linux/net/vmw_vsock/af_vsock.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * VMware vSockets Driver
   4 *
   5 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
   6 */
   7
   8/* Implementation notes:
   9 *
  10 * - There are two kinds of sockets: those created by user action (such as
  11 * calling socket(2)) and those created by incoming connection request packets.
  12 *
  13 * - There are two "global" tables, one for bound sockets (sockets that have
  14 * specified an address that they are responsible for) and one for connected
  15 * sockets (sockets that have established a connection with another socket).
  16 * These tables are "global" in that all sockets on the system are placed
  17 * within them. - Note, though, that the bound table contains an extra entry
  18 * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
  19 * that list. The bound table is used solely for lookup of sockets when packets
  20 * are received and that's not necessary for SOCK_DGRAM sockets since we create
  21 * a datagram handle for each and need not perform a lookup.  Keeping SOCK_DGRAM
  22 * sockets out of the bound hash buckets will reduce the chance of collisions
  23 * when looking for SOCK_STREAM sockets and prevents us from having to check the
  24 * socket type in the hash table lookups.
  25 *
  26 * - Sockets created by user action will either be "client" sockets that
  27 * initiate a connection or "server" sockets that listen for connections; we do
  28 * not support simultaneous connects (two "client" sockets connecting).
  29 *
  30 * - "Server" sockets are referred to as listener sockets throughout this
  31 * implementation because they are in the TCP_LISTEN state.  When a
  32 * connection request is received (the second kind of socket mentioned above),
  33 * we create a new socket and refer to it as a pending socket.  These pending
  34 * sockets are placed on the pending connection list of the listener socket.
  35 * When future packets are received for the address the listener socket is
  36 * bound to, we check if the source of the packet is from one that has an
  37 * existing pending connection.  If it does, we process the packet for the
  38 * pending socket.  When that socket reaches the connected state, it is removed
  39 * from the listener socket's pending list and enqueued in the listener
  40 * socket's accept queue.  Callers of accept(2) will accept connected sockets
  41 * from the listener socket's accept queue.  If the socket cannot be accepted
  42 * for some reason then it is marked rejected.  Once the connection is
  43 * accepted, it is owned by the user process and the responsibility for cleanup
  44 * falls with that user process.
  45 *
  46 * - It is possible that these pending sockets will never reach the connected
  47 * state; in fact, we may never receive another packet after the connection
  48 * request.  Because of this, we must schedule a cleanup function to run in the
  49 * future, after some amount of time passes where a connection should have been
  50 * established.  This function ensures that the socket is off all lists so it
  51 * cannot be retrieved, then drops all references to the socket so it is cleaned
  52 * up (sock_put() -> sk_free() -> our sk_destruct implementation).  Note this
  53 * function will also cleanup rejected sockets, those that reach the connected
  54 * state but leave it before they have been accepted.
  55 *
  56 * - Lock ordering for pending or accept queue sockets is:
  57 *
  58 *     lock_sock(listener);
  59 *     lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
  60 *
  61 * Using explicit nested locking keeps lockdep happy since normally only one
  62 * lock of a given class may be taken at a time.
  63 *
  64 * - Sockets created by user action will be cleaned up when the user process
  65 * calls close(2), causing our release implementation to be called. Our release
  66 * implementation will perform some cleanup then drop the last reference so our
  67 * sk_destruct implementation is invoked.  Our sk_destruct implementation will
  68 * perform additional cleanup that's common for both types of sockets.
  69 *
  70 * - A socket's reference count is what ensures that the structure won't be
  71 * freed.  Each entry in a list (such as the "global" bound and connected tables
  72 * and the listener socket's pending list and connected queue) ensures a
  73 * reference.  When we defer work until process context and pass a socket as our
  74 * argument, we must ensure the reference count is increased to ensure the
  75 * socket isn't freed before the function is run; the deferred function will
  76 * then drop the reference.
  77 *
  78 * - sk->sk_state uses the TCP state constants because they are widely used by
  79 * other address families and exposed to userspace tools like ss(8):
  80 *
  81 *   TCP_CLOSE - unconnected
  82 *   TCP_SYN_SENT - connecting
  83 *   TCP_ESTABLISHED - connected
  84 *   TCP_CLOSING - disconnecting
  85 *   TCP_LISTEN - listening
  86 */
  87
  88#include <linux/types.h>
  89#include <linux/bitops.h>
  90#include <linux/cred.h>
  91#include <linux/init.h>
  92#include <linux/io.h>
  93#include <linux/kernel.h>
  94#include <linux/sched/signal.h>
  95#include <linux/kmod.h>
  96#include <linux/list.h>
  97#include <linux/miscdevice.h>
  98#include <linux/module.h>
  99#include <linux/mutex.h>
 100#include <linux/net.h>
 101#include <linux/poll.h>
 102#include <linux/random.h>
 103#include <linux/skbuff.h>
 104#include <linux/smp.h>
 105#include <linux/socket.h>
 106#include <linux/stddef.h>
 107#include <linux/unistd.h>
 108#include <linux/wait.h>
 109#include <linux/workqueue.h>
 110#include <net/sock.h>
 111#include <net/af_vsock.h>
 112
 113static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
 114static void vsock_sk_destruct(struct sock *sk);
 115static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
 116
 117/* Protocol family. */
 118static struct proto vsock_proto = {
 119        .name = "AF_VSOCK",
 120        .owner = THIS_MODULE,
 121        .obj_size = sizeof(struct vsock_sock),
 122};
 123
 124/* The default peer timeout indicates how long we will wait for a peer response
 125 * to a control message.
 126 */
 127#define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
 128
 129#define VSOCK_DEFAULT_BUFFER_SIZE     (1024 * 256)
 130#define VSOCK_DEFAULT_BUFFER_MAX_SIZE (1024 * 256)
 131#define VSOCK_DEFAULT_BUFFER_MIN_SIZE 128
 132
 133/* Transport used for host->guest communication */
 134static const struct vsock_transport *transport_h2g;
 135/* Transport used for guest->host communication */
 136static const struct vsock_transport *transport_g2h;
 137/* Transport used for DGRAM communication */
 138static const struct vsock_transport *transport_dgram;
 139static DEFINE_MUTEX(vsock_register_mutex);
 140
 141/**** UTILS ****/
 142
 143/* Each bound VSocket is stored in the bind hash table and each connected
 144 * VSocket is stored in the connected hash table.
 145 *
 146 * Unbound sockets are all put on the same list attached to the end of the hash
 147 * table (vsock_unbound_sockets).  Bound sockets are added to the hash table in
 148 * the bucket that their local address hashes to (vsock_bound_sockets(addr)
 149 * represents the list that addr hashes to).
 150 *
 151 * Specifically, we initialize the vsock_bind_table array to a size of
 152 * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
 153 * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
 154 * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets.  The hash function
 155 * mods with VSOCK_HASH_SIZE to ensure this.
 156 */
 157#define MAX_PORT_RETRIES        24
 158
 159#define VSOCK_HASH(addr)        ((addr)->svm_port % VSOCK_HASH_SIZE)
 160#define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
 161#define vsock_unbound_sockets     (&vsock_bind_table[VSOCK_HASH_SIZE])
 162
 163/* XXX This can probably be implemented in a better way. */
 164#define VSOCK_CONN_HASH(src, dst)                               \
 165        (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
 166#define vsock_connected_sockets(src, dst)               \
 167        (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
 168#define vsock_connected_sockets_vsk(vsk)                                \
 169        vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
 170
 171struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
 172EXPORT_SYMBOL_GPL(vsock_bind_table);
 173struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
 174EXPORT_SYMBOL_GPL(vsock_connected_table);
 175DEFINE_SPINLOCK(vsock_table_lock);
 176EXPORT_SYMBOL_GPL(vsock_table_lock);
 177
 178/* Autobind this socket to the local address if necessary. */
 179static int vsock_auto_bind(struct vsock_sock *vsk)
 180{
 181        struct sock *sk = sk_vsock(vsk);
 182        struct sockaddr_vm local_addr;
 183
 184        if (vsock_addr_bound(&vsk->local_addr))
 185                return 0;
 186        vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
 187        return __vsock_bind(sk, &local_addr);
 188}
 189
 190static void vsock_init_tables(void)
 191{
 192        int i;
 193
 194        for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
 195                INIT_LIST_HEAD(&vsock_bind_table[i]);
 196
 197        for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
 198                INIT_LIST_HEAD(&vsock_connected_table[i]);
 199}
 200
 201static void __vsock_insert_bound(struct list_head *list,
 202                                 struct vsock_sock *vsk)
 203{
 204        sock_hold(&vsk->sk);
 205        list_add(&vsk->bound_table, list);
 206}
 207
 208static void __vsock_insert_connected(struct list_head *list,
 209                                     struct vsock_sock *vsk)
 210{
 211        sock_hold(&vsk->sk);
 212        list_add(&vsk->connected_table, list);
 213}
 214
 215static void __vsock_remove_bound(struct vsock_sock *vsk)
 216{
 217        list_del_init(&vsk->bound_table);
 218        sock_put(&vsk->sk);
 219}
 220
 221static void __vsock_remove_connected(struct vsock_sock *vsk)
 222{
 223        list_del_init(&vsk->connected_table);
 224        sock_put(&vsk->sk);
 225}
 226
 227static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
 228{
 229        struct vsock_sock *vsk;
 230
 231        list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) {
 232                if (vsock_addr_equals_addr(addr, &vsk->local_addr))
 233                        return sk_vsock(vsk);
 234
 235                if (addr->svm_port == vsk->local_addr.svm_port &&
 236                    (vsk->local_addr.svm_cid == VMADDR_CID_ANY ||
 237                     addr->svm_cid == VMADDR_CID_ANY))
 238                        return sk_vsock(vsk);
 239        }
 240
 241        return NULL;
 242}
 243
 244static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
 245                                                  struct sockaddr_vm *dst)
 246{
 247        struct vsock_sock *vsk;
 248
 249        list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
 250                            connected_table) {
 251                if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
 252                    dst->svm_port == vsk->local_addr.svm_port) {
 253                        return sk_vsock(vsk);
 254                }
 255        }
 256
 257        return NULL;
 258}
 259
 260static void vsock_insert_unbound(struct vsock_sock *vsk)
 261{
 262        spin_lock_bh(&vsock_table_lock);
 263        __vsock_insert_bound(vsock_unbound_sockets, vsk);
 264        spin_unlock_bh(&vsock_table_lock);
 265}
 266
 267void vsock_insert_connected(struct vsock_sock *vsk)
 268{
 269        struct list_head *list = vsock_connected_sockets(
 270                &vsk->remote_addr, &vsk->local_addr);
 271
 272        spin_lock_bh(&vsock_table_lock);
 273        __vsock_insert_connected(list, vsk);
 274        spin_unlock_bh(&vsock_table_lock);
 275}
 276EXPORT_SYMBOL_GPL(vsock_insert_connected);
 277
 278void vsock_remove_bound(struct vsock_sock *vsk)
 279{
 280        spin_lock_bh(&vsock_table_lock);
 281        if (__vsock_in_bound_table(vsk))
 282                __vsock_remove_bound(vsk);
 283        spin_unlock_bh(&vsock_table_lock);
 284}
 285EXPORT_SYMBOL_GPL(vsock_remove_bound);
 286
 287void vsock_remove_connected(struct vsock_sock *vsk)
 288{
 289        spin_lock_bh(&vsock_table_lock);
 290        if (__vsock_in_connected_table(vsk))
 291                __vsock_remove_connected(vsk);
 292        spin_unlock_bh(&vsock_table_lock);
 293}
 294EXPORT_SYMBOL_GPL(vsock_remove_connected);
 295
 296struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
 297{
 298        struct sock *sk;
 299
 300        spin_lock_bh(&vsock_table_lock);
 301        sk = __vsock_find_bound_socket(addr);
 302        if (sk)
 303                sock_hold(sk);
 304
 305        spin_unlock_bh(&vsock_table_lock);
 306
 307        return sk;
 308}
 309EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
 310
 311struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
 312                                         struct sockaddr_vm *dst)
 313{
 314        struct sock *sk;
 315
 316        spin_lock_bh(&vsock_table_lock);
 317        sk = __vsock_find_connected_socket(src, dst);
 318        if (sk)
 319                sock_hold(sk);
 320
 321        spin_unlock_bh(&vsock_table_lock);
 322
 323        return sk;
 324}
 325EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
 326
 327void vsock_remove_sock(struct vsock_sock *vsk)
 328{
 329        vsock_remove_bound(vsk);
 330        vsock_remove_connected(vsk);
 331}
 332EXPORT_SYMBOL_GPL(vsock_remove_sock);
 333
 334void vsock_for_each_connected_socket(void (*fn)(struct sock *sk))
 335{
 336        int i;
 337
 338        spin_lock_bh(&vsock_table_lock);
 339
 340        for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
 341                struct vsock_sock *vsk;
 342                list_for_each_entry(vsk, &vsock_connected_table[i],
 343                                    connected_table)
 344                        fn(sk_vsock(vsk));
 345        }
 346
 347        spin_unlock_bh(&vsock_table_lock);
 348}
 349EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
 350
 351void vsock_add_pending(struct sock *listener, struct sock *pending)
 352{
 353        struct vsock_sock *vlistener;
 354        struct vsock_sock *vpending;
 355
 356        vlistener = vsock_sk(listener);
 357        vpending = vsock_sk(pending);
 358
 359        sock_hold(pending);
 360        sock_hold(listener);
 361        list_add_tail(&vpending->pending_links, &vlistener->pending_links);
 362}
 363EXPORT_SYMBOL_GPL(vsock_add_pending);
 364
 365void vsock_remove_pending(struct sock *listener, struct sock *pending)
 366{
 367        struct vsock_sock *vpending = vsock_sk(pending);
 368
 369        list_del_init(&vpending->pending_links);
 370        sock_put(listener);
 371        sock_put(pending);
 372}
 373EXPORT_SYMBOL_GPL(vsock_remove_pending);
 374
 375void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
 376{
 377        struct vsock_sock *vlistener;
 378        struct vsock_sock *vconnected;
 379
 380        vlistener = vsock_sk(listener);
 381        vconnected = vsock_sk(connected);
 382
 383        sock_hold(connected);
 384        sock_hold(listener);
 385        list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
 386}
 387EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
 388
 389static void vsock_deassign_transport(struct vsock_sock *vsk)
 390{
 391        if (!vsk->transport)
 392                return;
 393
 394        vsk->transport->destruct(vsk);
 395        module_put(vsk->transport->module);
 396        vsk->transport = NULL;
 397}
 398
 399/* Assign a transport to a socket and call the .init transport callback.
 400 *
 401 * Note: for stream socket this must be called when vsk->remote_addr is set
 402 * (e.g. during the connect() or when a connection request on a listener
 403 * socket is received).
 404 * The vsk->remote_addr is used to decide which transport to use:
 405 *  - remote CID <= VMADDR_CID_HOST will use guest->host transport;
 406 *  - remote CID == local_cid (guest->host transport) will use guest->host
 407 *    transport for loopback (host->guest transports don't support loopback);
 408 *  - remote CID > VMADDR_CID_HOST will use host->guest transport;
 409 */
 410int vsock_assign_transport(struct vsock_sock *vsk, struct vsock_sock *psk)
 411{
 412        const struct vsock_transport *new_transport;
 413        struct sock *sk = sk_vsock(vsk);
 414        unsigned int remote_cid = vsk->remote_addr.svm_cid;
 415        int ret;
 416
 417        switch (sk->sk_type) {
 418        case SOCK_DGRAM:
 419                new_transport = transport_dgram;
 420                break;
 421        case SOCK_STREAM:
 422                if (remote_cid <= VMADDR_CID_HOST ||
 423                    (transport_g2h &&
 424                     remote_cid == transport_g2h->get_local_cid()))
 425                        new_transport = transport_g2h;
 426                else
 427                        new_transport = transport_h2g;
 428                break;
 429        default:
 430                return -ESOCKTNOSUPPORT;
 431        }
 432
 433        if (vsk->transport) {
 434                if (vsk->transport == new_transport)
 435                        return 0;
 436
 437                vsk->transport->release(vsk);
 438                vsock_deassign_transport(vsk);
 439        }
 440
 441        /* We increase the module refcnt to prevent the transport unloading
 442         * while there are open sockets assigned to it.
 443         */
 444        if (!new_transport || !try_module_get(new_transport->module))
 445                return -ENODEV;
 446
 447        ret = new_transport->init(vsk, psk);
 448        if (ret) {
 449                module_put(new_transport->module);
 450                return ret;
 451        }
 452
 453        vsk->transport = new_transport;
 454
 455        return 0;
 456}
 457EXPORT_SYMBOL_GPL(vsock_assign_transport);
 458
 459bool vsock_find_cid(unsigned int cid)
 460{
 461        if (transport_g2h && cid == transport_g2h->get_local_cid())
 462                return true;
 463
 464        if (transport_h2g && cid == VMADDR_CID_HOST)
 465                return true;
 466
 467        return false;
 468}
 469EXPORT_SYMBOL_GPL(vsock_find_cid);
 470
 471static struct sock *vsock_dequeue_accept(struct sock *listener)
 472{
 473        struct vsock_sock *vlistener;
 474        struct vsock_sock *vconnected;
 475
 476        vlistener = vsock_sk(listener);
 477
 478        if (list_empty(&vlistener->accept_queue))
 479                return NULL;
 480
 481        vconnected = list_entry(vlistener->accept_queue.next,
 482                                struct vsock_sock, accept_queue);
 483
 484        list_del_init(&vconnected->accept_queue);
 485        sock_put(listener);
 486        /* The caller will need a reference on the connected socket so we let
 487         * it call sock_put().
 488         */
 489
 490        return sk_vsock(vconnected);
 491}
 492
 493static bool vsock_is_accept_queue_empty(struct sock *sk)
 494{
 495        struct vsock_sock *vsk = vsock_sk(sk);
 496        return list_empty(&vsk->accept_queue);
 497}
 498
 499static bool vsock_is_pending(struct sock *sk)
 500{
 501        struct vsock_sock *vsk = vsock_sk(sk);
 502        return !list_empty(&vsk->pending_links);
 503}
 504
 505static int vsock_send_shutdown(struct sock *sk, int mode)
 506{
 507        struct vsock_sock *vsk = vsock_sk(sk);
 508
 509        if (!vsk->transport)
 510                return -ENODEV;
 511
 512        return vsk->transport->shutdown(vsk, mode);
 513}
 514
 515static void vsock_pending_work(struct work_struct *work)
 516{
 517        struct sock *sk;
 518        struct sock *listener;
 519        struct vsock_sock *vsk;
 520        bool cleanup;
 521
 522        vsk = container_of(work, struct vsock_sock, pending_work.work);
 523        sk = sk_vsock(vsk);
 524        listener = vsk->listener;
 525        cleanup = true;
 526
 527        lock_sock(listener);
 528        lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
 529
 530        if (vsock_is_pending(sk)) {
 531                vsock_remove_pending(listener, sk);
 532
 533                sk_acceptq_removed(listener);
 534        } else if (!vsk->rejected) {
 535                /* We are not on the pending list and accept() did not reject
 536                 * us, so we must have been accepted by our user process.  We
 537                 * just need to drop our references to the sockets and be on
 538                 * our way.
 539                 */
 540                cleanup = false;
 541                goto out;
 542        }
 543
 544        /* We need to remove ourself from the global connected sockets list so
 545         * incoming packets can't find this socket, and to reduce the reference
 546         * count.
 547         */
 548        vsock_remove_connected(vsk);
 549
 550        sk->sk_state = TCP_CLOSE;
 551
 552out:
 553        release_sock(sk);
 554        release_sock(listener);
 555        if (cleanup)
 556                sock_put(sk);
 557
 558        sock_put(sk);
 559        sock_put(listener);
 560}
 561
 562/**** SOCKET OPERATIONS ****/
 563
 564static int __vsock_bind_stream(struct vsock_sock *vsk,
 565                               struct sockaddr_vm *addr)
 566{
 567        static u32 port;
 568        struct sockaddr_vm new_addr;
 569
 570        if (!port)
 571                port = LAST_RESERVED_PORT + 1 +
 572                        prandom_u32_max(U32_MAX - LAST_RESERVED_PORT);
 573
 574        vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
 575
 576        if (addr->svm_port == VMADDR_PORT_ANY) {
 577                bool found = false;
 578                unsigned int i;
 579
 580                for (i = 0; i < MAX_PORT_RETRIES; i++) {
 581                        if (port <= LAST_RESERVED_PORT)
 582                                port = LAST_RESERVED_PORT + 1;
 583
 584                        new_addr.svm_port = port++;
 585
 586                        if (!__vsock_find_bound_socket(&new_addr)) {
 587                                found = true;
 588                                break;
 589                        }
 590                }
 591
 592                if (!found)
 593                        return -EADDRNOTAVAIL;
 594        } else {
 595                /* If port is in reserved range, ensure caller
 596                 * has necessary privileges.
 597                 */
 598                if (addr->svm_port <= LAST_RESERVED_PORT &&
 599                    !capable(CAP_NET_BIND_SERVICE)) {
 600                        return -EACCES;
 601                }
 602
 603                if (__vsock_find_bound_socket(&new_addr))
 604                        return -EADDRINUSE;
 605        }
 606
 607        vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
 608
 609        /* Remove stream sockets from the unbound list and add them to the hash
 610         * table for easy lookup by its address.  The unbound list is simply an
 611         * extra entry at the end of the hash table, a trick used by AF_UNIX.
 612         */
 613        __vsock_remove_bound(vsk);
 614        __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
 615
 616        return 0;
 617}
 618
 619static int __vsock_bind_dgram(struct vsock_sock *vsk,
 620                              struct sockaddr_vm *addr)
 621{
 622        return vsk->transport->dgram_bind(vsk, addr);
 623}
 624
 625static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
 626{
 627        struct vsock_sock *vsk = vsock_sk(sk);
 628        int retval;
 629
 630        /* First ensure this socket isn't already bound. */
 631        if (vsock_addr_bound(&vsk->local_addr))
 632                return -EINVAL;
 633
 634        /* Now bind to the provided address or select appropriate values if
 635         * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY).  Note that
 636         * like AF_INET prevents binding to a non-local IP address (in most
 637         * cases), we only allow binding to a local CID.
 638         */
 639        if (addr->svm_cid != VMADDR_CID_ANY && !vsock_find_cid(addr->svm_cid))
 640                return -EADDRNOTAVAIL;
 641
 642        switch (sk->sk_socket->type) {
 643        case SOCK_STREAM:
 644                spin_lock_bh(&vsock_table_lock);
 645                retval = __vsock_bind_stream(vsk, addr);
 646                spin_unlock_bh(&vsock_table_lock);
 647                break;
 648
 649        case SOCK_DGRAM:
 650                retval = __vsock_bind_dgram(vsk, addr);
 651                break;
 652
 653        default:
 654                retval = -EINVAL;
 655                break;
 656        }
 657
 658        return retval;
 659}
 660
 661static void vsock_connect_timeout(struct work_struct *work);
 662
 663static struct sock *__vsock_create(struct net *net,
 664                                   struct socket *sock,
 665                                   struct sock *parent,
 666                                   gfp_t priority,
 667                                   unsigned short type,
 668                                   int kern)
 669{
 670        struct sock *sk;
 671        struct vsock_sock *psk;
 672        struct vsock_sock *vsk;
 673
 674        sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
 675        if (!sk)
 676                return NULL;
 677
 678        sock_init_data(sock, sk);
 679
 680        /* sk->sk_type is normally set in sock_init_data, but only if sock is
 681         * non-NULL. We make sure that our sockets always have a type by
 682         * setting it here if needed.
 683         */
 684        if (!sock)
 685                sk->sk_type = type;
 686
 687        vsk = vsock_sk(sk);
 688        vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
 689        vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
 690
 691        sk->sk_destruct = vsock_sk_destruct;
 692        sk->sk_backlog_rcv = vsock_queue_rcv_skb;
 693        sock_reset_flag(sk, SOCK_DONE);
 694
 695        INIT_LIST_HEAD(&vsk->bound_table);
 696        INIT_LIST_HEAD(&vsk->connected_table);
 697        vsk->listener = NULL;
 698        INIT_LIST_HEAD(&vsk->pending_links);
 699        INIT_LIST_HEAD(&vsk->accept_queue);
 700        vsk->rejected = false;
 701        vsk->sent_request = false;
 702        vsk->ignore_connecting_rst = false;
 703        vsk->peer_shutdown = 0;
 704        INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout);
 705        INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work);
 706
 707        psk = parent ? vsock_sk(parent) : NULL;
 708        if (parent) {
 709                vsk->trusted = psk->trusted;
 710                vsk->owner = get_cred(psk->owner);
 711                vsk->connect_timeout = psk->connect_timeout;
 712                vsk->buffer_size = psk->buffer_size;
 713                vsk->buffer_min_size = psk->buffer_min_size;
 714                vsk->buffer_max_size = psk->buffer_max_size;
 715        } else {
 716                vsk->trusted = capable(CAP_NET_ADMIN);
 717                vsk->owner = get_current_cred();
 718                vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
 719                vsk->buffer_size = VSOCK_DEFAULT_BUFFER_SIZE;
 720                vsk->buffer_min_size = VSOCK_DEFAULT_BUFFER_MIN_SIZE;
 721                vsk->buffer_max_size = VSOCK_DEFAULT_BUFFER_MAX_SIZE;
 722        }
 723
 724        return sk;
 725}
 726
 727static void __vsock_release(struct sock *sk, int level)
 728{
 729        if (sk) {
 730                struct sock *pending;
 731                struct vsock_sock *vsk;
 732
 733                vsk = vsock_sk(sk);
 734                pending = NULL; /* Compiler warning. */
 735
 736                /* The release call is supposed to use lock_sock_nested()
 737                 * rather than lock_sock(), if a sock lock should be acquired.
 738                 */
 739                if (vsk->transport)
 740                        vsk->transport->release(vsk);
 741                else if (sk->sk_type == SOCK_STREAM)
 742                        vsock_remove_sock(vsk);
 743
 744                /* When "level" is SINGLE_DEPTH_NESTING, use the nested
 745                 * version to avoid the warning "possible recursive locking
 746                 * detected". When "level" is 0, lock_sock_nested(sk, level)
 747                 * is the same as lock_sock(sk).
 748                 */
 749                lock_sock_nested(sk, level);
 750                sock_orphan(sk);
 751                sk->sk_shutdown = SHUTDOWN_MASK;
 752
 753                skb_queue_purge(&sk->sk_receive_queue);
 754
 755                /* Clean up any sockets that never were accepted. */
 756                while ((pending = vsock_dequeue_accept(sk)) != NULL) {
 757                        __vsock_release(pending, SINGLE_DEPTH_NESTING);
 758                        sock_put(pending);
 759                }
 760
 761                release_sock(sk);
 762                sock_put(sk);
 763        }
 764}
 765
 766static void vsock_sk_destruct(struct sock *sk)
 767{
 768        struct vsock_sock *vsk = vsock_sk(sk);
 769
 770        vsock_deassign_transport(vsk);
 771
 772        /* When clearing these addresses, there's no need to set the family and
 773         * possibly register the address family with the kernel.
 774         */
 775        vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
 776        vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
 777
 778        put_cred(vsk->owner);
 779}
 780
 781static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
 782{
 783        int err;
 784
 785        err = sock_queue_rcv_skb(sk, skb);
 786        if (err)
 787                kfree_skb(skb);
 788
 789        return err;
 790}
 791
 792struct sock *vsock_create_connected(struct sock *parent)
 793{
 794        return __vsock_create(sock_net(parent), NULL, parent, GFP_KERNEL,
 795                              parent->sk_type, 0);
 796}
 797EXPORT_SYMBOL_GPL(vsock_create_connected);
 798
 799s64 vsock_stream_has_data(struct vsock_sock *vsk)
 800{
 801        return vsk->transport->stream_has_data(vsk);
 802}
 803EXPORT_SYMBOL_GPL(vsock_stream_has_data);
 804
 805s64 vsock_stream_has_space(struct vsock_sock *vsk)
 806{
 807        return vsk->transport->stream_has_space(vsk);
 808}
 809EXPORT_SYMBOL_GPL(vsock_stream_has_space);
 810
 811static int vsock_release(struct socket *sock)
 812{
 813        __vsock_release(sock->sk, 0);
 814        sock->sk = NULL;
 815        sock->state = SS_FREE;
 816
 817        return 0;
 818}
 819
 820static int
 821vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
 822{
 823        int err;
 824        struct sock *sk;
 825        struct sockaddr_vm *vm_addr;
 826
 827        sk = sock->sk;
 828
 829        if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
 830                return -EINVAL;
 831
 832        lock_sock(sk);
 833        err = __vsock_bind(sk, vm_addr);
 834        release_sock(sk);
 835
 836        return err;
 837}
 838
 839static int vsock_getname(struct socket *sock,
 840                         struct sockaddr *addr, int peer)
 841{
 842        int err;
 843        struct sock *sk;
 844        struct vsock_sock *vsk;
 845        struct sockaddr_vm *vm_addr;
 846
 847        sk = sock->sk;
 848        vsk = vsock_sk(sk);
 849        err = 0;
 850
 851        lock_sock(sk);
 852
 853        if (peer) {
 854                if (sock->state != SS_CONNECTED) {
 855                        err = -ENOTCONN;
 856                        goto out;
 857                }
 858                vm_addr = &vsk->remote_addr;
 859        } else {
 860                vm_addr = &vsk->local_addr;
 861        }
 862
 863        if (!vm_addr) {
 864                err = -EINVAL;
 865                goto out;
 866        }
 867
 868        /* sys_getsockname() and sys_getpeername() pass us a
 869         * MAX_SOCK_ADDR-sized buffer and don't set addr_len.  Unfortunately
 870         * that macro is defined in socket.c instead of .h, so we hardcode its
 871         * value here.
 872         */
 873        BUILD_BUG_ON(sizeof(*vm_addr) > 128);
 874        memcpy(addr, vm_addr, sizeof(*vm_addr));
 875        err = sizeof(*vm_addr);
 876
 877out:
 878        release_sock(sk);
 879        return err;
 880}
 881
 882static int vsock_shutdown(struct socket *sock, int mode)
 883{
 884        int err;
 885        struct sock *sk;
 886
 887        /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
 888         * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
 889         * here like the other address families do.  Note also that the
 890         * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
 891         * which is what we want.
 892         */
 893        mode++;
 894
 895        if ((mode & ~SHUTDOWN_MASK) || !mode)
 896                return -EINVAL;
 897
 898        /* If this is a STREAM socket and it is not connected then bail out
 899         * immediately.  If it is a DGRAM socket then we must first kick the
 900         * socket so that it wakes up from any sleeping calls, for example
 901         * recv(), and then afterwards return the error.
 902         */
 903
 904        sk = sock->sk;
 905        if (sock->state == SS_UNCONNECTED) {
 906                err = -ENOTCONN;
 907                if (sk->sk_type == SOCK_STREAM)
 908                        return err;
 909        } else {
 910                sock->state = SS_DISCONNECTING;
 911                err = 0;
 912        }
 913
 914        /* Receive and send shutdowns are treated alike. */
 915        mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
 916        if (mode) {
 917                lock_sock(sk);
 918                sk->sk_shutdown |= mode;
 919                sk->sk_state_change(sk);
 920                release_sock(sk);
 921
 922                if (sk->sk_type == SOCK_STREAM) {
 923                        sock_reset_flag(sk, SOCK_DONE);
 924                        vsock_send_shutdown(sk, mode);
 925                }
 926        }
 927
 928        return err;
 929}
 930
 931static __poll_t vsock_poll(struct file *file, struct socket *sock,
 932                               poll_table *wait)
 933{
 934        struct sock *sk;
 935        __poll_t mask;
 936        struct vsock_sock *vsk;
 937
 938        sk = sock->sk;
 939        vsk = vsock_sk(sk);
 940
 941        poll_wait(file, sk_sleep(sk), wait);
 942        mask = 0;
 943
 944        if (sk->sk_err)
 945                /* Signify that there has been an error on this socket. */
 946                mask |= EPOLLERR;
 947
 948        /* INET sockets treat local write shutdown and peer write shutdown as a
 949         * case of EPOLLHUP set.
 950         */
 951        if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
 952            ((sk->sk_shutdown & SEND_SHUTDOWN) &&
 953             (vsk->peer_shutdown & SEND_SHUTDOWN))) {
 954                mask |= EPOLLHUP;
 955        }
 956
 957        if (sk->sk_shutdown & RCV_SHUTDOWN ||
 958            vsk->peer_shutdown & SEND_SHUTDOWN) {
 959                mask |= EPOLLRDHUP;
 960        }
 961
 962        if (sock->type == SOCK_DGRAM) {
 963                /* For datagram sockets we can read if there is something in
 964                 * the queue and write as long as the socket isn't shutdown for
 965                 * sending.
 966                 */
 967                if (!skb_queue_empty_lockless(&sk->sk_receive_queue) ||
 968                    (sk->sk_shutdown & RCV_SHUTDOWN)) {
 969                        mask |= EPOLLIN | EPOLLRDNORM;
 970                }
 971
 972                if (!(sk->sk_shutdown & SEND_SHUTDOWN))
 973                        mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
 974
 975        } else if (sock->type == SOCK_STREAM) {
 976                const struct vsock_transport *transport = vsk->transport;
 977                lock_sock(sk);
 978
 979                /* Listening sockets that have connections in their accept
 980                 * queue can be read.
 981                 */
 982                if (sk->sk_state == TCP_LISTEN
 983                    && !vsock_is_accept_queue_empty(sk))
 984                        mask |= EPOLLIN | EPOLLRDNORM;
 985
 986                /* If there is something in the queue then we can read. */
 987                if (transport && transport->stream_is_active(vsk) &&
 988                    !(sk->sk_shutdown & RCV_SHUTDOWN)) {
 989                        bool data_ready_now = false;
 990                        int ret = transport->notify_poll_in(
 991                                        vsk, 1, &data_ready_now);
 992                        if (ret < 0) {
 993                                mask |= EPOLLERR;
 994                        } else {
 995                                if (data_ready_now)
 996                                        mask |= EPOLLIN | EPOLLRDNORM;
 997
 998                        }
 999                }
1000
1001                /* Sockets whose connections have been closed, reset, or
1002                 * terminated should also be considered read, and we check the
1003                 * shutdown flag for that.
1004                 */
1005                if (sk->sk_shutdown & RCV_SHUTDOWN ||
1006                    vsk->peer_shutdown & SEND_SHUTDOWN) {
1007                        mask |= EPOLLIN | EPOLLRDNORM;
1008                }
1009
1010                /* Connected sockets that can produce data can be written. */
1011                if (sk->sk_state == TCP_ESTABLISHED) {
1012                        if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1013                                bool space_avail_now = false;
1014                                int ret = transport->notify_poll_out(
1015                                                vsk, 1, &space_avail_now);
1016                                if (ret < 0) {
1017                                        mask |= EPOLLERR;
1018                                } else {
1019                                        if (space_avail_now)
1020                                                /* Remove EPOLLWRBAND since INET
1021                                                 * sockets are not setting it.
1022                                                 */
1023                                                mask |= EPOLLOUT | EPOLLWRNORM;
1024
1025                                }
1026                        }
1027                }
1028
1029                /* Simulate INET socket poll behaviors, which sets
1030                 * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read,
1031                 * but local send is not shutdown.
1032                 */
1033                if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) {
1034                        if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1035                                mask |= EPOLLOUT | EPOLLWRNORM;
1036
1037                }
1038
1039                release_sock(sk);
1040        }
1041
1042        return mask;
1043}
1044
1045static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
1046                               size_t len)
1047{
1048        int err;
1049        struct sock *sk;
1050        struct vsock_sock *vsk;
1051        struct sockaddr_vm *remote_addr;
1052        const struct vsock_transport *transport;
1053
1054        if (msg->msg_flags & MSG_OOB)
1055                return -EOPNOTSUPP;
1056
1057        /* For now, MSG_DONTWAIT is always assumed... */
1058        err = 0;
1059        sk = sock->sk;
1060        vsk = vsock_sk(sk);
1061        transport = vsk->transport;
1062
1063        lock_sock(sk);
1064
1065        err = vsock_auto_bind(vsk);
1066        if (err)
1067                goto out;
1068
1069
1070        /* If the provided message contains an address, use that.  Otherwise
1071         * fall back on the socket's remote handle (if it has been connected).
1072         */
1073        if (msg->msg_name &&
1074            vsock_addr_cast(msg->msg_name, msg->msg_namelen,
1075                            &remote_addr) == 0) {
1076                /* Ensure this address is of the right type and is a valid
1077                 * destination.
1078                 */
1079
1080                if (remote_addr->svm_cid == VMADDR_CID_ANY)
1081                        remote_addr->svm_cid = transport->get_local_cid();
1082
1083                if (!vsock_addr_bound(remote_addr)) {
1084                        err = -EINVAL;
1085                        goto out;
1086                }
1087        } else if (sock->state == SS_CONNECTED) {
1088                remote_addr = &vsk->remote_addr;
1089
1090                if (remote_addr->svm_cid == VMADDR_CID_ANY)
1091                        remote_addr->svm_cid = transport->get_local_cid();
1092
1093                /* XXX Should connect() or this function ensure remote_addr is
1094                 * bound?
1095                 */
1096                if (!vsock_addr_bound(&vsk->remote_addr)) {
1097                        err = -EINVAL;
1098                        goto out;
1099                }
1100        } else {
1101                err = -EINVAL;
1102                goto out;
1103        }
1104
1105        if (!transport->dgram_allow(remote_addr->svm_cid,
1106                                    remote_addr->svm_port)) {
1107                err = -EINVAL;
1108                goto out;
1109        }
1110
1111        err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1112
1113out:
1114        release_sock(sk);
1115        return err;
1116}
1117
1118static int vsock_dgram_connect(struct socket *sock,
1119                               struct sockaddr *addr, int addr_len, int flags)
1120{
1121        int err;
1122        struct sock *sk;
1123        struct vsock_sock *vsk;
1124        struct sockaddr_vm *remote_addr;
1125
1126        sk = sock->sk;
1127        vsk = vsock_sk(sk);
1128
1129        err = vsock_addr_cast(addr, addr_len, &remote_addr);
1130        if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1131                lock_sock(sk);
1132                vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1133                                VMADDR_PORT_ANY);
1134                sock->state = SS_UNCONNECTED;
1135                release_sock(sk);
1136                return 0;
1137        } else if (err != 0)
1138                return -EINVAL;
1139
1140        lock_sock(sk);
1141
1142        err = vsock_auto_bind(vsk);
1143        if (err)
1144                goto out;
1145
1146        if (!vsk->transport->dgram_allow(remote_addr->svm_cid,
1147                                         remote_addr->svm_port)) {
1148                err = -EINVAL;
1149                goto out;
1150        }
1151
1152        memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1153        sock->state = SS_CONNECTED;
1154
1155out:
1156        release_sock(sk);
1157        return err;
1158}
1159
1160static int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1161                               size_t len, int flags)
1162{
1163        struct vsock_sock *vsk = vsock_sk(sock->sk);
1164
1165        return vsk->transport->dgram_dequeue(vsk, msg, len, flags);
1166}
1167
1168static const struct proto_ops vsock_dgram_ops = {
1169        .family = PF_VSOCK,
1170        .owner = THIS_MODULE,
1171        .release = vsock_release,
1172        .bind = vsock_bind,
1173        .connect = vsock_dgram_connect,
1174        .socketpair = sock_no_socketpair,
1175        .accept = sock_no_accept,
1176        .getname = vsock_getname,
1177        .poll = vsock_poll,
1178        .ioctl = sock_no_ioctl,
1179        .listen = sock_no_listen,
1180        .shutdown = vsock_shutdown,
1181        .setsockopt = sock_no_setsockopt,
1182        .getsockopt = sock_no_getsockopt,
1183        .sendmsg = vsock_dgram_sendmsg,
1184        .recvmsg = vsock_dgram_recvmsg,
1185        .mmap = sock_no_mmap,
1186        .sendpage = sock_no_sendpage,
1187};
1188
1189static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1190{
1191        const struct vsock_transport *transport = vsk->transport;
1192
1193        if (!transport->cancel_pkt)
1194                return -EOPNOTSUPP;
1195
1196        return transport->cancel_pkt(vsk);
1197}
1198
1199static void vsock_connect_timeout(struct work_struct *work)
1200{
1201        struct sock *sk;
1202        struct vsock_sock *vsk;
1203        int cancel = 0;
1204
1205        vsk = container_of(work, struct vsock_sock, connect_work.work);
1206        sk = sk_vsock(vsk);
1207
1208        lock_sock(sk);
1209        if (sk->sk_state == TCP_SYN_SENT &&
1210            (sk->sk_shutdown != SHUTDOWN_MASK)) {
1211                sk->sk_state = TCP_CLOSE;
1212                sk->sk_err = ETIMEDOUT;
1213                sk->sk_error_report(sk);
1214                cancel = 1;
1215        }
1216        release_sock(sk);
1217        if (cancel)
1218                vsock_transport_cancel_pkt(vsk);
1219
1220        sock_put(sk);
1221}
1222
1223static int vsock_stream_connect(struct socket *sock, struct sockaddr *addr,
1224                                int addr_len, int flags)
1225{
1226        int err;
1227        struct sock *sk;
1228        struct vsock_sock *vsk;
1229        const struct vsock_transport *transport;
1230        struct sockaddr_vm *remote_addr;
1231        long timeout;
1232        DEFINE_WAIT(wait);
1233
1234        err = 0;
1235        sk = sock->sk;
1236        vsk = vsock_sk(sk);
1237
1238        lock_sock(sk);
1239
1240        /* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1241        switch (sock->state) {
1242        case SS_CONNECTED:
1243                err = -EISCONN;
1244                goto out;
1245        case SS_DISCONNECTING:
1246                err = -EINVAL;
1247                goto out;
1248        case SS_CONNECTING:
1249                /* This continues on so we can move sock into the SS_CONNECTED
1250                 * state once the connection has completed (at which point err
1251                 * will be set to zero also).  Otherwise, we will either wait
1252                 * for the connection or return -EALREADY should this be a
1253                 * non-blocking call.
1254                 */
1255                err = -EALREADY;
1256                break;
1257        default:
1258                if ((sk->sk_state == TCP_LISTEN) ||
1259                    vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1260                        err = -EINVAL;
1261                        goto out;
1262                }
1263
1264                /* Set the remote address that we are connecting to. */
1265                memcpy(&vsk->remote_addr, remote_addr,
1266                       sizeof(vsk->remote_addr));
1267
1268                err = vsock_assign_transport(vsk, NULL);
1269                if (err)
1270                        goto out;
1271
1272                transport = vsk->transport;
1273
1274                /* The hypervisor and well-known contexts do not have socket
1275                 * endpoints.
1276                 */
1277                if (!transport ||
1278                    !transport->stream_allow(remote_addr->svm_cid,
1279                                             remote_addr->svm_port)) {
1280                        err = -ENETUNREACH;
1281                        goto out;
1282                }
1283
1284                err = vsock_auto_bind(vsk);
1285                if (err)
1286                        goto out;
1287
1288                sk->sk_state = TCP_SYN_SENT;
1289
1290                err = transport->connect(vsk);
1291                if (err < 0)
1292                        goto out;
1293
1294                /* Mark sock as connecting and set the error code to in
1295                 * progress in case this is a non-blocking connect.
1296                 */
1297                sock->state = SS_CONNECTING;
1298                err = -EINPROGRESS;
1299        }
1300
1301        /* The receive path will handle all communication until we are able to
1302         * enter the connected state.  Here we wait for the connection to be
1303         * completed or a notification of an error.
1304         */
1305        timeout = vsk->connect_timeout;
1306        prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1307
1308        while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) {
1309                if (flags & O_NONBLOCK) {
1310                        /* If we're not going to block, we schedule a timeout
1311                         * function to generate a timeout on the connection
1312                         * attempt, in case the peer doesn't respond in a
1313                         * timely manner. We hold on to the socket until the
1314                         * timeout fires.
1315                         */
1316                        sock_hold(sk);
1317                        schedule_delayed_work(&vsk->connect_work, timeout);
1318
1319                        /* Skip ahead to preserve error code set above. */
1320                        goto out_wait;
1321                }
1322
1323                release_sock(sk);
1324                timeout = schedule_timeout(timeout);
1325                lock_sock(sk);
1326
1327                if (signal_pending(current)) {
1328                        err = sock_intr_errno(timeout);
1329                        sk->sk_state = TCP_CLOSE;
1330                        sock->state = SS_UNCONNECTED;
1331                        vsock_transport_cancel_pkt(vsk);
1332                        goto out_wait;
1333                } else if (timeout == 0) {
1334                        err = -ETIMEDOUT;
1335                        sk->sk_state = TCP_CLOSE;
1336                        sock->state = SS_UNCONNECTED;
1337                        vsock_transport_cancel_pkt(vsk);
1338                        goto out_wait;
1339                }
1340
1341                prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1342        }
1343
1344        if (sk->sk_err) {
1345                err = -sk->sk_err;
1346                sk->sk_state = TCP_CLOSE;
1347                sock->state = SS_UNCONNECTED;
1348        } else {
1349                err = 0;
1350        }
1351
1352out_wait:
1353        finish_wait(sk_sleep(sk), &wait);
1354out:
1355        release_sock(sk);
1356        return err;
1357}
1358
1359static int vsock_accept(struct socket *sock, struct socket *newsock, int flags,
1360                        bool kern)
1361{
1362        struct sock *listener;
1363        int err;
1364        struct sock *connected;
1365        struct vsock_sock *vconnected;
1366        long timeout;
1367        DEFINE_WAIT(wait);
1368
1369        err = 0;
1370        listener = sock->sk;
1371
1372        lock_sock(listener);
1373
1374        if (sock->type != SOCK_STREAM) {
1375                err = -EOPNOTSUPP;
1376                goto out;
1377        }
1378
1379        if (listener->sk_state != TCP_LISTEN) {
1380                err = -EINVAL;
1381                goto out;
1382        }
1383
1384        /* Wait for children sockets to appear; these are the new sockets
1385         * created upon connection establishment.
1386         */
1387        timeout = sock_sndtimeo(listener, flags & O_NONBLOCK);
1388        prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1389
1390        while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1391               listener->sk_err == 0) {
1392                release_sock(listener);
1393                timeout = schedule_timeout(timeout);
1394                finish_wait(sk_sleep(listener), &wait);
1395                lock_sock(listener);
1396
1397                if (signal_pending(current)) {
1398                        err = sock_intr_errno(timeout);
1399                        goto out;
1400                } else if (timeout == 0) {
1401                        err = -EAGAIN;
1402                        goto out;
1403                }
1404
1405                prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1406        }
1407        finish_wait(sk_sleep(listener), &wait);
1408
1409        if (listener->sk_err)
1410                err = -listener->sk_err;
1411
1412        if (connected) {
1413                sk_acceptq_removed(listener);
1414
1415                lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1416                vconnected = vsock_sk(connected);
1417
1418                /* If the listener socket has received an error, then we should
1419                 * reject this socket and return.  Note that we simply mark the
1420                 * socket rejected, drop our reference, and let the cleanup
1421                 * function handle the cleanup; the fact that we found it in
1422                 * the listener's accept queue guarantees that the cleanup
1423                 * function hasn't run yet.
1424                 */
1425                if (err) {
1426                        vconnected->rejected = true;
1427                } else {
1428                        newsock->state = SS_CONNECTED;
1429                        sock_graft(connected, newsock);
1430                }
1431
1432                release_sock(connected);
1433                sock_put(connected);
1434        }
1435
1436out:
1437        release_sock(listener);
1438        return err;
1439}
1440
1441static int vsock_listen(struct socket *sock, int backlog)
1442{
1443        int err;
1444        struct sock *sk;
1445        struct vsock_sock *vsk;
1446
1447        sk = sock->sk;
1448
1449        lock_sock(sk);
1450
1451        if (sock->type != SOCK_STREAM) {
1452                err = -EOPNOTSUPP;
1453                goto out;
1454        }
1455
1456        if (sock->state != SS_UNCONNECTED) {
1457                err = -EINVAL;
1458                goto out;
1459        }
1460
1461        vsk = vsock_sk(sk);
1462
1463        if (!vsock_addr_bound(&vsk->local_addr)) {
1464                err = -EINVAL;
1465                goto out;
1466        }
1467
1468        sk->sk_max_ack_backlog = backlog;
1469        sk->sk_state = TCP_LISTEN;
1470
1471        err = 0;
1472
1473out:
1474        release_sock(sk);
1475        return err;
1476}
1477
1478static void vsock_update_buffer_size(struct vsock_sock *vsk,
1479                                     const struct vsock_transport *transport,
1480                                     u64 val)
1481{
1482        if (val > vsk->buffer_max_size)
1483                val = vsk->buffer_max_size;
1484
1485        if (val < vsk->buffer_min_size)
1486                val = vsk->buffer_min_size;
1487
1488        if (val != vsk->buffer_size &&
1489            transport && transport->notify_buffer_size)
1490                transport->notify_buffer_size(vsk, &val);
1491
1492        vsk->buffer_size = val;
1493}
1494
1495static int vsock_stream_setsockopt(struct socket *sock,
1496                                   int level,
1497                                   int optname,
1498                                   char __user *optval,
1499                                   unsigned int optlen)
1500{
1501        int err;
1502        struct sock *sk;
1503        struct vsock_sock *vsk;
1504        const struct vsock_transport *transport;
1505        u64 val;
1506
1507        if (level != AF_VSOCK)
1508                return -ENOPROTOOPT;
1509
1510#define COPY_IN(_v)                                       \
1511        do {                                              \
1512                if (optlen < sizeof(_v)) {                \
1513                        err = -EINVAL;                    \
1514                        goto exit;                        \
1515                }                                         \
1516                if (copy_from_user(&_v, optval, sizeof(_v)) != 0) {     \
1517                        err = -EFAULT;                                  \
1518                        goto exit;                                      \
1519                }                                                       \
1520        } while (0)
1521
1522        err = 0;
1523        sk = sock->sk;
1524        vsk = vsock_sk(sk);
1525        transport = vsk->transport;
1526
1527        lock_sock(sk);
1528
1529        switch (optname) {
1530        case SO_VM_SOCKETS_BUFFER_SIZE:
1531                COPY_IN(val);
1532                vsock_update_buffer_size(vsk, transport, val);
1533                break;
1534
1535        case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1536                COPY_IN(val);
1537                vsk->buffer_max_size = val;
1538                vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1539                break;
1540
1541        case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1542                COPY_IN(val);
1543                vsk->buffer_min_size = val;
1544                vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1545                break;
1546
1547        case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1548                struct __kernel_old_timeval tv;
1549                COPY_IN(tv);
1550                if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1551                    tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1552                        vsk->connect_timeout = tv.tv_sec * HZ +
1553                            DIV_ROUND_UP(tv.tv_usec, (1000000 / HZ));
1554                        if (vsk->connect_timeout == 0)
1555                                vsk->connect_timeout =
1556                                    VSOCK_DEFAULT_CONNECT_TIMEOUT;
1557
1558                } else {
1559                        err = -ERANGE;
1560                }
1561                break;
1562        }
1563
1564        default:
1565                err = -ENOPROTOOPT;
1566                break;
1567        }
1568
1569#undef COPY_IN
1570
1571exit:
1572        release_sock(sk);
1573        return err;
1574}
1575
1576static int vsock_stream_getsockopt(struct socket *sock,
1577                                   int level, int optname,
1578                                   char __user *optval,
1579                                   int __user *optlen)
1580{
1581        int err;
1582        int len;
1583        struct sock *sk;
1584        struct vsock_sock *vsk;
1585        u64 val;
1586
1587        if (level != AF_VSOCK)
1588                return -ENOPROTOOPT;
1589
1590        err = get_user(len, optlen);
1591        if (err != 0)
1592                return err;
1593
1594#define COPY_OUT(_v)                            \
1595        do {                                    \
1596                if (len < sizeof(_v))           \
1597                        return -EINVAL;         \
1598                                                \
1599                len = sizeof(_v);               \
1600                if (copy_to_user(optval, &_v, len) != 0)        \
1601                        return -EFAULT;                         \
1602                                                                \
1603        } while (0)
1604
1605        err = 0;
1606        sk = sock->sk;
1607        vsk = vsock_sk(sk);
1608
1609        switch (optname) {
1610        case SO_VM_SOCKETS_BUFFER_SIZE:
1611                val = vsk->buffer_size;
1612                COPY_OUT(val);
1613                break;
1614
1615        case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1616                val = vsk->buffer_max_size;
1617                COPY_OUT(val);
1618                break;
1619
1620        case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1621                val = vsk->buffer_min_size;
1622                COPY_OUT(val);
1623                break;
1624
1625        case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1626                struct __kernel_old_timeval tv;
1627                tv.tv_sec = vsk->connect_timeout / HZ;
1628                tv.tv_usec =
1629                    (vsk->connect_timeout -
1630                     tv.tv_sec * HZ) * (1000000 / HZ);
1631                COPY_OUT(tv);
1632                break;
1633        }
1634        default:
1635                return -ENOPROTOOPT;
1636        }
1637
1638        err = put_user(len, optlen);
1639        if (err != 0)
1640                return -EFAULT;
1641
1642#undef COPY_OUT
1643
1644        return 0;
1645}
1646
1647static int vsock_stream_sendmsg(struct socket *sock, struct msghdr *msg,
1648                                size_t len)
1649{
1650        struct sock *sk;
1651        struct vsock_sock *vsk;
1652        const struct vsock_transport *transport;
1653        ssize_t total_written;
1654        long timeout;
1655        int err;
1656        struct vsock_transport_send_notify_data send_data;
1657        DEFINE_WAIT_FUNC(wait, woken_wake_function);
1658
1659        sk = sock->sk;
1660        vsk = vsock_sk(sk);
1661        transport = vsk->transport;
1662        total_written = 0;
1663        err = 0;
1664
1665        if (msg->msg_flags & MSG_OOB)
1666                return -EOPNOTSUPP;
1667
1668        lock_sock(sk);
1669
1670        /* Callers should not provide a destination with stream sockets. */
1671        if (msg->msg_namelen) {
1672                err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
1673                goto out;
1674        }
1675
1676        /* Send data only if both sides are not shutdown in the direction. */
1677        if (sk->sk_shutdown & SEND_SHUTDOWN ||
1678            vsk->peer_shutdown & RCV_SHUTDOWN) {
1679                err = -EPIPE;
1680                goto out;
1681        }
1682
1683        if (!transport || sk->sk_state != TCP_ESTABLISHED ||
1684            !vsock_addr_bound(&vsk->local_addr)) {
1685                err = -ENOTCONN;
1686                goto out;
1687        }
1688
1689        if (!vsock_addr_bound(&vsk->remote_addr)) {
1690                err = -EDESTADDRREQ;
1691                goto out;
1692        }
1693
1694        /* Wait for room in the produce queue to enqueue our user's data. */
1695        timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1696
1697        err = transport->notify_send_init(vsk, &send_data);
1698        if (err < 0)
1699                goto out;
1700
1701        while (total_written < len) {
1702                ssize_t written;
1703
1704                add_wait_queue(sk_sleep(sk), &wait);
1705                while (vsock_stream_has_space(vsk) == 0 &&
1706                       sk->sk_err == 0 &&
1707                       !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1708                       !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1709
1710                        /* Don't wait for non-blocking sockets. */
1711                        if (timeout == 0) {
1712                                err = -EAGAIN;
1713                                remove_wait_queue(sk_sleep(sk), &wait);
1714                                goto out_err;
1715                        }
1716
1717                        err = transport->notify_send_pre_block(vsk, &send_data);
1718                        if (err < 0) {
1719                                remove_wait_queue(sk_sleep(sk), &wait);
1720                                goto out_err;
1721                        }
1722
1723                        release_sock(sk);
1724                        timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
1725                        lock_sock(sk);
1726                        if (signal_pending(current)) {
1727                                err = sock_intr_errno(timeout);
1728                                remove_wait_queue(sk_sleep(sk), &wait);
1729                                goto out_err;
1730                        } else if (timeout == 0) {
1731                                err = -EAGAIN;
1732                                remove_wait_queue(sk_sleep(sk), &wait);
1733                                goto out_err;
1734                        }
1735                }
1736                remove_wait_queue(sk_sleep(sk), &wait);
1737
1738                /* These checks occur both as part of and after the loop
1739                 * conditional since we need to check before and after
1740                 * sleeping.
1741                 */
1742                if (sk->sk_err) {
1743                        err = -sk->sk_err;
1744                        goto out_err;
1745                } else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1746                           (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1747                        err = -EPIPE;
1748                        goto out_err;
1749                }
1750
1751                err = transport->notify_send_pre_enqueue(vsk, &send_data);
1752                if (err < 0)
1753                        goto out_err;
1754
1755                /* Note that enqueue will only write as many bytes as are free
1756                 * in the produce queue, so we don't need to ensure len is
1757                 * smaller than the queue size.  It is the caller's
1758                 * responsibility to check how many bytes we were able to send.
1759                 */
1760
1761                written = transport->stream_enqueue(
1762                                vsk, msg,
1763                                len - total_written);
1764                if (written < 0) {
1765                        err = -ENOMEM;
1766                        goto out_err;
1767                }
1768
1769                total_written += written;
1770
1771                err = transport->notify_send_post_enqueue(
1772                                vsk, written, &send_data);
1773                if (err < 0)
1774                        goto out_err;
1775
1776        }
1777
1778out_err:
1779        if (total_written > 0)
1780                err = total_written;
1781out:
1782        release_sock(sk);
1783        return err;
1784}
1785
1786
1787static int
1788vsock_stream_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
1789                     int flags)
1790{
1791        struct sock *sk;
1792        struct vsock_sock *vsk;
1793        const struct vsock_transport *transport;
1794        int err;
1795        size_t target;
1796        ssize_t copied;
1797        long timeout;
1798        struct vsock_transport_recv_notify_data recv_data;
1799
1800        DEFINE_WAIT(wait);
1801
1802        sk = sock->sk;
1803        vsk = vsock_sk(sk);
1804        transport = vsk->transport;
1805        err = 0;
1806
1807        lock_sock(sk);
1808
1809        if (!transport || sk->sk_state != TCP_ESTABLISHED) {
1810                /* Recvmsg is supposed to return 0 if a peer performs an
1811                 * orderly shutdown. Differentiate between that case and when a
1812                 * peer has not connected or a local shutdown occured with the
1813                 * SOCK_DONE flag.
1814                 */
1815                if (sock_flag(sk, SOCK_DONE))
1816                        err = 0;
1817                else
1818                        err = -ENOTCONN;
1819
1820                goto out;
1821        }
1822
1823        if (flags & MSG_OOB) {
1824                err = -EOPNOTSUPP;
1825                goto out;
1826        }
1827
1828        /* We don't check peer_shutdown flag here since peer may actually shut
1829         * down, but there can be data in the queue that a local socket can
1830         * receive.
1831         */
1832        if (sk->sk_shutdown & RCV_SHUTDOWN) {
1833                err = 0;
1834                goto out;
1835        }
1836
1837        /* It is valid on Linux to pass in a zero-length receive buffer.  This
1838         * is not an error.  We may as well bail out now.
1839         */
1840        if (!len) {
1841                err = 0;
1842                goto out;
1843        }
1844
1845        /* We must not copy less than target bytes into the user's buffer
1846         * before returning successfully, so we wait for the consume queue to
1847         * have that much data to consume before dequeueing.  Note that this
1848         * makes it impossible to handle cases where target is greater than the
1849         * queue size.
1850         */
1851        target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1852        if (target >= transport->stream_rcvhiwat(vsk)) {
1853                err = -ENOMEM;
1854                goto out;
1855        }
1856        timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1857        copied = 0;
1858
1859        err = transport->notify_recv_init(vsk, target, &recv_data);
1860        if (err < 0)
1861                goto out;
1862
1863
1864        while (1) {
1865                s64 ready;
1866
1867                prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1868                ready = vsock_stream_has_data(vsk);
1869
1870                if (ready == 0) {
1871                        if (sk->sk_err != 0 ||
1872                            (sk->sk_shutdown & RCV_SHUTDOWN) ||
1873                            (vsk->peer_shutdown & SEND_SHUTDOWN)) {
1874                                finish_wait(sk_sleep(sk), &wait);
1875                                break;
1876                        }
1877                        /* Don't wait for non-blocking sockets. */
1878                        if (timeout == 0) {
1879                                err = -EAGAIN;
1880                                finish_wait(sk_sleep(sk), &wait);
1881                                break;
1882                        }
1883
1884                        err = transport->notify_recv_pre_block(
1885                                        vsk, target, &recv_data);
1886                        if (err < 0) {
1887                                finish_wait(sk_sleep(sk), &wait);
1888                                break;
1889                        }
1890                        release_sock(sk);
1891                        timeout = schedule_timeout(timeout);
1892                        lock_sock(sk);
1893
1894                        if (signal_pending(current)) {
1895                                err = sock_intr_errno(timeout);
1896                                finish_wait(sk_sleep(sk), &wait);
1897                                break;
1898                        } else if (timeout == 0) {
1899                                err = -EAGAIN;
1900                                finish_wait(sk_sleep(sk), &wait);
1901                                break;
1902                        }
1903                } else {
1904                        ssize_t read;
1905
1906                        finish_wait(sk_sleep(sk), &wait);
1907
1908                        if (ready < 0) {
1909                                /* Invalid queue pair content. XXX This should
1910                                * be changed to a connection reset in a later
1911                                * change.
1912                                */
1913
1914                                err = -ENOMEM;
1915                                goto out;
1916                        }
1917
1918                        err = transport->notify_recv_pre_dequeue(
1919                                        vsk, target, &recv_data);
1920                        if (err < 0)
1921                                break;
1922
1923                        read = transport->stream_dequeue(
1924                                        vsk, msg,
1925                                        len - copied, flags);
1926                        if (read < 0) {
1927                                err = -ENOMEM;
1928                                break;
1929                        }
1930
1931                        copied += read;
1932
1933                        err = transport->notify_recv_post_dequeue(
1934                                        vsk, target, read,
1935                                        !(flags & MSG_PEEK), &recv_data);
1936                        if (err < 0)
1937                                goto out;
1938
1939                        if (read >= target || flags & MSG_PEEK)
1940                                break;
1941
1942                        target -= read;
1943                }
1944        }
1945
1946        if (sk->sk_err)
1947                err = -sk->sk_err;
1948        else if (sk->sk_shutdown & RCV_SHUTDOWN)
1949                err = 0;
1950
1951        if (copied > 0)
1952                err = copied;
1953
1954out:
1955        release_sock(sk);
1956        return err;
1957}
1958
1959static const struct proto_ops vsock_stream_ops = {
1960        .family = PF_VSOCK,
1961        .owner = THIS_MODULE,
1962        .release = vsock_release,
1963        .bind = vsock_bind,
1964        .connect = vsock_stream_connect,
1965        .socketpair = sock_no_socketpair,
1966        .accept = vsock_accept,
1967        .getname = vsock_getname,
1968        .poll = vsock_poll,
1969        .ioctl = sock_no_ioctl,
1970        .listen = vsock_listen,
1971        .shutdown = vsock_shutdown,
1972        .setsockopt = vsock_stream_setsockopt,
1973        .getsockopt = vsock_stream_getsockopt,
1974        .sendmsg = vsock_stream_sendmsg,
1975        .recvmsg = vsock_stream_recvmsg,
1976        .mmap = sock_no_mmap,
1977        .sendpage = sock_no_sendpage,
1978};
1979
1980static int vsock_create(struct net *net, struct socket *sock,
1981                        int protocol, int kern)
1982{
1983        struct vsock_sock *vsk;
1984        struct sock *sk;
1985        int ret;
1986
1987        if (!sock)
1988                return -EINVAL;
1989
1990        if (protocol && protocol != PF_VSOCK)
1991                return -EPROTONOSUPPORT;
1992
1993        switch (sock->type) {
1994        case SOCK_DGRAM:
1995                sock->ops = &vsock_dgram_ops;
1996                break;
1997        case SOCK_STREAM:
1998                sock->ops = &vsock_stream_ops;
1999                break;
2000        default:
2001                return -ESOCKTNOSUPPORT;
2002        }
2003
2004        sock->state = SS_UNCONNECTED;
2005
2006        sk = __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern);
2007        if (!sk)
2008                return -ENOMEM;
2009
2010        vsk = vsock_sk(sk);
2011
2012        if (sock->type == SOCK_DGRAM) {
2013                ret = vsock_assign_transport(vsk, NULL);
2014                if (ret < 0) {
2015                        sock_put(sk);
2016                        return ret;
2017                }
2018        }
2019
2020        vsock_insert_unbound(vsk);
2021
2022        return 0;
2023}
2024
2025static const struct net_proto_family vsock_family_ops = {
2026        .family = AF_VSOCK,
2027        .create = vsock_create,
2028        .owner = THIS_MODULE,
2029};
2030
2031static long vsock_dev_do_ioctl(struct file *filp,
2032                               unsigned int cmd, void __user *ptr)
2033{
2034        u32 __user *p = ptr;
2035        u32 cid = VMADDR_CID_ANY;
2036        int retval = 0;
2037
2038        switch (cmd) {
2039        case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
2040                /* To be compatible with the VMCI behavior, we prioritize the
2041                 * guest CID instead of well-know host CID (VMADDR_CID_HOST).
2042                 */
2043                if (transport_g2h)
2044                        cid = transport_g2h->get_local_cid();
2045                else if (transport_h2g)
2046                        cid = transport_h2g->get_local_cid();
2047
2048                if (put_user(cid, p) != 0)
2049                        retval = -EFAULT;
2050                break;
2051
2052        default:
2053                pr_err("Unknown ioctl %d\n", cmd);
2054                retval = -EINVAL;
2055        }
2056
2057        return retval;
2058}
2059
2060static long vsock_dev_ioctl(struct file *filp,
2061                            unsigned int cmd, unsigned long arg)
2062{
2063        return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
2064}
2065
2066#ifdef CONFIG_COMPAT
2067static long vsock_dev_compat_ioctl(struct file *filp,
2068                                   unsigned int cmd, unsigned long arg)
2069{
2070        return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
2071}
2072#endif
2073
2074static const struct file_operations vsock_device_ops = {
2075        .owner          = THIS_MODULE,
2076        .unlocked_ioctl = vsock_dev_ioctl,
2077#ifdef CONFIG_COMPAT
2078        .compat_ioctl   = vsock_dev_compat_ioctl,
2079#endif
2080        .open           = nonseekable_open,
2081};
2082
2083static struct miscdevice vsock_device = {
2084        .name           = "vsock",
2085        .fops           = &vsock_device_ops,
2086};
2087
2088static int __init vsock_init(void)
2089{
2090        int err = 0;
2091
2092        vsock_init_tables();
2093
2094        vsock_proto.owner = THIS_MODULE;
2095        vsock_device.minor = MISC_DYNAMIC_MINOR;
2096        err = misc_register(&vsock_device);
2097        if (err) {
2098                pr_err("Failed to register misc device\n");
2099                goto err_reset_transport;
2100        }
2101
2102        err = proto_register(&vsock_proto, 1);  /* we want our slab */
2103        if (err) {
2104                pr_err("Cannot register vsock protocol\n");
2105                goto err_deregister_misc;
2106        }
2107
2108        err = sock_register(&vsock_family_ops);
2109        if (err) {
2110                pr_err("could not register af_vsock (%d) address family: %d\n",
2111                       AF_VSOCK, err);
2112                goto err_unregister_proto;
2113        }
2114
2115        return 0;
2116
2117err_unregister_proto:
2118        proto_unregister(&vsock_proto);
2119err_deregister_misc:
2120        misc_deregister(&vsock_device);
2121err_reset_transport:
2122        return err;
2123}
2124
2125static void __exit vsock_exit(void)
2126{
2127        misc_deregister(&vsock_device);
2128        sock_unregister(AF_VSOCK);
2129        proto_unregister(&vsock_proto);
2130}
2131
2132const struct vsock_transport *vsock_core_get_transport(struct vsock_sock *vsk)
2133{
2134        return vsk->transport;
2135}
2136EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2137
2138int vsock_core_register(const struct vsock_transport *t, int features)
2139{
2140        const struct vsock_transport *t_h2g, *t_g2h, *t_dgram;
2141        int err = mutex_lock_interruptible(&vsock_register_mutex);
2142
2143        if (err)
2144                return err;
2145
2146        t_h2g = transport_h2g;
2147        t_g2h = transport_g2h;
2148        t_dgram = transport_dgram;
2149
2150        if (features & VSOCK_TRANSPORT_F_H2G) {
2151                if (t_h2g) {
2152                        err = -EBUSY;
2153                        goto err_busy;
2154                }
2155                t_h2g = t;
2156        }
2157
2158        if (features & VSOCK_TRANSPORT_F_G2H) {
2159                if (t_g2h) {
2160                        err = -EBUSY;
2161                        goto err_busy;
2162                }
2163                t_g2h = t;
2164        }
2165
2166        if (features & VSOCK_TRANSPORT_F_DGRAM) {
2167                if (t_dgram) {
2168                        err = -EBUSY;
2169                        goto err_busy;
2170                }
2171                t_dgram = t;
2172        }
2173
2174        transport_h2g = t_h2g;
2175        transport_g2h = t_g2h;
2176        transport_dgram = t_dgram;
2177
2178err_busy:
2179        mutex_unlock(&vsock_register_mutex);
2180        return err;
2181}
2182EXPORT_SYMBOL_GPL(vsock_core_register);
2183
2184void vsock_core_unregister(const struct vsock_transport *t)
2185{
2186        mutex_lock(&vsock_register_mutex);
2187
2188        if (transport_h2g == t)
2189                transport_h2g = NULL;
2190
2191        if (transport_g2h == t)
2192                transport_g2h = NULL;
2193
2194        if (transport_dgram == t)
2195                transport_dgram = NULL;
2196
2197        mutex_unlock(&vsock_register_mutex);
2198}
2199EXPORT_SYMBOL_GPL(vsock_core_unregister);
2200
2201module_init(vsock_init);
2202module_exit(vsock_exit);
2203
2204MODULE_AUTHOR("VMware, Inc.");
2205MODULE_DESCRIPTION("VMware Virtual Socket Family");
2206MODULE_VERSION("1.0.2.0-k");
2207MODULE_LICENSE("GPL v2");
2208