linux/arch/mips/kvm/mmu.c
<<
>>
Prefs
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * KVM/MIPS MMU handling in the KVM module.
   7 *
   8 * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
   9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
  10 */
  11
  12#include <linux/highmem.h>
  13#include <linux/kvm_host.h>
  14#include <linux/uaccess.h>
  15#include <asm/mmu_context.h>
  16#include <asm/pgalloc.h>
  17
  18/*
  19 * KVM_MMU_CACHE_MIN_PAGES is the number of GPA page table translation levels
  20 * for which pages need to be cached.
  21 */
  22#if defined(__PAGETABLE_PMD_FOLDED)
  23#define KVM_MMU_CACHE_MIN_PAGES 1
  24#else
  25#define KVM_MMU_CACHE_MIN_PAGES 2
  26#endif
  27
  28static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  29                                  int min, int max)
  30{
  31        void *page;
  32
  33        BUG_ON(max > KVM_NR_MEM_OBJS);
  34        if (cache->nobjs >= min)
  35                return 0;
  36        while (cache->nobjs < max) {
  37                page = (void *)__get_free_page(GFP_KERNEL);
  38                if (!page)
  39                        return -ENOMEM;
  40                cache->objects[cache->nobjs++] = page;
  41        }
  42        return 0;
  43}
  44
  45static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
  46{
  47        while (mc->nobjs)
  48                free_page((unsigned long)mc->objects[--mc->nobjs]);
  49}
  50
  51static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
  52{
  53        void *p;
  54
  55        BUG_ON(!mc || !mc->nobjs);
  56        p = mc->objects[--mc->nobjs];
  57        return p;
  58}
  59
  60void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  61{
  62        mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
  63}
  64
  65/**
  66 * kvm_pgd_init() - Initialise KVM GPA page directory.
  67 * @page:       Pointer to page directory (PGD) for KVM GPA.
  68 *
  69 * Initialise a KVM GPA page directory with pointers to the invalid table, i.e.
  70 * representing no mappings. This is similar to pgd_init(), however it
  71 * initialises all the page directory pointers, not just the ones corresponding
  72 * to the userland address space (since it is for the guest physical address
  73 * space rather than a virtual address space).
  74 */
  75static void kvm_pgd_init(void *page)
  76{
  77        unsigned long *p, *end;
  78        unsigned long entry;
  79
  80#ifdef __PAGETABLE_PMD_FOLDED
  81        entry = (unsigned long)invalid_pte_table;
  82#else
  83        entry = (unsigned long)invalid_pmd_table;
  84#endif
  85
  86        p = (unsigned long *)page;
  87        end = p + PTRS_PER_PGD;
  88
  89        do {
  90                p[0] = entry;
  91                p[1] = entry;
  92                p[2] = entry;
  93                p[3] = entry;
  94                p[4] = entry;
  95                p += 8;
  96                p[-3] = entry;
  97                p[-2] = entry;
  98                p[-1] = entry;
  99        } while (p != end);
 100}
 101
 102/**
 103 * kvm_pgd_alloc() - Allocate and initialise a KVM GPA page directory.
 104 *
 105 * Allocate a blank KVM GPA page directory (PGD) for representing guest physical
 106 * to host physical page mappings.
 107 *
 108 * Returns:     Pointer to new KVM GPA page directory.
 109 *              NULL on allocation failure.
 110 */
 111pgd_t *kvm_pgd_alloc(void)
 112{
 113        pgd_t *ret;
 114
 115        ret = (pgd_t *)__get_free_pages(GFP_KERNEL, PGD_ORDER);
 116        if (ret)
 117                kvm_pgd_init(ret);
 118
 119        return ret;
 120}
 121
 122/**
 123 * kvm_mips_walk_pgd() - Walk page table with optional allocation.
 124 * @pgd:        Page directory pointer.
 125 * @addr:       Address to index page table using.
 126 * @cache:      MMU page cache to allocate new page tables from, or NULL.
 127 *
 128 * Walk the page tables pointed to by @pgd to find the PTE corresponding to the
 129 * address @addr. If page tables don't exist for @addr, they will be created
 130 * from the MMU cache if @cache is not NULL.
 131 *
 132 * Returns:     Pointer to pte_t corresponding to @addr.
 133 *              NULL if a page table doesn't exist for @addr and !@cache.
 134 *              NULL if a page table allocation failed.
 135 */
 136static pte_t *kvm_mips_walk_pgd(pgd_t *pgd, struct kvm_mmu_memory_cache *cache,
 137                                unsigned long addr)
 138{
 139        p4d_t *p4d;
 140        pud_t *pud;
 141        pmd_t *pmd;
 142
 143        pgd += pgd_index(addr);
 144        if (pgd_none(*pgd)) {
 145                /* Not used on MIPS yet */
 146                BUG();
 147                return NULL;
 148        }
 149        p4d = p4d_offset(pgd, addr);
 150        pud = pud_offset(p4d, addr);
 151        if (pud_none(*pud)) {
 152                pmd_t *new_pmd;
 153
 154                if (!cache)
 155                        return NULL;
 156                new_pmd = mmu_memory_cache_alloc(cache);
 157                pmd_init((unsigned long)new_pmd,
 158                         (unsigned long)invalid_pte_table);
 159                pud_populate(NULL, pud, new_pmd);
 160        }
 161        pmd = pmd_offset(pud, addr);
 162        if (pmd_none(*pmd)) {
 163                pte_t *new_pte;
 164
 165                if (!cache)
 166                        return NULL;
 167                new_pte = mmu_memory_cache_alloc(cache);
 168                clear_page(new_pte);
 169                pmd_populate_kernel(NULL, pmd, new_pte);
 170        }
 171        return pte_offset(pmd, addr);
 172}
 173
 174/* Caller must hold kvm->mm_lock */
 175static pte_t *kvm_mips_pte_for_gpa(struct kvm *kvm,
 176                                   struct kvm_mmu_memory_cache *cache,
 177                                   unsigned long addr)
 178{
 179        return kvm_mips_walk_pgd(kvm->arch.gpa_mm.pgd, cache, addr);
 180}
 181
 182/*
 183 * kvm_mips_flush_gpa_{pte,pmd,pud,pgd,pt}.
 184 * Flush a range of guest physical address space from the VM's GPA page tables.
 185 */
 186
 187static bool kvm_mips_flush_gpa_pte(pte_t *pte, unsigned long start_gpa,
 188                                   unsigned long end_gpa)
 189{
 190        int i_min = __pte_offset(start_gpa);
 191        int i_max = __pte_offset(end_gpa);
 192        bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PTE - 1);
 193        int i;
 194
 195        for (i = i_min; i <= i_max; ++i) {
 196                if (!pte_present(pte[i]))
 197                        continue;
 198
 199                set_pte(pte + i, __pte(0));
 200        }
 201        return safe_to_remove;
 202}
 203
 204static bool kvm_mips_flush_gpa_pmd(pmd_t *pmd, unsigned long start_gpa,
 205                                   unsigned long end_gpa)
 206{
 207        pte_t *pte;
 208        unsigned long end = ~0ul;
 209        int i_min = pmd_index(start_gpa);
 210        int i_max = pmd_index(end_gpa);
 211        bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PMD - 1);
 212        int i;
 213
 214        for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
 215                if (!pmd_present(pmd[i]))
 216                        continue;
 217
 218                pte = pte_offset(pmd + i, 0);
 219                if (i == i_max)
 220                        end = end_gpa;
 221
 222                if (kvm_mips_flush_gpa_pte(pte, start_gpa, end)) {
 223                        pmd_clear(pmd + i);
 224                        pte_free_kernel(NULL, pte);
 225                } else {
 226                        safe_to_remove = false;
 227                }
 228        }
 229        return safe_to_remove;
 230}
 231
 232static bool kvm_mips_flush_gpa_pud(pud_t *pud, unsigned long start_gpa,
 233                                   unsigned long end_gpa)
 234{
 235        pmd_t *pmd;
 236        unsigned long end = ~0ul;
 237        int i_min = pud_index(start_gpa);
 238        int i_max = pud_index(end_gpa);
 239        bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PUD - 1);
 240        int i;
 241
 242        for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
 243                if (!pud_present(pud[i]))
 244                        continue;
 245
 246                pmd = pmd_offset(pud + i, 0);
 247                if (i == i_max)
 248                        end = end_gpa;
 249
 250                if (kvm_mips_flush_gpa_pmd(pmd, start_gpa, end)) {
 251                        pud_clear(pud + i);
 252                        pmd_free(NULL, pmd);
 253                } else {
 254                        safe_to_remove = false;
 255                }
 256        }
 257        return safe_to_remove;
 258}
 259
 260static bool kvm_mips_flush_gpa_pgd(pgd_t *pgd, unsigned long start_gpa,
 261                                   unsigned long end_gpa)
 262{
 263        p4d_t *p4d;
 264        pud_t *pud;
 265        unsigned long end = ~0ul;
 266        int i_min = pgd_index(start_gpa);
 267        int i_max = pgd_index(end_gpa);
 268        bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PGD - 1);
 269        int i;
 270
 271        for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
 272                if (!pgd_present(pgd[i]))
 273                        continue;
 274
 275                p4d = p4d_offset(pgd, 0);
 276                pud = pud_offset(p4d + i, 0);
 277                if (i == i_max)
 278                        end = end_gpa;
 279
 280                if (kvm_mips_flush_gpa_pud(pud, start_gpa, end)) {
 281                        pgd_clear(pgd + i);
 282                        pud_free(NULL, pud);
 283                } else {
 284                        safe_to_remove = false;
 285                }
 286        }
 287        return safe_to_remove;
 288}
 289
 290/**
 291 * kvm_mips_flush_gpa_pt() - Flush a range of guest physical addresses.
 292 * @kvm:        KVM pointer.
 293 * @start_gfn:  Guest frame number of first page in GPA range to flush.
 294 * @end_gfn:    Guest frame number of last page in GPA range to flush.
 295 *
 296 * Flushes a range of GPA mappings from the GPA page tables.
 297 *
 298 * The caller must hold the @kvm->mmu_lock spinlock.
 299 *
 300 * Returns:     Whether its safe to remove the top level page directory because
 301 *              all lower levels have been removed.
 302 */
 303bool kvm_mips_flush_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn)
 304{
 305        return kvm_mips_flush_gpa_pgd(kvm->arch.gpa_mm.pgd,
 306                                      start_gfn << PAGE_SHIFT,
 307                                      end_gfn << PAGE_SHIFT);
 308}
 309
 310#define BUILD_PTE_RANGE_OP(name, op)                                    \
 311static int kvm_mips_##name##_pte(pte_t *pte, unsigned long start,       \
 312                                 unsigned long end)                     \
 313{                                                                       \
 314        int ret = 0;                                                    \
 315        int i_min = __pte_offset(start);                                \
 316        int i_max = __pte_offset(end);                                  \
 317        int i;                                                          \
 318        pte_t old, new;                                                 \
 319                                                                        \
 320        for (i = i_min; i <= i_max; ++i) {                              \
 321                if (!pte_present(pte[i]))                               \
 322                        continue;                                       \
 323                                                                        \
 324                old = pte[i];                                           \
 325                new = op(old);                                          \
 326                if (pte_val(new) == pte_val(old))                       \
 327                        continue;                                       \
 328                set_pte(pte + i, new);                                  \
 329                ret = 1;                                                \
 330        }                                                               \
 331        return ret;                                                     \
 332}                                                                       \
 333                                                                        \
 334/* returns true if anything was done */                                 \
 335static int kvm_mips_##name##_pmd(pmd_t *pmd, unsigned long start,       \
 336                                 unsigned long end)                     \
 337{                                                                       \
 338        int ret = 0;                                                    \
 339        pte_t *pte;                                                     \
 340        unsigned long cur_end = ~0ul;                                   \
 341        int i_min = pmd_index(start);                           \
 342        int i_max = pmd_index(end);                                     \
 343        int i;                                                          \
 344                                                                        \
 345        for (i = i_min; i <= i_max; ++i, start = 0) {                   \
 346                if (!pmd_present(pmd[i]))                               \
 347                        continue;                                       \
 348                                                                        \
 349                pte = pte_offset(pmd + i, 0);                           \
 350                if (i == i_max)                                         \
 351                        cur_end = end;                                  \
 352                                                                        \
 353                ret |= kvm_mips_##name##_pte(pte, start, cur_end);      \
 354        }                                                               \
 355        return ret;                                                     \
 356}                                                                       \
 357                                                                        \
 358static int kvm_mips_##name##_pud(pud_t *pud, unsigned long start,       \
 359                                 unsigned long end)                     \
 360{                                                                       \
 361        int ret = 0;                                                    \
 362        pmd_t *pmd;                                                     \
 363        unsigned long cur_end = ~0ul;                                   \
 364        int i_min = pud_index(start);                           \
 365        int i_max = pud_index(end);                                     \
 366        int i;                                                          \
 367                                                                        \
 368        for (i = i_min; i <= i_max; ++i, start = 0) {                   \
 369                if (!pud_present(pud[i]))                               \
 370                        continue;                                       \
 371                                                                        \
 372                pmd = pmd_offset(pud + i, 0);                           \
 373                if (i == i_max)                                         \
 374                        cur_end = end;                                  \
 375                                                                        \
 376                ret |= kvm_mips_##name##_pmd(pmd, start, cur_end);      \
 377        }                                                               \
 378        return ret;                                                     \
 379}                                                                       \
 380                                                                        \
 381static int kvm_mips_##name##_pgd(pgd_t *pgd, unsigned long start,       \
 382                                 unsigned long end)                     \
 383{                                                                       \
 384        int ret = 0;                                                    \
 385        p4d_t *p4d;                                                     \
 386        pud_t *pud;                                                     \
 387        unsigned long cur_end = ~0ul;                                   \
 388        int i_min = pgd_index(start);                                   \
 389        int i_max = pgd_index(end);                                     \
 390        int i;                                                          \
 391                                                                        \
 392        for (i = i_min; i <= i_max; ++i, start = 0) {                   \
 393                if (!pgd_present(pgd[i]))                               \
 394                        continue;                                       \
 395                                                                        \
 396                p4d = p4d_offset(pgd, 0);                               \
 397                pud = pud_offset(p4d + i, 0);                           \
 398                if (i == i_max)                                         \
 399                        cur_end = end;                                  \
 400                                                                        \
 401                ret |= kvm_mips_##name##_pud(pud, start, cur_end);      \
 402        }                                                               \
 403        return ret;                                                     \
 404}
 405
 406/*
 407 * kvm_mips_mkclean_gpa_pt.
 408 * Mark a range of guest physical address space clean (writes fault) in the VM's
 409 * GPA page table to allow dirty page tracking.
 410 */
 411
 412BUILD_PTE_RANGE_OP(mkclean, pte_mkclean)
 413
 414/**
 415 * kvm_mips_mkclean_gpa_pt() - Make a range of guest physical addresses clean.
 416 * @kvm:        KVM pointer.
 417 * @start_gfn:  Guest frame number of first page in GPA range to flush.
 418 * @end_gfn:    Guest frame number of last page in GPA range to flush.
 419 *
 420 * Make a range of GPA mappings clean so that guest writes will fault and
 421 * trigger dirty page logging.
 422 *
 423 * The caller must hold the @kvm->mmu_lock spinlock.
 424 *
 425 * Returns:     Whether any GPA mappings were modified, which would require
 426 *              derived mappings (GVA page tables & TLB enties) to be
 427 *              invalidated.
 428 */
 429int kvm_mips_mkclean_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn)
 430{
 431        return kvm_mips_mkclean_pgd(kvm->arch.gpa_mm.pgd,
 432                                    start_gfn << PAGE_SHIFT,
 433                                    end_gfn << PAGE_SHIFT);
 434}
 435
 436/**
 437 * kvm_arch_mmu_enable_log_dirty_pt_masked() - write protect dirty pages
 438 * @kvm:        The KVM pointer
 439 * @slot:       The memory slot associated with mask
 440 * @gfn_offset: The gfn offset in memory slot
 441 * @mask:       The mask of dirty pages at offset 'gfn_offset' in this memory
 442 *              slot to be write protected
 443 *
 444 * Walks bits set in mask write protects the associated pte's. Caller must
 445 * acquire @kvm->mmu_lock.
 446 */
 447void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
 448                struct kvm_memory_slot *slot,
 449                gfn_t gfn_offset, unsigned long mask)
 450{
 451        gfn_t base_gfn = slot->base_gfn + gfn_offset;
 452        gfn_t start = base_gfn +  __ffs(mask);
 453        gfn_t end = base_gfn + __fls(mask);
 454
 455        kvm_mips_mkclean_gpa_pt(kvm, start, end);
 456}
 457
 458/*
 459 * kvm_mips_mkold_gpa_pt.
 460 * Mark a range of guest physical address space old (all accesses fault) in the
 461 * VM's GPA page table to allow detection of commonly used pages.
 462 */
 463
 464BUILD_PTE_RANGE_OP(mkold, pte_mkold)
 465
 466static int kvm_mips_mkold_gpa_pt(struct kvm *kvm, gfn_t start_gfn,
 467                                 gfn_t end_gfn)
 468{
 469        return kvm_mips_mkold_pgd(kvm->arch.gpa_mm.pgd,
 470                                  start_gfn << PAGE_SHIFT,
 471                                  end_gfn << PAGE_SHIFT);
 472}
 473
 474static int handle_hva_to_gpa(struct kvm *kvm,
 475                             unsigned long start,
 476                             unsigned long end,
 477                             int (*handler)(struct kvm *kvm, gfn_t gfn,
 478                                            gpa_t gfn_end,
 479                                            struct kvm_memory_slot *memslot,
 480                                            void *data),
 481                             void *data)
 482{
 483        struct kvm_memslots *slots;
 484        struct kvm_memory_slot *memslot;
 485        int ret = 0;
 486
 487        slots = kvm_memslots(kvm);
 488
 489        /* we only care about the pages that the guest sees */
 490        kvm_for_each_memslot(memslot, slots) {
 491                unsigned long hva_start, hva_end;
 492                gfn_t gfn, gfn_end;
 493
 494                hva_start = max(start, memslot->userspace_addr);
 495                hva_end = min(end, memslot->userspace_addr +
 496                                        (memslot->npages << PAGE_SHIFT));
 497                if (hva_start >= hva_end)
 498                        continue;
 499
 500                /*
 501                 * {gfn(page) | page intersects with [hva_start, hva_end)} =
 502                 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
 503                 */
 504                gfn = hva_to_gfn_memslot(hva_start, memslot);
 505                gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
 506
 507                ret |= handler(kvm, gfn, gfn_end, memslot, data);
 508        }
 509
 510        return ret;
 511}
 512
 513
 514static int kvm_unmap_hva_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end,
 515                                 struct kvm_memory_slot *memslot, void *data)
 516{
 517        kvm_mips_flush_gpa_pt(kvm, gfn, gfn_end);
 518        return 1;
 519}
 520
 521int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
 522{
 523        handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
 524
 525        kvm_mips_callbacks->flush_shadow_all(kvm);
 526        return 0;
 527}
 528
 529static int kvm_set_spte_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end,
 530                                struct kvm_memory_slot *memslot, void *data)
 531{
 532        gpa_t gpa = gfn << PAGE_SHIFT;
 533        pte_t hva_pte = *(pte_t *)data;
 534        pte_t *gpa_pte = kvm_mips_pte_for_gpa(kvm, NULL, gpa);
 535        pte_t old_pte;
 536
 537        if (!gpa_pte)
 538                return 0;
 539
 540        /* Mapping may need adjusting depending on memslot flags */
 541        old_pte = *gpa_pte;
 542        if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES && !pte_dirty(old_pte))
 543                hva_pte = pte_mkclean(hva_pte);
 544        else if (memslot->flags & KVM_MEM_READONLY)
 545                hva_pte = pte_wrprotect(hva_pte);
 546
 547        set_pte(gpa_pte, hva_pte);
 548
 549        /* Replacing an absent or old page doesn't need flushes */
 550        if (!pte_present(old_pte) || !pte_young(old_pte))
 551                return 0;
 552
 553        /* Pages swapped, aged, moved, or cleaned require flushes */
 554        return !pte_present(hva_pte) ||
 555               !pte_young(hva_pte) ||
 556               pte_pfn(old_pte) != pte_pfn(hva_pte) ||
 557               (pte_dirty(old_pte) && !pte_dirty(hva_pte));
 558}
 559
 560int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
 561{
 562        unsigned long end = hva + PAGE_SIZE;
 563        int ret;
 564
 565        ret = handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &pte);
 566        if (ret)
 567                kvm_mips_callbacks->flush_shadow_all(kvm);
 568        return 0;
 569}
 570
 571static int kvm_age_hva_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end,
 572                               struct kvm_memory_slot *memslot, void *data)
 573{
 574        return kvm_mips_mkold_gpa_pt(kvm, gfn, gfn_end);
 575}
 576
 577static int kvm_test_age_hva_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end,
 578                                    struct kvm_memory_slot *memslot, void *data)
 579{
 580        gpa_t gpa = gfn << PAGE_SHIFT;
 581        pte_t *gpa_pte = kvm_mips_pte_for_gpa(kvm, NULL, gpa);
 582
 583        if (!gpa_pte)
 584                return 0;
 585        return pte_young(*gpa_pte);
 586}
 587
 588int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
 589{
 590        return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
 591}
 592
 593int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
 594{
 595        return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL);
 596}
 597
 598/**
 599 * _kvm_mips_map_page_fast() - Fast path GPA fault handler.
 600 * @vcpu:               VCPU pointer.
 601 * @gpa:                Guest physical address of fault.
 602 * @write_fault:        Whether the fault was due to a write.
 603 * @out_entry:          New PTE for @gpa (written on success unless NULL).
 604 * @out_buddy:          New PTE for @gpa's buddy (written on success unless
 605 *                      NULL).
 606 *
 607 * Perform fast path GPA fault handling, doing all that can be done without
 608 * calling into KVM. This handles marking old pages young (for idle page
 609 * tracking), and dirtying of clean pages (for dirty page logging).
 610 *
 611 * Returns:     0 on success, in which case we can update derived mappings and
 612 *              resume guest execution.
 613 *              -EFAULT on failure due to absent GPA mapping or write to
 614 *              read-only page, in which case KVM must be consulted.
 615 */
 616static int _kvm_mips_map_page_fast(struct kvm_vcpu *vcpu, unsigned long gpa,
 617                                   bool write_fault,
 618                                   pte_t *out_entry, pte_t *out_buddy)
 619{
 620        struct kvm *kvm = vcpu->kvm;
 621        gfn_t gfn = gpa >> PAGE_SHIFT;
 622        pte_t *ptep;
 623        kvm_pfn_t pfn = 0;      /* silence bogus GCC warning */
 624        bool pfn_valid = false;
 625        int ret = 0;
 626
 627        spin_lock(&kvm->mmu_lock);
 628
 629        /* Fast path - just check GPA page table for an existing entry */
 630        ptep = kvm_mips_pte_for_gpa(kvm, NULL, gpa);
 631        if (!ptep || !pte_present(*ptep)) {
 632                ret = -EFAULT;
 633                goto out;
 634        }
 635
 636        /* Track access to pages marked old */
 637        if (!pte_young(*ptep)) {
 638                set_pte(ptep, pte_mkyoung(*ptep));
 639                pfn = pte_pfn(*ptep);
 640                pfn_valid = true;
 641                /* call kvm_set_pfn_accessed() after unlock */
 642        }
 643        if (write_fault && !pte_dirty(*ptep)) {
 644                if (!pte_write(*ptep)) {
 645                        ret = -EFAULT;
 646                        goto out;
 647                }
 648
 649                /* Track dirtying of writeable pages */
 650                set_pte(ptep, pte_mkdirty(*ptep));
 651                pfn = pte_pfn(*ptep);
 652                mark_page_dirty(kvm, gfn);
 653                kvm_set_pfn_dirty(pfn);
 654        }
 655
 656        if (out_entry)
 657                *out_entry = *ptep;
 658        if (out_buddy)
 659                *out_buddy = *ptep_buddy(ptep);
 660
 661out:
 662        spin_unlock(&kvm->mmu_lock);
 663        if (pfn_valid)
 664                kvm_set_pfn_accessed(pfn);
 665        return ret;
 666}
 667
 668/**
 669 * kvm_mips_map_page() - Map a guest physical page.
 670 * @vcpu:               VCPU pointer.
 671 * @gpa:                Guest physical address of fault.
 672 * @write_fault:        Whether the fault was due to a write.
 673 * @out_entry:          New PTE for @gpa (written on success unless NULL).
 674 * @out_buddy:          New PTE for @gpa's buddy (written on success unless
 675 *                      NULL).
 676 *
 677 * Handle GPA faults by creating a new GPA mapping (or updating an existing
 678 * one).
 679 *
 680 * This takes care of marking pages young or dirty (idle/dirty page tracking),
 681 * asking KVM for the corresponding PFN, and creating a mapping in the GPA page
 682 * tables. Derived mappings (GVA page tables and TLBs) must be handled by the
 683 * caller.
 684 *
 685 * Returns:     0 on success, in which case the caller may use the @out_entry
 686 *              and @out_buddy PTEs to update derived mappings and resume guest
 687 *              execution.
 688 *              -EFAULT if there is no memory region at @gpa or a write was
 689 *              attempted to a read-only memory region. This is usually handled
 690 *              as an MMIO access.
 691 */
 692static int kvm_mips_map_page(struct kvm_vcpu *vcpu, unsigned long gpa,
 693                             bool write_fault,
 694                             pte_t *out_entry, pte_t *out_buddy)
 695{
 696        struct kvm *kvm = vcpu->kvm;
 697        struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
 698        gfn_t gfn = gpa >> PAGE_SHIFT;
 699        int srcu_idx, err;
 700        kvm_pfn_t pfn;
 701        pte_t *ptep, entry, old_pte;
 702        bool writeable;
 703        unsigned long prot_bits;
 704        unsigned long mmu_seq;
 705
 706        /* Try the fast path to handle old / clean pages */
 707        srcu_idx = srcu_read_lock(&kvm->srcu);
 708        err = _kvm_mips_map_page_fast(vcpu, gpa, write_fault, out_entry,
 709                                      out_buddy);
 710        if (!err)
 711                goto out;
 712
 713        /* We need a minimum of cached pages ready for page table creation */
 714        err = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
 715                                     KVM_NR_MEM_OBJS);
 716        if (err)
 717                goto out;
 718
 719retry:
 720        /*
 721         * Used to check for invalidations in progress, of the pfn that is
 722         * returned by pfn_to_pfn_prot below.
 723         */
 724        mmu_seq = kvm->mmu_notifier_seq;
 725        /*
 726         * Ensure the read of mmu_notifier_seq isn't reordered with PTE reads in
 727         * gfn_to_pfn_prot() (which calls get_user_pages()), so that we don't
 728         * risk the page we get a reference to getting unmapped before we have a
 729         * chance to grab the mmu_lock without mmu_notifier_retry() noticing.
 730         *
 731         * This smp_rmb() pairs with the effective smp_wmb() of the combination
 732         * of the pte_unmap_unlock() after the PTE is zapped, and the
 733         * spin_lock() in kvm_mmu_notifier_invalidate_<page|range_end>() before
 734         * mmu_notifier_seq is incremented.
 735         */
 736        smp_rmb();
 737
 738        /* Slow path - ask KVM core whether we can access this GPA */
 739        pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writeable);
 740        if (is_error_noslot_pfn(pfn)) {
 741                err = -EFAULT;
 742                goto out;
 743        }
 744
 745        spin_lock(&kvm->mmu_lock);
 746        /* Check if an invalidation has taken place since we got pfn */
 747        if (mmu_notifier_retry(kvm, mmu_seq)) {
 748                /*
 749                 * This can happen when mappings are changed asynchronously, but
 750                 * also synchronously if a COW is triggered by
 751                 * gfn_to_pfn_prot().
 752                 */
 753                spin_unlock(&kvm->mmu_lock);
 754                kvm_release_pfn_clean(pfn);
 755                goto retry;
 756        }
 757
 758        /* Ensure page tables are allocated */
 759        ptep = kvm_mips_pte_for_gpa(kvm, memcache, gpa);
 760
 761        /* Set up the PTE */
 762        prot_bits = _PAGE_PRESENT | __READABLE | _page_cachable_default;
 763        if (writeable) {
 764                prot_bits |= _PAGE_WRITE;
 765                if (write_fault) {
 766                        prot_bits |= __WRITEABLE;
 767                        mark_page_dirty(kvm, gfn);
 768                        kvm_set_pfn_dirty(pfn);
 769                }
 770        }
 771        entry = pfn_pte(pfn, __pgprot(prot_bits));
 772
 773        /* Write the PTE */
 774        old_pte = *ptep;
 775        set_pte(ptep, entry);
 776
 777        err = 0;
 778        if (out_entry)
 779                *out_entry = *ptep;
 780        if (out_buddy)
 781                *out_buddy = *ptep_buddy(ptep);
 782
 783        spin_unlock(&kvm->mmu_lock);
 784        kvm_release_pfn_clean(pfn);
 785        kvm_set_pfn_accessed(pfn);
 786out:
 787        srcu_read_unlock(&kvm->srcu, srcu_idx);
 788        return err;
 789}
 790
 791static pte_t *kvm_trap_emul_pte_for_gva(struct kvm_vcpu *vcpu,
 792                                        unsigned long addr)
 793{
 794        struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
 795        pgd_t *pgdp;
 796        int ret;
 797
 798        /* We need a minimum of cached pages ready for page table creation */
 799        ret = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
 800                                     KVM_NR_MEM_OBJS);
 801        if (ret)
 802                return NULL;
 803
 804        if (KVM_GUEST_KERNEL_MODE(vcpu))
 805                pgdp = vcpu->arch.guest_kernel_mm.pgd;
 806        else
 807                pgdp = vcpu->arch.guest_user_mm.pgd;
 808
 809        return kvm_mips_walk_pgd(pgdp, memcache, addr);
 810}
 811
 812void kvm_trap_emul_invalidate_gva(struct kvm_vcpu *vcpu, unsigned long addr,
 813                                  bool user)
 814{
 815        pgd_t *pgdp;
 816        pte_t *ptep;
 817
 818        addr &= PAGE_MASK << 1;
 819
 820        pgdp = vcpu->arch.guest_kernel_mm.pgd;
 821        ptep = kvm_mips_walk_pgd(pgdp, NULL, addr);
 822        if (ptep) {
 823                ptep[0] = pfn_pte(0, __pgprot(0));
 824                ptep[1] = pfn_pte(0, __pgprot(0));
 825        }
 826
 827        if (user) {
 828                pgdp = vcpu->arch.guest_user_mm.pgd;
 829                ptep = kvm_mips_walk_pgd(pgdp, NULL, addr);
 830                if (ptep) {
 831                        ptep[0] = pfn_pte(0, __pgprot(0));
 832                        ptep[1] = pfn_pte(0, __pgprot(0));
 833                }
 834        }
 835}
 836
 837/*
 838 * kvm_mips_flush_gva_{pte,pmd,pud,pgd,pt}.
 839 * Flush a range of guest physical address space from the VM's GPA page tables.
 840 */
 841
 842static bool kvm_mips_flush_gva_pte(pte_t *pte, unsigned long start_gva,
 843                                   unsigned long end_gva)
 844{
 845        int i_min = __pte_offset(start_gva);
 846        int i_max = __pte_offset(end_gva);
 847        bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PTE - 1);
 848        int i;
 849
 850        /*
 851         * There's no freeing to do, so there's no point clearing individual
 852         * entries unless only part of the last level page table needs flushing.
 853         */
 854        if (safe_to_remove)
 855                return true;
 856
 857        for (i = i_min; i <= i_max; ++i) {
 858                if (!pte_present(pte[i]))
 859                        continue;
 860
 861                set_pte(pte + i, __pte(0));
 862        }
 863        return false;
 864}
 865
 866static bool kvm_mips_flush_gva_pmd(pmd_t *pmd, unsigned long start_gva,
 867                                   unsigned long end_gva)
 868{
 869        pte_t *pte;
 870        unsigned long end = ~0ul;
 871        int i_min = pmd_index(start_gva);
 872        int i_max = pmd_index(end_gva);
 873        bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PMD - 1);
 874        int i;
 875
 876        for (i = i_min; i <= i_max; ++i, start_gva = 0) {
 877                if (!pmd_present(pmd[i]))
 878                        continue;
 879
 880                pte = pte_offset(pmd + i, 0);
 881                if (i == i_max)
 882                        end = end_gva;
 883
 884                if (kvm_mips_flush_gva_pte(pte, start_gva, end)) {
 885                        pmd_clear(pmd + i);
 886                        pte_free_kernel(NULL, pte);
 887                } else {
 888                        safe_to_remove = false;
 889                }
 890        }
 891        return safe_to_remove;
 892}
 893
 894static bool kvm_mips_flush_gva_pud(pud_t *pud, unsigned long start_gva,
 895                                   unsigned long end_gva)
 896{
 897        pmd_t *pmd;
 898        unsigned long end = ~0ul;
 899        int i_min = pud_index(start_gva);
 900        int i_max = pud_index(end_gva);
 901        bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PUD - 1);
 902        int i;
 903
 904        for (i = i_min; i <= i_max; ++i, start_gva = 0) {
 905                if (!pud_present(pud[i]))
 906                        continue;
 907
 908                pmd = pmd_offset(pud + i, 0);
 909                if (i == i_max)
 910                        end = end_gva;
 911
 912                if (kvm_mips_flush_gva_pmd(pmd, start_gva, end)) {
 913                        pud_clear(pud + i);
 914                        pmd_free(NULL, pmd);
 915                } else {
 916                        safe_to_remove = false;
 917                }
 918        }
 919        return safe_to_remove;
 920}
 921
 922static bool kvm_mips_flush_gva_pgd(pgd_t *pgd, unsigned long start_gva,
 923                                   unsigned long end_gva)
 924{
 925        p4d_t *p4d;
 926        pud_t *pud;
 927        unsigned long end = ~0ul;
 928        int i_min = pgd_index(start_gva);
 929        int i_max = pgd_index(end_gva);
 930        bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PGD - 1);
 931        int i;
 932
 933        for (i = i_min; i <= i_max; ++i, start_gva = 0) {
 934                if (!pgd_present(pgd[i]))
 935                        continue;
 936
 937                p4d = p4d_offset(pgd, 0);
 938                pud = pud_offset(p4d + i, 0);
 939                if (i == i_max)
 940                        end = end_gva;
 941
 942                if (kvm_mips_flush_gva_pud(pud, start_gva, end)) {
 943                        pgd_clear(pgd + i);
 944                        pud_free(NULL, pud);
 945                } else {
 946                        safe_to_remove = false;
 947                }
 948        }
 949        return safe_to_remove;
 950}
 951
 952void kvm_mips_flush_gva_pt(pgd_t *pgd, enum kvm_mips_flush flags)
 953{
 954        if (flags & KMF_GPA) {
 955                /* all of guest virtual address space could be affected */
 956                if (flags & KMF_KERN)
 957                        /* useg, kseg0, seg2/3 */
 958                        kvm_mips_flush_gva_pgd(pgd, 0, 0x7fffffff);
 959                else
 960                        /* useg */
 961                        kvm_mips_flush_gva_pgd(pgd, 0, 0x3fffffff);
 962        } else {
 963                /* useg */
 964                kvm_mips_flush_gva_pgd(pgd, 0, 0x3fffffff);
 965
 966                /* kseg2/3 */
 967                if (flags & KMF_KERN)
 968                        kvm_mips_flush_gva_pgd(pgd, 0x60000000, 0x7fffffff);
 969        }
 970}
 971
 972static pte_t kvm_mips_gpa_pte_to_gva_unmapped(pte_t pte)
 973{
 974        /*
 975         * Don't leak writeable but clean entries from GPA page tables. We don't
 976         * want the normal Linux tlbmod handler to handle dirtying when KVM
 977         * accesses guest memory.
 978         */
 979        if (!pte_dirty(pte))
 980                pte = pte_wrprotect(pte);
 981
 982        return pte;
 983}
 984
 985static pte_t kvm_mips_gpa_pte_to_gva_mapped(pte_t pte, long entrylo)
 986{
 987        /* Guest EntryLo overrides host EntryLo */
 988        if (!(entrylo & ENTRYLO_D))
 989                pte = pte_mkclean(pte);
 990
 991        return kvm_mips_gpa_pte_to_gva_unmapped(pte);
 992}
 993
 994#ifdef CONFIG_KVM_MIPS_VZ
 995int kvm_mips_handle_vz_root_tlb_fault(unsigned long badvaddr,
 996                                      struct kvm_vcpu *vcpu,
 997                                      bool write_fault)
 998{
 999        int ret;
1000
1001        ret = kvm_mips_map_page(vcpu, badvaddr, write_fault, NULL, NULL);
1002        if (ret)
1003                return ret;
1004
1005        /* Invalidate this entry in the TLB */
1006        return kvm_vz_host_tlb_inv(vcpu, badvaddr);
1007}
1008#endif
1009
1010/* XXXKYMA: Must be called with interrupts disabled */
1011int kvm_mips_handle_kseg0_tlb_fault(unsigned long badvaddr,
1012                                    struct kvm_vcpu *vcpu,
1013                                    bool write_fault)
1014{
1015        unsigned long gpa;
1016        pte_t pte_gpa[2], *ptep_gva;
1017        int idx;
1018
1019        if (KVM_GUEST_KSEGX(badvaddr) != KVM_GUEST_KSEG0) {
1020                kvm_err("%s: Invalid BadVaddr: %#lx\n", __func__, badvaddr);
1021                kvm_mips_dump_host_tlbs();
1022                return -1;
1023        }
1024
1025        /* Get the GPA page table entry */
1026        gpa = KVM_GUEST_CPHYSADDR(badvaddr);
1027        idx = (badvaddr >> PAGE_SHIFT) & 1;
1028        if (kvm_mips_map_page(vcpu, gpa, write_fault, &pte_gpa[idx],
1029                              &pte_gpa[!idx]) < 0)
1030                return -1;
1031
1032        /* Get the GVA page table entry */
1033        ptep_gva = kvm_trap_emul_pte_for_gva(vcpu, badvaddr & ~PAGE_SIZE);
1034        if (!ptep_gva) {
1035                kvm_err("No ptep for gva %lx\n", badvaddr);
1036                return -1;
1037        }
1038
1039        /* Copy a pair of entries from GPA page table to GVA page table */
1040        ptep_gva[0] = kvm_mips_gpa_pte_to_gva_unmapped(pte_gpa[0]);
1041        ptep_gva[1] = kvm_mips_gpa_pte_to_gva_unmapped(pte_gpa[1]);
1042
1043        /* Invalidate this entry in the TLB, guest kernel ASID only */
1044        kvm_mips_host_tlb_inv(vcpu, badvaddr, false, true);
1045        return 0;
1046}
1047
1048int kvm_mips_handle_mapped_seg_tlb_fault(struct kvm_vcpu *vcpu,
1049                                         struct kvm_mips_tlb *tlb,
1050                                         unsigned long gva,
1051                                         bool write_fault)
1052{
1053        struct kvm *kvm = vcpu->kvm;
1054        long tlb_lo[2];
1055        pte_t pte_gpa[2], *ptep_buddy, *ptep_gva;
1056        unsigned int idx = TLB_LO_IDX(*tlb, gva);
1057        bool kernel = KVM_GUEST_KERNEL_MODE(vcpu);
1058
1059        tlb_lo[0] = tlb->tlb_lo[0];
1060        tlb_lo[1] = tlb->tlb_lo[1];
1061
1062        /*
1063         * The commpage address must not be mapped to anything else if the guest
1064         * TLB contains entries nearby, or commpage accesses will break.
1065         */
1066        if (!((gva ^ KVM_GUEST_COMMPAGE_ADDR) & VPN2_MASK & (PAGE_MASK << 1)))
1067                tlb_lo[TLB_LO_IDX(*tlb, KVM_GUEST_COMMPAGE_ADDR)] = 0;
1068
1069        /* Get the GPA page table entry */
1070        if (kvm_mips_map_page(vcpu, mips3_tlbpfn_to_paddr(tlb_lo[idx]),
1071                              write_fault, &pte_gpa[idx], NULL) < 0)
1072                return -1;
1073
1074        /* And its GVA buddy's GPA page table entry if it also exists */
1075        pte_gpa[!idx] = pfn_pte(0, __pgprot(0));
1076        if (tlb_lo[!idx] & ENTRYLO_V) {
1077                spin_lock(&kvm->mmu_lock);
1078                ptep_buddy = kvm_mips_pte_for_gpa(kvm, NULL,
1079                                        mips3_tlbpfn_to_paddr(tlb_lo[!idx]));
1080                if (ptep_buddy)
1081                        pte_gpa[!idx] = *ptep_buddy;
1082                spin_unlock(&kvm->mmu_lock);
1083        }
1084
1085        /* Get the GVA page table entry pair */
1086        ptep_gva = kvm_trap_emul_pte_for_gva(vcpu, gva & ~PAGE_SIZE);
1087        if (!ptep_gva) {
1088                kvm_err("No ptep for gva %lx\n", gva);
1089                return -1;
1090        }
1091
1092        /* Copy a pair of entries from GPA page table to GVA page table */
1093        ptep_gva[0] = kvm_mips_gpa_pte_to_gva_mapped(pte_gpa[0], tlb_lo[0]);
1094        ptep_gva[1] = kvm_mips_gpa_pte_to_gva_mapped(pte_gpa[1], tlb_lo[1]);
1095
1096        /* Invalidate this entry in the TLB, current guest mode ASID only */
1097        kvm_mips_host_tlb_inv(vcpu, gva, !kernel, kernel);
1098
1099        kvm_debug("@ %#lx tlb_lo0: 0x%08lx tlb_lo1: 0x%08lx\n", vcpu->arch.pc,
1100                  tlb->tlb_lo[0], tlb->tlb_lo[1]);
1101
1102        return 0;
1103}
1104
1105int kvm_mips_handle_commpage_tlb_fault(unsigned long badvaddr,
1106                                       struct kvm_vcpu *vcpu)
1107{
1108        kvm_pfn_t pfn;
1109        pte_t *ptep;
1110
1111        ptep = kvm_trap_emul_pte_for_gva(vcpu, badvaddr);
1112        if (!ptep) {
1113                kvm_err("No ptep for commpage %lx\n", badvaddr);
1114                return -1;
1115        }
1116
1117        pfn = PFN_DOWN(virt_to_phys(vcpu->arch.kseg0_commpage));
1118        /* Also set valid and dirty, so refill handler doesn't have to */
1119        *ptep = pte_mkyoung(pte_mkdirty(pfn_pte(pfn, PAGE_SHARED)));
1120
1121        /* Invalidate this entry in the TLB, guest kernel ASID only */
1122        kvm_mips_host_tlb_inv(vcpu, badvaddr, false, true);
1123        return 0;
1124}
1125
1126/**
1127 * kvm_mips_migrate_count() - Migrate timer.
1128 * @vcpu:       Virtual CPU.
1129 *
1130 * Migrate CP0_Count hrtimer to the current CPU by cancelling and restarting it
1131 * if it was running prior to being cancelled.
1132 *
1133 * Must be called when the VCPU is migrated to a different CPU to ensure that
1134 * timer expiry during guest execution interrupts the guest and causes the
1135 * interrupt to be delivered in a timely manner.
1136 */
1137static void kvm_mips_migrate_count(struct kvm_vcpu *vcpu)
1138{
1139        if (hrtimer_cancel(&vcpu->arch.comparecount_timer))
1140                hrtimer_restart(&vcpu->arch.comparecount_timer);
1141}
1142
1143/* Restore ASID once we are scheduled back after preemption */
1144void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1145{
1146        unsigned long flags;
1147
1148        kvm_debug("%s: vcpu %p, cpu: %d\n", __func__, vcpu, cpu);
1149
1150        local_irq_save(flags);
1151
1152        vcpu->cpu = cpu;
1153        if (vcpu->arch.last_sched_cpu != cpu) {
1154                kvm_debug("[%d->%d]KVM VCPU[%d] switch\n",
1155                          vcpu->arch.last_sched_cpu, cpu, vcpu->vcpu_id);
1156                /*
1157                 * Migrate the timer interrupt to the current CPU so that it
1158                 * always interrupts the guest and synchronously triggers a
1159                 * guest timer interrupt.
1160                 */
1161                kvm_mips_migrate_count(vcpu);
1162        }
1163
1164        /* restore guest state to registers */
1165        kvm_mips_callbacks->vcpu_load(vcpu, cpu);
1166
1167        local_irq_restore(flags);
1168}
1169
1170/* ASID can change if another task is scheduled during preemption */
1171void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1172{
1173        unsigned long flags;
1174        int cpu;
1175
1176        local_irq_save(flags);
1177
1178        cpu = smp_processor_id();
1179        vcpu->arch.last_sched_cpu = cpu;
1180        vcpu->cpu = -1;
1181
1182        /* save guest state in registers */
1183        kvm_mips_callbacks->vcpu_put(vcpu, cpu);
1184
1185        local_irq_restore(flags);
1186}
1187
1188/**
1189 * kvm_trap_emul_gva_fault() - Safely attempt to handle a GVA access fault.
1190 * @vcpu:       Virtual CPU.
1191 * @gva:        Guest virtual address to be accessed.
1192 * @write:      True if write attempted (must be dirtied and made writable).
1193 *
1194 * Safely attempt to handle a GVA fault, mapping GVA pages if necessary, and
1195 * dirtying the page if @write so that guest instructions can be modified.
1196 *
1197 * Returns:     KVM_MIPS_MAPPED on success.
1198 *              KVM_MIPS_GVA if bad guest virtual address.
1199 *              KVM_MIPS_GPA if bad guest physical address.
1200 *              KVM_MIPS_TLB if guest TLB not present.
1201 *              KVM_MIPS_TLBINV if guest TLB present but not valid.
1202 *              KVM_MIPS_TLBMOD if guest TLB read only.
1203 */
1204enum kvm_mips_fault_result kvm_trap_emul_gva_fault(struct kvm_vcpu *vcpu,
1205                                                   unsigned long gva,
1206                                                   bool write)
1207{
1208        struct mips_coproc *cop0 = vcpu->arch.cop0;
1209        struct kvm_mips_tlb *tlb;
1210        int index;
1211
1212        if (KVM_GUEST_KSEGX(gva) == KVM_GUEST_KSEG0) {
1213                if (kvm_mips_handle_kseg0_tlb_fault(gva, vcpu, write) < 0)
1214                        return KVM_MIPS_GPA;
1215        } else if ((KVM_GUEST_KSEGX(gva) < KVM_GUEST_KSEG0) ||
1216                   KVM_GUEST_KSEGX(gva) == KVM_GUEST_KSEG23) {
1217                /* Address should be in the guest TLB */
1218                index = kvm_mips_guest_tlb_lookup(vcpu, (gva & VPN2_MASK) |
1219                          (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID));
1220                if (index < 0)
1221                        return KVM_MIPS_TLB;
1222                tlb = &vcpu->arch.guest_tlb[index];
1223
1224                /* Entry should be valid, and dirty for writes */
1225                if (!TLB_IS_VALID(*tlb, gva))
1226                        return KVM_MIPS_TLBINV;
1227                if (write && !TLB_IS_DIRTY(*tlb, gva))
1228                        return KVM_MIPS_TLBMOD;
1229
1230                if (kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb, gva, write))
1231                        return KVM_MIPS_GPA;
1232        } else {
1233                return KVM_MIPS_GVA;
1234        }
1235
1236        return KVM_MIPS_MAPPED;
1237}
1238
1239int kvm_get_inst(u32 *opc, struct kvm_vcpu *vcpu, u32 *out)
1240{
1241        int err;
1242
1243        if (WARN(IS_ENABLED(CONFIG_KVM_MIPS_VZ),
1244                 "Expect BadInstr/BadInstrP registers to be used with VZ\n"))
1245                return -EINVAL;
1246
1247retry:
1248        kvm_trap_emul_gva_lockless_begin(vcpu);
1249        err = get_user(*out, opc);
1250        kvm_trap_emul_gva_lockless_end(vcpu);
1251
1252        if (unlikely(err)) {
1253                /*
1254                 * Try to handle the fault, maybe we just raced with a GVA
1255                 * invalidation.
1256                 */
1257                err = kvm_trap_emul_gva_fault(vcpu, (unsigned long)opc,
1258                                              false);
1259                if (unlikely(err)) {
1260                        kvm_err("%s: illegal address: %p\n",
1261                                __func__, opc);
1262                        return -EFAULT;
1263                }
1264
1265                /* Hopefully it'll work now */
1266                goto retry;
1267        }
1268        return 0;
1269}
1270