linux/net/wireless/util.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Wireless utility functions
   4 *
   5 * Copyright 2007-2009  Johannes Berg <johannes@sipsolutions.net>
   6 * Copyright 2013-2014  Intel Mobile Communications GmbH
   7 * Copyright 2017       Intel Deutschland GmbH
   8 * Copyright (C) 2018-2019 Intel Corporation
   9 */
  10#include <linux/export.h>
  11#include <linux/bitops.h>
  12#include <linux/etherdevice.h>
  13#include <linux/slab.h>
  14#include <linux/ieee80211.h>
  15#include <net/cfg80211.h>
  16#include <net/ip.h>
  17#include <net/dsfield.h>
  18#include <linux/if_vlan.h>
  19#include <linux/mpls.h>
  20#include <linux/gcd.h>
  21#include <linux/bitfield.h>
  22#include <linux/nospec.h>
  23#include "core.h"
  24#include "rdev-ops.h"
  25
  26
  27struct ieee80211_rate *
  28ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
  29                            u32 basic_rates, int bitrate)
  30{
  31        struct ieee80211_rate *result = &sband->bitrates[0];
  32        int i;
  33
  34        for (i = 0; i < sband->n_bitrates; i++) {
  35                if (!(basic_rates & BIT(i)))
  36                        continue;
  37                if (sband->bitrates[i].bitrate > bitrate)
  38                        continue;
  39                result = &sband->bitrates[i];
  40        }
  41
  42        return result;
  43}
  44EXPORT_SYMBOL(ieee80211_get_response_rate);
  45
  46u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
  47                              enum nl80211_bss_scan_width scan_width)
  48{
  49        struct ieee80211_rate *bitrates;
  50        u32 mandatory_rates = 0;
  51        enum ieee80211_rate_flags mandatory_flag;
  52        int i;
  53
  54        if (WARN_ON(!sband))
  55                return 1;
  56
  57        if (sband->band == NL80211_BAND_2GHZ) {
  58                if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
  59                    scan_width == NL80211_BSS_CHAN_WIDTH_10)
  60                        mandatory_flag = IEEE80211_RATE_MANDATORY_G;
  61                else
  62                        mandatory_flag = IEEE80211_RATE_MANDATORY_B;
  63        } else {
  64                mandatory_flag = IEEE80211_RATE_MANDATORY_A;
  65        }
  66
  67        bitrates = sband->bitrates;
  68        for (i = 0; i < sband->n_bitrates; i++)
  69                if (bitrates[i].flags & mandatory_flag)
  70                        mandatory_rates |= BIT(i);
  71        return mandatory_rates;
  72}
  73EXPORT_SYMBOL(ieee80211_mandatory_rates);
  74
  75int ieee80211_channel_to_frequency(int chan, enum nl80211_band band)
  76{
  77        /* see 802.11 17.3.8.3.2 and Annex J
  78         * there are overlapping channel numbers in 5GHz and 2GHz bands */
  79        if (chan <= 0)
  80                return 0; /* not supported */
  81        switch (band) {
  82        case NL80211_BAND_2GHZ:
  83                if (chan == 14)
  84                        return 2484;
  85                else if (chan < 14)
  86                        return 2407 + chan * 5;
  87                break;
  88        case NL80211_BAND_5GHZ:
  89                if (chan >= 182 && chan <= 196)
  90                        return 4000 + chan * 5;
  91                else
  92                        return 5000 + chan * 5;
  93                break;
  94        case NL80211_BAND_6GHZ:
  95                /* see 802.11ax D4.1 27.3.22.2 */
  96                if (chan <= 253)
  97                        return 5940 + chan * 5;
  98                break;
  99        case NL80211_BAND_60GHZ:
 100                if (chan < 7)
 101                        return 56160 + chan * 2160;
 102                break;
 103        default:
 104                ;
 105        }
 106        return 0; /* not supported */
 107}
 108EXPORT_SYMBOL(ieee80211_channel_to_frequency);
 109
 110int ieee80211_frequency_to_channel(int freq)
 111{
 112        /* see 802.11 17.3.8.3.2 and Annex J */
 113        if (freq == 2484)
 114                return 14;
 115        else if (freq < 2484)
 116                return (freq - 2407) / 5;
 117        else if (freq >= 4910 && freq <= 4980)
 118                return (freq - 4000) / 5;
 119        else if (freq < 5945)
 120                return (freq - 5000) / 5;
 121        else if (freq <= 45000) /* DMG band lower limit */
 122                /* see 802.11ax D4.1 27.3.22.2 */
 123                return (freq - 5940) / 5;
 124        else if (freq >= 58320 && freq <= 70200)
 125                return (freq - 56160) / 2160;
 126        else
 127                return 0;
 128}
 129EXPORT_SYMBOL(ieee80211_frequency_to_channel);
 130
 131struct ieee80211_channel *ieee80211_get_channel(struct wiphy *wiphy, int freq)
 132{
 133        enum nl80211_band band;
 134        struct ieee80211_supported_band *sband;
 135        int i;
 136
 137        for (band = 0; band < NUM_NL80211_BANDS; band++) {
 138                sband = wiphy->bands[band];
 139
 140                if (!sband)
 141                        continue;
 142
 143                for (i = 0; i < sband->n_channels; i++) {
 144                        if (sband->channels[i].center_freq == freq)
 145                                return &sband->channels[i];
 146                }
 147        }
 148
 149        return NULL;
 150}
 151EXPORT_SYMBOL(ieee80211_get_channel);
 152
 153static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
 154{
 155        int i, want;
 156
 157        switch (sband->band) {
 158        case NL80211_BAND_5GHZ:
 159        case NL80211_BAND_6GHZ:
 160                want = 3;
 161                for (i = 0; i < sband->n_bitrates; i++) {
 162                        if (sband->bitrates[i].bitrate == 60 ||
 163                            sband->bitrates[i].bitrate == 120 ||
 164                            sband->bitrates[i].bitrate == 240) {
 165                                sband->bitrates[i].flags |=
 166                                        IEEE80211_RATE_MANDATORY_A;
 167                                want--;
 168                        }
 169                }
 170                WARN_ON(want);
 171                break;
 172        case NL80211_BAND_2GHZ:
 173                want = 7;
 174                for (i = 0; i < sband->n_bitrates; i++) {
 175                        switch (sband->bitrates[i].bitrate) {
 176                        case 10:
 177                        case 20:
 178                        case 55:
 179                        case 110:
 180                                sband->bitrates[i].flags |=
 181                                        IEEE80211_RATE_MANDATORY_B |
 182                                        IEEE80211_RATE_MANDATORY_G;
 183                                want--;
 184                                break;
 185                        case 60:
 186                        case 120:
 187                        case 240:
 188                                sband->bitrates[i].flags |=
 189                                        IEEE80211_RATE_MANDATORY_G;
 190                                want--;
 191                                /* fall through */
 192                        default:
 193                                sband->bitrates[i].flags |=
 194                                        IEEE80211_RATE_ERP_G;
 195                                break;
 196                        }
 197                }
 198                WARN_ON(want != 0 && want != 3);
 199                break;
 200        case NL80211_BAND_60GHZ:
 201                /* check for mandatory HT MCS 1..4 */
 202                WARN_ON(!sband->ht_cap.ht_supported);
 203                WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
 204                break;
 205        case NUM_NL80211_BANDS:
 206        default:
 207                WARN_ON(1);
 208                break;
 209        }
 210}
 211
 212void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
 213{
 214        enum nl80211_band band;
 215
 216        for (band = 0; band < NUM_NL80211_BANDS; band++)
 217                if (wiphy->bands[band])
 218                        set_mandatory_flags_band(wiphy->bands[band]);
 219}
 220
 221bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
 222{
 223        int i;
 224        for (i = 0; i < wiphy->n_cipher_suites; i++)
 225                if (cipher == wiphy->cipher_suites[i])
 226                        return true;
 227        return false;
 228}
 229
 230int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
 231                                   struct key_params *params, int key_idx,
 232                                   bool pairwise, const u8 *mac_addr)
 233{
 234        if (key_idx < 0 || key_idx > 5)
 235                return -EINVAL;
 236
 237        if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
 238                return -EINVAL;
 239
 240        if (pairwise && !mac_addr)
 241                return -EINVAL;
 242
 243        switch (params->cipher) {
 244        case WLAN_CIPHER_SUITE_TKIP:
 245                /* Extended Key ID can only be used with CCMP/GCMP ciphers */
 246                if ((pairwise && key_idx) ||
 247                    params->mode != NL80211_KEY_RX_TX)
 248                        return -EINVAL;
 249                break;
 250        case WLAN_CIPHER_SUITE_CCMP:
 251        case WLAN_CIPHER_SUITE_CCMP_256:
 252        case WLAN_CIPHER_SUITE_GCMP:
 253        case WLAN_CIPHER_SUITE_GCMP_256:
 254                /* IEEE802.11-2016 allows only 0 and - when supporting
 255                 * Extended Key ID - 1 as index for pairwise keys.
 256                 * @NL80211_KEY_NO_TX is only allowed for pairwise keys when
 257                 * the driver supports Extended Key ID.
 258                 * @NL80211_KEY_SET_TX can't be set when installing and
 259                 * validating a key.
 260                 */
 261                if ((params->mode == NL80211_KEY_NO_TX && !pairwise) ||
 262                    params->mode == NL80211_KEY_SET_TX)
 263                        return -EINVAL;
 264                if (wiphy_ext_feature_isset(&rdev->wiphy,
 265                                            NL80211_EXT_FEATURE_EXT_KEY_ID)) {
 266                        if (pairwise && (key_idx < 0 || key_idx > 1))
 267                                return -EINVAL;
 268                } else if (pairwise && key_idx) {
 269                        return -EINVAL;
 270                }
 271                break;
 272        case WLAN_CIPHER_SUITE_AES_CMAC:
 273        case WLAN_CIPHER_SUITE_BIP_CMAC_256:
 274        case WLAN_CIPHER_SUITE_BIP_GMAC_128:
 275        case WLAN_CIPHER_SUITE_BIP_GMAC_256:
 276                /* Disallow BIP (group-only) cipher as pairwise cipher */
 277                if (pairwise)
 278                        return -EINVAL;
 279                if (key_idx < 4)
 280                        return -EINVAL;
 281                break;
 282        case WLAN_CIPHER_SUITE_WEP40:
 283        case WLAN_CIPHER_SUITE_WEP104:
 284                if (key_idx > 3)
 285                        return -EINVAL;
 286        default:
 287                break;
 288        }
 289
 290        switch (params->cipher) {
 291        case WLAN_CIPHER_SUITE_WEP40:
 292                if (params->key_len != WLAN_KEY_LEN_WEP40)
 293                        return -EINVAL;
 294                break;
 295        case WLAN_CIPHER_SUITE_TKIP:
 296                if (params->key_len != WLAN_KEY_LEN_TKIP)
 297                        return -EINVAL;
 298                break;
 299        case WLAN_CIPHER_SUITE_CCMP:
 300                if (params->key_len != WLAN_KEY_LEN_CCMP)
 301                        return -EINVAL;
 302                break;
 303        case WLAN_CIPHER_SUITE_CCMP_256:
 304                if (params->key_len != WLAN_KEY_LEN_CCMP_256)
 305                        return -EINVAL;
 306                break;
 307        case WLAN_CIPHER_SUITE_GCMP:
 308                if (params->key_len != WLAN_KEY_LEN_GCMP)
 309                        return -EINVAL;
 310                break;
 311        case WLAN_CIPHER_SUITE_GCMP_256:
 312                if (params->key_len != WLAN_KEY_LEN_GCMP_256)
 313                        return -EINVAL;
 314                break;
 315        case WLAN_CIPHER_SUITE_WEP104:
 316                if (params->key_len != WLAN_KEY_LEN_WEP104)
 317                        return -EINVAL;
 318                break;
 319        case WLAN_CIPHER_SUITE_AES_CMAC:
 320                if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
 321                        return -EINVAL;
 322                break;
 323        case WLAN_CIPHER_SUITE_BIP_CMAC_256:
 324                if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
 325                        return -EINVAL;
 326                break;
 327        case WLAN_CIPHER_SUITE_BIP_GMAC_128:
 328                if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
 329                        return -EINVAL;
 330                break;
 331        case WLAN_CIPHER_SUITE_BIP_GMAC_256:
 332                if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
 333                        return -EINVAL;
 334                break;
 335        default:
 336                /*
 337                 * We don't know anything about this algorithm,
 338                 * allow using it -- but the driver must check
 339                 * all parameters! We still check below whether
 340                 * or not the driver supports this algorithm,
 341                 * of course.
 342                 */
 343                break;
 344        }
 345
 346        if (params->seq) {
 347                switch (params->cipher) {
 348                case WLAN_CIPHER_SUITE_WEP40:
 349                case WLAN_CIPHER_SUITE_WEP104:
 350                        /* These ciphers do not use key sequence */
 351                        return -EINVAL;
 352                case WLAN_CIPHER_SUITE_TKIP:
 353                case WLAN_CIPHER_SUITE_CCMP:
 354                case WLAN_CIPHER_SUITE_CCMP_256:
 355                case WLAN_CIPHER_SUITE_GCMP:
 356                case WLAN_CIPHER_SUITE_GCMP_256:
 357                case WLAN_CIPHER_SUITE_AES_CMAC:
 358                case WLAN_CIPHER_SUITE_BIP_CMAC_256:
 359                case WLAN_CIPHER_SUITE_BIP_GMAC_128:
 360                case WLAN_CIPHER_SUITE_BIP_GMAC_256:
 361                        if (params->seq_len != 6)
 362                                return -EINVAL;
 363                        break;
 364                }
 365        }
 366
 367        if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
 368                return -EINVAL;
 369
 370        return 0;
 371}
 372
 373unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
 374{
 375        unsigned int hdrlen = 24;
 376
 377        if (ieee80211_is_data(fc)) {
 378                if (ieee80211_has_a4(fc))
 379                        hdrlen = 30;
 380                if (ieee80211_is_data_qos(fc)) {
 381                        hdrlen += IEEE80211_QOS_CTL_LEN;
 382                        if (ieee80211_has_order(fc))
 383                                hdrlen += IEEE80211_HT_CTL_LEN;
 384                }
 385                goto out;
 386        }
 387
 388        if (ieee80211_is_mgmt(fc)) {
 389                if (ieee80211_has_order(fc))
 390                        hdrlen += IEEE80211_HT_CTL_LEN;
 391                goto out;
 392        }
 393
 394        if (ieee80211_is_ctl(fc)) {
 395                /*
 396                 * ACK and CTS are 10 bytes, all others 16. To see how
 397                 * to get this condition consider
 398                 *   subtype mask:   0b0000000011110000 (0x00F0)
 399                 *   ACK subtype:    0b0000000011010000 (0x00D0)
 400                 *   CTS subtype:    0b0000000011000000 (0x00C0)
 401                 *   bits that matter:         ^^^      (0x00E0)
 402                 *   value of those: 0b0000000011000000 (0x00C0)
 403                 */
 404                if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
 405                        hdrlen = 10;
 406                else
 407                        hdrlen = 16;
 408        }
 409out:
 410        return hdrlen;
 411}
 412EXPORT_SYMBOL(ieee80211_hdrlen);
 413
 414unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
 415{
 416        const struct ieee80211_hdr *hdr =
 417                        (const struct ieee80211_hdr *)skb->data;
 418        unsigned int hdrlen;
 419
 420        if (unlikely(skb->len < 10))
 421                return 0;
 422        hdrlen = ieee80211_hdrlen(hdr->frame_control);
 423        if (unlikely(hdrlen > skb->len))
 424                return 0;
 425        return hdrlen;
 426}
 427EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
 428
 429static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
 430{
 431        int ae = flags & MESH_FLAGS_AE;
 432        /* 802.11-2012, 8.2.4.7.3 */
 433        switch (ae) {
 434        default:
 435        case 0:
 436                return 6;
 437        case MESH_FLAGS_AE_A4:
 438                return 12;
 439        case MESH_FLAGS_AE_A5_A6:
 440                return 18;
 441        }
 442}
 443
 444unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
 445{
 446        return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
 447}
 448EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
 449
 450int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
 451                                  const u8 *addr, enum nl80211_iftype iftype,
 452                                  u8 data_offset)
 453{
 454        struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
 455        struct {
 456                u8 hdr[ETH_ALEN] __aligned(2);
 457                __be16 proto;
 458        } payload;
 459        struct ethhdr tmp;
 460        u16 hdrlen;
 461        u8 mesh_flags = 0;
 462
 463        if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
 464                return -1;
 465
 466        hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
 467        if (skb->len < hdrlen + 8)
 468                return -1;
 469
 470        /* convert IEEE 802.11 header + possible LLC headers into Ethernet
 471         * header
 472         * IEEE 802.11 address fields:
 473         * ToDS FromDS Addr1 Addr2 Addr3 Addr4
 474         *   0     0   DA    SA    BSSID n/a
 475         *   0     1   DA    BSSID SA    n/a
 476         *   1     0   BSSID SA    DA    n/a
 477         *   1     1   RA    TA    DA    SA
 478         */
 479        memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
 480        memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
 481
 482        if (iftype == NL80211_IFTYPE_MESH_POINT)
 483                skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
 484
 485        mesh_flags &= MESH_FLAGS_AE;
 486
 487        switch (hdr->frame_control &
 488                cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
 489        case cpu_to_le16(IEEE80211_FCTL_TODS):
 490                if (unlikely(iftype != NL80211_IFTYPE_AP &&
 491                             iftype != NL80211_IFTYPE_AP_VLAN &&
 492                             iftype != NL80211_IFTYPE_P2P_GO))
 493                        return -1;
 494                break;
 495        case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
 496                if (unlikely(iftype != NL80211_IFTYPE_WDS &&
 497                             iftype != NL80211_IFTYPE_MESH_POINT &&
 498                             iftype != NL80211_IFTYPE_AP_VLAN &&
 499                             iftype != NL80211_IFTYPE_STATION))
 500                        return -1;
 501                if (iftype == NL80211_IFTYPE_MESH_POINT) {
 502                        if (mesh_flags == MESH_FLAGS_AE_A4)
 503                                return -1;
 504                        if (mesh_flags == MESH_FLAGS_AE_A5_A6) {
 505                                skb_copy_bits(skb, hdrlen +
 506                                        offsetof(struct ieee80211s_hdr, eaddr1),
 507                                        tmp.h_dest, 2 * ETH_ALEN);
 508                        }
 509                        hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
 510                }
 511                break;
 512        case cpu_to_le16(IEEE80211_FCTL_FROMDS):
 513                if ((iftype != NL80211_IFTYPE_STATION &&
 514                     iftype != NL80211_IFTYPE_P2P_CLIENT &&
 515                     iftype != NL80211_IFTYPE_MESH_POINT) ||
 516                    (is_multicast_ether_addr(tmp.h_dest) &&
 517                     ether_addr_equal(tmp.h_source, addr)))
 518                        return -1;
 519                if (iftype == NL80211_IFTYPE_MESH_POINT) {
 520                        if (mesh_flags == MESH_FLAGS_AE_A5_A6)
 521                                return -1;
 522                        if (mesh_flags == MESH_FLAGS_AE_A4)
 523                                skb_copy_bits(skb, hdrlen +
 524                                        offsetof(struct ieee80211s_hdr, eaddr1),
 525                                        tmp.h_source, ETH_ALEN);
 526                        hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
 527                }
 528                break;
 529        case cpu_to_le16(0):
 530                if (iftype != NL80211_IFTYPE_ADHOC &&
 531                    iftype != NL80211_IFTYPE_STATION &&
 532                    iftype != NL80211_IFTYPE_OCB)
 533                                return -1;
 534                break;
 535        }
 536
 537        skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
 538        tmp.h_proto = payload.proto;
 539
 540        if (likely((ether_addr_equal(payload.hdr, rfc1042_header) &&
 541                    tmp.h_proto != htons(ETH_P_AARP) &&
 542                    tmp.h_proto != htons(ETH_P_IPX)) ||
 543                   ether_addr_equal(payload.hdr, bridge_tunnel_header)))
 544                /* remove RFC1042 or Bridge-Tunnel encapsulation and
 545                 * replace EtherType */
 546                hdrlen += ETH_ALEN + 2;
 547        else
 548                tmp.h_proto = htons(skb->len - hdrlen);
 549
 550        pskb_pull(skb, hdrlen);
 551
 552        if (!ehdr)
 553                ehdr = skb_push(skb, sizeof(struct ethhdr));
 554        memcpy(ehdr, &tmp, sizeof(tmp));
 555
 556        return 0;
 557}
 558EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
 559
 560static void
 561__frame_add_frag(struct sk_buff *skb, struct page *page,
 562                 void *ptr, int len, int size)
 563{
 564        struct skb_shared_info *sh = skb_shinfo(skb);
 565        int page_offset;
 566
 567        get_page(page);
 568        page_offset = ptr - page_address(page);
 569        skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
 570}
 571
 572static void
 573__ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
 574                            int offset, int len)
 575{
 576        struct skb_shared_info *sh = skb_shinfo(skb);
 577        const skb_frag_t *frag = &sh->frags[0];
 578        struct page *frag_page;
 579        void *frag_ptr;
 580        int frag_len, frag_size;
 581        int head_size = skb->len - skb->data_len;
 582        int cur_len;
 583
 584        frag_page = virt_to_head_page(skb->head);
 585        frag_ptr = skb->data;
 586        frag_size = head_size;
 587
 588        while (offset >= frag_size) {
 589                offset -= frag_size;
 590                frag_page = skb_frag_page(frag);
 591                frag_ptr = skb_frag_address(frag);
 592                frag_size = skb_frag_size(frag);
 593                frag++;
 594        }
 595
 596        frag_ptr += offset;
 597        frag_len = frag_size - offset;
 598
 599        cur_len = min(len, frag_len);
 600
 601        __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
 602        len -= cur_len;
 603
 604        while (len > 0) {
 605                frag_len = skb_frag_size(frag);
 606                cur_len = min(len, frag_len);
 607                __frame_add_frag(frame, skb_frag_page(frag),
 608                                 skb_frag_address(frag), cur_len, frag_len);
 609                len -= cur_len;
 610                frag++;
 611        }
 612}
 613
 614static struct sk_buff *
 615__ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
 616                       int offset, int len, bool reuse_frag)
 617{
 618        struct sk_buff *frame;
 619        int cur_len = len;
 620
 621        if (skb->len - offset < len)
 622                return NULL;
 623
 624        /*
 625         * When reusing framents, copy some data to the head to simplify
 626         * ethernet header handling and speed up protocol header processing
 627         * in the stack later.
 628         */
 629        if (reuse_frag)
 630                cur_len = min_t(int, len, 32);
 631
 632        /*
 633         * Allocate and reserve two bytes more for payload
 634         * alignment since sizeof(struct ethhdr) is 14.
 635         */
 636        frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
 637        if (!frame)
 638                return NULL;
 639
 640        skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
 641        skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
 642
 643        len -= cur_len;
 644        if (!len)
 645                return frame;
 646
 647        offset += cur_len;
 648        __ieee80211_amsdu_copy_frag(skb, frame, offset, len);
 649
 650        return frame;
 651}
 652
 653void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
 654                              const u8 *addr, enum nl80211_iftype iftype,
 655                              const unsigned int extra_headroom,
 656                              const u8 *check_da, const u8 *check_sa)
 657{
 658        unsigned int hlen = ALIGN(extra_headroom, 4);
 659        struct sk_buff *frame = NULL;
 660        u16 ethertype;
 661        u8 *payload;
 662        int offset = 0, remaining;
 663        struct ethhdr eth;
 664        bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
 665        bool reuse_skb = false;
 666        bool last = false;
 667
 668        while (!last) {
 669                unsigned int subframe_len;
 670                int len;
 671                u8 padding;
 672
 673                skb_copy_bits(skb, offset, &eth, sizeof(eth));
 674                len = ntohs(eth.h_proto);
 675                subframe_len = sizeof(struct ethhdr) + len;
 676                padding = (4 - subframe_len) & 0x3;
 677
 678                /* the last MSDU has no padding */
 679                remaining = skb->len - offset;
 680                if (subframe_len > remaining)
 681                        goto purge;
 682
 683                offset += sizeof(struct ethhdr);
 684                last = remaining <= subframe_len + padding;
 685
 686                /* FIXME: should we really accept multicast DA? */
 687                if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
 688                     !ether_addr_equal(check_da, eth.h_dest)) ||
 689                    (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
 690                        offset += len + padding;
 691                        continue;
 692                }
 693
 694                /* reuse skb for the last subframe */
 695                if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
 696                        skb_pull(skb, offset);
 697                        frame = skb;
 698                        reuse_skb = true;
 699                } else {
 700                        frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
 701                                                       reuse_frag);
 702                        if (!frame)
 703                                goto purge;
 704
 705                        offset += len + padding;
 706                }
 707
 708                skb_reset_network_header(frame);
 709                frame->dev = skb->dev;
 710                frame->priority = skb->priority;
 711
 712                payload = frame->data;
 713                ethertype = (payload[6] << 8) | payload[7];
 714                if (likely((ether_addr_equal(payload, rfc1042_header) &&
 715                            ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
 716                           ether_addr_equal(payload, bridge_tunnel_header))) {
 717                        eth.h_proto = htons(ethertype);
 718                        skb_pull(frame, ETH_ALEN + 2);
 719                }
 720
 721                memcpy(skb_push(frame, sizeof(eth)), &eth, sizeof(eth));
 722                __skb_queue_tail(list, frame);
 723        }
 724
 725        if (!reuse_skb)
 726                dev_kfree_skb(skb);
 727
 728        return;
 729
 730 purge:
 731        __skb_queue_purge(list);
 732        dev_kfree_skb(skb);
 733}
 734EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
 735
 736/* Given a data frame determine the 802.1p/1d tag to use. */
 737unsigned int cfg80211_classify8021d(struct sk_buff *skb,
 738                                    struct cfg80211_qos_map *qos_map)
 739{
 740        unsigned int dscp;
 741        unsigned char vlan_priority;
 742        unsigned int ret;
 743
 744        /* skb->priority values from 256->263 are magic values to
 745         * directly indicate a specific 802.1d priority.  This is used
 746         * to allow 802.1d priority to be passed directly in from VLAN
 747         * tags, etc.
 748         */
 749        if (skb->priority >= 256 && skb->priority <= 263) {
 750                ret = skb->priority - 256;
 751                goto out;
 752        }
 753
 754        if (skb_vlan_tag_present(skb)) {
 755                vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
 756                        >> VLAN_PRIO_SHIFT;
 757                if (vlan_priority > 0) {
 758                        ret = vlan_priority;
 759                        goto out;
 760                }
 761        }
 762
 763        switch (skb->protocol) {
 764        case htons(ETH_P_IP):
 765                dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
 766                break;
 767        case htons(ETH_P_IPV6):
 768                dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
 769                break;
 770        case htons(ETH_P_MPLS_UC):
 771        case htons(ETH_P_MPLS_MC): {
 772                struct mpls_label mpls_tmp, *mpls;
 773
 774                mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
 775                                          sizeof(*mpls), &mpls_tmp);
 776                if (!mpls)
 777                        return 0;
 778
 779                ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
 780                        >> MPLS_LS_TC_SHIFT;
 781                goto out;
 782        }
 783        case htons(ETH_P_80221):
 784                /* 802.21 is always network control traffic */
 785                return 7;
 786        default:
 787                return 0;
 788        }
 789
 790        if (qos_map) {
 791                unsigned int i, tmp_dscp = dscp >> 2;
 792
 793                for (i = 0; i < qos_map->num_des; i++) {
 794                        if (tmp_dscp == qos_map->dscp_exception[i].dscp) {
 795                                ret = qos_map->dscp_exception[i].up;
 796                                goto out;
 797                        }
 798                }
 799
 800                for (i = 0; i < 8; i++) {
 801                        if (tmp_dscp >= qos_map->up[i].low &&
 802                            tmp_dscp <= qos_map->up[i].high) {
 803                                ret = i;
 804                                goto out;
 805                        }
 806                }
 807        }
 808
 809        ret = dscp >> 5;
 810out:
 811        return array_index_nospec(ret, IEEE80211_NUM_TIDS);
 812}
 813EXPORT_SYMBOL(cfg80211_classify8021d);
 814
 815const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id)
 816{
 817        const struct cfg80211_bss_ies *ies;
 818
 819        ies = rcu_dereference(bss->ies);
 820        if (!ies)
 821                return NULL;
 822
 823        return cfg80211_find_elem(id, ies->data, ies->len);
 824}
 825EXPORT_SYMBOL(ieee80211_bss_get_elem);
 826
 827void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
 828{
 829        struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
 830        struct net_device *dev = wdev->netdev;
 831        int i;
 832
 833        if (!wdev->connect_keys)
 834                return;
 835
 836        for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
 837                if (!wdev->connect_keys->params[i].cipher)
 838                        continue;
 839                if (rdev_add_key(rdev, dev, i, false, NULL,
 840                                 &wdev->connect_keys->params[i])) {
 841                        netdev_err(dev, "failed to set key %d\n", i);
 842                        continue;
 843                }
 844                if (wdev->connect_keys->def == i &&
 845                    rdev_set_default_key(rdev, dev, i, true, true)) {
 846                        netdev_err(dev, "failed to set defkey %d\n", i);
 847                        continue;
 848                }
 849        }
 850
 851        kzfree(wdev->connect_keys);
 852        wdev->connect_keys = NULL;
 853}
 854
 855void cfg80211_process_wdev_events(struct wireless_dev *wdev)
 856{
 857        struct cfg80211_event *ev;
 858        unsigned long flags;
 859
 860        spin_lock_irqsave(&wdev->event_lock, flags);
 861        while (!list_empty(&wdev->event_list)) {
 862                ev = list_first_entry(&wdev->event_list,
 863                                      struct cfg80211_event, list);
 864                list_del(&ev->list);
 865                spin_unlock_irqrestore(&wdev->event_lock, flags);
 866
 867                wdev_lock(wdev);
 868                switch (ev->type) {
 869                case EVENT_CONNECT_RESULT:
 870                        __cfg80211_connect_result(
 871                                wdev->netdev,
 872                                &ev->cr,
 873                                ev->cr.status == WLAN_STATUS_SUCCESS);
 874                        break;
 875                case EVENT_ROAMED:
 876                        __cfg80211_roamed(wdev, &ev->rm);
 877                        break;
 878                case EVENT_DISCONNECTED:
 879                        __cfg80211_disconnected(wdev->netdev,
 880                                                ev->dc.ie, ev->dc.ie_len,
 881                                                ev->dc.reason,
 882                                                !ev->dc.locally_generated);
 883                        break;
 884                case EVENT_IBSS_JOINED:
 885                        __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
 886                                               ev->ij.channel);
 887                        break;
 888                case EVENT_STOPPED:
 889                        __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
 890                        break;
 891                case EVENT_PORT_AUTHORIZED:
 892                        __cfg80211_port_authorized(wdev, ev->pa.bssid);
 893                        break;
 894                }
 895                wdev_unlock(wdev);
 896
 897                kfree(ev);
 898
 899                spin_lock_irqsave(&wdev->event_lock, flags);
 900        }
 901        spin_unlock_irqrestore(&wdev->event_lock, flags);
 902}
 903
 904void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
 905{
 906        struct wireless_dev *wdev;
 907
 908        ASSERT_RTNL();
 909
 910        list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
 911                cfg80211_process_wdev_events(wdev);
 912}
 913
 914int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
 915                          struct net_device *dev, enum nl80211_iftype ntype,
 916                          struct vif_params *params)
 917{
 918        int err;
 919        enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
 920
 921        ASSERT_RTNL();
 922
 923        /* don't support changing VLANs, you just re-create them */
 924        if (otype == NL80211_IFTYPE_AP_VLAN)
 925                return -EOPNOTSUPP;
 926
 927        /* cannot change into P2P device or NAN */
 928        if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
 929            ntype == NL80211_IFTYPE_NAN)
 930                return -EOPNOTSUPP;
 931
 932        if (!rdev->ops->change_virtual_intf ||
 933            !(rdev->wiphy.interface_modes & (1 << ntype)))
 934                return -EOPNOTSUPP;
 935
 936        /* if it's part of a bridge, reject changing type to station/ibss */
 937        if ((dev->priv_flags & IFF_BRIDGE_PORT) &&
 938            (ntype == NL80211_IFTYPE_ADHOC ||
 939             ntype == NL80211_IFTYPE_STATION ||
 940             ntype == NL80211_IFTYPE_P2P_CLIENT))
 941                return -EBUSY;
 942
 943        if (ntype != otype) {
 944                dev->ieee80211_ptr->use_4addr = false;
 945                dev->ieee80211_ptr->mesh_id_up_len = 0;
 946                wdev_lock(dev->ieee80211_ptr);
 947                rdev_set_qos_map(rdev, dev, NULL);
 948                wdev_unlock(dev->ieee80211_ptr);
 949
 950                switch (otype) {
 951                case NL80211_IFTYPE_AP:
 952                        cfg80211_stop_ap(rdev, dev, true);
 953                        break;
 954                case NL80211_IFTYPE_ADHOC:
 955                        cfg80211_leave_ibss(rdev, dev, false);
 956                        break;
 957                case NL80211_IFTYPE_STATION:
 958                case NL80211_IFTYPE_P2P_CLIENT:
 959                        wdev_lock(dev->ieee80211_ptr);
 960                        cfg80211_disconnect(rdev, dev,
 961                                            WLAN_REASON_DEAUTH_LEAVING, true);
 962                        wdev_unlock(dev->ieee80211_ptr);
 963                        break;
 964                case NL80211_IFTYPE_MESH_POINT:
 965                        /* mesh should be handled? */
 966                        break;
 967                default:
 968                        break;
 969                }
 970
 971                cfg80211_process_rdev_events(rdev);
 972                cfg80211_mlme_purge_registrations(dev->ieee80211_ptr);
 973        }
 974
 975        err = rdev_change_virtual_intf(rdev, dev, ntype, params);
 976
 977        WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
 978
 979        if (!err && params && params->use_4addr != -1)
 980                dev->ieee80211_ptr->use_4addr = params->use_4addr;
 981
 982        if (!err) {
 983                dev->priv_flags &= ~IFF_DONT_BRIDGE;
 984                switch (ntype) {
 985                case NL80211_IFTYPE_STATION:
 986                        if (dev->ieee80211_ptr->use_4addr)
 987                                break;
 988                        /* fall through */
 989                case NL80211_IFTYPE_OCB:
 990                case NL80211_IFTYPE_P2P_CLIENT:
 991                case NL80211_IFTYPE_ADHOC:
 992                        dev->priv_flags |= IFF_DONT_BRIDGE;
 993                        break;
 994                case NL80211_IFTYPE_P2P_GO:
 995                case NL80211_IFTYPE_AP:
 996                case NL80211_IFTYPE_AP_VLAN:
 997                case NL80211_IFTYPE_WDS:
 998                case NL80211_IFTYPE_MESH_POINT:
 999                        /* bridging OK */
1000                        break;
1001                case NL80211_IFTYPE_MONITOR:
1002                        /* monitor can't bridge anyway */
1003                        break;
1004                case NL80211_IFTYPE_UNSPECIFIED:
1005                case NUM_NL80211_IFTYPES:
1006                        /* not happening */
1007                        break;
1008                case NL80211_IFTYPE_P2P_DEVICE:
1009                case NL80211_IFTYPE_NAN:
1010                        WARN_ON(1);
1011                        break;
1012                }
1013        }
1014
1015        if (!err && ntype != otype && netif_running(dev)) {
1016                cfg80211_update_iface_num(rdev, ntype, 1);
1017                cfg80211_update_iface_num(rdev, otype, -1);
1018        }
1019
1020        return err;
1021}
1022
1023static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
1024{
1025        int modulation, streams, bitrate;
1026
1027        /* the formula below does only work for MCS values smaller than 32 */
1028        if (WARN_ON_ONCE(rate->mcs >= 32))
1029                return 0;
1030
1031        modulation = rate->mcs & 7;
1032        streams = (rate->mcs >> 3) + 1;
1033
1034        bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1035
1036        if (modulation < 4)
1037                bitrate *= (modulation + 1);
1038        else if (modulation == 4)
1039                bitrate *= (modulation + 2);
1040        else
1041                bitrate *= (modulation + 3);
1042
1043        bitrate *= streams;
1044
1045        if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1046                bitrate = (bitrate / 9) * 10;
1047
1048        /* do NOT round down here */
1049        return (bitrate + 50000) / 100000;
1050}
1051
1052static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate)
1053{
1054        static const u32 __mcs2bitrate[] = {
1055                /* control PHY */
1056                [0] =   275,
1057                /* SC PHY */
1058                [1] =  3850,
1059                [2] =  7700,
1060                [3] =  9625,
1061                [4] = 11550,
1062                [5] = 12512, /* 1251.25 mbps */
1063                [6] = 15400,
1064                [7] = 19250,
1065                [8] = 23100,
1066                [9] = 25025,
1067                [10] = 30800,
1068                [11] = 38500,
1069                [12] = 46200,
1070                /* OFDM PHY */
1071                [13] =  6930,
1072                [14] =  8662, /* 866.25 mbps */
1073                [15] = 13860,
1074                [16] = 17325,
1075                [17] = 20790,
1076                [18] = 27720,
1077                [19] = 34650,
1078                [20] = 41580,
1079                [21] = 45045,
1080                [22] = 51975,
1081                [23] = 62370,
1082                [24] = 67568, /* 6756.75 mbps */
1083                /* LP-SC PHY */
1084                [25] =  6260,
1085                [26] =  8340,
1086                [27] = 11120,
1087                [28] = 12510,
1088                [29] = 16680,
1089                [30] = 22240,
1090                [31] = 25030,
1091        };
1092
1093        if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1094                return 0;
1095
1096        return __mcs2bitrate[rate->mcs];
1097}
1098
1099static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate)
1100{
1101        static const u32 __mcs2bitrate[] = {
1102                /* control PHY */
1103                [0] =   275,
1104                /* SC PHY */
1105                [1] =  3850,
1106                [2] =  7700,
1107                [3] =  9625,
1108                [4] = 11550,
1109                [5] = 12512, /* 1251.25 mbps */
1110                [6] = 13475,
1111                [7] = 15400,
1112                [8] = 19250,
1113                [9] = 23100,
1114                [10] = 25025,
1115                [11] = 26950,
1116                [12] = 30800,
1117                [13] = 38500,
1118                [14] = 46200,
1119                [15] = 50050,
1120                [16] = 53900,
1121                [17] = 57750,
1122                [18] = 69300,
1123                [19] = 75075,
1124                [20] = 80850,
1125        };
1126
1127        if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1128                return 0;
1129
1130        return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch;
1131}
1132
1133static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1134{
1135        static const u32 base[4][10] = {
1136                {   6500000,
1137                   13000000,
1138                   19500000,
1139                   26000000,
1140                   39000000,
1141                   52000000,
1142                   58500000,
1143                   65000000,
1144                   78000000,
1145                /* not in the spec, but some devices use this: */
1146                   86500000,
1147                },
1148                {  13500000,
1149                   27000000,
1150                   40500000,
1151                   54000000,
1152                   81000000,
1153                  108000000,
1154                  121500000,
1155                  135000000,
1156                  162000000,
1157                  180000000,
1158                },
1159                {  29300000,
1160                   58500000,
1161                   87800000,
1162                  117000000,
1163                  175500000,
1164                  234000000,
1165                  263300000,
1166                  292500000,
1167                  351000000,
1168                  390000000,
1169                },
1170                {  58500000,
1171                  117000000,
1172                  175500000,
1173                  234000000,
1174                  351000000,
1175                  468000000,
1176                  526500000,
1177                  585000000,
1178                  702000000,
1179                  780000000,
1180                },
1181        };
1182        u32 bitrate;
1183        int idx;
1184
1185        if (rate->mcs > 9)
1186                goto warn;
1187
1188        switch (rate->bw) {
1189        case RATE_INFO_BW_160:
1190                idx = 3;
1191                break;
1192        case RATE_INFO_BW_80:
1193                idx = 2;
1194                break;
1195        case RATE_INFO_BW_40:
1196                idx = 1;
1197                break;
1198        case RATE_INFO_BW_5:
1199        case RATE_INFO_BW_10:
1200        default:
1201                goto warn;
1202        case RATE_INFO_BW_20:
1203                idx = 0;
1204        }
1205
1206        bitrate = base[idx][rate->mcs];
1207        bitrate *= rate->nss;
1208
1209        if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1210                bitrate = (bitrate / 9) * 10;
1211
1212        /* do NOT round down here */
1213        return (bitrate + 50000) / 100000;
1214 warn:
1215        WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1216                  rate->bw, rate->mcs, rate->nss);
1217        return 0;
1218}
1219
1220static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
1221{
1222#define SCALE 2048
1223        u16 mcs_divisors[12] = {
1224                34133, /* 16.666666... */
1225                17067, /*  8.333333... */
1226                11378, /*  5.555555... */
1227                 8533, /*  4.166666... */
1228                 5689, /*  2.777777... */
1229                 4267, /*  2.083333... */
1230                 3923, /*  1.851851... */
1231                 3413, /*  1.666666... */
1232                 2844, /*  1.388888... */
1233                 2560, /*  1.250000... */
1234                 2276, /*  1.111111... */
1235                 2048, /*  1.000000... */
1236        };
1237        u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
1238        u32 rates_969[3] =  { 480388888, 453700000, 408333333 };
1239        u32 rates_484[3] =  { 229411111, 216666666, 195000000 };
1240        u32 rates_242[3] =  { 114711111, 108333333,  97500000 };
1241        u32 rates_106[3] =  {  40000000,  37777777,  34000000 };
1242        u32 rates_52[3]  =  {  18820000,  17777777,  16000000 };
1243        u32 rates_26[3]  =  {   9411111,   8888888,   8000000 };
1244        u64 tmp;
1245        u32 result;
1246
1247        if (WARN_ON_ONCE(rate->mcs > 11))
1248                return 0;
1249
1250        if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
1251                return 0;
1252        if (WARN_ON_ONCE(rate->he_ru_alloc >
1253                         NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1254                return 0;
1255        if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1256                return 0;
1257
1258        if (rate->bw == RATE_INFO_BW_160)
1259                result = rates_160M[rate->he_gi];
1260        else if (rate->bw == RATE_INFO_BW_80 ||
1261                 (rate->bw == RATE_INFO_BW_HE_RU &&
1262                  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
1263                result = rates_969[rate->he_gi];
1264        else if (rate->bw == RATE_INFO_BW_40 ||
1265                 (rate->bw == RATE_INFO_BW_HE_RU &&
1266                  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
1267                result = rates_484[rate->he_gi];
1268        else if (rate->bw == RATE_INFO_BW_20 ||
1269                 (rate->bw == RATE_INFO_BW_HE_RU &&
1270                  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
1271                result = rates_242[rate->he_gi];
1272        else if (rate->bw == RATE_INFO_BW_HE_RU &&
1273                 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
1274                result = rates_106[rate->he_gi];
1275        else if (rate->bw == RATE_INFO_BW_HE_RU &&
1276                 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
1277                result = rates_52[rate->he_gi];
1278        else if (rate->bw == RATE_INFO_BW_HE_RU &&
1279                 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
1280                result = rates_26[rate->he_gi];
1281        else {
1282                WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1283                     rate->bw, rate->he_ru_alloc);
1284                return 0;
1285        }
1286
1287        /* now scale to the appropriate MCS */
1288        tmp = result;
1289        tmp *= SCALE;
1290        do_div(tmp, mcs_divisors[rate->mcs]);
1291        result = tmp;
1292
1293        /* and take NSS, DCM into account */
1294        result = (result * rate->nss) / 8;
1295        if (rate->he_dcm)
1296                result /= 2;
1297
1298        return result / 10000;
1299}
1300
1301u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1302{
1303        if (rate->flags & RATE_INFO_FLAGS_MCS)
1304                return cfg80211_calculate_bitrate_ht(rate);
1305        if (rate->flags & RATE_INFO_FLAGS_DMG)
1306                return cfg80211_calculate_bitrate_dmg(rate);
1307        if (rate->flags & RATE_INFO_FLAGS_EDMG)
1308                return cfg80211_calculate_bitrate_edmg(rate);
1309        if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1310                return cfg80211_calculate_bitrate_vht(rate);
1311        if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
1312                return cfg80211_calculate_bitrate_he(rate);
1313
1314        return rate->legacy;
1315}
1316EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1317
1318int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1319                          enum ieee80211_p2p_attr_id attr,
1320                          u8 *buf, unsigned int bufsize)
1321{
1322        u8 *out = buf;
1323        u16 attr_remaining = 0;
1324        bool desired_attr = false;
1325        u16 desired_len = 0;
1326
1327        while (len > 0) {
1328                unsigned int iedatalen;
1329                unsigned int copy;
1330                const u8 *iedata;
1331
1332                if (len < 2)
1333                        return -EILSEQ;
1334                iedatalen = ies[1];
1335                if (iedatalen + 2 > len)
1336                        return -EILSEQ;
1337
1338                if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1339                        goto cont;
1340
1341                if (iedatalen < 4)
1342                        goto cont;
1343
1344                iedata = ies + 2;
1345
1346                /* check WFA OUI, P2P subtype */
1347                if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1348                    iedata[2] != 0x9a || iedata[3] != 0x09)
1349                        goto cont;
1350
1351                iedatalen -= 4;
1352                iedata += 4;
1353
1354                /* check attribute continuation into this IE */
1355                copy = min_t(unsigned int, attr_remaining, iedatalen);
1356                if (copy && desired_attr) {
1357                        desired_len += copy;
1358                        if (out) {
1359                                memcpy(out, iedata, min(bufsize, copy));
1360                                out += min(bufsize, copy);
1361                                bufsize -= min(bufsize, copy);
1362                        }
1363
1364
1365                        if (copy == attr_remaining)
1366                                return desired_len;
1367                }
1368
1369                attr_remaining -= copy;
1370                if (attr_remaining)
1371                        goto cont;
1372
1373                iedatalen -= copy;
1374                iedata += copy;
1375
1376                while (iedatalen > 0) {
1377                        u16 attr_len;
1378
1379                        /* P2P attribute ID & size must fit */
1380                        if (iedatalen < 3)
1381                                return -EILSEQ;
1382                        desired_attr = iedata[0] == attr;
1383                        attr_len = get_unaligned_le16(iedata + 1);
1384                        iedatalen -= 3;
1385                        iedata += 3;
1386
1387                        copy = min_t(unsigned int, attr_len, iedatalen);
1388
1389                        if (desired_attr) {
1390                                desired_len += copy;
1391                                if (out) {
1392                                        memcpy(out, iedata, min(bufsize, copy));
1393                                        out += min(bufsize, copy);
1394                                        bufsize -= min(bufsize, copy);
1395                                }
1396
1397                                if (copy == attr_len)
1398                                        return desired_len;
1399                        }
1400
1401                        iedata += copy;
1402                        iedatalen -= copy;
1403                        attr_remaining = attr_len - copy;
1404                }
1405
1406 cont:
1407                len -= ies[1] + 2;
1408                ies += ies[1] + 2;
1409        }
1410
1411        if (attr_remaining && desired_attr)
1412                return -EILSEQ;
1413
1414        return -ENOENT;
1415}
1416EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1417
1418static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1419{
1420        int i;
1421
1422        /* Make sure array values are legal */
1423        if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1424                return false;
1425
1426        i = 0;
1427        while (i < n_ids) {
1428                if (ids[i] == WLAN_EID_EXTENSION) {
1429                        if (id_ext && (ids[i + 1] == id))
1430                                return true;
1431
1432                        i += 2;
1433                        continue;
1434                }
1435
1436                if (ids[i] == id && !id_ext)
1437                        return true;
1438
1439                i++;
1440        }
1441        return false;
1442}
1443
1444static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1445{
1446        /* we assume a validly formed IEs buffer */
1447        u8 len = ies[pos + 1];
1448
1449        pos += 2 + len;
1450
1451        /* the IE itself must have 255 bytes for fragments to follow */
1452        if (len < 255)
1453                return pos;
1454
1455        while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1456                len = ies[pos + 1];
1457                pos += 2 + len;
1458        }
1459
1460        return pos;
1461}
1462
1463size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1464                              const u8 *ids, int n_ids,
1465                              const u8 *after_ric, int n_after_ric,
1466                              size_t offset)
1467{
1468        size_t pos = offset;
1469
1470        while (pos < ielen) {
1471                u8 ext = 0;
1472
1473                if (ies[pos] == WLAN_EID_EXTENSION)
1474                        ext = 2;
1475                if ((pos + ext) >= ielen)
1476                        break;
1477
1478                if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
1479                                          ies[pos] == WLAN_EID_EXTENSION))
1480                        break;
1481
1482                if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1483                        pos = skip_ie(ies, ielen, pos);
1484
1485                        while (pos < ielen) {
1486                                if (ies[pos] == WLAN_EID_EXTENSION)
1487                                        ext = 2;
1488                                else
1489                                        ext = 0;
1490
1491                                if ((pos + ext) >= ielen)
1492                                        break;
1493
1494                                if (!ieee80211_id_in_list(after_ric,
1495                                                          n_after_ric,
1496                                                          ies[pos + ext],
1497                                                          ext == 2))
1498                                        pos = skip_ie(ies, ielen, pos);
1499                                else
1500                                        break;
1501                        }
1502                } else {
1503                        pos = skip_ie(ies, ielen, pos);
1504                }
1505        }
1506
1507        return pos;
1508}
1509EXPORT_SYMBOL(ieee80211_ie_split_ric);
1510
1511bool ieee80211_operating_class_to_band(u8 operating_class,
1512                                       enum nl80211_band *band)
1513{
1514        switch (operating_class) {
1515        case 112:
1516        case 115 ... 127:
1517        case 128 ... 130:
1518                *band = NL80211_BAND_5GHZ;
1519                return true;
1520        case 131 ... 135:
1521                *band = NL80211_BAND_6GHZ;
1522                return true;
1523        case 81:
1524        case 82:
1525        case 83:
1526        case 84:
1527                *band = NL80211_BAND_2GHZ;
1528                return true;
1529        case 180:
1530                *band = NL80211_BAND_60GHZ;
1531                return true;
1532        }
1533
1534        return false;
1535}
1536EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1537
1538bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1539                                          u8 *op_class)
1540{
1541        u8 vht_opclass;
1542        u32 freq = chandef->center_freq1;
1543
1544        if (freq >= 2412 && freq <= 2472) {
1545                if (chandef->width > NL80211_CHAN_WIDTH_40)
1546                        return false;
1547
1548                /* 2.407 GHz, channels 1..13 */
1549                if (chandef->width == NL80211_CHAN_WIDTH_40) {
1550                        if (freq > chandef->chan->center_freq)
1551                                *op_class = 83; /* HT40+ */
1552                        else
1553                                *op_class = 84; /* HT40- */
1554                } else {
1555                        *op_class = 81;
1556                }
1557
1558                return true;
1559        }
1560
1561        if (freq == 2484) {
1562                /* channel 14 is only for IEEE 802.11b */
1563                if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT)
1564                        return false;
1565
1566                *op_class = 82; /* channel 14 */
1567                return true;
1568        }
1569
1570        switch (chandef->width) {
1571        case NL80211_CHAN_WIDTH_80:
1572                vht_opclass = 128;
1573                break;
1574        case NL80211_CHAN_WIDTH_160:
1575                vht_opclass = 129;
1576                break;
1577        case NL80211_CHAN_WIDTH_80P80:
1578                vht_opclass = 130;
1579                break;
1580        case NL80211_CHAN_WIDTH_10:
1581        case NL80211_CHAN_WIDTH_5:
1582                return false; /* unsupported for now */
1583        default:
1584                vht_opclass = 0;
1585                break;
1586        }
1587
1588        /* 5 GHz, channels 36..48 */
1589        if (freq >= 5180 && freq <= 5240) {
1590                if (vht_opclass) {
1591                        *op_class = vht_opclass;
1592                } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1593                        if (freq > chandef->chan->center_freq)
1594                                *op_class = 116;
1595                        else
1596                                *op_class = 117;
1597                } else {
1598                        *op_class = 115;
1599                }
1600
1601                return true;
1602        }
1603
1604        /* 5 GHz, channels 52..64 */
1605        if (freq >= 5260 && freq <= 5320) {
1606                if (vht_opclass) {
1607                        *op_class = vht_opclass;
1608                } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1609                        if (freq > chandef->chan->center_freq)
1610                                *op_class = 119;
1611                        else
1612                                *op_class = 120;
1613                } else {
1614                        *op_class = 118;
1615                }
1616
1617                return true;
1618        }
1619
1620        /* 5 GHz, channels 100..144 */
1621        if (freq >= 5500 && freq <= 5720) {
1622                if (vht_opclass) {
1623                        *op_class = vht_opclass;
1624                } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1625                        if (freq > chandef->chan->center_freq)
1626                                *op_class = 122;
1627                        else
1628                                *op_class = 123;
1629                } else {
1630                        *op_class = 121;
1631                }
1632
1633                return true;
1634        }
1635
1636        /* 5 GHz, channels 149..169 */
1637        if (freq >= 5745 && freq <= 5845) {
1638                if (vht_opclass) {
1639                        *op_class = vht_opclass;
1640                } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1641                        if (freq > chandef->chan->center_freq)
1642                                *op_class = 126;
1643                        else
1644                                *op_class = 127;
1645                } else if (freq <= 5805) {
1646                        *op_class = 124;
1647                } else {
1648                        *op_class = 125;
1649                }
1650
1651                return true;
1652        }
1653
1654        /* 56.16 GHz, channel 1..4 */
1655        if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) {
1656                if (chandef->width >= NL80211_CHAN_WIDTH_40)
1657                        return false;
1658
1659                *op_class = 180;
1660                return true;
1661        }
1662
1663        /* not supported yet */
1664        return false;
1665}
1666EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1667
1668static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
1669                                       u32 *beacon_int_gcd,
1670                                       bool *beacon_int_different)
1671{
1672        struct wireless_dev *wdev;
1673
1674        *beacon_int_gcd = 0;
1675        *beacon_int_different = false;
1676
1677        list_for_each_entry(wdev, &wiphy->wdev_list, list) {
1678                if (!wdev->beacon_interval)
1679                        continue;
1680
1681                if (!*beacon_int_gcd) {
1682                        *beacon_int_gcd = wdev->beacon_interval;
1683                        continue;
1684                }
1685
1686                if (wdev->beacon_interval == *beacon_int_gcd)
1687                        continue;
1688
1689                *beacon_int_different = true;
1690                *beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval);
1691        }
1692
1693        if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
1694                if (*beacon_int_gcd)
1695                        *beacon_int_different = true;
1696                *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
1697        }
1698}
1699
1700int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1701                                 enum nl80211_iftype iftype, u32 beacon_int)
1702{
1703        /*
1704         * This is just a basic pre-condition check; if interface combinations
1705         * are possible the driver must already be checking those with a call
1706         * to cfg80211_check_combinations(), in which case we'll validate more
1707         * through the cfg80211_calculate_bi_data() call and code in
1708         * cfg80211_iter_combinations().
1709         */
1710
1711        if (beacon_int < 10 || beacon_int > 10000)
1712                return -EINVAL;
1713
1714        return 0;
1715}
1716
1717int cfg80211_iter_combinations(struct wiphy *wiphy,
1718                               struct iface_combination_params *params,
1719                               void (*iter)(const struct ieee80211_iface_combination *c,
1720                                            void *data),
1721                               void *data)
1722{
1723        const struct ieee80211_regdomain *regdom;
1724        enum nl80211_dfs_regions region = 0;
1725        int i, j, iftype;
1726        int num_interfaces = 0;
1727        u32 used_iftypes = 0;
1728        u32 beacon_int_gcd;
1729        bool beacon_int_different;
1730
1731        /*
1732         * This is a bit strange, since the iteration used to rely only on
1733         * the data given by the driver, but here it now relies on context,
1734         * in form of the currently operating interfaces.
1735         * This is OK for all current users, and saves us from having to
1736         * push the GCD calculations into all the drivers.
1737         * In the future, this should probably rely more on data that's in
1738         * cfg80211 already - the only thing not would appear to be any new
1739         * interfaces (while being brought up) and channel/radar data.
1740         */
1741        cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
1742                                   &beacon_int_gcd, &beacon_int_different);
1743
1744        if (params->radar_detect) {
1745                rcu_read_lock();
1746                regdom = rcu_dereference(cfg80211_regdomain);
1747                if (regdom)
1748                        region = regdom->dfs_region;
1749                rcu_read_unlock();
1750        }
1751
1752        for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1753                num_interfaces += params->iftype_num[iftype];
1754                if (params->iftype_num[iftype] > 0 &&
1755                    !cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1756                        used_iftypes |= BIT(iftype);
1757        }
1758
1759        for (i = 0; i < wiphy->n_iface_combinations; i++) {
1760                const struct ieee80211_iface_combination *c;
1761                struct ieee80211_iface_limit *limits;
1762                u32 all_iftypes = 0;
1763
1764                c = &wiphy->iface_combinations[i];
1765
1766                if (num_interfaces > c->max_interfaces)
1767                        continue;
1768                if (params->num_different_channels > c->num_different_channels)
1769                        continue;
1770
1771                limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1772                                 GFP_KERNEL);
1773                if (!limits)
1774                        return -ENOMEM;
1775
1776                for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1777                        if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1778                                continue;
1779                        for (j = 0; j < c->n_limits; j++) {
1780                                all_iftypes |= limits[j].types;
1781                                if (!(limits[j].types & BIT(iftype)))
1782                                        continue;
1783                                if (limits[j].max < params->iftype_num[iftype])
1784                                        goto cont;
1785                                limits[j].max -= params->iftype_num[iftype];
1786                        }
1787                }
1788
1789                if (params->radar_detect !=
1790                        (c->radar_detect_widths & params->radar_detect))
1791                        goto cont;
1792
1793                if (params->radar_detect && c->radar_detect_regions &&
1794                    !(c->radar_detect_regions & BIT(region)))
1795                        goto cont;
1796
1797                /* Finally check that all iftypes that we're currently
1798                 * using are actually part of this combination. If they
1799                 * aren't then we can't use this combination and have
1800                 * to continue to the next.
1801                 */
1802                if ((all_iftypes & used_iftypes) != used_iftypes)
1803                        goto cont;
1804
1805                if (beacon_int_gcd) {
1806                        if (c->beacon_int_min_gcd &&
1807                            beacon_int_gcd < c->beacon_int_min_gcd)
1808                                goto cont;
1809                        if (!c->beacon_int_min_gcd && beacon_int_different)
1810                                goto cont;
1811                }
1812
1813                /* This combination covered all interface types and
1814                 * supported the requested numbers, so we're good.
1815                 */
1816
1817                (*iter)(c, data);
1818 cont:
1819                kfree(limits);
1820        }
1821
1822        return 0;
1823}
1824EXPORT_SYMBOL(cfg80211_iter_combinations);
1825
1826static void
1827cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1828                          void *data)
1829{
1830        int *num = data;
1831        (*num)++;
1832}
1833
1834int cfg80211_check_combinations(struct wiphy *wiphy,
1835                                struct iface_combination_params *params)
1836{
1837        int err, num = 0;
1838
1839        err = cfg80211_iter_combinations(wiphy, params,
1840                                         cfg80211_iter_sum_ifcombs, &num);
1841        if (err)
1842                return err;
1843        if (num == 0)
1844                return -EBUSY;
1845
1846        return 0;
1847}
1848EXPORT_SYMBOL(cfg80211_check_combinations);
1849
1850int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1851                           const u8 *rates, unsigned int n_rates,
1852                           u32 *mask)
1853{
1854        int i, j;
1855
1856        if (!sband)
1857                return -EINVAL;
1858
1859        if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1860                return -EINVAL;
1861
1862        *mask = 0;
1863
1864        for (i = 0; i < n_rates; i++) {
1865                int rate = (rates[i] & 0x7f) * 5;
1866                bool found = false;
1867
1868                for (j = 0; j < sband->n_bitrates; j++) {
1869                        if (sband->bitrates[j].bitrate == rate) {
1870                                found = true;
1871                                *mask |= BIT(j);
1872                                break;
1873                        }
1874                }
1875                if (!found)
1876                        return -EINVAL;
1877        }
1878
1879        /*
1880         * mask must have at least one bit set here since we
1881         * didn't accept a 0-length rates array nor allowed
1882         * entries in the array that didn't exist
1883         */
1884
1885        return 0;
1886}
1887
1888unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1889{
1890        enum nl80211_band band;
1891        unsigned int n_channels = 0;
1892
1893        for (band = 0; band < NUM_NL80211_BANDS; band++)
1894                if (wiphy->bands[band])
1895                        n_channels += wiphy->bands[band]->n_channels;
1896
1897        return n_channels;
1898}
1899EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
1900
1901int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
1902                         struct station_info *sinfo)
1903{
1904        struct cfg80211_registered_device *rdev;
1905        struct wireless_dev *wdev;
1906
1907        wdev = dev->ieee80211_ptr;
1908        if (!wdev)
1909                return -EOPNOTSUPP;
1910
1911        rdev = wiphy_to_rdev(wdev->wiphy);
1912        if (!rdev->ops->get_station)
1913                return -EOPNOTSUPP;
1914
1915        memset(sinfo, 0, sizeof(*sinfo));
1916
1917        return rdev_get_station(rdev, dev, mac_addr, sinfo);
1918}
1919EXPORT_SYMBOL(cfg80211_get_station);
1920
1921void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
1922{
1923        int i;
1924
1925        if (!f)
1926                return;
1927
1928        kfree(f->serv_spec_info);
1929        kfree(f->srf_bf);
1930        kfree(f->srf_macs);
1931        for (i = 0; i < f->num_rx_filters; i++)
1932                kfree(f->rx_filters[i].filter);
1933
1934        for (i = 0; i < f->num_tx_filters; i++)
1935                kfree(f->tx_filters[i].filter);
1936
1937        kfree(f->rx_filters);
1938        kfree(f->tx_filters);
1939        kfree(f);
1940}
1941EXPORT_SYMBOL(cfg80211_free_nan_func);
1942
1943bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
1944                                u32 center_freq_khz, u32 bw_khz)
1945{
1946        u32 start_freq_khz, end_freq_khz;
1947
1948        start_freq_khz = center_freq_khz - (bw_khz / 2);
1949        end_freq_khz = center_freq_khz + (bw_khz / 2);
1950
1951        if (start_freq_khz >= freq_range->start_freq_khz &&
1952            end_freq_khz <= freq_range->end_freq_khz)
1953                return true;
1954
1955        return false;
1956}
1957
1958int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
1959{
1960        sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
1961                                sizeof(*(sinfo->pertid)),
1962                                gfp);
1963        if (!sinfo->pertid)
1964                return -ENOMEM;
1965
1966        return 0;
1967}
1968EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
1969
1970/* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1971/* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1972const unsigned char rfc1042_header[] __aligned(2) =
1973        { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1974EXPORT_SYMBOL(rfc1042_header);
1975
1976/* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
1977const unsigned char bridge_tunnel_header[] __aligned(2) =
1978        { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
1979EXPORT_SYMBOL(bridge_tunnel_header);
1980
1981/* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
1982struct iapp_layer2_update {
1983        u8 da[ETH_ALEN];        /* broadcast */
1984        u8 sa[ETH_ALEN];        /* STA addr */
1985        __be16 len;             /* 6 */
1986        u8 dsap;                /* 0 */
1987        u8 ssap;                /* 0 */
1988        u8 control;
1989        u8 xid_info[3];
1990} __packed;
1991
1992void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr)
1993{
1994        struct iapp_layer2_update *msg;
1995        struct sk_buff *skb;
1996
1997        /* Send Level 2 Update Frame to update forwarding tables in layer 2
1998         * bridge devices */
1999
2000        skb = dev_alloc_skb(sizeof(*msg));
2001        if (!skb)
2002                return;
2003        msg = skb_put(skb, sizeof(*msg));
2004
2005        /* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
2006         * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
2007
2008        eth_broadcast_addr(msg->da);
2009        ether_addr_copy(msg->sa, addr);
2010        msg->len = htons(6);
2011        msg->dsap = 0;
2012        msg->ssap = 0x01;       /* NULL LSAP, CR Bit: Response */
2013        msg->control = 0xaf;    /* XID response lsb.1111F101.
2014                                 * F=0 (no poll command; unsolicited frame) */
2015        msg->xid_info[0] = 0x81;        /* XID format identifier */
2016        msg->xid_info[1] = 1;   /* LLC types/classes: Type 1 LLC */
2017        msg->xid_info[2] = 0;   /* XID sender's receive window size (RW) */
2018
2019        skb->dev = dev;
2020        skb->protocol = eth_type_trans(skb, dev);
2021        memset(skb->cb, 0, sizeof(skb->cb));
2022        netif_rx_ni(skb);
2023}
2024EXPORT_SYMBOL(cfg80211_send_layer2_update);
2025
2026int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
2027                              enum ieee80211_vht_chanwidth bw,
2028                              int mcs, bool ext_nss_bw_capable)
2029{
2030        u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map);
2031        int max_vht_nss = 0;
2032        int ext_nss_bw;
2033        int supp_width;
2034        int i, mcs_encoding;
2035
2036        if (map == 0xffff)
2037                return 0;
2038
2039        if (WARN_ON(mcs > 9))
2040                return 0;
2041        if (mcs <= 7)
2042                mcs_encoding = 0;
2043        else if (mcs == 8)
2044                mcs_encoding = 1;
2045        else
2046                mcs_encoding = 2;
2047
2048        /* find max_vht_nss for the given MCS */
2049        for (i = 7; i >= 0; i--) {
2050                int supp = (map >> (2 * i)) & 3;
2051
2052                if (supp == 3)
2053                        continue;
2054
2055                if (supp >= mcs_encoding) {
2056                        max_vht_nss = i + 1;
2057                        break;
2058                }
2059        }
2060
2061        if (!(cap->supp_mcs.tx_mcs_map &
2062                        cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE)))
2063                return max_vht_nss;
2064
2065        ext_nss_bw = le32_get_bits(cap->vht_cap_info,
2066                                   IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
2067        supp_width = le32_get_bits(cap->vht_cap_info,
2068                                   IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
2069
2070        /* if not capable, treat ext_nss_bw as 0 */
2071        if (!ext_nss_bw_capable)
2072                ext_nss_bw = 0;
2073
2074        /* This is invalid */
2075        if (supp_width == 3)
2076                return 0;
2077
2078        /* This is an invalid combination so pretend nothing is supported */
2079        if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2))
2080                return 0;
2081
2082        /*
2083         * Cover all the special cases according to IEEE 802.11-2016
2084         * Table 9-250. All other cases are either factor of 1 or not
2085         * valid/supported.
2086         */
2087        switch (bw) {
2088        case IEEE80211_VHT_CHANWIDTH_USE_HT:
2089        case IEEE80211_VHT_CHANWIDTH_80MHZ:
2090                if ((supp_width == 1 || supp_width == 2) &&
2091                    ext_nss_bw == 3)
2092                        return 2 * max_vht_nss;
2093                break;
2094        case IEEE80211_VHT_CHANWIDTH_160MHZ:
2095                if (supp_width == 0 &&
2096                    (ext_nss_bw == 1 || ext_nss_bw == 2))
2097                        return max_vht_nss / 2;
2098                if (supp_width == 0 &&
2099                    ext_nss_bw == 3)
2100                        return (3 * max_vht_nss) / 4;
2101                if (supp_width == 1 &&
2102                    ext_nss_bw == 3)
2103                        return 2 * max_vht_nss;
2104                break;
2105        case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
2106                if (supp_width == 0 && ext_nss_bw == 1)
2107                        return 0; /* not possible */
2108                if (supp_width == 0 &&
2109                    ext_nss_bw == 2)
2110                        return max_vht_nss / 2;
2111                if (supp_width == 0 &&
2112                    ext_nss_bw == 3)
2113                        return (3 * max_vht_nss) / 4;
2114                if (supp_width == 1 &&
2115                    ext_nss_bw == 0)
2116                        return 0; /* not possible */
2117                if (supp_width == 1 &&
2118                    ext_nss_bw == 1)
2119                        return max_vht_nss / 2;
2120                if (supp_width == 1 &&
2121                    ext_nss_bw == 2)
2122                        return (3 * max_vht_nss) / 4;
2123                break;
2124        }
2125
2126        /* not covered or invalid combination received */
2127        return max_vht_nss;
2128}
2129EXPORT_SYMBOL(ieee80211_get_vht_max_nss);
2130
2131bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
2132                             bool is_4addr, u8 check_swif)
2133
2134{
2135        bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN;
2136
2137        switch (check_swif) {
2138        case 0:
2139                if (is_vlan && is_4addr)
2140                        return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2141                return wiphy->interface_modes & BIT(iftype);
2142        case 1:
2143                if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan)
2144                        return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2145                return wiphy->software_iftypes & BIT(iftype);
2146        default:
2147                break;
2148        }
2149
2150        return false;
2151}
2152EXPORT_SYMBOL(cfg80211_iftype_allowed);
2153