linux/arch/arm/mach-vexpress/spc.c
<<
>>
Prefs
   1/*
   2 * Versatile Express Serial Power Controller (SPC) support
   3 *
   4 * Copyright (C) 2013 ARM Ltd.
   5 *
   6 * Authors: Sudeep KarkadaNagesha <sudeep.karkadanagesha@arm.com>
   7 *          Achin Gupta           <achin.gupta@arm.com>
   8 *          Lorenzo Pieralisi     <lorenzo.pieralisi@arm.com>
   9 *
  10 * This program is free software; you can redistribute it and/or modify
  11 * it under the terms of the GNU General Public License version 2 as
  12 * published by the Free Software Foundation.
  13 *
  14 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
  15 * kind, whether express or implied; without even the implied warranty
  16 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  17 * GNU General Public License for more details.
  18 */
  19
  20#include <linux/clk-provider.h>
  21#include <linux/clkdev.h>
  22#include <linux/cpu.h>
  23#include <linux/delay.h>
  24#include <linux/err.h>
  25#include <linux/interrupt.h>
  26#include <linux/io.h>
  27#include <linux/platform_device.h>
  28#include <linux/pm_opp.h>
  29#include <linux/slab.h>
  30#include <linux/semaphore.h>
  31
  32#include <asm/cacheflush.h>
  33
  34#include "spc.h"
  35
  36#define SPCLOG "vexpress-spc: "
  37
  38#define PERF_LVL_A15            0x00
  39#define PERF_REQ_A15            0x04
  40#define PERF_LVL_A7             0x08
  41#define PERF_REQ_A7             0x0c
  42#define COMMS                   0x10
  43#define COMMS_REQ               0x14
  44#define PWC_STATUS              0x18
  45#define PWC_FLAG                0x1c
  46
  47/* SPC wake-up IRQs status and mask */
  48#define WAKE_INT_MASK           0x24
  49#define WAKE_INT_RAW            0x28
  50#define WAKE_INT_STAT           0x2c
  51/* SPC power down registers */
  52#define A15_PWRDN_EN            0x30
  53#define A7_PWRDN_EN             0x34
  54/* SPC per-CPU mailboxes */
  55#define A15_BX_ADDR0            0x68
  56#define A7_BX_ADDR0             0x78
  57
  58/* SPC CPU/cluster reset statue */
  59#define STANDBYWFI_STAT         0x3c
  60#define STANDBYWFI_STAT_A15_CPU_MASK(cpu)       (1 << (cpu))
  61#define STANDBYWFI_STAT_A7_CPU_MASK(cpu)        (1 << (3 + (cpu)))
  62
  63/* SPC system config interface registers */
  64#define SYSCFG_WDATA            0x70
  65#define SYSCFG_RDATA            0x74
  66
  67/* A15/A7 OPP virtual register base */
  68#define A15_PERFVAL_BASE        0xC10
  69#define A7_PERFVAL_BASE         0xC30
  70
  71/* Config interface control bits */
  72#define SYSCFG_START            BIT(31)
  73#define SYSCFG_SCC              (6 << 20)
  74#define SYSCFG_STAT             (14 << 20)
  75
  76/* wake-up interrupt masks */
  77#define GBL_WAKEUP_INT_MSK      (0x3 << 10)
  78
  79/* TC2 static dual-cluster configuration */
  80#define MAX_CLUSTERS            2
  81
  82/*
  83 * Even though the SPC takes max 3-5 ms to complete any OPP/COMMS
  84 * operation, the operation could start just before jiffie is about
  85 * to be incremented. So setting timeout value of 20ms = 2jiffies@100Hz
  86 */
  87#define TIMEOUT_US      20000
  88
  89#define MAX_OPPS        8
  90#define CA15_DVFS       0
  91#define CA7_DVFS        1
  92#define SPC_SYS_CFG     2
  93#define STAT_COMPLETE(type)     ((1 << 0) << (type << 2))
  94#define STAT_ERR(type)          ((1 << 1) << (type << 2))
  95#define RESPONSE_MASK(type)     (STAT_COMPLETE(type) | STAT_ERR(type))
  96
  97struct ve_spc_opp {
  98        unsigned long freq;
  99        unsigned long u_volt;
 100};
 101
 102struct ve_spc_drvdata {
 103        void __iomem *baseaddr;
 104        /*
 105         * A15s cluster identifier
 106         * It corresponds to A15 processors MPIDR[15:8] bitfield
 107         */
 108        u32 a15_clusid;
 109        uint32_t cur_rsp_mask;
 110        uint32_t cur_rsp_stat;
 111        struct semaphore sem;
 112        struct completion done;
 113        struct ve_spc_opp *opps[MAX_CLUSTERS];
 114        int num_opps[MAX_CLUSTERS];
 115};
 116
 117static struct ve_spc_drvdata *info;
 118
 119static inline bool cluster_is_a15(u32 cluster)
 120{
 121        return cluster == info->a15_clusid;
 122}
 123
 124/**
 125 * ve_spc_global_wakeup_irq()
 126 *
 127 * Function to set/clear global wakeup IRQs. Not protected by locking since
 128 * it might be used in code paths where normal cacheable locks are not
 129 * working. Locking must be provided by the caller to ensure atomicity.
 130 *
 131 * @set: if true, global wake-up IRQs are set, if false they are cleared
 132 */
 133void ve_spc_global_wakeup_irq(bool set)
 134{
 135        u32 reg;
 136
 137        reg = readl_relaxed(info->baseaddr + WAKE_INT_MASK);
 138
 139        if (set)
 140                reg |= GBL_WAKEUP_INT_MSK;
 141        else
 142                reg &= ~GBL_WAKEUP_INT_MSK;
 143
 144        writel_relaxed(reg, info->baseaddr + WAKE_INT_MASK);
 145}
 146
 147/**
 148 * ve_spc_cpu_wakeup_irq()
 149 *
 150 * Function to set/clear per-CPU wake-up IRQs. Not protected by locking since
 151 * it might be used in code paths where normal cacheable locks are not
 152 * working. Locking must be provided by the caller to ensure atomicity.
 153 *
 154 * @cluster: mpidr[15:8] bitfield describing cluster affinity level
 155 * @cpu: mpidr[7:0] bitfield describing cpu affinity level
 156 * @set: if true, wake-up IRQs are set, if false they are cleared
 157 */
 158void ve_spc_cpu_wakeup_irq(u32 cluster, u32 cpu, bool set)
 159{
 160        u32 mask, reg;
 161
 162        if (cluster >= MAX_CLUSTERS)
 163                return;
 164
 165        mask = BIT(cpu);
 166
 167        if (!cluster_is_a15(cluster))
 168                mask <<= 4;
 169
 170        reg = readl_relaxed(info->baseaddr + WAKE_INT_MASK);
 171
 172        if (set)
 173                reg |= mask;
 174        else
 175                reg &= ~mask;
 176
 177        writel_relaxed(reg, info->baseaddr + WAKE_INT_MASK);
 178}
 179
 180/**
 181 * ve_spc_set_resume_addr() - set the jump address used for warm boot
 182 *
 183 * @cluster: mpidr[15:8] bitfield describing cluster affinity level
 184 * @cpu: mpidr[7:0] bitfield describing cpu affinity level
 185 * @addr: physical resume address
 186 */
 187void ve_spc_set_resume_addr(u32 cluster, u32 cpu, u32 addr)
 188{
 189        void __iomem *baseaddr;
 190
 191        if (cluster >= MAX_CLUSTERS)
 192                return;
 193
 194        if (cluster_is_a15(cluster))
 195                baseaddr = info->baseaddr + A15_BX_ADDR0 + (cpu << 2);
 196        else
 197                baseaddr = info->baseaddr + A7_BX_ADDR0 + (cpu << 2);
 198
 199        writel_relaxed(addr, baseaddr);
 200}
 201
 202/**
 203 * ve_spc_powerdown()
 204 *
 205 * Function to enable/disable cluster powerdown. Not protected by locking
 206 * since it might be used in code paths where normal cacheable locks are not
 207 * working. Locking must be provided by the caller to ensure atomicity.
 208 *
 209 * @cluster: mpidr[15:8] bitfield describing cluster affinity level
 210 * @enable: if true enables powerdown, if false disables it
 211 */
 212void ve_spc_powerdown(u32 cluster, bool enable)
 213{
 214        u32 pwdrn_reg;
 215
 216        if (cluster >= MAX_CLUSTERS)
 217                return;
 218
 219        pwdrn_reg = cluster_is_a15(cluster) ? A15_PWRDN_EN : A7_PWRDN_EN;
 220        writel_relaxed(enable, info->baseaddr + pwdrn_reg);
 221}
 222
 223static u32 standbywfi_cpu_mask(u32 cpu, u32 cluster)
 224{
 225        return cluster_is_a15(cluster) ?
 226                  STANDBYWFI_STAT_A15_CPU_MASK(cpu)
 227                : STANDBYWFI_STAT_A7_CPU_MASK(cpu);
 228}
 229
 230/**
 231 * ve_spc_cpu_in_wfi(u32 cpu, u32 cluster)
 232 *
 233 * @cpu: mpidr[7:0] bitfield describing CPU affinity level within cluster
 234 * @cluster: mpidr[15:8] bitfield describing cluster affinity level
 235 *
 236 * @return: non-zero if and only if the specified CPU is in WFI
 237 *
 238 * Take care when interpreting the result of this function: a CPU might
 239 * be in WFI temporarily due to idle, and is not necessarily safely
 240 * parked.
 241 */
 242int ve_spc_cpu_in_wfi(u32 cpu, u32 cluster)
 243{
 244        int ret;
 245        u32 mask = standbywfi_cpu_mask(cpu, cluster);
 246
 247        if (cluster >= MAX_CLUSTERS)
 248                return 1;
 249
 250        ret = readl_relaxed(info->baseaddr + STANDBYWFI_STAT);
 251
 252        pr_debug("%s: PCFGREG[0x%X] = 0x%08X, mask = 0x%X\n",
 253                 __func__, STANDBYWFI_STAT, ret, mask);
 254
 255        return ret & mask;
 256}
 257
 258static int ve_spc_get_performance(int cluster, u32 *freq)
 259{
 260        struct ve_spc_opp *opps = info->opps[cluster];
 261        u32 perf_cfg_reg = 0;
 262        u32 perf;
 263
 264        perf_cfg_reg = cluster_is_a15(cluster) ? PERF_LVL_A15 : PERF_LVL_A7;
 265
 266        perf = readl_relaxed(info->baseaddr + perf_cfg_reg);
 267        if (perf >= info->num_opps[cluster])
 268                return -EINVAL;
 269
 270        opps += perf;
 271        *freq = opps->freq;
 272
 273        return 0;
 274}
 275
 276/* find closest match to given frequency in OPP table */
 277static int ve_spc_round_performance(int cluster, u32 freq)
 278{
 279        int idx, max_opp = info->num_opps[cluster];
 280        struct ve_spc_opp *opps = info->opps[cluster];
 281        u32 fmin = 0, fmax = ~0, ftmp;
 282
 283        freq /= 1000; /* OPP entries in kHz */
 284        for (idx = 0; idx < max_opp; idx++, opps++) {
 285                ftmp = opps->freq;
 286                if (ftmp >= freq) {
 287                        if (ftmp <= fmax)
 288                                fmax = ftmp;
 289                } else {
 290                        if (ftmp >= fmin)
 291                                fmin = ftmp;
 292                }
 293        }
 294        if (fmax != ~0)
 295                return fmax * 1000;
 296        else
 297                return fmin * 1000;
 298}
 299
 300static int ve_spc_find_performance_index(int cluster, u32 freq)
 301{
 302        int idx, max_opp = info->num_opps[cluster];
 303        struct ve_spc_opp *opps = info->opps[cluster];
 304
 305        for (idx = 0; idx < max_opp; idx++, opps++)
 306                if (opps->freq == freq)
 307                        break;
 308        return (idx == max_opp) ? -EINVAL : idx;
 309}
 310
 311static int ve_spc_waitforcompletion(int req_type)
 312{
 313        int ret = wait_for_completion_interruptible_timeout(
 314                        &info->done, usecs_to_jiffies(TIMEOUT_US));
 315        if (ret == 0)
 316                ret = -ETIMEDOUT;
 317        else if (ret > 0)
 318                ret = info->cur_rsp_stat & STAT_COMPLETE(req_type) ? 0 : -EIO;
 319        return ret;
 320}
 321
 322static int ve_spc_set_performance(int cluster, u32 freq)
 323{
 324        u32 perf_cfg_reg;
 325        int ret, perf, req_type;
 326
 327        if (cluster_is_a15(cluster)) {
 328                req_type = CA15_DVFS;
 329                perf_cfg_reg = PERF_LVL_A15;
 330        } else {
 331                req_type = CA7_DVFS;
 332                perf_cfg_reg = PERF_LVL_A7;
 333        }
 334
 335        perf = ve_spc_find_performance_index(cluster, freq);
 336
 337        if (perf < 0)
 338                return perf;
 339
 340        if (down_timeout(&info->sem, usecs_to_jiffies(TIMEOUT_US)))
 341                return -ETIME;
 342
 343        init_completion(&info->done);
 344        info->cur_rsp_mask = RESPONSE_MASK(req_type);
 345
 346        writel(perf, info->baseaddr + perf_cfg_reg);
 347        ret = ve_spc_waitforcompletion(req_type);
 348
 349        info->cur_rsp_mask = 0;
 350        up(&info->sem);
 351
 352        return ret;
 353}
 354
 355static int ve_spc_read_sys_cfg(int func, int offset, uint32_t *data)
 356{
 357        int ret;
 358
 359        if (down_timeout(&info->sem, usecs_to_jiffies(TIMEOUT_US)))
 360                return -ETIME;
 361
 362        init_completion(&info->done);
 363        info->cur_rsp_mask = RESPONSE_MASK(SPC_SYS_CFG);
 364
 365        /* Set the control value */
 366        writel(SYSCFG_START | func | offset >> 2, info->baseaddr + COMMS);
 367        ret = ve_spc_waitforcompletion(SPC_SYS_CFG);
 368
 369        if (ret == 0)
 370                *data = readl(info->baseaddr + SYSCFG_RDATA);
 371
 372        info->cur_rsp_mask = 0;
 373        up(&info->sem);
 374
 375        return ret;
 376}
 377
 378static irqreturn_t ve_spc_irq_handler(int irq, void *data)
 379{
 380        struct ve_spc_drvdata *drv_data = data;
 381        uint32_t status = readl_relaxed(drv_data->baseaddr + PWC_STATUS);
 382
 383        if (info->cur_rsp_mask & status) {
 384                info->cur_rsp_stat = status;
 385                complete(&drv_data->done);
 386        }
 387
 388        return IRQ_HANDLED;
 389}
 390
 391/*
 392 *  +--------------------------+
 393 *  | 31      20 | 19        0 |
 394 *  +--------------------------+
 395 *  |   m_volt   |  freq(kHz)  |
 396 *  +--------------------------+
 397 */
 398#define MULT_FACTOR     20
 399#define VOLT_SHIFT      20
 400#define FREQ_MASK       (0xFFFFF)
 401static int ve_spc_populate_opps(uint32_t cluster)
 402{
 403        uint32_t data = 0, off, ret, idx;
 404        struct ve_spc_opp *opps;
 405
 406        opps = kcalloc(MAX_OPPS, sizeof(*opps), GFP_KERNEL);
 407        if (!opps)
 408                return -ENOMEM;
 409
 410        info->opps[cluster] = opps;
 411
 412        off = cluster_is_a15(cluster) ? A15_PERFVAL_BASE : A7_PERFVAL_BASE;
 413        for (idx = 0; idx < MAX_OPPS; idx++, off += 4, opps++) {
 414                ret = ve_spc_read_sys_cfg(SYSCFG_SCC, off, &data);
 415                if (!ret) {
 416                        opps->freq = (data & FREQ_MASK) * MULT_FACTOR;
 417                        opps->u_volt = (data >> VOLT_SHIFT) * 1000;
 418                } else {
 419                        break;
 420                }
 421        }
 422        info->num_opps[cluster] = idx;
 423
 424        return ret;
 425}
 426
 427static int ve_init_opp_table(struct device *cpu_dev)
 428{
 429        int cluster;
 430        int idx, ret = 0, max_opp;
 431        struct ve_spc_opp *opps;
 432
 433        cluster = topology_physical_package_id(cpu_dev->id);
 434        cluster = cluster < 0 ? 0 : cluster;
 435
 436        max_opp = info->num_opps[cluster];
 437        opps = info->opps[cluster];
 438
 439        for (idx = 0; idx < max_opp; idx++, opps++) {
 440                ret = dev_pm_opp_add(cpu_dev, opps->freq * 1000, opps->u_volt);
 441                if (ret) {
 442                        dev_warn(cpu_dev, "failed to add opp %lu %lu\n",
 443                                 opps->freq, opps->u_volt);
 444                        return ret;
 445                }
 446        }
 447        return ret;
 448}
 449
 450int __init ve_spc_init(void __iomem *baseaddr, u32 a15_clusid, int irq)
 451{
 452        int ret;
 453        info = kzalloc(sizeof(*info), GFP_KERNEL);
 454        if (!info)
 455                return -ENOMEM;
 456
 457        info->baseaddr = baseaddr;
 458        info->a15_clusid = a15_clusid;
 459
 460        if (irq <= 0) {
 461                pr_err(SPCLOG "Invalid IRQ %d\n", irq);
 462                kfree(info);
 463                return -EINVAL;
 464        }
 465
 466        init_completion(&info->done);
 467
 468        readl_relaxed(info->baseaddr + PWC_STATUS);
 469
 470        ret = request_irq(irq, ve_spc_irq_handler, IRQF_TRIGGER_HIGH
 471                                | IRQF_ONESHOT, "vexpress-spc", info);
 472        if (ret) {
 473                pr_err(SPCLOG "IRQ %d request failed\n", irq);
 474                kfree(info);
 475                return -ENODEV;
 476        }
 477
 478        sema_init(&info->sem, 1);
 479        /*
 480         * Multi-cluster systems may need this data when non-coherent, during
 481         * cluster power-up/power-down. Make sure driver info reaches main
 482         * memory.
 483         */
 484        sync_cache_w(info);
 485        sync_cache_w(&info);
 486
 487        return 0;
 488}
 489
 490struct clk_spc {
 491        struct clk_hw hw;
 492        int cluster;
 493};
 494
 495#define to_clk_spc(spc) container_of(spc, struct clk_spc, hw)
 496static unsigned long spc_recalc_rate(struct clk_hw *hw,
 497                unsigned long parent_rate)
 498{
 499        struct clk_spc *spc = to_clk_spc(hw);
 500        u32 freq;
 501
 502        if (ve_spc_get_performance(spc->cluster, &freq))
 503                return -EIO;
 504
 505        return freq * 1000;
 506}
 507
 508static long spc_round_rate(struct clk_hw *hw, unsigned long drate,
 509                unsigned long *parent_rate)
 510{
 511        struct clk_spc *spc = to_clk_spc(hw);
 512
 513        return ve_spc_round_performance(spc->cluster, drate);
 514}
 515
 516static int spc_set_rate(struct clk_hw *hw, unsigned long rate,
 517                unsigned long parent_rate)
 518{
 519        struct clk_spc *spc = to_clk_spc(hw);
 520
 521        return ve_spc_set_performance(spc->cluster, rate / 1000);
 522}
 523
 524static struct clk_ops clk_spc_ops = {
 525        .recalc_rate = spc_recalc_rate,
 526        .round_rate = spc_round_rate,
 527        .set_rate = spc_set_rate,
 528};
 529
 530static struct clk *ve_spc_clk_register(struct device *cpu_dev)
 531{
 532        struct clk_init_data init;
 533        struct clk_spc *spc;
 534
 535        spc = kzalloc(sizeof(*spc), GFP_KERNEL);
 536        if (!spc)
 537                return ERR_PTR(-ENOMEM);
 538
 539        spc->hw.init = &init;
 540        spc->cluster = topology_physical_package_id(cpu_dev->id);
 541
 542        spc->cluster = spc->cluster < 0 ? 0 : spc->cluster;
 543
 544        init.name = dev_name(cpu_dev);
 545        init.ops = &clk_spc_ops;
 546        init.flags = CLK_GET_RATE_NOCACHE;
 547        init.num_parents = 0;
 548
 549        return devm_clk_register(cpu_dev, &spc->hw);
 550}
 551
 552static int __init ve_spc_clk_init(void)
 553{
 554        int cpu, cluster;
 555        struct clk *clk;
 556        bool init_opp_table[MAX_CLUSTERS] = { false };
 557
 558        if (!info)
 559                return 0; /* Continue only if SPC is initialised */
 560
 561        if (ve_spc_populate_opps(0) || ve_spc_populate_opps(1)) {
 562                pr_err("failed to build OPP table\n");
 563                return -ENODEV;
 564        }
 565
 566        for_each_possible_cpu(cpu) {
 567                struct device *cpu_dev = get_cpu_device(cpu);
 568                if (!cpu_dev) {
 569                        pr_warn("failed to get cpu%d device\n", cpu);
 570                        continue;
 571                }
 572                clk = ve_spc_clk_register(cpu_dev);
 573                if (IS_ERR(clk)) {
 574                        pr_warn("failed to register cpu%d clock\n", cpu);
 575                        continue;
 576                }
 577                if (clk_register_clkdev(clk, NULL, dev_name(cpu_dev))) {
 578                        pr_warn("failed to register cpu%d clock lookup\n", cpu);
 579                        continue;
 580                }
 581
 582                cluster = topology_physical_package_id(cpu_dev->id);
 583                if (init_opp_table[cluster])
 584                        continue;
 585
 586                if (ve_init_opp_table(cpu_dev))
 587                        pr_warn("failed to initialise cpu%d opp table\n", cpu);
 588                else if (dev_pm_opp_set_sharing_cpus(cpu_dev,
 589                         topology_core_cpumask(cpu_dev->id)))
 590                        pr_warn("failed to mark OPPs shared for cpu%d\n", cpu);
 591                else
 592                        init_opp_table[cluster] = true;
 593        }
 594
 595        platform_device_register_simple("vexpress-spc-cpufreq", -1, NULL, 0);
 596        return 0;
 597}
 598device_initcall(ve_spc_clk_init);
 599