inode, struct file *file);
 118static __poll_t sock_poll(struct file *file,
 119                              struct poll_table_struct *wait);
 120static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 121#ifdef CONFIG_COMPAT
 122static long compat_sock_ioctl(struct file *file,
 123                              unsigned int cmd, unsigned long arg);
 124#endif
 125static int sock_fasync(int fd, struct file *filp, int on);
 126static ssize_t sock_sendpage(struct file *file, struct page *page,
 127                             int offset, size_t size, loff_t *ppos, int more);
 128static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 129                                struct pipe_inode_info *pipe, size_t len,
 130                                unsigned int flags);
 131
 132/*
 133 *      Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
 134 *      in the operation structures but are done directly via the socketcall() multiplexor.
 135 */
 136
 137static const struct file_operations socket_file_ops = {
 138        .owner =        THIS_MODULE,
 139        .llseek =       no_llseek,
 140        .read_iter =    sock_read_iter,
 141        .write_iter =   sock_write_iter,
 142        .poll =         sock_poll,
 143        .unlocked_ioctl = sock_ioctl,
 144#ifdef CONFIG_COMPAT
 145        .compat_ioctl = compat_sock_ioctl,
 146#endif
 147        .mmap =         sock_mmap,
 148        .release =      sock_close,
 149        .fasync =       sock_fasync,
 150        .sendpage =     sock_sendpage,
 151        .splice_write = generic_splice_sendpage,
 152        .splice_read =  sock_splice_read,
 153};
 154
 155/*
 156 *      The protocol list. Each protocol is registered in here.
 157 */
 158
 159static DEFINE_SPINLOCK(net_family_lock);
 160static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
 161
 162/*
 163 * Support routines.
 164 * Move socket addresses back and forth across the kernel/user
 165 * divide and look after the messy bits.
 166 */
 167
 168/**
 169 *      move_addr_to_kernel     -       copy a socket address into kernel space
 170 *      @uaddr: Address in user space
 171 *      @kaddr: Address in kernel space
 172 *      @ulen: Length in user space
 173 *
 174 *      The address is copied into kernel space. If the provided address is
 175 *      too long an error code of -EINVAL is returned. If the copy gives
 176 *      invalid addresses -EFAULT is returned. On a success 0 is returned.
 177 */
 178
 179int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
 180{
 181        if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
 182                return -EINVAL;
 183        if (ulen == 0)
 184                return 0;
 185        if (copy_from_user(kaddr, uaddr, ulen))
 186                return -EFAULT;
 187        return audit_sockaddr(ulen, kaddr);
 188}
 189
 190/**
 191 *      move_addr_to_user       -       copy an address to user space
 192 *      @kaddr: kernel space address
 193 *      @klen: length of address in kernel
 194 *      @uaddr: user space address
 195 *      @ulen: pointer to user length field
 196 *
 197 *      The value pointed to by ulen on entry is the buffer length available.
 198 *      This is overwritten with the buffer space used. -EINVAL is returned
 199 *      if an overlong buffer is specified or a negative buffer size. -EFAULT
 200 *      is returned if either the buffer or the length field are not
 201 *      accessible.
 202 *      After copying the data up to the limit the user specifies, the true
 203 *      length of the data is written over the length limit the user
 204 *      specified. Zero is returned for a success.
 205 */
 206
 207static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
 208                             void __user *uaddr, int __user *ulen)
 209{
 210        int err;
 211        int len;
 212
 213        BUG_ON(klen > sizeof(struct sockaddr_storage));
 214        err = get_user(len, ulen);
 215        if (err)
 216                return err;
 217        if (len > klen)
 218                len = klen;
 219        if (len < 0)
 220                return -EINVAL;
 221        if (len) {
 222                if (audit_sockaddr(klen, kaddr))
 223                        return -ENOMEM;
 224                if (copy_to_user(uaddr, kaddr, len))
 225                        return -EFAULT;
 226        }
 227        /*
 228         *      "fromlen shall refer to the value before truncation.."
 229         *                      1003.1g
 230         */
 231        return __put_user(klen, ulen);
 232}
 233
 234static struct kmem_cache *sock_inode_cachep __ro_after_init;
 235
 236static struct inode *sock_alloc_inode(struct super_block *sb)
 237{
 238        struct socket_alloc *ei;
 239
 240        ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
 241        if (!ei)
 242                return NULL;
 243        init_waitqueue_head(&ei->socket.wq.wait);
 244        ei->socket.wq.fasync_list = NULL;
 245        ei->socket.wq.flags = 0;
 246
 247        ei->socket.state = SS_UNCONNECTED;
 248        ei->socket.flags = 0;
 249        ei->socket.ops = NULL;
 250        ei->socket.sk = NULL;
 251        ei->socket.file = NULL;
 252
 253        return &ei->vfs_inode;
 254}
 255
 256static void sock_free_inode(struct inode *inode)
 257{
 258        struct socket_alloc *ei;
 259
 260        ei = container_of(inode, struct socket_alloc, vfs_inode);
 261        kmem_cache_free(sock_inode_cachep, ei);
 262}
 263
 264static void init_once(void *foo)
 265{
 266        struct socket_alloc *ei = (struct socket_alloc *)foo;
 267
 268        inode_init_once(&ei->vfs_inode);
 269}
 270
 271static void init_inodecache(void)
 272{
 273        sock_inode_cachep = kmem_cache_create("sock_inode_cache",
 274                                              sizeof(struct socket_alloc),
 275                                              0,
 276                                              (SLAB_HWCACHE_ALIGN |
 277                                               SLAB_RECLAIM_ACCOUNT |
 278                                               SLAB_MEM_SPREAD | SLAB_ACCOUNT),
 279                                              init_once);
 280        BUG_ON(sock_inode_cachep == NULL);
 281}
 282
 283static const struct super_operations sockfs_ops = {
 284        .alloc_inode    = sock_alloc_inode,
 285        .free_inode     = sock_free_inode,
 286        .statfs         = simple_statfs,
 287};
 288
 289/*
 290 * sockfs_dname() is called from d_path().
 291 */
 292static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
 293{
 294        return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
 295                                d_inode(dentry)->i_ino);
 296}
 297
 298static const struct dentry_operations sockfs_dentry_operations = {
 299        .d_dname  = sockfs_dname,
 300};
 301
 302static int sockfs_xattr_get(const struct xattr_handler *handler,
 303                            struct dentry *dentry, struct inode *inode,
 304                            const char *suffix, void *value, size_t size)
 305{
 306        if (value) {
 307                if (dentry->d_name.len + 1 > size)
 308                        return -ERANGE;
 309                memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
 310        }
 311        return dentry->d_name.len + 1;
 312}
 313
 314#define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
 315#define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
 316#define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
 317
 318static const struct xattr_handler sockfs_xattr_handler = {
 319        .name = XATTR_NAME_SOCKPROTONAME,
 320        .get = sockfs_xattr_get,
 321};
 322
 323static int sockfs_security_xattr_set(const struct xattr_handler *handler,
 324                                     struct dentry *dentry, struct inode *inode,
 325                                     const char *suffix, const void *value,
 326                                     size_t size, int flags)
 327{
 328        /* Handled by LSM. */
 329        return -EAGAIN;
 330}
 331
 332static const struct xattr_handler sockfs_security_xattr_handler = {
 333        .prefix = XATTR_SECURITY_PREFIX,
 334        .set = sockfs_security_xattr_set,
 335};
 336
 337static const struct xattr_handler *sockfs_xattr_handlers[] = {
 338        &sockfs_xattr_handler,
 339        &sockfs_security_xattr_handler,
 340        NULL
 341};
 342
 343static int sockfs_init_fs_context(struct fs_context *fc)
 344{
 345        struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
 346        if (!ctx)
 347                return -ENOMEM;
 348        ctx->ops = &sockfs_ops;
 349        ctx->dops = &sockfs_dentry_operations;
 350        ctx->xattr = sockfs_xattr_handlers;
 351        return 0;
 352}
 353
 354static struct vfsmount *sock_mnt __read_mostly;
 355
 356static struct file_system_type sock_fs_type = {
 357        .name =         "sockfs",
 358        .init_fs_context = sockfs_init_fs_context,
 359        .kill_sb =      kill_anon_super,
 360};
 361
 362/*
 363 *      Obtains the first available file descriptor and sets it up for use.
 364 *
 365 *      These functions create file structures and maps them to fd space
 366 *      of the current process. On success it returns file descriptor
 367 *      and file struct implicitly stored in sock->file.
 368 *      Note that another thread may close file descriptor before we return
 369 *      from this function. We use the fact that now we do not refer
 370 *      to socket after mapping. If one day we will need it, this
 371 *      function will increment ref. count on file by 1.
 372 *
 373 *      In any case returned fd MAY BE not valid!
 374 *      This race condition is unavoidable
 375 *      with shared fd spaces, we cannot solve it inside kernel,
 376 *      but we take care of internal coherence yet.
 377 */
 378
 379/**
 380 *      sock_alloc_file - Bind a &socket to a &file
 381 *      @sock: socket
 382 *      @flags: file status flags
 383 *      @dname: protocol name
 384 *
 385 *      Returns the &file bound with @sock, implicitly storing it
 386 *      in sock->file. If dname is %NULL, sets to "".
 387 *      On failure the return is a ERR pointer (see linux/err.h).
 388 *      This function uses GFP_KERNEL internally.
 389 */
 390
 391struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
 392{
 393        struct file *file;
 394
 395        if (!dname)
 396                dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
 397
 398        file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
 399                                O_RDWR | (flags & O_NONBLOCK),
 400                                &socket_file_ops);
 401        if (IS_ERR(file)) {
 402                sock_release(sock);
 403                return file;
 404        }
 405
 406        sock->file = file;
 407        file->private_data = sock;
 408        stream_open(SOCK_INODE(sock), file);
 409        return file;
 410}
 411EXPORT_SYMBOL(sock_alloc_file);
 412
 413static int sock_map_fd(struct socket *sock, int flags)
 414{
 415        struct file *newfile;
 416        int fd = get_unused_fd_flags(flags);
 417        if (unlikely(fd < 0)) {
 418                sock_release(sock);
 419                return fd;
 420        }
 421
 422        newfile = sock_alloc_file(sock, flags, NULL);
 423        if (!IS_ERR(newfile)) {
 424                fd_install(fd, newfile);
 425                return fd;
 426        }
 427
 428        put_unused_fd(fd);
 429        return PTR_ERR(newfile);
 430}
 431
 432/**
 433 *      sock_from_file - Return the &socket bounded to @file.
 434 *      @file: file
 435 *      @err: pointer to an error code return
 436 *
 437 *      On failure returns %NULL and assigns -ENOTSOCK to @err.
 438 */
 439
 440struct socket *sock_from_file(struct file *file, int *err)
 441{
 442        if (file->f_op == &socket_file_ops)
 443                return file->private_data;      /* set in sock_map_fd */
 444
 445        *err = -ENOTSOCK;
 446        return NULL;
 447}
 448EXPORT_SYMBOL(sock_from_file);
 449
 450/**
 451 *      sockfd_lookup - Go from a file number to its socket slot
 452 *      @fd: file handle
 453 *      @err: pointer to an error code return
 454 *
 455 *      The file handle passed in is locked and the socket it is bound
 456 *      to is returned. If an error occurs the err pointer is overwritten
 457 *      with a negative errno code and NULL is returned. The function checks
 458 *      for both invalid handles and passing a handle which is not a socket.
 459 *
 460 *      On a success the socket object pointer is returned.
 461 */
 462
 463struct socket *sockfd_lookup(int fd, int *err)
 464{
 465        struct file *file;
 466        struct socket *sock;
 467
 468        file = fget(fd);
 469        if (!file) {
 470                *err = -EBADF;
 471                return NULL;
 472        }
 473
 474        sock = sock_from_file(file, err);
 475        if (!sock)
 476                fput(file);
 477        return sock;
 478}
 479EXPORT_SYMBOL(sockfd_lookup);
 480
 481static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
 482{
 483        struct fd f = fdget(fd);
 484        struct socket *sock;
 485
 486        *err = -EBADF;
 487        if (f.file) {
 488                sock = sock_from_file(f.file, err);
 489                if (likely(sock)) {
 490                        *fput_needed = f.flags;
 491                        return sock;
 492                }
 493                fdput(f);
 494        }
 495        return NULL;
 496}
 497
 498static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
 499                                size_t size)
 500{
 501        ssize_t len;
 502        ssize_t used = 0;
 503
 504        len = security_inode_listsecurity(d_inode(dentry), buffer, size);
 505        if (len < 0)
 506                return len;
 507        used += len;
 508        if (buffer) {
 509                if (size < used)
 510                        return -ERANGE;
 511                buffer += len;
 512        }
 513
 514        len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
 515        used += len;
 516        if (buffer) {
 517                if (size < used)
 518                        return -ERANGE;
 519                memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
 520                buffer += len;
 521        }
 522
 523        return used;
 524}
 525
 526static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
 527{
 528        int err = simple_setattr(dentry, iattr);
 529
 530        if (!err && (iattr->ia_valid & ATTR_UID)) {
 531                struct socket *sock = SOCKET_I(d_inode(dentry));
 532
 533                if (sock->sk)
 534                        sock->sk->sk_uid = iattr->ia_uid;
 535                else
 536                        err = -ENOENT;
 537        }
 538
 539        return err;
 540}
 541
 542static const struct inode_operations sockfs_inode_ops = {
 543        .listxattr = sockfs_listxattr,
 544        .setattr = sockfs_setattr,
 545};
 546
 547/**
 548 *      sock_alloc - allocate a socket
 549 *
 550 *      Allocate a new inode and socket object. The two are bound together
 551 *      and initialised. The socket is then returned. If we are out of inodes
 552 *      NULL is returned. This functions uses GFP_KERNEL internally.
 553 */
 554
 555struct socket *sock_alloc(void)
 556{
 557        struct inode *inode;
 558        struct socket *sock;
 559
 560        inode = new_inode_pseudo(sock_mnt->mnt_sb);
 561        if (!inode)
 562                return NULL;
 563
 564        sock = SOCKET_I(inode);
 565
 566        inode->i_ino = get_next_ino();
 567        inode->i_mode = S_IFSOCK | S_IRWXUGO;
 568        inode->i_uid = current_fsuid();
 569        inode->i_gid = current_fsgid();
 570        inode->i_op = &sockfs_inode_ops;
 571
 572        return sock;
 573}
 574EXPORT_SYMBOL(sock_alloc);
 575
 576/**
 577 *      sock_release - close a socket
 578 *      @sock: socket to close
 579 *
 580 *      The socket is released from the protocol stack if it has a release
 581 *      callback, and the inode is then released if the socket is bound to
 582 *      an inode not a file.
 583 */
 584
 585static void __sock_release(struct socket *sock, struct inode *inode)
 586{
 587        if (sock->ops) {
 588                struct module *owner = sock->ops->owner;
 589
 590                if (inode)
 591                        inode_lock(inode);
 592                sock->ops->release(sock);
 593                sock->sk = NULL;
 594                if (inode)
 595                        inode_unlock(inode);
 596                sock->ops = NULL;
 597                module_put(owner);
 598        }
 599
 600        if (sock->wq.fasync_list)
 601                pr_err("%s: fasync list not empty!\n", __func__);
 602
 603        if (!sock->file) {
 604                iput(SOCK_INODE(sock));
 605                return;
 606        }
 607        sock->file = NULL;
 608}
 609
 610void sock_release(struct socket *sock)
 611{
 612        __sock_release(sock, NULL);
 613}
 614EXPORT_SYMBOL(sock_release);
 615
 616void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
 617{
 618        u8 flags = *tx_flags;
 619
 620        if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
 621                flags |= SKBTX_HW_TSTAMP;
 622
 623        if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
 624                flags |= SKBTX_SW_TSTAMP;
 625
 626        if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
 627                flags |= SKBTX_SCHED_TSTAMP;
 628
 629        *tx_flags = flags;
 630}
 631EXPORT_SYMBOL(__sock_tx_timestamp);
 632
 633INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
 634                                           size_t));
 635INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
 636                                            size_t));
 637static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
 638{
 639        int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
 640                                     inet_sendmsg, sock, msg,
 641                                     msg_data_left(msg));
 642        BUG_ON(ret == -EIOCBQUEUED);
 643        return ret;
 644}
 645
 646/**
 647 *      sock_sendmsg - send a message through @sock
 648 *      @sock: socket
 649 *      @msg: message to send
 650 *
 651 *      Sends @msg through @sock, passing through LSM.
 652 *      Returns the number of bytes sent, or an error code.
 653 */
 654int sock_sendmsg(struct socket *sock, struct msghdr *msg)
 655{
 656        int err = security_socket_sendmsg(sock, msg,
 657                                          msg_data_left(msg));
 658
 659        return err ?: sock_sendmsg_nosec(sock, msg);
 660}
 661EXPORT_SYMBOL(sock_sendmsg);
 662
 663/**
 664 *      kernel_sendmsg - send a message through @sock (kernel-space)
 665 *      @sock: socket
 666 *      @msg: message header
 667 *      @vec: kernel vec
 668 *      @num: vec array length
 669 *      @size: total message data size
 670 *
 671 *      Builds the message data with @vec and sends it through @sock.
 672 *      Returns the number of bytes sent, or an error code.
 673 */
 674
 675int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
 676                   struct kvec *vec, size_t num, size_t size)
 677{
 678        iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
 679        return sock_sendmsg(sock, msg);
 680}
 681EXPORT_SYMBOL(kernel_sendmsg);
 682
 683/**
 684 *      kernel_sendmsg_locked - send a message through @sock (kernel-space)
 685 *      @sk: sock
 686 *      @msg: message header
 687 *      @vec: output s/g array
 688 *      @num: output s/g array length
 689 *      @size: total message data size
 690 *
 691 *      Builds the message data with @vec and sends it through @sock.
 692 *      Returns the number of bytes sent, or an error code.
 693 *      Caller must hold @sk.
 694 */
 695
 696int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
 697                          struct kvec *vec, size_t num, size_t size)
 698{
 699        struct socket *sock = sk->sk_socket;
 700
 701        if (!sock->ops->sendmsg_locked)
 702                return sock_no_sendmsg_locked(sk, msg, size);
 703
 704        iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
 705
 706        return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
 707}
 708EXPORT_SYMBOL(kernel_sendmsg_locked);
 709
 710static bool skb_is_err_queue(const struct sk_buff *skb)
 711{
 712        /* pkt_type of skbs enqueued on the error queue are set to
 713         * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
 714         * in recvmsg, since skbs received on a local socket will never
 715         * have a pkt_type of PACKET_OUTGOING.
 716         */
 717        return skb->pkt_type == PACKET_OUTGOING;
 718}
 719
 720/* On transmit, software and hardware timestamps are returned independently.
 721 * As the two skb clones share the hardware timestamp, which may be updated
 722 * before the software timestamp is received, a hardware TX timestamp may be
 723 * returned only if there is no software TX timestamp. Ignore false software
 724 * timestamps, which may be made in the __sock_recv_timestamp() call when the
 725 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
 726 * hardware timestamp.
 727 */
 728static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
 729{
 730        return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
 731}
 732
 733static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
 734{
 735        struct scm_ts_pktinfo ts_pktinfo;
 736        struct net_device *orig_dev;
 737
 738        if (!skb_mac_header_was_set(skb))
 739                return;
 740
 741        memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
 742
 743        rcu_read_lock();
 744        orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
 745        if (orig_dev)
 746                ts_pktinfo.if_index = orig_dev->ifindex;
 747        rcu_read_unlock();
 748
 749        ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
 750        put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
 751                 sizeof(ts_pktinfo), &ts_pktinfo);
 752}
 753
 754/*
 755 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
 756 */
 757void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
 758        struct sk_buff *skb)
 759{
 760        int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
 761        int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
 762        struct scm_timestamping_internal tss;
 763
 764        int empty = 1, false_tstamp = 0;
 765        struct skb_shared_hwtstamps *shhwtstamps =
 766                skb_hwtstamps(skb);
 767
 768        /* Race occurred between timestamp enabling and packet
 769           receiving.  Fill in the current time for now. */
 770        if (need_software_tstamp && skb->tstamp == 0) {
 771                __net_timestamp(skb);
 772                false_tstamp = 1;
 773        }
 774
 775        if (need_software_tstamp) {
 776                if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
 777                        if (new_tstamp) {
 778                                struct __kernel_sock_timeval tv;
 779
 780                                skb_get_new_timestamp(skb, &tv);
 781                                put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
 782                                         sizeof(tv), &tv);
 783                        } else {
 784                                struct __kernel_old_timeval tv;
 785
 786                                skb_get_timestamp(skb, &tv);
 787                                put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
 788                                         sizeof(tv), &tv);
 789                        }
 790                } else {
 791                        if (new_tstamp) {
 792                                struct __kernel_timespec ts;
 793
 794                                skb_get_new_timestampns(skb, &ts);
 795                                put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
 796                                         sizeof(ts), &ts);
 797                        } else {
 798                                struct __kernel_old_timespec ts;
 799
 800                                skb_get_timestampns(skb, &ts);
 801                                put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
 802                                         sizeof(ts), &ts);
 803                        }
 804                }
 805        }
 806
 807        memset(&tss, 0, sizeof(tss));
 808        if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
 809            ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
 810                empty = 0;
 811        if (shhwtstamps &&
 812            (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
 813            !skb_is_swtx_tstamp(skb, false_tstamp) &&
 814            ktime_to_timespec64_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
 815                empty = 0;
 816                if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
 817                    !skb_is_err_queue(skb))
 818                        put_ts_pktinfo(msg, skb);
 819        }
 820        if (!empty) {
 821                if (sock_flag(sk, SOCK_TSTAMP_NEW))
 822                        put_cmsg_scm_timestamping64(msg, &tss);
 823                else
 824                        put_cmsg_scm_timestamping(msg, &tss);
 825
 826                if (skb_is_err_queue(skb) && skb->len &&
 827                    SKB_EXT_ERR(skb)->opt_stats)
 828                        put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
 829                                 skb->len, skb->data);
 830        }
 831}
 832EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
 833
 834void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
 835        struct sk_buff *skb)
 836{
 837        int ack;
 838
 839        if (!sock_flag(sk, SOCK_WIFI_STATUS))
 840                return;
 841        if (!skb->wifi_acked_valid)
 842                return;
 843
 844        ack = skb->wifi_acked;
 845
 846        put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
 847}
 848EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
 849
 850static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
 851                                   struct sk_buff *skb)
 852{
 853        if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
 854                put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
 855                        sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
 856}
 857
 858void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
 859        struct sk_buff *skb)
 860{
 861        sock_recv_timestamp(msg, sk, skb);
 862        sock_recv_drops(msg, sk, skb);
 863}
 864EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
 865
 866INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
 867                                           size_t, int));
 868INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
 869                                            size_t, int));
 870static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
 871                                     int flags)
 872{
 873        return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
 874                                  inet_recvmsg, sock, msg, msg_data_left(msg),
 875                                  flags);
 876}
 877
 878/**
 879 *      sock_recvmsg - receive a message from @sock
 880 *      @sock: socket
 881 *      @msg: message to receive
 882 *      @flags: message flags
 883 *
 884 *      Receives @msg from @sock, passing through LSM. Returns the total number
 885 *      of bytes received, or an error.
 886 */
 887int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
 888{
 889        int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
 890
 891        return err ?: sock_recvmsg_nosec(sock, msg, flags);
 892}
 893EXPORT_SYMBOL(sock_recvmsg);
 894
 895/**
 896 *      kernel_recvmsg - Receive a message from a socket (kernel space)
 897 *      @sock: The socket to receive the message from
 898 *      @msg: Received message
 899 *      @vec: Input s/g array for message data
 900 *      @num: Size of input s/g array
 901 *      @size: Number of bytes to read
 902 *      @flags: Message flags (MSG_DONTWAIT, etc...)
 903 *
 904 *      On return the msg structure contains the scatter/gather array passed in the
 905 *      vec argument. The array is modified so that it consists of the unfilled
 906 *      portion of the original array.
 907 *
 908 *      The returned value is the total number of bytes received, or an error.
 909 */
 910
 911int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
 912                   struct kvec *vec, size_t num, size_t size, int flags)
 913{
 914        mm_segment_t oldfs = get_fs();
 915        int result;
 916
 917        iov_iter_kvec(&msg->msg_iter, READ, vec, num, size);
 918        set_fs(KERNEL_DS);
 919        result = sock_recvmsg(sock, msg, flags);
 920        set_fs(oldfs);
 921        return result;
 922}
 923EXPORT_SYMBOL(kernel_recvmsg);
 924
 925static ssize_t sock_sendpage(struct file *file, struct page *page,
 926                             int offset, size_t size, loff_t *ppos, int more)
 927{
 928        struct socket *sock;
 929        int flags;
 930
 931        sock = file->private_data;
 932
 933        flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
 934        /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
 935        flags |= more;
 936
 937        return kernel_sendpage(sock, page, offset, size, flags);
 938}
 939
 940static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 941                                struct pipe_inode_info *pipe, size_t len,
 942                                unsigned int flags)
 943{
 944        struct socket *sock = file->private_data;
 945
 946        if (unlikely(!sock->ops->splice_read))
 947                return generic_file_splice_read(file, ppos, pipe, len, flags);
 948
 949        return sock->ops->splice_read(sock, ppos, pipe, len, flags);
 950}
 951
 952static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
 953{
 954        struct file *file = iocb->ki_filp;
 955        struct socket *sock = file->private_data;
 956        struct msghdr msg = {.msg_iter = *to,
 957                             .msg_iocb = iocb};
 958        ssize_t res;
 959
 960        if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
 961                msg.msg_flags = MSG_DONTWAIT;
 962
 963        if (iocb->ki_pos != 0)
 964                return -ESPIPE;
 965
 966        if (!iov_iter_count(to))        /* Match SYS5 behaviour */
 967                return 0;
 968
 969        res = sock_recvmsg(sock, &msg, msg.msg_flags);
 970        *to = msg.msg_iter;
 971        return res;
 972}
 973
 974static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
 975{
 976        struct file *file = iocb->ki_filp;
 977        struct socket *sock = file->private_data;
 978        struct msghdr msg = {.msg_iter = *from,
 979                             .msg_iocb = iocb};
 980        ssize_t res;
 981
 982        if (iocb->ki_pos != 0)
 983                return -ESPIPE;
 984
 985        if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
 986                msg.msg_flags = MSG_DONTWAIT;
 987
 988        if (sock->type == SOCK_SEQPACKET)
 989                msg.msg_flags |= MSG_EOR;
 990
 991        res = sock_sendmsg(sock, &msg);
 992        *from = msg.msg_iter;
 993        return res;
 994}
 995
 996/*
 997 * Atomic setting of ioctl hooks to avoid race
 998 * with module unload.
 999 */
1000
1001static DEFINE_MUTEX(br_ioctl_mutex);
1002static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
1003
1004void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
1005{
1006        mutex_lock(&br_ioctl_mutex);
1007        br_ioctl_hook = hook;
1008        mutex_unlock(&br_ioctl_mutex);
1009}
1010EXPORT_SYMBOL(brioctl_set);
1011
1012static DEFINE_MUTEX(vlan_ioctl_mutex);
1013static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1014
1015void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1016{
1017        mutex_lock(&vlan_ioctl_mutex);
1018        vlan_ioctl_hook = hook;
1019        mutex_unlock(&vlan_ioctl_mutex);
1020}
1021EXPORT_SYMBOL(vlan_ioctl_set);
1022
1023static DEFINE_MUTEX(dlci_ioctl_mutex);
1024static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1025
1026void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1027{
1028        mutex_lock(&dlci_ioctl_mutex);
1029        dlci_ioctl_hook = hook;
1030        mutex_unlock(&dlci_ioctl_mutex);
1031}
1032EXPORT_SYMBOL(dlci_ioctl_set);
1033
1034static long sock_do_ioctl(struct net *net, struct socket *sock,
1035                          unsigned int cmd, unsigned long arg)
1036{
1037        int err;
1038        void __user *argp = (void __user *)arg;
1039
1040        err = sock->ops->ioctl(sock, cmd, arg);
1041
1042        /*
1043         * If this ioctl is unknown try to hand it down
1044         * to the NIC driver.
1045         */
1046        if (err != -ENOIOCTLCMD)
1047                return err;
1048
1049        if (cmd == SIOCGIFCONF) {
1050                struct ifconf ifc;
1051                if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
1052                        return -EFAULT;
1053                rtnl_lock();
1054                err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
1055                rtnl_unlock();
1056                if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
1057                        err = -EFAULT;
1058        } else {
1059                struct ifreq ifr;
1060                bool need_copyout;
1061                if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1062                        return -EFAULT;
1063                err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1064                if (!err && need_copyout)
1065                        if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1066                                return -EFAULT;
1067        }
1068        return err;
1069}
1070
1071/*
1072 *      With an ioctl, arg may well be a user mode pointer, but we don't know
1073 *      what to do with it - that's up to the protocol still.
1074 */
1075
1076/**
1077 *      get_net_ns - increment the refcount of the network namespace
1078 *      @ns: common namespace (net)
1079 *
1080 *      Returns the net's common namespace.
1081 */
1082
1083struct ns_common *get_net_ns(struct ns_common *ns)
1084{
1085        return &get_net(container_of(ns, struct net, ns))->ns;
1086}
1087EXPORT_SYMBOL_GPL(get_net_ns);
1088
1089static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1090{
1091        struct socket *sock;
1092        struct sock *sk;
1093        void __user *argp = (void __user *)arg;
1094        int pid, err;
1095        struct net *net;
1096
1097        sock = file->private_data;
1098        sk = sock->sk;
1099        net = sock_net(sk);
1100        if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1101                struct ifreq ifr;
1102                bool need_copyout;
1103                if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1104                        return -EFAULT;
1105                err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1106                if (!err && need_copyout)
1107                        if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1108                                return -EFAULT;
1109        } else
1110#ifdef CONFIG_WEXT_CORE
1111        if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1112                err = wext_handle_ioctl(net, cmd, argp);
1113        } else
1114#endif
1115                switch (cmd) {
1116                case FIOSETOWN:
1117                case SIOCSPGRP:
1118                        err = -EFAULT;
1119                        if (get_user(pid, (int __user *)argp))
1120                                break;
1121                        err = f_setown(sock->file, pid, 1);
1122                        break;
1123                case FIOGETOWN:
1124                case SIOCGPGRP:
1125                        err = put_user(f_getown(sock->file),
1126                                       (int __user *)argp);
1127                        break;
1128                case SIOCGIFBR:
1129                case SIOCSIFBR:
1130                case SIOCBRADDBR:
1131                case SIOCBRDELBR:
1132                        err = -ENOPKG;
1133                        if (!br_ioctl_hook)
1134                                request_module("bridge");
1135
1136                        mutex_lock(&br_ioctl_mutex);
1137                        if (br_ioctl_hook)
1138                                err = br_ioctl_hook(net, cmd, argp);
1139                        mutex_unlock(&br_ioctl_mutex);
1140                        break;
1141                case SIOCGIFVLAN:
1142                case SIOCSIFVLAN:
1143                        err = -ENOPKG;
1144                        if (!vlan_ioctl_hook)
1145                                request_module("8021q");
1146
1147                        mutex_lock(&vlan_ioctl_mutex);
1148                        if (vlan_ioctl_hook)
1149                                err = vlan_ioctl_hook(net, argp);
1150                        mutex_unlock(&vlan_ioctl_mutex);
1151                        break;
1152                case SIOCADDDLCI:
1153                case SIOCDELDLCI:
1154                        err = -ENOPKG;
1155                        if (!dlci_ioctl_hook)
1156                                request_module("dlci");
1157
1158                        mutex_lock(&dlci_ioctl_mutex);
1159                        if (dlci_ioctl_hook)
1160                                err = dlci_ioctl_hook(cmd, argp);
1161                        mutex_unlock(&dlci_ioctl_mutex);
1162                        break;
1163                case SIOCGSKNS:
1164                        err = -EPERM;
1165                        if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1166                                break;
1167
1168                        err = open_related_ns(&net->ns, get_net_ns);
1169                        break;
1170                case SIOCGSTAMP_OLD:
1171                case SIOCGSTAMPNS_OLD:
1172                        if (!sock->ops->gettstamp) {
1173                                err = -ENOIOCTLCMD;
1174                                break;
1175                        }
1176                        err = sock->ops->gettstamp(sock, argp,
1177                                                   cmd == SIOCGSTAMP_OLD,
1178                                                   !IS_ENABLED(CONFIG_64BIT));
1179                        break;
1180                case SIOCGSTAMP_NEW:
1181                case SIOCGSTAMPNS_NEW:
1182                        if (!sock->ops->gettstamp) {
1183                                err = -ENOIOCTLCMD;
1184                                break;
1185                        }
1186                        err = sock->ops->gettstamp(sock, argp,
1187                                                   cmd == SIOCGSTAMP_NEW,
1188                                                   false);
1189                        break;
1190                default:
1191                        err = sock_do_ioctl(net, sock, cmd, arg);
1192                        break;
1193                }
1194        return err;
1195}
1196
1197/**
1198 *      sock_create_lite - creates a socket
1199 *      @family: protocol family (AF_INET, ...)
1200 *      @type: communication type (SOCK_STREAM, ...)
1201 *      @protocol: protocol (0, ...)
1202 *      @res: new socket
1203 *
1204 *      Creates a new socket and assigns it to @res, passing through LSM.
1205 *      The new socket initialization is not complete, see kernel_accept().
1206 *      Returns 0 or an error. On failure @res is set to %NULL.
1207 *      This function internally uses GFP_KERNEL.
1208 */
1209
1210int sock_create_lite(int family, int type, int protocol, struct socket **res)
1211{
1212        int err;
1213        struct socket *sock = NULL;
1214
1215        err = security_socket_create(family, type, protocol, 1);
1216        if (err)
1217                goto out;
1218
1219        sock = sock_alloc();
1220        if (!sock) {
1221                err = -ENOMEM;
1222                goto out;
1223        }
1224
1225        sock->type = type;
1226        err = security_socket_post_create(sock, family, type, protocol, 1);
1227        if (err)
1228                goto out_release;
1229
1230out:
1231        *res = sock;
1232        return err;
1233out_release:
1234        sock_release(sock);
1235        sock = NULL;
1236        goto out;
1237}
1238EXPORT_SYMBOL(sock_create_lite);
1239
1240/* No kernel lock held - perfect */
1241static __poll_t sock_poll(struct file *file, poll_table *wait)
1242{
1243        struct socket *sock = file->private_data;
1244        __poll_t events = poll_requested_events(wait), flag = 0;
1245
1246        if (!sock->ops->poll)
1247                return 0;
1248
1249        if (sk_can_busy_loop(sock->sk)) {
1250                /* poll once if requested by the syscall */
1251                if (events & POLL_BUSY_LOOP)
1252                        sk_busy_loop(sock->sk, 1);
1253
1254                /* if this socket can poll_ll, tell the system call */
1255                flag = POLL_BUSY_LOOP;
1256        }
1257
1258        return sock->ops->poll(file, sock, wait) | flag;
1259}
1260
1261static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1262{
1263        struct socket *sock = file->private_data;
1264
1265        return sock->ops->mmap(file, sock, vma);
1266}
1267
1268static int sock_close(struct inode *inode, struct file *filp)
1269{
1270        __sock_release(SOCKET_I(inode), inode);
1271        return 0;
1272}
1273
1274/*
1275 *      Update the socket async list
1276 *
1277 *      Fasync_list locking strategy.
1278 *
1279 *      1. fasync_list is modified only under process context socket lock
1280 *         i.e. under semaphore.
1281 *      2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1282 *         or under socket lock
1283 */
1284
1285static int sock_fasync(int fd, struct file *filp, int on)
1286{
1287        struct socket *sock = filp->private_data;
1288        struct sock *sk = sock->sk;
1289        struct socket_wq *wq = &sock->wq;
1290
1291        if (sk == NULL)
1292                return -EINVAL;
1293
1294        lock_sock(sk);
1295        fasync_helper(fd, filp, on, &wq->fasync_list);
1296
1297        if (!wq->fasync_list)
1298                sock_reset_flag(sk, SOCK_FASYNC);
1299        else
1300                sock_set_flag(sk, SOCK_FASYNC);
1301
1302        release_sock(sk);
1303        return 0;
1304}
1305
1306/* This function may be called only under rcu_lock */
1307
1308int sock_wake_async(struct socket_wq *wq, int how, int band)
1309{
1310        if (!wq || !wq->fasync_list)
1311                return -1;
1312
1313        switch (how) {
1314        case SOCK_WAKE_WAITD:
1315                if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1316                        break;
1317                goto call_kill;
1318        case SOCK_WAKE_SPACE:
1319                if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1320                        break;
1321                /* fall through */
1322        case SOCK_WAKE_IO:
1323call_kill:
1324                kill_fasync(&wq->fasync_list, SIGIO, band);
1325                break;
1326        case SOCK_WAKE_URG:
1327                kill_fasync(&wq->fasync_list, SIGURG, band);
1328        }
1329
1330        return 0;
1331}
1332EXPORT_SYMBOL(sock_wake_async);
1333
1334/**
1335 *      __sock_create - creates a socket
1336 *      @net: net namespace
1337 *      @family: protocol family (AF_INET, ...)
1338 *      @type: communication type (SOCK_STREAM, ...)
1339 *      @protocol: protocol (0, ...)
1340 *      @res: new socket
1341 *      @kern: boolean for kernel space sockets
1342 *
1343 *      Creates a new socket and assigns it to @res, passing through LSM.
1344 *      Returns 0 or an error. On failure @res is set to %NULL. @kern must
1345 *      be set to true if the socket resides in kernel space.
1346 *      This function internally uses GFP_KERNEL.
1347 */
1348
1349int __sock_create(struct net *net, int family, int type, int protocol,
1350                         struct socket **res, int kern)
1351{
1352        int err;
1353        struct socket *sock;
1354        const struct net_proto_family *pf;
1355
1356        /*
1357         *      Check protocol is in range
1358         */
1359        if (family < 0 || family >= NPROTO)
1360                return -EAFNOSUPPORT;
1361        if (type < 0 || type >= SOCK_MAX)
1362                return -EINVAL;
1363
1364        /* Compatibility.
1365
1366           This uglymoron is moved from INET layer to here to avoid
1367           deadlock in module load.
1368         */
1369        if (family == PF_INET && type == SOCK_PACKET) {
1370                pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1371                             current->comm);
1372                family = PF_PACKET;
1373        }
1374
1375        err = security_socket_create(family, type, protocol, kern);
1376        if (err)
1377                return err;
1378
1379        /*
1380         *      Allocate the socket and allow the family to set things up. if
1381         *      the protocol is 0, the family is instructed to select an appropriate
1382         *      default.
1383         */
1384        sock = sock_alloc();
1385        if (!sock) {
1386                net_warn_ratelimited("socket: no more sockets\n");
1387                return -ENFILE; /* Not exactly a match, but its the
1388                                   closest posix thing */
1389        }
1390
1391        sock->type = type;
1392
1393#ifdef CONFIG_MODULES
1394        /* Attempt to load a protocol module if the find failed.
1395         *
1396         * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1397         * requested real, full-featured networking support upon configuration.
1398         * Otherwise module support will break!
1399         */
1400        if (rcu_access_pointer(net_families[family]) == NULL)
1401                request_module("net-pf-%d", family);
1402#endif
1403
1404        rcu_read_lock();
1405        pf = rcu_dereference(net_families[family]);
1406        err = -EAFNOSUPPORT;
1407        if (!pf)
1408                goto out_release;
1409
1410        /*
1411         * We will call the ->create function, that possibly is in a loadable
1412         * module, so we have to bump that loadable module refcnt first.
1413         */
1414        if (!try_module_get(pf->owner))
1415                goto out_release;
1416
1417        /* Now protected by module ref count */
1418        rcu_read_unlock();
1419
1420        err = pf->create(net, sock, protocol, kern);
1421        if (err < 0)
1422                goto out_module_put;
1423
1424        /*
1425         * Now to bump the refcnt of the [loadable] module that owns this
1426         * socket at sock_release time we decrement its refcnt.
1427         */
1428        if (!try_module_get(sock->ops->owner))
1429                goto out_module_busy;
1430
1431        /*
1432         * Now that we're done with the ->create function, the [loadable]
1433         * module can have its refcnt decremented
1434         */
1435        module_put(pf->owner);
1436        err = security_socket_post_create(sock, family, type, protocol, kern);
1437        if (err)
1438                goto out_sock_release;
1439        *res = sock;
1440
1441        return 0;
1442
1443out_module_busy:
1444        err = -EAFNOSUPPORT;
1445out_module_put:
1446        sock->ops = NULL;
1447        module_put(pf->owner);
1448out_sock_release:
1449        sock_release(sock);
1450        return err;
1451
1452out_release:
1453        rcu_read_unlock();
1454        goto out_sock_release;
1455}
1456EXPORT_SYMBOL(__sock_create);
1457
1458/**
1459 *      sock_create - creates a socket
1460 *      @family: protocol family (AF_INET, ...)
1461 *      @type: communication type (SOCK_STREAM, ...)
1462 *      @protocol: protocol (0, ...)
1463 *      @res: new socket
1464 *
1465 *      A wrapper around __sock_create().
1466 *      Returns 0 or an error. This function internally uses GFP_KERNEL.
1467 */
1468
1469int sock_create(int family, int type, int protocol, struct socket **res)
1470{
1471        return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1472}
1473EXPORT_SYMBOL(sock_create);
1474
1475/**
1476 *      sock_create_kern - creates a socket (kernel space)
1477 *      @net: net namespace
1478 *      @family: protocol family (AF_INET, ...)
1479 *      @type: communication type (SOCK_STREAM, ...)
1480 *      @protocol: protocol (0, ...)
1481 *      @res: new socket
1482 *
1483 *      A wrapper around __sock_create().
1484 *      Returns 0 or an error. This function internally uses GFP_KERNEL.
1485 */
1486
1487int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1488{
1489        return __sock_create(net, family, type, protocol, res, 1);
1490}
1491EXPORT_SYMBOL(sock_create_kern);
1492
1493int __sys_socket(int family, int type, int protocol)
1494{
1495        int retval;
1496        struct socket *sock;
1497        int flags;
1498
1499        /* Check the SOCK_* constants for consistency.  */
1500        BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1501        BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1502        BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1503        BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1504
1505        flags = type & ~SOCK_TYPE_MASK;
1506        if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1507                return -EINVAL;
1508        type &= SOCK_TYPE_MASK;
1509
1510        if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1511                flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1512
1513        retval = sock_create(family, type, protocol, &sock);
1514        if (retval < 0)
1515                return retval;
1516
1517        return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1518}
1519
1520SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1521{
1522        return __sys_socket(family, type, protocol);
1523}
1524
1525/*
1526 *      Create a pair of connected sockets.
1527 */
1528
1529int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1530{
1531        struct socket *sock1, *sock2;
1532        int fd1, fd2, err;
1533        struct file *newfile1, *newfile2;
1534        int flags;
1535
1536        flags = type & ~SOCK_TYPE_MASK;
1537        if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1538                return -EINVAL;
1539        type &= SOCK_TYPE_MASK;
1540
1541        if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1542                flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1543
1544        /*
1545         * reserve descriptors and make sure we won't fail
1546         * to return them to userland.
1547         */
1548        fd1 = get_unused_fd_flags(flags);
1549        if (unlikely(fd1 < 0))
1550                return fd1;
1551
1552        fd2 = get_unused_fd_flags(flags);
1553        if (unlikely(fd2 < 0)) {
1554                put_unused_fd(fd1);
1555                return fd2;
1556        }
1557
1558        err = put_user(fd1, &usockvec[0]);
1559        if (err)
1560                goto out;
1561
1562        err = put_user(fd2, &usockvec[1]);
1563        if (err)
1564                goto out;
1565
1566        /*
1567         * Obtain the first socket and check if the underlying protocol
1568         * supports the socketpair call.
1569         */
1570
1571        err = sock_create(family, type, protocol, &sock1);
1572        if (unlikely(err < 0))
1573                goto out;
1574
1575        err = sock_create(family, type, protocol, &sock2);
1576        if (unlikely(err < 0)) {
1577                sock_release(sock1);
1578                goto out;
1579        }
1580
1581        err = security_socket_socketpair(sock1, sock2);
1582        if (unlikely(err)) {
1583                sock_release(sock2);
1584                sock_release(sock1);
1585                goto out;
1586        }
1587
1588        err = sock1->ops->socketpair(sock1, sock2);
1589        if (unlikely(err < 0)) {
1590                sock_release(sock2);
1591                sock_release(sock1);
1592                goto out;
1593        }
1594
1595        newfile1 = sock_alloc_file(sock1, flags, NULL);
1596        if (IS_ERR(newfile1)) {
1597                err = PTR_ERR(newfile1);
1598                sock_release(sock2);
1599                goto out;
1600        }
1601
1602        newfile2 = sock_alloc_file(sock2, flags, NULL);
1603        if (IS_ERR(newfile2)) {
1604                err = PTR_ERR(newfile2);
1605                fput(newfile1);
1606                goto out;
1607        }
1608
1609        audit_fd_pair(fd1, fd2);
1610
1611        fd_install(fd1, newfile1);
1612        fd_install(fd2, newfile2);
1613        return 0;
1614
1615out:
1616        put_unused_fd(fd2);
1617        put_unused_fd(fd1);
1618        return err;
1619}
1620
1621SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1622                int __user *, usockvec)
1623{
1624        return __sys_socketpair(family, type, protocol, usockvec);
1625}
1626
1627/*
1628 *      Bind a name to a socket. Nothing much to do here since it's
1629 *      the protocol's responsibility to handle the local address.
1630 *
1631 *      We move the socket address to kernel space before we call
1632 *      the protocol layer (having also checked the address is ok).
1633 */
1634
1635int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1636{
1637        struct socket *sock;
1638        struct sockaddr_storage address;
1639        int err, fput_needed;
1640
1641        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1642        if (sock) {
1643                err = move_addr_to_kernel(umyaddr, addrlen, &address);
1644                if (!err) {
1645                        err = security_socket_bind(sock,
1646                                                   (struct sockaddr *)&address,
1647                                                   addrlen);
1648                        if (!err)
1649                                err = sock->ops->bind(sock,
1650                                                      (struct sockaddr *)
1651                                                      &address, addrlen);
1652                }
1653                fput_light(sock->file, fput_needed);
1654        }
1655        return err;
1656}
1657
1658SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1659{
1660        return __sys_bind(fd, umyaddr, addrlen);
1661}
1662
1663/*
1664 *      Perform a listen. Basically, we allow the protocol to do anything
1665 *      necessary for a listen, and if that works, we mark the socket as
1666 *      ready for listening.
1667 */
1668
1669int __sys_listen(int fd, int backlog)
1670{
1671        struct socket *sock;
1672        int err, fput_needed;
1673        int somaxconn;
1674
1675        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1676        if (sock) {
1677                somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1678                if ((unsigned int)backlog > somaxconn)
1679                        backlog = somaxconn;
1680
1681                err = security_socket_listen(sock, backlog);
1682                if (!err)
1683                        err = sock->ops->listen(sock, backlog);
1684
1685                fput_light(sock->file, fput_needed);
1686        }
1687        return err;
1688}
1689
1690SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1691{
1692        return __sys_listen(fd, backlog);
1693}
1694
1695int __sys_accept4_file(struct file *file, unsigned file_flags,
1696                       struct sockaddr __user *upeer_sockaddr,
1697                       int __user *upeer_addrlen, int flags)
1698{
1699        struct socket *sock, *newsock;
1700        struct file *newfile;
1701        int err, len, newfd;
1702        struct sockaddr_storage address;
1703
1704        if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1705                return -EINVAL;
1706
1707        if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1708                flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1709
1710        sock = sock_from_file(file, &err);
1711        if (!sock)
1712                goto out;
1713
1714        err = -ENFILE;
1715        newsock = sock_alloc();
1716        if (!newsock)
1717                goto out;
1718
1719        newsock->type = sock->type;
1720        newsock->ops = sock->ops;
1721
1722        /*
1723         * We don't need try_module_get here, as the listening socket (sock)
1724         * has the protocol module (sock->ops->owner) held.
1725         */
1726        __module_get(newsock->ops->owner);
1727
1728        newfd = get_unused_fd_flags(flags);
1729        if (unlikely(newfd < 0)) {
1730                err = newfd;
1731                sock_release(newsock);
1732                goto out;
1733        }
1734        newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1735        if (IS_ERR(newfile)) {
1736                err = PTR_ERR(newfile);
1737                put_unused_fd(newfd);
1738                goto out;
1739        }
1740
1741        err = security_socket_accept(sock, newsock);
1742        if (err)
1743                goto out_fd;
1744
1745        err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags,
1746                                        false);
1747        if (err < 0)
1748                goto out_fd;
1749
1750        if (upeer_sockaddr) {
1751                len = newsock->ops->getname(newsock,
1752                                        (struct sockaddr *)&address, 2);
1753                if (len < 0) {
1754                        err = -ECONNABORTED;
1755                        goto out_fd;
1756                }
1757                err = move_addr_to_user(&address,
1758                                        len, upeer_sockaddr, upeer_addrlen);
1759                if (err < 0)
1760                        goto out_fd;
1761        }
1762
1763        /* File flags are not inherited via accept() unlike another OSes. */
1764
1765        fd_install(newfd, newfile);
1766        err = newfd;
1767out:
1768        return err;
1769out_fd:
1770        fput(newfile);
1771        put_unused_fd(newfd);
1772        goto out;
1773
1774}
1775
1776/*
1777 *      For accept, we attempt to create a new socket, set up the link
1778 *      with the client, wake up the client, then return the new
1779 *      connected fd. We collect the address of the connector in kernel
1780 *      space and move it to user at the very end. This is unclean because
1781 *      we open the socket then return an error.
1782 *
1783 *      1003.1g adds the ability to recvmsg() to query connection pending
1784 *      status to recvmsg. We need to add that support in a way thats
1785 *      clean when we restructure accept also.
1786 */
1787
1788int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1789                  int __user *upeer_addrlen, int flags)
1790{
1791        int ret = -EBADF;
1792        struct fd f;
1793
1794        f = fdget(fd);
1795        if (f.file) {
1796                ret = __sys_accept4_file(f.file, 0, upeer_sockaddr,
1797                                                upeer_addrlen, flags);
1798                if (f.flags)
1799                        fput(f.file);
1800        }
1801
1802        return ret;
1803}
1804
1805SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1806                int __user *, upeer_addrlen, int, flags)
1807{
1808        return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1809}
1810
1811SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1812                int __user *, upeer_addrlen)
1813{
1814        return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1815}
1816
1817/*
1818 *      Attempt to connect to a socket with the server address.  The address
1819 *      is in user space so we verify it is OK and move it to kernel space.
1820 *
1821 *      For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1822 *      break bindings
1823 *
1824 *      NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1825 *      other SEQPACKET protocols that take time to connect() as it doesn't
1826 *      include the -EINPROGRESS status for such sockets.
1827 */
1828
1829int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
1830                       int addrlen, int file_flags)
1831{
1832        struct socket *sock;
1833        int err;
1834
1835        sock = sock_from_file(file, &err);
1836        if (!sock)
1837                goto out;
1838
1839        err =
1840            security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1841        if (err)
1842                goto out;
1843
1844        err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1845                                 sock->file->f_flags | file_flags);
1846out:
1847        return err;
1848}
1849
1850int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1851{
1852        int ret = -EBADF;
1853        struct fd f;
1854
1855        f = fdget(fd);
1856        if (f.file) {
1857                struct sockaddr_storage address;
1858
1859                ret = move_addr_to_kernel(uservaddr, addrlen, &address);
1860                if (!ret)
1861                        ret = __sys_connect_file(f.file, &address, addrlen, 0);
1862                if (f.flags)
1863                        fput(f.file);
1864        }
1865
1866        return ret;
1867}
1868
1869SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1870                int, addrlen)
1871{
1872        return __sys_connect(fd, uservaddr, addrlen);
1873}
1874
1875/*
1876 *      Get the local address ('name') of a socket object. Move the obtained
1877 *      name to user space.
1878 */
1879
1880int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1881                      int __user *usockaddr_len)
1882{
1883        struct socket *sock;
1884        struct sockaddr_storage address;
1885        int err, fput_needed;
1886
1887        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1888        if (!sock)
1889                goto out;
1890
1891        err = security_socket_getsockname(sock);
1892        if (err)
1893                goto out_put;
1894
1895        err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1896        if (err < 0)
1897                goto out_put;
1898        /* "err" is actually length in this case */
1899        err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1900
1901out_put:
1902        fput_light(sock->file, fput_needed);
1903out:
1904        return err;
1905}
1906
1907SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1908                int __user *, usockaddr_len)
1909{
1910        return __sys_getsockname(fd, usockaddr, usockaddr_len);
1911}
1912
1913/*
1914 *      Get the remote address ('name') of a socket object. Move the obtained
1915 *      name to user space.
1916 */
1917
1918int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1919                      int __user *usockaddr_len)
1920{
1921        struct socket *sock;
1922        struct sockaddr_storage address;
1923        int err, fput_needed;
1924
1925        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1926        if (sock != NULL) {
1927                err = security_socket_getpeername(sock);
1928                if (err) {
1929                        fput_light(sock->file, fput_needed);
1930                        return err;
1931                }
1932
1933                err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1934                if (err >= 0)
1935                        /* "err" is actually length in this case */
1936                        err = move_addr_to_user(&address, err, usockaddr,
1937                                                usockaddr_len);
1938                fput_light(sock->file, fput_needed);
1939        }
1940        return err;
1941}
1942
1943SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1944                int __user *, usockaddr_len)
1945{
1946        return __sys_getpeername(fd, usockaddr, usockaddr_len);
1947}
1948
1949/*
1950 *      Send a datagram to a given address. We move the address into kernel
1951 *      space and check the user space data area is readable before invoking
1952 *      the protocol.
1953 */
1954int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1955                 struct sockaddr __user *addr,  int addr_len)
1956{
1957        struct socket *sock;
1958        struct sockaddr_storage address;
1959        int err;
1960        struct msghdr msg;
1961        struct iovec iov;
1962        int fput_needed;
1963
1964        err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1965        if (unlikely(err))
1966                return err;
1967        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1968        if (!sock)
1969                goto out;
1970
1971        msg.msg_name = NULL;
1972        msg.msg_control = NULL;
1973        msg.msg_controllen = 0;
1974        msg.msg_namelen = 0;
1975        if (addr) {
1976                err = move_addr_to_kernel(addr, addr_len, &address);
1977                if (err < 0)
1978                        goto out_put;
1979                msg.msg_name = (struct sockaddr *)&address;
1980                msg.msg_namelen = addr_len;
1981        }
1982        if (sock->file->f_flags & O_NONBLOCK)
1983                flags |= MSG_DONTWAIT;
1984        msg.msg_flags = flags;
1985        err = sock_sendmsg(sock, &msg);
1986
1987out_put:
1988        fput_light(sock->file, fput_needed);
1989out:
1990        return err;
1991}
1992
1993SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1994                unsigned int, flags, struct sockaddr __user *, addr,
1995                int, addr_len)
1996{
1997        return __sys_sendto(fd, buff, len, flags, addr, addr_len);
1998}
1999
2000/*
2001 *      Send a datagram down a socket.
2002 */
2003
2004SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2005                unsigned int, flags)
2006{
2007        return __sys_sendto(fd, buff, len, flags, NULL, 0);
2008}
2009
2010/*
2011 *      Receive a frame from the socket and optionally record the address of the
2012 *      sender. We verify the buffers are writable and if needed move the
2013 *      sender address from kernel to user space.
2014 */
2015int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2016                   struct sockaddr __user *addr, int __user *addr_len)
2017{
2018        struct socket *sock;
2019        struct iovec iov;
2020        struct msghdr msg;
2021        struct sockaddr_storage address;
2022        int err, err2;
2023        int fput_needed;
2024
2025        err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
2026        if (unlikely(err))
2027                return err;
2028        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2029        if (!sock)
2030                goto out;
2031
2032        msg.msg_control = NULL;
2033        msg.msg_controllen = 0;
2034        /* Save some cycles and don't copy the address if not needed */
2035        msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
2036        /* We assume all kernel code knows the size of sockaddr_storage */
2037        msg.msg_namelen = 0;
2038        msg.msg_iocb = NULL;
2039        msg.msg_flags = 0;
2040        if (sock->file->f_flags & O_NONBLOCK)
2041                flags |= MSG_DONTWAIT;
2042        err = sock_recvmsg(sock, &msg, flags);
2043
2044        if (err >= 0 && addr != NULL) {
2045                err2 = move_addr_to_user(&address,
2046                                         msg.msg_namelen, addr, addr_len);
2047                if (err2 < 0)
2048                        err = err2;
2049        }
2050
2051        fput_light(sock->file, fput_needed);
2052out:
2053        return err;
2054}
2055
2056SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2057                unsigned int, flags, struct sockaddr __user *, addr,
2058                int __user *, addr_len)
2059{
2060        return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2061}
2062
2063/*
2064 *      Receive a datagram from a socket.
2065 */
2066
2067SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2068                unsigned int, flags)
2069{
2070        return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2071}
2072
2073/*
2074 *      Set a socket option. Because we don't know the option lengths we have
2075 *      to pass the user mode parameter for the protocols to sort out.
2076 */
2077
2078static int __sys_setsockopt(int fd, int level, int optname,
2079                            char __user *optval, int optlen)
2080{
2081        mm_segment_t oldfs = get_fs();
2082        char *kernel_optval = NULL;
2083        int err, fput_needed;
2084        struct socket *sock;
2085
2086        if (optlen < 0)
2087                return -EINVAL;
2088
2089        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2090        if (sock != NULL) {
2091                err = security_socket_setsockopt(sock, level, optname);
2092                if (err)
2093                        goto out_put;
2094
2095                err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level,
2096                                                     &optname, optval, &optlen,
2097                                                     &kernel_optval);
2098
2099                if (err < 0) {
2100                        goto out_put;
2101                } else if (err > 0) {
2102                        err = 0;
2103                        goto out_put;
2104                }
2105
2106                if (kernel_optval) {
2107                        set_fs(KERNEL_DS);
2108                        optval = (char __user __force *)kernel_optval;
2109                }
2110
2111                if (level == SOL_SOCKET)
2112                        err =
2113                            sock_setsockopt(sock, level, optname, optval,
2114                                            optlen);
2115                else
2116                        err =
2117                            sock->ops->setsockopt(sock, level, optname, optval,
2118                                                  optlen);
2119
2120                if (kernel_optval) {
2121                        set_fs(oldfs);
2122                        kfree(kernel_optval);
2123                }
2124out_put:
2125                fput_light(sock->file, fput_needed);
2126        }
2127        return err;
2128}
2129
2130SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2131                char __user *, optval, int, optlen)
2132{
2133        return __sys_setsockopt(fd, level, optname, optval, optlen);
2134}
2135
2136/*
2137 *      Get a socket option. Because we don't know the option lengths we have
2138 *      to pass a user mode parameter for the protocols to sort out.
2139 */
2140
2141static int __sys_getsockopt(int fd, int level, int optname,
2142                            char __user *optval, int __user *optlen)
2143{
2144        int err, fput_needed;
2145        struct socket *sock;
2146        int max_optlen;
2147
2148        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2149        if (sock != NULL) {
2150                err = security_socket_getsockopt(sock, level, optname);
2151                if (err)
2152                        goto out_put;
2153
2154                max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2155
2156                if (level == SOL_SOCKET)
2157                        err =
2158                            sock_getsockopt(sock, level, optname, optval,
2159                                            optlen);
2160                else
2161                        err =
2162                            sock->ops->getsockopt(sock, level, optname, optval,
2163                                                  optlen);
2164
2165                err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2166                                                     optval, optlen,
2167                                                     max_optlen, err);
2168out_put:
2169                fput_light(sock->file, fput_needed);
2170        }
2171        return err;
2172}
2173
2174SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2175                char __user *, optval, int __user *, optlen)
2176{
2177        return __sys_getsockopt(fd, level, optname, optval, optlen);
2178}
2179
2180/*
2181 *      Shutdown a socket.
2182 */
2183
2184int __sys_shutdown(int fd, int how)
2185{
2186        int err, fput_needed;
2187        struct socket *sock;
2188
2189        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2190        if (sock != NULL) {
2191                err = security_socket_shutdown(sock, how);
2192                if (!err)
2193                        err = sock->ops->shutdown(sock, how);
2194                fput_light(sock->file, fput_needed);
2195        }
2196        return err;
2197}
2198
2199SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2200{
2201        return __sys_shutdown(fd, how);
2202}
2203
2204/* A couple of helpful macros for getting the address of the 32/64 bit
2205 * fields which are the same type (int / unsigned) on our platforms.
2206 */
2207#define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2208#define COMPAT_NAMELEN(msg)     COMPAT_MSG(msg, msg_namelen)
2209#define COMPAT_FLAGS(msg)       COMPAT_MSG(msg, msg_flags)
2210
2211struct used_address {
2212        struct sockaddr_storage name;
2213        unsigned int name_len;
2214};
2215
2216static int copy_msghdr_from_user(struct msghdr *kmsg,
2217                                 struct user_msghdr __user *umsg,
2218                                 struct sockaddr __user **save_addr,
2219                                 struct iovec **iov)
2220{
2221        struct user_msghdr msg;
2222        ssize_t err;
2223
2224        if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2225                return -EFAULT;
2226
2227        kmsg->msg_control = (void __force *)msg.msg_control;
2228        kmsg->msg_controllen = msg.msg_controllen;
2229        kmsg->msg_flags = msg.msg_flags;
2230
2231        kmsg->msg_namelen = msg.msg_namelen;
2232        if (!msg.msg_name)
2233                kmsg->msg_namelen = 0;
2234
2235        if (kmsg->msg_namelen < 0)
2236                return -EINVAL;
2237
2238        if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2239                kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2240
2241        if (save_addr)
2242                *save_addr = msg.msg_name;
2243
2244        if (msg.msg_name && kmsg->msg_namelen) {
2245                if (!save_addr) {
2246                        err = move_addr_to_kernel(msg.msg_name,
2247                                                  kmsg->msg_namelen,
2248                                                  kmsg->msg_name);
2249                        if (err < 0)
2250                                return err;
2251                }
2252        } else {
2253                kmsg->msg_name = NULL;
2254                kmsg->msg_namelen = 0;
2255        }
2256
2257        if (msg.msg_iovlen > UIO_MAXIOV)
2258                return -EMSGSIZE;
2259
2260        kmsg->msg_iocb = NULL;
2261
2262        err = import_iovec(save_addr ? READ : WRITE,
2263                            msg.msg_iov, msg.msg_iovlen,
2264                            UIO_FASTIOV, iov, &kmsg->msg_iter);
2265        return err < 0 ? err : 0;
2266}
2267
2268static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2269                           unsigned int flags, struct used_address *used_address,
2270                           unsigned int allowed_msghdr_flags)
2271{
2272        unsigned char ctl[sizeof(struct cmsghdr) + 20]
2273                                __aligned(sizeof(__kernel_size_t));
2274        /* 20 is size of ipv6_pktinfo */
2275        unsigned char *ctl_buf = ctl;
2276        int ctl_len;
2277        ssize_t err;
2278
2279        err = -ENOBUFS;
2280
2281        if (msg_sys->msg_controllen > INT_MAX)
2282                goto out;
2283        flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2284        ctl_len = msg_sys->msg_controllen;
2285        if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2286                err =
2287                    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2288                                                     sizeof(ctl));
2289                if (err)
2290                        goto out;
2291                ctl_buf = msg_sys->msg_control;
2292                ctl_len = msg_sys->msg_controllen;
2293        } else if (ctl_len) {
2294                BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2295                             CMSG_ALIGN(sizeof(struct cmsghdr)));
2296                if (ctl_len > sizeof(ctl)) {
2297                        ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2298                        if (ctl_buf == NULL)
2299                                goto out;
2300                }
2301                err = -EFAULT;
2302                /*
2303                 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2304                 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2305                 * checking falls down on this.
2306                 */
2307                if (copy_from_user(ctl_buf,
2308                                   (void __user __force *)msg_sys->msg_control,
2309                                   ctl_len))
2310                        goto out_freectl;
2311                msg_sys->msg_control = ctl_buf;
2312        }
2313        msg_sys->msg_flags = flags;
2314
2315        if (sock->file->f_flags & O_NONBLOCK)
2316                msg_sys->msg_flags |= MSG_DONTWAIT;
2317        /*
2318         * If this is sendmmsg() and current destination address is same as
2319         * previously succeeded address, omit asking LSM's decision.
2320         * used_address->name_len is initialized to UINT_MAX so that the first
2321         * destination address never matches.
2322         */
2323        if (used_address && msg_sys->msg_name &&
2324            used_address->name_len == msg_sys->msg_namelen &&
2325            !memcmp(&used_address->name, msg_sys->msg_name,
2326                    used_address->name_len)) {
2327                err = sock_sendmsg_nosec(sock, msg_sys);
2328                goto out_freectl;
2329        }
2330        err = sock_sendmsg(sock, msg_sys);
2331        /*
2332         * If this is sendmmsg() and sending to current destination address was
2333         * successful, remember it.
2334         */
2335        if (used_address && err >= 0) {
2336                used_address->name_len = msg_sys->msg_namelen;
2337                if (msg_sys->msg_name)
2338                        memcpy(&used_address->name, msg_sys->msg_name,
2339                               used_address->name_len);
2340        }
2341
2342out_freectl:
2343        if (ctl_buf != ctl)
2344                sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2345out:
2346        return err;
2347}
2348
2349int sendmsg_copy_msghdr(struct msghdr *msg,
2350                        struct user_msghdr __user *umsg, unsigned flags,
2351                        struct iovec **iov)
2352{
2353        int err;
2354
2355        if (flags & MSG_CMSG_COMPAT) {
2356                struct compat_msghdr __user *msg_compat;
2357
2358                msg_compat = (struct compat_msghdr __user *) umsg;
2359                err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2360        } else {
2361                err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2362        }
2363        if (err < 0)
2364                return err;
2365
2366        return 0;
2367}
2368
2369static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2370                         struct msghdr *msg_sys, unsigned int flags,
2371                         struct used_address *used_address,
2372                         unsigned int allowed_msghdr_flags)
2373{
2374        struct sockaddr_storage address;
2375        struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2376        ssize_t err;
2377
2378        msg_sys->msg_name = &address;
2379
2380        err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2381        if (err < 0)
2382                return err;
2383
2384        err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2385                                allowed_msghdr_flags);
2386        kfree(iov);
2387        return err;
2388}
2389
2390/*
2391 *      BSD sendmsg interface
2392 */
2393long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2394                        unsigned int flags)
2395{
2396        /* disallow ancillary data requests from this path */
2397        if (msg->msg_control || msg->msg_controllen)
2398                return -EINVAL;
2399
2400        return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2401}
2402
2403long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2404                   bool forbid_cmsg_compat)
2405{
2406        int fput_needed, err;
2407        struct msghdr msg_sys;
2408        struct socket *sock;
2409
2410        if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2411                return -EINVAL;
2412
2413        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2414        if (!sock)
2415                goto out;
2416
2417        err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2418
2419        fput_light(sock->file, fput_needed);
2420out:
2421        return err;
2422}
2423
2424SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2425{
2426        return __sys_sendmsg(fd, msg, flags, true);
2427}
2428
2429/*
2430 *      Linux sendmmsg interface
2431 */
2432
2433int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2434                   unsigned int flags, bool forbid_cmsg_compat)
2435{
2436        int fput_needed, err, datagrams;
2437        struct socket *sock;
2438        struct mmsghdr __user *entry;
2439        struct compat_mmsghdr __user *compat_entry;
2440        struct msghdr msg_sys;
2441        struct used_address used_address;
2442        unsigned int oflags = flags;
2443
2444        if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2445                return -EINVAL;
2446
2447        if (vlen > UIO_MAXIOV)
2448                vlen = UIO_MAXIOV;
2449
2450        datagrams = 0;
2451
2452        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2453        if (!sock)
2454                return err;
2455
2456        used_address.name_len = UINT_MAX;
2457        entry = mmsg;
2458        compat_entry = (struct compat_mmsghdr __user *)mmsg;
2459        err = 0;
2460        flags |= MSG_BATCH;
2461
2462        while (datagrams < vlen) {
2463                if (datagrams == vlen - 1)
2464                        flags = oflags;
2465
2466                if (MSG_CMSG_COMPAT & flags) {
2467                        err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2468                                             &msg_sys, flags, &used_address, MSG_EOR);
2469                        if (err < 0)
2470                                break;
2471                        err = __put_user(err, &compat_entry->msg_len);
2472                        ++compat_entry;
2473                } else {
2474                        err = ___sys_sendmsg(sock,
2475                                             (struct user_msghdr __user *)entry,
2476                                             &msg_sys, flags, &used_address, MSG_EOR);
2477                        if (err < 0)
2478                                break;
2479                        err = put_user(err, &entry->msg_len);
2480                        ++entry;
2481                }
2482
2483                if (err)
2484                        break;
2485                ++datagrams;
2486                if (msg_data_left(&msg_sys))
2487                        break;
2488                cond_resched();
2489        }
2490
2491        fput_light(sock->file, fput_needed);
2492
2493        /* We only return an error if no datagrams were able to be sent */
2494        if (datagrams != 0)
2495                return datagrams;
2496
2497        return err;
2498}
2499
2500SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2501                unsigned int, vlen, unsigned int, flags)
2502{
2503        return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2504}
2505
2506int recvmsg_copy_msghdr(struct msghdr *msg,
2507                        struct user_msghdr __user *umsg, unsigned flags,
2508                        struct sockaddr __user **uaddr,
2509                        struct iovec **iov)
2510{
2511        ssize_t err;
2512
2513        if (MSG_CMSG_COMPAT & flags) {
2514                struct compat_msghdr __user *msg_compat;
2515
2516                msg_compat = (struct compat_msghdr __user *) umsg;
2517                err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2518        } else {
2519                err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2520        }
2521        if (err < 0)
2522                return err;
2523
2524        return 0;
2525}
2526
2527static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2528                           struct user_msghdr __user *msg,
2529                           struct sockaddr __user *uaddr,
2530                           unsigned int flags, int nosec)
2531{
2532        struct compat_msghdr __user *msg_compat =
2533                                        (struct compat_msghdr __user *) msg;
2534        int __user *uaddr_len = COMPAT_NAMELEN(msg);
2535        struct sockaddr_storage addr;
2536        unsigned long cmsg_ptr;
2537        int len;
2538        ssize_t err;
2539
2540        msg_sys->msg_name = &addr;
2541        cmsg_ptr = (unsigned long)msg_sys->msg_control;
2542        msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2543
2544        /* We assume all kernel code knows the size of sockaddr_storage */
2545        msg_sys->msg_namelen = 0;
2546
2547        if (sock->file->f_flags & O_NONBLOCK)
2548                flags |= MSG_DONTWAIT;
2549
2550        if (unlikely(nosec))
2551                err = sock_recvmsg_nosec(sock, msg_sys, flags);
2552        else
2553                err = sock_recvmsg(sock, msg_sys, flags);
2554
2555        if (err < 0)
2556                goto out;
2557        len = err;
2558
2559        if (uaddr != NULL) {
2560                err = move_addr_to_user(&addr,
2561                                        msg_sys->msg_namelen, uaddr,
2562                                        uaddr_len);
2563                if (err < 0)
2564                        goto out;
2565        }
2566        err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2567                         COMPAT_FLAGS(msg));
2568        if (err)
2569                goto out;
2570        if (MSG_CMSG_COMPAT & flags)
2571                err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2572                                 &msg_compat->msg_controllen);
2573        else
2574                err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2575                                 &msg->msg_controllen);
2576        if (err)
2577                goto out;
2578        err = len;
2579out:
2580        return err;
2581}
2582
2583static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2584                         struct msghdr *msg_sys, unsigned int flags, int nosec)
2585{
2586        struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2587        /* user mode address pointers */
2588        struct sockaddr __user *uaddr;
2589        ssize_t err;
2590
2591        err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2592        if (err < 0)
2593                return err;
2594
2595        err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2596        kfree(iov);
2597        return err;
2598}
2599
2600/*
2601 *      BSD recvmsg interface
2602 */
2603
2604long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2605                        struct user_msghdr __user *umsg,
2606                        struct sockaddr __user *uaddr, unsigned int flags)
2607{
2608        /* disallow ancillary data requests from this path */
2609        if (msg->msg_control || msg->msg_controllen)
2610                return -EINVAL;
2611
2612        return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2613}
2614
2615long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2616                   bool forbid_cmsg_compat)
2617{
2618        int fput_needed, err;
2619        struct msghdr msg_sys;
2620        struct socket *sock;
2621
2622        if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2623                return -EINVAL;
2624
2625        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2626        if (!sock)
2627                goto out;
2628
2629        err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2630
2631        fput_light(sock->file, fput_needed);
2632out:
2633        return err;
2634}
2635
2636SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2637                unsigned int, flags)
2638{
2639        return __sys_recvmsg(fd, msg, flags, true);
2640}
2641
2642/*
2643 *     Linux recvmmsg interface
2644 */
2645
2646static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2647                          unsigned int vlen, unsigned int flags,
2648                          struct timespec64 *timeout)
2649{
2650        int fput_needed, err, datagrams;
2651        struct socket *sock;
2652        struct mmsghdr __user *entry;
2653        struct compat_mmsghdr __user *compat_entry;
2654        struct msghdr msg_sys;
2655        struct timespec64 end_time;
2656        struct timespec64 timeout64;
2657
2658        if (timeout &&
2659            poll_select_set_timeout(&end_time, timeout->tv_sec,
2660                                    timeout->tv_nsec))
2661                return -EINVAL;
2662
2663        datagrams = 0;
2664
2665        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2666        if (!sock)
2667                return err;
2668
2669        if (likely(!(flags & MSG_ERRQUEUE))) {
2670                err = sock_error(sock->sk);
2671                if (err) {
2672                        datagrams = err;
2673                        goto out_put;
2674                }
2675        }
2676
2677        entry = mmsg;
2678        compat_entry = (struct compat_mmsghdr __user *)mmsg;
2679
2680        while (datagrams < vlen) {
2681                /*
2682                 * No need to ask LSM for more than the first datagram.
2683                 */
2684                if (MSG_CMSG_COMPAT & flags) {
2685                        err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2686                                             &msg_sys, flags & ~MSG_WAITFORONE,
2687                                             datagrams);
2688                        if (err < 0)
2689                                break;
2690                        err = __put_user(err, &compat_entry->msg_len);
2691                        ++compat_entry;
2692                } else {
2693                        err = ___sys_recvmsg(sock,
2694                                             (struct user_msghdr __user *)entry,
2695                                             &msg_sys, flags & ~MSG_WAITFORONE,
2696                                             datagrams);
2697                        if (err < 0)
2698                                break;
2699                        err = put_user(err, &entry->msg_len);
2700                        ++entry;
2701                }
2702
2703                if (err)
2704                        break;
2705                ++datagrams;
2706
2707                /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2708                if (flags & MSG_WAITFORONE)
2709                        flags |= MSG_DONTWAIT;
2710
2711                if (timeout) {
2712                        ktime_get_ts64(&timeout64);
2713                        *timeout = timespec64_sub(end_time, timeout64);
2714                        if (timeout->tv_sec < 0) {
2715                                timeout->tv_sec = timeout->tv_nsec = 0;
2716                                break;
2717                        }
2718
2719                        /* Timeout, return less than vlen datagrams */
2720                        if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2721                                break;
2722                }
2723
2724                /* Out of band data, return right away */
2725                if (msg_sys.msg_flags & MSG_OOB)
2726                        break;
2727                cond_resched();
2728        }
2729
2730        if (err == 0)
2731                goto out_put;
2732
2733        if (datagrams == 0) {
2734                datagrams = err;
2735                goto out_put;
2736        }
2737
2738        /*
2739         * We may return less entries than requested (vlen) if the
2740         * sock is non block and there aren't enough datagrams...
2741         */
2742        if (err != -EAGAIN) {
2743                /*
2744                 * ... or  if recvmsg returns an error after we
2745                 * received some datagrams, where we record the
2746                 * error to return on the next call or if the
2747                 * app asks about it using getsockopt(SO_ERROR).
2748                 */
2749                sock->sk->sk_err = -err;
2750        }
2751out_put:
2752        fput_light(sock->file, fput_needed);
2753
2754        return datagrams;
2755}
2756
2757int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2758                   unsigned int vlen, unsigned int flags,
2759                   struct __kernel_timespec __user *timeout,
2760                   struct old_timespec32 __user *timeout32)
2761{
2762        int datagrams;
2763        struct timespec64 timeout_sys;
2764
2765        if (timeout && get_timespec64(&timeout_sys, timeout))
2766                return -EFAULT;
2767
2768        if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2769                return -EFAULT;
2770
2771        if (!timeout && !timeout32)
2772                return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2773
2774        datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2775
2776        if (datagrams <= 0)
2777                return datagrams;
2778
2779        if (timeout && put_timespec64(&timeout_sys, timeout))
2780                datagrams = -EFAULT;
2781
2782        if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2783                datagrams = -EFAULT;
2784
2785        return datagrams;
2786}
2787
2788SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2789                unsigned int, vlen, unsigned int, flags,
2790                struct __kernel_timespec __user *, timeout)
2791{
2792        if (flags & MSG_CMSG_COMPAT)
2793                return -EINVAL;
2794
2795        return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2796}
2797
2798#ifdef CONFIG_COMPAT_32BIT_TIME
2799SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2800                unsigned int, vlen, unsigned int, flags,
2801                struct old_timespec32 __user *, timeout)
2802{
2803        if (flags & MSG_CMSG_COMPAT)
2804                return -EINVAL;
2805
2806        return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2807}
2808#endif
2809
2810#ifdef __ARCH_WANT_SYS_SOCKETCALL
2811/* Argument list sizes for sys_socketcall */
2812#define AL(x) ((x) * sizeof(unsigned long))
2813static const unsigned char nargs[21] = {
2814        AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2815        AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2816        AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2817        AL(4), AL(5), AL(4)
2818};
2819
2820#undef AL
2821
2822/*
2823 *      System call vectors.
2824 *
2825 *      Argument checking cleaned up. Saved 20% in size.
2826 *  This function doesn't need to set the kernel lock because
2827 *  it is set by the callees.
2828 */
2829
2830SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2831{
2832        unsigned long a[AUDITSC_ARGS];
2833        unsigned long a0, a1;
2834        int err;
2835        unsigned int len;
2836
2837        if (call < 1 || call > SYS_SENDMMSG)
2838                return -EINVAL;
2839        call = array_index_nospec(call, SYS_SENDMMSG + 1);
2840
2841        len = nargs[call];
2842        if (len > sizeof(a))
2843                return -EINVAL;
2844
2845        /* copy_from_user should be SMP safe. */
2846        if (copy_from_user(a, args, len))
2847                return -EFAULT;
2848
2849        err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2850        if (err)
2851                return err;
2852
2853        a0 = a[0];
2854        a1 = a[1];
2855
2856        switch (call) {
2857        case SYS_SOCKET:
2858                err = __sys_socket(a0, a1, a[2]);
2859                break;
2860        case SYS_BIND:
2861                err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2862                break;
2863        case SYS_CONNECT:
2864                err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2865                break;
2866        case SYS_LISTEN:
2867                err = __sys_listen(a0, a1);
2868                break;
2869        case SYS_ACCEPT:
2870                err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2871                                    (int __user *)a[2], 0);
2872                break;
2873        case SYS_GETSOCKNAME:
2874                err =
2875                    __sys_getsockname(a0, (struct sockaddr __user *)a1,
2876                                      (int __user *)a[2]);
2877                break;
2878        case SYS_GETPEERNAME:
2879                err =
2880                    __sys_getpeername(a0, (struct sockaddr __user *)a1,
2881                                      (int __user *)a[2]);
2882                break;
2883        case SYS_SOCKETPAIR:
2884                err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2885                break;
2886        case SYS_SEND:
2887                err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2888                                   NULL, 0);
2889                break;
2890        case SYS_SENDTO:
2891                err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2892                                   (struct sockaddr __user *)a[4], a[5]);
2893                break;
2894        case SYS_RECV:
2895                err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2896                                     NULL, NULL);
2897                break;
2898        case SYS_RECVFROM:
2899                err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2900                                     (struct sockaddr __user *)a[4],
2901                                     (int __user *)a[5]);
2902                break;
2903        case SYS_SHUTDOWN:
2904                err = __sys_shutdown(a0, a1);
2905                break;
2906        case SYS_SETSOCKOPT:
2907                err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2908                                       a[4]);
2909                break;
2910        case SYS_GETSOCKOPT:
2911                err =
2912                    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2913                                     (int __user *)a[4]);
2914                break;
2915        case SYS_SENDMSG:
2916                err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2917                                    a[2], true);
2918                break;
2919        case SYS_SENDMMSG:
2920                err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2921                                     a[3], true);
2922                break;
2923        case SYS_RECVMSG:
2924                err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2925                                    a[2], true);
2926                break;
2927        case SYS_RECVMMSG:
2928                if (IS_ENABLED(CONFIG_64BIT))
2929                        err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2930                                             a[2], a[3],
2931                                             (struct __kernel_timespec __user *)a[4],
2932                                             NULL);
2933                else
2934                        err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2935                                             a[2], a[3], NULL,
2936                                             (struct old_timespec32 __user *)a[4]);
2937                break;
2938        case SYS_ACCEPT4:
2939                err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2940                                    (int __user *)a[2], a[3]);
2941                break;
2942        default:
2943                err = -EINVAL;
2944                break;
2945        }
2946        return err;
2947}
2948
2949#endif                          /* __ARCH_WANT_SYS_SOCKETCALL */
2950
2951/**
2952 *      sock_register - add a socket protocol handler
2953 *      @ops: description of protocol
2954 *
2955 *      This function is called by a protocol handler that wants to
2956 *      advertise its address family, and have it linked into the
2957 *      socket interface. The value ops->family corresponds to the
2958 *      socket system call protocol family.
2959 */
2960int sock_register(const struct net_proto_family *ops)
2961{
2962        int err;
2963
2964        if (ops->family >= NPROTO) {
2965                pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2966                return -ENOBUFS;
2967        }
2968
2969        spin_lock(&net_family_lock);
2970        if (rcu_dereference_protected(net_families[ops->family],
2971                                      lockdep_is_held(&net_family_lock)))
2972                err = -EEXIST;
2973        else {
2974                rcu_assign_pointer(net_families[ops->family], ops);
2975                err = 0;
2976        }
2977        spin_unlock(&net_family_lock);
2978
2979        pr_info("NET: Registered protocol family %d\n", ops->family);
2980        return err;
2981}
2982EXPORT_SYMBOL(sock_register);
2983
2984/**
2985 *      sock_unregister - remove a protocol handler
2986 *      @family: protocol family to remove
2987 *
2988 *      This function is called by a protocol handler that wants to
2989 *      remove its address family, and have it unlinked from the
2990 *      new socket creation.
2991 *
2992 *      If protocol handler is a module, then it can use module reference
2993 *      counts to protect against new references. If protocol handler is not
2994 *      a module then it needs to provide its own protection in
2995 *      the ops->create routine.
2996 */
2997void sock_unregister(int family)
2998{
2999        BUG_ON(family < 0 || family >= NPROTO);
3000
3001        spin_lock(&net_family_lock);
3002        RCU_INIT_POINTER(net_families[family], NULL);
3003        spin_unlock(&net_family_lock);
3004
3005        synchronize_rcu();
3006
3007        pr_info("NET: Unregistered protocol family %d\n", family);
3008}
3009EXPORT_SYMBOL(sock_unregister);
3010
3011bool sock_is_registered(int family)
3012{
3013        return family < NPROTO && rcu_access_pointer(net_families[family]);
3014}
3015
3016static int __init sock_init(void)
3017{
3018        int err;
3019        /*
3020         *      Initialize the network sysctl infrastructure.
3021         */
3022        err = net_sysctl_init();
3023        if (err)
3024                goto out;
3025
3026        /*
3027         *      Initialize skbuff SLAB cache
3028         */
3029        skb_init();
3030
3031        /*
3032         *      Initialize the protocols module.
3033         */
3034
3035        init_inodecache();
3036
3037        err = register_filesystem(&sock_fs_type);
3038        if (err)
3039                goto out_fs;
3040        sock_mnt = kern_mount(&sock_fs_type);
3041        if (IS_ERR(sock_mnt)) {
3042                err = PTR_ERR(sock_mnt);
3043                goto out_mount;
3044        }
3045
3046        /* The real protocol initialization is performed in later initcalls.
3047         */
3048
3049#ifdef CONFIG_NETFILTER
3050        err = netfilter_init();
3051        if (err)
3052                goto out;
3053#endif
3054
3055        ptp_classifier_init();
3056
3057out:
3058        return err;
3059
3060out_mount:
3061        unregister_filesystem(&sock_fs_type);
3062out_fs:
3063        goto out;
3064}
3065
3066core_initcall(sock_init);       /* early initcall */
3067
3068#ifdef CONFIG_PROC_FS
3069void socket_seq_show(struct seq_file *seq)
3070{
3071        seq_printf(seq, "sockets: used %d\n",
3072                   sock_inuse_get(seq->private));
3073}
3074#endif                          /* CONFIG_PROC_FS */
3075
3076#ifdef CONFIG_COMPAT
3077static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
3078{
3079        struct compat_ifconf ifc32;
3080        struct ifconf ifc;
3081        int err;
3082
3083        if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
3084                return -EFAULT;
3085
3086        ifc.ifc_len = ifc32.ifc_len;
3087        ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
3088
3089        rtnl_lock();
3090        err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
3091        rtnl_unlock();
3092        if (err)
3093                return err;
3094
3095        ifc32.ifc_len = ifc.ifc_len;
3096        if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
3097                return -EFAULT;
3098
3099        return 0;
3100}
3101
3102static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
3103{
3104        struct compat_ethtool_rxnfc __user *compat_rxnfc;
3105        bool convert_in = false, convert_out = false;
3106        size_t buf_size = 0;
3107        struct ethtool_rxnfc __user *rxnfc = NULL;
3108        struct ifreq ifr;
3109        u32 rule_cnt = 0, actual_rule_cnt;
3110        u32 ethcmd;
3111        u32 data;
3112        int ret;
3113
3114        if (get_user(data, &ifr32->ifr_ifru.ifru_data))
3115                return -EFAULT;
3116
3117        compat_rxnfc = compat_ptr(data);
3118
3119        if (get_user(ethcmd, &compat_rxnfc->cmd))
3120                return -EFAULT;
3121
3122        /* Most ethtool structures are defined without padding.
3123         * Unfortunately struct ethtool_rxnfc is an exception.
3124         */
3125        switch (ethcmd) {
3126        default:
3127                break;
3128        case ETHTOOL_GRXCLSRLALL:
3129                /* Buffer size is variable */
3130                if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
3131                        return -EFAULT;
3132                if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
3133                        return -ENOMEM;
3134                buf_size += rule_cnt * sizeof(u32);
3135                /* fall through */
3136        case ETHTOOL_GRXRINGS:
3137        case ETHTOOL_GRXCLSRLCNT:
3138        case ETHTOOL_GRXCLSRULE:
3139        case ETHTOOL_SRXCLSRLINS:
3140                convert_out = true;
3141                /* fall through */
3142        case ETHTOOL_SRXCLSRLDEL:
3143                buf_size += sizeof(struct ethtool_rxnfc);
3144                convert_in = true;
3145                rxnfc = compat_alloc_user_space(buf_size);
3146                break;
3147        }
3148
3149        if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ))
3150                return -EFAULT;
3151
3152        ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc;
3153
3154        if (convert_in) {
3155                /* We expect there to be holes between fs.m_ext and
3156                 * fs.ring_cookie and at the end of fs, but nowhere else.
3157                 */
3158                BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
3159                             sizeof(compat_rxnfc->fs.m_ext) !=
3160                             offsetof(struct ethtool_rxnfc, fs.m_ext) +
3161                             sizeof(rxnfc->fs.m_ext));
3162                BUILD_BUG_ON(
3163                        offsetof(struct compat_ethtool_rxnfc, fs.location) -
3164                        offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
3165                        offsetof(struct ethtool_rxnfc, fs.location) -
3166                        offsetof(struct ethtool_rxnfc, fs.ring_cookie));
3167
3168                if (copy_in_user(rxnfc, compat_rxnfc,
3169                                 (void __user *)(&rxnfc->fs.m_ext + 1) -
3170                                 (void __user *)rxnfc) ||
3171                    copy_in_user(&rxnfc->fs.ring_cookie,
3172                                 &compat_rxnfc->fs.ring_cookie,
3173                                 (void __user *)(&rxnfc->fs.location + 1) -
3174                                 (void __user *)&rxnfc->fs.ring_cookie))
3175                        return -EFAULT;
3176                if (ethcmd == ETHTOOL_GRXCLSRLALL) {
3177                        if (put_user(rule_cnt, &rxnfc->rule_cnt))
3178                                return -EFAULT;
3179                } else if (copy_in_user(&rxnfc->rule_cnt,
3180                                        &compat_rxnfc->rule_cnt,
3181                                        sizeof(rxnfc->rule_cnt)))
3182                        return -EFAULT;
3183        }
3184
3185        ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL);
3186        if (ret)
3187                return ret;
3188
3189        if (convert_out) {
3190                if (copy_in_user(compat_rxnfc, rxnfc,
3191                                 (const void __user *)(&rxnfc->fs.m_ext + 1) -
3192                                 (const void __user *)rxnfc) ||
3193                    copy_in_user(&compat_rxnfc->fs.ring_cookie,
3194                                 &rxnfc->fs.ring_cookie,
3195                                 (const void __user *)(&rxnfc->fs.location + 1) -
3196                                 (const void __user *)&rxnfc->fs.ring_cookie) ||
3197                    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
3198                                 sizeof(rxnfc->rule_cnt)))
3199                        return -EFAULT;
3200
3201                if (ethcmd == ETHTOOL_GRXCLSRLALL) {
3202                        /* As an optimisation, we only copy the actual
3203                         * number of rules that the underlying
3204                         * function returned.  Since Mallory might
3205                         * change the rule count in user memory, we
3206                         * check that it is less than the rule count
3207                         * originally given (as the user buffer size),
3208                         * which has been range-checked.
3209                         */
3210                        if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
3211                                return -EFAULT;
3212                        if (actual_rule_cnt < rule_cnt)
3213                                rule_cnt = actual_rule_cnt;
3214                        if (copy_in_user(&compat_rxnfc->rule_locs[0],
3215                                         &rxnfc->rule_locs[0],
3216                                         rule_cnt * sizeof(u32)))
3217                                return -EFAULT;
3218                }
3219        }
3220
3221        return 0;
3222}
3223
3224static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3225{
3226        compat_uptr_t uptr32;
3227        struct ifreq ifr;
3228        void __user *saved;
3229        int err;
3230
3231        if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
3232                return -EFAULT;
3233
3234        if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3235                return -EFAULT;
3236
3237        saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3238        ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3239
3240        err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
3241        if (!err) {
3242                ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3243                if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
3244                        err = -EFAULT;
3245        }
3246        return err;
3247}
3248
3249/* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3250static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3251                                 struct compat_ifreq __user *u_ifreq32)
3252{
3253        struct ifreq ifreq;
3254        u32 data32;
3255
3256        if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
3257                return -EFAULT;
3258        if (get_user(data32, &u_ifreq32->ifr_data))
3259                return -EFAULT;
3260        ifreq.ifr_data = compat_ptr(data32);
3261
3262        return dev_ioctl(net, cmd, &ifreq, NULL);
3263}
3264
3265static int compat_ifreq_ioctl(struct net *net, struct socket *sock,
3266                              unsigned int cmd,
3267                              struct compat_ifreq __user *uifr32)
3268{
3269        struct ifreq __user *uifr;
3270        int err;
3271
3272        /* Handle the fact that while struct ifreq has the same *layout* on
3273         * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3274         * which are handled elsewhere, it still has different *size* due to
3275         * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3276         * resulting in struct ifreq being 32 and 40 bytes respectively).
3277         * As a result, if the struct happens to be at the end of a page and
3278         * the next page isn't readable/writable, we get a fault. To prevent
3279         * that, copy back and forth to the full size.
3280         */
3281
3282        uifr = compat_alloc_user_space(sizeof(*uifr));
3283        if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3284                return -EFAULT;
3285
3286        err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3287
3288        if (!err) {
3289                switch (cmd) {
3290                case SIOCGIFFLAGS:
3291                case SIOCGIFMETRIC:
3292                case SIOCGIFMTU:
3293                case SIOCGIFMEM:
3294                case SIOCGIFHWADDR:
3295                case SIOCGIFINDEX:
3296                case SIOCGIFADDR:
3297                case SIOCGIFBRDADDR:
3298                case SIOCGIFDSTADDR:
3299                case SIOCGIFNETMASK:
3300                case SIOCGIFPFLAGS:
3301                case SIOCGIFTXQLEN:
3302                case SIOCGMIIPHY:
3303                case SIOCGMIIREG:
3304                case SIOCGIFNAME:
3305                        if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3306                                err = -EFAULT;
3307                        break;
3308                }
3309        }
3310        return err;
3311}
3312
3313static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3314                        struct compat_ifreq __user *uifr32)
3315{
3316        struct ifreq ifr;
3317        struct compat_ifmap __user *uifmap32;
3318        int err;
3319
3320        uifmap32 = &uifr32->ifr_ifru.ifru_map;
3321        err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3322        err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3323        err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3324        err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3325        err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3326        err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3327        err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3328        if (err)
3329                return -EFAULT;
3330
3331        err = dev_ioctl(net, cmd, &ifr, NULL);
3332
3333        if (cmd == SIOCGIFMAP && !err) {
3334                err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3335                err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3336                err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3337                err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3338                err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3339                err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3340                err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3341                if (err)
3342                        err = -EFAULT;
3343        }
3344        return err;
3345}
3346
3347struct rtentry32 {
3348        u32             rt_pad1;
3349        struct sockaddr rt_dst;         /* target address               */
3350        struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
3351        struct sockaddr rt_genmask;     /* target network mask (IP)     */
3352        unsigned short  rt_flags;
3353        short           rt_pad2;
3354        u32             rt_pad3;
3355        unsigned char   rt_tos;
3356        unsigned char   rt_class;
3357        short           rt_pad4;
3358        short           rt_metric;      /* +1 for binary compatibility! */
3359        /* char * */ u32 rt_dev;        /* forcing the device at add    */
3360        u32             rt_mtu;         /* per route MTU/Window         */
3361        u32             rt_window;      /* Window clamping              */
3362        unsigned short  rt_irtt;        /* Initial RTT                  */
3363};
3364
3365struct in6_rtmsg32 {
3366        struct in6_addr         rtmsg_dst;
3367        struct in6_addr         rtmsg_src;
3368        struct in6_addr         rtmsg_gateway;
3369        u32                     rtmsg_type;
3370        u16                     rtmsg_dst_len;
3371        u16                     rtmsg_src_len;
3372        u32                     rtmsg_metric;
3373        u32                     rtmsg_info;
3374        u32                     rtmsg_flags;
3375        s32                     rtmsg_ifindex;
3376};
3377
3378static int routing_ioctl(struct net *net, struct socket *sock,
3379                         unsigned int cmd, void __user *argp)
3380{
3381        int ret;
3382        void *r = NULL;
3383        struct in6_rtmsg r6;
3384        struct rtentry r4;
3385        char devname[16];
3386        u32 rtdev;
3387        mm_segment_t old_fs = get_fs();
3388
3389        if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3390                struct in6_rtmsg32 __user *ur6 = argp;
3391                ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3392                        3 * sizeof(struct in6_addr));
3393                ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3394                ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3395                ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3396                ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3397                ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3398                ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3399                ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3400
3401                r = (void *) &r6;
3402        } else { /* ipv4 */
3403                struct rtentry32 __user *ur4 = argp;
3404                ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3405                                        3 * sizeof(struct sockaddr));
3406                ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3407                ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3408                ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3409                ret |= get_user(r4.rt_window, &(ur4->rt_window));
3410                ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3411                ret |= get_user(rtdev, &(ur4->rt_dev));
3412                if (rtdev) {
3413                        ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3414                        r4.rt_dev = (char __user __force *)devname;
3415                        devname[15] = 0;
3416                } else
3417                        r4.rt_dev = NULL;
3418
3419                r = (void *) &r4;
3420        }
3421
3422        if (ret) {
3423                ret = -EFAULT;
3424                goto out;
3425        }
3426
3427        set_fs(KERNEL_DS);
3428        ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3429        set_fs(old_fs);
3430
3431out:
3432        return ret;
3433}
3434
3435/* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3436 * for some operations; this forces use of the newer bridge-utils that
3437 * use compatible ioctls
3438 */
3439static int old_bridge_ioctl(compat_ulong_t __user *argp)
3440{
3441        compat_ulong_t tmp;
3442
3443        if (get_user(tmp, argp))
3444                return -EFAULT;
3445        if (tmp == BRCTL_GET_VERSION)
3446                return BRCTL_VERSION + 1;
3447        return -EINVAL;
3448}
3449
3450static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3451                         unsigned int cmd, unsigned long arg)
3452{
3453        void __user *argp = compat_ptr(arg);
3454        struct sock *sk = sock->sk;
3455        struct net *net = sock_net(sk);
3456
3457        if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3458                return compat_ifr_data_ioctl(net, cmd, argp);
3459
3460        switch (cmd) {
3461        case SIOCSIFBR:
3462        case SIOCGIFBR:
3463                return old_bridge_ioctl(argp);
3464        case SIOCGIFCONF:
3465                return compat_dev_ifconf(net, argp);
3466        case SIOCETHTOOL:
3467                return ethtool_ioctl(net, argp);
3468        case SIOCWANDEV:
3469                return compat_siocwandev(net, argp);
3470        case SIOCGIFMAP:
3471        case SIOCSIFMAP:
3472                return compat_sioc_ifmap(net, cmd, argp);
3473        case SIOCADDRT:
3474        case SIOCDELRT:
3475                return routing_ioctl(net, sock, cmd, argp);
3476        case SIOCGSTAMP_OLD:
3477        case SIOCGSTAMPNS_OLD:
3478                if (!sock->ops->gettstamp)
3479                        return -ENOIOCTLCMD;
3480                return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3481                                            !COMPAT_USE_64BIT_TIME);
3482
3483        case SIOCBONDSLAVEINFOQUERY:
3484        case SIOCBONDINFOQUERY:
3485        case SIOCSHWTSTAMP:
3486        case SIOCGHWTSTAMP:
3487                return compat_ifr_data_ioctl(net, cmd, argp);
3488
3489        case FIOSETOWN:
3490        case SIOCSPGRP:
3491        case FIOGETOWN:
3492        case SIOCGPGRP:
3493        case SIOCBRADDBR:
3494        case SIOCBRDELBR:
3495        case SIOCGIFVLAN:
3496        case SIOCSIFVLAN:
3497        case SIOCADDDLCI:
3498        case SIOCDELDLCI:
3499        case SIOCGSKNS:
3500        case SIOCGSTAMP_NEW:
3501        case SIOCGSTAMPNS_NEW:
3502                return sock_ioctl(file, cmd, arg);
3503
3504        case SIOCGIFFLAGS:
3505        case SIOCSIFFLAGS:
3506        case SIOCGIFMETRIC:
3507        case SIOCSIFMETRIC:
3508        case SIOCGIFMTU:
3509        case SIOCSIFMTU:
3510        case SIOCGIFMEM:
3511        case SIOCSIFMEM:
3512        case SIOCGIFHWADDR:
3513        case SIOCSIFHWADDR:
3514        case SIOCADDMULTI:
3515        case SIOCDELMULTI:
3516        case SIOCGIFINDEX:
3517        case SIOCGIFADDR:
3518        case SIOCSIFADDR:
3519        case SIOCSIFHWBROADCAST:
3520        case SIOCDIFADDR:
3521        case SIOCGIFBRDADDR:
3522        case SIOCSIFBRDADDR:
3523        case SIOCGIFDSTADDR:
3524        case SIOCSIFDSTADDR:
3525        case SIOCGIFNETMASK:
3526        case SIOCSIFNETMASK:
3527        case SIOCSIFPFLAGS:
3528        case SIOCGIFPFLAGS:
3529        case SIOCGIFTXQLEN:
3530        case SIOCSIFTXQLEN:
3531        case SIOCBRADDIF:
3532        case SIOCBRDELIF:
3533        case SIOCGIFNAME:
3534        case SIOCSIFNAME:
3535        case SIOCGMIIPHY:
3536        case SIOCGMIIREG:
3537        case SIOCSMIIREG:
3538        case SIOCBONDENSLAVE:
3539        case SIOCBONDRELEASE:
3540        case SIOCBONDSETHWADDR:
3541        case SIOCBONDCHANGEACTIVE:
3542                return compat_ifreq_ioctl(net, sock, cmd, argp);
3543
3544        case SIOCSARP:
3545        case SIOCGARP:
3546        case SIOCDARP:
3547        case SIOCOUTQ:
3548        case SIOCOUTQNSD:
3549        case SIOCATMARK:
3550                return sock_do_ioctl(net, sock, cmd, arg);
3551        }
3552
3553        return -ENOIOCTLCMD;
3554}
3555
3556static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3557                              unsigned long arg)
3558{
3559        struct socket *sock = file->private_data;
3560        int ret = -ENOIOCTLCMD;
3561        struct sock *sk;
3562        struct net *net;
3563
3564        sk = sock->sk;
3565        net = sock_net(sk);
3566
3567        if (sock->ops->compat_ioctl)
3568                ret = sock->ops->compat_ioctl(sock, cmd, arg);
3569
3570        if (ret == -ENOIOCTLCMD &&
3571            (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3572                ret = compat_wext_handle_ioctl(net, cmd, arg);
3573
3574        if (ret == -ENOIOCTLCMD)
3575                ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3576
3577        return ret;
3578}
3579#endif
3580
3581/**
3582 *      kernel_bind - bind an address to a socket (kernel space)
3583 *      @sock: socket
3584 *      @addr: address
3585 *      @addrlen: length of address
3586 *
3587 *      Returns 0 or an error.
3588 */
3589
3590int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3591{
3592        return sock->ops->bind(sock, addr, addrlen);
3593}
3594EXPORT_SYMBOL(kernel_bind);
3595
3596/**
3597 *      kernel_listen - move socket to listening state (kernel space)
3598 *      @sock: socket
3599 *      @backlog: pending connections queue size
3600 *
3601 *      Returns 0 or an error.
3602 */
3603
3604int kernel_listen(struct socket *sock, int backlog)
3605{
3606        return sock->ops->listen(sock, backlog);
3607}
3608EXPORT_SYMBOL(kernel_listen);
3609
3610/**
3611 *      kernel_accept - accept a connection (kernel space)
3612 *      @sock: listening socket
3613 *      @newsock: new connected socket
3614 *      @flags: flags
3615 *
3616 *      @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3617 *      If it fails, @newsock is guaranteed to be %NULL.
3618 *      Returns 0 or an error.
3619 */
3620
3621int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3622{
3623        struct sock *sk = sock->sk;
3624        int err;
3625
3626        err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3627                               newsock);
3628        if (err < 0)
3629                goto done;
3630
3631        err = sock->ops->accept(sock, *newsock, flags, true);
3632        if (err < 0) {
3633                sock_release(*newsock);
3634                *newsock = NULL;
3635                goto done;
3636        }
3637
3638        (*newsock)->ops = sock->ops;
3639        __module_get((*newsock)->ops->owner);
3640
3641done:
3642        return err;
3643}
3644EXPORT_SYMBOL(kernel_accept);
3645
3646/**
3647 *      kernel_connect - connect a socket (kernel space)
3648 *      @sock: socket
3649 *      @addr: address
3650 *      @addrlen: address length
3651 *      @flags: flags (O_NONBLOCK, ...)
3652 *
3653 *      For datagram sockets, @addr is the addres to which datagrams are sent
3654 *      by default, and the only address from which datagrams are received.
3655 *      For stream sockets, attempts to connect to @addr.
3656 *      Returns 0 or an error code.
3657 */
3658
3659int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3660                   int flags)
3661{
3662        return sock->ops->connect(sock, addr, addrlen, flags);
3663}
3664EXPORT_SYMBOL(kernel_connect);
3665
3666/**
3667 *      kernel_getsockname - get the address which the socket is bound (kernel space)
3668 *      @sock: socket
3669 *      @addr: address holder
3670 *
3671 *      Fills the @addr pointer with the address which the socket is bound.
3672 *      Returns 0 or an error code.
3673 */
3674
3675int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3676{
3677        return sock->ops->getname(sock, addr, 0);
3678}
3679EXPORT_SYMBOL(kernel_getsockname);
3680
3681/**
3682 *      kernel_peername - get the address which the socket is connected (kernel space)
3683 *      @sock: socket
3684 *      @addr: address holder
3685 *
3686 *      Fills the @addr pointer with the address which the socket is connected.
3687 *      Returns 0 or an error code.
3688 */
3689
3690int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3691{
3692        return sock->ops->getname(sock, addr, 1);
3693}
3694EXPORT_SYMBOL(kernel_getpeername);
3695
3696/**
3697 *      kernel_getsockopt - get a socket option (kernel space)
3698 *      @sock: socket
3699 *      @level: API level (SOL_SOCKET, ...)
3700 *      @optname: option tag
3701 *      @optval: option value
3702 *      @optlen: option length
3703 *
3704 *      Assigns the option length to @optlen.
3705 *      Returns 0 or an error.
3706 */
3707
3708int kernel_getsockopt(struct socket *sock, int level, int optname,
3709                        char *optval, int *optlen)
3710{
3711        mm_segment_t oldfs = get_fs();
3712        char __user *uoptval;
3713        int __user *uoptlen;
3714        int err;
3715
3716        uoptval = (char __user __force *) optval;
3717        uoptlen = (int __user __force *) optlen;
3718
3719        set_fs(KERNEL_DS);
3720        if (level == SOL_SOCKET)
3721                err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3722        else
3723                err = sock->ops->getsockopt(sock, level, optname, uoptval,
3724                                            uoptlen);
3725        set_fs(oldfs);
3726        return err;
3727}
3728EXPORT_SYMBOL(kernel_getsockopt);
3729
3730/**
3731 *      kernel_setsockopt - set a socket option (kernel space)
3732 *      @sock: socket
3733 *      @level: API level (SOL_SOCKET, ...)
3734 *      @optname: option tag
3735 *      @optval: option value
3736 *      @optlen: option length
3737 *
3738 *      Returns 0 or an error.
3739 */
3740
3741int kernel_setsockopt(struct socket *sock, int level, int optname,
3742                        char *optval, unsigned int optlen)
3743{
3744        mm_segment_t oldfs = get_fs();
3745        char __user *uoptval;
3746        int err;
3747
3748        uoptval = (char __user __force *) optval;
3749
3750        set_fs(KERNEL_DS);
3751        if (level == SOL_SOCKET)
3752                err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3753        else
3754                err = sock->ops->setsockopt(sock, level, optname, uoptval,
3755                                            optlen);
3756        set_fs(oldfs);
3757        return err;
3758}
3759EXPORT_SYMBOL(kernel_setsockopt);
3760
3761/**
3762 *      kernel_sendpage - send a &page through a socket (kernel space)
3763 *      @sock: socket
3764 *      @page: page
3765 *      @offset: page offset
3766 *      @size: total size in bytes
3767 *      @flags: flags (MSG_DONTWAIT, ...)
3768 *
3769 *      Returns the total amount sent in bytes or an error.
3770 */
3771
3772int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3773                    size_t size, int flags)
3774{
3775        if (sock->ops->sendpage)
3776                return sock->ops->sendpage(sock, page, offset, size, flags);
3777
3778        return sock_no_sendpage(sock, page, offset, size, flags);
3779}
3780EXPORT_SYMBOL(kernel_sendpage);
3781
3782/**
3783 *      kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3784 *      @sk: sock
3785 *      @page: page
3786 *      @offset: page offset
3787 *      @size: total size in bytes
3788 *      @flags: flags (MSG_DONTWAIT, ...)
3789 *
3790 *      Returns the total amount sent in bytes or an error.
3791 *      Caller must hold @sk.
3792 */
3793
3794int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3795                           size_t size, int flags)
3796{
3797        struct socket *sock = sk->sk_socket;
3798
3799        if (sock->ops->sendpage_locked)
3800                return sock->ops->sendpage_locked(sk, page, offset, size,
3801                                                  flags);
3802
3803        return sock_no_sendpage_locked(sk, page, offset, size, flags);
3804}
3805EXPORT_SYMBOL(kernel_sendpage_locked);
3806
3807/**
3808 *      kernel_shutdown - shut down part of a full-duplex connection (kernel space)
3809 *      @sock: socket
3810 *      @how: connection part
3811 *
3812 *      Returns 0 or an error.
3813 */
3814
3815int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3816{
3817        return sock->ops->shutdown(sock, how);
3818}
3819EXPORT_SYMBOL(kernel_sock_shutdown);
3820
3821/**
3822 *      kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3823 *      @sk: socket
3824 *
3825 *      This routine returns the IP overhead imposed by a socket i.e.
3826 *      the length of the underlying IP header, depending on whether
3827 *      this is an IPv4 or IPv6 socket and the length from IP options turned
3828 *      on at the socket. Assumes that the caller has a lock on the socket.
3829 */
3830
3831u32 kernel_sock_ip_overhead(struct sock *sk)
3832{
3833        struct inet_sock *inet;
3834        struct ip_options_rcu *opt;
3835        u32 overhead = 0;
3836#if IS_ENABLED(CONFIG_IPV6)
3837        struct ipv6_pinfo *np;
3838        struct ipv6_txoptions *optv6 = NULL;
3839#endif /* IS_ENABLED(CONFIG_IPV6) */
3840
3841        if (!sk)
3842                return overhead;
3843
3844        switch (sk->sk_family) {
3845        case AF_INET:
3846                inet = inet_sk(sk);
3847                overhead += sizeof(struct iphdr);
3848                opt = rcu_dereference_protected(inet->inet_opt,
3849                                                sock_owned_by_user(sk));
3850                if (opt)
3851                        overhead += opt->opt.optlen;
3852                return overhead;
3853#if IS_ENABLED(CONFIG_IPV6)
3854        case AF_INET6:
3855                np = inet6_sk(sk);
3856                overhead += sizeof(struct ipv6hdr);
3857                if (np)
3858                        optv6 = rcu_dereference_protected(np->opt,
3859                                                          sock_owned_by_user(sk));
3860                if (optv6)
3861                        overhead += (optv6->opt_flen + optv6->opt_nflen);
3862                return overhead;
3863#endif /* IS_ENABLED(CONFIG_IPV6) */
3864        default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3865                return overhead;
3866        }
3867}
3868EXPORT_SYMBOL(kernel_sock_ip_overhead);
3869