linux/tools/testing/selftests/timers/freq-step.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * This test checks the response of the system clock to frequency
   4 * steps made with adjtimex(). The frequency error and stability of
   5 * the CLOCK_MONOTONIC clock relative to the CLOCK_MONOTONIC_RAW clock
   6 * is measured in two intervals following the step. The test fails if
   7 * values from the second interval exceed specified limits.
   8 *
   9 * Copyright (C) Miroslav Lichvar <mlichvar@redhat.com>  2017
  10 */
  11
  12#include <math.h>
  13#include <stdio.h>
  14#include <sys/timex.h>
  15#include <time.h>
  16#include <unistd.h>
  17
  18#include "../kselftest.h"
  19
  20#define SAMPLES 100
  21#define SAMPLE_READINGS 10
  22#define MEAN_SAMPLE_INTERVAL 0.1
  23#define STEP_INTERVAL 1.0
  24#define MAX_PRECISION 500e-9
  25#define MAX_FREQ_ERROR 0.02e-6
  26#define MAX_STDDEV 50e-9
  27
  28#ifndef ADJ_SETOFFSET
  29  #define ADJ_SETOFFSET 0x0100
  30#endif
  31
  32struct sample {
  33        double offset;
  34        double time;
  35};
  36
  37static time_t mono_raw_base;
  38static time_t mono_base;
  39static long user_hz;
  40static double precision;
  41static double mono_freq_offset;
  42
  43static double diff_timespec(struct timespec *ts1, struct timespec *ts2)
  44{
  45        return ts1->tv_sec - ts2->tv_sec + (ts1->tv_nsec - ts2->tv_nsec) / 1e9;
  46}
  47
  48static double get_sample(struct sample *sample)
  49{
  50        double delay, mindelay = 0.0;
  51        struct timespec ts1, ts2, ts3;
  52        int i;
  53
  54        for (i = 0; i < SAMPLE_READINGS; i++) {
  55                clock_gettime(CLOCK_MONOTONIC_RAW, &ts1);
  56                clock_gettime(CLOCK_MONOTONIC, &ts2);
  57                clock_gettime(CLOCK_MONOTONIC_RAW, &ts3);
  58
  59                ts1.tv_sec -= mono_raw_base;
  60                ts2.tv_sec -= mono_base;
  61                ts3.tv_sec -= mono_raw_base;
  62
  63                delay = diff_timespec(&ts3, &ts1);
  64                if (delay <= 1e-9) {
  65                        i--;
  66                        continue;
  67                }
  68
  69                if (!i || delay < mindelay) {
  70                        sample->offset = diff_timespec(&ts2, &ts1);
  71                        sample->offset -= delay / 2.0;
  72                        sample->time = ts1.tv_sec + ts1.tv_nsec / 1e9;
  73                        mindelay = delay;
  74                }
  75        }
  76
  77        return mindelay;
  78}
  79
  80static void reset_ntp_error(void)
  81{
  82        struct timex txc;
  83
  84        txc.modes = ADJ_SETOFFSET;
  85        txc.time.tv_sec = 0;
  86        txc.time.tv_usec = 0;
  87
  88        if (adjtimex(&txc) < 0) {
  89                perror("[FAIL] adjtimex");
  90                ksft_exit_fail();
  91        }
  92}
  93
  94static void set_frequency(double freq)
  95{
  96        struct timex txc;
  97        int tick_offset;
  98
  99        tick_offset = 1e6 * freq / user_hz;
 100
 101        txc.modes = ADJ_TICK | ADJ_FREQUENCY;
 102        txc.tick = 1000000 / user_hz + tick_offset;
 103        txc.freq = (1e6 * freq - user_hz * tick_offset) * (1 << 16);
 104
 105        if (adjtimex(&txc) < 0) {
 106                perror("[FAIL] adjtimex");
 107                ksft_exit_fail();
 108        }
 109}
 110
 111static void regress(struct sample *samples, int n, double *intercept,
 112                    double *slope, double *r_stddev, double *r_max)
 113{
 114        double x, y, r, x_sum, y_sum, xy_sum, x2_sum, r2_sum;
 115        int i;
 116
 117        x_sum = 0.0, y_sum = 0.0, xy_sum = 0.0, x2_sum = 0.0;
 118
 119        for (i = 0; i < n; i++) {
 120                x = samples[i].time;
 121                y = samples[i].offset;
 122
 123                x_sum += x;
 124                y_sum += y;
 125                xy_sum += x * y;
 126                x2_sum += x * x;
 127        }
 128
 129        *slope = (xy_sum - x_sum * y_sum / n) / (x2_sum - x_sum * x_sum / n);
 130        *intercept = (y_sum - *slope * x_sum) / n;
 131
 132        *r_max = 0.0, r2_sum = 0.0;
 133
 134        for (i = 0; i < n; i++) {
 135                x = samples[i].time;
 136                y = samples[i].offset;
 137                r = fabs(x * *slope + *intercept - y);
 138                if (*r_max < r)
 139                        *r_max = r;
 140                r2_sum += r * r;
 141        }
 142
 143        *r_stddev = sqrt(r2_sum / n);
 144}
 145
 146static int run_test(int calibration, double freq_base, double freq_step)
 147{
 148        struct sample samples[SAMPLES];
 149        double intercept, slope, stddev1, max1, stddev2, max2;
 150        double freq_error1, freq_error2;
 151        int i;
 152
 153        set_frequency(freq_base);
 154
 155        for (i = 0; i < 10; i++)
 156                usleep(1e6 * MEAN_SAMPLE_INTERVAL / 10);
 157
 158        reset_ntp_error();
 159
 160        set_frequency(freq_base + freq_step);
 161
 162        for (i = 0; i < 10; i++)
 163                usleep(rand() % 2000000 * STEP_INTERVAL / 10);
 164
 165        set_frequency(freq_base);
 166
 167        for (i = 0; i < SAMPLES; i++) {
 168                usleep(rand() % 2000000 * MEAN_SAMPLE_INTERVAL);
 169                get_sample(&samples[i]);
 170        }
 171
 172        if (calibration) {
 173                regress(samples, SAMPLES, &intercept, &slope, &stddev1, &max1);
 174                mono_freq_offset = slope;
 175                printf("CLOCK_MONOTONIC_RAW frequency offset: %11.3f ppm\n",
 176                       1e6 * mono_freq_offset);
 177                return 0;
 178        }
 179
 180        regress(samples, SAMPLES / 2, &intercept, &slope, &stddev1, &max1);
 181        freq_error1 = slope * (1.0 - mono_freq_offset) - mono_freq_offset -
 182                        freq_base;
 183
 184        regress(samples + SAMPLES / 2, SAMPLES / 2, &intercept, &slope,
 185                &stddev2, &max2);
 186        freq_error2 = slope * (1.0 - mono_freq_offset) - mono_freq_offset -
 187                        freq_base;
 188
 189        printf("%6.0f %+10.3f %6.0f %7.0f %+10.3f %6.0f %7.0f\t",
 190               1e6 * freq_step,
 191               1e6 * freq_error1, 1e9 * stddev1, 1e9 * max1,
 192               1e6 * freq_error2, 1e9 * stddev2, 1e9 * max2);
 193
 194        if (fabs(freq_error2) > MAX_FREQ_ERROR || stddev2 > MAX_STDDEV) {
 195                printf("[FAIL]\n");
 196                return 1;
 197        }
 198
 199        printf("[OK]\n");
 200        return 0;
 201}
 202
 203static void init_test(void)
 204{
 205        struct timespec ts;
 206        struct sample sample;
 207
 208        if (clock_gettime(CLOCK_MONOTONIC_RAW, &ts)) {
 209                perror("[FAIL] clock_gettime(CLOCK_MONOTONIC_RAW)");
 210                ksft_exit_fail();
 211        }
 212
 213        mono_raw_base = ts.tv_sec;
 214
 215        if (clock_gettime(CLOCK_MONOTONIC, &ts)) {
 216                perror("[FAIL] clock_gettime(CLOCK_MONOTONIC)");
 217                ksft_exit_fail();
 218        }
 219
 220        mono_base = ts.tv_sec;
 221
 222        user_hz = sysconf(_SC_CLK_TCK);
 223
 224        precision = get_sample(&sample) / 2.0;
 225        printf("CLOCK_MONOTONIC_RAW+CLOCK_MONOTONIC precision: %.0f ns\t\t",
 226               1e9 * precision);
 227
 228        if (precision > MAX_PRECISION)
 229                ksft_exit_skip("precision: %.0f ns > MAX_PRECISION: %.0f ns\n",
 230                                1e9 * precision, 1e9 * MAX_PRECISION);
 231
 232        printf("[OK]\n");
 233        srand(ts.tv_sec ^ ts.tv_nsec);
 234
 235        run_test(1, 0.0, 0.0);
 236}
 237
 238int main(int argc, char **argv)
 239{
 240        double freq_base, freq_step;
 241        int i, j, fails = 0;
 242
 243        init_test();
 244
 245        printf("Checking response to frequency step:\n");
 246        printf("  Step           1st interval              2nd interval\n");
 247        printf("             Freq    Dev     Max       Freq    Dev     Max\n");
 248
 249        for (i = 2; i >= 0; i--) {
 250                for (j = 0; j < 5; j++) {
 251                        freq_base = (rand() % (1 << 24) - (1 << 23)) / 65536e6;
 252                        freq_step = 10e-6 * (1 << (6 * i));
 253                        fails += run_test(0, freq_base, freq_step);
 254                }
 255        }
 256
 257        set_frequency(0.0);
 258
 259        if (fails)
 260                return ksft_exit_fail();
 261
 262        return ksft_exit_pass();
 263}
 264