linux/arch/parisc/include/asm/pgtable.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _PARISC_PGTABLE_H
   3#define _PARISC_PGTABLE_H
   4
   5#include <asm/page.h>
   6
   7#if CONFIG_PGTABLE_LEVELS == 3
   8#include <asm-generic/pgtable-nopud.h>
   9#elif CONFIG_PGTABLE_LEVELS == 2
  10#include <asm-generic/pgtable-nopmd.h>
  11#endif
  12
  13#include <asm/fixmap.h>
  14
  15#ifndef __ASSEMBLY__
  16/*
  17 * we simulate an x86-style page table for the linux mm code
  18 */
  19
  20#include <linux/bitops.h>
  21#include <linux/spinlock.h>
  22#include <linux/mm_types.h>
  23#include <asm/processor.h>
  24#include <asm/cache.h>
  25
  26static inline spinlock_t *pgd_spinlock(pgd_t *);
  27
  28/*
  29 * kern_addr_valid(ADDR) tests if ADDR is pointing to valid kernel
  30 * memory.  For the return value to be meaningful, ADDR must be >=
  31 * PAGE_OFFSET.  This operation can be relatively expensive (e.g.,
  32 * require a hash-, or multi-level tree-lookup or something of that
  33 * sort) but it guarantees to return TRUE only if accessing the page
  34 * at that address does not cause an error.  Note that there may be
  35 * addresses for which kern_addr_valid() returns FALSE even though an
  36 * access would not cause an error (e.g., this is typically true for
  37 * memory mapped I/O regions.
  38 *
  39 * XXX Need to implement this for parisc.
  40 */
  41#define kern_addr_valid(addr)   (1)
  42
  43/* This is for the serialization of PxTLB broadcasts. At least on the N class
  44 * systems, only one PxTLB inter processor broadcast can be active at any one
  45 * time on the Merced bus.
  46
  47 * PTE updates are protected by locks in the PMD.
  48 */
  49extern spinlock_t pa_tlb_flush_lock;
  50extern spinlock_t pa_swapper_pg_lock;
  51#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
  52extern int pa_serialize_tlb_flushes;
  53#else
  54#define pa_serialize_tlb_flushes        (0)
  55#endif
  56
  57#define purge_tlb_start(flags)  do { \
  58        if (pa_serialize_tlb_flushes)   \
  59                spin_lock_irqsave(&pa_tlb_flush_lock, flags); \
  60        else \
  61                local_irq_save(flags);  \
  62        } while (0)
  63#define purge_tlb_end(flags)    do { \
  64        if (pa_serialize_tlb_flushes)   \
  65                spin_unlock_irqrestore(&pa_tlb_flush_lock, flags); \
  66        else \
  67                local_irq_restore(flags); \
  68        } while (0)
  69
  70/* Purge data and instruction TLB entries. The TLB purge instructions
  71 * are slow on SMP machines since the purge must be broadcast to all CPUs.
  72 */
  73
  74static inline void purge_tlb_entries(struct mm_struct *mm, unsigned long addr)
  75{
  76        unsigned long flags;
  77
  78        purge_tlb_start(flags);
  79        mtsp(mm->context, 1);
  80        pdtlb(addr);
  81        pitlb(addr);
  82        purge_tlb_end(flags);
  83}
  84
  85/* Certain architectures need to do special things when PTEs
  86 * within a page table are directly modified.  Thus, the following
  87 * hook is made available.
  88 */
  89#define set_pte(pteptr, pteval)                                 \
  90        do{                                                     \
  91                *(pteptr) = (pteval);                           \
  92        } while(0)
  93
  94#define set_pte_at(mm, addr, ptep, pteval)                      \
  95        do {                                                    \
  96                pte_t old_pte;                                  \
  97                unsigned long flags;                            \
  98                spin_lock_irqsave(pgd_spinlock((mm)->pgd), flags);\
  99                old_pte = *ptep;                                \
 100                set_pte(ptep, pteval);                          \
 101                purge_tlb_entries(mm, addr);                    \
 102                spin_unlock_irqrestore(pgd_spinlock((mm)->pgd), flags);\
 103        } while (0)
 104
 105#endif /* !__ASSEMBLY__ */
 106
 107#define pte_ERROR(e) \
 108        printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
 109#if CONFIG_PGTABLE_LEVELS == 3
 110#define pmd_ERROR(e) \
 111        printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, (unsigned long)pmd_val(e))
 112#endif
 113#define pgd_ERROR(e) \
 114        printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, (unsigned long)pgd_val(e))
 115
 116/* This is the size of the initially mapped kernel memory */
 117#if defined(CONFIG_64BIT)
 118#define KERNEL_INITIAL_ORDER    26      /* 1<<26 = 64MB */
 119#else
 120#define KERNEL_INITIAL_ORDER    25      /* 1<<25 = 32MB */
 121#endif
 122#define KERNEL_INITIAL_SIZE     (1 << KERNEL_INITIAL_ORDER)
 123
 124#if CONFIG_PGTABLE_LEVELS == 3
 125#define PGD_ORDER       1 /* Number of pages per pgd */
 126#define PMD_ORDER       1 /* Number of pages per pmd */
 127#define PGD_ALLOC_ORDER (2 + 1) /* first pgd contains pmd */
 128#else
 129#define PGD_ORDER       1 /* Number of pages per pgd */
 130#define PGD_ALLOC_ORDER (PGD_ORDER + 1)
 131#endif
 132
 133/* Definitions for 3rd level (we use PLD here for Page Lower directory
 134 * because PTE_SHIFT is used lower down to mean shift that has to be
 135 * done to get usable bits out of the PTE) */
 136#define PLD_SHIFT       PAGE_SHIFT
 137#define PLD_SIZE        PAGE_SIZE
 138#define BITS_PER_PTE    (PAGE_SHIFT - BITS_PER_PTE_ENTRY)
 139#define PTRS_PER_PTE    (1UL << BITS_PER_PTE)
 140
 141/* Definitions for 2nd level */
 142#if CONFIG_PGTABLE_LEVELS == 3
 143#define PMD_SHIFT       (PLD_SHIFT + BITS_PER_PTE)
 144#define PMD_SIZE        (1UL << PMD_SHIFT)
 145#define PMD_MASK        (~(PMD_SIZE-1))
 146#define BITS_PER_PMD    (PAGE_SHIFT + PMD_ORDER - BITS_PER_PMD_ENTRY)
 147#define PTRS_PER_PMD    (1UL << BITS_PER_PMD)
 148#else
 149#define BITS_PER_PMD    0
 150#endif
 151
 152/* Definitions for 1st level */
 153#define PGDIR_SHIFT     (PLD_SHIFT + BITS_PER_PTE + BITS_PER_PMD)
 154#if (PGDIR_SHIFT + PAGE_SHIFT + PGD_ORDER - BITS_PER_PGD_ENTRY) > BITS_PER_LONG
 155#define BITS_PER_PGD    (BITS_PER_LONG - PGDIR_SHIFT)
 156#else
 157#define BITS_PER_PGD    (PAGE_SHIFT + PGD_ORDER - BITS_PER_PGD_ENTRY)
 158#endif
 159#define PGDIR_SIZE      (1UL << PGDIR_SHIFT)
 160#define PGDIR_MASK      (~(PGDIR_SIZE-1))
 161#define PTRS_PER_PGD    (1UL << BITS_PER_PGD)
 162#define USER_PTRS_PER_PGD       PTRS_PER_PGD
 163
 164#ifdef CONFIG_64BIT
 165#define MAX_ADDRBITS    (PGDIR_SHIFT + BITS_PER_PGD)
 166#define MAX_ADDRESS     (1UL << MAX_ADDRBITS)
 167#define SPACEID_SHIFT   (MAX_ADDRBITS - 32)
 168#else
 169#define MAX_ADDRBITS    (BITS_PER_LONG)
 170#define MAX_ADDRESS     (1UL << MAX_ADDRBITS)
 171#define SPACEID_SHIFT   0
 172#endif
 173
 174/* This calculates the number of initial pages we need for the initial
 175 * page tables */
 176#if (KERNEL_INITIAL_ORDER) >= (PMD_SHIFT)
 177# define PT_INITIAL     (1 << (KERNEL_INITIAL_ORDER - PMD_SHIFT))
 178#else
 179# define PT_INITIAL     (1)  /* all initial PTEs fit into one page */
 180#endif
 181
 182/*
 183 * pgd entries used up by user/kernel:
 184 */
 185
 186#define FIRST_USER_ADDRESS      0UL
 187
 188/* NB: The tlb miss handlers make certain assumptions about the order */
 189/*     of the following bits, so be careful (One example, bits 25-31  */
 190/*     are moved together in one instruction).                        */
 191
 192#define _PAGE_READ_BIT     31   /* (0x001) read access allowed */
 193#define _PAGE_WRITE_BIT    30   /* (0x002) write access allowed */
 194#define _PAGE_EXEC_BIT     29   /* (0x004) execute access allowed */
 195#define _PAGE_GATEWAY_BIT  28   /* (0x008) privilege promotion allowed */
 196#define _PAGE_DMB_BIT      27   /* (0x010) Data Memory Break enable (B bit) */
 197#define _PAGE_DIRTY_BIT    26   /* (0x020) Page Dirty (D bit) */
 198#define _PAGE_REFTRAP_BIT  25   /* (0x040) Page Ref. Trap enable (T bit) */
 199#define _PAGE_NO_CACHE_BIT 24   /* (0x080) Uncached Page (U bit) */
 200#define _PAGE_ACCESSED_BIT 23   /* (0x100) Software: Page Accessed */
 201#define _PAGE_PRESENT_BIT  22   /* (0x200) Software: translation valid */
 202#define _PAGE_HPAGE_BIT    21   /* (0x400) Software: Huge Page */
 203#define _PAGE_USER_BIT     20   /* (0x800) Software: User accessible page */
 204
 205/* N.B. The bits are defined in terms of a 32 bit word above, so the */
 206/*      following macro is ok for both 32 and 64 bit.                */
 207
 208#define xlate_pabit(x) (31 - x)
 209
 210/* this defines the shift to the usable bits in the PTE it is set so
 211 * that the valid bits _PAGE_PRESENT_BIT and _PAGE_USER_BIT are set
 212 * to zero */
 213#define PTE_SHIFT               xlate_pabit(_PAGE_USER_BIT)
 214
 215/* PFN_PTE_SHIFT defines the shift of a PTE value to access the PFN field */
 216#define PFN_PTE_SHIFT           12
 217
 218#define _PAGE_READ     (1 << xlate_pabit(_PAGE_READ_BIT))
 219#define _PAGE_WRITE    (1 << xlate_pabit(_PAGE_WRITE_BIT))
 220#define _PAGE_RW       (_PAGE_READ | _PAGE_WRITE)
 221#define _PAGE_EXEC     (1 << xlate_pabit(_PAGE_EXEC_BIT))
 222#define _PAGE_GATEWAY  (1 << xlate_pabit(_PAGE_GATEWAY_BIT))
 223#define _PAGE_DMB      (1 << xlate_pabit(_PAGE_DMB_BIT))
 224#define _PAGE_DIRTY    (1 << xlate_pabit(_PAGE_DIRTY_BIT))
 225#define _PAGE_REFTRAP  (1 << xlate_pabit(_PAGE_REFTRAP_BIT))
 226#define _PAGE_NO_CACHE (1 << xlate_pabit(_PAGE_NO_CACHE_BIT))
 227#define _PAGE_ACCESSED (1 << xlate_pabit(_PAGE_ACCESSED_BIT))
 228#define _PAGE_PRESENT  (1 << xlate_pabit(_PAGE_PRESENT_BIT))
 229#define _PAGE_HUGE     (1 << xlate_pabit(_PAGE_HPAGE_BIT))
 230#define _PAGE_USER     (1 << xlate_pabit(_PAGE_USER_BIT))
 231
 232#define _PAGE_TABLE     (_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | _PAGE_DIRTY | _PAGE_ACCESSED)
 233#define _PAGE_CHG_MASK  (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
 234#define _PAGE_KERNEL_RO (_PAGE_PRESENT | _PAGE_READ | _PAGE_DIRTY | _PAGE_ACCESSED)
 235#define _PAGE_KERNEL_EXEC       (_PAGE_KERNEL_RO | _PAGE_EXEC)
 236#define _PAGE_KERNEL_RWX        (_PAGE_KERNEL_EXEC | _PAGE_WRITE)
 237#define _PAGE_KERNEL            (_PAGE_KERNEL_RO | _PAGE_WRITE)
 238
 239/* The pgd/pmd contains a ptr (in phys addr space); since all pgds/pmds
 240 * are page-aligned, we don't care about the PAGE_OFFSET bits, except
 241 * for a few meta-information bits, so we shift the address to be
 242 * able to effectively address 40/42/44-bits of physical address space
 243 * depending on 4k/16k/64k PAGE_SIZE */
 244#define _PxD_PRESENT_BIT   31
 245#define _PxD_ATTACHED_BIT  30
 246#define _PxD_VALID_BIT     29
 247
 248#define PxD_FLAG_PRESENT  (1 << xlate_pabit(_PxD_PRESENT_BIT))
 249#define PxD_FLAG_ATTACHED (1 << xlate_pabit(_PxD_ATTACHED_BIT))
 250#define PxD_FLAG_VALID    (1 << xlate_pabit(_PxD_VALID_BIT))
 251#define PxD_FLAG_MASK     (0xf)
 252#define PxD_FLAG_SHIFT    (4)
 253#define PxD_VALUE_SHIFT   (PFN_PTE_SHIFT-PxD_FLAG_SHIFT)
 254
 255#ifndef __ASSEMBLY__
 256
 257#define PAGE_NONE       __pgprot(_PAGE_PRESENT | _PAGE_USER)
 258#define PAGE_SHARED     __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_WRITE)
 259/* Others seem to make this executable, I don't know if that's correct
 260   or not.  The stack is mapped this way though so this is necessary
 261   in the short term - dhd@linuxcare.com, 2000-08-08 */
 262#define PAGE_READONLY   __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ)
 263#define PAGE_WRITEONLY  __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_WRITE)
 264#define PAGE_EXECREAD   __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_EXEC)
 265#define PAGE_COPY       PAGE_EXECREAD
 266#define PAGE_RWX        __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_WRITE | _PAGE_EXEC)
 267#define PAGE_KERNEL     __pgprot(_PAGE_KERNEL)
 268#define PAGE_KERNEL_EXEC        __pgprot(_PAGE_KERNEL_EXEC)
 269#define PAGE_KERNEL_RWX __pgprot(_PAGE_KERNEL_RWX)
 270#define PAGE_KERNEL_RO  __pgprot(_PAGE_KERNEL_RO)
 271#define PAGE_KERNEL_UNC __pgprot(_PAGE_KERNEL | _PAGE_NO_CACHE)
 272#define PAGE_GATEWAY    __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_GATEWAY| _PAGE_READ)
 273
 274
 275/*
 276 * We could have an execute only page using "gateway - promote to priv
 277 * level 3", but that is kind of silly. So, the way things are defined
 278 * now, we must always have read permission for pages with execute
 279 * permission. For the fun of it we'll go ahead and support write only
 280 * pages.
 281 */
 282
 283         /*xwr*/
 284#define __P000  PAGE_NONE
 285#define __P001  PAGE_READONLY
 286#define __P010  __P000 /* copy on write */
 287#define __P011  __P001 /* copy on write */
 288#define __P100  PAGE_EXECREAD
 289#define __P101  PAGE_EXECREAD
 290#define __P110  __P100 /* copy on write */
 291#define __P111  __P101 /* copy on write */
 292
 293#define __S000  PAGE_NONE
 294#define __S001  PAGE_READONLY
 295#define __S010  PAGE_WRITEONLY
 296#define __S011  PAGE_SHARED
 297#define __S100  PAGE_EXECREAD
 298#define __S101  PAGE_EXECREAD
 299#define __S110  PAGE_RWX
 300#define __S111  PAGE_RWX
 301
 302
 303extern pgd_t swapper_pg_dir[]; /* declared in init_task.c */
 304
 305/* initial page tables for 0-8MB for kernel */
 306
 307extern pte_t pg0[];
 308
 309/* zero page used for uninitialized stuff */
 310
 311extern unsigned long *empty_zero_page;
 312
 313/*
 314 * ZERO_PAGE is a global shared page that is always zero: used
 315 * for zero-mapped memory areas etc..
 316 */
 317
 318#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
 319
 320#define pte_none(x)     (pte_val(x) == 0)
 321#define pte_present(x)  (pte_val(x) & _PAGE_PRESENT)
 322#define pte_clear(mm, addr, xp)  set_pte_at(mm, addr, xp, __pte(0))
 323
 324#define pmd_flag(x)     (pmd_val(x) & PxD_FLAG_MASK)
 325#define pmd_address(x)  ((unsigned long)(pmd_val(x) &~ PxD_FLAG_MASK) << PxD_VALUE_SHIFT)
 326#define pud_flag(x)     (pud_val(x) & PxD_FLAG_MASK)
 327#define pud_address(x)  ((unsigned long)(pud_val(x) &~ PxD_FLAG_MASK) << PxD_VALUE_SHIFT)
 328#define pgd_flag(x)     (pgd_val(x) & PxD_FLAG_MASK)
 329#define pgd_address(x)  ((unsigned long)(pgd_val(x) &~ PxD_FLAG_MASK) << PxD_VALUE_SHIFT)
 330
 331#if CONFIG_PGTABLE_LEVELS == 3
 332/* The first entry of the permanent pmd is not there if it contains
 333 * the gateway marker */
 334#define pmd_none(x)     (!pmd_val(x) || pmd_flag(x) == PxD_FLAG_ATTACHED)
 335#else
 336#define pmd_none(x)     (!pmd_val(x))
 337#endif
 338#define pmd_bad(x)      (!(pmd_flag(x) & PxD_FLAG_VALID))
 339#define pmd_present(x)  (pmd_flag(x) & PxD_FLAG_PRESENT)
 340static inline void pmd_clear(pmd_t *pmd) {
 341#if CONFIG_PGTABLE_LEVELS == 3
 342        if (pmd_flag(*pmd) & PxD_FLAG_ATTACHED)
 343                /* This is the entry pointing to the permanent pmd
 344                 * attached to the pgd; cannot clear it */
 345                set_pmd(pmd, __pmd(PxD_FLAG_ATTACHED));
 346        else
 347#endif
 348                set_pmd(pmd,  __pmd(0));
 349}
 350
 351
 352
 353#if CONFIG_PGTABLE_LEVELS == 3
 354#define pud_page_vaddr(pud) ((unsigned long) __va(pud_address(pud)))
 355#define pud_page(pud)   virt_to_page((void *)pud_page_vaddr(pud))
 356
 357/* For 64 bit we have three level tables */
 358
 359#define pud_none(x)     (!pud_val(x))
 360#define pud_bad(x)      (!(pud_flag(x) & PxD_FLAG_VALID))
 361#define pud_present(x)  (pud_flag(x) & PxD_FLAG_PRESENT)
 362static inline void pud_clear(pud_t *pud) {
 363#if CONFIG_PGTABLE_LEVELS == 3
 364        if(pud_flag(*pud) & PxD_FLAG_ATTACHED)
 365                /* This is the permanent pmd attached to the pud; cannot
 366                 * free it */
 367                return;
 368#endif
 369        set_pud(pud, __pud(0));
 370}
 371#endif
 372
 373/*
 374 * The following only work if pte_present() is true.
 375 * Undefined behaviour if not..
 376 */
 377static inline int pte_dirty(pte_t pte)          { return pte_val(pte) & _PAGE_DIRTY; }
 378static inline int pte_young(pte_t pte)          { return pte_val(pte) & _PAGE_ACCESSED; }
 379static inline int pte_write(pte_t pte)          { return pte_val(pte) & _PAGE_WRITE; }
 380static inline int pte_special(pte_t pte)        { return 0; }
 381
 382static inline pte_t pte_mkclean(pte_t pte)      { pte_val(pte) &= ~_PAGE_DIRTY; return pte; }
 383static inline pte_t pte_mkold(pte_t pte)        { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
 384static inline pte_t pte_wrprotect(pte_t pte)    { pte_val(pte) &= ~_PAGE_WRITE; return pte; }
 385static inline pte_t pte_mkdirty(pte_t pte)      { pte_val(pte) |= _PAGE_DIRTY; return pte; }
 386static inline pte_t pte_mkyoung(pte_t pte)      { pte_val(pte) |= _PAGE_ACCESSED; return pte; }
 387static inline pte_t pte_mkwrite(pte_t pte)      { pte_val(pte) |= _PAGE_WRITE; return pte; }
 388static inline pte_t pte_mkspecial(pte_t pte)    { return pte; }
 389
 390/*
 391 * Huge pte definitions.
 392 */
 393#ifdef CONFIG_HUGETLB_PAGE
 394#define pte_huge(pte)           (pte_val(pte) & _PAGE_HUGE)
 395#define pte_mkhuge(pte)         (__pte(pte_val(pte) | \
 396                                 (parisc_requires_coherency() ? 0 : _PAGE_HUGE)))
 397#else
 398#define pte_huge(pte)           (0)
 399#define pte_mkhuge(pte)         (pte)
 400#endif
 401
 402
 403/*
 404 * Conversion functions: convert a page and protection to a page entry,
 405 * and a page entry and page directory to the page they refer to.
 406 */
 407#define __mk_pte(addr,pgprot) \
 408({                                                                      \
 409        pte_t __pte;                                                    \
 410                                                                        \
 411        pte_val(__pte) = ((((addr)>>PAGE_SHIFT)<<PFN_PTE_SHIFT) + pgprot_val(pgprot));  \
 412                                                                        \
 413        __pte;                                                          \
 414})
 415
 416#define mk_pte(page, pgprot)    pfn_pte(page_to_pfn(page), (pgprot))
 417
 418static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
 419{
 420        pte_t pte;
 421        pte_val(pte) = (pfn << PFN_PTE_SHIFT) | pgprot_val(pgprot);
 422        return pte;
 423}
 424
 425static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
 426{ pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; }
 427
 428/* Permanent address of a page.  On parisc we don't have highmem. */
 429
 430#define pte_pfn(x)              (pte_val(x) >> PFN_PTE_SHIFT)
 431
 432#define pte_page(pte)           (pfn_to_page(pte_pfn(pte)))
 433
 434#define pmd_page_vaddr(pmd)     ((unsigned long) __va(pmd_address(pmd)))
 435
 436#define __pmd_page(pmd) ((unsigned long) __va(pmd_address(pmd)))
 437#define pmd_page(pmd)   virt_to_page((void *)__pmd_page(pmd))
 438
 439#define pgd_index(address) ((address) >> PGDIR_SHIFT)
 440
 441/* to find an entry in a page-table-directory */
 442#define pgd_offset(mm, address) \
 443((mm)->pgd + ((address) >> PGDIR_SHIFT))
 444
 445/* to find an entry in a kernel page-table-directory */
 446#define pgd_offset_k(address) pgd_offset(&init_mm, address)
 447
 448/* Find an entry in the second-level page table.. */
 449
 450#if CONFIG_PGTABLE_LEVELS == 3
 451#define pmd_index(addr)         (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1))
 452#define pmd_offset(dir,address) \
 453((pmd_t *) pud_page_vaddr(*(dir)) + pmd_index(address))
 454#else
 455#define pmd_offset(dir,addr) ((pmd_t *) dir)
 456#endif
 457
 458/* Find an entry in the third-level page table.. */ 
 459#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
 460#define pte_offset_kernel(pmd, address) \
 461        ((pte_t *) pmd_page_vaddr(*(pmd)) + pte_index(address))
 462#define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
 463#define pte_unmap(pte) do { } while (0)
 464
 465#define pte_unmap(pte)                  do { } while (0)
 466#define pte_unmap_nested(pte)           do { } while (0)
 467
 468extern void paging_init (void);
 469
 470/* Used for deferring calls to flush_dcache_page() */
 471
 472#define PG_dcache_dirty         PG_arch_1
 473
 474extern void update_mmu_cache(struct vm_area_struct *, unsigned long, pte_t *);
 475
 476/* Encode and de-code a swap entry */
 477
 478#define __swp_type(x)                     ((x).val & 0x1f)
 479#define __swp_offset(x)                   ( (((x).val >> 6) &  0x7) | \
 480                                          (((x).val >> 8) & ~0x7) )
 481#define __swp_entry(type, offset)         ((swp_entry_t) { (type) | \
 482                                            ((offset &  0x7) << 6) | \
 483                                            ((offset & ~0x7) << 8) })
 484#define __pte_to_swp_entry(pte)         ((swp_entry_t) { pte_val(pte) })
 485#define __swp_entry_to_pte(x)           ((pte_t) { (x).val })
 486
 487
 488static inline spinlock_t *pgd_spinlock(pgd_t *pgd)
 489{
 490        if (unlikely(pgd == swapper_pg_dir))
 491                return &pa_swapper_pg_lock;
 492        return (spinlock_t *)((char *)pgd + (PAGE_SIZE << (PGD_ALLOC_ORDER - 1)));
 493}
 494
 495
 496static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
 497{
 498        pte_t pte;
 499        unsigned long flags;
 500
 501        if (!pte_young(*ptep))
 502                return 0;
 503
 504        spin_lock_irqsave(pgd_spinlock(vma->vm_mm->pgd), flags);
 505        pte = *ptep;
 506        if (!pte_young(pte)) {
 507                spin_unlock_irqrestore(pgd_spinlock(vma->vm_mm->pgd), flags);
 508                return 0;
 509        }
 510        set_pte(ptep, pte_mkold(pte));
 511        purge_tlb_entries(vma->vm_mm, addr);
 512        spin_unlock_irqrestore(pgd_spinlock(vma->vm_mm->pgd), flags);
 513        return 1;
 514}
 515
 516struct mm_struct;
 517static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
 518{
 519        pte_t old_pte;
 520        unsigned long flags;
 521
 522        spin_lock_irqsave(pgd_spinlock(mm->pgd), flags);
 523        old_pte = *ptep;
 524        set_pte(ptep, __pte(0));
 525        purge_tlb_entries(mm, addr);
 526        spin_unlock_irqrestore(pgd_spinlock(mm->pgd), flags);
 527
 528        return old_pte;
 529}
 530
 531static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
 532{
 533        unsigned long flags;
 534        spin_lock_irqsave(pgd_spinlock(mm->pgd), flags);
 535        set_pte(ptep, pte_wrprotect(*ptep));
 536        purge_tlb_entries(mm, addr);
 537        spin_unlock_irqrestore(pgd_spinlock(mm->pgd), flags);
 538}
 539
 540#define pte_same(A,B)   (pte_val(A) == pte_val(B))
 541
 542struct seq_file;
 543extern void arch_report_meminfo(struct seq_file *m);
 544
 545#endif /* !__ASSEMBLY__ */
 546
 547
 548/* TLB page size encoding - see table 3-1 in parisc20.pdf */
 549#define _PAGE_SIZE_ENCODING_4K          0
 550#define _PAGE_SIZE_ENCODING_16K         1
 551#define _PAGE_SIZE_ENCODING_64K         2
 552#define _PAGE_SIZE_ENCODING_256K        3
 553#define _PAGE_SIZE_ENCODING_1M          4
 554#define _PAGE_SIZE_ENCODING_4M          5
 555#define _PAGE_SIZE_ENCODING_16M         6
 556#define _PAGE_SIZE_ENCODING_64M         7
 557
 558#if defined(CONFIG_PARISC_PAGE_SIZE_4KB)
 559# define _PAGE_SIZE_ENCODING_DEFAULT _PAGE_SIZE_ENCODING_4K
 560#elif defined(CONFIG_PARISC_PAGE_SIZE_16KB)
 561# define _PAGE_SIZE_ENCODING_DEFAULT _PAGE_SIZE_ENCODING_16K
 562#elif defined(CONFIG_PARISC_PAGE_SIZE_64KB)
 563# define _PAGE_SIZE_ENCODING_DEFAULT _PAGE_SIZE_ENCODING_64K
 564#endif
 565
 566
 567#define pgprot_noncached(prot) __pgprot(pgprot_val(prot) | _PAGE_NO_CACHE)
 568
 569/* We provide our own get_unmapped_area to provide cache coherency */
 570
 571#define HAVE_ARCH_UNMAPPED_AREA
 572#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
 573
 574#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
 575#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
 576#define __HAVE_ARCH_PTEP_SET_WRPROTECT
 577#define __HAVE_ARCH_PTE_SAME
 578#include <asm-generic/pgtable.h>
 579
 580#endif /* _PARISC_PGTABLE_H */
 581